xref: /linux-6.15/include/linux/skbuff.h (revision 9397fa2e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	struct net_device	*physindev;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 };
334 #endif
335 
336 struct sk_buff_head {
337 	/* These two members must be first to match sk_buff. */
338 	struct_group_tagged(sk_buff_list, list,
339 		struct sk_buff	*next;
340 		struct sk_buff	*prev;
341 	);
342 
343 	__u32		qlen;
344 	spinlock_t	lock;
345 };
346 
347 struct sk_buff;
348 
349 #ifndef CONFIG_MAX_SKB_FRAGS
350 # define CONFIG_MAX_SKB_FRAGS 17
351 #endif
352 
353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
354 
355 extern int sysctl_max_skb_frags;
356 
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS	0xFFFF
361 
362 typedef struct bio_vec skb_frag_t;
363 
364 /**
365  * skb_frag_size() - Returns the size of a skb fragment
366  * @frag: skb fragment
367  */
368 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
369 {
370 	return frag->bv_len;
371 }
372 
373 /**
374  * skb_frag_size_set() - Sets the size of a skb fragment
375  * @frag: skb fragment
376  * @size: size of fragment
377  */
378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
379 {
380 	frag->bv_len = size;
381 }
382 
383 /**
384  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385  * @frag: skb fragment
386  * @delta: value to add
387  */
388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
389 {
390 	frag->bv_len += delta;
391 }
392 
393 /**
394  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395  * @frag: skb fragment
396  * @delta: value to subtract
397  */
398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
399 {
400 	frag->bv_len -= delta;
401 }
402 
403 /**
404  * skb_frag_must_loop - Test if %p is a high memory page
405  * @p: fragment's page
406  */
407 static inline bool skb_frag_must_loop(struct page *p)
408 {
409 #if defined(CONFIG_HIGHMEM)
410 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
411 		return true;
412 #endif
413 	return false;
414 }
415 
416 /**
417  *	skb_frag_foreach_page - loop over pages in a fragment
418  *
419  *	@f:		skb frag to operate on
420  *	@f_off:		offset from start of f->bv_page
421  *	@f_len:		length from f_off to loop over
422  *	@p:		(temp var) current page
423  *	@p_off:		(temp var) offset from start of current page,
424  *	                           non-zero only on first page.
425  *	@p_len:		(temp var) length in current page,
426  *				   < PAGE_SIZE only on first and last page.
427  *	@copied:	(temp var) length so far, excluding current p_len.
428  *
429  *	A fragment can hold a compound page, in which case per-page
430  *	operations, notably kmap_atomic, must be called for each
431  *	regular page.
432  */
433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
434 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
435 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
436 	     p_len = skb_frag_must_loop(p) ?				\
437 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
438 	     copied = 0;						\
439 	     copied < f_len;						\
440 	     copied += p_len, p++, p_off = 0,				\
441 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
442 
443 #define HAVE_HW_TIME_STAMP
444 
445 /**
446  * struct skb_shared_hwtstamps - hardware time stamps
447  * @hwtstamp:		hardware time stamp transformed into duration
448  *			since arbitrary point in time
449  * @netdev_data:	address/cookie of network device driver used as
450  *			reference to actual hardware time stamp
451  *
452  * Software time stamps generated by ktime_get_real() are stored in
453  * skb->tstamp.
454  *
455  * hwtstamps can only be compared against other hwtstamps from
456  * the same device.
457  *
458  * This structure is attached to packets as part of the
459  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
460  */
461 struct skb_shared_hwtstamps {
462 	union {
463 		ktime_t	hwtstamp;
464 		void *netdev_data;
465 	};
466 };
467 
468 /* Definitions for tx_flags in struct skb_shared_info */
469 enum {
470 	/* generate hardware time stamp */
471 	SKBTX_HW_TSTAMP = 1 << 0,
472 
473 	/* generate software time stamp when queueing packet to NIC */
474 	SKBTX_SW_TSTAMP = 1 << 1,
475 
476 	/* device driver is going to provide hardware time stamp */
477 	SKBTX_IN_PROGRESS = 1 << 2,
478 
479 	/* generate hardware time stamp based on cycles if supported */
480 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
481 
482 	/* generate wifi status information (where possible) */
483 	SKBTX_WIFI_STATUS = 1 << 4,
484 
485 	/* determine hardware time stamp based on time or cycles */
486 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
487 
488 	/* generate software time stamp when entering packet scheduling */
489 	SKBTX_SCHED_TSTAMP = 1 << 6,
490 };
491 
492 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
493 				 SKBTX_SCHED_TSTAMP)
494 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
495 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
496 				 SKBTX_ANY_SW_TSTAMP)
497 
498 /* Definitions for flags in struct skb_shared_info */
499 enum {
500 	/* use zcopy routines */
501 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
502 
503 	/* This indicates at least one fragment might be overwritten
504 	 * (as in vmsplice(), sendfile() ...)
505 	 * If we need to compute a TX checksum, we'll need to copy
506 	 * all frags to avoid possible bad checksum
507 	 */
508 	SKBFL_SHARED_FRAG = BIT(1),
509 
510 	/* segment contains only zerocopy data and should not be
511 	 * charged to the kernel memory.
512 	 */
513 	SKBFL_PURE_ZEROCOPY = BIT(2),
514 
515 	SKBFL_DONT_ORPHAN = BIT(3),
516 
517 	/* page references are managed by the ubuf_info, so it's safe to
518 	 * use frags only up until ubuf_info is released
519 	 */
520 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
521 };
522 
523 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
524 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
525 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
526 
527 /*
528  * The callback notifies userspace to release buffers when skb DMA is done in
529  * lower device, the skb last reference should be 0 when calling this.
530  * The zerocopy_success argument is true if zero copy transmit occurred,
531  * false on data copy or out of memory error caused by data copy attempt.
532  * The ctx field is used to track device context.
533  * The desc field is used to track userspace buffer index.
534  */
535 struct ubuf_info {
536 	void (*callback)(struct sk_buff *, struct ubuf_info *,
537 			 bool zerocopy_success);
538 	refcount_t refcnt;
539 	u8 flags;
540 };
541 
542 struct ubuf_info_msgzc {
543 	struct ubuf_info ubuf;
544 
545 	union {
546 		struct {
547 			unsigned long desc;
548 			void *ctx;
549 		};
550 		struct {
551 			u32 id;
552 			u16 len;
553 			u16 zerocopy:1;
554 			u32 bytelen;
555 		};
556 	};
557 
558 	struct mmpin {
559 		struct user_struct *user;
560 		unsigned int num_pg;
561 	} mmp;
562 };
563 
564 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
565 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
566 					     ubuf)
567 
568 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
569 void mm_unaccount_pinned_pages(struct mmpin *mmp);
570 
571 /* This data is invariant across clones and lives at
572  * the end of the header data, ie. at skb->end.
573  */
574 struct skb_shared_info {
575 	__u8		flags;
576 	__u8		meta_len;
577 	__u8		nr_frags;
578 	__u8		tx_flags;
579 	unsigned short	gso_size;
580 	/* Warning: this field is not always filled in (UFO)! */
581 	unsigned short	gso_segs;
582 	struct sk_buff	*frag_list;
583 	struct skb_shared_hwtstamps hwtstamps;
584 	unsigned int	gso_type;
585 	u32		tskey;
586 
587 	/*
588 	 * Warning : all fields before dataref are cleared in __alloc_skb()
589 	 */
590 	atomic_t	dataref;
591 	unsigned int	xdp_frags_size;
592 
593 	/* Intermediate layers must ensure that destructor_arg
594 	 * remains valid until skb destructor */
595 	void *		destructor_arg;
596 
597 	/* must be last field, see pskb_expand_head() */
598 	skb_frag_t	frags[MAX_SKB_FRAGS];
599 };
600 
601 /**
602  * DOC: dataref and headerless skbs
603  *
604  * Transport layers send out clones of payload skbs they hold for
605  * retransmissions. To allow lower layers of the stack to prepend their headers
606  * we split &skb_shared_info.dataref into two halves.
607  * The lower 16 bits count the overall number of references.
608  * The higher 16 bits indicate how many of the references are payload-only.
609  * skb_header_cloned() checks if skb is allowed to add / write the headers.
610  *
611  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
612  * (via __skb_header_release()). Any clone created from marked skb will get
613  * &sk_buff.hdr_len populated with the available headroom.
614  * If there's the only clone in existence it's able to modify the headroom
615  * at will. The sequence of calls inside the transport layer is::
616  *
617  *  <alloc skb>
618  *  skb_reserve()
619  *  __skb_header_release()
620  *  skb_clone()
621  *  // send the clone down the stack
622  *
623  * This is not a very generic construct and it depends on the transport layers
624  * doing the right thing. In practice there's usually only one payload-only skb.
625  * Having multiple payload-only skbs with different lengths of hdr_len is not
626  * possible. The payload-only skbs should never leave their owner.
627  */
628 #define SKB_DATAREF_SHIFT 16
629 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
630 
631 
632 enum {
633 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
634 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
635 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
636 };
637 
638 enum {
639 	SKB_GSO_TCPV4 = 1 << 0,
640 
641 	/* This indicates the skb is from an untrusted source. */
642 	SKB_GSO_DODGY = 1 << 1,
643 
644 	/* This indicates the tcp segment has CWR set. */
645 	SKB_GSO_TCP_ECN = 1 << 2,
646 
647 	SKB_GSO_TCP_FIXEDID = 1 << 3,
648 
649 	SKB_GSO_TCPV6 = 1 << 4,
650 
651 	SKB_GSO_FCOE = 1 << 5,
652 
653 	SKB_GSO_GRE = 1 << 6,
654 
655 	SKB_GSO_GRE_CSUM = 1 << 7,
656 
657 	SKB_GSO_IPXIP4 = 1 << 8,
658 
659 	SKB_GSO_IPXIP6 = 1 << 9,
660 
661 	SKB_GSO_UDP_TUNNEL = 1 << 10,
662 
663 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
664 
665 	SKB_GSO_PARTIAL = 1 << 12,
666 
667 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
668 
669 	SKB_GSO_SCTP = 1 << 14,
670 
671 	SKB_GSO_ESP = 1 << 15,
672 
673 	SKB_GSO_UDP = 1 << 16,
674 
675 	SKB_GSO_UDP_L4 = 1 << 17,
676 
677 	SKB_GSO_FRAGLIST = 1 << 18,
678 };
679 
680 #if BITS_PER_LONG > 32
681 #define NET_SKBUFF_DATA_USES_OFFSET 1
682 #endif
683 
684 #ifdef NET_SKBUFF_DATA_USES_OFFSET
685 typedef unsigned int sk_buff_data_t;
686 #else
687 typedef unsigned char *sk_buff_data_t;
688 #endif
689 
690 /**
691  * DOC: Basic sk_buff geometry
692  *
693  * struct sk_buff itself is a metadata structure and does not hold any packet
694  * data. All the data is held in associated buffers.
695  *
696  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
697  * into two parts:
698  *
699  *  - data buffer, containing headers and sometimes payload;
700  *    this is the part of the skb operated on by the common helpers
701  *    such as skb_put() or skb_pull();
702  *  - shared info (struct skb_shared_info) which holds an array of pointers
703  *    to read-only data in the (page, offset, length) format.
704  *
705  * Optionally &skb_shared_info.frag_list may point to another skb.
706  *
707  * Basic diagram may look like this::
708  *
709  *                                  ---------------
710  *                                 | sk_buff       |
711  *                                  ---------------
712  *     ,---------------------------  + head
713  *    /          ,-----------------  + data
714  *   /          /      ,-----------  + tail
715  *  |          |      |            , + end
716  *  |          |      |           |
717  *  v          v      v           v
718  *   -----------------------------------------------
719  *  | headroom | data |  tailroom | skb_shared_info |
720  *   -----------------------------------------------
721  *                                 + [page frag]
722  *                                 + [page frag]
723  *                                 + [page frag]
724  *                                 + [page frag]       ---------
725  *                                 + frag_list    --> | sk_buff |
726  *                                                     ---------
727  *
728  */
729 
730 /**
731  *	struct sk_buff - socket buffer
732  *	@next: Next buffer in list
733  *	@prev: Previous buffer in list
734  *	@tstamp: Time we arrived/left
735  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
736  *		for retransmit timer
737  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
738  *	@list: queue head
739  *	@ll_node: anchor in an llist (eg socket defer_list)
740  *	@sk: Socket we are owned by
741  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
742  *		fragmentation management
743  *	@dev: Device we arrived on/are leaving by
744  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
745  *	@cb: Control buffer. Free for use by every layer. Put private vars here
746  *	@_skb_refdst: destination entry (with norefcount bit)
747  *	@sp: the security path, used for xfrm
748  *	@len: Length of actual data
749  *	@data_len: Data length
750  *	@mac_len: Length of link layer header
751  *	@hdr_len: writable header length of cloned skb
752  *	@csum: Checksum (must include start/offset pair)
753  *	@csum_start: Offset from skb->head where checksumming should start
754  *	@csum_offset: Offset from csum_start where checksum should be stored
755  *	@priority: Packet queueing priority
756  *	@ignore_df: allow local fragmentation
757  *	@cloned: Head may be cloned (check refcnt to be sure)
758  *	@ip_summed: Driver fed us an IP checksum
759  *	@nohdr: Payload reference only, must not modify header
760  *	@pkt_type: Packet class
761  *	@fclone: skbuff clone status
762  *	@ipvs_property: skbuff is owned by ipvs
763  *	@inner_protocol_type: whether the inner protocol is
764  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
765  *	@remcsum_offload: remote checksum offload is enabled
766  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
767  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
768  *	@tc_skip_classify: do not classify packet. set by IFB device
769  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
770  *	@redirected: packet was redirected by packet classifier
771  *	@from_ingress: packet was redirected from the ingress path
772  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
773  *	@peeked: this packet has been seen already, so stats have been
774  *		done for it, don't do them again
775  *	@nf_trace: netfilter packet trace flag
776  *	@protocol: Packet protocol from driver
777  *	@destructor: Destruct function
778  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
779  *	@_sk_redir: socket redirection information for skmsg
780  *	@_nfct: Associated connection, if any (with nfctinfo bits)
781  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
782  *	@skb_iif: ifindex of device we arrived on
783  *	@tc_index: Traffic control index
784  *	@hash: the packet hash
785  *	@queue_mapping: Queue mapping for multiqueue devices
786  *	@head_frag: skb was allocated from page fragments,
787  *		not allocated by kmalloc() or vmalloc().
788  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
789  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
790  *		page_pool support on driver)
791  *	@active_extensions: active extensions (skb_ext_id types)
792  *	@ndisc_nodetype: router type (from link layer)
793  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
794  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
795  *		ports.
796  *	@sw_hash: indicates hash was computed in software stack
797  *	@wifi_acked_valid: wifi_acked was set
798  *	@wifi_acked: whether frame was acked on wifi or not
799  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
800  *	@encapsulation: indicates the inner headers in the skbuff are valid
801  *	@encap_hdr_csum: software checksum is needed
802  *	@csum_valid: checksum is already valid
803  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
804  *	@csum_complete_sw: checksum was completed by software
805  *	@csum_level: indicates the number of consecutive checksums found in
806  *		the packet minus one that have been verified as
807  *		CHECKSUM_UNNECESSARY (max 3)
808  *	@dst_pending_confirm: need to confirm neighbour
809  *	@decrypted: Decrypted SKB
810  *	@slow_gro: state present at GRO time, slower prepare step required
811  *	@mono_delivery_time: When set, skb->tstamp has the
812  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
813  *		skb->tstamp has the (rcv) timestamp at ingress and
814  *		delivery_time at egress.
815  *	@napi_id: id of the NAPI struct this skb came from
816  *	@sender_cpu: (aka @napi_id) source CPU in XPS
817  *	@alloc_cpu: CPU which did the skb allocation.
818  *	@secmark: security marking
819  *	@mark: Generic packet mark
820  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
821  *		at the tail of an sk_buff
822  *	@vlan_all: vlan fields (proto & tci)
823  *	@vlan_proto: vlan encapsulation protocol
824  *	@vlan_tci: vlan tag control information
825  *	@inner_protocol: Protocol (encapsulation)
826  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
827  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
828  *	@inner_transport_header: Inner transport layer header (encapsulation)
829  *	@inner_network_header: Network layer header (encapsulation)
830  *	@inner_mac_header: Link layer header (encapsulation)
831  *	@transport_header: Transport layer header
832  *	@network_header: Network layer header
833  *	@mac_header: Link layer header
834  *	@kcov_handle: KCOV remote handle for remote coverage collection
835  *	@tail: Tail pointer
836  *	@end: End pointer
837  *	@head: Head of buffer
838  *	@data: Data head pointer
839  *	@truesize: Buffer size
840  *	@users: User count - see {datagram,tcp}.c
841  *	@extensions: allocated extensions, valid if active_extensions is nonzero
842  */
843 
844 struct sk_buff {
845 	union {
846 		struct {
847 			/* These two members must be first to match sk_buff_head. */
848 			struct sk_buff		*next;
849 			struct sk_buff		*prev;
850 
851 			union {
852 				struct net_device	*dev;
853 				/* Some protocols might use this space to store information,
854 				 * while device pointer would be NULL.
855 				 * UDP receive path is one user.
856 				 */
857 				unsigned long		dev_scratch;
858 			};
859 		};
860 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
861 		struct list_head	list;
862 		struct llist_node	ll_node;
863 	};
864 
865 	union {
866 		struct sock		*sk;
867 		int			ip_defrag_offset;
868 	};
869 
870 	union {
871 		ktime_t		tstamp;
872 		u64		skb_mstamp_ns; /* earliest departure time */
873 	};
874 	/*
875 	 * This is the control buffer. It is free to use for every
876 	 * layer. Please put your private variables there. If you
877 	 * want to keep them across layers you have to do a skb_clone()
878 	 * first. This is owned by whoever has the skb queued ATM.
879 	 */
880 	char			cb[48] __aligned(8);
881 
882 	union {
883 		struct {
884 			unsigned long	_skb_refdst;
885 			void		(*destructor)(struct sk_buff *skb);
886 		};
887 		struct list_head	tcp_tsorted_anchor;
888 #ifdef CONFIG_NET_SOCK_MSG
889 		unsigned long		_sk_redir;
890 #endif
891 	};
892 
893 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
894 	unsigned long		 _nfct;
895 #endif
896 	unsigned int		len,
897 				data_len;
898 	__u16			mac_len,
899 				hdr_len;
900 
901 	/* Following fields are _not_ copied in __copy_skb_header()
902 	 * Note that queue_mapping is here mostly to fill a hole.
903 	 */
904 	__u16			queue_mapping;
905 
906 /* if you move cloned around you also must adapt those constants */
907 #ifdef __BIG_ENDIAN_BITFIELD
908 #define CLONED_MASK	(1 << 7)
909 #else
910 #define CLONED_MASK	1
911 #endif
912 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
913 
914 	/* private: */
915 	__u8			__cloned_offset[0];
916 	/* public: */
917 	__u8			cloned:1,
918 				nohdr:1,
919 				fclone:2,
920 				peeked:1,
921 				head_frag:1,
922 				pfmemalloc:1,
923 				pp_recycle:1; /* page_pool recycle indicator */
924 #ifdef CONFIG_SKB_EXTENSIONS
925 	__u8			active_extensions;
926 #endif
927 
928 	/* Fields enclosed in headers group are copied
929 	 * using a single memcpy() in __copy_skb_header()
930 	 */
931 	struct_group(headers,
932 
933 	/* private: */
934 	__u8			__pkt_type_offset[0];
935 	/* public: */
936 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
937 	__u8			ignore_df:1;
938 	__u8			dst_pending_confirm:1;
939 	__u8			ip_summed:2;
940 	__u8			ooo_okay:1;
941 
942 	/* private: */
943 	__u8			__mono_tc_offset[0];
944 	/* public: */
945 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
946 #ifdef CONFIG_NET_CLS_ACT
947 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
948 	__u8			tc_skip_classify:1;
949 #endif
950 	__u8			remcsum_offload:1;
951 	__u8			csum_complete_sw:1;
952 	__u8			csum_level:2;
953 	__u8			inner_protocol_type:1;
954 
955 	__u8			l4_hash:1;
956 	__u8			sw_hash:1;
957 #ifdef CONFIG_WIRELESS
958 	__u8			wifi_acked_valid:1;
959 	__u8			wifi_acked:1;
960 #endif
961 	__u8			no_fcs:1;
962 	/* Indicates the inner headers are valid in the skbuff. */
963 	__u8			encapsulation:1;
964 	__u8			encap_hdr_csum:1;
965 	__u8			csum_valid:1;
966 #ifdef CONFIG_IPV6_NDISC_NODETYPE
967 	__u8			ndisc_nodetype:2;
968 #endif
969 
970 #if IS_ENABLED(CONFIG_IP_VS)
971 	__u8			ipvs_property:1;
972 #endif
973 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
974 	__u8			nf_trace:1;
975 #endif
976 #ifdef CONFIG_NET_SWITCHDEV
977 	__u8			offload_fwd_mark:1;
978 	__u8			offload_l3_fwd_mark:1;
979 #endif
980 	__u8			redirected:1;
981 #ifdef CONFIG_NET_REDIRECT
982 	__u8			from_ingress:1;
983 #endif
984 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
985 	__u8			nf_skip_egress:1;
986 #endif
987 #ifdef CONFIG_TLS_DEVICE
988 	__u8			decrypted:1;
989 #endif
990 	__u8			slow_gro:1;
991 #if IS_ENABLED(CONFIG_IP_SCTP)
992 	__u8			csum_not_inet:1;
993 #endif
994 
995 #ifdef CONFIG_NET_SCHED
996 	__u16			tc_index;	/* traffic control index */
997 #endif
998 
999 	u16			alloc_cpu;
1000 
1001 	union {
1002 		__wsum		csum;
1003 		struct {
1004 			__u16	csum_start;
1005 			__u16	csum_offset;
1006 		};
1007 	};
1008 	__u32			priority;
1009 	int			skb_iif;
1010 	__u32			hash;
1011 	union {
1012 		u32		vlan_all;
1013 		struct {
1014 			__be16	vlan_proto;
1015 			__u16	vlan_tci;
1016 		};
1017 	};
1018 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1019 	union {
1020 		unsigned int	napi_id;
1021 		unsigned int	sender_cpu;
1022 	};
1023 #endif
1024 #ifdef CONFIG_NETWORK_SECMARK
1025 	__u32		secmark;
1026 #endif
1027 
1028 	union {
1029 		__u32		mark;
1030 		__u32		reserved_tailroom;
1031 	};
1032 
1033 	union {
1034 		__be16		inner_protocol;
1035 		__u8		inner_ipproto;
1036 	};
1037 
1038 	__u16			inner_transport_header;
1039 	__u16			inner_network_header;
1040 	__u16			inner_mac_header;
1041 
1042 	__be16			protocol;
1043 	__u16			transport_header;
1044 	__u16			network_header;
1045 	__u16			mac_header;
1046 
1047 #ifdef CONFIG_KCOV
1048 	u64			kcov_handle;
1049 #endif
1050 
1051 	); /* end headers group */
1052 
1053 	/* These elements must be at the end, see alloc_skb() for details.  */
1054 	sk_buff_data_t		tail;
1055 	sk_buff_data_t		end;
1056 	unsigned char		*head,
1057 				*data;
1058 	unsigned int		truesize;
1059 	refcount_t		users;
1060 
1061 #ifdef CONFIG_SKB_EXTENSIONS
1062 	/* only useable after checking ->active_extensions != 0 */
1063 	struct skb_ext		*extensions;
1064 #endif
1065 };
1066 
1067 /* if you move pkt_type around you also must adapt those constants */
1068 #ifdef __BIG_ENDIAN_BITFIELD
1069 #define PKT_TYPE_MAX	(7 << 5)
1070 #else
1071 #define PKT_TYPE_MAX	7
1072 #endif
1073 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1074 
1075 /* if you move tc_at_ingress or mono_delivery_time
1076  * around, you also must adapt these constants.
1077  */
1078 #ifdef __BIG_ENDIAN_BITFIELD
1079 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1080 #define TC_AT_INGRESS_MASK		(1 << 6)
1081 #else
1082 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1083 #define TC_AT_INGRESS_MASK		(1 << 1)
1084 #endif
1085 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1086 
1087 #ifdef __KERNEL__
1088 /*
1089  *	Handling routines are only of interest to the kernel
1090  */
1091 
1092 #define SKB_ALLOC_FCLONE	0x01
1093 #define SKB_ALLOC_RX		0x02
1094 #define SKB_ALLOC_NAPI		0x04
1095 
1096 /**
1097  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1098  * @skb: buffer
1099  */
1100 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1101 {
1102 	return unlikely(skb->pfmemalloc);
1103 }
1104 
1105 /*
1106  * skb might have a dst pointer attached, refcounted or not.
1107  * _skb_refdst low order bit is set if refcount was _not_ taken
1108  */
1109 #define SKB_DST_NOREF	1UL
1110 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1111 
1112 /**
1113  * skb_dst - returns skb dst_entry
1114  * @skb: buffer
1115  *
1116  * Returns skb dst_entry, regardless of reference taken or not.
1117  */
1118 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1119 {
1120 	/* If refdst was not refcounted, check we still are in a
1121 	 * rcu_read_lock section
1122 	 */
1123 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1124 		!rcu_read_lock_held() &&
1125 		!rcu_read_lock_bh_held());
1126 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1127 }
1128 
1129 /**
1130  * skb_dst_set - sets skb dst
1131  * @skb: buffer
1132  * @dst: dst entry
1133  *
1134  * Sets skb dst, assuming a reference was taken on dst and should
1135  * be released by skb_dst_drop()
1136  */
1137 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1138 {
1139 	skb->slow_gro |= !!dst;
1140 	skb->_skb_refdst = (unsigned long)dst;
1141 }
1142 
1143 /**
1144  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1145  * @skb: buffer
1146  * @dst: dst entry
1147  *
1148  * Sets skb dst, assuming a reference was not taken on dst.
1149  * If dst entry is cached, we do not take reference and dst_release
1150  * will be avoided by refdst_drop. If dst entry is not cached, we take
1151  * reference, so that last dst_release can destroy the dst immediately.
1152  */
1153 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1154 {
1155 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1156 	skb->slow_gro |= !!dst;
1157 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1158 }
1159 
1160 /**
1161  * skb_dst_is_noref - Test if skb dst isn't refcounted
1162  * @skb: buffer
1163  */
1164 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1165 {
1166 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1167 }
1168 
1169 /**
1170  * skb_rtable - Returns the skb &rtable
1171  * @skb: buffer
1172  */
1173 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1174 {
1175 	return (struct rtable *)skb_dst(skb);
1176 }
1177 
1178 /* For mangling skb->pkt_type from user space side from applications
1179  * such as nft, tc, etc, we only allow a conservative subset of
1180  * possible pkt_types to be set.
1181 */
1182 static inline bool skb_pkt_type_ok(u32 ptype)
1183 {
1184 	return ptype <= PACKET_OTHERHOST;
1185 }
1186 
1187 /**
1188  * skb_napi_id - Returns the skb's NAPI id
1189  * @skb: buffer
1190  */
1191 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1192 {
1193 #ifdef CONFIG_NET_RX_BUSY_POLL
1194 	return skb->napi_id;
1195 #else
1196 	return 0;
1197 #endif
1198 }
1199 
1200 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1201 {
1202 #ifdef CONFIG_WIRELESS
1203 	return skb->wifi_acked_valid;
1204 #else
1205 	return 0;
1206 #endif
1207 }
1208 
1209 /**
1210  * skb_unref - decrement the skb's reference count
1211  * @skb: buffer
1212  *
1213  * Returns true if we can free the skb.
1214  */
1215 static inline bool skb_unref(struct sk_buff *skb)
1216 {
1217 	if (unlikely(!skb))
1218 		return false;
1219 	if (likely(refcount_read(&skb->users) == 1))
1220 		smp_rmb();
1221 	else if (likely(!refcount_dec_and_test(&skb->users)))
1222 		return false;
1223 
1224 	return true;
1225 }
1226 
1227 void __fix_address
1228 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1229 
1230 /**
1231  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1232  *	@skb: buffer to free
1233  */
1234 static inline void kfree_skb(struct sk_buff *skb)
1235 {
1236 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1237 }
1238 
1239 void skb_release_head_state(struct sk_buff *skb);
1240 void kfree_skb_list_reason(struct sk_buff *segs,
1241 			   enum skb_drop_reason reason);
1242 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1243 void skb_tx_error(struct sk_buff *skb);
1244 
1245 static inline void kfree_skb_list(struct sk_buff *segs)
1246 {
1247 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1248 }
1249 
1250 #ifdef CONFIG_TRACEPOINTS
1251 void consume_skb(struct sk_buff *skb);
1252 #else
1253 static inline void consume_skb(struct sk_buff *skb)
1254 {
1255 	return kfree_skb(skb);
1256 }
1257 #endif
1258 
1259 void __consume_stateless_skb(struct sk_buff *skb);
1260 void  __kfree_skb(struct sk_buff *skb);
1261 extern struct kmem_cache *skbuff_cache;
1262 
1263 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1264 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1265 		      bool *fragstolen, int *delta_truesize);
1266 
1267 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1268 			    int node);
1269 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1270 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1271 struct sk_buff *build_skb_around(struct sk_buff *skb,
1272 				 void *data, unsigned int frag_size);
1273 void skb_attempt_defer_free(struct sk_buff *skb);
1274 
1275 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1276 struct sk_buff *slab_build_skb(void *data);
1277 
1278 /**
1279  * alloc_skb - allocate a network buffer
1280  * @size: size to allocate
1281  * @priority: allocation mask
1282  *
1283  * This function is a convenient wrapper around __alloc_skb().
1284  */
1285 static inline struct sk_buff *alloc_skb(unsigned int size,
1286 					gfp_t priority)
1287 {
1288 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1289 }
1290 
1291 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1292 				     unsigned long data_len,
1293 				     int max_page_order,
1294 				     int *errcode,
1295 				     gfp_t gfp_mask);
1296 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1297 
1298 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1299 struct sk_buff_fclones {
1300 	struct sk_buff	skb1;
1301 
1302 	struct sk_buff	skb2;
1303 
1304 	refcount_t	fclone_ref;
1305 };
1306 
1307 /**
1308  *	skb_fclone_busy - check if fclone is busy
1309  *	@sk: socket
1310  *	@skb: buffer
1311  *
1312  * Returns true if skb is a fast clone, and its clone is not freed.
1313  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1314  * so we also check that this didnt happen.
1315  */
1316 static inline bool skb_fclone_busy(const struct sock *sk,
1317 				   const struct sk_buff *skb)
1318 {
1319 	const struct sk_buff_fclones *fclones;
1320 
1321 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1322 
1323 	return skb->fclone == SKB_FCLONE_ORIG &&
1324 	       refcount_read(&fclones->fclone_ref) > 1 &&
1325 	       READ_ONCE(fclones->skb2.sk) == sk;
1326 }
1327 
1328 /**
1329  * alloc_skb_fclone - allocate a network buffer from fclone cache
1330  * @size: size to allocate
1331  * @priority: allocation mask
1332  *
1333  * This function is a convenient wrapper around __alloc_skb().
1334  */
1335 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1336 					       gfp_t priority)
1337 {
1338 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1339 }
1340 
1341 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1342 void skb_headers_offset_update(struct sk_buff *skb, int off);
1343 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1344 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1345 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1346 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1347 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1348 				   gfp_t gfp_mask, bool fclone);
1349 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1350 					  gfp_t gfp_mask)
1351 {
1352 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1353 }
1354 
1355 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1356 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1357 				     unsigned int headroom);
1358 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1359 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1360 				int newtailroom, gfp_t priority);
1361 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1362 				     int offset, int len);
1363 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1364 			      int offset, int len);
1365 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1366 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1367 
1368 /**
1369  *	skb_pad			-	zero pad the tail of an skb
1370  *	@skb: buffer to pad
1371  *	@pad: space to pad
1372  *
1373  *	Ensure that a buffer is followed by a padding area that is zero
1374  *	filled. Used by network drivers which may DMA or transfer data
1375  *	beyond the buffer end onto the wire.
1376  *
1377  *	May return error in out of memory cases. The skb is freed on error.
1378  */
1379 static inline int skb_pad(struct sk_buff *skb, int pad)
1380 {
1381 	return __skb_pad(skb, pad, true);
1382 }
1383 #define dev_kfree_skb(a)	consume_skb(a)
1384 
1385 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1386 			 int offset, size_t size);
1387 
1388 struct skb_seq_state {
1389 	__u32		lower_offset;
1390 	__u32		upper_offset;
1391 	__u32		frag_idx;
1392 	__u32		stepped_offset;
1393 	struct sk_buff	*root_skb;
1394 	struct sk_buff	*cur_skb;
1395 	__u8		*frag_data;
1396 	__u32		frag_off;
1397 };
1398 
1399 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1400 			  unsigned int to, struct skb_seq_state *st);
1401 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1402 			  struct skb_seq_state *st);
1403 void skb_abort_seq_read(struct skb_seq_state *st);
1404 
1405 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1406 			   unsigned int to, struct ts_config *config);
1407 
1408 /*
1409  * Packet hash types specify the type of hash in skb_set_hash.
1410  *
1411  * Hash types refer to the protocol layer addresses which are used to
1412  * construct a packet's hash. The hashes are used to differentiate or identify
1413  * flows of the protocol layer for the hash type. Hash types are either
1414  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1415  *
1416  * Properties of hashes:
1417  *
1418  * 1) Two packets in different flows have different hash values
1419  * 2) Two packets in the same flow should have the same hash value
1420  *
1421  * A hash at a higher layer is considered to be more specific. A driver should
1422  * set the most specific hash possible.
1423  *
1424  * A driver cannot indicate a more specific hash than the layer at which a hash
1425  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1426  *
1427  * A driver may indicate a hash level which is less specific than the
1428  * actual layer the hash was computed on. For instance, a hash computed
1429  * at L4 may be considered an L3 hash. This should only be done if the
1430  * driver can't unambiguously determine that the HW computed the hash at
1431  * the higher layer. Note that the "should" in the second property above
1432  * permits this.
1433  */
1434 enum pkt_hash_types {
1435 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1436 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1437 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1438 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1439 };
1440 
1441 static inline void skb_clear_hash(struct sk_buff *skb)
1442 {
1443 	skb->hash = 0;
1444 	skb->sw_hash = 0;
1445 	skb->l4_hash = 0;
1446 }
1447 
1448 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1449 {
1450 	if (!skb->l4_hash)
1451 		skb_clear_hash(skb);
1452 }
1453 
1454 static inline void
1455 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1456 {
1457 	skb->l4_hash = is_l4;
1458 	skb->sw_hash = is_sw;
1459 	skb->hash = hash;
1460 }
1461 
1462 static inline void
1463 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1464 {
1465 	/* Used by drivers to set hash from HW */
1466 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1467 }
1468 
1469 static inline void
1470 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1471 {
1472 	__skb_set_hash(skb, hash, true, is_l4);
1473 }
1474 
1475 void __skb_get_hash(struct sk_buff *skb);
1476 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1477 u32 skb_get_poff(const struct sk_buff *skb);
1478 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1479 		   const struct flow_keys_basic *keys, int hlen);
1480 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1481 			    const void *data, int hlen_proto);
1482 
1483 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1484 					int thoff, u8 ip_proto)
1485 {
1486 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1487 }
1488 
1489 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1490 			     const struct flow_dissector_key *key,
1491 			     unsigned int key_count);
1492 
1493 struct bpf_flow_dissector;
1494 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1495 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1496 
1497 bool __skb_flow_dissect(const struct net *net,
1498 			const struct sk_buff *skb,
1499 			struct flow_dissector *flow_dissector,
1500 			void *target_container, const void *data,
1501 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1502 
1503 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1504 				    struct flow_dissector *flow_dissector,
1505 				    void *target_container, unsigned int flags)
1506 {
1507 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1508 				  target_container, NULL, 0, 0, 0, flags);
1509 }
1510 
1511 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1512 					      struct flow_keys *flow,
1513 					      unsigned int flags)
1514 {
1515 	memset(flow, 0, sizeof(*flow));
1516 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1517 				  flow, NULL, 0, 0, 0, flags);
1518 }
1519 
1520 static inline bool
1521 skb_flow_dissect_flow_keys_basic(const struct net *net,
1522 				 const struct sk_buff *skb,
1523 				 struct flow_keys_basic *flow,
1524 				 const void *data, __be16 proto,
1525 				 int nhoff, int hlen, unsigned int flags)
1526 {
1527 	memset(flow, 0, sizeof(*flow));
1528 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1529 				  data, proto, nhoff, hlen, flags);
1530 }
1531 
1532 void skb_flow_dissect_meta(const struct sk_buff *skb,
1533 			   struct flow_dissector *flow_dissector,
1534 			   void *target_container);
1535 
1536 /* Gets a skb connection tracking info, ctinfo map should be a
1537  * map of mapsize to translate enum ip_conntrack_info states
1538  * to user states.
1539  */
1540 void
1541 skb_flow_dissect_ct(const struct sk_buff *skb,
1542 		    struct flow_dissector *flow_dissector,
1543 		    void *target_container,
1544 		    u16 *ctinfo_map, size_t mapsize,
1545 		    bool post_ct, u16 zone);
1546 void
1547 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1548 			     struct flow_dissector *flow_dissector,
1549 			     void *target_container);
1550 
1551 void skb_flow_dissect_hash(const struct sk_buff *skb,
1552 			   struct flow_dissector *flow_dissector,
1553 			   void *target_container);
1554 
1555 static inline __u32 skb_get_hash(struct sk_buff *skb)
1556 {
1557 	if (!skb->l4_hash && !skb->sw_hash)
1558 		__skb_get_hash(skb);
1559 
1560 	return skb->hash;
1561 }
1562 
1563 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1564 {
1565 	if (!skb->l4_hash && !skb->sw_hash) {
1566 		struct flow_keys keys;
1567 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1568 
1569 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1570 	}
1571 
1572 	return skb->hash;
1573 }
1574 
1575 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1576 			   const siphash_key_t *perturb);
1577 
1578 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1579 {
1580 	return skb->hash;
1581 }
1582 
1583 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1584 {
1585 	to->hash = from->hash;
1586 	to->sw_hash = from->sw_hash;
1587 	to->l4_hash = from->l4_hash;
1588 };
1589 
1590 static inline void skb_copy_decrypted(struct sk_buff *to,
1591 				      const struct sk_buff *from)
1592 {
1593 #ifdef CONFIG_TLS_DEVICE
1594 	to->decrypted = from->decrypted;
1595 #endif
1596 }
1597 
1598 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1599 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1600 {
1601 	return skb->head + skb->end;
1602 }
1603 
1604 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1605 {
1606 	return skb->end;
1607 }
1608 
1609 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1610 {
1611 	skb->end = offset;
1612 }
1613 #else
1614 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1615 {
1616 	return skb->end;
1617 }
1618 
1619 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1620 {
1621 	return skb->end - skb->head;
1622 }
1623 
1624 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1625 {
1626 	skb->end = skb->head + offset;
1627 }
1628 #endif
1629 
1630 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1631 				       struct ubuf_info *uarg);
1632 
1633 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1634 
1635 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1636 			   bool success);
1637 
1638 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1639 			    struct sk_buff *skb, struct iov_iter *from,
1640 			    size_t length);
1641 
1642 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1643 					  struct msghdr *msg, int len)
1644 {
1645 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1646 }
1647 
1648 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1649 			     struct msghdr *msg, int len,
1650 			     struct ubuf_info *uarg);
1651 
1652 /* Internal */
1653 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1654 
1655 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1656 {
1657 	return &skb_shinfo(skb)->hwtstamps;
1658 }
1659 
1660 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1661 {
1662 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1663 
1664 	return is_zcopy ? skb_uarg(skb) : NULL;
1665 }
1666 
1667 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1668 {
1669 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1670 }
1671 
1672 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1673 {
1674 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1675 }
1676 
1677 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1678 				       const struct sk_buff *skb2)
1679 {
1680 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1681 }
1682 
1683 static inline void net_zcopy_get(struct ubuf_info *uarg)
1684 {
1685 	refcount_inc(&uarg->refcnt);
1686 }
1687 
1688 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1689 {
1690 	skb_shinfo(skb)->destructor_arg = uarg;
1691 	skb_shinfo(skb)->flags |= uarg->flags;
1692 }
1693 
1694 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1695 				 bool *have_ref)
1696 {
1697 	if (skb && uarg && !skb_zcopy(skb)) {
1698 		if (unlikely(have_ref && *have_ref))
1699 			*have_ref = false;
1700 		else
1701 			net_zcopy_get(uarg);
1702 		skb_zcopy_init(skb, uarg);
1703 	}
1704 }
1705 
1706 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1707 {
1708 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1709 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1710 }
1711 
1712 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1713 {
1714 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1715 }
1716 
1717 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1718 {
1719 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1720 }
1721 
1722 static inline void net_zcopy_put(struct ubuf_info *uarg)
1723 {
1724 	if (uarg)
1725 		uarg->callback(NULL, uarg, true);
1726 }
1727 
1728 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1729 {
1730 	if (uarg) {
1731 		if (uarg->callback == msg_zerocopy_callback)
1732 			msg_zerocopy_put_abort(uarg, have_uref);
1733 		else if (have_uref)
1734 			net_zcopy_put(uarg);
1735 	}
1736 }
1737 
1738 /* Release a reference on a zerocopy structure */
1739 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1740 {
1741 	struct ubuf_info *uarg = skb_zcopy(skb);
1742 
1743 	if (uarg) {
1744 		if (!skb_zcopy_is_nouarg(skb))
1745 			uarg->callback(skb, uarg, zerocopy_success);
1746 
1747 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1748 	}
1749 }
1750 
1751 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1752 
1753 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1754 {
1755 	if (unlikely(skb_zcopy_managed(skb)))
1756 		__skb_zcopy_downgrade_managed(skb);
1757 }
1758 
1759 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1760 {
1761 	skb->next = NULL;
1762 }
1763 
1764 static inline void skb_poison_list(struct sk_buff *skb)
1765 {
1766 #ifdef CONFIG_DEBUG_NET
1767 	skb->next = SKB_LIST_POISON_NEXT;
1768 #endif
1769 }
1770 
1771 /* Iterate through singly-linked GSO fragments of an skb. */
1772 #define skb_list_walk_safe(first, skb, next_skb)                               \
1773 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1774 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1775 
1776 static inline void skb_list_del_init(struct sk_buff *skb)
1777 {
1778 	__list_del_entry(&skb->list);
1779 	skb_mark_not_on_list(skb);
1780 }
1781 
1782 /**
1783  *	skb_queue_empty - check if a queue is empty
1784  *	@list: queue head
1785  *
1786  *	Returns true if the queue is empty, false otherwise.
1787  */
1788 static inline int skb_queue_empty(const struct sk_buff_head *list)
1789 {
1790 	return list->next == (const struct sk_buff *) list;
1791 }
1792 
1793 /**
1794  *	skb_queue_empty_lockless - check if a queue is empty
1795  *	@list: queue head
1796  *
1797  *	Returns true if the queue is empty, false otherwise.
1798  *	This variant can be used in lockless contexts.
1799  */
1800 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1801 {
1802 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1803 }
1804 
1805 
1806 /**
1807  *	skb_queue_is_last - check if skb is the last entry in the queue
1808  *	@list: queue head
1809  *	@skb: buffer
1810  *
1811  *	Returns true if @skb is the last buffer on the list.
1812  */
1813 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1814 				     const struct sk_buff *skb)
1815 {
1816 	return skb->next == (const struct sk_buff *) list;
1817 }
1818 
1819 /**
1820  *	skb_queue_is_first - check if skb is the first entry in the queue
1821  *	@list: queue head
1822  *	@skb: buffer
1823  *
1824  *	Returns true if @skb is the first buffer on the list.
1825  */
1826 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1827 				      const struct sk_buff *skb)
1828 {
1829 	return skb->prev == (const struct sk_buff *) list;
1830 }
1831 
1832 /**
1833  *	skb_queue_next - return the next packet in the queue
1834  *	@list: queue head
1835  *	@skb: current buffer
1836  *
1837  *	Return the next packet in @list after @skb.  It is only valid to
1838  *	call this if skb_queue_is_last() evaluates to false.
1839  */
1840 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1841 					     const struct sk_buff *skb)
1842 {
1843 	/* This BUG_ON may seem severe, but if we just return then we
1844 	 * are going to dereference garbage.
1845 	 */
1846 	BUG_ON(skb_queue_is_last(list, skb));
1847 	return skb->next;
1848 }
1849 
1850 /**
1851  *	skb_queue_prev - return the prev packet in the queue
1852  *	@list: queue head
1853  *	@skb: current buffer
1854  *
1855  *	Return the prev packet in @list before @skb.  It is only valid to
1856  *	call this if skb_queue_is_first() evaluates to false.
1857  */
1858 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1859 					     const struct sk_buff *skb)
1860 {
1861 	/* This BUG_ON may seem severe, but if we just return then we
1862 	 * are going to dereference garbage.
1863 	 */
1864 	BUG_ON(skb_queue_is_first(list, skb));
1865 	return skb->prev;
1866 }
1867 
1868 /**
1869  *	skb_get - reference buffer
1870  *	@skb: buffer to reference
1871  *
1872  *	Makes another reference to a socket buffer and returns a pointer
1873  *	to the buffer.
1874  */
1875 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1876 {
1877 	refcount_inc(&skb->users);
1878 	return skb;
1879 }
1880 
1881 /*
1882  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1883  */
1884 
1885 /**
1886  *	skb_cloned - is the buffer a clone
1887  *	@skb: buffer to check
1888  *
1889  *	Returns true if the buffer was generated with skb_clone() and is
1890  *	one of multiple shared copies of the buffer. Cloned buffers are
1891  *	shared data so must not be written to under normal circumstances.
1892  */
1893 static inline int skb_cloned(const struct sk_buff *skb)
1894 {
1895 	return skb->cloned &&
1896 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1897 }
1898 
1899 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1900 {
1901 	might_sleep_if(gfpflags_allow_blocking(pri));
1902 
1903 	if (skb_cloned(skb))
1904 		return pskb_expand_head(skb, 0, 0, pri);
1905 
1906 	return 0;
1907 }
1908 
1909 /* This variant of skb_unclone() makes sure skb->truesize
1910  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1911  *
1912  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1913  * when various debugging features are in place.
1914  */
1915 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1916 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1917 {
1918 	might_sleep_if(gfpflags_allow_blocking(pri));
1919 
1920 	if (skb_cloned(skb))
1921 		return __skb_unclone_keeptruesize(skb, pri);
1922 	return 0;
1923 }
1924 
1925 /**
1926  *	skb_header_cloned - is the header a clone
1927  *	@skb: buffer to check
1928  *
1929  *	Returns true if modifying the header part of the buffer requires
1930  *	the data to be copied.
1931  */
1932 static inline int skb_header_cloned(const struct sk_buff *skb)
1933 {
1934 	int dataref;
1935 
1936 	if (!skb->cloned)
1937 		return 0;
1938 
1939 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1940 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1941 	return dataref != 1;
1942 }
1943 
1944 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1945 {
1946 	might_sleep_if(gfpflags_allow_blocking(pri));
1947 
1948 	if (skb_header_cloned(skb))
1949 		return pskb_expand_head(skb, 0, 0, pri);
1950 
1951 	return 0;
1952 }
1953 
1954 /**
1955  * __skb_header_release() - allow clones to use the headroom
1956  * @skb: buffer to operate on
1957  *
1958  * See "DOC: dataref and headerless skbs".
1959  */
1960 static inline void __skb_header_release(struct sk_buff *skb)
1961 {
1962 	skb->nohdr = 1;
1963 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1964 }
1965 
1966 
1967 /**
1968  *	skb_shared - is the buffer shared
1969  *	@skb: buffer to check
1970  *
1971  *	Returns true if more than one person has a reference to this
1972  *	buffer.
1973  */
1974 static inline int skb_shared(const struct sk_buff *skb)
1975 {
1976 	return refcount_read(&skb->users) != 1;
1977 }
1978 
1979 /**
1980  *	skb_share_check - check if buffer is shared and if so clone it
1981  *	@skb: buffer to check
1982  *	@pri: priority for memory allocation
1983  *
1984  *	If the buffer is shared the buffer is cloned and the old copy
1985  *	drops a reference. A new clone with a single reference is returned.
1986  *	If the buffer is not shared the original buffer is returned. When
1987  *	being called from interrupt status or with spinlocks held pri must
1988  *	be GFP_ATOMIC.
1989  *
1990  *	NULL is returned on a memory allocation failure.
1991  */
1992 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1993 {
1994 	might_sleep_if(gfpflags_allow_blocking(pri));
1995 	if (skb_shared(skb)) {
1996 		struct sk_buff *nskb = skb_clone(skb, pri);
1997 
1998 		if (likely(nskb))
1999 			consume_skb(skb);
2000 		else
2001 			kfree_skb(skb);
2002 		skb = nskb;
2003 	}
2004 	return skb;
2005 }
2006 
2007 /*
2008  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2009  *	packets to handle cases where we have a local reader and forward
2010  *	and a couple of other messy ones. The normal one is tcpdumping
2011  *	a packet thats being forwarded.
2012  */
2013 
2014 /**
2015  *	skb_unshare - make a copy of a shared buffer
2016  *	@skb: buffer to check
2017  *	@pri: priority for memory allocation
2018  *
2019  *	If the socket buffer is a clone then this function creates a new
2020  *	copy of the data, drops a reference count on the old copy and returns
2021  *	the new copy with the reference count at 1. If the buffer is not a clone
2022  *	the original buffer is returned. When called with a spinlock held or
2023  *	from interrupt state @pri must be %GFP_ATOMIC
2024  *
2025  *	%NULL is returned on a memory allocation failure.
2026  */
2027 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2028 					  gfp_t pri)
2029 {
2030 	might_sleep_if(gfpflags_allow_blocking(pri));
2031 	if (skb_cloned(skb)) {
2032 		struct sk_buff *nskb = skb_copy(skb, pri);
2033 
2034 		/* Free our shared copy */
2035 		if (likely(nskb))
2036 			consume_skb(skb);
2037 		else
2038 			kfree_skb(skb);
2039 		skb = nskb;
2040 	}
2041 	return skb;
2042 }
2043 
2044 /**
2045  *	skb_peek - peek at the head of an &sk_buff_head
2046  *	@list_: list to peek at
2047  *
2048  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2049  *	be careful with this one. A peek leaves the buffer on the
2050  *	list and someone else may run off with it. You must hold
2051  *	the appropriate locks or have a private queue to do this.
2052  *
2053  *	Returns %NULL for an empty list or a pointer to the head element.
2054  *	The reference count is not incremented and the reference is therefore
2055  *	volatile. Use with caution.
2056  */
2057 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2058 {
2059 	struct sk_buff *skb = list_->next;
2060 
2061 	if (skb == (struct sk_buff *)list_)
2062 		skb = NULL;
2063 	return skb;
2064 }
2065 
2066 /**
2067  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2068  *	@list_: list to peek at
2069  *
2070  *	Like skb_peek(), but the caller knows that the list is not empty.
2071  */
2072 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2073 {
2074 	return list_->next;
2075 }
2076 
2077 /**
2078  *	skb_peek_next - peek skb following the given one from a queue
2079  *	@skb: skb to start from
2080  *	@list_: list to peek at
2081  *
2082  *	Returns %NULL when the end of the list is met or a pointer to the
2083  *	next element. The reference count is not incremented and the
2084  *	reference is therefore volatile. Use with caution.
2085  */
2086 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2087 		const struct sk_buff_head *list_)
2088 {
2089 	struct sk_buff *next = skb->next;
2090 
2091 	if (next == (struct sk_buff *)list_)
2092 		next = NULL;
2093 	return next;
2094 }
2095 
2096 /**
2097  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2098  *	@list_: list to peek at
2099  *
2100  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2101  *	be careful with this one. A peek leaves the buffer on the
2102  *	list and someone else may run off with it. You must hold
2103  *	the appropriate locks or have a private queue to do this.
2104  *
2105  *	Returns %NULL for an empty list or a pointer to the tail element.
2106  *	The reference count is not incremented and the reference is therefore
2107  *	volatile. Use with caution.
2108  */
2109 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2110 {
2111 	struct sk_buff *skb = READ_ONCE(list_->prev);
2112 
2113 	if (skb == (struct sk_buff *)list_)
2114 		skb = NULL;
2115 	return skb;
2116 
2117 }
2118 
2119 /**
2120  *	skb_queue_len	- get queue length
2121  *	@list_: list to measure
2122  *
2123  *	Return the length of an &sk_buff queue.
2124  */
2125 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2126 {
2127 	return list_->qlen;
2128 }
2129 
2130 /**
2131  *	skb_queue_len_lockless	- get queue length
2132  *	@list_: list to measure
2133  *
2134  *	Return the length of an &sk_buff queue.
2135  *	This variant can be used in lockless contexts.
2136  */
2137 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2138 {
2139 	return READ_ONCE(list_->qlen);
2140 }
2141 
2142 /**
2143  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2144  *	@list: queue to initialize
2145  *
2146  *	This initializes only the list and queue length aspects of
2147  *	an sk_buff_head object.  This allows to initialize the list
2148  *	aspects of an sk_buff_head without reinitializing things like
2149  *	the spinlock.  It can also be used for on-stack sk_buff_head
2150  *	objects where the spinlock is known to not be used.
2151  */
2152 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2153 {
2154 	list->prev = list->next = (struct sk_buff *)list;
2155 	list->qlen = 0;
2156 }
2157 
2158 /*
2159  * This function creates a split out lock class for each invocation;
2160  * this is needed for now since a whole lot of users of the skb-queue
2161  * infrastructure in drivers have different locking usage (in hardirq)
2162  * than the networking core (in softirq only). In the long run either the
2163  * network layer or drivers should need annotation to consolidate the
2164  * main types of usage into 3 classes.
2165  */
2166 static inline void skb_queue_head_init(struct sk_buff_head *list)
2167 {
2168 	spin_lock_init(&list->lock);
2169 	__skb_queue_head_init(list);
2170 }
2171 
2172 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2173 		struct lock_class_key *class)
2174 {
2175 	skb_queue_head_init(list);
2176 	lockdep_set_class(&list->lock, class);
2177 }
2178 
2179 /*
2180  *	Insert an sk_buff on a list.
2181  *
2182  *	The "__skb_xxxx()" functions are the non-atomic ones that
2183  *	can only be called with interrupts disabled.
2184  */
2185 static inline void __skb_insert(struct sk_buff *newsk,
2186 				struct sk_buff *prev, struct sk_buff *next,
2187 				struct sk_buff_head *list)
2188 {
2189 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2190 	 * for the opposite READ_ONCE()
2191 	 */
2192 	WRITE_ONCE(newsk->next, next);
2193 	WRITE_ONCE(newsk->prev, prev);
2194 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2195 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2196 	WRITE_ONCE(list->qlen, list->qlen + 1);
2197 }
2198 
2199 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2200 				      struct sk_buff *prev,
2201 				      struct sk_buff *next)
2202 {
2203 	struct sk_buff *first = list->next;
2204 	struct sk_buff *last = list->prev;
2205 
2206 	WRITE_ONCE(first->prev, prev);
2207 	WRITE_ONCE(prev->next, first);
2208 
2209 	WRITE_ONCE(last->next, next);
2210 	WRITE_ONCE(next->prev, last);
2211 }
2212 
2213 /**
2214  *	skb_queue_splice - join two skb lists, this is designed for stacks
2215  *	@list: the new list to add
2216  *	@head: the place to add it in the first list
2217  */
2218 static inline void skb_queue_splice(const struct sk_buff_head *list,
2219 				    struct sk_buff_head *head)
2220 {
2221 	if (!skb_queue_empty(list)) {
2222 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2223 		head->qlen += list->qlen;
2224 	}
2225 }
2226 
2227 /**
2228  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2229  *	@list: the new list to add
2230  *	@head: the place to add it in the first list
2231  *
2232  *	The list at @list is reinitialised
2233  */
2234 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2235 					 struct sk_buff_head *head)
2236 {
2237 	if (!skb_queue_empty(list)) {
2238 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2239 		head->qlen += list->qlen;
2240 		__skb_queue_head_init(list);
2241 	}
2242 }
2243 
2244 /**
2245  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2246  *	@list: the new list to add
2247  *	@head: the place to add it in the first list
2248  */
2249 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2250 					 struct sk_buff_head *head)
2251 {
2252 	if (!skb_queue_empty(list)) {
2253 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2254 		head->qlen += list->qlen;
2255 	}
2256 }
2257 
2258 /**
2259  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2260  *	@list: the new list to add
2261  *	@head: the place to add it in the first list
2262  *
2263  *	Each of the lists is a queue.
2264  *	The list at @list is reinitialised
2265  */
2266 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2267 					      struct sk_buff_head *head)
2268 {
2269 	if (!skb_queue_empty(list)) {
2270 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2271 		head->qlen += list->qlen;
2272 		__skb_queue_head_init(list);
2273 	}
2274 }
2275 
2276 /**
2277  *	__skb_queue_after - queue a buffer at the list head
2278  *	@list: list to use
2279  *	@prev: place after this buffer
2280  *	@newsk: buffer to queue
2281  *
2282  *	Queue a buffer int the middle of a list. This function takes no locks
2283  *	and you must therefore hold required locks before calling it.
2284  *
2285  *	A buffer cannot be placed on two lists at the same time.
2286  */
2287 static inline void __skb_queue_after(struct sk_buff_head *list,
2288 				     struct sk_buff *prev,
2289 				     struct sk_buff *newsk)
2290 {
2291 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2292 }
2293 
2294 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2295 		struct sk_buff_head *list);
2296 
2297 static inline void __skb_queue_before(struct sk_buff_head *list,
2298 				      struct sk_buff *next,
2299 				      struct sk_buff *newsk)
2300 {
2301 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2302 }
2303 
2304 /**
2305  *	__skb_queue_head - queue a buffer at the list head
2306  *	@list: list to use
2307  *	@newsk: buffer to queue
2308  *
2309  *	Queue a buffer at the start of a list. This function takes no locks
2310  *	and you must therefore hold required locks before calling it.
2311  *
2312  *	A buffer cannot be placed on two lists at the same time.
2313  */
2314 static inline void __skb_queue_head(struct sk_buff_head *list,
2315 				    struct sk_buff *newsk)
2316 {
2317 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2318 }
2319 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2320 
2321 /**
2322  *	__skb_queue_tail - queue a buffer at the list tail
2323  *	@list: list to use
2324  *	@newsk: buffer to queue
2325  *
2326  *	Queue a buffer at the end of a list. This function takes no locks
2327  *	and you must therefore hold required locks before calling it.
2328  *
2329  *	A buffer cannot be placed on two lists at the same time.
2330  */
2331 static inline void __skb_queue_tail(struct sk_buff_head *list,
2332 				   struct sk_buff *newsk)
2333 {
2334 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2335 }
2336 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2337 
2338 /*
2339  * remove sk_buff from list. _Must_ be called atomically, and with
2340  * the list known..
2341  */
2342 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2343 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2344 {
2345 	struct sk_buff *next, *prev;
2346 
2347 	WRITE_ONCE(list->qlen, list->qlen - 1);
2348 	next	   = skb->next;
2349 	prev	   = skb->prev;
2350 	skb->next  = skb->prev = NULL;
2351 	WRITE_ONCE(next->prev, prev);
2352 	WRITE_ONCE(prev->next, next);
2353 }
2354 
2355 /**
2356  *	__skb_dequeue - remove from the head of the queue
2357  *	@list: list to dequeue from
2358  *
2359  *	Remove the head of the list. This function does not take any locks
2360  *	so must be used with appropriate locks held only. The head item is
2361  *	returned or %NULL if the list is empty.
2362  */
2363 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2364 {
2365 	struct sk_buff *skb = skb_peek(list);
2366 	if (skb)
2367 		__skb_unlink(skb, list);
2368 	return skb;
2369 }
2370 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2371 
2372 /**
2373  *	__skb_dequeue_tail - remove from the tail of the queue
2374  *	@list: list to dequeue from
2375  *
2376  *	Remove the tail of the list. This function does not take any locks
2377  *	so must be used with appropriate locks held only. The tail item is
2378  *	returned or %NULL if the list is empty.
2379  */
2380 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2381 {
2382 	struct sk_buff *skb = skb_peek_tail(list);
2383 	if (skb)
2384 		__skb_unlink(skb, list);
2385 	return skb;
2386 }
2387 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2388 
2389 
2390 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2391 {
2392 	return skb->data_len;
2393 }
2394 
2395 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2396 {
2397 	return skb->len - skb->data_len;
2398 }
2399 
2400 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2401 {
2402 	unsigned int i, len = 0;
2403 
2404 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2405 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2406 	return len;
2407 }
2408 
2409 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2410 {
2411 	return skb_headlen(skb) + __skb_pagelen(skb);
2412 }
2413 
2414 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2415 					      int i, struct page *page,
2416 					      int off, int size)
2417 {
2418 	skb_frag_t *frag = &shinfo->frags[i];
2419 
2420 	/*
2421 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2422 	 * that not all callers have unique ownership of the page but rely
2423 	 * on page_is_pfmemalloc doing the right thing(tm).
2424 	 */
2425 	frag->bv_page		  = page;
2426 	frag->bv_offset		  = off;
2427 	skb_frag_size_set(frag, size);
2428 }
2429 
2430 /**
2431  * skb_len_add - adds a number to len fields of skb
2432  * @skb: buffer to add len to
2433  * @delta: number of bytes to add
2434  */
2435 static inline void skb_len_add(struct sk_buff *skb, int delta)
2436 {
2437 	skb->len += delta;
2438 	skb->data_len += delta;
2439 	skb->truesize += delta;
2440 }
2441 
2442 /**
2443  * __skb_fill_page_desc - initialise a paged fragment in an skb
2444  * @skb: buffer containing fragment to be initialised
2445  * @i: paged fragment index to initialise
2446  * @page: the page to use for this fragment
2447  * @off: the offset to the data with @page
2448  * @size: the length of the data
2449  *
2450  * Initialises the @i'th fragment of @skb to point to &size bytes at
2451  * offset @off within @page.
2452  *
2453  * Does not take any additional reference on the fragment.
2454  */
2455 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2456 					struct page *page, int off, int size)
2457 {
2458 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2459 	page = compound_head(page);
2460 	if (page_is_pfmemalloc(page))
2461 		skb->pfmemalloc	= true;
2462 }
2463 
2464 /**
2465  * skb_fill_page_desc - initialise a paged fragment in an skb
2466  * @skb: buffer containing fragment to be initialised
2467  * @i: paged fragment index to initialise
2468  * @page: the page to use for this fragment
2469  * @off: the offset to the data with @page
2470  * @size: the length of the data
2471  *
2472  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2473  * @skb to point to @size bytes at offset @off within @page. In
2474  * addition updates @skb such that @i is the last fragment.
2475  *
2476  * Does not take any additional reference on the fragment.
2477  */
2478 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2479 				      struct page *page, int off, int size)
2480 {
2481 	__skb_fill_page_desc(skb, i, page, off, size);
2482 	skb_shinfo(skb)->nr_frags = i + 1;
2483 }
2484 
2485 /**
2486  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2487  * @skb: buffer containing fragment to be initialised
2488  * @i: paged fragment index to initialise
2489  * @page: the page to use for this fragment
2490  * @off: the offset to the data with @page
2491  * @size: the length of the data
2492  *
2493  * Variant of skb_fill_page_desc() which does not deal with
2494  * pfmemalloc, if page is not owned by us.
2495  */
2496 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2497 					    struct page *page, int off,
2498 					    int size)
2499 {
2500 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2501 
2502 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2503 	shinfo->nr_frags = i + 1;
2504 }
2505 
2506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2507 		     int size, unsigned int truesize);
2508 
2509 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2510 			  unsigned int truesize);
2511 
2512 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2513 
2514 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2515 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2516 {
2517 	return skb->head + skb->tail;
2518 }
2519 
2520 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2521 {
2522 	skb->tail = skb->data - skb->head;
2523 }
2524 
2525 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2526 {
2527 	skb_reset_tail_pointer(skb);
2528 	skb->tail += offset;
2529 }
2530 
2531 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2532 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2533 {
2534 	return skb->tail;
2535 }
2536 
2537 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2538 {
2539 	skb->tail = skb->data;
2540 }
2541 
2542 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2543 {
2544 	skb->tail = skb->data + offset;
2545 }
2546 
2547 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2548 
2549 static inline void skb_assert_len(struct sk_buff *skb)
2550 {
2551 #ifdef CONFIG_DEBUG_NET
2552 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2553 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2554 #endif /* CONFIG_DEBUG_NET */
2555 }
2556 
2557 /*
2558  *	Add data to an sk_buff
2559  */
2560 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2561 void *skb_put(struct sk_buff *skb, unsigned int len);
2562 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2563 {
2564 	void *tmp = skb_tail_pointer(skb);
2565 	SKB_LINEAR_ASSERT(skb);
2566 	skb->tail += len;
2567 	skb->len  += len;
2568 	return tmp;
2569 }
2570 
2571 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2572 {
2573 	void *tmp = __skb_put(skb, len);
2574 
2575 	memset(tmp, 0, len);
2576 	return tmp;
2577 }
2578 
2579 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2580 				   unsigned int len)
2581 {
2582 	void *tmp = __skb_put(skb, len);
2583 
2584 	memcpy(tmp, data, len);
2585 	return tmp;
2586 }
2587 
2588 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2589 {
2590 	*(u8 *)__skb_put(skb, 1) = val;
2591 }
2592 
2593 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2594 {
2595 	void *tmp = skb_put(skb, len);
2596 
2597 	memset(tmp, 0, len);
2598 
2599 	return tmp;
2600 }
2601 
2602 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2603 				 unsigned int len)
2604 {
2605 	void *tmp = skb_put(skb, len);
2606 
2607 	memcpy(tmp, data, len);
2608 
2609 	return tmp;
2610 }
2611 
2612 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2613 {
2614 	*(u8 *)skb_put(skb, 1) = val;
2615 }
2616 
2617 void *skb_push(struct sk_buff *skb, unsigned int len);
2618 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2619 {
2620 	skb->data -= len;
2621 	skb->len  += len;
2622 	return skb->data;
2623 }
2624 
2625 void *skb_pull(struct sk_buff *skb, unsigned int len);
2626 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2627 {
2628 	skb->len -= len;
2629 	if (unlikely(skb->len < skb->data_len)) {
2630 #if defined(CONFIG_DEBUG_NET)
2631 		skb->len += len;
2632 		pr_err("__skb_pull(len=%u)\n", len);
2633 		skb_dump(KERN_ERR, skb, false);
2634 #endif
2635 		BUG();
2636 	}
2637 	return skb->data += len;
2638 }
2639 
2640 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2641 {
2642 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2643 }
2644 
2645 void *skb_pull_data(struct sk_buff *skb, size_t len);
2646 
2647 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2648 
2649 static inline enum skb_drop_reason
2650 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2651 {
2652 	if (likely(len <= skb_headlen(skb)))
2653 		return SKB_NOT_DROPPED_YET;
2654 
2655 	if (unlikely(len > skb->len))
2656 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2657 
2658 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2659 		return SKB_DROP_REASON_NOMEM;
2660 
2661 	return SKB_NOT_DROPPED_YET;
2662 }
2663 
2664 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2665 {
2666 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2667 }
2668 
2669 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2670 {
2671 	if (!pskb_may_pull(skb, len))
2672 		return NULL;
2673 
2674 	skb->len -= len;
2675 	return skb->data += len;
2676 }
2677 
2678 void skb_condense(struct sk_buff *skb);
2679 
2680 /**
2681  *	skb_headroom - bytes at buffer head
2682  *	@skb: buffer to check
2683  *
2684  *	Return the number of bytes of free space at the head of an &sk_buff.
2685  */
2686 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2687 {
2688 	return skb->data - skb->head;
2689 }
2690 
2691 /**
2692  *	skb_tailroom - bytes at buffer end
2693  *	@skb: buffer to check
2694  *
2695  *	Return the number of bytes of free space at the tail of an sk_buff
2696  */
2697 static inline int skb_tailroom(const struct sk_buff *skb)
2698 {
2699 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2700 }
2701 
2702 /**
2703  *	skb_availroom - bytes at buffer end
2704  *	@skb: buffer to check
2705  *
2706  *	Return the number of bytes of free space at the tail of an sk_buff
2707  *	allocated by sk_stream_alloc()
2708  */
2709 static inline int skb_availroom(const struct sk_buff *skb)
2710 {
2711 	if (skb_is_nonlinear(skb))
2712 		return 0;
2713 
2714 	return skb->end - skb->tail - skb->reserved_tailroom;
2715 }
2716 
2717 /**
2718  *	skb_reserve - adjust headroom
2719  *	@skb: buffer to alter
2720  *	@len: bytes to move
2721  *
2722  *	Increase the headroom of an empty &sk_buff by reducing the tail
2723  *	room. This is only allowed for an empty buffer.
2724  */
2725 static inline void skb_reserve(struct sk_buff *skb, int len)
2726 {
2727 	skb->data += len;
2728 	skb->tail += len;
2729 }
2730 
2731 /**
2732  *	skb_tailroom_reserve - adjust reserved_tailroom
2733  *	@skb: buffer to alter
2734  *	@mtu: maximum amount of headlen permitted
2735  *	@needed_tailroom: minimum amount of reserved_tailroom
2736  *
2737  *	Set reserved_tailroom so that headlen can be as large as possible but
2738  *	not larger than mtu and tailroom cannot be smaller than
2739  *	needed_tailroom.
2740  *	The required headroom should already have been reserved before using
2741  *	this function.
2742  */
2743 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2744 					unsigned int needed_tailroom)
2745 {
2746 	SKB_LINEAR_ASSERT(skb);
2747 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2748 		/* use at most mtu */
2749 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2750 	else
2751 		/* use up to all available space */
2752 		skb->reserved_tailroom = needed_tailroom;
2753 }
2754 
2755 #define ENCAP_TYPE_ETHER	0
2756 #define ENCAP_TYPE_IPPROTO	1
2757 
2758 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2759 					  __be16 protocol)
2760 {
2761 	skb->inner_protocol = protocol;
2762 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2763 }
2764 
2765 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2766 					 __u8 ipproto)
2767 {
2768 	skb->inner_ipproto = ipproto;
2769 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2770 }
2771 
2772 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2773 {
2774 	skb->inner_mac_header = skb->mac_header;
2775 	skb->inner_network_header = skb->network_header;
2776 	skb->inner_transport_header = skb->transport_header;
2777 }
2778 
2779 static inline void skb_reset_mac_len(struct sk_buff *skb)
2780 {
2781 	skb->mac_len = skb->network_header - skb->mac_header;
2782 }
2783 
2784 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2785 							*skb)
2786 {
2787 	return skb->head + skb->inner_transport_header;
2788 }
2789 
2790 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2791 {
2792 	return skb_inner_transport_header(skb) - skb->data;
2793 }
2794 
2795 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2796 {
2797 	skb->inner_transport_header = skb->data - skb->head;
2798 }
2799 
2800 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2801 						   const int offset)
2802 {
2803 	skb_reset_inner_transport_header(skb);
2804 	skb->inner_transport_header += offset;
2805 }
2806 
2807 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2808 {
2809 	return skb->head + skb->inner_network_header;
2810 }
2811 
2812 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2813 {
2814 	skb->inner_network_header = skb->data - skb->head;
2815 }
2816 
2817 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2818 						const int offset)
2819 {
2820 	skb_reset_inner_network_header(skb);
2821 	skb->inner_network_header += offset;
2822 }
2823 
2824 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2825 {
2826 	return skb->head + skb->inner_mac_header;
2827 }
2828 
2829 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2830 {
2831 	skb->inner_mac_header = skb->data - skb->head;
2832 }
2833 
2834 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2835 					    const int offset)
2836 {
2837 	skb_reset_inner_mac_header(skb);
2838 	skb->inner_mac_header += offset;
2839 }
2840 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2841 {
2842 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2843 }
2844 
2845 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2846 {
2847 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2848 	return skb->head + skb->transport_header;
2849 }
2850 
2851 static inline void skb_reset_transport_header(struct sk_buff *skb)
2852 {
2853 	skb->transport_header = skb->data - skb->head;
2854 }
2855 
2856 static inline void skb_set_transport_header(struct sk_buff *skb,
2857 					    const int offset)
2858 {
2859 	skb_reset_transport_header(skb);
2860 	skb->transport_header += offset;
2861 }
2862 
2863 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2864 {
2865 	return skb->head + skb->network_header;
2866 }
2867 
2868 static inline void skb_reset_network_header(struct sk_buff *skb)
2869 {
2870 	skb->network_header = skb->data - skb->head;
2871 }
2872 
2873 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2874 {
2875 	skb_reset_network_header(skb);
2876 	skb->network_header += offset;
2877 }
2878 
2879 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2880 {
2881 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2882 }
2883 
2884 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2885 {
2886 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2887 	return skb->head + skb->mac_header;
2888 }
2889 
2890 static inline int skb_mac_offset(const struct sk_buff *skb)
2891 {
2892 	return skb_mac_header(skb) - skb->data;
2893 }
2894 
2895 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2896 {
2897 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2898 	return skb->network_header - skb->mac_header;
2899 }
2900 
2901 static inline void skb_unset_mac_header(struct sk_buff *skb)
2902 {
2903 	skb->mac_header = (typeof(skb->mac_header))~0U;
2904 }
2905 
2906 static inline void skb_reset_mac_header(struct sk_buff *skb)
2907 {
2908 	skb->mac_header = skb->data - skb->head;
2909 }
2910 
2911 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2912 {
2913 	skb_reset_mac_header(skb);
2914 	skb->mac_header += offset;
2915 }
2916 
2917 static inline void skb_pop_mac_header(struct sk_buff *skb)
2918 {
2919 	skb->mac_header = skb->network_header;
2920 }
2921 
2922 static inline void skb_probe_transport_header(struct sk_buff *skb)
2923 {
2924 	struct flow_keys_basic keys;
2925 
2926 	if (skb_transport_header_was_set(skb))
2927 		return;
2928 
2929 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2930 					     NULL, 0, 0, 0, 0))
2931 		skb_set_transport_header(skb, keys.control.thoff);
2932 }
2933 
2934 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2935 {
2936 	if (skb_mac_header_was_set(skb)) {
2937 		const unsigned char *old_mac = skb_mac_header(skb);
2938 
2939 		skb_set_mac_header(skb, -skb->mac_len);
2940 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2941 	}
2942 }
2943 
2944 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2945 {
2946 	return skb->csum_start - skb_headroom(skb);
2947 }
2948 
2949 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2950 {
2951 	return skb->head + skb->csum_start;
2952 }
2953 
2954 static inline int skb_transport_offset(const struct sk_buff *skb)
2955 {
2956 	return skb_transport_header(skb) - skb->data;
2957 }
2958 
2959 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2960 {
2961 	return skb->transport_header - skb->network_header;
2962 }
2963 
2964 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2965 {
2966 	return skb->inner_transport_header - skb->inner_network_header;
2967 }
2968 
2969 static inline int skb_network_offset(const struct sk_buff *skb)
2970 {
2971 	return skb_network_header(skb) - skb->data;
2972 }
2973 
2974 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2975 {
2976 	return skb_inner_network_header(skb) - skb->data;
2977 }
2978 
2979 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2980 {
2981 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2982 }
2983 
2984 /*
2985  * CPUs often take a performance hit when accessing unaligned memory
2986  * locations. The actual performance hit varies, it can be small if the
2987  * hardware handles it or large if we have to take an exception and fix it
2988  * in software.
2989  *
2990  * Since an ethernet header is 14 bytes network drivers often end up with
2991  * the IP header at an unaligned offset. The IP header can be aligned by
2992  * shifting the start of the packet by 2 bytes. Drivers should do this
2993  * with:
2994  *
2995  * skb_reserve(skb, NET_IP_ALIGN);
2996  *
2997  * The downside to this alignment of the IP header is that the DMA is now
2998  * unaligned. On some architectures the cost of an unaligned DMA is high
2999  * and this cost outweighs the gains made by aligning the IP header.
3000  *
3001  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3002  * to be overridden.
3003  */
3004 #ifndef NET_IP_ALIGN
3005 #define NET_IP_ALIGN	2
3006 #endif
3007 
3008 /*
3009  * The networking layer reserves some headroom in skb data (via
3010  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3011  * the header has to grow. In the default case, if the header has to grow
3012  * 32 bytes or less we avoid the reallocation.
3013  *
3014  * Unfortunately this headroom changes the DMA alignment of the resulting
3015  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3016  * on some architectures. An architecture can override this value,
3017  * perhaps setting it to a cacheline in size (since that will maintain
3018  * cacheline alignment of the DMA). It must be a power of 2.
3019  *
3020  * Various parts of the networking layer expect at least 32 bytes of
3021  * headroom, you should not reduce this.
3022  *
3023  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3024  * to reduce average number of cache lines per packet.
3025  * get_rps_cpu() for example only access one 64 bytes aligned block :
3026  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3027  */
3028 #ifndef NET_SKB_PAD
3029 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3030 #endif
3031 
3032 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3033 
3034 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3035 {
3036 	if (WARN_ON(skb_is_nonlinear(skb)))
3037 		return;
3038 	skb->len = len;
3039 	skb_set_tail_pointer(skb, len);
3040 }
3041 
3042 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3043 {
3044 	__skb_set_length(skb, len);
3045 }
3046 
3047 void skb_trim(struct sk_buff *skb, unsigned int len);
3048 
3049 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3050 {
3051 	if (skb->data_len)
3052 		return ___pskb_trim(skb, len);
3053 	__skb_trim(skb, len);
3054 	return 0;
3055 }
3056 
3057 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3058 {
3059 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3060 }
3061 
3062 /**
3063  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3064  *	@skb: buffer to alter
3065  *	@len: new length
3066  *
3067  *	This is identical to pskb_trim except that the caller knows that
3068  *	the skb is not cloned so we should never get an error due to out-
3069  *	of-memory.
3070  */
3071 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3072 {
3073 	int err = pskb_trim(skb, len);
3074 	BUG_ON(err);
3075 }
3076 
3077 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3078 {
3079 	unsigned int diff = len - skb->len;
3080 
3081 	if (skb_tailroom(skb) < diff) {
3082 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3083 					   GFP_ATOMIC);
3084 		if (ret)
3085 			return ret;
3086 	}
3087 	__skb_set_length(skb, len);
3088 	return 0;
3089 }
3090 
3091 /**
3092  *	skb_orphan - orphan a buffer
3093  *	@skb: buffer to orphan
3094  *
3095  *	If a buffer currently has an owner then we call the owner's
3096  *	destructor function and make the @skb unowned. The buffer continues
3097  *	to exist but is no longer charged to its former owner.
3098  */
3099 static inline void skb_orphan(struct sk_buff *skb)
3100 {
3101 	if (skb->destructor) {
3102 		skb->destructor(skb);
3103 		skb->destructor = NULL;
3104 		skb->sk		= NULL;
3105 	} else {
3106 		BUG_ON(skb->sk);
3107 	}
3108 }
3109 
3110 /**
3111  *	skb_orphan_frags - orphan the frags contained in a buffer
3112  *	@skb: buffer to orphan frags from
3113  *	@gfp_mask: allocation mask for replacement pages
3114  *
3115  *	For each frag in the SKB which needs a destructor (i.e. has an
3116  *	owner) create a copy of that frag and release the original
3117  *	page by calling the destructor.
3118  */
3119 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3120 {
3121 	if (likely(!skb_zcopy(skb)))
3122 		return 0;
3123 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3124 		return 0;
3125 	return skb_copy_ubufs(skb, gfp_mask);
3126 }
3127 
3128 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3129 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3130 {
3131 	if (likely(!skb_zcopy(skb)))
3132 		return 0;
3133 	return skb_copy_ubufs(skb, gfp_mask);
3134 }
3135 
3136 /**
3137  *	__skb_queue_purge - empty a list
3138  *	@list: list to empty
3139  *
3140  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3141  *	the list and one reference dropped. This function does not take the
3142  *	list lock and the caller must hold the relevant locks to use it.
3143  */
3144 static inline void __skb_queue_purge(struct sk_buff_head *list)
3145 {
3146 	struct sk_buff *skb;
3147 	while ((skb = __skb_dequeue(list)) != NULL)
3148 		kfree_skb(skb);
3149 }
3150 void skb_queue_purge(struct sk_buff_head *list);
3151 
3152 unsigned int skb_rbtree_purge(struct rb_root *root);
3153 
3154 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3155 
3156 /**
3157  * netdev_alloc_frag - allocate a page fragment
3158  * @fragsz: fragment size
3159  *
3160  * Allocates a frag from a page for receive buffer.
3161  * Uses GFP_ATOMIC allocations.
3162  */
3163 static inline void *netdev_alloc_frag(unsigned int fragsz)
3164 {
3165 	return __netdev_alloc_frag_align(fragsz, ~0u);
3166 }
3167 
3168 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3169 					    unsigned int align)
3170 {
3171 	WARN_ON_ONCE(!is_power_of_2(align));
3172 	return __netdev_alloc_frag_align(fragsz, -align);
3173 }
3174 
3175 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3176 				   gfp_t gfp_mask);
3177 
3178 /**
3179  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3180  *	@dev: network device to receive on
3181  *	@length: length to allocate
3182  *
3183  *	Allocate a new &sk_buff and assign it a usage count of one. The
3184  *	buffer has unspecified headroom built in. Users should allocate
3185  *	the headroom they think they need without accounting for the
3186  *	built in space. The built in space is used for optimisations.
3187  *
3188  *	%NULL is returned if there is no free memory. Although this function
3189  *	allocates memory it can be called from an interrupt.
3190  */
3191 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3192 					       unsigned int length)
3193 {
3194 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3195 }
3196 
3197 /* legacy helper around __netdev_alloc_skb() */
3198 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3199 					      gfp_t gfp_mask)
3200 {
3201 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3202 }
3203 
3204 /* legacy helper around netdev_alloc_skb() */
3205 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3206 {
3207 	return netdev_alloc_skb(NULL, length);
3208 }
3209 
3210 
3211 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3212 		unsigned int length, gfp_t gfp)
3213 {
3214 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3215 
3216 	if (NET_IP_ALIGN && skb)
3217 		skb_reserve(skb, NET_IP_ALIGN);
3218 	return skb;
3219 }
3220 
3221 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3222 		unsigned int length)
3223 {
3224 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3225 }
3226 
3227 static inline void skb_free_frag(void *addr)
3228 {
3229 	page_frag_free(addr);
3230 }
3231 
3232 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3233 
3234 static inline void *napi_alloc_frag(unsigned int fragsz)
3235 {
3236 	return __napi_alloc_frag_align(fragsz, ~0u);
3237 }
3238 
3239 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3240 					  unsigned int align)
3241 {
3242 	WARN_ON_ONCE(!is_power_of_2(align));
3243 	return __napi_alloc_frag_align(fragsz, -align);
3244 }
3245 
3246 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3247 				 unsigned int length, gfp_t gfp_mask);
3248 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3249 					     unsigned int length)
3250 {
3251 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3252 }
3253 void napi_consume_skb(struct sk_buff *skb, int budget);
3254 
3255 void napi_skb_free_stolen_head(struct sk_buff *skb);
3256 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3257 
3258 /**
3259  * __dev_alloc_pages - allocate page for network Rx
3260  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3261  * @order: size of the allocation
3262  *
3263  * Allocate a new page.
3264  *
3265  * %NULL is returned if there is no free memory.
3266 */
3267 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3268 					     unsigned int order)
3269 {
3270 	/* This piece of code contains several assumptions.
3271 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3272 	 * 2.  The expectation is the user wants a compound page.
3273 	 * 3.  If requesting a order 0 page it will not be compound
3274 	 *     due to the check to see if order has a value in prep_new_page
3275 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3276 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3277 	 */
3278 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3279 
3280 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3281 }
3282 
3283 static inline struct page *dev_alloc_pages(unsigned int order)
3284 {
3285 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3286 }
3287 
3288 /**
3289  * __dev_alloc_page - allocate a page for network Rx
3290  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3291  *
3292  * Allocate a new page.
3293  *
3294  * %NULL is returned if there is no free memory.
3295  */
3296 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3297 {
3298 	return __dev_alloc_pages(gfp_mask, 0);
3299 }
3300 
3301 static inline struct page *dev_alloc_page(void)
3302 {
3303 	return dev_alloc_pages(0);
3304 }
3305 
3306 /**
3307  * dev_page_is_reusable - check whether a page can be reused for network Rx
3308  * @page: the page to test
3309  *
3310  * A page shouldn't be considered for reusing/recycling if it was allocated
3311  * under memory pressure or at a distant memory node.
3312  *
3313  * Returns false if this page should be returned to page allocator, true
3314  * otherwise.
3315  */
3316 static inline bool dev_page_is_reusable(const struct page *page)
3317 {
3318 	return likely(page_to_nid(page) == numa_mem_id() &&
3319 		      !page_is_pfmemalloc(page));
3320 }
3321 
3322 /**
3323  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3324  *	@page: The page that was allocated from skb_alloc_page
3325  *	@skb: The skb that may need pfmemalloc set
3326  */
3327 static inline void skb_propagate_pfmemalloc(const struct page *page,
3328 					    struct sk_buff *skb)
3329 {
3330 	if (page_is_pfmemalloc(page))
3331 		skb->pfmemalloc = true;
3332 }
3333 
3334 /**
3335  * skb_frag_off() - Returns the offset of a skb fragment
3336  * @frag: the paged fragment
3337  */
3338 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3339 {
3340 	return frag->bv_offset;
3341 }
3342 
3343 /**
3344  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3345  * @frag: skb fragment
3346  * @delta: value to add
3347  */
3348 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3349 {
3350 	frag->bv_offset += delta;
3351 }
3352 
3353 /**
3354  * skb_frag_off_set() - Sets the offset of a skb fragment
3355  * @frag: skb fragment
3356  * @offset: offset of fragment
3357  */
3358 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3359 {
3360 	frag->bv_offset = offset;
3361 }
3362 
3363 /**
3364  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3365  * @fragto: skb fragment where offset is set
3366  * @fragfrom: skb fragment offset is copied from
3367  */
3368 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3369 				     const skb_frag_t *fragfrom)
3370 {
3371 	fragto->bv_offset = fragfrom->bv_offset;
3372 }
3373 
3374 /**
3375  * skb_frag_page - retrieve the page referred to by a paged fragment
3376  * @frag: the paged fragment
3377  *
3378  * Returns the &struct page associated with @frag.
3379  */
3380 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3381 {
3382 	return frag->bv_page;
3383 }
3384 
3385 /**
3386  * __skb_frag_ref - take an addition reference on a paged fragment.
3387  * @frag: the paged fragment
3388  *
3389  * Takes an additional reference on the paged fragment @frag.
3390  */
3391 static inline void __skb_frag_ref(skb_frag_t *frag)
3392 {
3393 	get_page(skb_frag_page(frag));
3394 }
3395 
3396 /**
3397  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3398  * @skb: the buffer
3399  * @f: the fragment offset.
3400  *
3401  * Takes an additional reference on the @f'th paged fragment of @skb.
3402  */
3403 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3404 {
3405 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3406 }
3407 
3408 static inline void
3409 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3410 {
3411 	struct page *page = skb_frag_page(frag);
3412 
3413 #ifdef CONFIG_PAGE_POOL
3414 	if (recycle && page_pool_return_skb_page(page, napi_safe))
3415 		return;
3416 #endif
3417 	put_page(page);
3418 }
3419 
3420 /**
3421  * __skb_frag_unref - release a reference on a paged fragment.
3422  * @frag: the paged fragment
3423  * @recycle: recycle the page if allocated via page_pool
3424  *
3425  * Releases a reference on the paged fragment @frag
3426  * or recycles the page via the page_pool API.
3427  */
3428 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3429 {
3430 	napi_frag_unref(frag, recycle, false);
3431 }
3432 
3433 /**
3434  * skb_frag_unref - release a reference on a paged fragment of an skb.
3435  * @skb: the buffer
3436  * @f: the fragment offset
3437  *
3438  * Releases a reference on the @f'th paged fragment of @skb.
3439  */
3440 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3441 {
3442 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3443 
3444 	if (!skb_zcopy_managed(skb))
3445 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3446 }
3447 
3448 /**
3449  * skb_frag_address - gets the address of the data contained in a paged fragment
3450  * @frag: the paged fragment buffer
3451  *
3452  * Returns the address of the data within @frag. The page must already
3453  * be mapped.
3454  */
3455 static inline void *skb_frag_address(const skb_frag_t *frag)
3456 {
3457 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3458 }
3459 
3460 /**
3461  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3462  * @frag: the paged fragment buffer
3463  *
3464  * Returns the address of the data within @frag. Checks that the page
3465  * is mapped and returns %NULL otherwise.
3466  */
3467 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3468 {
3469 	void *ptr = page_address(skb_frag_page(frag));
3470 	if (unlikely(!ptr))
3471 		return NULL;
3472 
3473 	return ptr + skb_frag_off(frag);
3474 }
3475 
3476 /**
3477  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3478  * @fragto: skb fragment where page is set
3479  * @fragfrom: skb fragment page is copied from
3480  */
3481 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3482 				      const skb_frag_t *fragfrom)
3483 {
3484 	fragto->bv_page = fragfrom->bv_page;
3485 }
3486 
3487 /**
3488  * __skb_frag_set_page - sets the page contained in a paged fragment
3489  * @frag: the paged fragment
3490  * @page: the page to set
3491  *
3492  * Sets the fragment @frag to contain @page.
3493  */
3494 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3495 {
3496 	frag->bv_page = page;
3497 }
3498 
3499 /**
3500  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3501  * @skb: the buffer
3502  * @f: the fragment offset
3503  * @page: the page to set
3504  *
3505  * Sets the @f'th fragment of @skb to contain @page.
3506  */
3507 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3508 				     struct page *page)
3509 {
3510 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3511 }
3512 
3513 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3514 
3515 /**
3516  * skb_frag_dma_map - maps a paged fragment via the DMA API
3517  * @dev: the device to map the fragment to
3518  * @frag: the paged fragment to map
3519  * @offset: the offset within the fragment (starting at the
3520  *          fragment's own offset)
3521  * @size: the number of bytes to map
3522  * @dir: the direction of the mapping (``PCI_DMA_*``)
3523  *
3524  * Maps the page associated with @frag to @device.
3525  */
3526 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3527 					  const skb_frag_t *frag,
3528 					  size_t offset, size_t size,
3529 					  enum dma_data_direction dir)
3530 {
3531 	return dma_map_page(dev, skb_frag_page(frag),
3532 			    skb_frag_off(frag) + offset, size, dir);
3533 }
3534 
3535 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3536 					gfp_t gfp_mask)
3537 {
3538 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3539 }
3540 
3541 
3542 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3543 						  gfp_t gfp_mask)
3544 {
3545 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3546 }
3547 
3548 
3549 /**
3550  *	skb_clone_writable - is the header of a clone writable
3551  *	@skb: buffer to check
3552  *	@len: length up to which to write
3553  *
3554  *	Returns true if modifying the header part of the cloned buffer
3555  *	does not requires the data to be copied.
3556  */
3557 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3558 {
3559 	return !skb_header_cloned(skb) &&
3560 	       skb_headroom(skb) + len <= skb->hdr_len;
3561 }
3562 
3563 static inline int skb_try_make_writable(struct sk_buff *skb,
3564 					unsigned int write_len)
3565 {
3566 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3567 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3568 }
3569 
3570 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3571 			    int cloned)
3572 {
3573 	int delta = 0;
3574 
3575 	if (headroom > skb_headroom(skb))
3576 		delta = headroom - skb_headroom(skb);
3577 
3578 	if (delta || cloned)
3579 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3580 					GFP_ATOMIC);
3581 	return 0;
3582 }
3583 
3584 /**
3585  *	skb_cow - copy header of skb when it is required
3586  *	@skb: buffer to cow
3587  *	@headroom: needed headroom
3588  *
3589  *	If the skb passed lacks sufficient headroom or its data part
3590  *	is shared, data is reallocated. If reallocation fails, an error
3591  *	is returned and original skb is not changed.
3592  *
3593  *	The result is skb with writable area skb->head...skb->tail
3594  *	and at least @headroom of space at head.
3595  */
3596 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3597 {
3598 	return __skb_cow(skb, headroom, skb_cloned(skb));
3599 }
3600 
3601 /**
3602  *	skb_cow_head - skb_cow but only making the head writable
3603  *	@skb: buffer to cow
3604  *	@headroom: needed headroom
3605  *
3606  *	This function is identical to skb_cow except that we replace the
3607  *	skb_cloned check by skb_header_cloned.  It should be used when
3608  *	you only need to push on some header and do not need to modify
3609  *	the data.
3610  */
3611 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3612 {
3613 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3614 }
3615 
3616 /**
3617  *	skb_padto	- pad an skbuff up to a minimal size
3618  *	@skb: buffer to pad
3619  *	@len: minimal length
3620  *
3621  *	Pads up a buffer to ensure the trailing bytes exist and are
3622  *	blanked. If the buffer already contains sufficient data it
3623  *	is untouched. Otherwise it is extended. Returns zero on
3624  *	success. The skb is freed on error.
3625  */
3626 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3627 {
3628 	unsigned int size = skb->len;
3629 	if (likely(size >= len))
3630 		return 0;
3631 	return skb_pad(skb, len - size);
3632 }
3633 
3634 /**
3635  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3636  *	@skb: buffer to pad
3637  *	@len: minimal length
3638  *	@free_on_error: free buffer on error
3639  *
3640  *	Pads up a buffer to ensure the trailing bytes exist and are
3641  *	blanked. If the buffer already contains sufficient data it
3642  *	is untouched. Otherwise it is extended. Returns zero on
3643  *	success. The skb is freed on error if @free_on_error is true.
3644  */
3645 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3646 					       unsigned int len,
3647 					       bool free_on_error)
3648 {
3649 	unsigned int size = skb->len;
3650 
3651 	if (unlikely(size < len)) {
3652 		len -= size;
3653 		if (__skb_pad(skb, len, free_on_error))
3654 			return -ENOMEM;
3655 		__skb_put(skb, len);
3656 	}
3657 	return 0;
3658 }
3659 
3660 /**
3661  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3662  *	@skb: buffer to pad
3663  *	@len: minimal length
3664  *
3665  *	Pads up a buffer to ensure the trailing bytes exist and are
3666  *	blanked. If the buffer already contains sufficient data it
3667  *	is untouched. Otherwise it is extended. Returns zero on
3668  *	success. The skb is freed on error.
3669  */
3670 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3671 {
3672 	return __skb_put_padto(skb, len, true);
3673 }
3674 
3675 static inline int skb_add_data(struct sk_buff *skb,
3676 			       struct iov_iter *from, int copy)
3677 {
3678 	const int off = skb->len;
3679 
3680 	if (skb->ip_summed == CHECKSUM_NONE) {
3681 		__wsum csum = 0;
3682 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3683 					         &csum, from)) {
3684 			skb->csum = csum_block_add(skb->csum, csum, off);
3685 			return 0;
3686 		}
3687 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3688 		return 0;
3689 
3690 	__skb_trim(skb, off);
3691 	return -EFAULT;
3692 }
3693 
3694 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3695 				    const struct page *page, int off)
3696 {
3697 	if (skb_zcopy(skb))
3698 		return false;
3699 	if (i) {
3700 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3701 
3702 		return page == skb_frag_page(frag) &&
3703 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3704 	}
3705 	return false;
3706 }
3707 
3708 static inline int __skb_linearize(struct sk_buff *skb)
3709 {
3710 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3711 }
3712 
3713 /**
3714  *	skb_linearize - convert paged skb to linear one
3715  *	@skb: buffer to linarize
3716  *
3717  *	If there is no free memory -ENOMEM is returned, otherwise zero
3718  *	is returned and the old skb data released.
3719  */
3720 static inline int skb_linearize(struct sk_buff *skb)
3721 {
3722 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3723 }
3724 
3725 /**
3726  * skb_has_shared_frag - can any frag be overwritten
3727  * @skb: buffer to test
3728  *
3729  * Return true if the skb has at least one frag that might be modified
3730  * by an external entity (as in vmsplice()/sendfile())
3731  */
3732 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3733 {
3734 	return skb_is_nonlinear(skb) &&
3735 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3736 }
3737 
3738 /**
3739  *	skb_linearize_cow - make sure skb is linear and writable
3740  *	@skb: buffer to process
3741  *
3742  *	If there is no free memory -ENOMEM is returned, otherwise zero
3743  *	is returned and the old skb data released.
3744  */
3745 static inline int skb_linearize_cow(struct sk_buff *skb)
3746 {
3747 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3748 	       __skb_linearize(skb) : 0;
3749 }
3750 
3751 static __always_inline void
3752 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3753 		     unsigned int off)
3754 {
3755 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3756 		skb->csum = csum_block_sub(skb->csum,
3757 					   csum_partial(start, len, 0), off);
3758 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3759 		 skb_checksum_start_offset(skb) < 0)
3760 		skb->ip_summed = CHECKSUM_NONE;
3761 }
3762 
3763 /**
3764  *	skb_postpull_rcsum - update checksum for received skb after pull
3765  *	@skb: buffer to update
3766  *	@start: start of data before pull
3767  *	@len: length of data pulled
3768  *
3769  *	After doing a pull on a received packet, you need to call this to
3770  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3771  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3772  */
3773 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3774 				      const void *start, unsigned int len)
3775 {
3776 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3777 		skb->csum = wsum_negate(csum_partial(start, len,
3778 						     wsum_negate(skb->csum)));
3779 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3780 		 skb_checksum_start_offset(skb) < 0)
3781 		skb->ip_summed = CHECKSUM_NONE;
3782 }
3783 
3784 static __always_inline void
3785 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3786 		     unsigned int off)
3787 {
3788 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3789 		skb->csum = csum_block_add(skb->csum,
3790 					   csum_partial(start, len, 0), off);
3791 }
3792 
3793 /**
3794  *	skb_postpush_rcsum - update checksum for received skb after push
3795  *	@skb: buffer to update
3796  *	@start: start of data after push
3797  *	@len: length of data pushed
3798  *
3799  *	After doing a push on a received packet, you need to call this to
3800  *	update the CHECKSUM_COMPLETE checksum.
3801  */
3802 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3803 				      const void *start, unsigned int len)
3804 {
3805 	__skb_postpush_rcsum(skb, start, len, 0);
3806 }
3807 
3808 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3809 
3810 /**
3811  *	skb_push_rcsum - push skb and update receive checksum
3812  *	@skb: buffer to update
3813  *	@len: length of data pulled
3814  *
3815  *	This function performs an skb_push on the packet and updates
3816  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3817  *	receive path processing instead of skb_push unless you know
3818  *	that the checksum difference is zero (e.g., a valid IP header)
3819  *	or you are setting ip_summed to CHECKSUM_NONE.
3820  */
3821 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3822 {
3823 	skb_push(skb, len);
3824 	skb_postpush_rcsum(skb, skb->data, len);
3825 	return skb->data;
3826 }
3827 
3828 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3829 /**
3830  *	pskb_trim_rcsum - trim received skb and update checksum
3831  *	@skb: buffer to trim
3832  *	@len: new length
3833  *
3834  *	This is exactly the same as pskb_trim except that it ensures the
3835  *	checksum of received packets are still valid after the operation.
3836  *	It can change skb pointers.
3837  */
3838 
3839 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3840 {
3841 	if (likely(len >= skb->len))
3842 		return 0;
3843 	return pskb_trim_rcsum_slow(skb, len);
3844 }
3845 
3846 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3847 {
3848 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3849 		skb->ip_summed = CHECKSUM_NONE;
3850 	__skb_trim(skb, len);
3851 	return 0;
3852 }
3853 
3854 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3855 {
3856 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3857 		skb->ip_summed = CHECKSUM_NONE;
3858 	return __skb_grow(skb, len);
3859 }
3860 
3861 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3862 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3863 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3864 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3865 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3866 
3867 #define skb_queue_walk(queue, skb) \
3868 		for (skb = (queue)->next;					\
3869 		     skb != (struct sk_buff *)(queue);				\
3870 		     skb = skb->next)
3871 
3872 #define skb_queue_walk_safe(queue, skb, tmp)					\
3873 		for (skb = (queue)->next, tmp = skb->next;			\
3874 		     skb != (struct sk_buff *)(queue);				\
3875 		     skb = tmp, tmp = skb->next)
3876 
3877 #define skb_queue_walk_from(queue, skb)						\
3878 		for (; skb != (struct sk_buff *)(queue);			\
3879 		     skb = skb->next)
3880 
3881 #define skb_rbtree_walk(skb, root)						\
3882 		for (skb = skb_rb_first(root); skb != NULL;			\
3883 		     skb = skb_rb_next(skb))
3884 
3885 #define skb_rbtree_walk_from(skb)						\
3886 		for (; skb != NULL;						\
3887 		     skb = skb_rb_next(skb))
3888 
3889 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3890 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3891 		     skb = tmp)
3892 
3893 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3894 		for (tmp = skb->next;						\
3895 		     skb != (struct sk_buff *)(queue);				\
3896 		     skb = tmp, tmp = skb->next)
3897 
3898 #define skb_queue_reverse_walk(queue, skb) \
3899 		for (skb = (queue)->prev;					\
3900 		     skb != (struct sk_buff *)(queue);				\
3901 		     skb = skb->prev)
3902 
3903 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3904 		for (skb = (queue)->prev, tmp = skb->prev;			\
3905 		     skb != (struct sk_buff *)(queue);				\
3906 		     skb = tmp, tmp = skb->prev)
3907 
3908 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3909 		for (tmp = skb->prev;						\
3910 		     skb != (struct sk_buff *)(queue);				\
3911 		     skb = tmp, tmp = skb->prev)
3912 
3913 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3914 {
3915 	return skb_shinfo(skb)->frag_list != NULL;
3916 }
3917 
3918 static inline void skb_frag_list_init(struct sk_buff *skb)
3919 {
3920 	skb_shinfo(skb)->frag_list = NULL;
3921 }
3922 
3923 #define skb_walk_frags(skb, iter)	\
3924 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3925 
3926 
3927 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3928 				int *err, long *timeo_p,
3929 				const struct sk_buff *skb);
3930 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3931 					  struct sk_buff_head *queue,
3932 					  unsigned int flags,
3933 					  int *off, int *err,
3934 					  struct sk_buff **last);
3935 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3936 					struct sk_buff_head *queue,
3937 					unsigned int flags, int *off, int *err,
3938 					struct sk_buff **last);
3939 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3940 				    struct sk_buff_head *sk_queue,
3941 				    unsigned int flags, int *off, int *err);
3942 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3943 __poll_t datagram_poll(struct file *file, struct socket *sock,
3944 			   struct poll_table_struct *wait);
3945 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3946 			   struct iov_iter *to, int size);
3947 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3948 					struct msghdr *msg, int size)
3949 {
3950 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3951 }
3952 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3953 				   struct msghdr *msg);
3954 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3955 			   struct iov_iter *to, int len,
3956 			   struct ahash_request *hash);
3957 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3958 				 struct iov_iter *from, int len);
3959 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3960 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3961 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3962 static inline void skb_free_datagram_locked(struct sock *sk,
3963 					    struct sk_buff *skb)
3964 {
3965 	__skb_free_datagram_locked(sk, skb, 0);
3966 }
3967 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3968 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3969 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3970 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3971 			      int len);
3972 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3973 		    struct pipe_inode_info *pipe, unsigned int len,
3974 		    unsigned int flags);
3975 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3976 			 int len);
3977 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3978 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3979 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3980 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3981 		 int len, int hlen);
3982 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3983 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3984 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3985 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3986 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3987 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3988 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3989 				 unsigned int offset);
3990 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3991 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3992 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3993 int skb_vlan_pop(struct sk_buff *skb);
3994 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3995 int skb_eth_pop(struct sk_buff *skb);
3996 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3997 		 const unsigned char *src);
3998 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3999 		  int mac_len, bool ethernet);
4000 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4001 		 bool ethernet);
4002 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4003 int skb_mpls_dec_ttl(struct sk_buff *skb);
4004 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4005 			     gfp_t gfp);
4006 
4007 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4008 {
4009 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4010 }
4011 
4012 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4013 {
4014 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4015 }
4016 
4017 struct skb_checksum_ops {
4018 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4019 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4020 };
4021 
4022 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4023 
4024 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4025 		      __wsum csum, const struct skb_checksum_ops *ops);
4026 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4027 		    __wsum csum);
4028 
4029 static inline void * __must_check
4030 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4031 		     const void *data, int hlen, void *buffer)
4032 {
4033 	if (likely(hlen - offset >= len))
4034 		return (void *)data + offset;
4035 
4036 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4037 		return NULL;
4038 
4039 	return buffer;
4040 }
4041 
4042 static inline void * __must_check
4043 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4044 {
4045 	return __skb_header_pointer(skb, offset, len, skb->data,
4046 				    skb_headlen(skb), buffer);
4047 }
4048 
4049 /**
4050  *	skb_needs_linearize - check if we need to linearize a given skb
4051  *			      depending on the given device features.
4052  *	@skb: socket buffer to check
4053  *	@features: net device features
4054  *
4055  *	Returns true if either:
4056  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4057  *	2. skb is fragmented and the device does not support SG.
4058  */
4059 static inline bool skb_needs_linearize(struct sk_buff *skb,
4060 				       netdev_features_t features)
4061 {
4062 	return skb_is_nonlinear(skb) &&
4063 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4064 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4065 }
4066 
4067 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4068 					     void *to,
4069 					     const unsigned int len)
4070 {
4071 	memcpy(to, skb->data, len);
4072 }
4073 
4074 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4075 						    const int offset, void *to,
4076 						    const unsigned int len)
4077 {
4078 	memcpy(to, skb->data + offset, len);
4079 }
4080 
4081 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4082 					   const void *from,
4083 					   const unsigned int len)
4084 {
4085 	memcpy(skb->data, from, len);
4086 }
4087 
4088 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4089 						  const int offset,
4090 						  const void *from,
4091 						  const unsigned int len)
4092 {
4093 	memcpy(skb->data + offset, from, len);
4094 }
4095 
4096 void skb_init(void);
4097 
4098 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4099 {
4100 	return skb->tstamp;
4101 }
4102 
4103 /**
4104  *	skb_get_timestamp - get timestamp from a skb
4105  *	@skb: skb to get stamp from
4106  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4107  *
4108  *	Timestamps are stored in the skb as offsets to a base timestamp.
4109  *	This function converts the offset back to a struct timeval and stores
4110  *	it in stamp.
4111  */
4112 static inline void skb_get_timestamp(const struct sk_buff *skb,
4113 				     struct __kernel_old_timeval *stamp)
4114 {
4115 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4116 }
4117 
4118 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4119 					 struct __kernel_sock_timeval *stamp)
4120 {
4121 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4122 
4123 	stamp->tv_sec = ts.tv_sec;
4124 	stamp->tv_usec = ts.tv_nsec / 1000;
4125 }
4126 
4127 static inline void skb_get_timestampns(const struct sk_buff *skb,
4128 				       struct __kernel_old_timespec *stamp)
4129 {
4130 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4131 
4132 	stamp->tv_sec = ts.tv_sec;
4133 	stamp->tv_nsec = ts.tv_nsec;
4134 }
4135 
4136 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4137 					   struct __kernel_timespec *stamp)
4138 {
4139 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4140 
4141 	stamp->tv_sec = ts.tv_sec;
4142 	stamp->tv_nsec = ts.tv_nsec;
4143 }
4144 
4145 static inline void __net_timestamp(struct sk_buff *skb)
4146 {
4147 	skb->tstamp = ktime_get_real();
4148 	skb->mono_delivery_time = 0;
4149 }
4150 
4151 static inline ktime_t net_timedelta(ktime_t t)
4152 {
4153 	return ktime_sub(ktime_get_real(), t);
4154 }
4155 
4156 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4157 					 bool mono)
4158 {
4159 	skb->tstamp = kt;
4160 	skb->mono_delivery_time = kt && mono;
4161 }
4162 
4163 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4164 
4165 /* It is used in the ingress path to clear the delivery_time.
4166  * If needed, set the skb->tstamp to the (rcv) timestamp.
4167  */
4168 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4169 {
4170 	if (skb->mono_delivery_time) {
4171 		skb->mono_delivery_time = 0;
4172 		if (static_branch_unlikely(&netstamp_needed_key))
4173 			skb->tstamp = ktime_get_real();
4174 		else
4175 			skb->tstamp = 0;
4176 	}
4177 }
4178 
4179 static inline void skb_clear_tstamp(struct sk_buff *skb)
4180 {
4181 	if (skb->mono_delivery_time)
4182 		return;
4183 
4184 	skb->tstamp = 0;
4185 }
4186 
4187 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4188 {
4189 	if (skb->mono_delivery_time)
4190 		return 0;
4191 
4192 	return skb->tstamp;
4193 }
4194 
4195 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4196 {
4197 	if (!skb->mono_delivery_time && skb->tstamp)
4198 		return skb->tstamp;
4199 
4200 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4201 		return ktime_get_real();
4202 
4203 	return 0;
4204 }
4205 
4206 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4207 {
4208 	return skb_shinfo(skb)->meta_len;
4209 }
4210 
4211 static inline void *skb_metadata_end(const struct sk_buff *skb)
4212 {
4213 	return skb_mac_header(skb);
4214 }
4215 
4216 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4217 					  const struct sk_buff *skb_b,
4218 					  u8 meta_len)
4219 {
4220 	const void *a = skb_metadata_end(skb_a);
4221 	const void *b = skb_metadata_end(skb_b);
4222 	/* Using more efficient varaiant than plain call to memcmp(). */
4223 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4224 	u64 diffs = 0;
4225 
4226 	switch (meta_len) {
4227 #define __it(x, op) (x -= sizeof(u##op))
4228 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4229 	case 32: diffs |= __it_diff(a, b, 64);
4230 		fallthrough;
4231 	case 24: diffs |= __it_diff(a, b, 64);
4232 		fallthrough;
4233 	case 16: diffs |= __it_diff(a, b, 64);
4234 		fallthrough;
4235 	case  8: diffs |= __it_diff(a, b, 64);
4236 		break;
4237 	case 28: diffs |= __it_diff(a, b, 64);
4238 		fallthrough;
4239 	case 20: diffs |= __it_diff(a, b, 64);
4240 		fallthrough;
4241 	case 12: diffs |= __it_diff(a, b, 64);
4242 		fallthrough;
4243 	case  4: diffs |= __it_diff(a, b, 32);
4244 		break;
4245 	}
4246 	return diffs;
4247 #else
4248 	return memcmp(a - meta_len, b - meta_len, meta_len);
4249 #endif
4250 }
4251 
4252 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4253 					const struct sk_buff *skb_b)
4254 {
4255 	u8 len_a = skb_metadata_len(skb_a);
4256 	u8 len_b = skb_metadata_len(skb_b);
4257 
4258 	if (!(len_a | len_b))
4259 		return false;
4260 
4261 	return len_a != len_b ?
4262 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4263 }
4264 
4265 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4266 {
4267 	skb_shinfo(skb)->meta_len = meta_len;
4268 }
4269 
4270 static inline void skb_metadata_clear(struct sk_buff *skb)
4271 {
4272 	skb_metadata_set(skb, 0);
4273 }
4274 
4275 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4276 
4277 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4278 
4279 void skb_clone_tx_timestamp(struct sk_buff *skb);
4280 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4281 
4282 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4283 
4284 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4285 {
4286 }
4287 
4288 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4289 {
4290 	return false;
4291 }
4292 
4293 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4294 
4295 /**
4296  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4297  *
4298  * PHY drivers may accept clones of transmitted packets for
4299  * timestamping via their phy_driver.txtstamp method. These drivers
4300  * must call this function to return the skb back to the stack with a
4301  * timestamp.
4302  *
4303  * @skb: clone of the original outgoing packet
4304  * @hwtstamps: hardware time stamps
4305  *
4306  */
4307 void skb_complete_tx_timestamp(struct sk_buff *skb,
4308 			       struct skb_shared_hwtstamps *hwtstamps);
4309 
4310 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4311 		     struct skb_shared_hwtstamps *hwtstamps,
4312 		     struct sock *sk, int tstype);
4313 
4314 /**
4315  * skb_tstamp_tx - queue clone of skb with send time stamps
4316  * @orig_skb:	the original outgoing packet
4317  * @hwtstamps:	hardware time stamps, may be NULL if not available
4318  *
4319  * If the skb has a socket associated, then this function clones the
4320  * skb (thus sharing the actual data and optional structures), stores
4321  * the optional hardware time stamping information (if non NULL) or
4322  * generates a software time stamp (otherwise), then queues the clone
4323  * to the error queue of the socket.  Errors are silently ignored.
4324  */
4325 void skb_tstamp_tx(struct sk_buff *orig_skb,
4326 		   struct skb_shared_hwtstamps *hwtstamps);
4327 
4328 /**
4329  * skb_tx_timestamp() - Driver hook for transmit timestamping
4330  *
4331  * Ethernet MAC Drivers should call this function in their hard_xmit()
4332  * function immediately before giving the sk_buff to the MAC hardware.
4333  *
4334  * Specifically, one should make absolutely sure that this function is
4335  * called before TX completion of this packet can trigger.  Otherwise
4336  * the packet could potentially already be freed.
4337  *
4338  * @skb: A socket buffer.
4339  */
4340 static inline void skb_tx_timestamp(struct sk_buff *skb)
4341 {
4342 	skb_clone_tx_timestamp(skb);
4343 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4344 		skb_tstamp_tx(skb, NULL);
4345 }
4346 
4347 /**
4348  * skb_complete_wifi_ack - deliver skb with wifi status
4349  *
4350  * @skb: the original outgoing packet
4351  * @acked: ack status
4352  *
4353  */
4354 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4355 
4356 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4357 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4358 
4359 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4360 {
4361 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4362 		skb->csum_valid ||
4363 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4364 		 skb_checksum_start_offset(skb) >= 0));
4365 }
4366 
4367 /**
4368  *	skb_checksum_complete - Calculate checksum of an entire packet
4369  *	@skb: packet to process
4370  *
4371  *	This function calculates the checksum over the entire packet plus
4372  *	the value of skb->csum.  The latter can be used to supply the
4373  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4374  *	checksum.
4375  *
4376  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4377  *	this function can be used to verify that checksum on received
4378  *	packets.  In that case the function should return zero if the
4379  *	checksum is correct.  In particular, this function will return zero
4380  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4381  *	hardware has already verified the correctness of the checksum.
4382  */
4383 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4384 {
4385 	return skb_csum_unnecessary(skb) ?
4386 	       0 : __skb_checksum_complete(skb);
4387 }
4388 
4389 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4390 {
4391 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4392 		if (skb->csum_level == 0)
4393 			skb->ip_summed = CHECKSUM_NONE;
4394 		else
4395 			skb->csum_level--;
4396 	}
4397 }
4398 
4399 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4400 {
4401 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4402 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4403 			skb->csum_level++;
4404 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4405 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4406 		skb->csum_level = 0;
4407 	}
4408 }
4409 
4410 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4411 {
4412 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4413 		skb->ip_summed = CHECKSUM_NONE;
4414 		skb->csum_level = 0;
4415 	}
4416 }
4417 
4418 /* Check if we need to perform checksum complete validation.
4419  *
4420  * Returns true if checksum complete is needed, false otherwise
4421  * (either checksum is unnecessary or zero checksum is allowed).
4422  */
4423 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4424 						  bool zero_okay,
4425 						  __sum16 check)
4426 {
4427 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4428 		skb->csum_valid = 1;
4429 		__skb_decr_checksum_unnecessary(skb);
4430 		return false;
4431 	}
4432 
4433 	return true;
4434 }
4435 
4436 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4437  * in checksum_init.
4438  */
4439 #define CHECKSUM_BREAK 76
4440 
4441 /* Unset checksum-complete
4442  *
4443  * Unset checksum complete can be done when packet is being modified
4444  * (uncompressed for instance) and checksum-complete value is
4445  * invalidated.
4446  */
4447 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4448 {
4449 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4450 		skb->ip_summed = CHECKSUM_NONE;
4451 }
4452 
4453 /* Validate (init) checksum based on checksum complete.
4454  *
4455  * Return values:
4456  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4457  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4458  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4459  *   non-zero: value of invalid checksum
4460  *
4461  */
4462 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4463 						       bool complete,
4464 						       __wsum psum)
4465 {
4466 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4467 		if (!csum_fold(csum_add(psum, skb->csum))) {
4468 			skb->csum_valid = 1;
4469 			return 0;
4470 		}
4471 	}
4472 
4473 	skb->csum = psum;
4474 
4475 	if (complete || skb->len <= CHECKSUM_BREAK) {
4476 		__sum16 csum;
4477 
4478 		csum = __skb_checksum_complete(skb);
4479 		skb->csum_valid = !csum;
4480 		return csum;
4481 	}
4482 
4483 	return 0;
4484 }
4485 
4486 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4487 {
4488 	return 0;
4489 }
4490 
4491 /* Perform checksum validate (init). Note that this is a macro since we only
4492  * want to calculate the pseudo header which is an input function if necessary.
4493  * First we try to validate without any computation (checksum unnecessary) and
4494  * then calculate based on checksum complete calling the function to compute
4495  * pseudo header.
4496  *
4497  * Return values:
4498  *   0: checksum is validated or try to in skb_checksum_complete
4499  *   non-zero: value of invalid checksum
4500  */
4501 #define __skb_checksum_validate(skb, proto, complete,			\
4502 				zero_okay, check, compute_pseudo)	\
4503 ({									\
4504 	__sum16 __ret = 0;						\
4505 	skb->csum_valid = 0;						\
4506 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4507 		__ret = __skb_checksum_validate_complete(skb,		\
4508 				complete, compute_pseudo(skb, proto));	\
4509 	__ret;								\
4510 })
4511 
4512 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4513 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4514 
4515 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4516 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4517 
4518 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4519 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4520 
4521 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4522 					 compute_pseudo)		\
4523 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4524 
4525 #define skb_checksum_simple_validate(skb)				\
4526 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4527 
4528 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4529 {
4530 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4531 }
4532 
4533 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4534 {
4535 	skb->csum = ~pseudo;
4536 	skb->ip_summed = CHECKSUM_COMPLETE;
4537 }
4538 
4539 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4540 do {									\
4541 	if (__skb_checksum_convert_check(skb))				\
4542 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4543 } while (0)
4544 
4545 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4546 					      u16 start, u16 offset)
4547 {
4548 	skb->ip_summed = CHECKSUM_PARTIAL;
4549 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4550 	skb->csum_offset = offset - start;
4551 }
4552 
4553 /* Update skbuf and packet to reflect the remote checksum offload operation.
4554  * When called, ptr indicates the starting point for skb->csum when
4555  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4556  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4557  */
4558 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4559 				       int start, int offset, bool nopartial)
4560 {
4561 	__wsum delta;
4562 
4563 	if (!nopartial) {
4564 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4565 		return;
4566 	}
4567 
4568 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4569 		__skb_checksum_complete(skb);
4570 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4571 	}
4572 
4573 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4574 
4575 	/* Adjust skb->csum since we changed the packet */
4576 	skb->csum = csum_add(skb->csum, delta);
4577 }
4578 
4579 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4580 {
4581 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4582 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4583 #else
4584 	return NULL;
4585 #endif
4586 }
4587 
4588 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4589 {
4590 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4591 	return skb->_nfct;
4592 #else
4593 	return 0UL;
4594 #endif
4595 }
4596 
4597 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4598 {
4599 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4600 	skb->slow_gro |= !!nfct;
4601 	skb->_nfct = nfct;
4602 #endif
4603 }
4604 
4605 #ifdef CONFIG_SKB_EXTENSIONS
4606 enum skb_ext_id {
4607 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4608 	SKB_EXT_BRIDGE_NF,
4609 #endif
4610 #ifdef CONFIG_XFRM
4611 	SKB_EXT_SEC_PATH,
4612 #endif
4613 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4614 	TC_SKB_EXT,
4615 #endif
4616 #if IS_ENABLED(CONFIG_MPTCP)
4617 	SKB_EXT_MPTCP,
4618 #endif
4619 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4620 	SKB_EXT_MCTP,
4621 #endif
4622 	SKB_EXT_NUM, /* must be last */
4623 };
4624 
4625 /**
4626  *	struct skb_ext - sk_buff extensions
4627  *	@refcnt: 1 on allocation, deallocated on 0
4628  *	@offset: offset to add to @data to obtain extension address
4629  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4630  *	@data: start of extension data, variable sized
4631  *
4632  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4633  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4634  */
4635 struct skb_ext {
4636 	refcount_t refcnt;
4637 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4638 	u8 chunks;		/* same */
4639 	char data[] __aligned(8);
4640 };
4641 
4642 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4643 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4644 		    struct skb_ext *ext);
4645 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4646 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4647 void __skb_ext_put(struct skb_ext *ext);
4648 
4649 static inline void skb_ext_put(struct sk_buff *skb)
4650 {
4651 	if (skb->active_extensions)
4652 		__skb_ext_put(skb->extensions);
4653 }
4654 
4655 static inline void __skb_ext_copy(struct sk_buff *dst,
4656 				  const struct sk_buff *src)
4657 {
4658 	dst->active_extensions = src->active_extensions;
4659 
4660 	if (src->active_extensions) {
4661 		struct skb_ext *ext = src->extensions;
4662 
4663 		refcount_inc(&ext->refcnt);
4664 		dst->extensions = ext;
4665 	}
4666 }
4667 
4668 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4669 {
4670 	skb_ext_put(dst);
4671 	__skb_ext_copy(dst, src);
4672 }
4673 
4674 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4675 {
4676 	return !!ext->offset[i];
4677 }
4678 
4679 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4680 {
4681 	return skb->active_extensions & (1 << id);
4682 }
4683 
4684 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4685 {
4686 	if (skb_ext_exist(skb, id))
4687 		__skb_ext_del(skb, id);
4688 }
4689 
4690 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4691 {
4692 	if (skb_ext_exist(skb, id)) {
4693 		struct skb_ext *ext = skb->extensions;
4694 
4695 		return (void *)ext + (ext->offset[id] << 3);
4696 	}
4697 
4698 	return NULL;
4699 }
4700 
4701 static inline void skb_ext_reset(struct sk_buff *skb)
4702 {
4703 	if (unlikely(skb->active_extensions)) {
4704 		__skb_ext_put(skb->extensions);
4705 		skb->active_extensions = 0;
4706 	}
4707 }
4708 
4709 static inline bool skb_has_extensions(struct sk_buff *skb)
4710 {
4711 	return unlikely(skb->active_extensions);
4712 }
4713 #else
4714 static inline void skb_ext_put(struct sk_buff *skb) {}
4715 static inline void skb_ext_reset(struct sk_buff *skb) {}
4716 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4717 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4718 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4719 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4720 #endif /* CONFIG_SKB_EXTENSIONS */
4721 
4722 static inline void nf_reset_ct(struct sk_buff *skb)
4723 {
4724 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4725 	nf_conntrack_put(skb_nfct(skb));
4726 	skb->_nfct = 0;
4727 #endif
4728 }
4729 
4730 static inline void nf_reset_trace(struct sk_buff *skb)
4731 {
4732 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4733 	skb->nf_trace = 0;
4734 #endif
4735 }
4736 
4737 static inline void ipvs_reset(struct sk_buff *skb)
4738 {
4739 #if IS_ENABLED(CONFIG_IP_VS)
4740 	skb->ipvs_property = 0;
4741 #endif
4742 }
4743 
4744 /* Note: This doesn't put any conntrack info in dst. */
4745 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4746 			     bool copy)
4747 {
4748 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4749 	dst->_nfct = src->_nfct;
4750 	nf_conntrack_get(skb_nfct(src));
4751 #endif
4752 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4753 	if (copy)
4754 		dst->nf_trace = src->nf_trace;
4755 #endif
4756 }
4757 
4758 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4759 {
4760 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4761 	nf_conntrack_put(skb_nfct(dst));
4762 #endif
4763 	dst->slow_gro = src->slow_gro;
4764 	__nf_copy(dst, src, true);
4765 }
4766 
4767 #ifdef CONFIG_NETWORK_SECMARK
4768 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4769 {
4770 	to->secmark = from->secmark;
4771 }
4772 
4773 static inline void skb_init_secmark(struct sk_buff *skb)
4774 {
4775 	skb->secmark = 0;
4776 }
4777 #else
4778 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4779 { }
4780 
4781 static inline void skb_init_secmark(struct sk_buff *skb)
4782 { }
4783 #endif
4784 
4785 static inline int secpath_exists(const struct sk_buff *skb)
4786 {
4787 #ifdef CONFIG_XFRM
4788 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4789 #else
4790 	return 0;
4791 #endif
4792 }
4793 
4794 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4795 {
4796 	return !skb->destructor &&
4797 		!secpath_exists(skb) &&
4798 		!skb_nfct(skb) &&
4799 		!skb->_skb_refdst &&
4800 		!skb_has_frag_list(skb);
4801 }
4802 
4803 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4804 {
4805 	skb->queue_mapping = queue_mapping;
4806 }
4807 
4808 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4809 {
4810 	return skb->queue_mapping;
4811 }
4812 
4813 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4814 {
4815 	to->queue_mapping = from->queue_mapping;
4816 }
4817 
4818 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4819 {
4820 	skb->queue_mapping = rx_queue + 1;
4821 }
4822 
4823 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4824 {
4825 	return skb->queue_mapping - 1;
4826 }
4827 
4828 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4829 {
4830 	return skb->queue_mapping != 0;
4831 }
4832 
4833 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4834 {
4835 	skb->dst_pending_confirm = val;
4836 }
4837 
4838 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4839 {
4840 	return skb->dst_pending_confirm != 0;
4841 }
4842 
4843 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4844 {
4845 #ifdef CONFIG_XFRM
4846 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4847 #else
4848 	return NULL;
4849 #endif
4850 }
4851 
4852 /* Keeps track of mac header offset relative to skb->head.
4853  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4854  * For non-tunnel skb it points to skb_mac_header() and for
4855  * tunnel skb it points to outer mac header.
4856  * Keeps track of level of encapsulation of network headers.
4857  */
4858 struct skb_gso_cb {
4859 	union {
4860 		int	mac_offset;
4861 		int	data_offset;
4862 	};
4863 	int	encap_level;
4864 	__wsum	csum;
4865 	__u16	csum_start;
4866 };
4867 #define SKB_GSO_CB_OFFSET	32
4868 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4869 
4870 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4871 {
4872 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4873 		SKB_GSO_CB(inner_skb)->mac_offset;
4874 }
4875 
4876 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4877 {
4878 	int new_headroom, headroom;
4879 	int ret;
4880 
4881 	headroom = skb_headroom(skb);
4882 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4883 	if (ret)
4884 		return ret;
4885 
4886 	new_headroom = skb_headroom(skb);
4887 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4888 	return 0;
4889 }
4890 
4891 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4892 {
4893 	/* Do not update partial checksums if remote checksum is enabled. */
4894 	if (skb->remcsum_offload)
4895 		return;
4896 
4897 	SKB_GSO_CB(skb)->csum = res;
4898 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4899 }
4900 
4901 /* Compute the checksum for a gso segment. First compute the checksum value
4902  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4903  * then add in skb->csum (checksum from csum_start to end of packet).
4904  * skb->csum and csum_start are then updated to reflect the checksum of the
4905  * resultant packet starting from the transport header-- the resultant checksum
4906  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4907  * header.
4908  */
4909 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4910 {
4911 	unsigned char *csum_start = skb_transport_header(skb);
4912 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4913 	__wsum partial = SKB_GSO_CB(skb)->csum;
4914 
4915 	SKB_GSO_CB(skb)->csum = res;
4916 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4917 
4918 	return csum_fold(csum_partial(csum_start, plen, partial));
4919 }
4920 
4921 static inline bool skb_is_gso(const struct sk_buff *skb)
4922 {
4923 	return skb_shinfo(skb)->gso_size;
4924 }
4925 
4926 /* Note: Should be called only if skb_is_gso(skb) is true */
4927 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4928 {
4929 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4930 }
4931 
4932 /* Note: Should be called only if skb_is_gso(skb) is true */
4933 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4934 {
4935 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4936 }
4937 
4938 /* Note: Should be called only if skb_is_gso(skb) is true */
4939 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4940 {
4941 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4942 }
4943 
4944 static inline void skb_gso_reset(struct sk_buff *skb)
4945 {
4946 	skb_shinfo(skb)->gso_size = 0;
4947 	skb_shinfo(skb)->gso_segs = 0;
4948 	skb_shinfo(skb)->gso_type = 0;
4949 }
4950 
4951 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4952 					 u16 increment)
4953 {
4954 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4955 		return;
4956 	shinfo->gso_size += increment;
4957 }
4958 
4959 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4960 					 u16 decrement)
4961 {
4962 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4963 		return;
4964 	shinfo->gso_size -= decrement;
4965 }
4966 
4967 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4968 
4969 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4970 {
4971 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4972 	 * wanted then gso_type will be set. */
4973 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4974 
4975 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4976 	    unlikely(shinfo->gso_type == 0)) {
4977 		__skb_warn_lro_forwarding(skb);
4978 		return true;
4979 	}
4980 	return false;
4981 }
4982 
4983 static inline void skb_forward_csum(struct sk_buff *skb)
4984 {
4985 	/* Unfortunately we don't support this one.  Any brave souls? */
4986 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4987 		skb->ip_summed = CHECKSUM_NONE;
4988 }
4989 
4990 /**
4991  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4992  * @skb: skb to check
4993  *
4994  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4995  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4996  * use this helper, to document places where we make this assertion.
4997  */
4998 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4999 {
5000 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5001 }
5002 
5003 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5004 
5005 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5006 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5007 				     unsigned int transport_len,
5008 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5009 
5010 /**
5011  * skb_head_is_locked - Determine if the skb->head is locked down
5012  * @skb: skb to check
5013  *
5014  * The head on skbs build around a head frag can be removed if they are
5015  * not cloned.  This function returns true if the skb head is locked down
5016  * due to either being allocated via kmalloc, or by being a clone with
5017  * multiple references to the head.
5018  */
5019 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5020 {
5021 	return !skb->head_frag || skb_cloned(skb);
5022 }
5023 
5024 /* Local Checksum Offload.
5025  * Compute outer checksum based on the assumption that the
5026  * inner checksum will be offloaded later.
5027  * See Documentation/networking/checksum-offloads.rst for
5028  * explanation of how this works.
5029  * Fill in outer checksum adjustment (e.g. with sum of outer
5030  * pseudo-header) before calling.
5031  * Also ensure that inner checksum is in linear data area.
5032  */
5033 static inline __wsum lco_csum(struct sk_buff *skb)
5034 {
5035 	unsigned char *csum_start = skb_checksum_start(skb);
5036 	unsigned char *l4_hdr = skb_transport_header(skb);
5037 	__wsum partial;
5038 
5039 	/* Start with complement of inner checksum adjustment */
5040 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5041 						    skb->csum_offset));
5042 
5043 	/* Add in checksum of our headers (incl. outer checksum
5044 	 * adjustment filled in by caller) and return result.
5045 	 */
5046 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5047 }
5048 
5049 static inline bool skb_is_redirected(const struct sk_buff *skb)
5050 {
5051 	return skb->redirected;
5052 }
5053 
5054 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5055 {
5056 	skb->redirected = 1;
5057 #ifdef CONFIG_NET_REDIRECT
5058 	skb->from_ingress = from_ingress;
5059 	if (skb->from_ingress)
5060 		skb_clear_tstamp(skb);
5061 #endif
5062 }
5063 
5064 static inline void skb_reset_redirect(struct sk_buff *skb)
5065 {
5066 	skb->redirected = 0;
5067 }
5068 
5069 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5070 					      bool from_ingress)
5071 {
5072 	skb->redirected = 1;
5073 #ifdef CONFIG_NET_REDIRECT
5074 	skb->from_ingress = from_ingress;
5075 #endif
5076 }
5077 
5078 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5079 {
5080 #if IS_ENABLED(CONFIG_IP_SCTP)
5081 	return skb->csum_not_inet;
5082 #else
5083 	return 0;
5084 #endif
5085 }
5086 
5087 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5088 {
5089 	skb->ip_summed = CHECKSUM_NONE;
5090 #if IS_ENABLED(CONFIG_IP_SCTP)
5091 	skb->csum_not_inet = 0;
5092 #endif
5093 }
5094 
5095 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5096 				       const u64 kcov_handle)
5097 {
5098 #ifdef CONFIG_KCOV
5099 	skb->kcov_handle = kcov_handle;
5100 #endif
5101 }
5102 
5103 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5104 {
5105 #ifdef CONFIG_KCOV
5106 	return skb->kcov_handle;
5107 #else
5108 	return 0;
5109 #endif
5110 }
5111 
5112 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5113 {
5114 #ifdef CONFIG_PAGE_POOL
5115 	skb->pp_recycle = 1;
5116 #endif
5117 }
5118 
5119 #endif	/* __KERNEL__ */
5120 #endif	/* _LINUX_SKBUFF_H */
5121