1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 #include <linux/refcount.h> 26 27 #include <linux/atomic.h> 28 #include <asm/types.h> 29 #include <linux/spinlock.h> 30 #include <linux/net.h> 31 #include <linux/textsearch.h> 32 #include <net/checksum.h> 33 #include <linux/rcupdate.h> 34 #include <linux/hrtimer.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/netdev_features.h> 37 #include <linux/sched.h> 38 #include <linux/sched/clock.h> 39 #include <net/flow_dissector.h> 40 #include <linux/splice.h> 41 #include <linux/in6.h> 42 #include <linux/if_packet.h> 43 #include <net/flow.h> 44 45 /* The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * A. IP checksum related features 49 * 50 * Drivers advertise checksum offload capabilities in the features of a device. 51 * From the stack's point of view these are capabilities offered by the driver, 52 * a driver typically only advertises features that it is capable of offloading 53 * to its device. 54 * 55 * The checksum related features are: 56 * 57 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 58 * IP (one's complement) checksum for any combination 59 * of protocols or protocol layering. The checksum is 60 * computed and set in a packet per the CHECKSUM_PARTIAL 61 * interface (see below). 62 * 63 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 64 * TCP or UDP packets over IPv4. These are specifically 65 * unencapsulated packets of the form IPv4|TCP or 66 * IPv4|UDP where the Protocol field in the IPv4 header 67 * is TCP or UDP. The IPv4 header may contain IP options 68 * This feature cannot be set in features for a device 69 * with NETIF_F_HW_CSUM also set. This feature is being 70 * DEPRECATED (see below). 71 * 72 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 73 * TCP or UDP packets over IPv6. These are specifically 74 * unencapsulated packets of the form IPv6|TCP or 75 * IPv4|UDP where the Next Header field in the IPv6 76 * header is either TCP or UDP. IPv6 extension headers 77 * are not supported with this feature. This feature 78 * cannot be set in features for a device with 79 * NETIF_F_HW_CSUM also set. This feature is being 80 * DEPRECATED (see below). 81 * 82 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 83 * This flag is used only used to disable the RX checksum 84 * feature for a device. The stack will accept receive 85 * checksum indication in packets received on a device 86 * regardless of whether NETIF_F_RXCSUM is set. 87 * 88 * B. Checksumming of received packets by device. Indication of checksum 89 * verification is in set skb->ip_summed. Possible values are: 90 * 91 * CHECKSUM_NONE: 92 * 93 * Device did not checksum this packet e.g. due to lack of capabilities. 94 * The packet contains full (though not verified) checksum in packet but 95 * not in skb->csum. Thus, skb->csum is undefined in this case. 96 * 97 * CHECKSUM_UNNECESSARY: 98 * 99 * The hardware you're dealing with doesn't calculate the full checksum 100 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 101 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 102 * if their checksums are okay. skb->csum is still undefined in this case 103 * though. A driver or device must never modify the checksum field in the 104 * packet even if checksum is verified. 105 * 106 * CHECKSUM_UNNECESSARY is applicable to following protocols: 107 * TCP: IPv6 and IPv4. 108 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 109 * zero UDP checksum for either IPv4 or IPv6, the networking stack 110 * may perform further validation in this case. 111 * GRE: only if the checksum is present in the header. 112 * SCTP: indicates the CRC in SCTP header has been validated. 113 * FCOE: indicates the CRC in FC frame has been validated. 114 * 115 * skb->csum_level indicates the number of consecutive checksums found in 116 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 117 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 118 * and a device is able to verify the checksums for UDP (possibly zero), 119 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 120 * two. If the device were only able to verify the UDP checksum and not 121 * GRE, either because it doesn't support GRE checksum of because GRE 122 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 123 * not considered in this case). 124 * 125 * CHECKSUM_COMPLETE: 126 * 127 * This is the most generic way. The device supplied checksum of the _whole_ 128 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 129 * hardware doesn't need to parse L3/L4 headers to implement this. 130 * 131 * Notes: 132 * - Even if device supports only some protocols, but is able to produce 133 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 134 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 135 * 136 * CHECKSUM_PARTIAL: 137 * 138 * A checksum is set up to be offloaded to a device as described in the 139 * output description for CHECKSUM_PARTIAL. This may occur on a packet 140 * received directly from another Linux OS, e.g., a virtualized Linux kernel 141 * on the same host, or it may be set in the input path in GRO or remote 142 * checksum offload. For the purposes of checksum verification, the checksum 143 * referred to by skb->csum_start + skb->csum_offset and any preceding 144 * checksums in the packet are considered verified. Any checksums in the 145 * packet that are after the checksum being offloaded are not considered to 146 * be verified. 147 * 148 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 149 * in the skb->ip_summed for a packet. Values are: 150 * 151 * CHECKSUM_PARTIAL: 152 * 153 * The driver is required to checksum the packet as seen by hard_start_xmit() 154 * from skb->csum_start up to the end, and to record/write the checksum at 155 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 156 * csum_start and csum_offset values are valid values given the length and 157 * offset of the packet, however they should not attempt to validate that the 158 * checksum refers to a legitimate transport layer checksum-- it is the 159 * purview of the stack to validate that csum_start and csum_offset are set 160 * correctly. 161 * 162 * When the stack requests checksum offload for a packet, the driver MUST 163 * ensure that the checksum is set correctly. A driver can either offload the 164 * checksum calculation to the device, or call skb_checksum_help (in the case 165 * that the device does not support offload for a particular checksum). 166 * 167 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 168 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 169 * checksum offload capability. 170 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 171 * on network device checksumming capabilities: if a packet does not match 172 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 173 * csum_not_inet, see item D.) is called to resolve the checksum. 174 * 175 * CHECKSUM_NONE: 176 * 177 * The skb was already checksummed by the protocol, or a checksum is not 178 * required. 179 * 180 * CHECKSUM_UNNECESSARY: 181 * 182 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 183 * output. 184 * 185 * CHECKSUM_COMPLETE: 186 * Not used in checksum output. If a driver observes a packet with this value 187 * set in skbuff, if should treat as CHECKSUM_NONE being set. 188 * 189 * D. Non-IP checksum (CRC) offloads 190 * 191 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 192 * offloading the SCTP CRC in a packet. To perform this offload the stack 193 * will set set csum_start and csum_offset accordingly, set ip_summed to 194 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 195 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 196 * A driver that supports both IP checksum offload and SCTP CRC32c offload 197 * must verify which offload is configured for a packet by testing the 198 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 199 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 200 * 201 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 202 * offloading the FCOE CRC in a packet. To perform this offload the stack 203 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 204 * accordingly. Note the there is no indication in the skbuff that the 205 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 206 * both IP checksum offload and FCOE CRC offload must verify which offload 207 * is configured for a packet presumably by inspecting packet headers. 208 * 209 * E. Checksumming on output with GSO. 210 * 211 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 212 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 213 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 214 * part of the GSO operation is implied. If a checksum is being offloaded 215 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 216 * are set to refer to the outermost checksum being offload (two offloaded 217 * checksums are possible with UDP encapsulation). 218 */ 219 220 /* Don't change this without changing skb_csum_unnecessary! */ 221 #define CHECKSUM_NONE 0 222 #define CHECKSUM_UNNECESSARY 1 223 #define CHECKSUM_COMPLETE 2 224 #define CHECKSUM_PARTIAL 3 225 226 /* Maximum value in skb->csum_level */ 227 #define SKB_MAX_CSUM_LEVEL 3 228 229 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 230 #define SKB_WITH_OVERHEAD(X) \ 231 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 232 #define SKB_MAX_ORDER(X, ORDER) \ 233 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 234 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 235 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 236 237 /* return minimum truesize of one skb containing X bytes of data */ 238 #define SKB_TRUESIZE(X) ((X) + \ 239 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 240 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 241 242 struct net_device; 243 struct scatterlist; 244 struct pipe_inode_info; 245 struct iov_iter; 246 struct napi_struct; 247 248 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 249 struct nf_conntrack { 250 atomic_t use; 251 }; 252 #endif 253 254 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 255 struct nf_bridge_info { 256 refcount_t use; 257 enum { 258 BRNF_PROTO_UNCHANGED, 259 BRNF_PROTO_8021Q, 260 BRNF_PROTO_PPPOE 261 } orig_proto:8; 262 u8 pkt_otherhost:1; 263 u8 in_prerouting:1; 264 u8 bridged_dnat:1; 265 __u16 frag_max_size; 266 struct net_device *physindev; 267 268 /* always valid & non-NULL from FORWARD on, for physdev match */ 269 struct net_device *physoutdev; 270 union { 271 /* prerouting: detect dnat in orig/reply direction */ 272 __be32 ipv4_daddr; 273 struct in6_addr ipv6_daddr; 274 275 /* after prerouting + nat detected: store original source 276 * mac since neigh resolution overwrites it, only used while 277 * skb is out in neigh layer. 278 */ 279 char neigh_header[8]; 280 }; 281 }; 282 #endif 283 284 struct sk_buff_head { 285 /* These two members must be first. */ 286 struct sk_buff *next; 287 struct sk_buff *prev; 288 289 __u32 qlen; 290 spinlock_t lock; 291 }; 292 293 struct sk_buff; 294 295 /* To allow 64K frame to be packed as single skb without frag_list we 296 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 297 * buffers which do not start on a page boundary. 298 * 299 * Since GRO uses frags we allocate at least 16 regardless of page 300 * size. 301 */ 302 #if (65536/PAGE_SIZE + 1) < 16 303 #define MAX_SKB_FRAGS 16UL 304 #else 305 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 306 #endif 307 extern int sysctl_max_skb_frags; 308 309 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 310 * segment using its current segmentation instead. 311 */ 312 #define GSO_BY_FRAGS 0xFFFF 313 314 typedef struct skb_frag_struct skb_frag_t; 315 316 struct skb_frag_struct { 317 struct { 318 struct page *p; 319 } page; 320 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 321 __u32 page_offset; 322 __u32 size; 323 #else 324 __u16 page_offset; 325 __u16 size; 326 #endif 327 }; 328 329 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 330 { 331 return frag->size; 332 } 333 334 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 335 { 336 frag->size = size; 337 } 338 339 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 340 { 341 frag->size += delta; 342 } 343 344 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 345 { 346 frag->size -= delta; 347 } 348 349 static inline bool skb_frag_must_loop(struct page *p) 350 { 351 #if defined(CONFIG_HIGHMEM) 352 if (PageHighMem(p)) 353 return true; 354 #endif 355 return false; 356 } 357 358 /** 359 * skb_frag_foreach_page - loop over pages in a fragment 360 * 361 * @f: skb frag to operate on 362 * @f_off: offset from start of f->page.p 363 * @f_len: length from f_off to loop over 364 * @p: (temp var) current page 365 * @p_off: (temp var) offset from start of current page, 366 * non-zero only on first page. 367 * @p_len: (temp var) length in current page, 368 * < PAGE_SIZE only on first and last page. 369 * @copied: (temp var) length so far, excluding current p_len. 370 * 371 * A fragment can hold a compound page, in which case per-page 372 * operations, notably kmap_atomic, must be called for each 373 * regular page. 374 */ 375 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 376 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 377 p_off = (f_off) & (PAGE_SIZE - 1), \ 378 p_len = skb_frag_must_loop(p) ? \ 379 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 380 copied = 0; \ 381 copied < f_len; \ 382 copied += p_len, p++, p_off = 0, \ 383 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 384 385 #define HAVE_HW_TIME_STAMP 386 387 /** 388 * struct skb_shared_hwtstamps - hardware time stamps 389 * @hwtstamp: hardware time stamp transformed into duration 390 * since arbitrary point in time 391 * 392 * Software time stamps generated by ktime_get_real() are stored in 393 * skb->tstamp. 394 * 395 * hwtstamps can only be compared against other hwtstamps from 396 * the same device. 397 * 398 * This structure is attached to packets as part of the 399 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 400 */ 401 struct skb_shared_hwtstamps { 402 ktime_t hwtstamp; 403 }; 404 405 /* Definitions for tx_flags in struct skb_shared_info */ 406 enum { 407 /* generate hardware time stamp */ 408 SKBTX_HW_TSTAMP = 1 << 0, 409 410 /* generate software time stamp when queueing packet to NIC */ 411 SKBTX_SW_TSTAMP = 1 << 1, 412 413 /* device driver is going to provide hardware time stamp */ 414 SKBTX_IN_PROGRESS = 1 << 2, 415 416 /* device driver supports TX zero-copy buffers */ 417 SKBTX_DEV_ZEROCOPY = 1 << 3, 418 419 /* generate wifi status information (where possible) */ 420 SKBTX_WIFI_STATUS = 1 << 4, 421 422 /* This indicates at least one fragment might be overwritten 423 * (as in vmsplice(), sendfile() ...) 424 * If we need to compute a TX checksum, we'll need to copy 425 * all frags to avoid possible bad checksum 426 */ 427 SKBTX_SHARED_FRAG = 1 << 5, 428 429 /* generate software time stamp when entering packet scheduling */ 430 SKBTX_SCHED_TSTAMP = 1 << 6, 431 }; 432 433 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 434 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 435 SKBTX_SCHED_TSTAMP) 436 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 437 438 /* 439 * The callback notifies userspace to release buffers when skb DMA is done in 440 * lower device, the skb last reference should be 0 when calling this. 441 * The zerocopy_success argument is true if zero copy transmit occurred, 442 * false on data copy or out of memory error caused by data copy attempt. 443 * The ctx field is used to track device context. 444 * The desc field is used to track userspace buffer index. 445 */ 446 struct ubuf_info { 447 void (*callback)(struct ubuf_info *, bool zerocopy_success); 448 union { 449 struct { 450 unsigned long desc; 451 void *ctx; 452 }; 453 struct { 454 u32 id; 455 u16 len; 456 u16 zerocopy:1; 457 u32 bytelen; 458 }; 459 }; 460 refcount_t refcnt; 461 462 struct mmpin { 463 struct user_struct *user; 464 unsigned int num_pg; 465 } mmp; 466 }; 467 468 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 469 470 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 471 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 472 struct ubuf_info *uarg); 473 474 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 475 { 476 refcount_inc(&uarg->refcnt); 477 } 478 479 void sock_zerocopy_put(struct ubuf_info *uarg); 480 void sock_zerocopy_put_abort(struct ubuf_info *uarg); 481 482 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 483 484 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 485 struct msghdr *msg, int len, 486 struct ubuf_info *uarg); 487 488 /* This data is invariant across clones and lives at 489 * the end of the header data, ie. at skb->end. 490 */ 491 struct skb_shared_info { 492 __u8 __unused; 493 __u8 meta_len; 494 __u8 nr_frags; 495 __u8 tx_flags; 496 unsigned short gso_size; 497 /* Warning: this field is not always filled in (UFO)! */ 498 unsigned short gso_segs; 499 struct sk_buff *frag_list; 500 struct skb_shared_hwtstamps hwtstamps; 501 unsigned int gso_type; 502 u32 tskey; 503 __be32 ip6_frag_id; 504 505 /* 506 * Warning : all fields before dataref are cleared in __alloc_skb() 507 */ 508 atomic_t dataref; 509 510 /* Intermediate layers must ensure that destructor_arg 511 * remains valid until skb destructor */ 512 void * destructor_arg; 513 514 /* must be last field, see pskb_expand_head() */ 515 skb_frag_t frags[MAX_SKB_FRAGS]; 516 }; 517 518 /* We divide dataref into two halves. The higher 16 bits hold references 519 * to the payload part of skb->data. The lower 16 bits hold references to 520 * the entire skb->data. A clone of a headerless skb holds the length of 521 * the header in skb->hdr_len. 522 * 523 * All users must obey the rule that the skb->data reference count must be 524 * greater than or equal to the payload reference count. 525 * 526 * Holding a reference to the payload part means that the user does not 527 * care about modifications to the header part of skb->data. 528 */ 529 #define SKB_DATAREF_SHIFT 16 530 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 531 532 533 enum { 534 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 535 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 536 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 537 }; 538 539 enum { 540 SKB_GSO_TCPV4 = 1 << 0, 541 542 /* This indicates the skb is from an untrusted source. */ 543 SKB_GSO_DODGY = 1 << 1, 544 545 /* This indicates the tcp segment has CWR set. */ 546 SKB_GSO_TCP_ECN = 1 << 2, 547 548 SKB_GSO_TCP_FIXEDID = 1 << 3, 549 550 SKB_GSO_TCPV6 = 1 << 4, 551 552 SKB_GSO_FCOE = 1 << 5, 553 554 SKB_GSO_GRE = 1 << 6, 555 556 SKB_GSO_GRE_CSUM = 1 << 7, 557 558 SKB_GSO_IPXIP4 = 1 << 8, 559 560 SKB_GSO_IPXIP6 = 1 << 9, 561 562 SKB_GSO_UDP_TUNNEL = 1 << 10, 563 564 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 565 566 SKB_GSO_PARTIAL = 1 << 12, 567 568 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 569 570 SKB_GSO_SCTP = 1 << 14, 571 572 SKB_GSO_ESP = 1 << 15, 573 }; 574 575 #if BITS_PER_LONG > 32 576 #define NET_SKBUFF_DATA_USES_OFFSET 1 577 #endif 578 579 #ifdef NET_SKBUFF_DATA_USES_OFFSET 580 typedef unsigned int sk_buff_data_t; 581 #else 582 typedef unsigned char *sk_buff_data_t; 583 #endif 584 585 /** 586 * struct sk_buff - socket buffer 587 * @next: Next buffer in list 588 * @prev: Previous buffer in list 589 * @tstamp: Time we arrived/left 590 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 591 * @sk: Socket we are owned by 592 * @dev: Device we arrived on/are leaving by 593 * @cb: Control buffer. Free for use by every layer. Put private vars here 594 * @_skb_refdst: destination entry (with norefcount bit) 595 * @sp: the security path, used for xfrm 596 * @len: Length of actual data 597 * @data_len: Data length 598 * @mac_len: Length of link layer header 599 * @hdr_len: writable header length of cloned skb 600 * @csum: Checksum (must include start/offset pair) 601 * @csum_start: Offset from skb->head where checksumming should start 602 * @csum_offset: Offset from csum_start where checksum should be stored 603 * @priority: Packet queueing priority 604 * @ignore_df: allow local fragmentation 605 * @cloned: Head may be cloned (check refcnt to be sure) 606 * @ip_summed: Driver fed us an IP checksum 607 * @nohdr: Payload reference only, must not modify header 608 * @pkt_type: Packet class 609 * @fclone: skbuff clone status 610 * @ipvs_property: skbuff is owned by ipvs 611 * @tc_skip_classify: do not classify packet. set by IFB device 612 * @tc_at_ingress: used within tc_classify to distinguish in/egress 613 * @tc_redirected: packet was redirected by a tc action 614 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 615 * @peeked: this packet has been seen already, so stats have been 616 * done for it, don't do them again 617 * @nf_trace: netfilter packet trace flag 618 * @protocol: Packet protocol from driver 619 * @destructor: Destruct function 620 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 621 * @_nfct: Associated connection, if any (with nfctinfo bits) 622 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 623 * @skb_iif: ifindex of device we arrived on 624 * @tc_index: Traffic control index 625 * @hash: the packet hash 626 * @queue_mapping: Queue mapping for multiqueue devices 627 * @xmit_more: More SKBs are pending for this queue 628 * @ndisc_nodetype: router type (from link layer) 629 * @ooo_okay: allow the mapping of a socket to a queue to be changed 630 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 631 * ports. 632 * @sw_hash: indicates hash was computed in software stack 633 * @wifi_acked_valid: wifi_acked was set 634 * @wifi_acked: whether frame was acked on wifi or not 635 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 636 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 637 * @dst_pending_confirm: need to confirm neighbour 638 * @napi_id: id of the NAPI struct this skb came from 639 * @secmark: security marking 640 * @mark: Generic packet mark 641 * @vlan_proto: vlan encapsulation protocol 642 * @vlan_tci: vlan tag control information 643 * @inner_protocol: Protocol (encapsulation) 644 * @inner_transport_header: Inner transport layer header (encapsulation) 645 * @inner_network_header: Network layer header (encapsulation) 646 * @inner_mac_header: Link layer header (encapsulation) 647 * @transport_header: Transport layer header 648 * @network_header: Network layer header 649 * @mac_header: Link layer header 650 * @tail: Tail pointer 651 * @end: End pointer 652 * @head: Head of buffer 653 * @data: Data head pointer 654 * @truesize: Buffer size 655 * @users: User count - see {datagram,tcp}.c 656 */ 657 658 struct sk_buff { 659 union { 660 struct { 661 /* These two members must be first. */ 662 struct sk_buff *next; 663 struct sk_buff *prev; 664 665 union { 666 struct net_device *dev; 667 /* Some protocols might use this space to store information, 668 * while device pointer would be NULL. 669 * UDP receive path is one user. 670 */ 671 unsigned long dev_scratch; 672 }; 673 }; 674 struct rb_node rbnode; /* used in netem & tcp stack */ 675 }; 676 struct sock *sk; 677 678 union { 679 ktime_t tstamp; 680 u64 skb_mstamp; 681 }; 682 /* 683 * This is the control buffer. It is free to use for every 684 * layer. Please put your private variables there. If you 685 * want to keep them across layers you have to do a skb_clone() 686 * first. This is owned by whoever has the skb queued ATM. 687 */ 688 char cb[48] __aligned(8); 689 690 union { 691 struct { 692 unsigned long _skb_refdst; 693 void (*destructor)(struct sk_buff *skb); 694 }; 695 struct list_head tcp_tsorted_anchor; 696 }; 697 698 #ifdef CONFIG_XFRM 699 struct sec_path *sp; 700 #endif 701 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 702 unsigned long _nfct; 703 #endif 704 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 705 struct nf_bridge_info *nf_bridge; 706 #endif 707 unsigned int len, 708 data_len; 709 __u16 mac_len, 710 hdr_len; 711 712 /* Following fields are _not_ copied in __copy_skb_header() 713 * Note that queue_mapping is here mostly to fill a hole. 714 */ 715 kmemcheck_bitfield_begin(flags1); 716 __u16 queue_mapping; 717 718 /* if you move cloned around you also must adapt those constants */ 719 #ifdef __BIG_ENDIAN_BITFIELD 720 #define CLONED_MASK (1 << 7) 721 #else 722 #define CLONED_MASK 1 723 #endif 724 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 725 726 __u8 __cloned_offset[0]; 727 __u8 cloned:1, 728 nohdr:1, 729 fclone:2, 730 peeked:1, 731 head_frag:1, 732 xmit_more:1, 733 __unused:1; /* one bit hole */ 734 kmemcheck_bitfield_end(flags1); 735 736 /* fields enclosed in headers_start/headers_end are copied 737 * using a single memcpy() in __copy_skb_header() 738 */ 739 /* private: */ 740 __u32 headers_start[0]; 741 /* public: */ 742 743 /* if you move pkt_type around you also must adapt those constants */ 744 #ifdef __BIG_ENDIAN_BITFIELD 745 #define PKT_TYPE_MAX (7 << 5) 746 #else 747 #define PKT_TYPE_MAX 7 748 #endif 749 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 750 751 __u8 __pkt_type_offset[0]; 752 __u8 pkt_type:3; 753 __u8 pfmemalloc:1; 754 __u8 ignore_df:1; 755 756 __u8 nf_trace:1; 757 __u8 ip_summed:2; 758 __u8 ooo_okay:1; 759 __u8 l4_hash:1; 760 __u8 sw_hash:1; 761 __u8 wifi_acked_valid:1; 762 __u8 wifi_acked:1; 763 764 __u8 no_fcs:1; 765 /* Indicates the inner headers are valid in the skbuff. */ 766 __u8 encapsulation:1; 767 __u8 encap_hdr_csum:1; 768 __u8 csum_valid:1; 769 __u8 csum_complete_sw:1; 770 __u8 csum_level:2; 771 __u8 csum_not_inet:1; 772 773 __u8 dst_pending_confirm:1; 774 #ifdef CONFIG_IPV6_NDISC_NODETYPE 775 __u8 ndisc_nodetype:2; 776 #endif 777 __u8 ipvs_property:1; 778 __u8 inner_protocol_type:1; 779 __u8 remcsum_offload:1; 780 #ifdef CONFIG_NET_SWITCHDEV 781 __u8 offload_fwd_mark:1; 782 __u8 offload_mr_fwd_mark:1; 783 #endif 784 #ifdef CONFIG_NET_CLS_ACT 785 __u8 tc_skip_classify:1; 786 __u8 tc_at_ingress:1; 787 __u8 tc_redirected:1; 788 __u8 tc_from_ingress:1; 789 #endif 790 791 #ifdef CONFIG_NET_SCHED 792 __u16 tc_index; /* traffic control index */ 793 #endif 794 795 union { 796 __wsum csum; 797 struct { 798 __u16 csum_start; 799 __u16 csum_offset; 800 }; 801 }; 802 __u32 priority; 803 int skb_iif; 804 __u32 hash; 805 __be16 vlan_proto; 806 __u16 vlan_tci; 807 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 808 union { 809 unsigned int napi_id; 810 unsigned int sender_cpu; 811 }; 812 #endif 813 #ifdef CONFIG_NETWORK_SECMARK 814 __u32 secmark; 815 #endif 816 817 union { 818 __u32 mark; 819 __u32 reserved_tailroom; 820 }; 821 822 union { 823 __be16 inner_protocol; 824 __u8 inner_ipproto; 825 }; 826 827 __u16 inner_transport_header; 828 __u16 inner_network_header; 829 __u16 inner_mac_header; 830 831 __be16 protocol; 832 __u16 transport_header; 833 __u16 network_header; 834 __u16 mac_header; 835 836 /* private: */ 837 __u32 headers_end[0]; 838 /* public: */ 839 840 /* These elements must be at the end, see alloc_skb() for details. */ 841 sk_buff_data_t tail; 842 sk_buff_data_t end; 843 unsigned char *head, 844 *data; 845 unsigned int truesize; 846 refcount_t users; 847 }; 848 849 #ifdef __KERNEL__ 850 /* 851 * Handling routines are only of interest to the kernel 852 */ 853 #include <linux/slab.h> 854 855 856 #define SKB_ALLOC_FCLONE 0x01 857 #define SKB_ALLOC_RX 0x02 858 #define SKB_ALLOC_NAPI 0x04 859 860 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 861 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 862 { 863 return unlikely(skb->pfmemalloc); 864 } 865 866 /* 867 * skb might have a dst pointer attached, refcounted or not. 868 * _skb_refdst low order bit is set if refcount was _not_ taken 869 */ 870 #define SKB_DST_NOREF 1UL 871 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 872 873 #define SKB_NFCT_PTRMASK ~(7UL) 874 /** 875 * skb_dst - returns skb dst_entry 876 * @skb: buffer 877 * 878 * Returns skb dst_entry, regardless of reference taken or not. 879 */ 880 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 881 { 882 /* If refdst was not refcounted, check we still are in a 883 * rcu_read_lock section 884 */ 885 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 886 !rcu_read_lock_held() && 887 !rcu_read_lock_bh_held()); 888 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 889 } 890 891 /** 892 * skb_dst_set - sets skb dst 893 * @skb: buffer 894 * @dst: dst entry 895 * 896 * Sets skb dst, assuming a reference was taken on dst and should 897 * be released by skb_dst_drop() 898 */ 899 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 900 { 901 skb->_skb_refdst = (unsigned long)dst; 902 } 903 904 /** 905 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 906 * @skb: buffer 907 * @dst: dst entry 908 * 909 * Sets skb dst, assuming a reference was not taken on dst. 910 * If dst entry is cached, we do not take reference and dst_release 911 * will be avoided by refdst_drop. If dst entry is not cached, we take 912 * reference, so that last dst_release can destroy the dst immediately. 913 */ 914 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 915 { 916 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 917 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 918 } 919 920 /** 921 * skb_dst_is_noref - Test if skb dst isn't refcounted 922 * @skb: buffer 923 */ 924 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 925 { 926 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 927 } 928 929 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 930 { 931 return (struct rtable *)skb_dst(skb); 932 } 933 934 /* For mangling skb->pkt_type from user space side from applications 935 * such as nft, tc, etc, we only allow a conservative subset of 936 * possible pkt_types to be set. 937 */ 938 static inline bool skb_pkt_type_ok(u32 ptype) 939 { 940 return ptype <= PACKET_OTHERHOST; 941 } 942 943 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 944 { 945 #ifdef CONFIG_NET_RX_BUSY_POLL 946 return skb->napi_id; 947 #else 948 return 0; 949 #endif 950 } 951 952 /* decrement the reference count and return true if we can free the skb */ 953 static inline bool skb_unref(struct sk_buff *skb) 954 { 955 if (unlikely(!skb)) 956 return false; 957 if (likely(refcount_read(&skb->users) == 1)) 958 smp_rmb(); 959 else if (likely(!refcount_dec_and_test(&skb->users))) 960 return false; 961 962 return true; 963 } 964 965 void skb_release_head_state(struct sk_buff *skb); 966 void kfree_skb(struct sk_buff *skb); 967 void kfree_skb_list(struct sk_buff *segs); 968 void skb_tx_error(struct sk_buff *skb); 969 void consume_skb(struct sk_buff *skb); 970 void __consume_stateless_skb(struct sk_buff *skb); 971 void __kfree_skb(struct sk_buff *skb); 972 extern struct kmem_cache *skbuff_head_cache; 973 974 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 975 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 976 bool *fragstolen, int *delta_truesize); 977 978 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 979 int node); 980 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 981 struct sk_buff *build_skb(void *data, unsigned int frag_size); 982 static inline struct sk_buff *alloc_skb(unsigned int size, 983 gfp_t priority) 984 { 985 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 986 } 987 988 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 989 unsigned long data_len, 990 int max_page_order, 991 int *errcode, 992 gfp_t gfp_mask); 993 994 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 995 struct sk_buff_fclones { 996 struct sk_buff skb1; 997 998 struct sk_buff skb2; 999 1000 refcount_t fclone_ref; 1001 }; 1002 1003 /** 1004 * skb_fclone_busy - check if fclone is busy 1005 * @sk: socket 1006 * @skb: buffer 1007 * 1008 * Returns true if skb is a fast clone, and its clone is not freed. 1009 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1010 * so we also check that this didnt happen. 1011 */ 1012 static inline bool skb_fclone_busy(const struct sock *sk, 1013 const struct sk_buff *skb) 1014 { 1015 const struct sk_buff_fclones *fclones; 1016 1017 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1018 1019 return skb->fclone == SKB_FCLONE_ORIG && 1020 refcount_read(&fclones->fclone_ref) > 1 && 1021 fclones->skb2.sk == sk; 1022 } 1023 1024 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1025 gfp_t priority) 1026 { 1027 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1028 } 1029 1030 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1031 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1032 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1033 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1034 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1035 gfp_t gfp_mask, bool fclone); 1036 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1037 gfp_t gfp_mask) 1038 { 1039 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1040 } 1041 1042 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1043 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1044 unsigned int headroom); 1045 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1046 int newtailroom, gfp_t priority); 1047 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1048 int offset, int len); 1049 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1050 int offset, int len); 1051 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1052 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1053 1054 /** 1055 * skb_pad - zero pad the tail of an skb 1056 * @skb: buffer to pad 1057 * @pad: space to pad 1058 * 1059 * Ensure that a buffer is followed by a padding area that is zero 1060 * filled. Used by network drivers which may DMA or transfer data 1061 * beyond the buffer end onto the wire. 1062 * 1063 * May return error in out of memory cases. The skb is freed on error. 1064 */ 1065 static inline int skb_pad(struct sk_buff *skb, int pad) 1066 { 1067 return __skb_pad(skb, pad, true); 1068 } 1069 #define dev_kfree_skb(a) consume_skb(a) 1070 1071 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1072 int getfrag(void *from, char *to, int offset, 1073 int len, int odd, struct sk_buff *skb), 1074 void *from, int length); 1075 1076 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1077 int offset, size_t size); 1078 1079 struct skb_seq_state { 1080 __u32 lower_offset; 1081 __u32 upper_offset; 1082 __u32 frag_idx; 1083 __u32 stepped_offset; 1084 struct sk_buff *root_skb; 1085 struct sk_buff *cur_skb; 1086 __u8 *frag_data; 1087 }; 1088 1089 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1090 unsigned int to, struct skb_seq_state *st); 1091 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1092 struct skb_seq_state *st); 1093 void skb_abort_seq_read(struct skb_seq_state *st); 1094 1095 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1096 unsigned int to, struct ts_config *config); 1097 1098 /* 1099 * Packet hash types specify the type of hash in skb_set_hash. 1100 * 1101 * Hash types refer to the protocol layer addresses which are used to 1102 * construct a packet's hash. The hashes are used to differentiate or identify 1103 * flows of the protocol layer for the hash type. Hash types are either 1104 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1105 * 1106 * Properties of hashes: 1107 * 1108 * 1) Two packets in different flows have different hash values 1109 * 2) Two packets in the same flow should have the same hash value 1110 * 1111 * A hash at a higher layer is considered to be more specific. A driver should 1112 * set the most specific hash possible. 1113 * 1114 * A driver cannot indicate a more specific hash than the layer at which a hash 1115 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1116 * 1117 * A driver may indicate a hash level which is less specific than the 1118 * actual layer the hash was computed on. For instance, a hash computed 1119 * at L4 may be considered an L3 hash. This should only be done if the 1120 * driver can't unambiguously determine that the HW computed the hash at 1121 * the higher layer. Note that the "should" in the second property above 1122 * permits this. 1123 */ 1124 enum pkt_hash_types { 1125 PKT_HASH_TYPE_NONE, /* Undefined type */ 1126 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1127 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1128 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1129 }; 1130 1131 static inline void skb_clear_hash(struct sk_buff *skb) 1132 { 1133 skb->hash = 0; 1134 skb->sw_hash = 0; 1135 skb->l4_hash = 0; 1136 } 1137 1138 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1139 { 1140 if (!skb->l4_hash) 1141 skb_clear_hash(skb); 1142 } 1143 1144 static inline void 1145 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1146 { 1147 skb->l4_hash = is_l4; 1148 skb->sw_hash = is_sw; 1149 skb->hash = hash; 1150 } 1151 1152 static inline void 1153 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1154 { 1155 /* Used by drivers to set hash from HW */ 1156 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1157 } 1158 1159 static inline void 1160 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1161 { 1162 __skb_set_hash(skb, hash, true, is_l4); 1163 } 1164 1165 void __skb_get_hash(struct sk_buff *skb); 1166 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1167 u32 skb_get_poff(const struct sk_buff *skb); 1168 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1169 const struct flow_keys *keys, int hlen); 1170 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1171 void *data, int hlen_proto); 1172 1173 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1174 int thoff, u8 ip_proto) 1175 { 1176 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1177 } 1178 1179 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1180 const struct flow_dissector_key *key, 1181 unsigned int key_count); 1182 1183 bool __skb_flow_dissect(const struct sk_buff *skb, 1184 struct flow_dissector *flow_dissector, 1185 void *target_container, 1186 void *data, __be16 proto, int nhoff, int hlen, 1187 unsigned int flags); 1188 1189 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1190 struct flow_dissector *flow_dissector, 1191 void *target_container, unsigned int flags) 1192 { 1193 return __skb_flow_dissect(skb, flow_dissector, target_container, 1194 NULL, 0, 0, 0, flags); 1195 } 1196 1197 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1198 struct flow_keys *flow, 1199 unsigned int flags) 1200 { 1201 memset(flow, 0, sizeof(*flow)); 1202 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1203 NULL, 0, 0, 0, flags); 1204 } 1205 1206 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1207 void *data, __be16 proto, 1208 int nhoff, int hlen, 1209 unsigned int flags) 1210 { 1211 memset(flow, 0, sizeof(*flow)); 1212 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1213 data, proto, nhoff, hlen, flags); 1214 } 1215 1216 static inline __u32 skb_get_hash(struct sk_buff *skb) 1217 { 1218 if (!skb->l4_hash && !skb->sw_hash) 1219 __skb_get_hash(skb); 1220 1221 return skb->hash; 1222 } 1223 1224 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1225 { 1226 if (!skb->l4_hash && !skb->sw_hash) { 1227 struct flow_keys keys; 1228 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1229 1230 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1231 } 1232 1233 return skb->hash; 1234 } 1235 1236 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1237 1238 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1239 { 1240 return skb->hash; 1241 } 1242 1243 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1244 { 1245 to->hash = from->hash; 1246 to->sw_hash = from->sw_hash; 1247 to->l4_hash = from->l4_hash; 1248 }; 1249 1250 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1251 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1252 { 1253 return skb->head + skb->end; 1254 } 1255 1256 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1257 { 1258 return skb->end; 1259 } 1260 #else 1261 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1262 { 1263 return skb->end; 1264 } 1265 1266 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1267 { 1268 return skb->end - skb->head; 1269 } 1270 #endif 1271 1272 /* Internal */ 1273 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1274 1275 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1276 { 1277 return &skb_shinfo(skb)->hwtstamps; 1278 } 1279 1280 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1281 { 1282 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1283 1284 return is_zcopy ? skb_uarg(skb) : NULL; 1285 } 1286 1287 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg) 1288 { 1289 if (skb && uarg && !skb_zcopy(skb)) { 1290 sock_zerocopy_get(uarg); 1291 skb_shinfo(skb)->destructor_arg = uarg; 1292 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1293 } 1294 } 1295 1296 /* Release a reference on a zerocopy structure */ 1297 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1298 { 1299 struct ubuf_info *uarg = skb_zcopy(skb); 1300 1301 if (uarg) { 1302 if (uarg->callback == sock_zerocopy_callback) { 1303 uarg->zerocopy = uarg->zerocopy && zerocopy; 1304 sock_zerocopy_put(uarg); 1305 } else { 1306 uarg->callback(uarg, zerocopy); 1307 } 1308 1309 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1310 } 1311 } 1312 1313 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1314 static inline void skb_zcopy_abort(struct sk_buff *skb) 1315 { 1316 struct ubuf_info *uarg = skb_zcopy(skb); 1317 1318 if (uarg) { 1319 sock_zerocopy_put_abort(uarg); 1320 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1321 } 1322 } 1323 1324 /** 1325 * skb_queue_empty - check if a queue is empty 1326 * @list: queue head 1327 * 1328 * Returns true if the queue is empty, false otherwise. 1329 */ 1330 static inline int skb_queue_empty(const struct sk_buff_head *list) 1331 { 1332 return list->next == (const struct sk_buff *) list; 1333 } 1334 1335 /** 1336 * skb_queue_is_last - check if skb is the last entry in the queue 1337 * @list: queue head 1338 * @skb: buffer 1339 * 1340 * Returns true if @skb is the last buffer on the list. 1341 */ 1342 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1343 const struct sk_buff *skb) 1344 { 1345 return skb->next == (const struct sk_buff *) list; 1346 } 1347 1348 /** 1349 * skb_queue_is_first - check if skb is the first entry in the queue 1350 * @list: queue head 1351 * @skb: buffer 1352 * 1353 * Returns true if @skb is the first buffer on the list. 1354 */ 1355 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1356 const struct sk_buff *skb) 1357 { 1358 return skb->prev == (const struct sk_buff *) list; 1359 } 1360 1361 /** 1362 * skb_queue_next - return the next packet in the queue 1363 * @list: queue head 1364 * @skb: current buffer 1365 * 1366 * Return the next packet in @list after @skb. It is only valid to 1367 * call this if skb_queue_is_last() evaluates to false. 1368 */ 1369 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1370 const struct sk_buff *skb) 1371 { 1372 /* This BUG_ON may seem severe, but if we just return then we 1373 * are going to dereference garbage. 1374 */ 1375 BUG_ON(skb_queue_is_last(list, skb)); 1376 return skb->next; 1377 } 1378 1379 /** 1380 * skb_queue_prev - return the prev packet in the queue 1381 * @list: queue head 1382 * @skb: current buffer 1383 * 1384 * Return the prev packet in @list before @skb. It is only valid to 1385 * call this if skb_queue_is_first() evaluates to false. 1386 */ 1387 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1388 const struct sk_buff *skb) 1389 { 1390 /* This BUG_ON may seem severe, but if we just return then we 1391 * are going to dereference garbage. 1392 */ 1393 BUG_ON(skb_queue_is_first(list, skb)); 1394 return skb->prev; 1395 } 1396 1397 /** 1398 * skb_get - reference buffer 1399 * @skb: buffer to reference 1400 * 1401 * Makes another reference to a socket buffer and returns a pointer 1402 * to the buffer. 1403 */ 1404 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1405 { 1406 refcount_inc(&skb->users); 1407 return skb; 1408 } 1409 1410 /* 1411 * If users == 1, we are the only owner and are can avoid redundant 1412 * atomic change. 1413 */ 1414 1415 /** 1416 * skb_cloned - is the buffer a clone 1417 * @skb: buffer to check 1418 * 1419 * Returns true if the buffer was generated with skb_clone() and is 1420 * one of multiple shared copies of the buffer. Cloned buffers are 1421 * shared data so must not be written to under normal circumstances. 1422 */ 1423 static inline int skb_cloned(const struct sk_buff *skb) 1424 { 1425 return skb->cloned && 1426 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1427 } 1428 1429 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1430 { 1431 might_sleep_if(gfpflags_allow_blocking(pri)); 1432 1433 if (skb_cloned(skb)) 1434 return pskb_expand_head(skb, 0, 0, pri); 1435 1436 return 0; 1437 } 1438 1439 /** 1440 * skb_header_cloned - is the header a clone 1441 * @skb: buffer to check 1442 * 1443 * Returns true if modifying the header part of the buffer requires 1444 * the data to be copied. 1445 */ 1446 static inline int skb_header_cloned(const struct sk_buff *skb) 1447 { 1448 int dataref; 1449 1450 if (!skb->cloned) 1451 return 0; 1452 1453 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1454 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1455 return dataref != 1; 1456 } 1457 1458 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1459 { 1460 might_sleep_if(gfpflags_allow_blocking(pri)); 1461 1462 if (skb_header_cloned(skb)) 1463 return pskb_expand_head(skb, 0, 0, pri); 1464 1465 return 0; 1466 } 1467 1468 /** 1469 * __skb_header_release - release reference to header 1470 * @skb: buffer to operate on 1471 */ 1472 static inline void __skb_header_release(struct sk_buff *skb) 1473 { 1474 skb->nohdr = 1; 1475 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1476 } 1477 1478 1479 /** 1480 * skb_shared - is the buffer shared 1481 * @skb: buffer to check 1482 * 1483 * Returns true if more than one person has a reference to this 1484 * buffer. 1485 */ 1486 static inline int skb_shared(const struct sk_buff *skb) 1487 { 1488 return refcount_read(&skb->users) != 1; 1489 } 1490 1491 /** 1492 * skb_share_check - check if buffer is shared and if so clone it 1493 * @skb: buffer to check 1494 * @pri: priority for memory allocation 1495 * 1496 * If the buffer is shared the buffer is cloned and the old copy 1497 * drops a reference. A new clone with a single reference is returned. 1498 * If the buffer is not shared the original buffer is returned. When 1499 * being called from interrupt status or with spinlocks held pri must 1500 * be GFP_ATOMIC. 1501 * 1502 * NULL is returned on a memory allocation failure. 1503 */ 1504 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1505 { 1506 might_sleep_if(gfpflags_allow_blocking(pri)); 1507 if (skb_shared(skb)) { 1508 struct sk_buff *nskb = skb_clone(skb, pri); 1509 1510 if (likely(nskb)) 1511 consume_skb(skb); 1512 else 1513 kfree_skb(skb); 1514 skb = nskb; 1515 } 1516 return skb; 1517 } 1518 1519 /* 1520 * Copy shared buffers into a new sk_buff. We effectively do COW on 1521 * packets to handle cases where we have a local reader and forward 1522 * and a couple of other messy ones. The normal one is tcpdumping 1523 * a packet thats being forwarded. 1524 */ 1525 1526 /** 1527 * skb_unshare - make a copy of a shared buffer 1528 * @skb: buffer to check 1529 * @pri: priority for memory allocation 1530 * 1531 * If the socket buffer is a clone then this function creates a new 1532 * copy of the data, drops a reference count on the old copy and returns 1533 * the new copy with the reference count at 1. If the buffer is not a clone 1534 * the original buffer is returned. When called with a spinlock held or 1535 * from interrupt state @pri must be %GFP_ATOMIC 1536 * 1537 * %NULL is returned on a memory allocation failure. 1538 */ 1539 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1540 gfp_t pri) 1541 { 1542 might_sleep_if(gfpflags_allow_blocking(pri)); 1543 if (skb_cloned(skb)) { 1544 struct sk_buff *nskb = skb_copy(skb, pri); 1545 1546 /* Free our shared copy */ 1547 if (likely(nskb)) 1548 consume_skb(skb); 1549 else 1550 kfree_skb(skb); 1551 skb = nskb; 1552 } 1553 return skb; 1554 } 1555 1556 /** 1557 * skb_peek - peek at the head of an &sk_buff_head 1558 * @list_: list to peek at 1559 * 1560 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1561 * be careful with this one. A peek leaves the buffer on the 1562 * list and someone else may run off with it. You must hold 1563 * the appropriate locks or have a private queue to do this. 1564 * 1565 * Returns %NULL for an empty list or a pointer to the head element. 1566 * The reference count is not incremented and the reference is therefore 1567 * volatile. Use with caution. 1568 */ 1569 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1570 { 1571 struct sk_buff *skb = list_->next; 1572 1573 if (skb == (struct sk_buff *)list_) 1574 skb = NULL; 1575 return skb; 1576 } 1577 1578 /** 1579 * skb_peek_next - peek skb following the given one from a queue 1580 * @skb: skb to start from 1581 * @list_: list to peek at 1582 * 1583 * Returns %NULL when the end of the list is met or a pointer to the 1584 * next element. The reference count is not incremented and the 1585 * reference is therefore volatile. Use with caution. 1586 */ 1587 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1588 const struct sk_buff_head *list_) 1589 { 1590 struct sk_buff *next = skb->next; 1591 1592 if (next == (struct sk_buff *)list_) 1593 next = NULL; 1594 return next; 1595 } 1596 1597 /** 1598 * skb_peek_tail - peek at the tail of an &sk_buff_head 1599 * @list_: list to peek at 1600 * 1601 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1602 * be careful with this one. A peek leaves the buffer on the 1603 * list and someone else may run off with it. You must hold 1604 * the appropriate locks or have a private queue to do this. 1605 * 1606 * Returns %NULL for an empty list or a pointer to the tail element. 1607 * The reference count is not incremented and the reference is therefore 1608 * volatile. Use with caution. 1609 */ 1610 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1611 { 1612 struct sk_buff *skb = list_->prev; 1613 1614 if (skb == (struct sk_buff *)list_) 1615 skb = NULL; 1616 return skb; 1617 1618 } 1619 1620 /** 1621 * skb_queue_len - get queue length 1622 * @list_: list to measure 1623 * 1624 * Return the length of an &sk_buff queue. 1625 */ 1626 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1627 { 1628 return list_->qlen; 1629 } 1630 1631 /** 1632 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1633 * @list: queue to initialize 1634 * 1635 * This initializes only the list and queue length aspects of 1636 * an sk_buff_head object. This allows to initialize the list 1637 * aspects of an sk_buff_head without reinitializing things like 1638 * the spinlock. It can also be used for on-stack sk_buff_head 1639 * objects where the spinlock is known to not be used. 1640 */ 1641 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1642 { 1643 list->prev = list->next = (struct sk_buff *)list; 1644 list->qlen = 0; 1645 } 1646 1647 /* 1648 * This function creates a split out lock class for each invocation; 1649 * this is needed for now since a whole lot of users of the skb-queue 1650 * infrastructure in drivers have different locking usage (in hardirq) 1651 * than the networking core (in softirq only). In the long run either the 1652 * network layer or drivers should need annotation to consolidate the 1653 * main types of usage into 3 classes. 1654 */ 1655 static inline void skb_queue_head_init(struct sk_buff_head *list) 1656 { 1657 spin_lock_init(&list->lock); 1658 __skb_queue_head_init(list); 1659 } 1660 1661 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1662 struct lock_class_key *class) 1663 { 1664 skb_queue_head_init(list); 1665 lockdep_set_class(&list->lock, class); 1666 } 1667 1668 /* 1669 * Insert an sk_buff on a list. 1670 * 1671 * The "__skb_xxxx()" functions are the non-atomic ones that 1672 * can only be called with interrupts disabled. 1673 */ 1674 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1675 struct sk_buff_head *list); 1676 static inline void __skb_insert(struct sk_buff *newsk, 1677 struct sk_buff *prev, struct sk_buff *next, 1678 struct sk_buff_head *list) 1679 { 1680 newsk->next = next; 1681 newsk->prev = prev; 1682 next->prev = prev->next = newsk; 1683 list->qlen++; 1684 } 1685 1686 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1687 struct sk_buff *prev, 1688 struct sk_buff *next) 1689 { 1690 struct sk_buff *first = list->next; 1691 struct sk_buff *last = list->prev; 1692 1693 first->prev = prev; 1694 prev->next = first; 1695 1696 last->next = next; 1697 next->prev = last; 1698 } 1699 1700 /** 1701 * skb_queue_splice - join two skb lists, this is designed for stacks 1702 * @list: the new list to add 1703 * @head: the place to add it in the first list 1704 */ 1705 static inline void skb_queue_splice(const struct sk_buff_head *list, 1706 struct sk_buff_head *head) 1707 { 1708 if (!skb_queue_empty(list)) { 1709 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1710 head->qlen += list->qlen; 1711 } 1712 } 1713 1714 /** 1715 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1716 * @list: the new list to add 1717 * @head: the place to add it in the first list 1718 * 1719 * The list at @list is reinitialised 1720 */ 1721 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1722 struct sk_buff_head *head) 1723 { 1724 if (!skb_queue_empty(list)) { 1725 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1726 head->qlen += list->qlen; 1727 __skb_queue_head_init(list); 1728 } 1729 } 1730 1731 /** 1732 * skb_queue_splice_tail - join two skb lists, each list being a queue 1733 * @list: the new list to add 1734 * @head: the place to add it in the first list 1735 */ 1736 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1737 struct sk_buff_head *head) 1738 { 1739 if (!skb_queue_empty(list)) { 1740 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1741 head->qlen += list->qlen; 1742 } 1743 } 1744 1745 /** 1746 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1747 * @list: the new list to add 1748 * @head: the place to add it in the first list 1749 * 1750 * Each of the lists is a queue. 1751 * The list at @list is reinitialised 1752 */ 1753 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1754 struct sk_buff_head *head) 1755 { 1756 if (!skb_queue_empty(list)) { 1757 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1758 head->qlen += list->qlen; 1759 __skb_queue_head_init(list); 1760 } 1761 } 1762 1763 /** 1764 * __skb_queue_after - queue a buffer at the list head 1765 * @list: list to use 1766 * @prev: place after this buffer 1767 * @newsk: buffer to queue 1768 * 1769 * Queue a buffer int the middle of a list. This function takes no locks 1770 * and you must therefore hold required locks before calling it. 1771 * 1772 * A buffer cannot be placed on two lists at the same time. 1773 */ 1774 static inline void __skb_queue_after(struct sk_buff_head *list, 1775 struct sk_buff *prev, 1776 struct sk_buff *newsk) 1777 { 1778 __skb_insert(newsk, prev, prev->next, list); 1779 } 1780 1781 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1782 struct sk_buff_head *list); 1783 1784 static inline void __skb_queue_before(struct sk_buff_head *list, 1785 struct sk_buff *next, 1786 struct sk_buff *newsk) 1787 { 1788 __skb_insert(newsk, next->prev, next, list); 1789 } 1790 1791 /** 1792 * __skb_queue_head - queue a buffer at the list head 1793 * @list: list to use 1794 * @newsk: buffer to queue 1795 * 1796 * Queue a buffer at the start of a list. This function takes no locks 1797 * and you must therefore hold required locks before calling it. 1798 * 1799 * A buffer cannot be placed on two lists at the same time. 1800 */ 1801 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1802 static inline void __skb_queue_head(struct sk_buff_head *list, 1803 struct sk_buff *newsk) 1804 { 1805 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1806 } 1807 1808 /** 1809 * __skb_queue_tail - queue a buffer at the list tail 1810 * @list: list to use 1811 * @newsk: buffer to queue 1812 * 1813 * Queue a buffer at the end of a list. This function takes no locks 1814 * and you must therefore hold required locks before calling it. 1815 * 1816 * A buffer cannot be placed on two lists at the same time. 1817 */ 1818 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1819 static inline void __skb_queue_tail(struct sk_buff_head *list, 1820 struct sk_buff *newsk) 1821 { 1822 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1823 } 1824 1825 /* 1826 * remove sk_buff from list. _Must_ be called atomically, and with 1827 * the list known.. 1828 */ 1829 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1830 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1831 { 1832 struct sk_buff *next, *prev; 1833 1834 list->qlen--; 1835 next = skb->next; 1836 prev = skb->prev; 1837 skb->next = skb->prev = NULL; 1838 next->prev = prev; 1839 prev->next = next; 1840 } 1841 1842 /** 1843 * __skb_dequeue - remove from the head of the queue 1844 * @list: list to dequeue from 1845 * 1846 * Remove the head of the list. This function does not take any locks 1847 * so must be used with appropriate locks held only. The head item is 1848 * returned or %NULL if the list is empty. 1849 */ 1850 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1851 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1852 { 1853 struct sk_buff *skb = skb_peek(list); 1854 if (skb) 1855 __skb_unlink(skb, list); 1856 return skb; 1857 } 1858 1859 /** 1860 * __skb_dequeue_tail - remove from the tail of the queue 1861 * @list: list to dequeue from 1862 * 1863 * Remove the tail of the list. This function does not take any locks 1864 * so must be used with appropriate locks held only. The tail item is 1865 * returned or %NULL if the list is empty. 1866 */ 1867 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1868 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1869 { 1870 struct sk_buff *skb = skb_peek_tail(list); 1871 if (skb) 1872 __skb_unlink(skb, list); 1873 return skb; 1874 } 1875 1876 1877 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1878 { 1879 return skb->data_len; 1880 } 1881 1882 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1883 { 1884 return skb->len - skb->data_len; 1885 } 1886 1887 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 1888 { 1889 unsigned int i, len = 0; 1890 1891 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1892 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1893 return len; 1894 } 1895 1896 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1897 { 1898 return skb_headlen(skb) + __skb_pagelen(skb); 1899 } 1900 1901 /** 1902 * __skb_fill_page_desc - initialise a paged fragment in an skb 1903 * @skb: buffer containing fragment to be initialised 1904 * @i: paged fragment index to initialise 1905 * @page: the page to use for this fragment 1906 * @off: the offset to the data with @page 1907 * @size: the length of the data 1908 * 1909 * Initialises the @i'th fragment of @skb to point to &size bytes at 1910 * offset @off within @page. 1911 * 1912 * Does not take any additional reference on the fragment. 1913 */ 1914 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1915 struct page *page, int off, int size) 1916 { 1917 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1918 1919 /* 1920 * Propagate page pfmemalloc to the skb if we can. The problem is 1921 * that not all callers have unique ownership of the page but rely 1922 * on page_is_pfmemalloc doing the right thing(tm). 1923 */ 1924 frag->page.p = page; 1925 frag->page_offset = off; 1926 skb_frag_size_set(frag, size); 1927 1928 page = compound_head(page); 1929 if (page_is_pfmemalloc(page)) 1930 skb->pfmemalloc = true; 1931 } 1932 1933 /** 1934 * skb_fill_page_desc - initialise a paged fragment in an skb 1935 * @skb: buffer containing fragment to be initialised 1936 * @i: paged fragment index to initialise 1937 * @page: the page to use for this fragment 1938 * @off: the offset to the data with @page 1939 * @size: the length of the data 1940 * 1941 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1942 * @skb to point to @size bytes at offset @off within @page. In 1943 * addition updates @skb such that @i is the last fragment. 1944 * 1945 * Does not take any additional reference on the fragment. 1946 */ 1947 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1948 struct page *page, int off, int size) 1949 { 1950 __skb_fill_page_desc(skb, i, page, off, size); 1951 skb_shinfo(skb)->nr_frags = i + 1; 1952 } 1953 1954 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1955 int size, unsigned int truesize); 1956 1957 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1958 unsigned int truesize); 1959 1960 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1961 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1962 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1963 1964 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1965 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1966 { 1967 return skb->head + skb->tail; 1968 } 1969 1970 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1971 { 1972 skb->tail = skb->data - skb->head; 1973 } 1974 1975 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1976 { 1977 skb_reset_tail_pointer(skb); 1978 skb->tail += offset; 1979 } 1980 1981 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1982 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1983 { 1984 return skb->tail; 1985 } 1986 1987 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1988 { 1989 skb->tail = skb->data; 1990 } 1991 1992 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1993 { 1994 skb->tail = skb->data + offset; 1995 } 1996 1997 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1998 1999 /* 2000 * Add data to an sk_buff 2001 */ 2002 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2003 void *skb_put(struct sk_buff *skb, unsigned int len); 2004 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2005 { 2006 void *tmp = skb_tail_pointer(skb); 2007 SKB_LINEAR_ASSERT(skb); 2008 skb->tail += len; 2009 skb->len += len; 2010 return tmp; 2011 } 2012 2013 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2014 { 2015 void *tmp = __skb_put(skb, len); 2016 2017 memset(tmp, 0, len); 2018 return tmp; 2019 } 2020 2021 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2022 unsigned int len) 2023 { 2024 void *tmp = __skb_put(skb, len); 2025 2026 memcpy(tmp, data, len); 2027 return tmp; 2028 } 2029 2030 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2031 { 2032 *(u8 *)__skb_put(skb, 1) = val; 2033 } 2034 2035 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2036 { 2037 void *tmp = skb_put(skb, len); 2038 2039 memset(tmp, 0, len); 2040 2041 return tmp; 2042 } 2043 2044 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2045 unsigned int len) 2046 { 2047 void *tmp = skb_put(skb, len); 2048 2049 memcpy(tmp, data, len); 2050 2051 return tmp; 2052 } 2053 2054 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2055 { 2056 *(u8 *)skb_put(skb, 1) = val; 2057 } 2058 2059 void *skb_push(struct sk_buff *skb, unsigned int len); 2060 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2061 { 2062 skb->data -= len; 2063 skb->len += len; 2064 return skb->data; 2065 } 2066 2067 void *skb_pull(struct sk_buff *skb, unsigned int len); 2068 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2069 { 2070 skb->len -= len; 2071 BUG_ON(skb->len < skb->data_len); 2072 return skb->data += len; 2073 } 2074 2075 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2076 { 2077 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2078 } 2079 2080 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2081 2082 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2083 { 2084 if (len > skb_headlen(skb) && 2085 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2086 return NULL; 2087 skb->len -= len; 2088 return skb->data += len; 2089 } 2090 2091 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2092 { 2093 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2094 } 2095 2096 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2097 { 2098 if (likely(len <= skb_headlen(skb))) 2099 return 1; 2100 if (unlikely(len > skb->len)) 2101 return 0; 2102 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2103 } 2104 2105 void skb_condense(struct sk_buff *skb); 2106 2107 /** 2108 * skb_headroom - bytes at buffer head 2109 * @skb: buffer to check 2110 * 2111 * Return the number of bytes of free space at the head of an &sk_buff. 2112 */ 2113 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2114 { 2115 return skb->data - skb->head; 2116 } 2117 2118 /** 2119 * skb_tailroom - bytes at buffer end 2120 * @skb: buffer to check 2121 * 2122 * Return the number of bytes of free space at the tail of an sk_buff 2123 */ 2124 static inline int skb_tailroom(const struct sk_buff *skb) 2125 { 2126 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2127 } 2128 2129 /** 2130 * skb_availroom - bytes at buffer end 2131 * @skb: buffer to check 2132 * 2133 * Return the number of bytes of free space at the tail of an sk_buff 2134 * allocated by sk_stream_alloc() 2135 */ 2136 static inline int skb_availroom(const struct sk_buff *skb) 2137 { 2138 if (skb_is_nonlinear(skb)) 2139 return 0; 2140 2141 return skb->end - skb->tail - skb->reserved_tailroom; 2142 } 2143 2144 /** 2145 * skb_reserve - adjust headroom 2146 * @skb: buffer to alter 2147 * @len: bytes to move 2148 * 2149 * Increase the headroom of an empty &sk_buff by reducing the tail 2150 * room. This is only allowed for an empty buffer. 2151 */ 2152 static inline void skb_reserve(struct sk_buff *skb, int len) 2153 { 2154 skb->data += len; 2155 skb->tail += len; 2156 } 2157 2158 /** 2159 * skb_tailroom_reserve - adjust reserved_tailroom 2160 * @skb: buffer to alter 2161 * @mtu: maximum amount of headlen permitted 2162 * @needed_tailroom: minimum amount of reserved_tailroom 2163 * 2164 * Set reserved_tailroom so that headlen can be as large as possible but 2165 * not larger than mtu and tailroom cannot be smaller than 2166 * needed_tailroom. 2167 * The required headroom should already have been reserved before using 2168 * this function. 2169 */ 2170 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2171 unsigned int needed_tailroom) 2172 { 2173 SKB_LINEAR_ASSERT(skb); 2174 if (mtu < skb_tailroom(skb) - needed_tailroom) 2175 /* use at most mtu */ 2176 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2177 else 2178 /* use up to all available space */ 2179 skb->reserved_tailroom = needed_tailroom; 2180 } 2181 2182 #define ENCAP_TYPE_ETHER 0 2183 #define ENCAP_TYPE_IPPROTO 1 2184 2185 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2186 __be16 protocol) 2187 { 2188 skb->inner_protocol = protocol; 2189 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2190 } 2191 2192 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2193 __u8 ipproto) 2194 { 2195 skb->inner_ipproto = ipproto; 2196 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2197 } 2198 2199 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2200 { 2201 skb->inner_mac_header = skb->mac_header; 2202 skb->inner_network_header = skb->network_header; 2203 skb->inner_transport_header = skb->transport_header; 2204 } 2205 2206 static inline void skb_reset_mac_len(struct sk_buff *skb) 2207 { 2208 skb->mac_len = skb->network_header - skb->mac_header; 2209 } 2210 2211 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2212 *skb) 2213 { 2214 return skb->head + skb->inner_transport_header; 2215 } 2216 2217 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2218 { 2219 return skb_inner_transport_header(skb) - skb->data; 2220 } 2221 2222 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2223 { 2224 skb->inner_transport_header = skb->data - skb->head; 2225 } 2226 2227 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2228 const int offset) 2229 { 2230 skb_reset_inner_transport_header(skb); 2231 skb->inner_transport_header += offset; 2232 } 2233 2234 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2235 { 2236 return skb->head + skb->inner_network_header; 2237 } 2238 2239 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2240 { 2241 skb->inner_network_header = skb->data - skb->head; 2242 } 2243 2244 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2245 const int offset) 2246 { 2247 skb_reset_inner_network_header(skb); 2248 skb->inner_network_header += offset; 2249 } 2250 2251 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2252 { 2253 return skb->head + skb->inner_mac_header; 2254 } 2255 2256 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2257 { 2258 skb->inner_mac_header = skb->data - skb->head; 2259 } 2260 2261 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2262 const int offset) 2263 { 2264 skb_reset_inner_mac_header(skb); 2265 skb->inner_mac_header += offset; 2266 } 2267 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2268 { 2269 return skb->transport_header != (typeof(skb->transport_header))~0U; 2270 } 2271 2272 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2273 { 2274 return skb->head + skb->transport_header; 2275 } 2276 2277 static inline void skb_reset_transport_header(struct sk_buff *skb) 2278 { 2279 skb->transport_header = skb->data - skb->head; 2280 } 2281 2282 static inline void skb_set_transport_header(struct sk_buff *skb, 2283 const int offset) 2284 { 2285 skb_reset_transport_header(skb); 2286 skb->transport_header += offset; 2287 } 2288 2289 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2290 { 2291 return skb->head + skb->network_header; 2292 } 2293 2294 static inline void skb_reset_network_header(struct sk_buff *skb) 2295 { 2296 skb->network_header = skb->data - skb->head; 2297 } 2298 2299 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2300 { 2301 skb_reset_network_header(skb); 2302 skb->network_header += offset; 2303 } 2304 2305 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2306 { 2307 return skb->head + skb->mac_header; 2308 } 2309 2310 static inline int skb_mac_offset(const struct sk_buff *skb) 2311 { 2312 return skb_mac_header(skb) - skb->data; 2313 } 2314 2315 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2316 { 2317 return skb->network_header - skb->mac_header; 2318 } 2319 2320 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2321 { 2322 return skb->mac_header != (typeof(skb->mac_header))~0U; 2323 } 2324 2325 static inline void skb_reset_mac_header(struct sk_buff *skb) 2326 { 2327 skb->mac_header = skb->data - skb->head; 2328 } 2329 2330 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2331 { 2332 skb_reset_mac_header(skb); 2333 skb->mac_header += offset; 2334 } 2335 2336 static inline void skb_pop_mac_header(struct sk_buff *skb) 2337 { 2338 skb->mac_header = skb->network_header; 2339 } 2340 2341 static inline void skb_probe_transport_header(struct sk_buff *skb, 2342 const int offset_hint) 2343 { 2344 struct flow_keys keys; 2345 2346 if (skb_transport_header_was_set(skb)) 2347 return; 2348 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2349 skb_set_transport_header(skb, keys.control.thoff); 2350 else 2351 skb_set_transport_header(skb, offset_hint); 2352 } 2353 2354 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2355 { 2356 if (skb_mac_header_was_set(skb)) { 2357 const unsigned char *old_mac = skb_mac_header(skb); 2358 2359 skb_set_mac_header(skb, -skb->mac_len); 2360 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2361 } 2362 } 2363 2364 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2365 { 2366 return skb->csum_start - skb_headroom(skb); 2367 } 2368 2369 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2370 { 2371 return skb->head + skb->csum_start; 2372 } 2373 2374 static inline int skb_transport_offset(const struct sk_buff *skb) 2375 { 2376 return skb_transport_header(skb) - skb->data; 2377 } 2378 2379 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2380 { 2381 return skb->transport_header - skb->network_header; 2382 } 2383 2384 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2385 { 2386 return skb->inner_transport_header - skb->inner_network_header; 2387 } 2388 2389 static inline int skb_network_offset(const struct sk_buff *skb) 2390 { 2391 return skb_network_header(skb) - skb->data; 2392 } 2393 2394 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2395 { 2396 return skb_inner_network_header(skb) - skb->data; 2397 } 2398 2399 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2400 { 2401 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2402 } 2403 2404 /* 2405 * CPUs often take a performance hit when accessing unaligned memory 2406 * locations. The actual performance hit varies, it can be small if the 2407 * hardware handles it or large if we have to take an exception and fix it 2408 * in software. 2409 * 2410 * Since an ethernet header is 14 bytes network drivers often end up with 2411 * the IP header at an unaligned offset. The IP header can be aligned by 2412 * shifting the start of the packet by 2 bytes. Drivers should do this 2413 * with: 2414 * 2415 * skb_reserve(skb, NET_IP_ALIGN); 2416 * 2417 * The downside to this alignment of the IP header is that the DMA is now 2418 * unaligned. On some architectures the cost of an unaligned DMA is high 2419 * and this cost outweighs the gains made by aligning the IP header. 2420 * 2421 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2422 * to be overridden. 2423 */ 2424 #ifndef NET_IP_ALIGN 2425 #define NET_IP_ALIGN 2 2426 #endif 2427 2428 /* 2429 * The networking layer reserves some headroom in skb data (via 2430 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2431 * the header has to grow. In the default case, if the header has to grow 2432 * 32 bytes or less we avoid the reallocation. 2433 * 2434 * Unfortunately this headroom changes the DMA alignment of the resulting 2435 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2436 * on some architectures. An architecture can override this value, 2437 * perhaps setting it to a cacheline in size (since that will maintain 2438 * cacheline alignment of the DMA). It must be a power of 2. 2439 * 2440 * Various parts of the networking layer expect at least 32 bytes of 2441 * headroom, you should not reduce this. 2442 * 2443 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2444 * to reduce average number of cache lines per packet. 2445 * get_rps_cpus() for example only access one 64 bytes aligned block : 2446 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2447 */ 2448 #ifndef NET_SKB_PAD 2449 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2450 #endif 2451 2452 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2453 2454 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2455 { 2456 if (unlikely(skb_is_nonlinear(skb))) { 2457 WARN_ON(1); 2458 return; 2459 } 2460 skb->len = len; 2461 skb_set_tail_pointer(skb, len); 2462 } 2463 2464 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2465 { 2466 __skb_set_length(skb, len); 2467 } 2468 2469 void skb_trim(struct sk_buff *skb, unsigned int len); 2470 2471 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2472 { 2473 if (skb->data_len) 2474 return ___pskb_trim(skb, len); 2475 __skb_trim(skb, len); 2476 return 0; 2477 } 2478 2479 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2480 { 2481 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2482 } 2483 2484 /** 2485 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2486 * @skb: buffer to alter 2487 * @len: new length 2488 * 2489 * This is identical to pskb_trim except that the caller knows that 2490 * the skb is not cloned so we should never get an error due to out- 2491 * of-memory. 2492 */ 2493 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2494 { 2495 int err = pskb_trim(skb, len); 2496 BUG_ON(err); 2497 } 2498 2499 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2500 { 2501 unsigned int diff = len - skb->len; 2502 2503 if (skb_tailroom(skb) < diff) { 2504 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2505 GFP_ATOMIC); 2506 if (ret) 2507 return ret; 2508 } 2509 __skb_set_length(skb, len); 2510 return 0; 2511 } 2512 2513 /** 2514 * skb_orphan - orphan a buffer 2515 * @skb: buffer to orphan 2516 * 2517 * If a buffer currently has an owner then we call the owner's 2518 * destructor function and make the @skb unowned. The buffer continues 2519 * to exist but is no longer charged to its former owner. 2520 */ 2521 static inline void skb_orphan(struct sk_buff *skb) 2522 { 2523 if (skb->destructor) { 2524 skb->destructor(skb); 2525 skb->destructor = NULL; 2526 skb->sk = NULL; 2527 } else { 2528 BUG_ON(skb->sk); 2529 } 2530 } 2531 2532 /** 2533 * skb_orphan_frags - orphan the frags contained in a buffer 2534 * @skb: buffer to orphan frags from 2535 * @gfp_mask: allocation mask for replacement pages 2536 * 2537 * For each frag in the SKB which needs a destructor (i.e. has an 2538 * owner) create a copy of that frag and release the original 2539 * page by calling the destructor. 2540 */ 2541 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2542 { 2543 if (likely(!skb_zcopy(skb))) 2544 return 0; 2545 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2546 return 0; 2547 return skb_copy_ubufs(skb, gfp_mask); 2548 } 2549 2550 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2551 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2552 { 2553 if (likely(!skb_zcopy(skb))) 2554 return 0; 2555 return skb_copy_ubufs(skb, gfp_mask); 2556 } 2557 2558 /** 2559 * __skb_queue_purge - empty a list 2560 * @list: list to empty 2561 * 2562 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2563 * the list and one reference dropped. This function does not take the 2564 * list lock and the caller must hold the relevant locks to use it. 2565 */ 2566 void skb_queue_purge(struct sk_buff_head *list); 2567 static inline void __skb_queue_purge(struct sk_buff_head *list) 2568 { 2569 struct sk_buff *skb; 2570 while ((skb = __skb_dequeue(list)) != NULL) 2571 kfree_skb(skb); 2572 } 2573 2574 void skb_rbtree_purge(struct rb_root *root); 2575 2576 void *netdev_alloc_frag(unsigned int fragsz); 2577 2578 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2579 gfp_t gfp_mask); 2580 2581 /** 2582 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2583 * @dev: network device to receive on 2584 * @length: length to allocate 2585 * 2586 * Allocate a new &sk_buff and assign it a usage count of one. The 2587 * buffer has unspecified headroom built in. Users should allocate 2588 * the headroom they think they need without accounting for the 2589 * built in space. The built in space is used for optimisations. 2590 * 2591 * %NULL is returned if there is no free memory. Although this function 2592 * allocates memory it can be called from an interrupt. 2593 */ 2594 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2595 unsigned int length) 2596 { 2597 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2598 } 2599 2600 /* legacy helper around __netdev_alloc_skb() */ 2601 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2602 gfp_t gfp_mask) 2603 { 2604 return __netdev_alloc_skb(NULL, length, gfp_mask); 2605 } 2606 2607 /* legacy helper around netdev_alloc_skb() */ 2608 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2609 { 2610 return netdev_alloc_skb(NULL, length); 2611 } 2612 2613 2614 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2615 unsigned int length, gfp_t gfp) 2616 { 2617 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2618 2619 if (NET_IP_ALIGN && skb) 2620 skb_reserve(skb, NET_IP_ALIGN); 2621 return skb; 2622 } 2623 2624 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2625 unsigned int length) 2626 { 2627 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2628 } 2629 2630 static inline void skb_free_frag(void *addr) 2631 { 2632 page_frag_free(addr); 2633 } 2634 2635 void *napi_alloc_frag(unsigned int fragsz); 2636 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2637 unsigned int length, gfp_t gfp_mask); 2638 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2639 unsigned int length) 2640 { 2641 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2642 } 2643 void napi_consume_skb(struct sk_buff *skb, int budget); 2644 2645 void __kfree_skb_flush(void); 2646 void __kfree_skb_defer(struct sk_buff *skb); 2647 2648 /** 2649 * __dev_alloc_pages - allocate page for network Rx 2650 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2651 * @order: size of the allocation 2652 * 2653 * Allocate a new page. 2654 * 2655 * %NULL is returned if there is no free memory. 2656 */ 2657 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2658 unsigned int order) 2659 { 2660 /* This piece of code contains several assumptions. 2661 * 1. This is for device Rx, therefor a cold page is preferred. 2662 * 2. The expectation is the user wants a compound page. 2663 * 3. If requesting a order 0 page it will not be compound 2664 * due to the check to see if order has a value in prep_new_page 2665 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2666 * code in gfp_to_alloc_flags that should be enforcing this. 2667 */ 2668 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2669 2670 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2671 } 2672 2673 static inline struct page *dev_alloc_pages(unsigned int order) 2674 { 2675 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2676 } 2677 2678 /** 2679 * __dev_alloc_page - allocate a page for network Rx 2680 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2681 * 2682 * Allocate a new page. 2683 * 2684 * %NULL is returned if there is no free memory. 2685 */ 2686 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2687 { 2688 return __dev_alloc_pages(gfp_mask, 0); 2689 } 2690 2691 static inline struct page *dev_alloc_page(void) 2692 { 2693 return dev_alloc_pages(0); 2694 } 2695 2696 /** 2697 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2698 * @page: The page that was allocated from skb_alloc_page 2699 * @skb: The skb that may need pfmemalloc set 2700 */ 2701 static inline void skb_propagate_pfmemalloc(struct page *page, 2702 struct sk_buff *skb) 2703 { 2704 if (page_is_pfmemalloc(page)) 2705 skb->pfmemalloc = true; 2706 } 2707 2708 /** 2709 * skb_frag_page - retrieve the page referred to by a paged fragment 2710 * @frag: the paged fragment 2711 * 2712 * Returns the &struct page associated with @frag. 2713 */ 2714 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2715 { 2716 return frag->page.p; 2717 } 2718 2719 /** 2720 * __skb_frag_ref - take an addition reference on a paged fragment. 2721 * @frag: the paged fragment 2722 * 2723 * Takes an additional reference on the paged fragment @frag. 2724 */ 2725 static inline void __skb_frag_ref(skb_frag_t *frag) 2726 { 2727 get_page(skb_frag_page(frag)); 2728 } 2729 2730 /** 2731 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2732 * @skb: the buffer 2733 * @f: the fragment offset. 2734 * 2735 * Takes an additional reference on the @f'th paged fragment of @skb. 2736 */ 2737 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2738 { 2739 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2740 } 2741 2742 /** 2743 * __skb_frag_unref - release a reference on a paged fragment. 2744 * @frag: the paged fragment 2745 * 2746 * Releases a reference on the paged fragment @frag. 2747 */ 2748 static inline void __skb_frag_unref(skb_frag_t *frag) 2749 { 2750 put_page(skb_frag_page(frag)); 2751 } 2752 2753 /** 2754 * skb_frag_unref - release a reference on a paged fragment of an skb. 2755 * @skb: the buffer 2756 * @f: the fragment offset 2757 * 2758 * Releases a reference on the @f'th paged fragment of @skb. 2759 */ 2760 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2761 { 2762 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2763 } 2764 2765 /** 2766 * skb_frag_address - gets the address of the data contained in a paged fragment 2767 * @frag: the paged fragment buffer 2768 * 2769 * Returns the address of the data within @frag. The page must already 2770 * be mapped. 2771 */ 2772 static inline void *skb_frag_address(const skb_frag_t *frag) 2773 { 2774 return page_address(skb_frag_page(frag)) + frag->page_offset; 2775 } 2776 2777 /** 2778 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2779 * @frag: the paged fragment buffer 2780 * 2781 * Returns the address of the data within @frag. Checks that the page 2782 * is mapped and returns %NULL otherwise. 2783 */ 2784 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2785 { 2786 void *ptr = page_address(skb_frag_page(frag)); 2787 if (unlikely(!ptr)) 2788 return NULL; 2789 2790 return ptr + frag->page_offset; 2791 } 2792 2793 /** 2794 * __skb_frag_set_page - sets the page contained in a paged fragment 2795 * @frag: the paged fragment 2796 * @page: the page to set 2797 * 2798 * Sets the fragment @frag to contain @page. 2799 */ 2800 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2801 { 2802 frag->page.p = page; 2803 } 2804 2805 /** 2806 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2807 * @skb: the buffer 2808 * @f: the fragment offset 2809 * @page: the page to set 2810 * 2811 * Sets the @f'th fragment of @skb to contain @page. 2812 */ 2813 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2814 struct page *page) 2815 { 2816 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2817 } 2818 2819 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2820 2821 /** 2822 * skb_frag_dma_map - maps a paged fragment via the DMA API 2823 * @dev: the device to map the fragment to 2824 * @frag: the paged fragment to map 2825 * @offset: the offset within the fragment (starting at the 2826 * fragment's own offset) 2827 * @size: the number of bytes to map 2828 * @dir: the direction of the mapping (``PCI_DMA_*``) 2829 * 2830 * Maps the page associated with @frag to @device. 2831 */ 2832 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2833 const skb_frag_t *frag, 2834 size_t offset, size_t size, 2835 enum dma_data_direction dir) 2836 { 2837 return dma_map_page(dev, skb_frag_page(frag), 2838 frag->page_offset + offset, size, dir); 2839 } 2840 2841 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2842 gfp_t gfp_mask) 2843 { 2844 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2845 } 2846 2847 2848 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2849 gfp_t gfp_mask) 2850 { 2851 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2852 } 2853 2854 2855 /** 2856 * skb_clone_writable - is the header of a clone writable 2857 * @skb: buffer to check 2858 * @len: length up to which to write 2859 * 2860 * Returns true if modifying the header part of the cloned buffer 2861 * does not requires the data to be copied. 2862 */ 2863 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2864 { 2865 return !skb_header_cloned(skb) && 2866 skb_headroom(skb) + len <= skb->hdr_len; 2867 } 2868 2869 static inline int skb_try_make_writable(struct sk_buff *skb, 2870 unsigned int write_len) 2871 { 2872 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2873 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2874 } 2875 2876 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2877 int cloned) 2878 { 2879 int delta = 0; 2880 2881 if (headroom > skb_headroom(skb)) 2882 delta = headroom - skb_headroom(skb); 2883 2884 if (delta || cloned) 2885 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2886 GFP_ATOMIC); 2887 return 0; 2888 } 2889 2890 /** 2891 * skb_cow - copy header of skb when it is required 2892 * @skb: buffer to cow 2893 * @headroom: needed headroom 2894 * 2895 * If the skb passed lacks sufficient headroom or its data part 2896 * is shared, data is reallocated. If reallocation fails, an error 2897 * is returned and original skb is not changed. 2898 * 2899 * The result is skb with writable area skb->head...skb->tail 2900 * and at least @headroom of space at head. 2901 */ 2902 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2903 { 2904 return __skb_cow(skb, headroom, skb_cloned(skb)); 2905 } 2906 2907 /** 2908 * skb_cow_head - skb_cow but only making the head writable 2909 * @skb: buffer to cow 2910 * @headroom: needed headroom 2911 * 2912 * This function is identical to skb_cow except that we replace the 2913 * skb_cloned check by skb_header_cloned. It should be used when 2914 * you only need to push on some header and do not need to modify 2915 * the data. 2916 */ 2917 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2918 { 2919 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2920 } 2921 2922 /** 2923 * skb_padto - pad an skbuff up to a minimal size 2924 * @skb: buffer to pad 2925 * @len: minimal length 2926 * 2927 * Pads up a buffer to ensure the trailing bytes exist and are 2928 * blanked. If the buffer already contains sufficient data it 2929 * is untouched. Otherwise it is extended. Returns zero on 2930 * success. The skb is freed on error. 2931 */ 2932 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2933 { 2934 unsigned int size = skb->len; 2935 if (likely(size >= len)) 2936 return 0; 2937 return skb_pad(skb, len - size); 2938 } 2939 2940 /** 2941 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2942 * @skb: buffer to pad 2943 * @len: minimal length 2944 * @free_on_error: free buffer on error 2945 * 2946 * Pads up a buffer to ensure the trailing bytes exist and are 2947 * blanked. If the buffer already contains sufficient data it 2948 * is untouched. Otherwise it is extended. Returns zero on 2949 * success. The skb is freed on error if @free_on_error is true. 2950 */ 2951 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 2952 bool free_on_error) 2953 { 2954 unsigned int size = skb->len; 2955 2956 if (unlikely(size < len)) { 2957 len -= size; 2958 if (__skb_pad(skb, len, free_on_error)) 2959 return -ENOMEM; 2960 __skb_put(skb, len); 2961 } 2962 return 0; 2963 } 2964 2965 /** 2966 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2967 * @skb: buffer to pad 2968 * @len: minimal length 2969 * 2970 * Pads up a buffer to ensure the trailing bytes exist and are 2971 * blanked. If the buffer already contains sufficient data it 2972 * is untouched. Otherwise it is extended. Returns zero on 2973 * success. The skb is freed on error. 2974 */ 2975 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2976 { 2977 return __skb_put_padto(skb, len, true); 2978 } 2979 2980 static inline int skb_add_data(struct sk_buff *skb, 2981 struct iov_iter *from, int copy) 2982 { 2983 const int off = skb->len; 2984 2985 if (skb->ip_summed == CHECKSUM_NONE) { 2986 __wsum csum = 0; 2987 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 2988 &csum, from)) { 2989 skb->csum = csum_block_add(skb->csum, csum, off); 2990 return 0; 2991 } 2992 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 2993 return 0; 2994 2995 __skb_trim(skb, off); 2996 return -EFAULT; 2997 } 2998 2999 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3000 const struct page *page, int off) 3001 { 3002 if (skb_zcopy(skb)) 3003 return false; 3004 if (i) { 3005 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3006 3007 return page == skb_frag_page(frag) && 3008 off == frag->page_offset + skb_frag_size(frag); 3009 } 3010 return false; 3011 } 3012 3013 static inline int __skb_linearize(struct sk_buff *skb) 3014 { 3015 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3016 } 3017 3018 /** 3019 * skb_linearize - convert paged skb to linear one 3020 * @skb: buffer to linarize 3021 * 3022 * If there is no free memory -ENOMEM is returned, otherwise zero 3023 * is returned and the old skb data released. 3024 */ 3025 static inline int skb_linearize(struct sk_buff *skb) 3026 { 3027 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3028 } 3029 3030 /** 3031 * skb_has_shared_frag - can any frag be overwritten 3032 * @skb: buffer to test 3033 * 3034 * Return true if the skb has at least one frag that might be modified 3035 * by an external entity (as in vmsplice()/sendfile()) 3036 */ 3037 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3038 { 3039 return skb_is_nonlinear(skb) && 3040 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3041 } 3042 3043 /** 3044 * skb_linearize_cow - make sure skb is linear and writable 3045 * @skb: buffer to process 3046 * 3047 * If there is no free memory -ENOMEM is returned, otherwise zero 3048 * is returned and the old skb data released. 3049 */ 3050 static inline int skb_linearize_cow(struct sk_buff *skb) 3051 { 3052 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3053 __skb_linearize(skb) : 0; 3054 } 3055 3056 static __always_inline void 3057 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3058 unsigned int off) 3059 { 3060 if (skb->ip_summed == CHECKSUM_COMPLETE) 3061 skb->csum = csum_block_sub(skb->csum, 3062 csum_partial(start, len, 0), off); 3063 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3064 skb_checksum_start_offset(skb) < 0) 3065 skb->ip_summed = CHECKSUM_NONE; 3066 } 3067 3068 /** 3069 * skb_postpull_rcsum - update checksum for received skb after pull 3070 * @skb: buffer to update 3071 * @start: start of data before pull 3072 * @len: length of data pulled 3073 * 3074 * After doing a pull on a received packet, you need to call this to 3075 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3076 * CHECKSUM_NONE so that it can be recomputed from scratch. 3077 */ 3078 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3079 const void *start, unsigned int len) 3080 { 3081 __skb_postpull_rcsum(skb, start, len, 0); 3082 } 3083 3084 static __always_inline void 3085 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3086 unsigned int off) 3087 { 3088 if (skb->ip_summed == CHECKSUM_COMPLETE) 3089 skb->csum = csum_block_add(skb->csum, 3090 csum_partial(start, len, 0), off); 3091 } 3092 3093 /** 3094 * skb_postpush_rcsum - update checksum for received skb after push 3095 * @skb: buffer to update 3096 * @start: start of data after push 3097 * @len: length of data pushed 3098 * 3099 * After doing a push on a received packet, you need to call this to 3100 * update the CHECKSUM_COMPLETE checksum. 3101 */ 3102 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3103 const void *start, unsigned int len) 3104 { 3105 __skb_postpush_rcsum(skb, start, len, 0); 3106 } 3107 3108 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3109 3110 /** 3111 * skb_push_rcsum - push skb and update receive checksum 3112 * @skb: buffer to update 3113 * @len: length of data pulled 3114 * 3115 * This function performs an skb_push on the packet and updates 3116 * the CHECKSUM_COMPLETE checksum. It should be used on 3117 * receive path processing instead of skb_push unless you know 3118 * that the checksum difference is zero (e.g., a valid IP header) 3119 * or you are setting ip_summed to CHECKSUM_NONE. 3120 */ 3121 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3122 { 3123 skb_push(skb, len); 3124 skb_postpush_rcsum(skb, skb->data, len); 3125 return skb->data; 3126 } 3127 3128 /** 3129 * pskb_trim_rcsum - trim received skb and update checksum 3130 * @skb: buffer to trim 3131 * @len: new length 3132 * 3133 * This is exactly the same as pskb_trim except that it ensures the 3134 * checksum of received packets are still valid after the operation. 3135 */ 3136 3137 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3138 { 3139 if (likely(len >= skb->len)) 3140 return 0; 3141 if (skb->ip_summed == CHECKSUM_COMPLETE) 3142 skb->ip_summed = CHECKSUM_NONE; 3143 return __pskb_trim(skb, len); 3144 } 3145 3146 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3147 { 3148 if (skb->ip_summed == CHECKSUM_COMPLETE) 3149 skb->ip_summed = CHECKSUM_NONE; 3150 __skb_trim(skb, len); 3151 return 0; 3152 } 3153 3154 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3155 { 3156 if (skb->ip_summed == CHECKSUM_COMPLETE) 3157 skb->ip_summed = CHECKSUM_NONE; 3158 return __skb_grow(skb, len); 3159 } 3160 3161 #define skb_queue_walk(queue, skb) \ 3162 for (skb = (queue)->next; \ 3163 skb != (struct sk_buff *)(queue); \ 3164 skb = skb->next) 3165 3166 #define skb_queue_walk_safe(queue, skb, tmp) \ 3167 for (skb = (queue)->next, tmp = skb->next; \ 3168 skb != (struct sk_buff *)(queue); \ 3169 skb = tmp, tmp = skb->next) 3170 3171 #define skb_queue_walk_from(queue, skb) \ 3172 for (; skb != (struct sk_buff *)(queue); \ 3173 skb = skb->next) 3174 3175 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3176 for (tmp = skb->next; \ 3177 skb != (struct sk_buff *)(queue); \ 3178 skb = tmp, tmp = skb->next) 3179 3180 #define skb_queue_reverse_walk(queue, skb) \ 3181 for (skb = (queue)->prev; \ 3182 skb != (struct sk_buff *)(queue); \ 3183 skb = skb->prev) 3184 3185 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3186 for (skb = (queue)->prev, tmp = skb->prev; \ 3187 skb != (struct sk_buff *)(queue); \ 3188 skb = tmp, tmp = skb->prev) 3189 3190 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3191 for (tmp = skb->prev; \ 3192 skb != (struct sk_buff *)(queue); \ 3193 skb = tmp, tmp = skb->prev) 3194 3195 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3196 { 3197 return skb_shinfo(skb)->frag_list != NULL; 3198 } 3199 3200 static inline void skb_frag_list_init(struct sk_buff *skb) 3201 { 3202 skb_shinfo(skb)->frag_list = NULL; 3203 } 3204 3205 #define skb_walk_frags(skb, iter) \ 3206 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3207 3208 3209 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3210 const struct sk_buff *skb); 3211 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3212 struct sk_buff_head *queue, 3213 unsigned int flags, 3214 void (*destructor)(struct sock *sk, 3215 struct sk_buff *skb), 3216 int *peeked, int *off, int *err, 3217 struct sk_buff **last); 3218 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3219 void (*destructor)(struct sock *sk, 3220 struct sk_buff *skb), 3221 int *peeked, int *off, int *err, 3222 struct sk_buff **last); 3223 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3224 void (*destructor)(struct sock *sk, 3225 struct sk_buff *skb), 3226 int *peeked, int *off, int *err); 3227 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3228 int *err); 3229 unsigned int datagram_poll(struct file *file, struct socket *sock, 3230 struct poll_table_struct *wait); 3231 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3232 struct iov_iter *to, int size); 3233 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3234 struct msghdr *msg, int size) 3235 { 3236 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3237 } 3238 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3239 struct msghdr *msg); 3240 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3241 struct iov_iter *from, int len); 3242 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3243 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3244 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3245 static inline void skb_free_datagram_locked(struct sock *sk, 3246 struct sk_buff *skb) 3247 { 3248 __skb_free_datagram_locked(sk, skb, 0); 3249 } 3250 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3251 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3252 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3253 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3254 int len, __wsum csum); 3255 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3256 struct pipe_inode_info *pipe, unsigned int len, 3257 unsigned int flags); 3258 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3259 int len); 3260 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3261 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3262 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3263 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3264 int len, int hlen); 3265 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3266 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3267 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3268 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3269 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3270 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3271 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3272 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3273 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3274 int skb_vlan_pop(struct sk_buff *skb); 3275 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3276 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3277 gfp_t gfp); 3278 3279 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3280 { 3281 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3282 } 3283 3284 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3285 { 3286 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3287 } 3288 3289 struct skb_checksum_ops { 3290 __wsum (*update)(const void *mem, int len, __wsum wsum); 3291 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3292 }; 3293 3294 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3295 3296 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3297 __wsum csum, const struct skb_checksum_ops *ops); 3298 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3299 __wsum csum); 3300 3301 static inline void * __must_check 3302 __skb_header_pointer(const struct sk_buff *skb, int offset, 3303 int len, void *data, int hlen, void *buffer) 3304 { 3305 if (hlen - offset >= len) 3306 return data + offset; 3307 3308 if (!skb || 3309 skb_copy_bits(skb, offset, buffer, len) < 0) 3310 return NULL; 3311 3312 return buffer; 3313 } 3314 3315 static inline void * __must_check 3316 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3317 { 3318 return __skb_header_pointer(skb, offset, len, skb->data, 3319 skb_headlen(skb), buffer); 3320 } 3321 3322 /** 3323 * skb_needs_linearize - check if we need to linearize a given skb 3324 * depending on the given device features. 3325 * @skb: socket buffer to check 3326 * @features: net device features 3327 * 3328 * Returns true if either: 3329 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3330 * 2. skb is fragmented and the device does not support SG. 3331 */ 3332 static inline bool skb_needs_linearize(struct sk_buff *skb, 3333 netdev_features_t features) 3334 { 3335 return skb_is_nonlinear(skb) && 3336 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3337 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3338 } 3339 3340 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3341 void *to, 3342 const unsigned int len) 3343 { 3344 memcpy(to, skb->data, len); 3345 } 3346 3347 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3348 const int offset, void *to, 3349 const unsigned int len) 3350 { 3351 memcpy(to, skb->data + offset, len); 3352 } 3353 3354 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3355 const void *from, 3356 const unsigned int len) 3357 { 3358 memcpy(skb->data, from, len); 3359 } 3360 3361 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3362 const int offset, 3363 const void *from, 3364 const unsigned int len) 3365 { 3366 memcpy(skb->data + offset, from, len); 3367 } 3368 3369 void skb_init(void); 3370 3371 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3372 { 3373 return skb->tstamp; 3374 } 3375 3376 /** 3377 * skb_get_timestamp - get timestamp from a skb 3378 * @skb: skb to get stamp from 3379 * @stamp: pointer to struct timeval to store stamp in 3380 * 3381 * Timestamps are stored in the skb as offsets to a base timestamp. 3382 * This function converts the offset back to a struct timeval and stores 3383 * it in stamp. 3384 */ 3385 static inline void skb_get_timestamp(const struct sk_buff *skb, 3386 struct timeval *stamp) 3387 { 3388 *stamp = ktime_to_timeval(skb->tstamp); 3389 } 3390 3391 static inline void skb_get_timestampns(const struct sk_buff *skb, 3392 struct timespec *stamp) 3393 { 3394 *stamp = ktime_to_timespec(skb->tstamp); 3395 } 3396 3397 static inline void __net_timestamp(struct sk_buff *skb) 3398 { 3399 skb->tstamp = ktime_get_real(); 3400 } 3401 3402 static inline ktime_t net_timedelta(ktime_t t) 3403 { 3404 return ktime_sub(ktime_get_real(), t); 3405 } 3406 3407 static inline ktime_t net_invalid_timestamp(void) 3408 { 3409 return 0; 3410 } 3411 3412 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3413 { 3414 return skb_shinfo(skb)->meta_len; 3415 } 3416 3417 static inline void *skb_metadata_end(const struct sk_buff *skb) 3418 { 3419 return skb_mac_header(skb); 3420 } 3421 3422 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3423 const struct sk_buff *skb_b, 3424 u8 meta_len) 3425 { 3426 const void *a = skb_metadata_end(skb_a); 3427 const void *b = skb_metadata_end(skb_b); 3428 /* Using more efficient varaiant than plain call to memcmp(). */ 3429 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3430 u64 diffs = 0; 3431 3432 switch (meta_len) { 3433 #define __it(x, op) (x -= sizeof(u##op)) 3434 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3435 case 32: diffs |= __it_diff(a, b, 64); 3436 case 24: diffs |= __it_diff(a, b, 64); 3437 case 16: diffs |= __it_diff(a, b, 64); 3438 case 8: diffs |= __it_diff(a, b, 64); 3439 break; 3440 case 28: diffs |= __it_diff(a, b, 64); 3441 case 20: diffs |= __it_diff(a, b, 64); 3442 case 12: diffs |= __it_diff(a, b, 64); 3443 case 4: diffs |= __it_diff(a, b, 32); 3444 break; 3445 } 3446 return diffs; 3447 #else 3448 return memcmp(a - meta_len, b - meta_len, meta_len); 3449 #endif 3450 } 3451 3452 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3453 const struct sk_buff *skb_b) 3454 { 3455 u8 len_a = skb_metadata_len(skb_a); 3456 u8 len_b = skb_metadata_len(skb_b); 3457 3458 if (!(len_a | len_b)) 3459 return false; 3460 3461 return len_a != len_b ? 3462 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3463 } 3464 3465 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3466 { 3467 skb_shinfo(skb)->meta_len = meta_len; 3468 } 3469 3470 static inline void skb_metadata_clear(struct sk_buff *skb) 3471 { 3472 skb_metadata_set(skb, 0); 3473 } 3474 3475 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3476 3477 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3478 3479 void skb_clone_tx_timestamp(struct sk_buff *skb); 3480 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3481 3482 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3483 3484 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3485 { 3486 } 3487 3488 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3489 { 3490 return false; 3491 } 3492 3493 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3494 3495 /** 3496 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3497 * 3498 * PHY drivers may accept clones of transmitted packets for 3499 * timestamping via their phy_driver.txtstamp method. These drivers 3500 * must call this function to return the skb back to the stack with a 3501 * timestamp. 3502 * 3503 * @skb: clone of the the original outgoing packet 3504 * @hwtstamps: hardware time stamps 3505 * 3506 */ 3507 void skb_complete_tx_timestamp(struct sk_buff *skb, 3508 struct skb_shared_hwtstamps *hwtstamps); 3509 3510 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3511 struct skb_shared_hwtstamps *hwtstamps, 3512 struct sock *sk, int tstype); 3513 3514 /** 3515 * skb_tstamp_tx - queue clone of skb with send time stamps 3516 * @orig_skb: the original outgoing packet 3517 * @hwtstamps: hardware time stamps, may be NULL if not available 3518 * 3519 * If the skb has a socket associated, then this function clones the 3520 * skb (thus sharing the actual data and optional structures), stores 3521 * the optional hardware time stamping information (if non NULL) or 3522 * generates a software time stamp (otherwise), then queues the clone 3523 * to the error queue of the socket. Errors are silently ignored. 3524 */ 3525 void skb_tstamp_tx(struct sk_buff *orig_skb, 3526 struct skb_shared_hwtstamps *hwtstamps); 3527 3528 /** 3529 * skb_tx_timestamp() - Driver hook for transmit timestamping 3530 * 3531 * Ethernet MAC Drivers should call this function in their hard_xmit() 3532 * function immediately before giving the sk_buff to the MAC hardware. 3533 * 3534 * Specifically, one should make absolutely sure that this function is 3535 * called before TX completion of this packet can trigger. Otherwise 3536 * the packet could potentially already be freed. 3537 * 3538 * @skb: A socket buffer. 3539 */ 3540 static inline void skb_tx_timestamp(struct sk_buff *skb) 3541 { 3542 skb_clone_tx_timestamp(skb); 3543 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3544 skb_tstamp_tx(skb, NULL); 3545 } 3546 3547 /** 3548 * skb_complete_wifi_ack - deliver skb with wifi status 3549 * 3550 * @skb: the original outgoing packet 3551 * @acked: ack status 3552 * 3553 */ 3554 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3555 3556 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3557 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3558 3559 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3560 { 3561 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3562 skb->csum_valid || 3563 (skb->ip_summed == CHECKSUM_PARTIAL && 3564 skb_checksum_start_offset(skb) >= 0)); 3565 } 3566 3567 /** 3568 * skb_checksum_complete - Calculate checksum of an entire packet 3569 * @skb: packet to process 3570 * 3571 * This function calculates the checksum over the entire packet plus 3572 * the value of skb->csum. The latter can be used to supply the 3573 * checksum of a pseudo header as used by TCP/UDP. It returns the 3574 * checksum. 3575 * 3576 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3577 * this function can be used to verify that checksum on received 3578 * packets. In that case the function should return zero if the 3579 * checksum is correct. In particular, this function will return zero 3580 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3581 * hardware has already verified the correctness of the checksum. 3582 */ 3583 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3584 { 3585 return skb_csum_unnecessary(skb) ? 3586 0 : __skb_checksum_complete(skb); 3587 } 3588 3589 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3590 { 3591 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3592 if (skb->csum_level == 0) 3593 skb->ip_summed = CHECKSUM_NONE; 3594 else 3595 skb->csum_level--; 3596 } 3597 } 3598 3599 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3600 { 3601 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3602 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3603 skb->csum_level++; 3604 } else if (skb->ip_summed == CHECKSUM_NONE) { 3605 skb->ip_summed = CHECKSUM_UNNECESSARY; 3606 skb->csum_level = 0; 3607 } 3608 } 3609 3610 /* Check if we need to perform checksum complete validation. 3611 * 3612 * Returns true if checksum complete is needed, false otherwise 3613 * (either checksum is unnecessary or zero checksum is allowed). 3614 */ 3615 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3616 bool zero_okay, 3617 __sum16 check) 3618 { 3619 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3620 skb->csum_valid = 1; 3621 __skb_decr_checksum_unnecessary(skb); 3622 return false; 3623 } 3624 3625 return true; 3626 } 3627 3628 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3629 * in checksum_init. 3630 */ 3631 #define CHECKSUM_BREAK 76 3632 3633 /* Unset checksum-complete 3634 * 3635 * Unset checksum complete can be done when packet is being modified 3636 * (uncompressed for instance) and checksum-complete value is 3637 * invalidated. 3638 */ 3639 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3640 { 3641 if (skb->ip_summed == CHECKSUM_COMPLETE) 3642 skb->ip_summed = CHECKSUM_NONE; 3643 } 3644 3645 /* Validate (init) checksum based on checksum complete. 3646 * 3647 * Return values: 3648 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3649 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3650 * checksum is stored in skb->csum for use in __skb_checksum_complete 3651 * non-zero: value of invalid checksum 3652 * 3653 */ 3654 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3655 bool complete, 3656 __wsum psum) 3657 { 3658 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3659 if (!csum_fold(csum_add(psum, skb->csum))) { 3660 skb->csum_valid = 1; 3661 return 0; 3662 } 3663 } 3664 3665 skb->csum = psum; 3666 3667 if (complete || skb->len <= CHECKSUM_BREAK) { 3668 __sum16 csum; 3669 3670 csum = __skb_checksum_complete(skb); 3671 skb->csum_valid = !csum; 3672 return csum; 3673 } 3674 3675 return 0; 3676 } 3677 3678 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3679 { 3680 return 0; 3681 } 3682 3683 /* Perform checksum validate (init). Note that this is a macro since we only 3684 * want to calculate the pseudo header which is an input function if necessary. 3685 * First we try to validate without any computation (checksum unnecessary) and 3686 * then calculate based on checksum complete calling the function to compute 3687 * pseudo header. 3688 * 3689 * Return values: 3690 * 0: checksum is validated or try to in skb_checksum_complete 3691 * non-zero: value of invalid checksum 3692 */ 3693 #define __skb_checksum_validate(skb, proto, complete, \ 3694 zero_okay, check, compute_pseudo) \ 3695 ({ \ 3696 __sum16 __ret = 0; \ 3697 skb->csum_valid = 0; \ 3698 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3699 __ret = __skb_checksum_validate_complete(skb, \ 3700 complete, compute_pseudo(skb, proto)); \ 3701 __ret; \ 3702 }) 3703 3704 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3705 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3706 3707 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3708 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3709 3710 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3711 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3712 3713 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3714 compute_pseudo) \ 3715 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3716 3717 #define skb_checksum_simple_validate(skb) \ 3718 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3719 3720 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3721 { 3722 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3723 } 3724 3725 static inline void __skb_checksum_convert(struct sk_buff *skb, 3726 __sum16 check, __wsum pseudo) 3727 { 3728 skb->csum = ~pseudo; 3729 skb->ip_summed = CHECKSUM_COMPLETE; 3730 } 3731 3732 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3733 do { \ 3734 if (__skb_checksum_convert_check(skb)) \ 3735 __skb_checksum_convert(skb, check, \ 3736 compute_pseudo(skb, proto)); \ 3737 } while (0) 3738 3739 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3740 u16 start, u16 offset) 3741 { 3742 skb->ip_summed = CHECKSUM_PARTIAL; 3743 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3744 skb->csum_offset = offset - start; 3745 } 3746 3747 /* Update skbuf and packet to reflect the remote checksum offload operation. 3748 * When called, ptr indicates the starting point for skb->csum when 3749 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3750 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3751 */ 3752 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3753 int start, int offset, bool nopartial) 3754 { 3755 __wsum delta; 3756 3757 if (!nopartial) { 3758 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3759 return; 3760 } 3761 3762 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3763 __skb_checksum_complete(skb); 3764 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3765 } 3766 3767 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3768 3769 /* Adjust skb->csum since we changed the packet */ 3770 skb->csum = csum_add(skb->csum, delta); 3771 } 3772 3773 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3774 { 3775 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3776 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3777 #else 3778 return NULL; 3779 #endif 3780 } 3781 3782 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3783 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3784 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3785 { 3786 if (nfct && atomic_dec_and_test(&nfct->use)) 3787 nf_conntrack_destroy(nfct); 3788 } 3789 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3790 { 3791 if (nfct) 3792 atomic_inc(&nfct->use); 3793 } 3794 #endif 3795 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3796 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3797 { 3798 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3799 kfree(nf_bridge); 3800 } 3801 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3802 { 3803 if (nf_bridge) 3804 refcount_inc(&nf_bridge->use); 3805 } 3806 #endif /* CONFIG_BRIDGE_NETFILTER */ 3807 static inline void nf_reset(struct sk_buff *skb) 3808 { 3809 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3810 nf_conntrack_put(skb_nfct(skb)); 3811 skb->_nfct = 0; 3812 #endif 3813 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3814 nf_bridge_put(skb->nf_bridge); 3815 skb->nf_bridge = NULL; 3816 #endif 3817 } 3818 3819 static inline void nf_reset_trace(struct sk_buff *skb) 3820 { 3821 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3822 skb->nf_trace = 0; 3823 #endif 3824 } 3825 3826 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3827 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3828 bool copy) 3829 { 3830 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3831 dst->_nfct = src->_nfct; 3832 nf_conntrack_get(skb_nfct(src)); 3833 #endif 3834 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3835 dst->nf_bridge = src->nf_bridge; 3836 nf_bridge_get(src->nf_bridge); 3837 #endif 3838 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3839 if (copy) 3840 dst->nf_trace = src->nf_trace; 3841 #endif 3842 } 3843 3844 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3845 { 3846 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3847 nf_conntrack_put(skb_nfct(dst)); 3848 #endif 3849 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3850 nf_bridge_put(dst->nf_bridge); 3851 #endif 3852 __nf_copy(dst, src, true); 3853 } 3854 3855 #ifdef CONFIG_NETWORK_SECMARK 3856 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3857 { 3858 to->secmark = from->secmark; 3859 } 3860 3861 static inline void skb_init_secmark(struct sk_buff *skb) 3862 { 3863 skb->secmark = 0; 3864 } 3865 #else 3866 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3867 { } 3868 3869 static inline void skb_init_secmark(struct sk_buff *skb) 3870 { } 3871 #endif 3872 3873 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3874 { 3875 return !skb->destructor && 3876 #if IS_ENABLED(CONFIG_XFRM) 3877 !skb->sp && 3878 #endif 3879 !skb_nfct(skb) && 3880 !skb->_skb_refdst && 3881 !skb_has_frag_list(skb); 3882 } 3883 3884 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3885 { 3886 skb->queue_mapping = queue_mapping; 3887 } 3888 3889 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3890 { 3891 return skb->queue_mapping; 3892 } 3893 3894 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3895 { 3896 to->queue_mapping = from->queue_mapping; 3897 } 3898 3899 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3900 { 3901 skb->queue_mapping = rx_queue + 1; 3902 } 3903 3904 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3905 { 3906 return skb->queue_mapping - 1; 3907 } 3908 3909 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3910 { 3911 return skb->queue_mapping != 0; 3912 } 3913 3914 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 3915 { 3916 skb->dst_pending_confirm = val; 3917 } 3918 3919 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 3920 { 3921 return skb->dst_pending_confirm != 0; 3922 } 3923 3924 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3925 { 3926 #ifdef CONFIG_XFRM 3927 return skb->sp; 3928 #else 3929 return NULL; 3930 #endif 3931 } 3932 3933 /* Keeps track of mac header offset relative to skb->head. 3934 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3935 * For non-tunnel skb it points to skb_mac_header() and for 3936 * tunnel skb it points to outer mac header. 3937 * Keeps track of level of encapsulation of network headers. 3938 */ 3939 struct skb_gso_cb { 3940 union { 3941 int mac_offset; 3942 int data_offset; 3943 }; 3944 int encap_level; 3945 __wsum csum; 3946 __u16 csum_start; 3947 }; 3948 #define SKB_SGO_CB_OFFSET 32 3949 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3950 3951 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3952 { 3953 return (skb_mac_header(inner_skb) - inner_skb->head) - 3954 SKB_GSO_CB(inner_skb)->mac_offset; 3955 } 3956 3957 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3958 { 3959 int new_headroom, headroom; 3960 int ret; 3961 3962 headroom = skb_headroom(skb); 3963 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3964 if (ret) 3965 return ret; 3966 3967 new_headroom = skb_headroom(skb); 3968 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3969 return 0; 3970 } 3971 3972 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3973 { 3974 /* Do not update partial checksums if remote checksum is enabled. */ 3975 if (skb->remcsum_offload) 3976 return; 3977 3978 SKB_GSO_CB(skb)->csum = res; 3979 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3980 } 3981 3982 /* Compute the checksum for a gso segment. First compute the checksum value 3983 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3984 * then add in skb->csum (checksum from csum_start to end of packet). 3985 * skb->csum and csum_start are then updated to reflect the checksum of the 3986 * resultant packet starting from the transport header-- the resultant checksum 3987 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3988 * header. 3989 */ 3990 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3991 { 3992 unsigned char *csum_start = skb_transport_header(skb); 3993 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3994 __wsum partial = SKB_GSO_CB(skb)->csum; 3995 3996 SKB_GSO_CB(skb)->csum = res; 3997 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3998 3999 return csum_fold(csum_partial(csum_start, plen, partial)); 4000 } 4001 4002 static inline bool skb_is_gso(const struct sk_buff *skb) 4003 { 4004 return skb_shinfo(skb)->gso_size; 4005 } 4006 4007 /* Note: Should be called only if skb_is_gso(skb) is true */ 4008 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4009 { 4010 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4011 } 4012 4013 static inline void skb_gso_reset(struct sk_buff *skb) 4014 { 4015 skb_shinfo(skb)->gso_size = 0; 4016 skb_shinfo(skb)->gso_segs = 0; 4017 skb_shinfo(skb)->gso_type = 0; 4018 } 4019 4020 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4021 4022 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4023 { 4024 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4025 * wanted then gso_type will be set. */ 4026 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4027 4028 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4029 unlikely(shinfo->gso_type == 0)) { 4030 __skb_warn_lro_forwarding(skb); 4031 return true; 4032 } 4033 return false; 4034 } 4035 4036 static inline void skb_forward_csum(struct sk_buff *skb) 4037 { 4038 /* Unfortunately we don't support this one. Any brave souls? */ 4039 if (skb->ip_summed == CHECKSUM_COMPLETE) 4040 skb->ip_summed = CHECKSUM_NONE; 4041 } 4042 4043 /** 4044 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4045 * @skb: skb to check 4046 * 4047 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4048 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4049 * use this helper, to document places where we make this assertion. 4050 */ 4051 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4052 { 4053 #ifdef DEBUG 4054 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4055 #endif 4056 } 4057 4058 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4059 4060 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4061 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4062 unsigned int transport_len, 4063 __sum16(*skb_chkf)(struct sk_buff *skb)); 4064 4065 /** 4066 * skb_head_is_locked - Determine if the skb->head is locked down 4067 * @skb: skb to check 4068 * 4069 * The head on skbs build around a head frag can be removed if they are 4070 * not cloned. This function returns true if the skb head is locked down 4071 * due to either being allocated via kmalloc, or by being a clone with 4072 * multiple references to the head. 4073 */ 4074 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4075 { 4076 return !skb->head_frag || skb_cloned(skb); 4077 } 4078 4079 /** 4080 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4081 * 4082 * @skb: GSO skb 4083 * 4084 * skb_gso_network_seglen is used to determine the real size of the 4085 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4086 * 4087 * The MAC/L2 header is not accounted for. 4088 */ 4089 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4090 { 4091 unsigned int hdr_len = skb_transport_header(skb) - 4092 skb_network_header(skb); 4093 return hdr_len + skb_gso_transport_seglen(skb); 4094 } 4095 4096 /* Local Checksum Offload. 4097 * Compute outer checksum based on the assumption that the 4098 * inner checksum will be offloaded later. 4099 * See Documentation/networking/checksum-offloads.txt for 4100 * explanation of how this works. 4101 * Fill in outer checksum adjustment (e.g. with sum of outer 4102 * pseudo-header) before calling. 4103 * Also ensure that inner checksum is in linear data area. 4104 */ 4105 static inline __wsum lco_csum(struct sk_buff *skb) 4106 { 4107 unsigned char *csum_start = skb_checksum_start(skb); 4108 unsigned char *l4_hdr = skb_transport_header(skb); 4109 __wsum partial; 4110 4111 /* Start with complement of inner checksum adjustment */ 4112 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4113 skb->csum_offset)); 4114 4115 /* Add in checksum of our headers (incl. outer checksum 4116 * adjustment filled in by caller) and return result. 4117 */ 4118 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4119 } 4120 4121 #endif /* __KERNEL__ */ 4122 #endif /* _LINUX_SKBUFF_H */ 4123