xref: /linux-6.15/include/linux/skbuff.h (revision 930cc144)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
49 
50 /* A. Checksumming of received packets by device.
51  *
52  *	NONE: device failed to checksum this packet.
53  *		skb->csum is undefined.
54  *
55  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
56  *		skb->csum is undefined.
57  *	      It is bad option, but, unfortunately, many of vendors do this.
58  *	      Apparently with secret goal to sell you new device, when you
59  *	      will add new protocol to your host. F.e. IPv6. 8)
60  *
61  *	COMPLETE: the most generic way. Device supplied checksum of _all_
62  *	    the packet as seen by netif_rx in skb->csum.
63  *	    NOTE: Even if device supports only some protocols, but
64  *	    is able to produce some skb->csum, it MUST use COMPLETE,
65  *	    not UNNECESSARY.
66  *
67  *	PARTIAL: identical to the case for output below.  This may occur
68  *	    on a packet received directly from another Linux OS, e.g.,
69  *	    a virtualised Linux kernel on the same host.  The packet can
70  *	    be treated in the same way as UNNECESSARY except that on
71  *	    output (i.e., forwarding) the checksum must be filled in
72  *	    by the OS or the hardware.
73  *
74  * B. Checksumming on output.
75  *
76  *	NONE: skb is checksummed by protocol or csum is not required.
77  *
78  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
79  *	from skb->csum_start to the end and to record the checksum
80  *	at skb->csum_start + skb->csum_offset.
81  *
82  *	Device must show its capabilities in dev->features, set
83  *	at device setup time.
84  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
85  *			  everything.
86  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
87  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88  *			  TCP/UDP over IPv4. Sigh. Vendors like this
89  *			  way by an unknown reason. Though, see comment above
90  *			  about CHECKSUM_UNNECESSARY. 8)
91  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92  *
93  *	Any questions? No questions, good. 		--ANK
94  */
95 
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99 
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 	atomic_t use;
103 };
104 #endif
105 
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 	atomic_t use;
109 	struct net_device *physindev;
110 	struct net_device *physoutdev;
111 	unsigned int mask;
112 	unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115 
116 struct sk_buff_head {
117 	/* These two members must be first. */
118 	struct sk_buff	*next;
119 	struct sk_buff	*prev;
120 
121 	__u32		qlen;
122 	spinlock_t	lock;
123 };
124 
125 struct sk_buff;
126 
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129 
130 typedef struct skb_frag_struct skb_frag_t;
131 
132 struct skb_frag_struct {
133 	struct page *page;
134 	__u32 page_offset;
135 	__u32 size;
136 };
137 
138 /* This data is invariant across clones and lives at
139  * the end of the header data, ie. at skb->end.
140  */
141 struct skb_shared_info {
142 	atomic_t	dataref;
143 	unsigned short	nr_frags;
144 	unsigned short	gso_size;
145 	/* Warning: this field is not always filled in (UFO)! */
146 	unsigned short	gso_segs;
147 	unsigned short  gso_type;
148 	__be32          ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150 	unsigned int	num_dma_maps;
151 #endif
152 	struct sk_buff	*frag_list;
153 	skb_frag_t	frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155 	dma_addr_t	dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
157 };
158 
159 /* We divide dataref into two halves.  The higher 16 bits hold references
160  * to the payload part of skb->data.  The lower 16 bits hold references to
161  * the entire skb->data.  A clone of a headerless skb holds the length of
162  * the header in skb->hdr_len.
163  *
164  * All users must obey the rule that the skb->data reference count must be
165  * greater than or equal to the payload reference count.
166  *
167  * Holding a reference to the payload part means that the user does not
168  * care about modifications to the header part of skb->data.
169  */
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172 
173 
174 enum {
175 	SKB_FCLONE_UNAVAILABLE,
176 	SKB_FCLONE_ORIG,
177 	SKB_FCLONE_CLONE,
178 };
179 
180 enum {
181 	SKB_GSO_TCPV4 = 1 << 0,
182 	SKB_GSO_UDP = 1 << 1,
183 
184 	/* This indicates the skb is from an untrusted source. */
185 	SKB_GSO_DODGY = 1 << 2,
186 
187 	/* This indicates the tcp segment has CWR set. */
188 	SKB_GSO_TCP_ECN = 1 << 3,
189 
190 	SKB_GSO_TCPV6 = 1 << 4,
191 };
192 
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
196 
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
202 
203 /**
204  *	struct sk_buff - socket buffer
205  *	@next: Next buffer in list
206  *	@prev: Previous buffer in list
207  *	@sk: Socket we are owned by
208  *	@tstamp: Time we arrived
209  *	@dev: Device we arrived on/are leaving by
210  *	@transport_header: Transport layer header
211  *	@network_header: Network layer header
212  *	@mac_header: Link layer header
213  *	@dst: destination entry
214  *	@sp: the security path, used for xfrm
215  *	@cb: Control buffer. Free for use by every layer. Put private vars here
216  *	@len: Length of actual data
217  *	@data_len: Data length
218  *	@mac_len: Length of link layer header
219  *	@hdr_len: writable header length of cloned skb
220  *	@csum: Checksum (must include start/offset pair)
221  *	@csum_start: Offset from skb->head where checksumming should start
222  *	@csum_offset: Offset from csum_start where checksum should be stored
223  *	@local_df: allow local fragmentation
224  *	@cloned: Head may be cloned (check refcnt to be sure)
225  *	@nohdr: Payload reference only, must not modify header
226  *	@pkt_type: Packet class
227  *	@fclone: skbuff clone status
228  *	@ip_summed: Driver fed us an IP checksum
229  *	@priority: Packet queueing priority
230  *	@users: User count - see {datagram,tcp}.c
231  *	@protocol: Packet protocol from driver
232  *	@truesize: Buffer size
233  *	@head: Head of buffer
234  *	@data: Data head pointer
235  *	@tail: Tail pointer
236  *	@end: End pointer
237  *	@destructor: Destruct function
238  *	@mark: Generic packet mark
239  *	@nfct: Associated connection, if any
240  *	@ipvs_property: skbuff is owned by ipvs
241  *	@peeked: this packet has been seen already, so stats have been
242  *		done for it, don't do them again
243  *	@nf_trace: netfilter packet trace flag
244  *	@nfctinfo: Relationship of this skb to the connection
245  *	@nfct_reasm: netfilter conntrack re-assembly pointer
246  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247  *	@iif: ifindex of device we arrived on
248  *	@queue_mapping: Queue mapping for multiqueue devices
249  *	@tc_index: Traffic control index
250  *	@tc_verd: traffic control verdict
251  *	@ndisc_nodetype: router type (from link layer)
252  *	@do_not_encrypt: set to prevent encryption of this frame
253  *	@dma_cookie: a cookie to one of several possible DMA operations
254  *		done by skb DMA functions
255  *	@secmark: security marking
256  *	@vlan_tci: vlan tag control information
257  */
258 
259 struct sk_buff {
260 	/* These two members must be first. */
261 	struct sk_buff		*next;
262 	struct sk_buff		*prev;
263 
264 	struct sock		*sk;
265 	ktime_t			tstamp;
266 	struct net_device	*dev;
267 
268 	union {
269 		struct  dst_entry	*dst;
270 		struct  rtable		*rtable;
271 	};
272 	struct	sec_path	*sp;
273 
274 	/*
275 	 * This is the control buffer. It is free to use for every
276 	 * layer. Please put your private variables there. If you
277 	 * want to keep them across layers you have to do a skb_clone()
278 	 * first. This is owned by whoever has the skb queued ATM.
279 	 */
280 	char			cb[48];
281 
282 	unsigned int		len,
283 				data_len;
284 	__u16			mac_len,
285 				hdr_len;
286 	union {
287 		__wsum		csum;
288 		struct {
289 			__u16	csum_start;
290 			__u16	csum_offset;
291 		};
292 	};
293 	__u32			priority;
294 	__u8			local_df:1,
295 				cloned:1,
296 				ip_summed:2,
297 				nohdr:1,
298 				nfctinfo:3;
299 	__u8			pkt_type:3,
300 				fclone:2,
301 				ipvs_property:1,
302 				peeked:1,
303 				nf_trace:1;
304 	__be16			protocol;
305 
306 	void			(*destructor)(struct sk_buff *skb);
307 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
308 	struct nf_conntrack	*nfct;
309 	struct sk_buff		*nfct_reasm;
310 #endif
311 #ifdef CONFIG_BRIDGE_NETFILTER
312 	struct nf_bridge_info	*nf_bridge;
313 #endif
314 
315 	int			iif;
316 	__u16			queue_mapping;
317 #ifdef CONFIG_NET_SCHED
318 	__u16			tc_index;	/* traffic control index */
319 #ifdef CONFIG_NET_CLS_ACT
320 	__u16			tc_verd;	/* traffic control verdict */
321 #endif
322 #endif
323 #ifdef CONFIG_IPV6_NDISC_NODETYPE
324 	__u8			ndisc_nodetype:2;
325 #endif
326 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
327 	__u8			do_not_encrypt:1;
328 #endif
329 	/* 0/13/14 bit hole */
330 
331 #ifdef CONFIG_NET_DMA
332 	dma_cookie_t		dma_cookie;
333 #endif
334 #ifdef CONFIG_NETWORK_SECMARK
335 	__u32			secmark;
336 #endif
337 
338 	__u32			mark;
339 
340 	__u16			vlan_tci;
341 
342 	sk_buff_data_t		transport_header;
343 	sk_buff_data_t		network_header;
344 	sk_buff_data_t		mac_header;
345 	/* These elements must be at the end, see alloc_skb() for details.  */
346 	sk_buff_data_t		tail;
347 	sk_buff_data_t		end;
348 	unsigned char		*head,
349 				*data;
350 	unsigned int		truesize;
351 	atomic_t		users;
352 };
353 
354 #ifdef __KERNEL__
355 /*
356  *	Handling routines are only of interest to the kernel
357  */
358 #include <linux/slab.h>
359 
360 #include <asm/system.h>
361 
362 #ifdef CONFIG_HAS_DMA
363 #include <linux/dma-mapping.h>
364 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
365 		       enum dma_data_direction dir);
366 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
367 			  enum dma_data_direction dir);
368 #endif
369 
370 extern void kfree_skb(struct sk_buff *skb);
371 extern void	       __kfree_skb(struct sk_buff *skb);
372 extern struct sk_buff *__alloc_skb(unsigned int size,
373 				   gfp_t priority, int fclone, int node);
374 static inline struct sk_buff *alloc_skb(unsigned int size,
375 					gfp_t priority)
376 {
377 	return __alloc_skb(size, priority, 0, -1);
378 }
379 
380 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
381 					       gfp_t priority)
382 {
383 	return __alloc_skb(size, priority, 1, -1);
384 }
385 
386 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
387 
388 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
389 extern struct sk_buff *skb_clone(struct sk_buff *skb,
390 				 gfp_t priority);
391 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
392 				gfp_t priority);
393 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
394 				 gfp_t gfp_mask);
395 extern int	       pskb_expand_head(struct sk_buff *skb,
396 					int nhead, int ntail,
397 					gfp_t gfp_mask);
398 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
399 					    unsigned int headroom);
400 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
401 				       int newheadroom, int newtailroom,
402 				       gfp_t priority);
403 extern int	       skb_to_sgvec(struct sk_buff *skb,
404 				    struct scatterlist *sg, int offset,
405 				    int len);
406 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
407 				    struct sk_buff **trailer);
408 extern int	       skb_pad(struct sk_buff *skb, int pad);
409 #define dev_kfree_skb(a)	kfree_skb(a)
410 extern void	      skb_over_panic(struct sk_buff *skb, int len,
411 				     void *here);
412 extern void	      skb_under_panic(struct sk_buff *skb, int len,
413 				      void *here);
414 extern void	      skb_truesize_bug(struct sk_buff *skb);
415 
416 static inline void skb_truesize_check(struct sk_buff *skb)
417 {
418 	int len = sizeof(struct sk_buff) + skb->len;
419 
420 	if (unlikely((int)skb->truesize < len))
421 		skb_truesize_bug(skb);
422 }
423 
424 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
425 			int getfrag(void *from, char *to, int offset,
426 			int len,int odd, struct sk_buff *skb),
427 			void *from, int length);
428 
429 struct skb_seq_state
430 {
431 	__u32		lower_offset;
432 	__u32		upper_offset;
433 	__u32		frag_idx;
434 	__u32		stepped_offset;
435 	struct sk_buff	*root_skb;
436 	struct sk_buff	*cur_skb;
437 	__u8		*frag_data;
438 };
439 
440 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
441 					   unsigned int from, unsigned int to,
442 					   struct skb_seq_state *st);
443 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
444 				   struct skb_seq_state *st);
445 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
446 
447 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
448 				    unsigned int to, struct ts_config *config,
449 				    struct ts_state *state);
450 
451 #ifdef NET_SKBUFF_DATA_USES_OFFSET
452 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
453 {
454 	return skb->head + skb->end;
455 }
456 #else
457 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
458 {
459 	return skb->end;
460 }
461 #endif
462 
463 /* Internal */
464 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
465 
466 /**
467  *	skb_queue_empty - check if a queue is empty
468  *	@list: queue head
469  *
470  *	Returns true if the queue is empty, false otherwise.
471  */
472 static inline int skb_queue_empty(const struct sk_buff_head *list)
473 {
474 	return list->next == (struct sk_buff *)list;
475 }
476 
477 /**
478  *	skb_queue_is_last - check if skb is the last entry in the queue
479  *	@list: queue head
480  *	@skb: buffer
481  *
482  *	Returns true if @skb is the last buffer on the list.
483  */
484 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
485 				     const struct sk_buff *skb)
486 {
487 	return (skb->next == (struct sk_buff *) list);
488 }
489 
490 /**
491  *	skb_queue_next - return the next packet in the queue
492  *	@list: queue head
493  *	@skb: current buffer
494  *
495  *	Return the next packet in @list after @skb.  It is only valid to
496  *	call this if skb_queue_is_last() evaluates to false.
497  */
498 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
499 					     const struct sk_buff *skb)
500 {
501 	/* This BUG_ON may seem severe, but if we just return then we
502 	 * are going to dereference garbage.
503 	 */
504 	BUG_ON(skb_queue_is_last(list, skb));
505 	return skb->next;
506 }
507 
508 /**
509  *	skb_get - reference buffer
510  *	@skb: buffer to reference
511  *
512  *	Makes another reference to a socket buffer and returns a pointer
513  *	to the buffer.
514  */
515 static inline struct sk_buff *skb_get(struct sk_buff *skb)
516 {
517 	atomic_inc(&skb->users);
518 	return skb;
519 }
520 
521 /*
522  * If users == 1, we are the only owner and are can avoid redundant
523  * atomic change.
524  */
525 
526 /**
527  *	skb_cloned - is the buffer a clone
528  *	@skb: buffer to check
529  *
530  *	Returns true if the buffer was generated with skb_clone() and is
531  *	one of multiple shared copies of the buffer. Cloned buffers are
532  *	shared data so must not be written to under normal circumstances.
533  */
534 static inline int skb_cloned(const struct sk_buff *skb)
535 {
536 	return skb->cloned &&
537 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
538 }
539 
540 /**
541  *	skb_header_cloned - is the header a clone
542  *	@skb: buffer to check
543  *
544  *	Returns true if modifying the header part of the buffer requires
545  *	the data to be copied.
546  */
547 static inline int skb_header_cloned(const struct sk_buff *skb)
548 {
549 	int dataref;
550 
551 	if (!skb->cloned)
552 		return 0;
553 
554 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
555 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
556 	return dataref != 1;
557 }
558 
559 /**
560  *	skb_header_release - release reference to header
561  *	@skb: buffer to operate on
562  *
563  *	Drop a reference to the header part of the buffer.  This is done
564  *	by acquiring a payload reference.  You must not read from the header
565  *	part of skb->data after this.
566  */
567 static inline void skb_header_release(struct sk_buff *skb)
568 {
569 	BUG_ON(skb->nohdr);
570 	skb->nohdr = 1;
571 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
572 }
573 
574 /**
575  *	skb_shared - is the buffer shared
576  *	@skb: buffer to check
577  *
578  *	Returns true if more than one person has a reference to this
579  *	buffer.
580  */
581 static inline int skb_shared(const struct sk_buff *skb)
582 {
583 	return atomic_read(&skb->users) != 1;
584 }
585 
586 /**
587  *	skb_share_check - check if buffer is shared and if so clone it
588  *	@skb: buffer to check
589  *	@pri: priority for memory allocation
590  *
591  *	If the buffer is shared the buffer is cloned and the old copy
592  *	drops a reference. A new clone with a single reference is returned.
593  *	If the buffer is not shared the original buffer is returned. When
594  *	being called from interrupt status or with spinlocks held pri must
595  *	be GFP_ATOMIC.
596  *
597  *	NULL is returned on a memory allocation failure.
598  */
599 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
600 					      gfp_t pri)
601 {
602 	might_sleep_if(pri & __GFP_WAIT);
603 	if (skb_shared(skb)) {
604 		struct sk_buff *nskb = skb_clone(skb, pri);
605 		kfree_skb(skb);
606 		skb = nskb;
607 	}
608 	return skb;
609 }
610 
611 /*
612  *	Copy shared buffers into a new sk_buff. We effectively do COW on
613  *	packets to handle cases where we have a local reader and forward
614  *	and a couple of other messy ones. The normal one is tcpdumping
615  *	a packet thats being forwarded.
616  */
617 
618 /**
619  *	skb_unshare - make a copy of a shared buffer
620  *	@skb: buffer to check
621  *	@pri: priority for memory allocation
622  *
623  *	If the socket buffer is a clone then this function creates a new
624  *	copy of the data, drops a reference count on the old copy and returns
625  *	the new copy with the reference count at 1. If the buffer is not a clone
626  *	the original buffer is returned. When called with a spinlock held or
627  *	from interrupt state @pri must be %GFP_ATOMIC
628  *
629  *	%NULL is returned on a memory allocation failure.
630  */
631 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
632 					  gfp_t pri)
633 {
634 	might_sleep_if(pri & __GFP_WAIT);
635 	if (skb_cloned(skb)) {
636 		struct sk_buff *nskb = skb_copy(skb, pri);
637 		kfree_skb(skb);	/* Free our shared copy */
638 		skb = nskb;
639 	}
640 	return skb;
641 }
642 
643 /**
644  *	skb_peek
645  *	@list_: list to peek at
646  *
647  *	Peek an &sk_buff. Unlike most other operations you _MUST_
648  *	be careful with this one. A peek leaves the buffer on the
649  *	list and someone else may run off with it. You must hold
650  *	the appropriate locks or have a private queue to do this.
651  *
652  *	Returns %NULL for an empty list or a pointer to the head element.
653  *	The reference count is not incremented and the reference is therefore
654  *	volatile. Use with caution.
655  */
656 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
657 {
658 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
659 	if (list == (struct sk_buff *)list_)
660 		list = NULL;
661 	return list;
662 }
663 
664 /**
665  *	skb_peek_tail
666  *	@list_: list to peek at
667  *
668  *	Peek an &sk_buff. Unlike most other operations you _MUST_
669  *	be careful with this one. A peek leaves the buffer on the
670  *	list and someone else may run off with it. You must hold
671  *	the appropriate locks or have a private queue to do this.
672  *
673  *	Returns %NULL for an empty list or a pointer to the tail element.
674  *	The reference count is not incremented and the reference is therefore
675  *	volatile. Use with caution.
676  */
677 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
678 {
679 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
680 	if (list == (struct sk_buff *)list_)
681 		list = NULL;
682 	return list;
683 }
684 
685 /**
686  *	skb_queue_len	- get queue length
687  *	@list_: list to measure
688  *
689  *	Return the length of an &sk_buff queue.
690  */
691 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
692 {
693 	return list_->qlen;
694 }
695 
696 /**
697  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
698  *	@list: queue to initialize
699  *
700  *	This initializes only the list and queue length aspects of
701  *	an sk_buff_head object.  This allows to initialize the list
702  *	aspects of an sk_buff_head without reinitializing things like
703  *	the spinlock.  It can also be used for on-stack sk_buff_head
704  *	objects where the spinlock is known to not be used.
705  */
706 static inline void __skb_queue_head_init(struct sk_buff_head *list)
707 {
708 	list->prev = list->next = (struct sk_buff *)list;
709 	list->qlen = 0;
710 }
711 
712 /*
713  * This function creates a split out lock class for each invocation;
714  * this is needed for now since a whole lot of users of the skb-queue
715  * infrastructure in drivers have different locking usage (in hardirq)
716  * than the networking core (in softirq only). In the long run either the
717  * network layer or drivers should need annotation to consolidate the
718  * main types of usage into 3 classes.
719  */
720 static inline void skb_queue_head_init(struct sk_buff_head *list)
721 {
722 	spin_lock_init(&list->lock);
723 	__skb_queue_head_init(list);
724 }
725 
726 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
727 		struct lock_class_key *class)
728 {
729 	skb_queue_head_init(list);
730 	lockdep_set_class(&list->lock, class);
731 }
732 
733 /*
734  *	Insert an sk_buff on a list.
735  *
736  *	The "__skb_xxxx()" functions are the non-atomic ones that
737  *	can only be called with interrupts disabled.
738  */
739 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
740 static inline void __skb_insert(struct sk_buff *newsk,
741 				struct sk_buff *prev, struct sk_buff *next,
742 				struct sk_buff_head *list)
743 {
744 	newsk->next = next;
745 	newsk->prev = prev;
746 	next->prev  = prev->next = newsk;
747 	list->qlen++;
748 }
749 
750 static inline void __skb_queue_splice(const struct sk_buff_head *list,
751 				      struct sk_buff *prev,
752 				      struct sk_buff *next)
753 {
754 	struct sk_buff *first = list->next;
755 	struct sk_buff *last = list->prev;
756 
757 	first->prev = prev;
758 	prev->next = first;
759 
760 	last->next = next;
761 	next->prev = last;
762 }
763 
764 /**
765  *	skb_queue_splice - join two skb lists, this is designed for stacks
766  *	@list: the new list to add
767  *	@head: the place to add it in the first list
768  */
769 static inline void skb_queue_splice(const struct sk_buff_head *list,
770 				    struct sk_buff_head *head)
771 {
772 	if (!skb_queue_empty(list)) {
773 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
774 		head->qlen += list->qlen;
775 	}
776 }
777 
778 /**
779  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
780  *	@list: the new list to add
781  *	@head: the place to add it in the first list
782  *
783  *	The list at @list is reinitialised
784  */
785 static inline void skb_queue_splice_init(struct sk_buff_head *list,
786 					 struct sk_buff_head *head)
787 {
788 	if (!skb_queue_empty(list)) {
789 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
790 		head->qlen += list->qlen;
791 		__skb_queue_head_init(list);
792 	}
793 }
794 
795 /**
796  *	skb_queue_splice_tail - join two skb lists, each list being a queue
797  *	@list: the new list to add
798  *	@head: the place to add it in the first list
799  */
800 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
801 					 struct sk_buff_head *head)
802 {
803 	if (!skb_queue_empty(list)) {
804 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
805 		head->qlen += list->qlen;
806 	}
807 }
808 
809 /**
810  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
811  *	@list: the new list to add
812  *	@head: the place to add it in the first list
813  *
814  *	Each of the lists is a queue.
815  *	The list at @list is reinitialised
816  */
817 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
818 					      struct sk_buff_head *head)
819 {
820 	if (!skb_queue_empty(list)) {
821 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
822 		head->qlen += list->qlen;
823 		__skb_queue_head_init(list);
824 	}
825 }
826 
827 /**
828  *	__skb_queue_after - queue a buffer at the list head
829  *	@list: list to use
830  *	@prev: place after this buffer
831  *	@newsk: buffer to queue
832  *
833  *	Queue a buffer int the middle of a list. This function takes no locks
834  *	and you must therefore hold required locks before calling it.
835  *
836  *	A buffer cannot be placed on two lists at the same time.
837  */
838 static inline void __skb_queue_after(struct sk_buff_head *list,
839 				     struct sk_buff *prev,
840 				     struct sk_buff *newsk)
841 {
842 	__skb_insert(newsk, prev, prev->next, list);
843 }
844 
845 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
846 		       struct sk_buff_head *list);
847 
848 static inline void __skb_queue_before(struct sk_buff_head *list,
849 				      struct sk_buff *next,
850 				      struct sk_buff *newsk)
851 {
852 	__skb_insert(newsk, next->prev, next, list);
853 }
854 
855 /**
856  *	__skb_queue_head - queue a buffer at the list head
857  *	@list: list to use
858  *	@newsk: buffer to queue
859  *
860  *	Queue a buffer at the start of a list. This function takes no locks
861  *	and you must therefore hold required locks before calling it.
862  *
863  *	A buffer cannot be placed on two lists at the same time.
864  */
865 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
866 static inline void __skb_queue_head(struct sk_buff_head *list,
867 				    struct sk_buff *newsk)
868 {
869 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
870 }
871 
872 /**
873  *	__skb_queue_tail - queue a buffer at the list tail
874  *	@list: list to use
875  *	@newsk: buffer to queue
876  *
877  *	Queue a buffer at the end of a list. This function takes no locks
878  *	and you must therefore hold required locks before calling it.
879  *
880  *	A buffer cannot be placed on two lists at the same time.
881  */
882 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
883 static inline void __skb_queue_tail(struct sk_buff_head *list,
884 				   struct sk_buff *newsk)
885 {
886 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
887 }
888 
889 /*
890  * remove sk_buff from list. _Must_ be called atomically, and with
891  * the list known..
892  */
893 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
894 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
895 {
896 	struct sk_buff *next, *prev;
897 
898 	list->qlen--;
899 	next	   = skb->next;
900 	prev	   = skb->prev;
901 	skb->next  = skb->prev = NULL;
902 	next->prev = prev;
903 	prev->next = next;
904 }
905 
906 /**
907  *	__skb_dequeue - remove from the head of the queue
908  *	@list: list to dequeue from
909  *
910  *	Remove the head of the list. This function does not take any locks
911  *	so must be used with appropriate locks held only. The head item is
912  *	returned or %NULL if the list is empty.
913  */
914 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
915 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
916 {
917 	struct sk_buff *skb = skb_peek(list);
918 	if (skb)
919 		__skb_unlink(skb, list);
920 	return skb;
921 }
922 
923 /**
924  *	__skb_dequeue_tail - remove from the tail of the queue
925  *	@list: list to dequeue from
926  *
927  *	Remove the tail of the list. This function does not take any locks
928  *	so must be used with appropriate locks held only. The tail item is
929  *	returned or %NULL if the list is empty.
930  */
931 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
932 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
933 {
934 	struct sk_buff *skb = skb_peek_tail(list);
935 	if (skb)
936 		__skb_unlink(skb, list);
937 	return skb;
938 }
939 
940 
941 static inline int skb_is_nonlinear(const struct sk_buff *skb)
942 {
943 	return skb->data_len;
944 }
945 
946 static inline unsigned int skb_headlen(const struct sk_buff *skb)
947 {
948 	return skb->len - skb->data_len;
949 }
950 
951 static inline int skb_pagelen(const struct sk_buff *skb)
952 {
953 	int i, len = 0;
954 
955 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
956 		len += skb_shinfo(skb)->frags[i].size;
957 	return len + skb_headlen(skb);
958 }
959 
960 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
961 				      struct page *page, int off, int size)
962 {
963 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
964 
965 	frag->page		  = page;
966 	frag->page_offset	  = off;
967 	frag->size		  = size;
968 	skb_shinfo(skb)->nr_frags = i + 1;
969 }
970 
971 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
972 			    int off, int size);
973 
974 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
975 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
976 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
977 
978 #ifdef NET_SKBUFF_DATA_USES_OFFSET
979 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
980 {
981 	return skb->head + skb->tail;
982 }
983 
984 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
985 {
986 	skb->tail = skb->data - skb->head;
987 }
988 
989 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
990 {
991 	skb_reset_tail_pointer(skb);
992 	skb->tail += offset;
993 }
994 #else /* NET_SKBUFF_DATA_USES_OFFSET */
995 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
996 {
997 	return skb->tail;
998 }
999 
1000 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1001 {
1002 	skb->tail = skb->data;
1003 }
1004 
1005 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1006 {
1007 	skb->tail = skb->data + offset;
1008 }
1009 
1010 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1011 
1012 /*
1013  *	Add data to an sk_buff
1014  */
1015 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1016 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1017 {
1018 	unsigned char *tmp = skb_tail_pointer(skb);
1019 	SKB_LINEAR_ASSERT(skb);
1020 	skb->tail += len;
1021 	skb->len  += len;
1022 	return tmp;
1023 }
1024 
1025 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1026 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1027 {
1028 	skb->data -= len;
1029 	skb->len  += len;
1030 	return skb->data;
1031 }
1032 
1033 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1034 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1035 {
1036 	skb->len -= len;
1037 	BUG_ON(skb->len < skb->data_len);
1038 	return skb->data += len;
1039 }
1040 
1041 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1042 
1043 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1044 {
1045 	if (len > skb_headlen(skb) &&
1046 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1047 		return NULL;
1048 	skb->len -= len;
1049 	return skb->data += len;
1050 }
1051 
1052 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1053 {
1054 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1055 }
1056 
1057 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1058 {
1059 	if (likely(len <= skb_headlen(skb)))
1060 		return 1;
1061 	if (unlikely(len > skb->len))
1062 		return 0;
1063 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1064 }
1065 
1066 /**
1067  *	skb_headroom - bytes at buffer head
1068  *	@skb: buffer to check
1069  *
1070  *	Return the number of bytes of free space at the head of an &sk_buff.
1071  */
1072 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1073 {
1074 	return skb->data - skb->head;
1075 }
1076 
1077 /**
1078  *	skb_tailroom - bytes at buffer end
1079  *	@skb: buffer to check
1080  *
1081  *	Return the number of bytes of free space at the tail of an sk_buff
1082  */
1083 static inline int skb_tailroom(const struct sk_buff *skb)
1084 {
1085 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1086 }
1087 
1088 /**
1089  *	skb_reserve - adjust headroom
1090  *	@skb: buffer to alter
1091  *	@len: bytes to move
1092  *
1093  *	Increase the headroom of an empty &sk_buff by reducing the tail
1094  *	room. This is only allowed for an empty buffer.
1095  */
1096 static inline void skb_reserve(struct sk_buff *skb, int len)
1097 {
1098 	skb->data += len;
1099 	skb->tail += len;
1100 }
1101 
1102 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1103 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1104 {
1105 	return skb->head + skb->transport_header;
1106 }
1107 
1108 static inline void skb_reset_transport_header(struct sk_buff *skb)
1109 {
1110 	skb->transport_header = skb->data - skb->head;
1111 }
1112 
1113 static inline void skb_set_transport_header(struct sk_buff *skb,
1114 					    const int offset)
1115 {
1116 	skb_reset_transport_header(skb);
1117 	skb->transport_header += offset;
1118 }
1119 
1120 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1121 {
1122 	return skb->head + skb->network_header;
1123 }
1124 
1125 static inline void skb_reset_network_header(struct sk_buff *skb)
1126 {
1127 	skb->network_header = skb->data - skb->head;
1128 }
1129 
1130 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1131 {
1132 	skb_reset_network_header(skb);
1133 	skb->network_header += offset;
1134 }
1135 
1136 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1137 {
1138 	return skb->head + skb->mac_header;
1139 }
1140 
1141 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1142 {
1143 	return skb->mac_header != ~0U;
1144 }
1145 
1146 static inline void skb_reset_mac_header(struct sk_buff *skb)
1147 {
1148 	skb->mac_header = skb->data - skb->head;
1149 }
1150 
1151 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1152 {
1153 	skb_reset_mac_header(skb);
1154 	skb->mac_header += offset;
1155 }
1156 
1157 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1158 
1159 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1160 {
1161 	return skb->transport_header;
1162 }
1163 
1164 static inline void skb_reset_transport_header(struct sk_buff *skb)
1165 {
1166 	skb->transport_header = skb->data;
1167 }
1168 
1169 static inline void skb_set_transport_header(struct sk_buff *skb,
1170 					    const int offset)
1171 {
1172 	skb->transport_header = skb->data + offset;
1173 }
1174 
1175 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1176 {
1177 	return skb->network_header;
1178 }
1179 
1180 static inline void skb_reset_network_header(struct sk_buff *skb)
1181 {
1182 	skb->network_header = skb->data;
1183 }
1184 
1185 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1186 {
1187 	skb->network_header = skb->data + offset;
1188 }
1189 
1190 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1191 {
1192 	return skb->mac_header;
1193 }
1194 
1195 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1196 {
1197 	return skb->mac_header != NULL;
1198 }
1199 
1200 static inline void skb_reset_mac_header(struct sk_buff *skb)
1201 {
1202 	skb->mac_header = skb->data;
1203 }
1204 
1205 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1206 {
1207 	skb->mac_header = skb->data + offset;
1208 }
1209 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1210 
1211 static inline int skb_transport_offset(const struct sk_buff *skb)
1212 {
1213 	return skb_transport_header(skb) - skb->data;
1214 }
1215 
1216 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1217 {
1218 	return skb->transport_header - skb->network_header;
1219 }
1220 
1221 static inline int skb_network_offset(const struct sk_buff *skb)
1222 {
1223 	return skb_network_header(skb) - skb->data;
1224 }
1225 
1226 /*
1227  * CPUs often take a performance hit when accessing unaligned memory
1228  * locations. The actual performance hit varies, it can be small if the
1229  * hardware handles it or large if we have to take an exception and fix it
1230  * in software.
1231  *
1232  * Since an ethernet header is 14 bytes network drivers often end up with
1233  * the IP header at an unaligned offset. The IP header can be aligned by
1234  * shifting the start of the packet by 2 bytes. Drivers should do this
1235  * with:
1236  *
1237  * skb_reserve(NET_IP_ALIGN);
1238  *
1239  * The downside to this alignment of the IP header is that the DMA is now
1240  * unaligned. On some architectures the cost of an unaligned DMA is high
1241  * and this cost outweighs the gains made by aligning the IP header.
1242  *
1243  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1244  * to be overridden.
1245  */
1246 #ifndef NET_IP_ALIGN
1247 #define NET_IP_ALIGN	2
1248 #endif
1249 
1250 /*
1251  * The networking layer reserves some headroom in skb data (via
1252  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1253  * the header has to grow. In the default case, if the header has to grow
1254  * 16 bytes or less we avoid the reallocation.
1255  *
1256  * Unfortunately this headroom changes the DMA alignment of the resulting
1257  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1258  * on some architectures. An architecture can override this value,
1259  * perhaps setting it to a cacheline in size (since that will maintain
1260  * cacheline alignment of the DMA). It must be a power of 2.
1261  *
1262  * Various parts of the networking layer expect at least 16 bytes of
1263  * headroom, you should not reduce this.
1264  */
1265 #ifndef NET_SKB_PAD
1266 #define NET_SKB_PAD	16
1267 #endif
1268 
1269 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1270 
1271 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1272 {
1273 	if (unlikely(skb->data_len)) {
1274 		WARN_ON(1);
1275 		return;
1276 	}
1277 	skb->len = len;
1278 	skb_set_tail_pointer(skb, len);
1279 }
1280 
1281 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1282 
1283 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1284 {
1285 	if (skb->data_len)
1286 		return ___pskb_trim(skb, len);
1287 	__skb_trim(skb, len);
1288 	return 0;
1289 }
1290 
1291 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1292 {
1293 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1294 }
1295 
1296 /**
1297  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1298  *	@skb: buffer to alter
1299  *	@len: new length
1300  *
1301  *	This is identical to pskb_trim except that the caller knows that
1302  *	the skb is not cloned so we should never get an error due to out-
1303  *	of-memory.
1304  */
1305 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1306 {
1307 	int err = pskb_trim(skb, len);
1308 	BUG_ON(err);
1309 }
1310 
1311 /**
1312  *	skb_orphan - orphan a buffer
1313  *	@skb: buffer to orphan
1314  *
1315  *	If a buffer currently has an owner then we call the owner's
1316  *	destructor function and make the @skb unowned. The buffer continues
1317  *	to exist but is no longer charged to its former owner.
1318  */
1319 static inline void skb_orphan(struct sk_buff *skb)
1320 {
1321 	if (skb->destructor)
1322 		skb->destructor(skb);
1323 	skb->destructor = NULL;
1324 	skb->sk		= NULL;
1325 }
1326 
1327 /**
1328  *	__skb_queue_purge - empty a list
1329  *	@list: list to empty
1330  *
1331  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1332  *	the list and one reference dropped. This function does not take the
1333  *	list lock and the caller must hold the relevant locks to use it.
1334  */
1335 extern void skb_queue_purge(struct sk_buff_head *list);
1336 static inline void __skb_queue_purge(struct sk_buff_head *list)
1337 {
1338 	struct sk_buff *skb;
1339 	while ((skb = __skb_dequeue(list)) != NULL)
1340 		kfree_skb(skb);
1341 }
1342 
1343 /**
1344  *	__dev_alloc_skb - allocate an skbuff for receiving
1345  *	@length: length to allocate
1346  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1347  *
1348  *	Allocate a new &sk_buff and assign it a usage count of one. The
1349  *	buffer has unspecified headroom built in. Users should allocate
1350  *	the headroom they think they need without accounting for the
1351  *	built in space. The built in space is used for optimisations.
1352  *
1353  *	%NULL is returned if there is no free memory.
1354  */
1355 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1356 					      gfp_t gfp_mask)
1357 {
1358 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1359 	if (likely(skb))
1360 		skb_reserve(skb, NET_SKB_PAD);
1361 	return skb;
1362 }
1363 
1364 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1365 
1366 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1367 		unsigned int length, gfp_t gfp_mask);
1368 
1369 /**
1370  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1371  *	@dev: network device to receive on
1372  *	@length: length to allocate
1373  *
1374  *	Allocate a new &sk_buff and assign it a usage count of one. The
1375  *	buffer has unspecified headroom built in. Users should allocate
1376  *	the headroom they think they need without accounting for the
1377  *	built in space. The built in space is used for optimisations.
1378  *
1379  *	%NULL is returned if there is no free memory. Although this function
1380  *	allocates memory it can be called from an interrupt.
1381  */
1382 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1383 		unsigned int length)
1384 {
1385 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1386 }
1387 
1388 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1389 
1390 /**
1391  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1392  *	@dev: network device to receive on
1393  *
1394  * 	Allocate a new page node local to the specified device.
1395  *
1396  * 	%NULL is returned if there is no free memory.
1397  */
1398 static inline struct page *netdev_alloc_page(struct net_device *dev)
1399 {
1400 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1401 }
1402 
1403 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1404 {
1405 	__free_page(page);
1406 }
1407 
1408 /**
1409  *	skb_clone_writable - is the header of a clone writable
1410  *	@skb: buffer to check
1411  *	@len: length up to which to write
1412  *
1413  *	Returns true if modifying the header part of the cloned buffer
1414  *	does not requires the data to be copied.
1415  */
1416 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1417 {
1418 	return !skb_header_cloned(skb) &&
1419 	       skb_headroom(skb) + len <= skb->hdr_len;
1420 }
1421 
1422 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1423 			    int cloned)
1424 {
1425 	int delta = 0;
1426 
1427 	if (headroom < NET_SKB_PAD)
1428 		headroom = NET_SKB_PAD;
1429 	if (headroom > skb_headroom(skb))
1430 		delta = headroom - skb_headroom(skb);
1431 
1432 	if (delta || cloned)
1433 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1434 					GFP_ATOMIC);
1435 	return 0;
1436 }
1437 
1438 /**
1439  *	skb_cow - copy header of skb when it is required
1440  *	@skb: buffer to cow
1441  *	@headroom: needed headroom
1442  *
1443  *	If the skb passed lacks sufficient headroom or its data part
1444  *	is shared, data is reallocated. If reallocation fails, an error
1445  *	is returned and original skb is not changed.
1446  *
1447  *	The result is skb with writable area skb->head...skb->tail
1448  *	and at least @headroom of space at head.
1449  */
1450 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1451 {
1452 	return __skb_cow(skb, headroom, skb_cloned(skb));
1453 }
1454 
1455 /**
1456  *	skb_cow_head - skb_cow but only making the head writable
1457  *	@skb: buffer to cow
1458  *	@headroom: needed headroom
1459  *
1460  *	This function is identical to skb_cow except that we replace the
1461  *	skb_cloned check by skb_header_cloned.  It should be used when
1462  *	you only need to push on some header and do not need to modify
1463  *	the data.
1464  */
1465 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1466 {
1467 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1468 }
1469 
1470 /**
1471  *	skb_padto	- pad an skbuff up to a minimal size
1472  *	@skb: buffer to pad
1473  *	@len: minimal length
1474  *
1475  *	Pads up a buffer to ensure the trailing bytes exist and are
1476  *	blanked. If the buffer already contains sufficient data it
1477  *	is untouched. Otherwise it is extended. Returns zero on
1478  *	success. The skb is freed on error.
1479  */
1480 
1481 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1482 {
1483 	unsigned int size = skb->len;
1484 	if (likely(size >= len))
1485 		return 0;
1486 	return skb_pad(skb, len - size);
1487 }
1488 
1489 static inline int skb_add_data(struct sk_buff *skb,
1490 			       char __user *from, int copy)
1491 {
1492 	const int off = skb->len;
1493 
1494 	if (skb->ip_summed == CHECKSUM_NONE) {
1495 		int err = 0;
1496 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1497 							    copy, 0, &err);
1498 		if (!err) {
1499 			skb->csum = csum_block_add(skb->csum, csum, off);
1500 			return 0;
1501 		}
1502 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1503 		return 0;
1504 
1505 	__skb_trim(skb, off);
1506 	return -EFAULT;
1507 }
1508 
1509 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1510 				   struct page *page, int off)
1511 {
1512 	if (i) {
1513 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1514 
1515 		return page == frag->page &&
1516 		       off == frag->page_offset + frag->size;
1517 	}
1518 	return 0;
1519 }
1520 
1521 static inline int __skb_linearize(struct sk_buff *skb)
1522 {
1523 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1524 }
1525 
1526 /**
1527  *	skb_linearize - convert paged skb to linear one
1528  *	@skb: buffer to linarize
1529  *
1530  *	If there is no free memory -ENOMEM is returned, otherwise zero
1531  *	is returned and the old skb data released.
1532  */
1533 static inline int skb_linearize(struct sk_buff *skb)
1534 {
1535 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1536 }
1537 
1538 /**
1539  *	skb_linearize_cow - make sure skb is linear and writable
1540  *	@skb: buffer to process
1541  *
1542  *	If there is no free memory -ENOMEM is returned, otherwise zero
1543  *	is returned and the old skb data released.
1544  */
1545 static inline int skb_linearize_cow(struct sk_buff *skb)
1546 {
1547 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1548 	       __skb_linearize(skb) : 0;
1549 }
1550 
1551 /**
1552  *	skb_postpull_rcsum - update checksum for received skb after pull
1553  *	@skb: buffer to update
1554  *	@start: start of data before pull
1555  *	@len: length of data pulled
1556  *
1557  *	After doing a pull on a received packet, you need to call this to
1558  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1559  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1560  */
1561 
1562 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1563 				      const void *start, unsigned int len)
1564 {
1565 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1566 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1567 }
1568 
1569 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1570 
1571 /**
1572  *	pskb_trim_rcsum - trim received skb and update checksum
1573  *	@skb: buffer to trim
1574  *	@len: new length
1575  *
1576  *	This is exactly the same as pskb_trim except that it ensures the
1577  *	checksum of received packets are still valid after the operation.
1578  */
1579 
1580 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1581 {
1582 	if (likely(len >= skb->len))
1583 		return 0;
1584 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1585 		skb->ip_summed = CHECKSUM_NONE;
1586 	return __pskb_trim(skb, len);
1587 }
1588 
1589 #define skb_queue_walk(queue, skb) \
1590 		for (skb = (queue)->next;					\
1591 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1592 		     skb = skb->next)
1593 
1594 #define skb_queue_walk_safe(queue, skb, tmp)					\
1595 		for (skb = (queue)->next, tmp = skb->next;			\
1596 		     skb != (struct sk_buff *)(queue);				\
1597 		     skb = tmp, tmp = skb->next)
1598 
1599 #define skb_queue_walk_from(queue, skb)						\
1600 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1601 		     skb = skb->next)
1602 
1603 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1604 		for (tmp = skb->next;						\
1605 		     skb != (struct sk_buff *)(queue);				\
1606 		     skb = tmp, tmp = skb->next)
1607 
1608 #define skb_queue_reverse_walk(queue, skb) \
1609 		for (skb = (queue)->prev;					\
1610 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1611 		     skb = skb->prev)
1612 
1613 
1614 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1615 					   int *peeked, int *err);
1616 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1617 					 int noblock, int *err);
1618 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1619 				     struct poll_table_struct *wait);
1620 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1621 					       int offset, struct iovec *to,
1622 					       int size);
1623 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1624 							int hlen,
1625 							struct iovec *iov);
1626 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1627 						    int offset,
1628 						    struct iovec *from,
1629 						    int len);
1630 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1631 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1632 					 unsigned int flags);
1633 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1634 				    int len, __wsum csum);
1635 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1636 				     void *to, int len);
1637 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1638 				      const void *from, int len);
1639 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1640 					      int offset, u8 *to, int len,
1641 					      __wsum csum);
1642 extern int             skb_splice_bits(struct sk_buff *skb,
1643 						unsigned int offset,
1644 						struct pipe_inode_info *pipe,
1645 						unsigned int len,
1646 						unsigned int flags);
1647 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1648 extern void	       skb_split(struct sk_buff *skb,
1649 				 struct sk_buff *skb1, const u32 len);
1650 
1651 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1652 
1653 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1654 				       int len, void *buffer)
1655 {
1656 	int hlen = skb_headlen(skb);
1657 
1658 	if (hlen - offset >= len)
1659 		return skb->data + offset;
1660 
1661 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1662 		return NULL;
1663 
1664 	return buffer;
1665 }
1666 
1667 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1668 					     void *to,
1669 					     const unsigned int len)
1670 {
1671 	memcpy(to, skb->data, len);
1672 }
1673 
1674 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1675 						    const int offset, void *to,
1676 						    const unsigned int len)
1677 {
1678 	memcpy(to, skb->data + offset, len);
1679 }
1680 
1681 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1682 					   const void *from,
1683 					   const unsigned int len)
1684 {
1685 	memcpy(skb->data, from, len);
1686 }
1687 
1688 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1689 						  const int offset,
1690 						  const void *from,
1691 						  const unsigned int len)
1692 {
1693 	memcpy(skb->data + offset, from, len);
1694 }
1695 
1696 extern void skb_init(void);
1697 
1698 /**
1699  *	skb_get_timestamp - get timestamp from a skb
1700  *	@skb: skb to get stamp from
1701  *	@stamp: pointer to struct timeval to store stamp in
1702  *
1703  *	Timestamps are stored in the skb as offsets to a base timestamp.
1704  *	This function converts the offset back to a struct timeval and stores
1705  *	it in stamp.
1706  */
1707 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1708 {
1709 	*stamp = ktime_to_timeval(skb->tstamp);
1710 }
1711 
1712 static inline void __net_timestamp(struct sk_buff *skb)
1713 {
1714 	skb->tstamp = ktime_get_real();
1715 }
1716 
1717 static inline ktime_t net_timedelta(ktime_t t)
1718 {
1719 	return ktime_sub(ktime_get_real(), t);
1720 }
1721 
1722 static inline ktime_t net_invalid_timestamp(void)
1723 {
1724 	return ktime_set(0, 0);
1725 }
1726 
1727 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1728 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1729 
1730 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1731 {
1732 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1733 }
1734 
1735 /**
1736  *	skb_checksum_complete - Calculate checksum of an entire packet
1737  *	@skb: packet to process
1738  *
1739  *	This function calculates the checksum over the entire packet plus
1740  *	the value of skb->csum.  The latter can be used to supply the
1741  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1742  *	checksum.
1743  *
1744  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1745  *	this function can be used to verify that checksum on received
1746  *	packets.  In that case the function should return zero if the
1747  *	checksum is correct.  In particular, this function will return zero
1748  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1749  *	hardware has already verified the correctness of the checksum.
1750  */
1751 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1752 {
1753 	return skb_csum_unnecessary(skb) ?
1754 	       0 : __skb_checksum_complete(skb);
1755 }
1756 
1757 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1758 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1759 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1760 {
1761 	if (nfct && atomic_dec_and_test(&nfct->use))
1762 		nf_conntrack_destroy(nfct);
1763 }
1764 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1765 {
1766 	if (nfct)
1767 		atomic_inc(&nfct->use);
1768 }
1769 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1770 {
1771 	if (skb)
1772 		atomic_inc(&skb->users);
1773 }
1774 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1775 {
1776 	if (skb)
1777 		kfree_skb(skb);
1778 }
1779 #endif
1780 #ifdef CONFIG_BRIDGE_NETFILTER
1781 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1782 {
1783 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1784 		kfree(nf_bridge);
1785 }
1786 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1787 {
1788 	if (nf_bridge)
1789 		atomic_inc(&nf_bridge->use);
1790 }
1791 #endif /* CONFIG_BRIDGE_NETFILTER */
1792 static inline void nf_reset(struct sk_buff *skb)
1793 {
1794 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1795 	nf_conntrack_put(skb->nfct);
1796 	skb->nfct = NULL;
1797 	nf_conntrack_put_reasm(skb->nfct_reasm);
1798 	skb->nfct_reasm = NULL;
1799 #endif
1800 #ifdef CONFIG_BRIDGE_NETFILTER
1801 	nf_bridge_put(skb->nf_bridge);
1802 	skb->nf_bridge = NULL;
1803 #endif
1804 }
1805 
1806 /* Note: This doesn't put any conntrack and bridge info in dst. */
1807 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1808 {
1809 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1810 	dst->nfct = src->nfct;
1811 	nf_conntrack_get(src->nfct);
1812 	dst->nfctinfo = src->nfctinfo;
1813 	dst->nfct_reasm = src->nfct_reasm;
1814 	nf_conntrack_get_reasm(src->nfct_reasm);
1815 #endif
1816 #ifdef CONFIG_BRIDGE_NETFILTER
1817 	dst->nf_bridge  = src->nf_bridge;
1818 	nf_bridge_get(src->nf_bridge);
1819 #endif
1820 }
1821 
1822 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1823 {
1824 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1825 	nf_conntrack_put(dst->nfct);
1826 	nf_conntrack_put_reasm(dst->nfct_reasm);
1827 #endif
1828 #ifdef CONFIG_BRIDGE_NETFILTER
1829 	nf_bridge_put(dst->nf_bridge);
1830 #endif
1831 	__nf_copy(dst, src);
1832 }
1833 
1834 #ifdef CONFIG_NETWORK_SECMARK
1835 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1836 {
1837 	to->secmark = from->secmark;
1838 }
1839 
1840 static inline void skb_init_secmark(struct sk_buff *skb)
1841 {
1842 	skb->secmark = 0;
1843 }
1844 #else
1845 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1846 { }
1847 
1848 static inline void skb_init_secmark(struct sk_buff *skb)
1849 { }
1850 #endif
1851 
1852 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1853 {
1854 	skb->queue_mapping = queue_mapping;
1855 }
1856 
1857 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1858 {
1859 	return skb->queue_mapping;
1860 }
1861 
1862 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1863 {
1864 	to->queue_mapping = from->queue_mapping;
1865 }
1866 
1867 static inline int skb_is_gso(const struct sk_buff *skb)
1868 {
1869 	return skb_shinfo(skb)->gso_size;
1870 }
1871 
1872 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1873 {
1874 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1875 }
1876 
1877 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1878 
1879 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1880 {
1881 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
1882 	 * wanted then gso_type will be set. */
1883 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1884 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1885 		__skb_warn_lro_forwarding(skb);
1886 		return true;
1887 	}
1888 	return false;
1889 }
1890 
1891 static inline void skb_forward_csum(struct sk_buff *skb)
1892 {
1893 	/* Unfortunately we don't support this one.  Any brave souls? */
1894 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1895 		skb->ip_summed = CHECKSUM_NONE;
1896 }
1897 
1898 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1899 #endif	/* __KERNEL__ */
1900 #endif	/* _LINUX_SKBUFF_H */
1901