xref: /linux-6.15/include/linux/skbuff.h (revision 90a53e44)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 #include <linux/refcount.h>
26 
27 #include <linux/atomic.h>
28 #include <asm/types.h>
29 #include <linux/spinlock.h>
30 #include <linux/net.h>
31 #include <linux/textsearch.h>
32 #include <net/checksum.h>
33 #include <linux/rcupdate.h>
34 #include <linux/hrtimer.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/netdev_features.h>
37 #include <linux/sched.h>
38 #include <linux/sched/clock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/splice.h>
41 #include <linux/in6.h>
42 #include <linux/if_packet.h>
43 #include <net/flow.h>
44 
45 /* The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * A. IP checksum related features
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver,
52  * a driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * The checksum related features are:
56  *
57  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
58  *			  IP (one's complement) checksum for any combination
59  *			  of protocols or protocol layering. The checksum is
60  *			  computed and set in a packet per the CHECKSUM_PARTIAL
61  *			  interface (see below).
62  *
63  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64  *			  TCP or UDP packets over IPv4. These are specifically
65  *			  unencapsulated packets of the form IPv4|TCP or
66  *			  IPv4|UDP where the Protocol field in the IPv4 header
67  *			  is TCP or UDP. The IPv4 header may contain IP options
68  *			  This feature cannot be set in features for a device
69  *			  with NETIF_F_HW_CSUM also set. This feature is being
70  *			  DEPRECATED (see below).
71  *
72  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73  *			  TCP or UDP packets over IPv6. These are specifically
74  *			  unencapsulated packets of the form IPv6|TCP or
75  *			  IPv4|UDP where the Next Header field in the IPv6
76  *			  header is either TCP or UDP. IPv6 extension headers
77  *			  are not supported with this feature. This feature
78  *			  cannot be set in features for a device with
79  *			  NETIF_F_HW_CSUM also set. This feature is being
80  *			  DEPRECATED (see below).
81  *
82  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83  *			 This flag is used only used to disable the RX checksum
84  *			 feature for a device. The stack will accept receive
85  *			 checksum indication in packets received on a device
86  *			 regardless of whether NETIF_F_RXCSUM is set.
87  *
88  * B. Checksumming of received packets by device. Indication of checksum
89  *    verification is in set skb->ip_summed. Possible values are:
90  *
91  * CHECKSUM_NONE:
92  *
93  *   Device did not checksum this packet e.g. due to lack of capabilities.
94  *   The packet contains full (though not verified) checksum in packet but
95  *   not in skb->csum. Thus, skb->csum is undefined in this case.
96  *
97  * CHECKSUM_UNNECESSARY:
98  *
99  *   The hardware you're dealing with doesn't calculate the full checksum
100  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102  *   if their checksums are okay. skb->csum is still undefined in this case
103  *   though. A driver or device must never modify the checksum field in the
104  *   packet even if checksum is verified.
105  *
106  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
107  *     TCP: IPv6 and IPv4.
108  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
110  *       may perform further validation in this case.
111  *     GRE: only if the checksum is present in the header.
112  *     SCTP: indicates the CRC in SCTP header has been validated.
113  *     FCOE: indicates the CRC in FC frame has been validated.
114  *
115  *   skb->csum_level indicates the number of consecutive checksums found in
116  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118  *   and a device is able to verify the checksums for UDP (possibly zero),
119  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
120  *   two. If the device were only able to verify the UDP checksum and not
121  *   GRE, either because it doesn't support GRE checksum of because GRE
122  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123  *   not considered in this case).
124  *
125  * CHECKSUM_COMPLETE:
126  *
127  *   This is the most generic way. The device supplied checksum of the _whole_
128  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
129  *   hardware doesn't need to parse L3/L4 headers to implement this.
130  *
131  *   Notes:
132  *   - Even if device supports only some protocols, but is able to produce
133  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135  *
136  * CHECKSUM_PARTIAL:
137  *
138  *   A checksum is set up to be offloaded to a device as described in the
139  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
140  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
141  *   on the same host, or it may be set in the input path in GRO or remote
142  *   checksum offload. For the purposes of checksum verification, the checksum
143  *   referred to by skb->csum_start + skb->csum_offset and any preceding
144  *   checksums in the packet are considered verified. Any checksums in the
145  *   packet that are after the checksum being offloaded are not considered to
146  *   be verified.
147  *
148  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149  *    in the skb->ip_summed for a packet. Values are:
150  *
151  * CHECKSUM_PARTIAL:
152  *
153  *   The driver is required to checksum the packet as seen by hard_start_xmit()
154  *   from skb->csum_start up to the end, and to record/write the checksum at
155  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
156  *   csum_start and csum_offset values are valid values given the length and
157  *   offset of the packet, however they should not attempt to validate that the
158  *   checksum refers to a legitimate transport layer checksum-- it is the
159  *   purview of the stack to validate that csum_start and csum_offset are set
160  *   correctly.
161  *
162  *   When the stack requests checksum offload for a packet, the driver MUST
163  *   ensure that the checksum is set correctly. A driver can either offload the
164  *   checksum calculation to the device, or call skb_checksum_help (in the case
165  *   that the device does not support offload for a particular checksum).
166  *
167  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169  *   checksum offload capability.
170  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171  *   on network device checksumming capabilities: if a packet does not match
172  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
173  *   csum_not_inet, see item D.) is called to resolve the checksum.
174  *
175  * CHECKSUM_NONE:
176  *
177  *   The skb was already checksummed by the protocol, or a checksum is not
178  *   required.
179  *
180  * CHECKSUM_UNNECESSARY:
181  *
182  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
183  *   output.
184  *
185  * CHECKSUM_COMPLETE:
186  *   Not used in checksum output. If a driver observes a packet with this value
187  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
188  *
189  * D. Non-IP checksum (CRC) offloads
190  *
191  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192  *     offloading the SCTP CRC in a packet. To perform this offload the stack
193  *     will set set csum_start and csum_offset accordingly, set ip_summed to
194  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
197  *     must verify which offload is configured for a packet by testing the
198  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200  *
201  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202  *     offloading the FCOE CRC in a packet. To perform this offload the stack
203  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204  *     accordingly. Note the there is no indication in the skbuff that the
205  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
206  *     both IP checksum offload and FCOE CRC offload must verify which offload
207  *     is configured for a packet presumably by inspecting packet headers.
208  *
209  * E. Checksumming on output with GSO.
210  *
211  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214  * part of the GSO operation is implied. If a checksum is being offloaded
215  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
216  * are set to refer to the outermost checksum being offload (two offloaded
217  * checksums are possible with UDP encapsulation).
218  */
219 
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE		0
222 #define CHECKSUM_UNNECESSARY	1
223 #define CHECKSUM_COMPLETE	2
224 #define CHECKSUM_PARTIAL	3
225 
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL	3
228 
229 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X)	\
231 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
236 
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) +						\
239 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
240 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241 
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 
248 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
249 struct nf_conntrack {
250 	atomic_t use;
251 };
252 #endif
253 
254 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
255 struct nf_bridge_info {
256 	refcount_t		use;
257 	enum {
258 		BRNF_PROTO_UNCHANGED,
259 		BRNF_PROTO_8021Q,
260 		BRNF_PROTO_PPPOE
261 	} orig_proto:8;
262 	u8			pkt_otherhost:1;
263 	u8			in_prerouting:1;
264 	u8			bridged_dnat:1;
265 	__u16			frag_max_size;
266 	struct net_device	*physindev;
267 
268 	/* always valid & non-NULL from FORWARD on, for physdev match */
269 	struct net_device	*physoutdev;
270 	union {
271 		/* prerouting: detect dnat in orig/reply direction */
272 		__be32          ipv4_daddr;
273 		struct in6_addr ipv6_daddr;
274 
275 		/* after prerouting + nat detected: store original source
276 		 * mac since neigh resolution overwrites it, only used while
277 		 * skb is out in neigh layer.
278 		 */
279 		char neigh_header[8];
280 	};
281 };
282 #endif
283 
284 struct sk_buff_head {
285 	/* These two members must be first. */
286 	struct sk_buff	*next;
287 	struct sk_buff	*prev;
288 
289 	__u32		qlen;
290 	spinlock_t	lock;
291 };
292 
293 struct sk_buff;
294 
295 /* To allow 64K frame to be packed as single skb without frag_list we
296  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
297  * buffers which do not start on a page boundary.
298  *
299  * Since GRO uses frags we allocate at least 16 regardless of page
300  * size.
301  */
302 #if (65536/PAGE_SIZE + 1) < 16
303 #define MAX_SKB_FRAGS 16UL
304 #else
305 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
306 #endif
307 extern int sysctl_max_skb_frags;
308 
309 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
310  * segment using its current segmentation instead.
311  */
312 #define GSO_BY_FRAGS	0xFFFF
313 
314 typedef struct skb_frag_struct skb_frag_t;
315 
316 struct skb_frag_struct {
317 	struct {
318 		struct page *p;
319 	} page;
320 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
321 	__u32 page_offset;
322 	__u32 size;
323 #else
324 	__u16 page_offset;
325 	__u16 size;
326 #endif
327 };
328 
329 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330 {
331 	return frag->size;
332 }
333 
334 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
335 {
336 	frag->size = size;
337 }
338 
339 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
340 {
341 	frag->size += delta;
342 }
343 
344 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
345 {
346 	frag->size -= delta;
347 }
348 
349 static inline bool skb_frag_must_loop(struct page *p)
350 {
351 #if defined(CONFIG_HIGHMEM)
352 	if (PageHighMem(p))
353 		return true;
354 #endif
355 	return false;
356 }
357 
358 /**
359  *	skb_frag_foreach_page - loop over pages in a fragment
360  *
361  *	@f:		skb frag to operate on
362  *	@f_off:		offset from start of f->page.p
363  *	@f_len:		length from f_off to loop over
364  *	@p:		(temp var) current page
365  *	@p_off:		(temp var) offset from start of current page,
366  *	                           non-zero only on first page.
367  *	@p_len:		(temp var) length in current page,
368  *				   < PAGE_SIZE only on first and last page.
369  *	@copied:	(temp var) length so far, excluding current p_len.
370  *
371  *	A fragment can hold a compound page, in which case per-page
372  *	operations, notably kmap_atomic, must be called for each
373  *	regular page.
374  */
375 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
376 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
377 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
378 	     p_len = skb_frag_must_loop(p) ?				\
379 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
380 	     copied = 0;						\
381 	     copied < f_len;						\
382 	     copied += p_len, p++, p_off = 0,				\
383 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
384 
385 #define HAVE_HW_TIME_STAMP
386 
387 /**
388  * struct skb_shared_hwtstamps - hardware time stamps
389  * @hwtstamp:	hardware time stamp transformed into duration
390  *		since arbitrary point in time
391  *
392  * Software time stamps generated by ktime_get_real() are stored in
393  * skb->tstamp.
394  *
395  * hwtstamps can only be compared against other hwtstamps from
396  * the same device.
397  *
398  * This structure is attached to packets as part of the
399  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
400  */
401 struct skb_shared_hwtstamps {
402 	ktime_t	hwtstamp;
403 };
404 
405 /* Definitions for tx_flags in struct skb_shared_info */
406 enum {
407 	/* generate hardware time stamp */
408 	SKBTX_HW_TSTAMP = 1 << 0,
409 
410 	/* generate software time stamp when queueing packet to NIC */
411 	SKBTX_SW_TSTAMP = 1 << 1,
412 
413 	/* device driver is going to provide hardware time stamp */
414 	SKBTX_IN_PROGRESS = 1 << 2,
415 
416 	/* device driver supports TX zero-copy buffers */
417 	SKBTX_DEV_ZEROCOPY = 1 << 3,
418 
419 	/* generate wifi status information (where possible) */
420 	SKBTX_WIFI_STATUS = 1 << 4,
421 
422 	/* This indicates at least one fragment might be overwritten
423 	 * (as in vmsplice(), sendfile() ...)
424 	 * If we need to compute a TX checksum, we'll need to copy
425 	 * all frags to avoid possible bad checksum
426 	 */
427 	SKBTX_SHARED_FRAG = 1 << 5,
428 
429 	/* generate software time stamp when entering packet scheduling */
430 	SKBTX_SCHED_TSTAMP = 1 << 6,
431 };
432 
433 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
434 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
435 				 SKBTX_SCHED_TSTAMP)
436 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
437 
438 /*
439  * The callback notifies userspace to release buffers when skb DMA is done in
440  * lower device, the skb last reference should be 0 when calling this.
441  * The zerocopy_success argument is true if zero copy transmit occurred,
442  * false on data copy or out of memory error caused by data copy attempt.
443  * The ctx field is used to track device context.
444  * The desc field is used to track userspace buffer index.
445  */
446 struct ubuf_info {
447 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
448 	union {
449 		struct {
450 			unsigned long desc;
451 			void *ctx;
452 		};
453 		struct {
454 			u32 id;
455 			u16 len;
456 			u16 zerocopy:1;
457 			u32 bytelen;
458 		};
459 	};
460 	refcount_t refcnt;
461 
462 	struct mmpin {
463 		struct user_struct *user;
464 		unsigned int num_pg;
465 	} mmp;
466 };
467 
468 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
469 
470 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
471 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
472 					struct ubuf_info *uarg);
473 
474 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
475 {
476 	refcount_inc(&uarg->refcnt);
477 }
478 
479 void sock_zerocopy_put(struct ubuf_info *uarg);
480 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
481 
482 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
483 
484 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
485 			     struct msghdr *msg, int len,
486 			     struct ubuf_info *uarg);
487 
488 /* This data is invariant across clones and lives at
489  * the end of the header data, ie. at skb->end.
490  */
491 struct skb_shared_info {
492 	__u8		__unused;
493 	__u8		meta_len;
494 	__u8		nr_frags;
495 	__u8		tx_flags;
496 	unsigned short	gso_size;
497 	/* Warning: this field is not always filled in (UFO)! */
498 	unsigned short	gso_segs;
499 	struct sk_buff	*frag_list;
500 	struct skb_shared_hwtstamps hwtstamps;
501 	unsigned int	gso_type;
502 	u32		tskey;
503 	__be32          ip6_frag_id;
504 
505 	/*
506 	 * Warning : all fields before dataref are cleared in __alloc_skb()
507 	 */
508 	atomic_t	dataref;
509 
510 	/* Intermediate layers must ensure that destructor_arg
511 	 * remains valid until skb destructor */
512 	void *		destructor_arg;
513 
514 	/* must be last field, see pskb_expand_head() */
515 	skb_frag_t	frags[MAX_SKB_FRAGS];
516 };
517 
518 /* We divide dataref into two halves.  The higher 16 bits hold references
519  * to the payload part of skb->data.  The lower 16 bits hold references to
520  * the entire skb->data.  A clone of a headerless skb holds the length of
521  * the header in skb->hdr_len.
522  *
523  * All users must obey the rule that the skb->data reference count must be
524  * greater than or equal to the payload reference count.
525  *
526  * Holding a reference to the payload part means that the user does not
527  * care about modifications to the header part of skb->data.
528  */
529 #define SKB_DATAREF_SHIFT 16
530 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
531 
532 
533 enum {
534 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
535 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
536 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
537 };
538 
539 enum {
540 	SKB_GSO_TCPV4 = 1 << 0,
541 
542 	/* This indicates the skb is from an untrusted source. */
543 	SKB_GSO_DODGY = 1 << 1,
544 
545 	/* This indicates the tcp segment has CWR set. */
546 	SKB_GSO_TCP_ECN = 1 << 2,
547 
548 	SKB_GSO_TCP_FIXEDID = 1 << 3,
549 
550 	SKB_GSO_TCPV6 = 1 << 4,
551 
552 	SKB_GSO_FCOE = 1 << 5,
553 
554 	SKB_GSO_GRE = 1 << 6,
555 
556 	SKB_GSO_GRE_CSUM = 1 << 7,
557 
558 	SKB_GSO_IPXIP4 = 1 << 8,
559 
560 	SKB_GSO_IPXIP6 = 1 << 9,
561 
562 	SKB_GSO_UDP_TUNNEL = 1 << 10,
563 
564 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
565 
566 	SKB_GSO_PARTIAL = 1 << 12,
567 
568 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
569 
570 	SKB_GSO_SCTP = 1 << 14,
571 
572 	SKB_GSO_ESP = 1 << 15,
573 };
574 
575 #if BITS_PER_LONG > 32
576 #define NET_SKBUFF_DATA_USES_OFFSET 1
577 #endif
578 
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 typedef unsigned int sk_buff_data_t;
581 #else
582 typedef unsigned char *sk_buff_data_t;
583 #endif
584 
585 /**
586  *	struct sk_buff - socket buffer
587  *	@next: Next buffer in list
588  *	@prev: Previous buffer in list
589  *	@tstamp: Time we arrived/left
590  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
591  *	@sk: Socket we are owned by
592  *	@dev: Device we arrived on/are leaving by
593  *	@cb: Control buffer. Free for use by every layer. Put private vars here
594  *	@_skb_refdst: destination entry (with norefcount bit)
595  *	@sp: the security path, used for xfrm
596  *	@len: Length of actual data
597  *	@data_len: Data length
598  *	@mac_len: Length of link layer header
599  *	@hdr_len: writable header length of cloned skb
600  *	@csum: Checksum (must include start/offset pair)
601  *	@csum_start: Offset from skb->head where checksumming should start
602  *	@csum_offset: Offset from csum_start where checksum should be stored
603  *	@priority: Packet queueing priority
604  *	@ignore_df: allow local fragmentation
605  *	@cloned: Head may be cloned (check refcnt to be sure)
606  *	@ip_summed: Driver fed us an IP checksum
607  *	@nohdr: Payload reference only, must not modify header
608  *	@pkt_type: Packet class
609  *	@fclone: skbuff clone status
610  *	@ipvs_property: skbuff is owned by ipvs
611  *	@tc_skip_classify: do not classify packet. set by IFB device
612  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
613  *	@tc_redirected: packet was redirected by a tc action
614  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615  *	@peeked: this packet has been seen already, so stats have been
616  *		done for it, don't do them again
617  *	@nf_trace: netfilter packet trace flag
618  *	@protocol: Packet protocol from driver
619  *	@destructor: Destruct function
620  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
621  *	@_nfct: Associated connection, if any (with nfctinfo bits)
622  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
623  *	@skb_iif: ifindex of device we arrived on
624  *	@tc_index: Traffic control index
625  *	@hash: the packet hash
626  *	@queue_mapping: Queue mapping for multiqueue devices
627  *	@xmit_more: More SKBs are pending for this queue
628  *	@ndisc_nodetype: router type (from link layer)
629  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
630  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
631  *		ports.
632  *	@sw_hash: indicates hash was computed in software stack
633  *	@wifi_acked_valid: wifi_acked was set
634  *	@wifi_acked: whether frame was acked on wifi or not
635  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
636  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
637  *	@dst_pending_confirm: need to confirm neighbour
638   *	@napi_id: id of the NAPI struct this skb came from
639  *	@secmark: security marking
640  *	@mark: Generic packet mark
641  *	@vlan_proto: vlan encapsulation protocol
642  *	@vlan_tci: vlan tag control information
643  *	@inner_protocol: Protocol (encapsulation)
644  *	@inner_transport_header: Inner transport layer header (encapsulation)
645  *	@inner_network_header: Network layer header (encapsulation)
646  *	@inner_mac_header: Link layer header (encapsulation)
647  *	@transport_header: Transport layer header
648  *	@network_header: Network layer header
649  *	@mac_header: Link layer header
650  *	@tail: Tail pointer
651  *	@end: End pointer
652  *	@head: Head of buffer
653  *	@data: Data head pointer
654  *	@truesize: Buffer size
655  *	@users: User count - see {datagram,tcp}.c
656  */
657 
658 struct sk_buff {
659 	union {
660 		struct {
661 			/* These two members must be first. */
662 			struct sk_buff		*next;
663 			struct sk_buff		*prev;
664 
665 			union {
666 				struct net_device	*dev;
667 				/* Some protocols might use this space to store information,
668 				 * while device pointer would be NULL.
669 				 * UDP receive path is one user.
670 				 */
671 				unsigned long		dev_scratch;
672 			};
673 		};
674 		struct rb_node	rbnode; /* used in netem & tcp stack */
675 	};
676 	struct sock		*sk;
677 
678 	union {
679 		ktime_t		tstamp;
680 		u64		skb_mstamp;
681 	};
682 	/*
683 	 * This is the control buffer. It is free to use for every
684 	 * layer. Please put your private variables there. If you
685 	 * want to keep them across layers you have to do a skb_clone()
686 	 * first. This is owned by whoever has the skb queued ATM.
687 	 */
688 	char			cb[48] __aligned(8);
689 
690 	union {
691 		struct {
692 			unsigned long	_skb_refdst;
693 			void		(*destructor)(struct sk_buff *skb);
694 		};
695 		struct list_head	tcp_tsorted_anchor;
696 	};
697 
698 #ifdef CONFIG_XFRM
699 	struct	sec_path	*sp;
700 #endif
701 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
702 	unsigned long		 _nfct;
703 #endif
704 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
705 	struct nf_bridge_info	*nf_bridge;
706 #endif
707 	unsigned int		len,
708 				data_len;
709 	__u16			mac_len,
710 				hdr_len;
711 
712 	/* Following fields are _not_ copied in __copy_skb_header()
713 	 * Note that queue_mapping is here mostly to fill a hole.
714 	 */
715 	kmemcheck_bitfield_begin(flags1);
716 	__u16			queue_mapping;
717 
718 /* if you move cloned around you also must adapt those constants */
719 #ifdef __BIG_ENDIAN_BITFIELD
720 #define CLONED_MASK	(1 << 7)
721 #else
722 #define CLONED_MASK	1
723 #endif
724 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
725 
726 	__u8			__cloned_offset[0];
727 	__u8			cloned:1,
728 				nohdr:1,
729 				fclone:2,
730 				peeked:1,
731 				head_frag:1,
732 				xmit_more:1,
733 				__unused:1; /* one bit hole */
734 	kmemcheck_bitfield_end(flags1);
735 
736 	/* fields enclosed in headers_start/headers_end are copied
737 	 * using a single memcpy() in __copy_skb_header()
738 	 */
739 	/* private: */
740 	__u32			headers_start[0];
741 	/* public: */
742 
743 /* if you move pkt_type around you also must adapt those constants */
744 #ifdef __BIG_ENDIAN_BITFIELD
745 #define PKT_TYPE_MAX	(7 << 5)
746 #else
747 #define PKT_TYPE_MAX	7
748 #endif
749 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
750 
751 	__u8			__pkt_type_offset[0];
752 	__u8			pkt_type:3;
753 	__u8			pfmemalloc:1;
754 	__u8			ignore_df:1;
755 
756 	__u8			nf_trace:1;
757 	__u8			ip_summed:2;
758 	__u8			ooo_okay:1;
759 	__u8			l4_hash:1;
760 	__u8			sw_hash:1;
761 	__u8			wifi_acked_valid:1;
762 	__u8			wifi_acked:1;
763 
764 	__u8			no_fcs:1;
765 	/* Indicates the inner headers are valid in the skbuff. */
766 	__u8			encapsulation:1;
767 	__u8			encap_hdr_csum:1;
768 	__u8			csum_valid:1;
769 	__u8			csum_complete_sw:1;
770 	__u8			csum_level:2;
771 	__u8			csum_not_inet:1;
772 
773 	__u8			dst_pending_confirm:1;
774 #ifdef CONFIG_IPV6_NDISC_NODETYPE
775 	__u8			ndisc_nodetype:2;
776 #endif
777 	__u8			ipvs_property:1;
778 	__u8			inner_protocol_type:1;
779 	__u8			remcsum_offload:1;
780 #ifdef CONFIG_NET_SWITCHDEV
781 	__u8			offload_fwd_mark:1;
782 	__u8			offload_mr_fwd_mark:1;
783 #endif
784 #ifdef CONFIG_NET_CLS_ACT
785 	__u8			tc_skip_classify:1;
786 	__u8			tc_at_ingress:1;
787 	__u8			tc_redirected:1;
788 	__u8			tc_from_ingress:1;
789 #endif
790 
791 #ifdef CONFIG_NET_SCHED
792 	__u16			tc_index;	/* traffic control index */
793 #endif
794 
795 	union {
796 		__wsum		csum;
797 		struct {
798 			__u16	csum_start;
799 			__u16	csum_offset;
800 		};
801 	};
802 	__u32			priority;
803 	int			skb_iif;
804 	__u32			hash;
805 	__be16			vlan_proto;
806 	__u16			vlan_tci;
807 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
808 	union {
809 		unsigned int	napi_id;
810 		unsigned int	sender_cpu;
811 	};
812 #endif
813 #ifdef CONFIG_NETWORK_SECMARK
814 	__u32		secmark;
815 #endif
816 
817 	union {
818 		__u32		mark;
819 		__u32		reserved_tailroom;
820 	};
821 
822 	union {
823 		__be16		inner_protocol;
824 		__u8		inner_ipproto;
825 	};
826 
827 	__u16			inner_transport_header;
828 	__u16			inner_network_header;
829 	__u16			inner_mac_header;
830 
831 	__be16			protocol;
832 	__u16			transport_header;
833 	__u16			network_header;
834 	__u16			mac_header;
835 
836 	/* private: */
837 	__u32			headers_end[0];
838 	/* public: */
839 
840 	/* These elements must be at the end, see alloc_skb() for details.  */
841 	sk_buff_data_t		tail;
842 	sk_buff_data_t		end;
843 	unsigned char		*head,
844 				*data;
845 	unsigned int		truesize;
846 	refcount_t		users;
847 };
848 
849 #ifdef __KERNEL__
850 /*
851  *	Handling routines are only of interest to the kernel
852  */
853 #include <linux/slab.h>
854 
855 
856 #define SKB_ALLOC_FCLONE	0x01
857 #define SKB_ALLOC_RX		0x02
858 #define SKB_ALLOC_NAPI		0x04
859 
860 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
861 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
862 {
863 	return unlikely(skb->pfmemalloc);
864 }
865 
866 /*
867  * skb might have a dst pointer attached, refcounted or not.
868  * _skb_refdst low order bit is set if refcount was _not_ taken
869  */
870 #define SKB_DST_NOREF	1UL
871 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
872 
873 #define SKB_NFCT_PTRMASK	~(7UL)
874 /**
875  * skb_dst - returns skb dst_entry
876  * @skb: buffer
877  *
878  * Returns skb dst_entry, regardless of reference taken or not.
879  */
880 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
881 {
882 	/* If refdst was not refcounted, check we still are in a
883 	 * rcu_read_lock section
884 	 */
885 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
886 		!rcu_read_lock_held() &&
887 		!rcu_read_lock_bh_held());
888 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
889 }
890 
891 /**
892  * skb_dst_set - sets skb dst
893  * @skb: buffer
894  * @dst: dst entry
895  *
896  * Sets skb dst, assuming a reference was taken on dst and should
897  * be released by skb_dst_drop()
898  */
899 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
900 {
901 	skb->_skb_refdst = (unsigned long)dst;
902 }
903 
904 /**
905  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
906  * @skb: buffer
907  * @dst: dst entry
908  *
909  * Sets skb dst, assuming a reference was not taken on dst.
910  * If dst entry is cached, we do not take reference and dst_release
911  * will be avoided by refdst_drop. If dst entry is not cached, we take
912  * reference, so that last dst_release can destroy the dst immediately.
913  */
914 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
915 {
916 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
917 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
918 }
919 
920 /**
921  * skb_dst_is_noref - Test if skb dst isn't refcounted
922  * @skb: buffer
923  */
924 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
925 {
926 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
927 }
928 
929 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
930 {
931 	return (struct rtable *)skb_dst(skb);
932 }
933 
934 /* For mangling skb->pkt_type from user space side from applications
935  * such as nft, tc, etc, we only allow a conservative subset of
936  * possible pkt_types to be set.
937 */
938 static inline bool skb_pkt_type_ok(u32 ptype)
939 {
940 	return ptype <= PACKET_OTHERHOST;
941 }
942 
943 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
944 {
945 #ifdef CONFIG_NET_RX_BUSY_POLL
946 	return skb->napi_id;
947 #else
948 	return 0;
949 #endif
950 }
951 
952 /* decrement the reference count and return true if we can free the skb */
953 static inline bool skb_unref(struct sk_buff *skb)
954 {
955 	if (unlikely(!skb))
956 		return false;
957 	if (likely(refcount_read(&skb->users) == 1))
958 		smp_rmb();
959 	else if (likely(!refcount_dec_and_test(&skb->users)))
960 		return false;
961 
962 	return true;
963 }
964 
965 void skb_release_head_state(struct sk_buff *skb);
966 void kfree_skb(struct sk_buff *skb);
967 void kfree_skb_list(struct sk_buff *segs);
968 void skb_tx_error(struct sk_buff *skb);
969 void consume_skb(struct sk_buff *skb);
970 void __consume_stateless_skb(struct sk_buff *skb);
971 void  __kfree_skb(struct sk_buff *skb);
972 extern struct kmem_cache *skbuff_head_cache;
973 
974 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
975 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
976 		      bool *fragstolen, int *delta_truesize);
977 
978 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
979 			    int node);
980 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
981 struct sk_buff *build_skb(void *data, unsigned int frag_size);
982 static inline struct sk_buff *alloc_skb(unsigned int size,
983 					gfp_t priority)
984 {
985 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
986 }
987 
988 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
989 				     unsigned long data_len,
990 				     int max_page_order,
991 				     int *errcode,
992 				     gfp_t gfp_mask);
993 
994 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
995 struct sk_buff_fclones {
996 	struct sk_buff	skb1;
997 
998 	struct sk_buff	skb2;
999 
1000 	refcount_t	fclone_ref;
1001 };
1002 
1003 /**
1004  *	skb_fclone_busy - check if fclone is busy
1005  *	@sk: socket
1006  *	@skb: buffer
1007  *
1008  * Returns true if skb is a fast clone, and its clone is not freed.
1009  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1010  * so we also check that this didnt happen.
1011  */
1012 static inline bool skb_fclone_busy(const struct sock *sk,
1013 				   const struct sk_buff *skb)
1014 {
1015 	const struct sk_buff_fclones *fclones;
1016 
1017 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1018 
1019 	return skb->fclone == SKB_FCLONE_ORIG &&
1020 	       refcount_read(&fclones->fclone_ref) > 1 &&
1021 	       fclones->skb2.sk == sk;
1022 }
1023 
1024 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1025 					       gfp_t priority)
1026 {
1027 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1028 }
1029 
1030 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1031 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1032 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1033 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1034 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1035 				   gfp_t gfp_mask, bool fclone);
1036 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1037 					  gfp_t gfp_mask)
1038 {
1039 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1040 }
1041 
1042 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1043 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1044 				     unsigned int headroom);
1045 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1046 				int newtailroom, gfp_t priority);
1047 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1048 				     int offset, int len);
1049 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1050 			      int offset, int len);
1051 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1052 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1053 
1054 /**
1055  *	skb_pad			-	zero pad the tail of an skb
1056  *	@skb: buffer to pad
1057  *	@pad: space to pad
1058  *
1059  *	Ensure that a buffer is followed by a padding area that is zero
1060  *	filled. Used by network drivers which may DMA or transfer data
1061  *	beyond the buffer end onto the wire.
1062  *
1063  *	May return error in out of memory cases. The skb is freed on error.
1064  */
1065 static inline int skb_pad(struct sk_buff *skb, int pad)
1066 {
1067 	return __skb_pad(skb, pad, true);
1068 }
1069 #define dev_kfree_skb(a)	consume_skb(a)
1070 
1071 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1072 			    int getfrag(void *from, char *to, int offset,
1073 					int len, int odd, struct sk_buff *skb),
1074 			    void *from, int length);
1075 
1076 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1077 			 int offset, size_t size);
1078 
1079 struct skb_seq_state {
1080 	__u32		lower_offset;
1081 	__u32		upper_offset;
1082 	__u32		frag_idx;
1083 	__u32		stepped_offset;
1084 	struct sk_buff	*root_skb;
1085 	struct sk_buff	*cur_skb;
1086 	__u8		*frag_data;
1087 };
1088 
1089 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1090 			  unsigned int to, struct skb_seq_state *st);
1091 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1092 			  struct skb_seq_state *st);
1093 void skb_abort_seq_read(struct skb_seq_state *st);
1094 
1095 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1096 			   unsigned int to, struct ts_config *config);
1097 
1098 /*
1099  * Packet hash types specify the type of hash in skb_set_hash.
1100  *
1101  * Hash types refer to the protocol layer addresses which are used to
1102  * construct a packet's hash. The hashes are used to differentiate or identify
1103  * flows of the protocol layer for the hash type. Hash types are either
1104  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1105  *
1106  * Properties of hashes:
1107  *
1108  * 1) Two packets in different flows have different hash values
1109  * 2) Two packets in the same flow should have the same hash value
1110  *
1111  * A hash at a higher layer is considered to be more specific. A driver should
1112  * set the most specific hash possible.
1113  *
1114  * A driver cannot indicate a more specific hash than the layer at which a hash
1115  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1116  *
1117  * A driver may indicate a hash level which is less specific than the
1118  * actual layer the hash was computed on. For instance, a hash computed
1119  * at L4 may be considered an L3 hash. This should only be done if the
1120  * driver can't unambiguously determine that the HW computed the hash at
1121  * the higher layer. Note that the "should" in the second property above
1122  * permits this.
1123  */
1124 enum pkt_hash_types {
1125 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1126 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1127 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1128 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1129 };
1130 
1131 static inline void skb_clear_hash(struct sk_buff *skb)
1132 {
1133 	skb->hash = 0;
1134 	skb->sw_hash = 0;
1135 	skb->l4_hash = 0;
1136 }
1137 
1138 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1139 {
1140 	if (!skb->l4_hash)
1141 		skb_clear_hash(skb);
1142 }
1143 
1144 static inline void
1145 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1146 {
1147 	skb->l4_hash = is_l4;
1148 	skb->sw_hash = is_sw;
1149 	skb->hash = hash;
1150 }
1151 
1152 static inline void
1153 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1154 {
1155 	/* Used by drivers to set hash from HW */
1156 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1157 }
1158 
1159 static inline void
1160 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1161 {
1162 	__skb_set_hash(skb, hash, true, is_l4);
1163 }
1164 
1165 void __skb_get_hash(struct sk_buff *skb);
1166 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1167 u32 skb_get_poff(const struct sk_buff *skb);
1168 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1169 		   const struct flow_keys *keys, int hlen);
1170 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1171 			    void *data, int hlen_proto);
1172 
1173 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1174 					int thoff, u8 ip_proto)
1175 {
1176 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1177 }
1178 
1179 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1180 			     const struct flow_dissector_key *key,
1181 			     unsigned int key_count);
1182 
1183 bool __skb_flow_dissect(const struct sk_buff *skb,
1184 			struct flow_dissector *flow_dissector,
1185 			void *target_container,
1186 			void *data, __be16 proto, int nhoff, int hlen,
1187 			unsigned int flags);
1188 
1189 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1190 				    struct flow_dissector *flow_dissector,
1191 				    void *target_container, unsigned int flags)
1192 {
1193 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1194 				  NULL, 0, 0, 0, flags);
1195 }
1196 
1197 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1198 					      struct flow_keys *flow,
1199 					      unsigned int flags)
1200 {
1201 	memset(flow, 0, sizeof(*flow));
1202 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1203 				  NULL, 0, 0, 0, flags);
1204 }
1205 
1206 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1207 						  void *data, __be16 proto,
1208 						  int nhoff, int hlen,
1209 						  unsigned int flags)
1210 {
1211 	memset(flow, 0, sizeof(*flow));
1212 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1213 				  data, proto, nhoff, hlen, flags);
1214 }
1215 
1216 static inline __u32 skb_get_hash(struct sk_buff *skb)
1217 {
1218 	if (!skb->l4_hash && !skb->sw_hash)
1219 		__skb_get_hash(skb);
1220 
1221 	return skb->hash;
1222 }
1223 
1224 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1225 {
1226 	if (!skb->l4_hash && !skb->sw_hash) {
1227 		struct flow_keys keys;
1228 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1229 
1230 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1231 	}
1232 
1233 	return skb->hash;
1234 }
1235 
1236 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1237 
1238 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1239 {
1240 	return skb->hash;
1241 }
1242 
1243 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1244 {
1245 	to->hash = from->hash;
1246 	to->sw_hash = from->sw_hash;
1247 	to->l4_hash = from->l4_hash;
1248 };
1249 
1250 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1251 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1252 {
1253 	return skb->head + skb->end;
1254 }
1255 
1256 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1257 {
1258 	return skb->end;
1259 }
1260 #else
1261 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1262 {
1263 	return skb->end;
1264 }
1265 
1266 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1267 {
1268 	return skb->end - skb->head;
1269 }
1270 #endif
1271 
1272 /* Internal */
1273 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1274 
1275 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1276 {
1277 	return &skb_shinfo(skb)->hwtstamps;
1278 }
1279 
1280 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1281 {
1282 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1283 
1284 	return is_zcopy ? skb_uarg(skb) : NULL;
1285 }
1286 
1287 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1288 {
1289 	if (skb && uarg && !skb_zcopy(skb)) {
1290 		sock_zerocopy_get(uarg);
1291 		skb_shinfo(skb)->destructor_arg = uarg;
1292 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1293 	}
1294 }
1295 
1296 /* Release a reference on a zerocopy structure */
1297 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1298 {
1299 	struct ubuf_info *uarg = skb_zcopy(skb);
1300 
1301 	if (uarg) {
1302 		if (uarg->callback == sock_zerocopy_callback) {
1303 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1304 			sock_zerocopy_put(uarg);
1305 		} else {
1306 			uarg->callback(uarg, zerocopy);
1307 		}
1308 
1309 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1310 	}
1311 }
1312 
1313 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1314 static inline void skb_zcopy_abort(struct sk_buff *skb)
1315 {
1316 	struct ubuf_info *uarg = skb_zcopy(skb);
1317 
1318 	if (uarg) {
1319 		sock_zerocopy_put_abort(uarg);
1320 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1321 	}
1322 }
1323 
1324 /**
1325  *	skb_queue_empty - check if a queue is empty
1326  *	@list: queue head
1327  *
1328  *	Returns true if the queue is empty, false otherwise.
1329  */
1330 static inline int skb_queue_empty(const struct sk_buff_head *list)
1331 {
1332 	return list->next == (const struct sk_buff *) list;
1333 }
1334 
1335 /**
1336  *	skb_queue_is_last - check if skb is the last entry in the queue
1337  *	@list: queue head
1338  *	@skb: buffer
1339  *
1340  *	Returns true if @skb is the last buffer on the list.
1341  */
1342 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1343 				     const struct sk_buff *skb)
1344 {
1345 	return skb->next == (const struct sk_buff *) list;
1346 }
1347 
1348 /**
1349  *	skb_queue_is_first - check if skb is the first entry in the queue
1350  *	@list: queue head
1351  *	@skb: buffer
1352  *
1353  *	Returns true if @skb is the first buffer on the list.
1354  */
1355 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1356 				      const struct sk_buff *skb)
1357 {
1358 	return skb->prev == (const struct sk_buff *) list;
1359 }
1360 
1361 /**
1362  *	skb_queue_next - return the next packet in the queue
1363  *	@list: queue head
1364  *	@skb: current buffer
1365  *
1366  *	Return the next packet in @list after @skb.  It is only valid to
1367  *	call this if skb_queue_is_last() evaluates to false.
1368  */
1369 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1370 					     const struct sk_buff *skb)
1371 {
1372 	/* This BUG_ON may seem severe, but if we just return then we
1373 	 * are going to dereference garbage.
1374 	 */
1375 	BUG_ON(skb_queue_is_last(list, skb));
1376 	return skb->next;
1377 }
1378 
1379 /**
1380  *	skb_queue_prev - return the prev packet in the queue
1381  *	@list: queue head
1382  *	@skb: current buffer
1383  *
1384  *	Return the prev packet in @list before @skb.  It is only valid to
1385  *	call this if skb_queue_is_first() evaluates to false.
1386  */
1387 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1388 					     const struct sk_buff *skb)
1389 {
1390 	/* This BUG_ON may seem severe, but if we just return then we
1391 	 * are going to dereference garbage.
1392 	 */
1393 	BUG_ON(skb_queue_is_first(list, skb));
1394 	return skb->prev;
1395 }
1396 
1397 /**
1398  *	skb_get - reference buffer
1399  *	@skb: buffer to reference
1400  *
1401  *	Makes another reference to a socket buffer and returns a pointer
1402  *	to the buffer.
1403  */
1404 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1405 {
1406 	refcount_inc(&skb->users);
1407 	return skb;
1408 }
1409 
1410 /*
1411  * If users == 1, we are the only owner and are can avoid redundant
1412  * atomic change.
1413  */
1414 
1415 /**
1416  *	skb_cloned - is the buffer a clone
1417  *	@skb: buffer to check
1418  *
1419  *	Returns true if the buffer was generated with skb_clone() and is
1420  *	one of multiple shared copies of the buffer. Cloned buffers are
1421  *	shared data so must not be written to under normal circumstances.
1422  */
1423 static inline int skb_cloned(const struct sk_buff *skb)
1424 {
1425 	return skb->cloned &&
1426 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1427 }
1428 
1429 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1430 {
1431 	might_sleep_if(gfpflags_allow_blocking(pri));
1432 
1433 	if (skb_cloned(skb))
1434 		return pskb_expand_head(skb, 0, 0, pri);
1435 
1436 	return 0;
1437 }
1438 
1439 /**
1440  *	skb_header_cloned - is the header a clone
1441  *	@skb: buffer to check
1442  *
1443  *	Returns true if modifying the header part of the buffer requires
1444  *	the data to be copied.
1445  */
1446 static inline int skb_header_cloned(const struct sk_buff *skb)
1447 {
1448 	int dataref;
1449 
1450 	if (!skb->cloned)
1451 		return 0;
1452 
1453 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1454 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1455 	return dataref != 1;
1456 }
1457 
1458 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1459 {
1460 	might_sleep_if(gfpflags_allow_blocking(pri));
1461 
1462 	if (skb_header_cloned(skb))
1463 		return pskb_expand_head(skb, 0, 0, pri);
1464 
1465 	return 0;
1466 }
1467 
1468 /**
1469  *	__skb_header_release - release reference to header
1470  *	@skb: buffer to operate on
1471  */
1472 static inline void __skb_header_release(struct sk_buff *skb)
1473 {
1474 	skb->nohdr = 1;
1475 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1476 }
1477 
1478 
1479 /**
1480  *	skb_shared - is the buffer shared
1481  *	@skb: buffer to check
1482  *
1483  *	Returns true if more than one person has a reference to this
1484  *	buffer.
1485  */
1486 static inline int skb_shared(const struct sk_buff *skb)
1487 {
1488 	return refcount_read(&skb->users) != 1;
1489 }
1490 
1491 /**
1492  *	skb_share_check - check if buffer is shared and if so clone it
1493  *	@skb: buffer to check
1494  *	@pri: priority for memory allocation
1495  *
1496  *	If the buffer is shared the buffer is cloned and the old copy
1497  *	drops a reference. A new clone with a single reference is returned.
1498  *	If the buffer is not shared the original buffer is returned. When
1499  *	being called from interrupt status or with spinlocks held pri must
1500  *	be GFP_ATOMIC.
1501  *
1502  *	NULL is returned on a memory allocation failure.
1503  */
1504 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1505 {
1506 	might_sleep_if(gfpflags_allow_blocking(pri));
1507 	if (skb_shared(skb)) {
1508 		struct sk_buff *nskb = skb_clone(skb, pri);
1509 
1510 		if (likely(nskb))
1511 			consume_skb(skb);
1512 		else
1513 			kfree_skb(skb);
1514 		skb = nskb;
1515 	}
1516 	return skb;
1517 }
1518 
1519 /*
1520  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1521  *	packets to handle cases where we have a local reader and forward
1522  *	and a couple of other messy ones. The normal one is tcpdumping
1523  *	a packet thats being forwarded.
1524  */
1525 
1526 /**
1527  *	skb_unshare - make a copy of a shared buffer
1528  *	@skb: buffer to check
1529  *	@pri: priority for memory allocation
1530  *
1531  *	If the socket buffer is a clone then this function creates a new
1532  *	copy of the data, drops a reference count on the old copy and returns
1533  *	the new copy with the reference count at 1. If the buffer is not a clone
1534  *	the original buffer is returned. When called with a spinlock held or
1535  *	from interrupt state @pri must be %GFP_ATOMIC
1536  *
1537  *	%NULL is returned on a memory allocation failure.
1538  */
1539 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1540 					  gfp_t pri)
1541 {
1542 	might_sleep_if(gfpflags_allow_blocking(pri));
1543 	if (skb_cloned(skb)) {
1544 		struct sk_buff *nskb = skb_copy(skb, pri);
1545 
1546 		/* Free our shared copy */
1547 		if (likely(nskb))
1548 			consume_skb(skb);
1549 		else
1550 			kfree_skb(skb);
1551 		skb = nskb;
1552 	}
1553 	return skb;
1554 }
1555 
1556 /**
1557  *	skb_peek - peek at the head of an &sk_buff_head
1558  *	@list_: list to peek at
1559  *
1560  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1561  *	be careful with this one. A peek leaves the buffer on the
1562  *	list and someone else may run off with it. You must hold
1563  *	the appropriate locks or have a private queue to do this.
1564  *
1565  *	Returns %NULL for an empty list or a pointer to the head element.
1566  *	The reference count is not incremented and the reference is therefore
1567  *	volatile. Use with caution.
1568  */
1569 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1570 {
1571 	struct sk_buff *skb = list_->next;
1572 
1573 	if (skb == (struct sk_buff *)list_)
1574 		skb = NULL;
1575 	return skb;
1576 }
1577 
1578 /**
1579  *	skb_peek_next - peek skb following the given one from a queue
1580  *	@skb: skb to start from
1581  *	@list_: list to peek at
1582  *
1583  *	Returns %NULL when the end of the list is met or a pointer to the
1584  *	next element. The reference count is not incremented and the
1585  *	reference is therefore volatile. Use with caution.
1586  */
1587 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1588 		const struct sk_buff_head *list_)
1589 {
1590 	struct sk_buff *next = skb->next;
1591 
1592 	if (next == (struct sk_buff *)list_)
1593 		next = NULL;
1594 	return next;
1595 }
1596 
1597 /**
1598  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1599  *	@list_: list to peek at
1600  *
1601  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1602  *	be careful with this one. A peek leaves the buffer on the
1603  *	list and someone else may run off with it. You must hold
1604  *	the appropriate locks or have a private queue to do this.
1605  *
1606  *	Returns %NULL for an empty list or a pointer to the tail element.
1607  *	The reference count is not incremented and the reference is therefore
1608  *	volatile. Use with caution.
1609  */
1610 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1611 {
1612 	struct sk_buff *skb = list_->prev;
1613 
1614 	if (skb == (struct sk_buff *)list_)
1615 		skb = NULL;
1616 	return skb;
1617 
1618 }
1619 
1620 /**
1621  *	skb_queue_len	- get queue length
1622  *	@list_: list to measure
1623  *
1624  *	Return the length of an &sk_buff queue.
1625  */
1626 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1627 {
1628 	return list_->qlen;
1629 }
1630 
1631 /**
1632  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1633  *	@list: queue to initialize
1634  *
1635  *	This initializes only the list and queue length aspects of
1636  *	an sk_buff_head object.  This allows to initialize the list
1637  *	aspects of an sk_buff_head without reinitializing things like
1638  *	the spinlock.  It can also be used for on-stack sk_buff_head
1639  *	objects where the spinlock is known to not be used.
1640  */
1641 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1642 {
1643 	list->prev = list->next = (struct sk_buff *)list;
1644 	list->qlen = 0;
1645 }
1646 
1647 /*
1648  * This function creates a split out lock class for each invocation;
1649  * this is needed for now since a whole lot of users of the skb-queue
1650  * infrastructure in drivers have different locking usage (in hardirq)
1651  * than the networking core (in softirq only). In the long run either the
1652  * network layer or drivers should need annotation to consolidate the
1653  * main types of usage into 3 classes.
1654  */
1655 static inline void skb_queue_head_init(struct sk_buff_head *list)
1656 {
1657 	spin_lock_init(&list->lock);
1658 	__skb_queue_head_init(list);
1659 }
1660 
1661 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1662 		struct lock_class_key *class)
1663 {
1664 	skb_queue_head_init(list);
1665 	lockdep_set_class(&list->lock, class);
1666 }
1667 
1668 /*
1669  *	Insert an sk_buff on a list.
1670  *
1671  *	The "__skb_xxxx()" functions are the non-atomic ones that
1672  *	can only be called with interrupts disabled.
1673  */
1674 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1675 		struct sk_buff_head *list);
1676 static inline void __skb_insert(struct sk_buff *newsk,
1677 				struct sk_buff *prev, struct sk_buff *next,
1678 				struct sk_buff_head *list)
1679 {
1680 	newsk->next = next;
1681 	newsk->prev = prev;
1682 	next->prev  = prev->next = newsk;
1683 	list->qlen++;
1684 }
1685 
1686 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1687 				      struct sk_buff *prev,
1688 				      struct sk_buff *next)
1689 {
1690 	struct sk_buff *first = list->next;
1691 	struct sk_buff *last = list->prev;
1692 
1693 	first->prev = prev;
1694 	prev->next = first;
1695 
1696 	last->next = next;
1697 	next->prev = last;
1698 }
1699 
1700 /**
1701  *	skb_queue_splice - join two skb lists, this is designed for stacks
1702  *	@list: the new list to add
1703  *	@head: the place to add it in the first list
1704  */
1705 static inline void skb_queue_splice(const struct sk_buff_head *list,
1706 				    struct sk_buff_head *head)
1707 {
1708 	if (!skb_queue_empty(list)) {
1709 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1710 		head->qlen += list->qlen;
1711 	}
1712 }
1713 
1714 /**
1715  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1716  *	@list: the new list to add
1717  *	@head: the place to add it in the first list
1718  *
1719  *	The list at @list is reinitialised
1720  */
1721 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1722 					 struct sk_buff_head *head)
1723 {
1724 	if (!skb_queue_empty(list)) {
1725 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1726 		head->qlen += list->qlen;
1727 		__skb_queue_head_init(list);
1728 	}
1729 }
1730 
1731 /**
1732  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1733  *	@list: the new list to add
1734  *	@head: the place to add it in the first list
1735  */
1736 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1737 					 struct sk_buff_head *head)
1738 {
1739 	if (!skb_queue_empty(list)) {
1740 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1741 		head->qlen += list->qlen;
1742 	}
1743 }
1744 
1745 /**
1746  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1747  *	@list: the new list to add
1748  *	@head: the place to add it in the first list
1749  *
1750  *	Each of the lists is a queue.
1751  *	The list at @list is reinitialised
1752  */
1753 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1754 					      struct sk_buff_head *head)
1755 {
1756 	if (!skb_queue_empty(list)) {
1757 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1758 		head->qlen += list->qlen;
1759 		__skb_queue_head_init(list);
1760 	}
1761 }
1762 
1763 /**
1764  *	__skb_queue_after - queue a buffer at the list head
1765  *	@list: list to use
1766  *	@prev: place after this buffer
1767  *	@newsk: buffer to queue
1768  *
1769  *	Queue a buffer int the middle of a list. This function takes no locks
1770  *	and you must therefore hold required locks before calling it.
1771  *
1772  *	A buffer cannot be placed on two lists at the same time.
1773  */
1774 static inline void __skb_queue_after(struct sk_buff_head *list,
1775 				     struct sk_buff *prev,
1776 				     struct sk_buff *newsk)
1777 {
1778 	__skb_insert(newsk, prev, prev->next, list);
1779 }
1780 
1781 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1782 		struct sk_buff_head *list);
1783 
1784 static inline void __skb_queue_before(struct sk_buff_head *list,
1785 				      struct sk_buff *next,
1786 				      struct sk_buff *newsk)
1787 {
1788 	__skb_insert(newsk, next->prev, next, list);
1789 }
1790 
1791 /**
1792  *	__skb_queue_head - queue a buffer at the list head
1793  *	@list: list to use
1794  *	@newsk: buffer to queue
1795  *
1796  *	Queue a buffer at the start of a list. This function takes no locks
1797  *	and you must therefore hold required locks before calling it.
1798  *
1799  *	A buffer cannot be placed on two lists at the same time.
1800  */
1801 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1802 static inline void __skb_queue_head(struct sk_buff_head *list,
1803 				    struct sk_buff *newsk)
1804 {
1805 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1806 }
1807 
1808 /**
1809  *	__skb_queue_tail - queue a buffer at the list tail
1810  *	@list: list to use
1811  *	@newsk: buffer to queue
1812  *
1813  *	Queue a buffer at the end of a list. This function takes no locks
1814  *	and you must therefore hold required locks before calling it.
1815  *
1816  *	A buffer cannot be placed on two lists at the same time.
1817  */
1818 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1819 static inline void __skb_queue_tail(struct sk_buff_head *list,
1820 				   struct sk_buff *newsk)
1821 {
1822 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1823 }
1824 
1825 /*
1826  * remove sk_buff from list. _Must_ be called atomically, and with
1827  * the list known..
1828  */
1829 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1830 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1831 {
1832 	struct sk_buff *next, *prev;
1833 
1834 	list->qlen--;
1835 	next	   = skb->next;
1836 	prev	   = skb->prev;
1837 	skb->next  = skb->prev = NULL;
1838 	next->prev = prev;
1839 	prev->next = next;
1840 }
1841 
1842 /**
1843  *	__skb_dequeue - remove from the head of the queue
1844  *	@list: list to dequeue from
1845  *
1846  *	Remove the head of the list. This function does not take any locks
1847  *	so must be used with appropriate locks held only. The head item is
1848  *	returned or %NULL if the list is empty.
1849  */
1850 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1851 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1852 {
1853 	struct sk_buff *skb = skb_peek(list);
1854 	if (skb)
1855 		__skb_unlink(skb, list);
1856 	return skb;
1857 }
1858 
1859 /**
1860  *	__skb_dequeue_tail - remove from the tail of the queue
1861  *	@list: list to dequeue from
1862  *
1863  *	Remove the tail of the list. This function does not take any locks
1864  *	so must be used with appropriate locks held only. The tail item is
1865  *	returned or %NULL if the list is empty.
1866  */
1867 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1868 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1869 {
1870 	struct sk_buff *skb = skb_peek_tail(list);
1871 	if (skb)
1872 		__skb_unlink(skb, list);
1873 	return skb;
1874 }
1875 
1876 
1877 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1878 {
1879 	return skb->data_len;
1880 }
1881 
1882 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1883 {
1884 	return skb->len - skb->data_len;
1885 }
1886 
1887 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1888 {
1889 	unsigned int i, len = 0;
1890 
1891 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1892 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1893 	return len;
1894 }
1895 
1896 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1897 {
1898 	return skb_headlen(skb) + __skb_pagelen(skb);
1899 }
1900 
1901 /**
1902  * __skb_fill_page_desc - initialise a paged fragment in an skb
1903  * @skb: buffer containing fragment to be initialised
1904  * @i: paged fragment index to initialise
1905  * @page: the page to use for this fragment
1906  * @off: the offset to the data with @page
1907  * @size: the length of the data
1908  *
1909  * Initialises the @i'th fragment of @skb to point to &size bytes at
1910  * offset @off within @page.
1911  *
1912  * Does not take any additional reference on the fragment.
1913  */
1914 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1915 					struct page *page, int off, int size)
1916 {
1917 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1918 
1919 	/*
1920 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1921 	 * that not all callers have unique ownership of the page but rely
1922 	 * on page_is_pfmemalloc doing the right thing(tm).
1923 	 */
1924 	frag->page.p		  = page;
1925 	frag->page_offset	  = off;
1926 	skb_frag_size_set(frag, size);
1927 
1928 	page = compound_head(page);
1929 	if (page_is_pfmemalloc(page))
1930 		skb->pfmemalloc	= true;
1931 }
1932 
1933 /**
1934  * skb_fill_page_desc - initialise a paged fragment in an skb
1935  * @skb: buffer containing fragment to be initialised
1936  * @i: paged fragment index to initialise
1937  * @page: the page to use for this fragment
1938  * @off: the offset to the data with @page
1939  * @size: the length of the data
1940  *
1941  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1942  * @skb to point to @size bytes at offset @off within @page. In
1943  * addition updates @skb such that @i is the last fragment.
1944  *
1945  * Does not take any additional reference on the fragment.
1946  */
1947 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1948 				      struct page *page, int off, int size)
1949 {
1950 	__skb_fill_page_desc(skb, i, page, off, size);
1951 	skb_shinfo(skb)->nr_frags = i + 1;
1952 }
1953 
1954 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1955 		     int size, unsigned int truesize);
1956 
1957 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1958 			  unsigned int truesize);
1959 
1960 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1961 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1962 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1963 
1964 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1965 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1966 {
1967 	return skb->head + skb->tail;
1968 }
1969 
1970 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1971 {
1972 	skb->tail = skb->data - skb->head;
1973 }
1974 
1975 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1976 {
1977 	skb_reset_tail_pointer(skb);
1978 	skb->tail += offset;
1979 }
1980 
1981 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1982 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1983 {
1984 	return skb->tail;
1985 }
1986 
1987 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1988 {
1989 	skb->tail = skb->data;
1990 }
1991 
1992 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1993 {
1994 	skb->tail = skb->data + offset;
1995 }
1996 
1997 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1998 
1999 /*
2000  *	Add data to an sk_buff
2001  */
2002 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2003 void *skb_put(struct sk_buff *skb, unsigned int len);
2004 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2005 {
2006 	void *tmp = skb_tail_pointer(skb);
2007 	SKB_LINEAR_ASSERT(skb);
2008 	skb->tail += len;
2009 	skb->len  += len;
2010 	return tmp;
2011 }
2012 
2013 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2014 {
2015 	void *tmp = __skb_put(skb, len);
2016 
2017 	memset(tmp, 0, len);
2018 	return tmp;
2019 }
2020 
2021 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2022 				   unsigned int len)
2023 {
2024 	void *tmp = __skb_put(skb, len);
2025 
2026 	memcpy(tmp, data, len);
2027 	return tmp;
2028 }
2029 
2030 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2031 {
2032 	*(u8 *)__skb_put(skb, 1) = val;
2033 }
2034 
2035 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2036 {
2037 	void *tmp = skb_put(skb, len);
2038 
2039 	memset(tmp, 0, len);
2040 
2041 	return tmp;
2042 }
2043 
2044 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2045 				 unsigned int len)
2046 {
2047 	void *tmp = skb_put(skb, len);
2048 
2049 	memcpy(tmp, data, len);
2050 
2051 	return tmp;
2052 }
2053 
2054 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2055 {
2056 	*(u8 *)skb_put(skb, 1) = val;
2057 }
2058 
2059 void *skb_push(struct sk_buff *skb, unsigned int len);
2060 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2061 {
2062 	skb->data -= len;
2063 	skb->len  += len;
2064 	return skb->data;
2065 }
2066 
2067 void *skb_pull(struct sk_buff *skb, unsigned int len);
2068 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2069 {
2070 	skb->len -= len;
2071 	BUG_ON(skb->len < skb->data_len);
2072 	return skb->data += len;
2073 }
2074 
2075 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2076 {
2077 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2078 }
2079 
2080 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2081 
2082 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2083 {
2084 	if (len > skb_headlen(skb) &&
2085 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2086 		return NULL;
2087 	skb->len -= len;
2088 	return skb->data += len;
2089 }
2090 
2091 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2092 {
2093 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2094 }
2095 
2096 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2097 {
2098 	if (likely(len <= skb_headlen(skb)))
2099 		return 1;
2100 	if (unlikely(len > skb->len))
2101 		return 0;
2102 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2103 }
2104 
2105 void skb_condense(struct sk_buff *skb);
2106 
2107 /**
2108  *	skb_headroom - bytes at buffer head
2109  *	@skb: buffer to check
2110  *
2111  *	Return the number of bytes of free space at the head of an &sk_buff.
2112  */
2113 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2114 {
2115 	return skb->data - skb->head;
2116 }
2117 
2118 /**
2119  *	skb_tailroom - bytes at buffer end
2120  *	@skb: buffer to check
2121  *
2122  *	Return the number of bytes of free space at the tail of an sk_buff
2123  */
2124 static inline int skb_tailroom(const struct sk_buff *skb)
2125 {
2126 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2127 }
2128 
2129 /**
2130  *	skb_availroom - bytes at buffer end
2131  *	@skb: buffer to check
2132  *
2133  *	Return the number of bytes of free space at the tail of an sk_buff
2134  *	allocated by sk_stream_alloc()
2135  */
2136 static inline int skb_availroom(const struct sk_buff *skb)
2137 {
2138 	if (skb_is_nonlinear(skb))
2139 		return 0;
2140 
2141 	return skb->end - skb->tail - skb->reserved_tailroom;
2142 }
2143 
2144 /**
2145  *	skb_reserve - adjust headroom
2146  *	@skb: buffer to alter
2147  *	@len: bytes to move
2148  *
2149  *	Increase the headroom of an empty &sk_buff by reducing the tail
2150  *	room. This is only allowed for an empty buffer.
2151  */
2152 static inline void skb_reserve(struct sk_buff *skb, int len)
2153 {
2154 	skb->data += len;
2155 	skb->tail += len;
2156 }
2157 
2158 /**
2159  *	skb_tailroom_reserve - adjust reserved_tailroom
2160  *	@skb: buffer to alter
2161  *	@mtu: maximum amount of headlen permitted
2162  *	@needed_tailroom: minimum amount of reserved_tailroom
2163  *
2164  *	Set reserved_tailroom so that headlen can be as large as possible but
2165  *	not larger than mtu and tailroom cannot be smaller than
2166  *	needed_tailroom.
2167  *	The required headroom should already have been reserved before using
2168  *	this function.
2169  */
2170 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2171 					unsigned int needed_tailroom)
2172 {
2173 	SKB_LINEAR_ASSERT(skb);
2174 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2175 		/* use at most mtu */
2176 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2177 	else
2178 		/* use up to all available space */
2179 		skb->reserved_tailroom = needed_tailroom;
2180 }
2181 
2182 #define ENCAP_TYPE_ETHER	0
2183 #define ENCAP_TYPE_IPPROTO	1
2184 
2185 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2186 					  __be16 protocol)
2187 {
2188 	skb->inner_protocol = protocol;
2189 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2190 }
2191 
2192 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2193 					 __u8 ipproto)
2194 {
2195 	skb->inner_ipproto = ipproto;
2196 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2197 }
2198 
2199 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2200 {
2201 	skb->inner_mac_header = skb->mac_header;
2202 	skb->inner_network_header = skb->network_header;
2203 	skb->inner_transport_header = skb->transport_header;
2204 }
2205 
2206 static inline void skb_reset_mac_len(struct sk_buff *skb)
2207 {
2208 	skb->mac_len = skb->network_header - skb->mac_header;
2209 }
2210 
2211 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2212 							*skb)
2213 {
2214 	return skb->head + skb->inner_transport_header;
2215 }
2216 
2217 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2218 {
2219 	return skb_inner_transport_header(skb) - skb->data;
2220 }
2221 
2222 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2223 {
2224 	skb->inner_transport_header = skb->data - skb->head;
2225 }
2226 
2227 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2228 						   const int offset)
2229 {
2230 	skb_reset_inner_transport_header(skb);
2231 	skb->inner_transport_header += offset;
2232 }
2233 
2234 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2235 {
2236 	return skb->head + skb->inner_network_header;
2237 }
2238 
2239 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2240 {
2241 	skb->inner_network_header = skb->data - skb->head;
2242 }
2243 
2244 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2245 						const int offset)
2246 {
2247 	skb_reset_inner_network_header(skb);
2248 	skb->inner_network_header += offset;
2249 }
2250 
2251 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2252 {
2253 	return skb->head + skb->inner_mac_header;
2254 }
2255 
2256 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2257 {
2258 	skb->inner_mac_header = skb->data - skb->head;
2259 }
2260 
2261 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2262 					    const int offset)
2263 {
2264 	skb_reset_inner_mac_header(skb);
2265 	skb->inner_mac_header += offset;
2266 }
2267 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2268 {
2269 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2270 }
2271 
2272 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2273 {
2274 	return skb->head + skb->transport_header;
2275 }
2276 
2277 static inline void skb_reset_transport_header(struct sk_buff *skb)
2278 {
2279 	skb->transport_header = skb->data - skb->head;
2280 }
2281 
2282 static inline void skb_set_transport_header(struct sk_buff *skb,
2283 					    const int offset)
2284 {
2285 	skb_reset_transport_header(skb);
2286 	skb->transport_header += offset;
2287 }
2288 
2289 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2290 {
2291 	return skb->head + skb->network_header;
2292 }
2293 
2294 static inline void skb_reset_network_header(struct sk_buff *skb)
2295 {
2296 	skb->network_header = skb->data - skb->head;
2297 }
2298 
2299 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2300 {
2301 	skb_reset_network_header(skb);
2302 	skb->network_header += offset;
2303 }
2304 
2305 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2306 {
2307 	return skb->head + skb->mac_header;
2308 }
2309 
2310 static inline int skb_mac_offset(const struct sk_buff *skb)
2311 {
2312 	return skb_mac_header(skb) - skb->data;
2313 }
2314 
2315 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2316 {
2317 	return skb->network_header - skb->mac_header;
2318 }
2319 
2320 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2321 {
2322 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2323 }
2324 
2325 static inline void skb_reset_mac_header(struct sk_buff *skb)
2326 {
2327 	skb->mac_header = skb->data - skb->head;
2328 }
2329 
2330 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2331 {
2332 	skb_reset_mac_header(skb);
2333 	skb->mac_header += offset;
2334 }
2335 
2336 static inline void skb_pop_mac_header(struct sk_buff *skb)
2337 {
2338 	skb->mac_header = skb->network_header;
2339 }
2340 
2341 static inline void skb_probe_transport_header(struct sk_buff *skb,
2342 					      const int offset_hint)
2343 {
2344 	struct flow_keys keys;
2345 
2346 	if (skb_transport_header_was_set(skb))
2347 		return;
2348 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2349 		skb_set_transport_header(skb, keys.control.thoff);
2350 	else
2351 		skb_set_transport_header(skb, offset_hint);
2352 }
2353 
2354 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2355 {
2356 	if (skb_mac_header_was_set(skb)) {
2357 		const unsigned char *old_mac = skb_mac_header(skb);
2358 
2359 		skb_set_mac_header(skb, -skb->mac_len);
2360 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2361 	}
2362 }
2363 
2364 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2365 {
2366 	return skb->csum_start - skb_headroom(skb);
2367 }
2368 
2369 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2370 {
2371 	return skb->head + skb->csum_start;
2372 }
2373 
2374 static inline int skb_transport_offset(const struct sk_buff *skb)
2375 {
2376 	return skb_transport_header(skb) - skb->data;
2377 }
2378 
2379 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2380 {
2381 	return skb->transport_header - skb->network_header;
2382 }
2383 
2384 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2385 {
2386 	return skb->inner_transport_header - skb->inner_network_header;
2387 }
2388 
2389 static inline int skb_network_offset(const struct sk_buff *skb)
2390 {
2391 	return skb_network_header(skb) - skb->data;
2392 }
2393 
2394 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2395 {
2396 	return skb_inner_network_header(skb) - skb->data;
2397 }
2398 
2399 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2400 {
2401 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2402 }
2403 
2404 /*
2405  * CPUs often take a performance hit when accessing unaligned memory
2406  * locations. The actual performance hit varies, it can be small if the
2407  * hardware handles it or large if we have to take an exception and fix it
2408  * in software.
2409  *
2410  * Since an ethernet header is 14 bytes network drivers often end up with
2411  * the IP header at an unaligned offset. The IP header can be aligned by
2412  * shifting the start of the packet by 2 bytes. Drivers should do this
2413  * with:
2414  *
2415  * skb_reserve(skb, NET_IP_ALIGN);
2416  *
2417  * The downside to this alignment of the IP header is that the DMA is now
2418  * unaligned. On some architectures the cost of an unaligned DMA is high
2419  * and this cost outweighs the gains made by aligning the IP header.
2420  *
2421  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2422  * to be overridden.
2423  */
2424 #ifndef NET_IP_ALIGN
2425 #define NET_IP_ALIGN	2
2426 #endif
2427 
2428 /*
2429  * The networking layer reserves some headroom in skb data (via
2430  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2431  * the header has to grow. In the default case, if the header has to grow
2432  * 32 bytes or less we avoid the reallocation.
2433  *
2434  * Unfortunately this headroom changes the DMA alignment of the resulting
2435  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2436  * on some architectures. An architecture can override this value,
2437  * perhaps setting it to a cacheline in size (since that will maintain
2438  * cacheline alignment of the DMA). It must be a power of 2.
2439  *
2440  * Various parts of the networking layer expect at least 32 bytes of
2441  * headroom, you should not reduce this.
2442  *
2443  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2444  * to reduce average number of cache lines per packet.
2445  * get_rps_cpus() for example only access one 64 bytes aligned block :
2446  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2447  */
2448 #ifndef NET_SKB_PAD
2449 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2450 #endif
2451 
2452 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2453 
2454 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2455 {
2456 	if (unlikely(skb_is_nonlinear(skb))) {
2457 		WARN_ON(1);
2458 		return;
2459 	}
2460 	skb->len = len;
2461 	skb_set_tail_pointer(skb, len);
2462 }
2463 
2464 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2465 {
2466 	__skb_set_length(skb, len);
2467 }
2468 
2469 void skb_trim(struct sk_buff *skb, unsigned int len);
2470 
2471 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2472 {
2473 	if (skb->data_len)
2474 		return ___pskb_trim(skb, len);
2475 	__skb_trim(skb, len);
2476 	return 0;
2477 }
2478 
2479 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2480 {
2481 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2482 }
2483 
2484 /**
2485  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2486  *	@skb: buffer to alter
2487  *	@len: new length
2488  *
2489  *	This is identical to pskb_trim except that the caller knows that
2490  *	the skb is not cloned so we should never get an error due to out-
2491  *	of-memory.
2492  */
2493 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2494 {
2495 	int err = pskb_trim(skb, len);
2496 	BUG_ON(err);
2497 }
2498 
2499 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2500 {
2501 	unsigned int diff = len - skb->len;
2502 
2503 	if (skb_tailroom(skb) < diff) {
2504 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2505 					   GFP_ATOMIC);
2506 		if (ret)
2507 			return ret;
2508 	}
2509 	__skb_set_length(skb, len);
2510 	return 0;
2511 }
2512 
2513 /**
2514  *	skb_orphan - orphan a buffer
2515  *	@skb: buffer to orphan
2516  *
2517  *	If a buffer currently has an owner then we call the owner's
2518  *	destructor function and make the @skb unowned. The buffer continues
2519  *	to exist but is no longer charged to its former owner.
2520  */
2521 static inline void skb_orphan(struct sk_buff *skb)
2522 {
2523 	if (skb->destructor) {
2524 		skb->destructor(skb);
2525 		skb->destructor = NULL;
2526 		skb->sk		= NULL;
2527 	} else {
2528 		BUG_ON(skb->sk);
2529 	}
2530 }
2531 
2532 /**
2533  *	skb_orphan_frags - orphan the frags contained in a buffer
2534  *	@skb: buffer to orphan frags from
2535  *	@gfp_mask: allocation mask for replacement pages
2536  *
2537  *	For each frag in the SKB which needs a destructor (i.e. has an
2538  *	owner) create a copy of that frag and release the original
2539  *	page by calling the destructor.
2540  */
2541 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2542 {
2543 	if (likely(!skb_zcopy(skb)))
2544 		return 0;
2545 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2546 		return 0;
2547 	return skb_copy_ubufs(skb, gfp_mask);
2548 }
2549 
2550 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2551 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2552 {
2553 	if (likely(!skb_zcopy(skb)))
2554 		return 0;
2555 	return skb_copy_ubufs(skb, gfp_mask);
2556 }
2557 
2558 /**
2559  *	__skb_queue_purge - empty a list
2560  *	@list: list to empty
2561  *
2562  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2563  *	the list and one reference dropped. This function does not take the
2564  *	list lock and the caller must hold the relevant locks to use it.
2565  */
2566 void skb_queue_purge(struct sk_buff_head *list);
2567 static inline void __skb_queue_purge(struct sk_buff_head *list)
2568 {
2569 	struct sk_buff *skb;
2570 	while ((skb = __skb_dequeue(list)) != NULL)
2571 		kfree_skb(skb);
2572 }
2573 
2574 void skb_rbtree_purge(struct rb_root *root);
2575 
2576 void *netdev_alloc_frag(unsigned int fragsz);
2577 
2578 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2579 				   gfp_t gfp_mask);
2580 
2581 /**
2582  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2583  *	@dev: network device to receive on
2584  *	@length: length to allocate
2585  *
2586  *	Allocate a new &sk_buff and assign it a usage count of one. The
2587  *	buffer has unspecified headroom built in. Users should allocate
2588  *	the headroom they think they need without accounting for the
2589  *	built in space. The built in space is used for optimisations.
2590  *
2591  *	%NULL is returned if there is no free memory. Although this function
2592  *	allocates memory it can be called from an interrupt.
2593  */
2594 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2595 					       unsigned int length)
2596 {
2597 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2598 }
2599 
2600 /* legacy helper around __netdev_alloc_skb() */
2601 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2602 					      gfp_t gfp_mask)
2603 {
2604 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2605 }
2606 
2607 /* legacy helper around netdev_alloc_skb() */
2608 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2609 {
2610 	return netdev_alloc_skb(NULL, length);
2611 }
2612 
2613 
2614 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2615 		unsigned int length, gfp_t gfp)
2616 {
2617 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2618 
2619 	if (NET_IP_ALIGN && skb)
2620 		skb_reserve(skb, NET_IP_ALIGN);
2621 	return skb;
2622 }
2623 
2624 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2625 		unsigned int length)
2626 {
2627 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2628 }
2629 
2630 static inline void skb_free_frag(void *addr)
2631 {
2632 	page_frag_free(addr);
2633 }
2634 
2635 void *napi_alloc_frag(unsigned int fragsz);
2636 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2637 				 unsigned int length, gfp_t gfp_mask);
2638 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2639 					     unsigned int length)
2640 {
2641 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2642 }
2643 void napi_consume_skb(struct sk_buff *skb, int budget);
2644 
2645 void __kfree_skb_flush(void);
2646 void __kfree_skb_defer(struct sk_buff *skb);
2647 
2648 /**
2649  * __dev_alloc_pages - allocate page for network Rx
2650  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2651  * @order: size of the allocation
2652  *
2653  * Allocate a new page.
2654  *
2655  * %NULL is returned if there is no free memory.
2656 */
2657 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2658 					     unsigned int order)
2659 {
2660 	/* This piece of code contains several assumptions.
2661 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2662 	 * 2.  The expectation is the user wants a compound page.
2663 	 * 3.  If requesting a order 0 page it will not be compound
2664 	 *     due to the check to see if order has a value in prep_new_page
2665 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2666 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2667 	 */
2668 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2669 
2670 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2671 }
2672 
2673 static inline struct page *dev_alloc_pages(unsigned int order)
2674 {
2675 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2676 }
2677 
2678 /**
2679  * __dev_alloc_page - allocate a page for network Rx
2680  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2681  *
2682  * Allocate a new page.
2683  *
2684  * %NULL is returned if there is no free memory.
2685  */
2686 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2687 {
2688 	return __dev_alloc_pages(gfp_mask, 0);
2689 }
2690 
2691 static inline struct page *dev_alloc_page(void)
2692 {
2693 	return dev_alloc_pages(0);
2694 }
2695 
2696 /**
2697  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2698  *	@page: The page that was allocated from skb_alloc_page
2699  *	@skb: The skb that may need pfmemalloc set
2700  */
2701 static inline void skb_propagate_pfmemalloc(struct page *page,
2702 					     struct sk_buff *skb)
2703 {
2704 	if (page_is_pfmemalloc(page))
2705 		skb->pfmemalloc = true;
2706 }
2707 
2708 /**
2709  * skb_frag_page - retrieve the page referred to by a paged fragment
2710  * @frag: the paged fragment
2711  *
2712  * Returns the &struct page associated with @frag.
2713  */
2714 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2715 {
2716 	return frag->page.p;
2717 }
2718 
2719 /**
2720  * __skb_frag_ref - take an addition reference on a paged fragment.
2721  * @frag: the paged fragment
2722  *
2723  * Takes an additional reference on the paged fragment @frag.
2724  */
2725 static inline void __skb_frag_ref(skb_frag_t *frag)
2726 {
2727 	get_page(skb_frag_page(frag));
2728 }
2729 
2730 /**
2731  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2732  * @skb: the buffer
2733  * @f: the fragment offset.
2734  *
2735  * Takes an additional reference on the @f'th paged fragment of @skb.
2736  */
2737 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2738 {
2739 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2740 }
2741 
2742 /**
2743  * __skb_frag_unref - release a reference on a paged fragment.
2744  * @frag: the paged fragment
2745  *
2746  * Releases a reference on the paged fragment @frag.
2747  */
2748 static inline void __skb_frag_unref(skb_frag_t *frag)
2749 {
2750 	put_page(skb_frag_page(frag));
2751 }
2752 
2753 /**
2754  * skb_frag_unref - release a reference on a paged fragment of an skb.
2755  * @skb: the buffer
2756  * @f: the fragment offset
2757  *
2758  * Releases a reference on the @f'th paged fragment of @skb.
2759  */
2760 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2761 {
2762 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2763 }
2764 
2765 /**
2766  * skb_frag_address - gets the address of the data contained in a paged fragment
2767  * @frag: the paged fragment buffer
2768  *
2769  * Returns the address of the data within @frag. The page must already
2770  * be mapped.
2771  */
2772 static inline void *skb_frag_address(const skb_frag_t *frag)
2773 {
2774 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2775 }
2776 
2777 /**
2778  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2779  * @frag: the paged fragment buffer
2780  *
2781  * Returns the address of the data within @frag. Checks that the page
2782  * is mapped and returns %NULL otherwise.
2783  */
2784 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2785 {
2786 	void *ptr = page_address(skb_frag_page(frag));
2787 	if (unlikely(!ptr))
2788 		return NULL;
2789 
2790 	return ptr + frag->page_offset;
2791 }
2792 
2793 /**
2794  * __skb_frag_set_page - sets the page contained in a paged fragment
2795  * @frag: the paged fragment
2796  * @page: the page to set
2797  *
2798  * Sets the fragment @frag to contain @page.
2799  */
2800 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2801 {
2802 	frag->page.p = page;
2803 }
2804 
2805 /**
2806  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2807  * @skb: the buffer
2808  * @f: the fragment offset
2809  * @page: the page to set
2810  *
2811  * Sets the @f'th fragment of @skb to contain @page.
2812  */
2813 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2814 				     struct page *page)
2815 {
2816 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2817 }
2818 
2819 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2820 
2821 /**
2822  * skb_frag_dma_map - maps a paged fragment via the DMA API
2823  * @dev: the device to map the fragment to
2824  * @frag: the paged fragment to map
2825  * @offset: the offset within the fragment (starting at the
2826  *          fragment's own offset)
2827  * @size: the number of bytes to map
2828  * @dir: the direction of the mapping (``PCI_DMA_*``)
2829  *
2830  * Maps the page associated with @frag to @device.
2831  */
2832 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2833 					  const skb_frag_t *frag,
2834 					  size_t offset, size_t size,
2835 					  enum dma_data_direction dir)
2836 {
2837 	return dma_map_page(dev, skb_frag_page(frag),
2838 			    frag->page_offset + offset, size, dir);
2839 }
2840 
2841 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2842 					gfp_t gfp_mask)
2843 {
2844 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2845 }
2846 
2847 
2848 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2849 						  gfp_t gfp_mask)
2850 {
2851 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2852 }
2853 
2854 
2855 /**
2856  *	skb_clone_writable - is the header of a clone writable
2857  *	@skb: buffer to check
2858  *	@len: length up to which to write
2859  *
2860  *	Returns true if modifying the header part of the cloned buffer
2861  *	does not requires the data to be copied.
2862  */
2863 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2864 {
2865 	return !skb_header_cloned(skb) &&
2866 	       skb_headroom(skb) + len <= skb->hdr_len;
2867 }
2868 
2869 static inline int skb_try_make_writable(struct sk_buff *skb,
2870 					unsigned int write_len)
2871 {
2872 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2873 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2874 }
2875 
2876 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2877 			    int cloned)
2878 {
2879 	int delta = 0;
2880 
2881 	if (headroom > skb_headroom(skb))
2882 		delta = headroom - skb_headroom(skb);
2883 
2884 	if (delta || cloned)
2885 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2886 					GFP_ATOMIC);
2887 	return 0;
2888 }
2889 
2890 /**
2891  *	skb_cow - copy header of skb when it is required
2892  *	@skb: buffer to cow
2893  *	@headroom: needed headroom
2894  *
2895  *	If the skb passed lacks sufficient headroom or its data part
2896  *	is shared, data is reallocated. If reallocation fails, an error
2897  *	is returned and original skb is not changed.
2898  *
2899  *	The result is skb with writable area skb->head...skb->tail
2900  *	and at least @headroom of space at head.
2901  */
2902 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2903 {
2904 	return __skb_cow(skb, headroom, skb_cloned(skb));
2905 }
2906 
2907 /**
2908  *	skb_cow_head - skb_cow but only making the head writable
2909  *	@skb: buffer to cow
2910  *	@headroom: needed headroom
2911  *
2912  *	This function is identical to skb_cow except that we replace the
2913  *	skb_cloned check by skb_header_cloned.  It should be used when
2914  *	you only need to push on some header and do not need to modify
2915  *	the data.
2916  */
2917 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2918 {
2919 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2920 }
2921 
2922 /**
2923  *	skb_padto	- pad an skbuff up to a minimal size
2924  *	@skb: buffer to pad
2925  *	@len: minimal length
2926  *
2927  *	Pads up a buffer to ensure the trailing bytes exist and are
2928  *	blanked. If the buffer already contains sufficient data it
2929  *	is untouched. Otherwise it is extended. Returns zero on
2930  *	success. The skb is freed on error.
2931  */
2932 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2933 {
2934 	unsigned int size = skb->len;
2935 	if (likely(size >= len))
2936 		return 0;
2937 	return skb_pad(skb, len - size);
2938 }
2939 
2940 /**
2941  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2942  *	@skb: buffer to pad
2943  *	@len: minimal length
2944  *	@free_on_error: free buffer on error
2945  *
2946  *	Pads up a buffer to ensure the trailing bytes exist and are
2947  *	blanked. If the buffer already contains sufficient data it
2948  *	is untouched. Otherwise it is extended. Returns zero on
2949  *	success. The skb is freed on error if @free_on_error is true.
2950  */
2951 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2952 				  bool free_on_error)
2953 {
2954 	unsigned int size = skb->len;
2955 
2956 	if (unlikely(size < len)) {
2957 		len -= size;
2958 		if (__skb_pad(skb, len, free_on_error))
2959 			return -ENOMEM;
2960 		__skb_put(skb, len);
2961 	}
2962 	return 0;
2963 }
2964 
2965 /**
2966  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2967  *	@skb: buffer to pad
2968  *	@len: minimal length
2969  *
2970  *	Pads up a buffer to ensure the trailing bytes exist and are
2971  *	blanked. If the buffer already contains sufficient data it
2972  *	is untouched. Otherwise it is extended. Returns zero on
2973  *	success. The skb is freed on error.
2974  */
2975 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2976 {
2977 	return __skb_put_padto(skb, len, true);
2978 }
2979 
2980 static inline int skb_add_data(struct sk_buff *skb,
2981 			       struct iov_iter *from, int copy)
2982 {
2983 	const int off = skb->len;
2984 
2985 	if (skb->ip_summed == CHECKSUM_NONE) {
2986 		__wsum csum = 0;
2987 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2988 					         &csum, from)) {
2989 			skb->csum = csum_block_add(skb->csum, csum, off);
2990 			return 0;
2991 		}
2992 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2993 		return 0;
2994 
2995 	__skb_trim(skb, off);
2996 	return -EFAULT;
2997 }
2998 
2999 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3000 				    const struct page *page, int off)
3001 {
3002 	if (skb_zcopy(skb))
3003 		return false;
3004 	if (i) {
3005 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3006 
3007 		return page == skb_frag_page(frag) &&
3008 		       off == frag->page_offset + skb_frag_size(frag);
3009 	}
3010 	return false;
3011 }
3012 
3013 static inline int __skb_linearize(struct sk_buff *skb)
3014 {
3015 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3016 }
3017 
3018 /**
3019  *	skb_linearize - convert paged skb to linear one
3020  *	@skb: buffer to linarize
3021  *
3022  *	If there is no free memory -ENOMEM is returned, otherwise zero
3023  *	is returned and the old skb data released.
3024  */
3025 static inline int skb_linearize(struct sk_buff *skb)
3026 {
3027 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3028 }
3029 
3030 /**
3031  * skb_has_shared_frag - can any frag be overwritten
3032  * @skb: buffer to test
3033  *
3034  * Return true if the skb has at least one frag that might be modified
3035  * by an external entity (as in vmsplice()/sendfile())
3036  */
3037 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3038 {
3039 	return skb_is_nonlinear(skb) &&
3040 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3041 }
3042 
3043 /**
3044  *	skb_linearize_cow - make sure skb is linear and writable
3045  *	@skb: buffer to process
3046  *
3047  *	If there is no free memory -ENOMEM is returned, otherwise zero
3048  *	is returned and the old skb data released.
3049  */
3050 static inline int skb_linearize_cow(struct sk_buff *skb)
3051 {
3052 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3053 	       __skb_linearize(skb) : 0;
3054 }
3055 
3056 static __always_inline void
3057 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3058 		     unsigned int off)
3059 {
3060 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3061 		skb->csum = csum_block_sub(skb->csum,
3062 					   csum_partial(start, len, 0), off);
3063 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3064 		 skb_checksum_start_offset(skb) < 0)
3065 		skb->ip_summed = CHECKSUM_NONE;
3066 }
3067 
3068 /**
3069  *	skb_postpull_rcsum - update checksum for received skb after pull
3070  *	@skb: buffer to update
3071  *	@start: start of data before pull
3072  *	@len: length of data pulled
3073  *
3074  *	After doing a pull on a received packet, you need to call this to
3075  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3076  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3077  */
3078 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3079 				      const void *start, unsigned int len)
3080 {
3081 	__skb_postpull_rcsum(skb, start, len, 0);
3082 }
3083 
3084 static __always_inline void
3085 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3086 		     unsigned int off)
3087 {
3088 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3089 		skb->csum = csum_block_add(skb->csum,
3090 					   csum_partial(start, len, 0), off);
3091 }
3092 
3093 /**
3094  *	skb_postpush_rcsum - update checksum for received skb after push
3095  *	@skb: buffer to update
3096  *	@start: start of data after push
3097  *	@len: length of data pushed
3098  *
3099  *	After doing a push on a received packet, you need to call this to
3100  *	update the CHECKSUM_COMPLETE checksum.
3101  */
3102 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3103 				      const void *start, unsigned int len)
3104 {
3105 	__skb_postpush_rcsum(skb, start, len, 0);
3106 }
3107 
3108 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3109 
3110 /**
3111  *	skb_push_rcsum - push skb and update receive checksum
3112  *	@skb: buffer to update
3113  *	@len: length of data pulled
3114  *
3115  *	This function performs an skb_push on the packet and updates
3116  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3117  *	receive path processing instead of skb_push unless you know
3118  *	that the checksum difference is zero (e.g., a valid IP header)
3119  *	or you are setting ip_summed to CHECKSUM_NONE.
3120  */
3121 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3122 {
3123 	skb_push(skb, len);
3124 	skb_postpush_rcsum(skb, skb->data, len);
3125 	return skb->data;
3126 }
3127 
3128 /**
3129  *	pskb_trim_rcsum - trim received skb and update checksum
3130  *	@skb: buffer to trim
3131  *	@len: new length
3132  *
3133  *	This is exactly the same as pskb_trim except that it ensures the
3134  *	checksum of received packets are still valid after the operation.
3135  */
3136 
3137 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3138 {
3139 	if (likely(len >= skb->len))
3140 		return 0;
3141 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3142 		skb->ip_summed = CHECKSUM_NONE;
3143 	return __pskb_trim(skb, len);
3144 }
3145 
3146 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3147 {
3148 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3149 		skb->ip_summed = CHECKSUM_NONE;
3150 	__skb_trim(skb, len);
3151 	return 0;
3152 }
3153 
3154 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3155 {
3156 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3157 		skb->ip_summed = CHECKSUM_NONE;
3158 	return __skb_grow(skb, len);
3159 }
3160 
3161 #define skb_queue_walk(queue, skb) \
3162 		for (skb = (queue)->next;					\
3163 		     skb != (struct sk_buff *)(queue);				\
3164 		     skb = skb->next)
3165 
3166 #define skb_queue_walk_safe(queue, skb, tmp)					\
3167 		for (skb = (queue)->next, tmp = skb->next;			\
3168 		     skb != (struct sk_buff *)(queue);				\
3169 		     skb = tmp, tmp = skb->next)
3170 
3171 #define skb_queue_walk_from(queue, skb)						\
3172 		for (; skb != (struct sk_buff *)(queue);			\
3173 		     skb = skb->next)
3174 
3175 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3176 		for (tmp = skb->next;						\
3177 		     skb != (struct sk_buff *)(queue);				\
3178 		     skb = tmp, tmp = skb->next)
3179 
3180 #define skb_queue_reverse_walk(queue, skb) \
3181 		for (skb = (queue)->prev;					\
3182 		     skb != (struct sk_buff *)(queue);				\
3183 		     skb = skb->prev)
3184 
3185 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3186 		for (skb = (queue)->prev, tmp = skb->prev;			\
3187 		     skb != (struct sk_buff *)(queue);				\
3188 		     skb = tmp, tmp = skb->prev)
3189 
3190 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3191 		for (tmp = skb->prev;						\
3192 		     skb != (struct sk_buff *)(queue);				\
3193 		     skb = tmp, tmp = skb->prev)
3194 
3195 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3196 {
3197 	return skb_shinfo(skb)->frag_list != NULL;
3198 }
3199 
3200 static inline void skb_frag_list_init(struct sk_buff *skb)
3201 {
3202 	skb_shinfo(skb)->frag_list = NULL;
3203 }
3204 
3205 #define skb_walk_frags(skb, iter)	\
3206 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3207 
3208 
3209 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3210 				const struct sk_buff *skb);
3211 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3212 					  struct sk_buff_head *queue,
3213 					  unsigned int flags,
3214 					  void (*destructor)(struct sock *sk,
3215 							   struct sk_buff *skb),
3216 					  int *peeked, int *off, int *err,
3217 					  struct sk_buff **last);
3218 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3219 					void (*destructor)(struct sock *sk,
3220 							   struct sk_buff *skb),
3221 					int *peeked, int *off, int *err,
3222 					struct sk_buff **last);
3223 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3224 				    void (*destructor)(struct sock *sk,
3225 						       struct sk_buff *skb),
3226 				    int *peeked, int *off, int *err);
3227 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3228 				  int *err);
3229 unsigned int datagram_poll(struct file *file, struct socket *sock,
3230 			   struct poll_table_struct *wait);
3231 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3232 			   struct iov_iter *to, int size);
3233 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3234 					struct msghdr *msg, int size)
3235 {
3236 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3237 }
3238 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3239 				   struct msghdr *msg);
3240 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3241 				 struct iov_iter *from, int len);
3242 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3243 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3244 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3245 static inline void skb_free_datagram_locked(struct sock *sk,
3246 					    struct sk_buff *skb)
3247 {
3248 	__skb_free_datagram_locked(sk, skb, 0);
3249 }
3250 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3251 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3252 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3253 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3254 			      int len, __wsum csum);
3255 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3256 		    struct pipe_inode_info *pipe, unsigned int len,
3257 		    unsigned int flags);
3258 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3259 			 int len);
3260 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3261 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3262 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3263 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3264 		 int len, int hlen);
3265 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3266 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3267 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3268 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3269 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3270 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3271 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3272 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3273 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3274 int skb_vlan_pop(struct sk_buff *skb);
3275 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3276 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3277 			     gfp_t gfp);
3278 
3279 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3280 {
3281 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3282 }
3283 
3284 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3285 {
3286 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3287 }
3288 
3289 struct skb_checksum_ops {
3290 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3291 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3292 };
3293 
3294 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3295 
3296 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3297 		      __wsum csum, const struct skb_checksum_ops *ops);
3298 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3299 		    __wsum csum);
3300 
3301 static inline void * __must_check
3302 __skb_header_pointer(const struct sk_buff *skb, int offset,
3303 		     int len, void *data, int hlen, void *buffer)
3304 {
3305 	if (hlen - offset >= len)
3306 		return data + offset;
3307 
3308 	if (!skb ||
3309 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3310 		return NULL;
3311 
3312 	return buffer;
3313 }
3314 
3315 static inline void * __must_check
3316 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3317 {
3318 	return __skb_header_pointer(skb, offset, len, skb->data,
3319 				    skb_headlen(skb), buffer);
3320 }
3321 
3322 /**
3323  *	skb_needs_linearize - check if we need to linearize a given skb
3324  *			      depending on the given device features.
3325  *	@skb: socket buffer to check
3326  *	@features: net device features
3327  *
3328  *	Returns true if either:
3329  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3330  *	2. skb is fragmented and the device does not support SG.
3331  */
3332 static inline bool skb_needs_linearize(struct sk_buff *skb,
3333 				       netdev_features_t features)
3334 {
3335 	return skb_is_nonlinear(skb) &&
3336 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3337 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3338 }
3339 
3340 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3341 					     void *to,
3342 					     const unsigned int len)
3343 {
3344 	memcpy(to, skb->data, len);
3345 }
3346 
3347 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3348 						    const int offset, void *to,
3349 						    const unsigned int len)
3350 {
3351 	memcpy(to, skb->data + offset, len);
3352 }
3353 
3354 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3355 					   const void *from,
3356 					   const unsigned int len)
3357 {
3358 	memcpy(skb->data, from, len);
3359 }
3360 
3361 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3362 						  const int offset,
3363 						  const void *from,
3364 						  const unsigned int len)
3365 {
3366 	memcpy(skb->data + offset, from, len);
3367 }
3368 
3369 void skb_init(void);
3370 
3371 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3372 {
3373 	return skb->tstamp;
3374 }
3375 
3376 /**
3377  *	skb_get_timestamp - get timestamp from a skb
3378  *	@skb: skb to get stamp from
3379  *	@stamp: pointer to struct timeval to store stamp in
3380  *
3381  *	Timestamps are stored in the skb as offsets to a base timestamp.
3382  *	This function converts the offset back to a struct timeval and stores
3383  *	it in stamp.
3384  */
3385 static inline void skb_get_timestamp(const struct sk_buff *skb,
3386 				     struct timeval *stamp)
3387 {
3388 	*stamp = ktime_to_timeval(skb->tstamp);
3389 }
3390 
3391 static inline void skb_get_timestampns(const struct sk_buff *skb,
3392 				       struct timespec *stamp)
3393 {
3394 	*stamp = ktime_to_timespec(skb->tstamp);
3395 }
3396 
3397 static inline void __net_timestamp(struct sk_buff *skb)
3398 {
3399 	skb->tstamp = ktime_get_real();
3400 }
3401 
3402 static inline ktime_t net_timedelta(ktime_t t)
3403 {
3404 	return ktime_sub(ktime_get_real(), t);
3405 }
3406 
3407 static inline ktime_t net_invalid_timestamp(void)
3408 {
3409 	return 0;
3410 }
3411 
3412 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3413 {
3414 	return skb_shinfo(skb)->meta_len;
3415 }
3416 
3417 static inline void *skb_metadata_end(const struct sk_buff *skb)
3418 {
3419 	return skb_mac_header(skb);
3420 }
3421 
3422 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3423 					  const struct sk_buff *skb_b,
3424 					  u8 meta_len)
3425 {
3426 	const void *a = skb_metadata_end(skb_a);
3427 	const void *b = skb_metadata_end(skb_b);
3428 	/* Using more efficient varaiant than plain call to memcmp(). */
3429 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3430 	u64 diffs = 0;
3431 
3432 	switch (meta_len) {
3433 #define __it(x, op) (x -= sizeof(u##op))
3434 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3435 	case 32: diffs |= __it_diff(a, b, 64);
3436 	case 24: diffs |= __it_diff(a, b, 64);
3437 	case 16: diffs |= __it_diff(a, b, 64);
3438 	case  8: diffs |= __it_diff(a, b, 64);
3439 		break;
3440 	case 28: diffs |= __it_diff(a, b, 64);
3441 	case 20: diffs |= __it_diff(a, b, 64);
3442 	case 12: diffs |= __it_diff(a, b, 64);
3443 	case  4: diffs |= __it_diff(a, b, 32);
3444 		break;
3445 	}
3446 	return diffs;
3447 #else
3448 	return memcmp(a - meta_len, b - meta_len, meta_len);
3449 #endif
3450 }
3451 
3452 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3453 					const struct sk_buff *skb_b)
3454 {
3455 	u8 len_a = skb_metadata_len(skb_a);
3456 	u8 len_b = skb_metadata_len(skb_b);
3457 
3458 	if (!(len_a | len_b))
3459 		return false;
3460 
3461 	return len_a != len_b ?
3462 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3463 }
3464 
3465 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3466 {
3467 	skb_shinfo(skb)->meta_len = meta_len;
3468 }
3469 
3470 static inline void skb_metadata_clear(struct sk_buff *skb)
3471 {
3472 	skb_metadata_set(skb, 0);
3473 }
3474 
3475 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3476 
3477 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3478 
3479 void skb_clone_tx_timestamp(struct sk_buff *skb);
3480 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3481 
3482 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3483 
3484 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3485 {
3486 }
3487 
3488 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3489 {
3490 	return false;
3491 }
3492 
3493 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3494 
3495 /**
3496  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3497  *
3498  * PHY drivers may accept clones of transmitted packets for
3499  * timestamping via their phy_driver.txtstamp method. These drivers
3500  * must call this function to return the skb back to the stack with a
3501  * timestamp.
3502  *
3503  * @skb: clone of the the original outgoing packet
3504  * @hwtstamps: hardware time stamps
3505  *
3506  */
3507 void skb_complete_tx_timestamp(struct sk_buff *skb,
3508 			       struct skb_shared_hwtstamps *hwtstamps);
3509 
3510 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3511 		     struct skb_shared_hwtstamps *hwtstamps,
3512 		     struct sock *sk, int tstype);
3513 
3514 /**
3515  * skb_tstamp_tx - queue clone of skb with send time stamps
3516  * @orig_skb:	the original outgoing packet
3517  * @hwtstamps:	hardware time stamps, may be NULL if not available
3518  *
3519  * If the skb has a socket associated, then this function clones the
3520  * skb (thus sharing the actual data and optional structures), stores
3521  * the optional hardware time stamping information (if non NULL) or
3522  * generates a software time stamp (otherwise), then queues the clone
3523  * to the error queue of the socket.  Errors are silently ignored.
3524  */
3525 void skb_tstamp_tx(struct sk_buff *orig_skb,
3526 		   struct skb_shared_hwtstamps *hwtstamps);
3527 
3528 /**
3529  * skb_tx_timestamp() - Driver hook for transmit timestamping
3530  *
3531  * Ethernet MAC Drivers should call this function in their hard_xmit()
3532  * function immediately before giving the sk_buff to the MAC hardware.
3533  *
3534  * Specifically, one should make absolutely sure that this function is
3535  * called before TX completion of this packet can trigger.  Otherwise
3536  * the packet could potentially already be freed.
3537  *
3538  * @skb: A socket buffer.
3539  */
3540 static inline void skb_tx_timestamp(struct sk_buff *skb)
3541 {
3542 	skb_clone_tx_timestamp(skb);
3543 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3544 		skb_tstamp_tx(skb, NULL);
3545 }
3546 
3547 /**
3548  * skb_complete_wifi_ack - deliver skb with wifi status
3549  *
3550  * @skb: the original outgoing packet
3551  * @acked: ack status
3552  *
3553  */
3554 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3555 
3556 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3557 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3558 
3559 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3560 {
3561 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3562 		skb->csum_valid ||
3563 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3564 		 skb_checksum_start_offset(skb) >= 0));
3565 }
3566 
3567 /**
3568  *	skb_checksum_complete - Calculate checksum of an entire packet
3569  *	@skb: packet to process
3570  *
3571  *	This function calculates the checksum over the entire packet plus
3572  *	the value of skb->csum.  The latter can be used to supply the
3573  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3574  *	checksum.
3575  *
3576  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3577  *	this function can be used to verify that checksum on received
3578  *	packets.  In that case the function should return zero if the
3579  *	checksum is correct.  In particular, this function will return zero
3580  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3581  *	hardware has already verified the correctness of the checksum.
3582  */
3583 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3584 {
3585 	return skb_csum_unnecessary(skb) ?
3586 	       0 : __skb_checksum_complete(skb);
3587 }
3588 
3589 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3590 {
3591 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3592 		if (skb->csum_level == 0)
3593 			skb->ip_summed = CHECKSUM_NONE;
3594 		else
3595 			skb->csum_level--;
3596 	}
3597 }
3598 
3599 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3600 {
3601 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3602 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3603 			skb->csum_level++;
3604 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3605 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3606 		skb->csum_level = 0;
3607 	}
3608 }
3609 
3610 /* Check if we need to perform checksum complete validation.
3611  *
3612  * Returns true if checksum complete is needed, false otherwise
3613  * (either checksum is unnecessary or zero checksum is allowed).
3614  */
3615 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3616 						  bool zero_okay,
3617 						  __sum16 check)
3618 {
3619 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3620 		skb->csum_valid = 1;
3621 		__skb_decr_checksum_unnecessary(skb);
3622 		return false;
3623 	}
3624 
3625 	return true;
3626 }
3627 
3628 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3629  * in checksum_init.
3630  */
3631 #define CHECKSUM_BREAK 76
3632 
3633 /* Unset checksum-complete
3634  *
3635  * Unset checksum complete can be done when packet is being modified
3636  * (uncompressed for instance) and checksum-complete value is
3637  * invalidated.
3638  */
3639 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3640 {
3641 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3642 		skb->ip_summed = CHECKSUM_NONE;
3643 }
3644 
3645 /* Validate (init) checksum based on checksum complete.
3646  *
3647  * Return values:
3648  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3649  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3650  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3651  *   non-zero: value of invalid checksum
3652  *
3653  */
3654 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3655 						       bool complete,
3656 						       __wsum psum)
3657 {
3658 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3659 		if (!csum_fold(csum_add(psum, skb->csum))) {
3660 			skb->csum_valid = 1;
3661 			return 0;
3662 		}
3663 	}
3664 
3665 	skb->csum = psum;
3666 
3667 	if (complete || skb->len <= CHECKSUM_BREAK) {
3668 		__sum16 csum;
3669 
3670 		csum = __skb_checksum_complete(skb);
3671 		skb->csum_valid = !csum;
3672 		return csum;
3673 	}
3674 
3675 	return 0;
3676 }
3677 
3678 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3679 {
3680 	return 0;
3681 }
3682 
3683 /* Perform checksum validate (init). Note that this is a macro since we only
3684  * want to calculate the pseudo header which is an input function if necessary.
3685  * First we try to validate without any computation (checksum unnecessary) and
3686  * then calculate based on checksum complete calling the function to compute
3687  * pseudo header.
3688  *
3689  * Return values:
3690  *   0: checksum is validated or try to in skb_checksum_complete
3691  *   non-zero: value of invalid checksum
3692  */
3693 #define __skb_checksum_validate(skb, proto, complete,			\
3694 				zero_okay, check, compute_pseudo)	\
3695 ({									\
3696 	__sum16 __ret = 0;						\
3697 	skb->csum_valid = 0;						\
3698 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3699 		__ret = __skb_checksum_validate_complete(skb,		\
3700 				complete, compute_pseudo(skb, proto));	\
3701 	__ret;								\
3702 })
3703 
3704 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3705 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3706 
3707 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3708 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3709 
3710 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3711 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3712 
3713 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3714 					 compute_pseudo)		\
3715 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3716 
3717 #define skb_checksum_simple_validate(skb)				\
3718 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3719 
3720 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3721 {
3722 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3723 }
3724 
3725 static inline void __skb_checksum_convert(struct sk_buff *skb,
3726 					  __sum16 check, __wsum pseudo)
3727 {
3728 	skb->csum = ~pseudo;
3729 	skb->ip_summed = CHECKSUM_COMPLETE;
3730 }
3731 
3732 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3733 do {									\
3734 	if (__skb_checksum_convert_check(skb))				\
3735 		__skb_checksum_convert(skb, check,			\
3736 				       compute_pseudo(skb, proto));	\
3737 } while (0)
3738 
3739 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3740 					      u16 start, u16 offset)
3741 {
3742 	skb->ip_summed = CHECKSUM_PARTIAL;
3743 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3744 	skb->csum_offset = offset - start;
3745 }
3746 
3747 /* Update skbuf and packet to reflect the remote checksum offload operation.
3748  * When called, ptr indicates the starting point for skb->csum when
3749  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3750  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3751  */
3752 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3753 				       int start, int offset, bool nopartial)
3754 {
3755 	__wsum delta;
3756 
3757 	if (!nopartial) {
3758 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3759 		return;
3760 	}
3761 
3762 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3763 		__skb_checksum_complete(skb);
3764 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3765 	}
3766 
3767 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3768 
3769 	/* Adjust skb->csum since we changed the packet */
3770 	skb->csum = csum_add(skb->csum, delta);
3771 }
3772 
3773 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3774 {
3775 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3776 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3777 #else
3778 	return NULL;
3779 #endif
3780 }
3781 
3782 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3783 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3784 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3785 {
3786 	if (nfct && atomic_dec_and_test(&nfct->use))
3787 		nf_conntrack_destroy(nfct);
3788 }
3789 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3790 {
3791 	if (nfct)
3792 		atomic_inc(&nfct->use);
3793 }
3794 #endif
3795 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3796 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3797 {
3798 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3799 		kfree(nf_bridge);
3800 }
3801 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3802 {
3803 	if (nf_bridge)
3804 		refcount_inc(&nf_bridge->use);
3805 }
3806 #endif /* CONFIG_BRIDGE_NETFILTER */
3807 static inline void nf_reset(struct sk_buff *skb)
3808 {
3809 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3810 	nf_conntrack_put(skb_nfct(skb));
3811 	skb->_nfct = 0;
3812 #endif
3813 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3814 	nf_bridge_put(skb->nf_bridge);
3815 	skb->nf_bridge = NULL;
3816 #endif
3817 }
3818 
3819 static inline void nf_reset_trace(struct sk_buff *skb)
3820 {
3821 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3822 	skb->nf_trace = 0;
3823 #endif
3824 }
3825 
3826 /* Note: This doesn't put any conntrack and bridge info in dst. */
3827 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3828 			     bool copy)
3829 {
3830 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3831 	dst->_nfct = src->_nfct;
3832 	nf_conntrack_get(skb_nfct(src));
3833 #endif
3834 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3835 	dst->nf_bridge  = src->nf_bridge;
3836 	nf_bridge_get(src->nf_bridge);
3837 #endif
3838 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3839 	if (copy)
3840 		dst->nf_trace = src->nf_trace;
3841 #endif
3842 }
3843 
3844 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3845 {
3846 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3847 	nf_conntrack_put(skb_nfct(dst));
3848 #endif
3849 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3850 	nf_bridge_put(dst->nf_bridge);
3851 #endif
3852 	__nf_copy(dst, src, true);
3853 }
3854 
3855 #ifdef CONFIG_NETWORK_SECMARK
3856 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3857 {
3858 	to->secmark = from->secmark;
3859 }
3860 
3861 static inline void skb_init_secmark(struct sk_buff *skb)
3862 {
3863 	skb->secmark = 0;
3864 }
3865 #else
3866 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3867 { }
3868 
3869 static inline void skb_init_secmark(struct sk_buff *skb)
3870 { }
3871 #endif
3872 
3873 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3874 {
3875 	return !skb->destructor &&
3876 #if IS_ENABLED(CONFIG_XFRM)
3877 		!skb->sp &&
3878 #endif
3879 		!skb_nfct(skb) &&
3880 		!skb->_skb_refdst &&
3881 		!skb_has_frag_list(skb);
3882 }
3883 
3884 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3885 {
3886 	skb->queue_mapping = queue_mapping;
3887 }
3888 
3889 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3890 {
3891 	return skb->queue_mapping;
3892 }
3893 
3894 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3895 {
3896 	to->queue_mapping = from->queue_mapping;
3897 }
3898 
3899 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3900 {
3901 	skb->queue_mapping = rx_queue + 1;
3902 }
3903 
3904 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3905 {
3906 	return skb->queue_mapping - 1;
3907 }
3908 
3909 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3910 {
3911 	return skb->queue_mapping != 0;
3912 }
3913 
3914 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3915 {
3916 	skb->dst_pending_confirm = val;
3917 }
3918 
3919 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3920 {
3921 	return skb->dst_pending_confirm != 0;
3922 }
3923 
3924 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3925 {
3926 #ifdef CONFIG_XFRM
3927 	return skb->sp;
3928 #else
3929 	return NULL;
3930 #endif
3931 }
3932 
3933 /* Keeps track of mac header offset relative to skb->head.
3934  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3935  * For non-tunnel skb it points to skb_mac_header() and for
3936  * tunnel skb it points to outer mac header.
3937  * Keeps track of level of encapsulation of network headers.
3938  */
3939 struct skb_gso_cb {
3940 	union {
3941 		int	mac_offset;
3942 		int	data_offset;
3943 	};
3944 	int	encap_level;
3945 	__wsum	csum;
3946 	__u16	csum_start;
3947 };
3948 #define SKB_SGO_CB_OFFSET	32
3949 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3950 
3951 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3952 {
3953 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3954 		SKB_GSO_CB(inner_skb)->mac_offset;
3955 }
3956 
3957 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3958 {
3959 	int new_headroom, headroom;
3960 	int ret;
3961 
3962 	headroom = skb_headroom(skb);
3963 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3964 	if (ret)
3965 		return ret;
3966 
3967 	new_headroom = skb_headroom(skb);
3968 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3969 	return 0;
3970 }
3971 
3972 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3973 {
3974 	/* Do not update partial checksums if remote checksum is enabled. */
3975 	if (skb->remcsum_offload)
3976 		return;
3977 
3978 	SKB_GSO_CB(skb)->csum = res;
3979 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3980 }
3981 
3982 /* Compute the checksum for a gso segment. First compute the checksum value
3983  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3984  * then add in skb->csum (checksum from csum_start to end of packet).
3985  * skb->csum and csum_start are then updated to reflect the checksum of the
3986  * resultant packet starting from the transport header-- the resultant checksum
3987  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3988  * header.
3989  */
3990 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3991 {
3992 	unsigned char *csum_start = skb_transport_header(skb);
3993 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3994 	__wsum partial = SKB_GSO_CB(skb)->csum;
3995 
3996 	SKB_GSO_CB(skb)->csum = res;
3997 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3998 
3999 	return csum_fold(csum_partial(csum_start, plen, partial));
4000 }
4001 
4002 static inline bool skb_is_gso(const struct sk_buff *skb)
4003 {
4004 	return skb_shinfo(skb)->gso_size;
4005 }
4006 
4007 /* Note: Should be called only if skb_is_gso(skb) is true */
4008 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4009 {
4010 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4011 }
4012 
4013 static inline void skb_gso_reset(struct sk_buff *skb)
4014 {
4015 	skb_shinfo(skb)->gso_size = 0;
4016 	skb_shinfo(skb)->gso_segs = 0;
4017 	skb_shinfo(skb)->gso_type = 0;
4018 }
4019 
4020 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4021 
4022 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4023 {
4024 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4025 	 * wanted then gso_type will be set. */
4026 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4027 
4028 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4029 	    unlikely(shinfo->gso_type == 0)) {
4030 		__skb_warn_lro_forwarding(skb);
4031 		return true;
4032 	}
4033 	return false;
4034 }
4035 
4036 static inline void skb_forward_csum(struct sk_buff *skb)
4037 {
4038 	/* Unfortunately we don't support this one.  Any brave souls? */
4039 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4040 		skb->ip_summed = CHECKSUM_NONE;
4041 }
4042 
4043 /**
4044  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4045  * @skb: skb to check
4046  *
4047  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4048  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4049  * use this helper, to document places where we make this assertion.
4050  */
4051 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4052 {
4053 #ifdef DEBUG
4054 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4055 #endif
4056 }
4057 
4058 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4059 
4060 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4061 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4062 				     unsigned int transport_len,
4063 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4064 
4065 /**
4066  * skb_head_is_locked - Determine if the skb->head is locked down
4067  * @skb: skb to check
4068  *
4069  * The head on skbs build around a head frag can be removed if they are
4070  * not cloned.  This function returns true if the skb head is locked down
4071  * due to either being allocated via kmalloc, or by being a clone with
4072  * multiple references to the head.
4073  */
4074 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4075 {
4076 	return !skb->head_frag || skb_cloned(skb);
4077 }
4078 
4079 /**
4080  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4081  *
4082  * @skb: GSO skb
4083  *
4084  * skb_gso_network_seglen is used to determine the real size of the
4085  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4086  *
4087  * The MAC/L2 header is not accounted for.
4088  */
4089 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4090 {
4091 	unsigned int hdr_len = skb_transport_header(skb) -
4092 			       skb_network_header(skb);
4093 	return hdr_len + skb_gso_transport_seglen(skb);
4094 }
4095 
4096 /* Local Checksum Offload.
4097  * Compute outer checksum based on the assumption that the
4098  * inner checksum will be offloaded later.
4099  * See Documentation/networking/checksum-offloads.txt for
4100  * explanation of how this works.
4101  * Fill in outer checksum adjustment (e.g. with sum of outer
4102  * pseudo-header) before calling.
4103  * Also ensure that inner checksum is in linear data area.
4104  */
4105 static inline __wsum lco_csum(struct sk_buff *skb)
4106 {
4107 	unsigned char *csum_start = skb_checksum_start(skb);
4108 	unsigned char *l4_hdr = skb_transport_header(skb);
4109 	__wsum partial;
4110 
4111 	/* Start with complement of inner checksum adjustment */
4112 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4113 						    skb->csum_offset));
4114 
4115 	/* Add in checksum of our headers (incl. outer checksum
4116 	 * adjustment filled in by caller) and return result.
4117 	 */
4118 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4119 }
4120 
4121 #endif	/* __KERNEL__ */
4122 #endif	/* _LINUX_SKBUFF_H */
4123