xref: /linux-6.15/include/linux/skbuff.h (revision 8fdff1dc)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t		use;
121 	unsigned int		mask;
122 	struct net_device	*physindev;
123 	struct net_device	*physoutdev;
124 	unsigned long		data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* device driver supports TX zero-copy buffers */
229 	SKBTX_DEV_ZEROCOPY = 1 << 3,
230 
231 	/* generate wifi status information (where possible) */
232 	SKBTX_WIFI_STATUS = 1 << 4,
233 };
234 
235 /*
236  * The callback notifies userspace to release buffers when skb DMA is done in
237  * lower device, the skb last reference should be 0 when calling this.
238  * The zerocopy_success argument is true if zero copy transmit occurred,
239  * false on data copy or out of memory error caused by data copy attempt.
240  * The ctx field is used to track device context.
241  * The desc field is used to track userspace buffer index.
242  */
243 struct ubuf_info {
244 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
245 	void *ctx;
246 	unsigned long desc;
247 };
248 
249 /* This data is invariant across clones and lives at
250  * the end of the header data, ie. at skb->end.
251  */
252 struct skb_shared_info {
253 	unsigned char	nr_frags;
254 	__u8		tx_flags;
255 	unsigned short	gso_size;
256 	/* Warning: this field is not always filled in (UFO)! */
257 	unsigned short	gso_segs;
258 	unsigned short  gso_type;
259 	struct sk_buff	*frag_list;
260 	struct skb_shared_hwtstamps hwtstamps;
261 	__be32          ip6_frag_id;
262 
263 	/*
264 	 * Warning : all fields before dataref are cleared in __alloc_skb()
265 	 */
266 	atomic_t	dataref;
267 
268 	/* Intermediate layers must ensure that destructor_arg
269 	 * remains valid until skb destructor */
270 	void *		destructor_arg;
271 
272 	/* must be last field, see pskb_expand_head() */
273 	skb_frag_t	frags[MAX_SKB_FRAGS];
274 };
275 
276 /* We divide dataref into two halves.  The higher 16 bits hold references
277  * to the payload part of skb->data.  The lower 16 bits hold references to
278  * the entire skb->data.  A clone of a headerless skb holds the length of
279  * the header in skb->hdr_len.
280  *
281  * All users must obey the rule that the skb->data reference count must be
282  * greater than or equal to the payload reference count.
283  *
284  * Holding a reference to the payload part means that the user does not
285  * care about modifications to the header part of skb->data.
286  */
287 #define SKB_DATAREF_SHIFT 16
288 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
289 
290 
291 enum {
292 	SKB_FCLONE_UNAVAILABLE,
293 	SKB_FCLONE_ORIG,
294 	SKB_FCLONE_CLONE,
295 };
296 
297 enum {
298 	SKB_GSO_TCPV4 = 1 << 0,
299 	SKB_GSO_UDP = 1 << 1,
300 
301 	/* This indicates the skb is from an untrusted source. */
302 	SKB_GSO_DODGY = 1 << 2,
303 
304 	/* This indicates the tcp segment has CWR set. */
305 	SKB_GSO_TCP_ECN = 1 << 3,
306 
307 	SKB_GSO_TCPV6 = 1 << 4,
308 
309 	SKB_GSO_FCOE = 1 << 5,
310 };
311 
312 #if BITS_PER_LONG > 32
313 #define NET_SKBUFF_DATA_USES_OFFSET 1
314 #endif
315 
316 #ifdef NET_SKBUFF_DATA_USES_OFFSET
317 typedef unsigned int sk_buff_data_t;
318 #else
319 typedef unsigned char *sk_buff_data_t;
320 #endif
321 
322 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
323     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
324 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
325 #endif
326 
327 /**
328  *	struct sk_buff - socket buffer
329  *	@next: Next buffer in list
330  *	@prev: Previous buffer in list
331  *	@tstamp: Time we arrived
332  *	@sk: Socket we are owned by
333  *	@dev: Device we arrived on/are leaving by
334  *	@cb: Control buffer. Free for use by every layer. Put private vars here
335  *	@_skb_refdst: destination entry (with norefcount bit)
336  *	@sp: the security path, used for xfrm
337  *	@len: Length of actual data
338  *	@data_len: Data length
339  *	@mac_len: Length of link layer header
340  *	@hdr_len: writable header length of cloned skb
341  *	@csum: Checksum (must include start/offset pair)
342  *	@csum_start: Offset from skb->head where checksumming should start
343  *	@csum_offset: Offset from csum_start where checksum should be stored
344  *	@priority: Packet queueing priority
345  *	@local_df: allow local fragmentation
346  *	@cloned: Head may be cloned (check refcnt to be sure)
347  *	@ip_summed: Driver fed us an IP checksum
348  *	@nohdr: Payload reference only, must not modify header
349  *	@nfctinfo: Relationship of this skb to the connection
350  *	@pkt_type: Packet class
351  *	@fclone: skbuff clone status
352  *	@ipvs_property: skbuff is owned by ipvs
353  *	@peeked: this packet has been seen already, so stats have been
354  *		done for it, don't do them again
355  *	@nf_trace: netfilter packet trace flag
356  *	@protocol: Packet protocol from driver
357  *	@destructor: Destruct function
358  *	@nfct: Associated connection, if any
359  *	@nfct_reasm: netfilter conntrack re-assembly pointer
360  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
361  *	@skb_iif: ifindex of device we arrived on
362  *	@tc_index: Traffic control index
363  *	@tc_verd: traffic control verdict
364  *	@rxhash: the packet hash computed on receive
365  *	@queue_mapping: Queue mapping for multiqueue devices
366  *	@ndisc_nodetype: router type (from link layer)
367  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
368  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
369  *		ports.
370  *	@wifi_acked_valid: wifi_acked was set
371  *	@wifi_acked: whether frame was acked on wifi or not
372  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
373  *	@dma_cookie: a cookie to one of several possible DMA operations
374  *		done by skb DMA functions
375  *	@secmark: security marking
376  *	@mark: Generic packet mark
377  *	@dropcount: total number of sk_receive_queue overflows
378  *	@vlan_tci: vlan tag control information
379  *	@inner_transport_header: Inner transport layer header (encapsulation)
380  *	@inner_network_header: Network layer header (encapsulation)
381  *	@transport_header: Transport layer header
382  *	@network_header: Network layer header
383  *	@mac_header: Link layer header
384  *	@tail: Tail pointer
385  *	@end: End pointer
386  *	@head: Head of buffer
387  *	@data: Data head pointer
388  *	@truesize: Buffer size
389  *	@users: User count - see {datagram,tcp}.c
390  */
391 
392 struct sk_buff {
393 	/* These two members must be first. */
394 	struct sk_buff		*next;
395 	struct sk_buff		*prev;
396 
397 	ktime_t			tstamp;
398 
399 	struct sock		*sk;
400 	struct net_device	*dev;
401 
402 	/*
403 	 * This is the control buffer. It is free to use for every
404 	 * layer. Please put your private variables there. If you
405 	 * want to keep them across layers you have to do a skb_clone()
406 	 * first. This is owned by whoever has the skb queued ATM.
407 	 */
408 	char			cb[48] __aligned(8);
409 
410 	unsigned long		_skb_refdst;
411 #ifdef CONFIG_XFRM
412 	struct	sec_path	*sp;
413 #endif
414 	unsigned int		len,
415 				data_len;
416 	__u16			mac_len,
417 				hdr_len;
418 	union {
419 		__wsum		csum;
420 		struct {
421 			__u16	csum_start;
422 			__u16	csum_offset;
423 		};
424 	};
425 	__u32			priority;
426 	kmemcheck_bitfield_begin(flags1);
427 	__u8			local_df:1,
428 				cloned:1,
429 				ip_summed:2,
430 				nohdr:1,
431 				nfctinfo:3;
432 	__u8			pkt_type:3,
433 				fclone:2,
434 				ipvs_property:1,
435 				peeked:1,
436 				nf_trace:1;
437 	kmemcheck_bitfield_end(flags1);
438 	__be16			protocol;
439 
440 	void			(*destructor)(struct sk_buff *skb);
441 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
442 	struct nf_conntrack	*nfct;
443 #endif
444 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
445 	struct sk_buff		*nfct_reasm;
446 #endif
447 #ifdef CONFIG_BRIDGE_NETFILTER
448 	struct nf_bridge_info	*nf_bridge;
449 #endif
450 
451 	int			skb_iif;
452 
453 	__u32			rxhash;
454 
455 	__u16			vlan_tci;
456 
457 #ifdef CONFIG_NET_SCHED
458 	__u16			tc_index;	/* traffic control index */
459 #ifdef CONFIG_NET_CLS_ACT
460 	__u16			tc_verd;	/* traffic control verdict */
461 #endif
462 #endif
463 
464 	__u16			queue_mapping;
465 	kmemcheck_bitfield_begin(flags2);
466 #ifdef CONFIG_IPV6_NDISC_NODETYPE
467 	__u8			ndisc_nodetype:2;
468 #endif
469 	__u8			pfmemalloc:1;
470 	__u8			ooo_okay:1;
471 	__u8			l4_rxhash:1;
472 	__u8			wifi_acked_valid:1;
473 	__u8			wifi_acked:1;
474 	__u8			no_fcs:1;
475 	__u8			head_frag:1;
476 	/* Encapsulation protocol and NIC drivers should use
477 	 * this flag to indicate to each other if the skb contains
478 	 * encapsulated packet or not and maybe use the inner packet
479 	 * headers if needed
480 	 */
481 	__u8			encapsulation:1;
482 	/* 7/9 bit hole (depending on ndisc_nodetype presence) */
483 	kmemcheck_bitfield_end(flags2);
484 
485 #ifdef CONFIG_NET_DMA
486 	dma_cookie_t		dma_cookie;
487 #endif
488 #ifdef CONFIG_NETWORK_SECMARK
489 	__u32			secmark;
490 #endif
491 	union {
492 		__u32		mark;
493 		__u32		dropcount;
494 		__u32		avail_size;
495 	};
496 
497 	sk_buff_data_t		inner_transport_header;
498 	sk_buff_data_t		inner_network_header;
499 	sk_buff_data_t		transport_header;
500 	sk_buff_data_t		network_header;
501 	sk_buff_data_t		mac_header;
502 	/* These elements must be at the end, see alloc_skb() for details.  */
503 	sk_buff_data_t		tail;
504 	sk_buff_data_t		end;
505 	unsigned char		*head,
506 				*data;
507 	unsigned int		truesize;
508 	atomic_t		users;
509 };
510 
511 #ifdef __KERNEL__
512 /*
513  *	Handling routines are only of interest to the kernel
514  */
515 #include <linux/slab.h>
516 
517 
518 #define SKB_ALLOC_FCLONE	0x01
519 #define SKB_ALLOC_RX		0x02
520 
521 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
522 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
523 {
524 	return unlikely(skb->pfmemalloc);
525 }
526 
527 /*
528  * skb might have a dst pointer attached, refcounted or not.
529  * _skb_refdst low order bit is set if refcount was _not_ taken
530  */
531 #define SKB_DST_NOREF	1UL
532 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
533 
534 /**
535  * skb_dst - returns skb dst_entry
536  * @skb: buffer
537  *
538  * Returns skb dst_entry, regardless of reference taken or not.
539  */
540 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
541 {
542 	/* If refdst was not refcounted, check we still are in a
543 	 * rcu_read_lock section
544 	 */
545 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
546 		!rcu_read_lock_held() &&
547 		!rcu_read_lock_bh_held());
548 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
549 }
550 
551 /**
552  * skb_dst_set - sets skb dst
553  * @skb: buffer
554  * @dst: dst entry
555  *
556  * Sets skb dst, assuming a reference was taken on dst and should
557  * be released by skb_dst_drop()
558  */
559 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
560 {
561 	skb->_skb_refdst = (unsigned long)dst;
562 }
563 
564 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
565 
566 /**
567  * skb_dst_is_noref - Test if skb dst isn't refcounted
568  * @skb: buffer
569  */
570 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
571 {
572 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
573 }
574 
575 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
576 {
577 	return (struct rtable *)skb_dst(skb);
578 }
579 
580 extern void kfree_skb(struct sk_buff *skb);
581 extern void skb_tx_error(struct sk_buff *skb);
582 extern void consume_skb(struct sk_buff *skb);
583 extern void	       __kfree_skb(struct sk_buff *skb);
584 extern struct kmem_cache *skbuff_head_cache;
585 
586 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
587 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
588 			     bool *fragstolen, int *delta_truesize);
589 
590 extern struct sk_buff *__alloc_skb(unsigned int size,
591 				   gfp_t priority, int flags, int node);
592 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
593 static inline struct sk_buff *alloc_skb(unsigned int size,
594 					gfp_t priority)
595 {
596 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
597 }
598 
599 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
600 					       gfp_t priority)
601 {
602 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
603 }
604 
605 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
606 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
607 extern struct sk_buff *skb_clone(struct sk_buff *skb,
608 				 gfp_t priority);
609 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
610 				gfp_t priority);
611 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
612 				 int headroom, gfp_t gfp_mask);
613 
614 extern int	       pskb_expand_head(struct sk_buff *skb,
615 					int nhead, int ntail,
616 					gfp_t gfp_mask);
617 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
618 					    unsigned int headroom);
619 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
620 				       int newheadroom, int newtailroom,
621 				       gfp_t priority);
622 extern int	       skb_to_sgvec(struct sk_buff *skb,
623 				    struct scatterlist *sg, int offset,
624 				    int len);
625 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
626 				    struct sk_buff **trailer);
627 extern int	       skb_pad(struct sk_buff *skb, int pad);
628 #define dev_kfree_skb(a)	consume_skb(a)
629 
630 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
631 			int getfrag(void *from, char *to, int offset,
632 			int len,int odd, struct sk_buff *skb),
633 			void *from, int length);
634 
635 struct skb_seq_state {
636 	__u32		lower_offset;
637 	__u32		upper_offset;
638 	__u32		frag_idx;
639 	__u32		stepped_offset;
640 	struct sk_buff	*root_skb;
641 	struct sk_buff	*cur_skb;
642 	__u8		*frag_data;
643 };
644 
645 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
646 					   unsigned int from, unsigned int to,
647 					   struct skb_seq_state *st);
648 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
649 				   struct skb_seq_state *st);
650 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
651 
652 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
653 				    unsigned int to, struct ts_config *config,
654 				    struct ts_state *state);
655 
656 extern void __skb_get_rxhash(struct sk_buff *skb);
657 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
658 {
659 	if (!skb->l4_rxhash)
660 		__skb_get_rxhash(skb);
661 
662 	return skb->rxhash;
663 }
664 
665 #ifdef NET_SKBUFF_DATA_USES_OFFSET
666 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
667 {
668 	return skb->head + skb->end;
669 }
670 
671 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
672 {
673 	return skb->end;
674 }
675 #else
676 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
677 {
678 	return skb->end;
679 }
680 
681 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
682 {
683 	return skb->end - skb->head;
684 }
685 #endif
686 
687 /* Internal */
688 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
689 
690 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
691 {
692 	return &skb_shinfo(skb)->hwtstamps;
693 }
694 
695 /**
696  *	skb_queue_empty - check if a queue is empty
697  *	@list: queue head
698  *
699  *	Returns true if the queue is empty, false otherwise.
700  */
701 static inline int skb_queue_empty(const struct sk_buff_head *list)
702 {
703 	return list->next == (struct sk_buff *)list;
704 }
705 
706 /**
707  *	skb_queue_is_last - check if skb is the last entry in the queue
708  *	@list: queue head
709  *	@skb: buffer
710  *
711  *	Returns true if @skb is the last buffer on the list.
712  */
713 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
714 				     const struct sk_buff *skb)
715 {
716 	return skb->next == (struct sk_buff *)list;
717 }
718 
719 /**
720  *	skb_queue_is_first - check if skb is the first entry in the queue
721  *	@list: queue head
722  *	@skb: buffer
723  *
724  *	Returns true if @skb is the first buffer on the list.
725  */
726 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
727 				      const struct sk_buff *skb)
728 {
729 	return skb->prev == (struct sk_buff *)list;
730 }
731 
732 /**
733  *	skb_queue_next - return the next packet in the queue
734  *	@list: queue head
735  *	@skb: current buffer
736  *
737  *	Return the next packet in @list after @skb.  It is only valid to
738  *	call this if skb_queue_is_last() evaluates to false.
739  */
740 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
741 					     const struct sk_buff *skb)
742 {
743 	/* This BUG_ON may seem severe, but if we just return then we
744 	 * are going to dereference garbage.
745 	 */
746 	BUG_ON(skb_queue_is_last(list, skb));
747 	return skb->next;
748 }
749 
750 /**
751  *	skb_queue_prev - return the prev packet in the queue
752  *	@list: queue head
753  *	@skb: current buffer
754  *
755  *	Return the prev packet in @list before @skb.  It is only valid to
756  *	call this if skb_queue_is_first() evaluates to false.
757  */
758 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
759 					     const struct sk_buff *skb)
760 {
761 	/* This BUG_ON may seem severe, but if we just return then we
762 	 * are going to dereference garbage.
763 	 */
764 	BUG_ON(skb_queue_is_first(list, skb));
765 	return skb->prev;
766 }
767 
768 /**
769  *	skb_get - reference buffer
770  *	@skb: buffer to reference
771  *
772  *	Makes another reference to a socket buffer and returns a pointer
773  *	to the buffer.
774  */
775 static inline struct sk_buff *skb_get(struct sk_buff *skb)
776 {
777 	atomic_inc(&skb->users);
778 	return skb;
779 }
780 
781 /*
782  * If users == 1, we are the only owner and are can avoid redundant
783  * atomic change.
784  */
785 
786 /**
787  *	skb_cloned - is the buffer a clone
788  *	@skb: buffer to check
789  *
790  *	Returns true if the buffer was generated with skb_clone() and is
791  *	one of multiple shared copies of the buffer. Cloned buffers are
792  *	shared data so must not be written to under normal circumstances.
793  */
794 static inline int skb_cloned(const struct sk_buff *skb)
795 {
796 	return skb->cloned &&
797 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
798 }
799 
800 /**
801  *	skb_header_cloned - is the header a clone
802  *	@skb: buffer to check
803  *
804  *	Returns true if modifying the header part of the buffer requires
805  *	the data to be copied.
806  */
807 static inline int skb_header_cloned(const struct sk_buff *skb)
808 {
809 	int dataref;
810 
811 	if (!skb->cloned)
812 		return 0;
813 
814 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
815 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
816 	return dataref != 1;
817 }
818 
819 /**
820  *	skb_header_release - release reference to header
821  *	@skb: buffer to operate on
822  *
823  *	Drop a reference to the header part of the buffer.  This is done
824  *	by acquiring a payload reference.  You must not read from the header
825  *	part of skb->data after this.
826  */
827 static inline void skb_header_release(struct sk_buff *skb)
828 {
829 	BUG_ON(skb->nohdr);
830 	skb->nohdr = 1;
831 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
832 }
833 
834 /**
835  *	skb_shared - is the buffer shared
836  *	@skb: buffer to check
837  *
838  *	Returns true if more than one person has a reference to this
839  *	buffer.
840  */
841 static inline int skb_shared(const struct sk_buff *skb)
842 {
843 	return atomic_read(&skb->users) != 1;
844 }
845 
846 /**
847  *	skb_share_check - check if buffer is shared and if so clone it
848  *	@skb: buffer to check
849  *	@pri: priority for memory allocation
850  *
851  *	If the buffer is shared the buffer is cloned and the old copy
852  *	drops a reference. A new clone with a single reference is returned.
853  *	If the buffer is not shared the original buffer is returned. When
854  *	being called from interrupt status or with spinlocks held pri must
855  *	be GFP_ATOMIC.
856  *
857  *	NULL is returned on a memory allocation failure.
858  */
859 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
860 {
861 	might_sleep_if(pri & __GFP_WAIT);
862 	if (skb_shared(skb)) {
863 		struct sk_buff *nskb = skb_clone(skb, pri);
864 
865 		if (likely(nskb))
866 			consume_skb(skb);
867 		else
868 			kfree_skb(skb);
869 		skb = nskb;
870 	}
871 	return skb;
872 }
873 
874 /*
875  *	Copy shared buffers into a new sk_buff. We effectively do COW on
876  *	packets to handle cases where we have a local reader and forward
877  *	and a couple of other messy ones. The normal one is tcpdumping
878  *	a packet thats being forwarded.
879  */
880 
881 /**
882  *	skb_unshare - make a copy of a shared buffer
883  *	@skb: buffer to check
884  *	@pri: priority for memory allocation
885  *
886  *	If the socket buffer is a clone then this function creates a new
887  *	copy of the data, drops a reference count on the old copy and returns
888  *	the new copy with the reference count at 1. If the buffer is not a clone
889  *	the original buffer is returned. When called with a spinlock held or
890  *	from interrupt state @pri must be %GFP_ATOMIC
891  *
892  *	%NULL is returned on a memory allocation failure.
893  */
894 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
895 					  gfp_t pri)
896 {
897 	might_sleep_if(pri & __GFP_WAIT);
898 	if (skb_cloned(skb)) {
899 		struct sk_buff *nskb = skb_copy(skb, pri);
900 		kfree_skb(skb);	/* Free our shared copy */
901 		skb = nskb;
902 	}
903 	return skb;
904 }
905 
906 /**
907  *	skb_peek - peek at the head of an &sk_buff_head
908  *	@list_: list to peek at
909  *
910  *	Peek an &sk_buff. Unlike most other operations you _MUST_
911  *	be careful with this one. A peek leaves the buffer on the
912  *	list and someone else may run off with it. You must hold
913  *	the appropriate locks or have a private queue to do this.
914  *
915  *	Returns %NULL for an empty list or a pointer to the head element.
916  *	The reference count is not incremented and the reference is therefore
917  *	volatile. Use with caution.
918  */
919 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
920 {
921 	struct sk_buff *skb = list_->next;
922 
923 	if (skb == (struct sk_buff *)list_)
924 		skb = NULL;
925 	return skb;
926 }
927 
928 /**
929  *	skb_peek_next - peek skb following the given one from a queue
930  *	@skb: skb to start from
931  *	@list_: list to peek at
932  *
933  *	Returns %NULL when the end of the list is met or a pointer to the
934  *	next element. The reference count is not incremented and the
935  *	reference is therefore volatile. Use with caution.
936  */
937 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
938 		const struct sk_buff_head *list_)
939 {
940 	struct sk_buff *next = skb->next;
941 
942 	if (next == (struct sk_buff *)list_)
943 		next = NULL;
944 	return next;
945 }
946 
947 /**
948  *	skb_peek_tail - peek at the tail of an &sk_buff_head
949  *	@list_: list to peek at
950  *
951  *	Peek an &sk_buff. Unlike most other operations you _MUST_
952  *	be careful with this one. A peek leaves the buffer on the
953  *	list and someone else may run off with it. You must hold
954  *	the appropriate locks or have a private queue to do this.
955  *
956  *	Returns %NULL for an empty list or a pointer to the tail element.
957  *	The reference count is not incremented and the reference is therefore
958  *	volatile. Use with caution.
959  */
960 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
961 {
962 	struct sk_buff *skb = list_->prev;
963 
964 	if (skb == (struct sk_buff *)list_)
965 		skb = NULL;
966 	return skb;
967 
968 }
969 
970 /**
971  *	skb_queue_len	- get queue length
972  *	@list_: list to measure
973  *
974  *	Return the length of an &sk_buff queue.
975  */
976 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
977 {
978 	return list_->qlen;
979 }
980 
981 /**
982  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
983  *	@list: queue to initialize
984  *
985  *	This initializes only the list and queue length aspects of
986  *	an sk_buff_head object.  This allows to initialize the list
987  *	aspects of an sk_buff_head without reinitializing things like
988  *	the spinlock.  It can also be used for on-stack sk_buff_head
989  *	objects where the spinlock is known to not be used.
990  */
991 static inline void __skb_queue_head_init(struct sk_buff_head *list)
992 {
993 	list->prev = list->next = (struct sk_buff *)list;
994 	list->qlen = 0;
995 }
996 
997 /*
998  * This function creates a split out lock class for each invocation;
999  * this is needed for now since a whole lot of users of the skb-queue
1000  * infrastructure in drivers have different locking usage (in hardirq)
1001  * than the networking core (in softirq only). In the long run either the
1002  * network layer or drivers should need annotation to consolidate the
1003  * main types of usage into 3 classes.
1004  */
1005 static inline void skb_queue_head_init(struct sk_buff_head *list)
1006 {
1007 	spin_lock_init(&list->lock);
1008 	__skb_queue_head_init(list);
1009 }
1010 
1011 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1012 		struct lock_class_key *class)
1013 {
1014 	skb_queue_head_init(list);
1015 	lockdep_set_class(&list->lock, class);
1016 }
1017 
1018 /*
1019  *	Insert an sk_buff on a list.
1020  *
1021  *	The "__skb_xxxx()" functions are the non-atomic ones that
1022  *	can only be called with interrupts disabled.
1023  */
1024 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1025 static inline void __skb_insert(struct sk_buff *newsk,
1026 				struct sk_buff *prev, struct sk_buff *next,
1027 				struct sk_buff_head *list)
1028 {
1029 	newsk->next = next;
1030 	newsk->prev = prev;
1031 	next->prev  = prev->next = newsk;
1032 	list->qlen++;
1033 }
1034 
1035 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1036 				      struct sk_buff *prev,
1037 				      struct sk_buff *next)
1038 {
1039 	struct sk_buff *first = list->next;
1040 	struct sk_buff *last = list->prev;
1041 
1042 	first->prev = prev;
1043 	prev->next = first;
1044 
1045 	last->next = next;
1046 	next->prev = last;
1047 }
1048 
1049 /**
1050  *	skb_queue_splice - join two skb lists, this is designed for stacks
1051  *	@list: the new list to add
1052  *	@head: the place to add it in the first list
1053  */
1054 static inline void skb_queue_splice(const struct sk_buff_head *list,
1055 				    struct sk_buff_head *head)
1056 {
1057 	if (!skb_queue_empty(list)) {
1058 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1059 		head->qlen += list->qlen;
1060 	}
1061 }
1062 
1063 /**
1064  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1065  *	@list: the new list to add
1066  *	@head: the place to add it in the first list
1067  *
1068  *	The list at @list is reinitialised
1069  */
1070 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1071 					 struct sk_buff_head *head)
1072 {
1073 	if (!skb_queue_empty(list)) {
1074 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1075 		head->qlen += list->qlen;
1076 		__skb_queue_head_init(list);
1077 	}
1078 }
1079 
1080 /**
1081  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1082  *	@list: the new list to add
1083  *	@head: the place to add it in the first list
1084  */
1085 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1086 					 struct sk_buff_head *head)
1087 {
1088 	if (!skb_queue_empty(list)) {
1089 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1090 		head->qlen += list->qlen;
1091 	}
1092 }
1093 
1094 /**
1095  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1096  *	@list: the new list to add
1097  *	@head: the place to add it in the first list
1098  *
1099  *	Each of the lists is a queue.
1100  *	The list at @list is reinitialised
1101  */
1102 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1103 					      struct sk_buff_head *head)
1104 {
1105 	if (!skb_queue_empty(list)) {
1106 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1107 		head->qlen += list->qlen;
1108 		__skb_queue_head_init(list);
1109 	}
1110 }
1111 
1112 /**
1113  *	__skb_queue_after - queue a buffer at the list head
1114  *	@list: list to use
1115  *	@prev: place after this buffer
1116  *	@newsk: buffer to queue
1117  *
1118  *	Queue a buffer int the middle of a list. This function takes no locks
1119  *	and you must therefore hold required locks before calling it.
1120  *
1121  *	A buffer cannot be placed on two lists at the same time.
1122  */
1123 static inline void __skb_queue_after(struct sk_buff_head *list,
1124 				     struct sk_buff *prev,
1125 				     struct sk_buff *newsk)
1126 {
1127 	__skb_insert(newsk, prev, prev->next, list);
1128 }
1129 
1130 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1131 		       struct sk_buff_head *list);
1132 
1133 static inline void __skb_queue_before(struct sk_buff_head *list,
1134 				      struct sk_buff *next,
1135 				      struct sk_buff *newsk)
1136 {
1137 	__skb_insert(newsk, next->prev, next, list);
1138 }
1139 
1140 /**
1141  *	__skb_queue_head - queue a buffer at the list head
1142  *	@list: list to use
1143  *	@newsk: buffer to queue
1144  *
1145  *	Queue a buffer at the start of a list. This function takes no locks
1146  *	and you must therefore hold required locks before calling it.
1147  *
1148  *	A buffer cannot be placed on two lists at the same time.
1149  */
1150 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1151 static inline void __skb_queue_head(struct sk_buff_head *list,
1152 				    struct sk_buff *newsk)
1153 {
1154 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1155 }
1156 
1157 /**
1158  *	__skb_queue_tail - queue a buffer at the list tail
1159  *	@list: list to use
1160  *	@newsk: buffer to queue
1161  *
1162  *	Queue a buffer at the end of a list. This function takes no locks
1163  *	and you must therefore hold required locks before calling it.
1164  *
1165  *	A buffer cannot be placed on two lists at the same time.
1166  */
1167 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1168 static inline void __skb_queue_tail(struct sk_buff_head *list,
1169 				   struct sk_buff *newsk)
1170 {
1171 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1172 }
1173 
1174 /*
1175  * remove sk_buff from list. _Must_ be called atomically, and with
1176  * the list known..
1177  */
1178 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1179 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1180 {
1181 	struct sk_buff *next, *prev;
1182 
1183 	list->qlen--;
1184 	next	   = skb->next;
1185 	prev	   = skb->prev;
1186 	skb->next  = skb->prev = NULL;
1187 	next->prev = prev;
1188 	prev->next = next;
1189 }
1190 
1191 /**
1192  *	__skb_dequeue - remove from the head of the queue
1193  *	@list: list to dequeue from
1194  *
1195  *	Remove the head of the list. This function does not take any locks
1196  *	so must be used with appropriate locks held only. The head item is
1197  *	returned or %NULL if the list is empty.
1198  */
1199 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1200 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1201 {
1202 	struct sk_buff *skb = skb_peek(list);
1203 	if (skb)
1204 		__skb_unlink(skb, list);
1205 	return skb;
1206 }
1207 
1208 /**
1209  *	__skb_dequeue_tail - remove from the tail of the queue
1210  *	@list: list to dequeue from
1211  *
1212  *	Remove the tail of the list. This function does not take any locks
1213  *	so must be used with appropriate locks held only. The tail item is
1214  *	returned or %NULL if the list is empty.
1215  */
1216 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1217 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1218 {
1219 	struct sk_buff *skb = skb_peek_tail(list);
1220 	if (skb)
1221 		__skb_unlink(skb, list);
1222 	return skb;
1223 }
1224 
1225 
1226 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1227 {
1228 	return skb->data_len;
1229 }
1230 
1231 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1232 {
1233 	return skb->len - skb->data_len;
1234 }
1235 
1236 static inline int skb_pagelen(const struct sk_buff *skb)
1237 {
1238 	int i, len = 0;
1239 
1240 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1241 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1242 	return len + skb_headlen(skb);
1243 }
1244 
1245 /**
1246  * __skb_fill_page_desc - initialise a paged fragment in an skb
1247  * @skb: buffer containing fragment to be initialised
1248  * @i: paged fragment index to initialise
1249  * @page: the page to use for this fragment
1250  * @off: the offset to the data with @page
1251  * @size: the length of the data
1252  *
1253  * Initialises the @i'th fragment of @skb to point to &size bytes at
1254  * offset @off within @page.
1255  *
1256  * Does not take any additional reference on the fragment.
1257  */
1258 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1259 					struct page *page, int off, int size)
1260 {
1261 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1262 
1263 	/*
1264 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1265 	 * that not all callers have unique ownership of the page. If
1266 	 * pfmemalloc is set, we check the mapping as a mapping implies
1267 	 * page->index is set (index and pfmemalloc share space).
1268 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1269 	 * do not lose pfmemalloc information as the pages would not be
1270 	 * allocated using __GFP_MEMALLOC.
1271 	 */
1272 	if (page->pfmemalloc && !page->mapping)
1273 		skb->pfmemalloc	= true;
1274 	frag->page.p		  = page;
1275 	frag->page_offset	  = off;
1276 	skb_frag_size_set(frag, size);
1277 }
1278 
1279 /**
1280  * skb_fill_page_desc - initialise a paged fragment in an skb
1281  * @skb: buffer containing fragment to be initialised
1282  * @i: paged fragment index to initialise
1283  * @page: the page to use for this fragment
1284  * @off: the offset to the data with @page
1285  * @size: the length of the data
1286  *
1287  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1288  * @skb to point to &size bytes at offset @off within @page. In
1289  * addition updates @skb such that @i is the last fragment.
1290  *
1291  * Does not take any additional reference on the fragment.
1292  */
1293 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1294 				      struct page *page, int off, int size)
1295 {
1296 	__skb_fill_page_desc(skb, i, page, off, size);
1297 	skb_shinfo(skb)->nr_frags = i + 1;
1298 }
1299 
1300 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1301 			    int off, int size, unsigned int truesize);
1302 
1303 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1304 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1305 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1306 
1307 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1308 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1309 {
1310 	return skb->head + skb->tail;
1311 }
1312 
1313 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1314 {
1315 	skb->tail = skb->data - skb->head;
1316 }
1317 
1318 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1319 {
1320 	skb_reset_tail_pointer(skb);
1321 	skb->tail += offset;
1322 }
1323 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1324 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1325 {
1326 	return skb->tail;
1327 }
1328 
1329 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1330 {
1331 	skb->tail = skb->data;
1332 }
1333 
1334 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1335 {
1336 	skb->tail = skb->data + offset;
1337 }
1338 
1339 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1340 
1341 /*
1342  *	Add data to an sk_buff
1343  */
1344 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1345 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1346 {
1347 	unsigned char *tmp = skb_tail_pointer(skb);
1348 	SKB_LINEAR_ASSERT(skb);
1349 	skb->tail += len;
1350 	skb->len  += len;
1351 	return tmp;
1352 }
1353 
1354 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1355 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1356 {
1357 	skb->data -= len;
1358 	skb->len  += len;
1359 	return skb->data;
1360 }
1361 
1362 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1363 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1364 {
1365 	skb->len -= len;
1366 	BUG_ON(skb->len < skb->data_len);
1367 	return skb->data += len;
1368 }
1369 
1370 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1371 {
1372 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1373 }
1374 
1375 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1376 
1377 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1378 {
1379 	if (len > skb_headlen(skb) &&
1380 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1381 		return NULL;
1382 	skb->len -= len;
1383 	return skb->data += len;
1384 }
1385 
1386 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1387 {
1388 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1389 }
1390 
1391 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1392 {
1393 	if (likely(len <= skb_headlen(skb)))
1394 		return 1;
1395 	if (unlikely(len > skb->len))
1396 		return 0;
1397 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1398 }
1399 
1400 /**
1401  *	skb_headroom - bytes at buffer head
1402  *	@skb: buffer to check
1403  *
1404  *	Return the number of bytes of free space at the head of an &sk_buff.
1405  */
1406 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1407 {
1408 	return skb->data - skb->head;
1409 }
1410 
1411 /**
1412  *	skb_tailroom - bytes at buffer end
1413  *	@skb: buffer to check
1414  *
1415  *	Return the number of bytes of free space at the tail of an sk_buff
1416  */
1417 static inline int skb_tailroom(const struct sk_buff *skb)
1418 {
1419 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1420 }
1421 
1422 /**
1423  *	skb_availroom - bytes at buffer end
1424  *	@skb: buffer to check
1425  *
1426  *	Return the number of bytes of free space at the tail of an sk_buff
1427  *	allocated by sk_stream_alloc()
1428  */
1429 static inline int skb_availroom(const struct sk_buff *skb)
1430 {
1431 	return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1432 }
1433 
1434 /**
1435  *	skb_reserve - adjust headroom
1436  *	@skb: buffer to alter
1437  *	@len: bytes to move
1438  *
1439  *	Increase the headroom of an empty &sk_buff by reducing the tail
1440  *	room. This is only allowed for an empty buffer.
1441  */
1442 static inline void skb_reserve(struct sk_buff *skb, int len)
1443 {
1444 	skb->data += len;
1445 	skb->tail += len;
1446 }
1447 
1448 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1449 {
1450 	skb->inner_network_header = skb->network_header;
1451 	skb->inner_transport_header = skb->transport_header;
1452 }
1453 
1454 static inline void skb_reset_mac_len(struct sk_buff *skb)
1455 {
1456 	skb->mac_len = skb->network_header - skb->mac_header;
1457 }
1458 
1459 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1460 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1461 							*skb)
1462 {
1463 	return skb->head + skb->inner_transport_header;
1464 }
1465 
1466 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1467 {
1468 	skb->inner_transport_header = skb->data - skb->head;
1469 }
1470 
1471 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1472 						   const int offset)
1473 {
1474 	skb_reset_inner_transport_header(skb);
1475 	skb->inner_transport_header += offset;
1476 }
1477 
1478 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1479 {
1480 	return skb->head + skb->inner_network_header;
1481 }
1482 
1483 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1484 {
1485 	skb->inner_network_header = skb->data - skb->head;
1486 }
1487 
1488 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1489 						const int offset)
1490 {
1491 	skb_reset_inner_network_header(skb);
1492 	skb->inner_network_header += offset;
1493 }
1494 
1495 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1496 {
1497 	return skb->head + skb->transport_header;
1498 }
1499 
1500 static inline void skb_reset_transport_header(struct sk_buff *skb)
1501 {
1502 	skb->transport_header = skb->data - skb->head;
1503 }
1504 
1505 static inline void skb_set_transport_header(struct sk_buff *skb,
1506 					    const int offset)
1507 {
1508 	skb_reset_transport_header(skb);
1509 	skb->transport_header += offset;
1510 }
1511 
1512 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1513 {
1514 	return skb->head + skb->network_header;
1515 }
1516 
1517 static inline void skb_reset_network_header(struct sk_buff *skb)
1518 {
1519 	skb->network_header = skb->data - skb->head;
1520 }
1521 
1522 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1523 {
1524 	skb_reset_network_header(skb);
1525 	skb->network_header += offset;
1526 }
1527 
1528 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1529 {
1530 	return skb->head + skb->mac_header;
1531 }
1532 
1533 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1534 {
1535 	return skb->mac_header != ~0U;
1536 }
1537 
1538 static inline void skb_reset_mac_header(struct sk_buff *skb)
1539 {
1540 	skb->mac_header = skb->data - skb->head;
1541 }
1542 
1543 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1544 {
1545 	skb_reset_mac_header(skb);
1546 	skb->mac_header += offset;
1547 }
1548 
1549 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1550 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1551 							*skb)
1552 {
1553 	return skb->inner_transport_header;
1554 }
1555 
1556 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1557 {
1558 	skb->inner_transport_header = skb->data;
1559 }
1560 
1561 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1562 						   const int offset)
1563 {
1564 	skb->inner_transport_header = skb->data + offset;
1565 }
1566 
1567 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1568 {
1569 	return skb->inner_network_header;
1570 }
1571 
1572 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1573 {
1574 	skb->inner_network_header = skb->data;
1575 }
1576 
1577 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1578 						const int offset)
1579 {
1580 	skb->inner_network_header = skb->data + offset;
1581 }
1582 
1583 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1584 {
1585 	return skb->transport_header;
1586 }
1587 
1588 static inline void skb_reset_transport_header(struct sk_buff *skb)
1589 {
1590 	skb->transport_header = skb->data;
1591 }
1592 
1593 static inline void skb_set_transport_header(struct sk_buff *skb,
1594 					    const int offset)
1595 {
1596 	skb->transport_header = skb->data + offset;
1597 }
1598 
1599 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1600 {
1601 	return skb->network_header;
1602 }
1603 
1604 static inline void skb_reset_network_header(struct sk_buff *skb)
1605 {
1606 	skb->network_header = skb->data;
1607 }
1608 
1609 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1610 {
1611 	skb->network_header = skb->data + offset;
1612 }
1613 
1614 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1615 {
1616 	return skb->mac_header;
1617 }
1618 
1619 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1620 {
1621 	return skb->mac_header != NULL;
1622 }
1623 
1624 static inline void skb_reset_mac_header(struct sk_buff *skb)
1625 {
1626 	skb->mac_header = skb->data;
1627 }
1628 
1629 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1630 {
1631 	skb->mac_header = skb->data + offset;
1632 }
1633 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1634 
1635 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1636 {
1637 	if (skb_mac_header_was_set(skb)) {
1638 		const unsigned char *old_mac = skb_mac_header(skb);
1639 
1640 		skb_set_mac_header(skb, -skb->mac_len);
1641 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1642 	}
1643 }
1644 
1645 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1646 {
1647 	return skb->csum_start - skb_headroom(skb);
1648 }
1649 
1650 static inline int skb_transport_offset(const struct sk_buff *skb)
1651 {
1652 	return skb_transport_header(skb) - skb->data;
1653 }
1654 
1655 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1656 {
1657 	return skb->transport_header - skb->network_header;
1658 }
1659 
1660 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1661 {
1662 	return skb->inner_transport_header - skb->inner_network_header;
1663 }
1664 
1665 static inline int skb_network_offset(const struct sk_buff *skb)
1666 {
1667 	return skb_network_header(skb) - skb->data;
1668 }
1669 
1670 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1671 {
1672 	return skb_inner_network_header(skb) - skb->data;
1673 }
1674 
1675 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1676 {
1677 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1678 }
1679 
1680 /*
1681  * CPUs often take a performance hit when accessing unaligned memory
1682  * locations. The actual performance hit varies, it can be small if the
1683  * hardware handles it or large if we have to take an exception and fix it
1684  * in software.
1685  *
1686  * Since an ethernet header is 14 bytes network drivers often end up with
1687  * the IP header at an unaligned offset. The IP header can be aligned by
1688  * shifting the start of the packet by 2 bytes. Drivers should do this
1689  * with:
1690  *
1691  * skb_reserve(skb, NET_IP_ALIGN);
1692  *
1693  * The downside to this alignment of the IP header is that the DMA is now
1694  * unaligned. On some architectures the cost of an unaligned DMA is high
1695  * and this cost outweighs the gains made by aligning the IP header.
1696  *
1697  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1698  * to be overridden.
1699  */
1700 #ifndef NET_IP_ALIGN
1701 #define NET_IP_ALIGN	2
1702 #endif
1703 
1704 /*
1705  * The networking layer reserves some headroom in skb data (via
1706  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1707  * the header has to grow. In the default case, if the header has to grow
1708  * 32 bytes or less we avoid the reallocation.
1709  *
1710  * Unfortunately this headroom changes the DMA alignment of the resulting
1711  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1712  * on some architectures. An architecture can override this value,
1713  * perhaps setting it to a cacheline in size (since that will maintain
1714  * cacheline alignment of the DMA). It must be a power of 2.
1715  *
1716  * Various parts of the networking layer expect at least 32 bytes of
1717  * headroom, you should not reduce this.
1718  *
1719  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1720  * to reduce average number of cache lines per packet.
1721  * get_rps_cpus() for example only access one 64 bytes aligned block :
1722  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1723  */
1724 #ifndef NET_SKB_PAD
1725 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1726 #endif
1727 
1728 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1729 
1730 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1731 {
1732 	if (unlikely(skb_is_nonlinear(skb))) {
1733 		WARN_ON(1);
1734 		return;
1735 	}
1736 	skb->len = len;
1737 	skb_set_tail_pointer(skb, len);
1738 }
1739 
1740 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1741 
1742 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1743 {
1744 	if (skb->data_len)
1745 		return ___pskb_trim(skb, len);
1746 	__skb_trim(skb, len);
1747 	return 0;
1748 }
1749 
1750 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1751 {
1752 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1753 }
1754 
1755 /**
1756  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1757  *	@skb: buffer to alter
1758  *	@len: new length
1759  *
1760  *	This is identical to pskb_trim except that the caller knows that
1761  *	the skb is not cloned so we should never get an error due to out-
1762  *	of-memory.
1763  */
1764 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1765 {
1766 	int err = pskb_trim(skb, len);
1767 	BUG_ON(err);
1768 }
1769 
1770 /**
1771  *	skb_orphan - orphan a buffer
1772  *	@skb: buffer to orphan
1773  *
1774  *	If a buffer currently has an owner then we call the owner's
1775  *	destructor function and make the @skb unowned. The buffer continues
1776  *	to exist but is no longer charged to its former owner.
1777  */
1778 static inline void skb_orphan(struct sk_buff *skb)
1779 {
1780 	if (skb->destructor)
1781 		skb->destructor(skb);
1782 	skb->destructor = NULL;
1783 	skb->sk		= NULL;
1784 }
1785 
1786 /**
1787  *	skb_orphan_frags - orphan the frags contained in a buffer
1788  *	@skb: buffer to orphan frags from
1789  *	@gfp_mask: allocation mask for replacement pages
1790  *
1791  *	For each frag in the SKB which needs a destructor (i.e. has an
1792  *	owner) create a copy of that frag and release the original
1793  *	page by calling the destructor.
1794  */
1795 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1796 {
1797 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1798 		return 0;
1799 	return skb_copy_ubufs(skb, gfp_mask);
1800 }
1801 
1802 /**
1803  *	__skb_queue_purge - empty a list
1804  *	@list: list to empty
1805  *
1806  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1807  *	the list and one reference dropped. This function does not take the
1808  *	list lock and the caller must hold the relevant locks to use it.
1809  */
1810 extern void skb_queue_purge(struct sk_buff_head *list);
1811 static inline void __skb_queue_purge(struct sk_buff_head *list)
1812 {
1813 	struct sk_buff *skb;
1814 	while ((skb = __skb_dequeue(list)) != NULL)
1815 		kfree_skb(skb);
1816 }
1817 
1818 extern void *netdev_alloc_frag(unsigned int fragsz);
1819 
1820 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1821 					  unsigned int length,
1822 					  gfp_t gfp_mask);
1823 
1824 /**
1825  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1826  *	@dev: network device to receive on
1827  *	@length: length to allocate
1828  *
1829  *	Allocate a new &sk_buff and assign it a usage count of one. The
1830  *	buffer has unspecified headroom built in. Users should allocate
1831  *	the headroom they think they need without accounting for the
1832  *	built in space. The built in space is used for optimisations.
1833  *
1834  *	%NULL is returned if there is no free memory. Although this function
1835  *	allocates memory it can be called from an interrupt.
1836  */
1837 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1838 					       unsigned int length)
1839 {
1840 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1841 }
1842 
1843 /* legacy helper around __netdev_alloc_skb() */
1844 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1845 					      gfp_t gfp_mask)
1846 {
1847 	return __netdev_alloc_skb(NULL, length, gfp_mask);
1848 }
1849 
1850 /* legacy helper around netdev_alloc_skb() */
1851 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1852 {
1853 	return netdev_alloc_skb(NULL, length);
1854 }
1855 
1856 
1857 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1858 		unsigned int length, gfp_t gfp)
1859 {
1860 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1861 
1862 	if (NET_IP_ALIGN && skb)
1863 		skb_reserve(skb, NET_IP_ALIGN);
1864 	return skb;
1865 }
1866 
1867 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1868 		unsigned int length)
1869 {
1870 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1871 }
1872 
1873 /*
1874  *	__skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1875  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1876  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1877  *	@order: size of the allocation
1878  *
1879  * 	Allocate a new page.
1880  *
1881  * 	%NULL is returned if there is no free memory.
1882 */
1883 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1884 					      struct sk_buff *skb,
1885 					      unsigned int order)
1886 {
1887 	struct page *page;
1888 
1889 	gfp_mask |= __GFP_COLD;
1890 
1891 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1892 		gfp_mask |= __GFP_MEMALLOC;
1893 
1894 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1895 	if (skb && page && page->pfmemalloc)
1896 		skb->pfmemalloc = true;
1897 
1898 	return page;
1899 }
1900 
1901 /**
1902  *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1903  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1904  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1905  *
1906  * 	Allocate a new page.
1907  *
1908  * 	%NULL is returned if there is no free memory.
1909  */
1910 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1911 					     struct sk_buff *skb)
1912 {
1913 	return __skb_alloc_pages(gfp_mask, skb, 0);
1914 }
1915 
1916 /**
1917  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1918  *	@page: The page that was allocated from skb_alloc_page
1919  *	@skb: The skb that may need pfmemalloc set
1920  */
1921 static inline void skb_propagate_pfmemalloc(struct page *page,
1922 					     struct sk_buff *skb)
1923 {
1924 	if (page && page->pfmemalloc)
1925 		skb->pfmemalloc = true;
1926 }
1927 
1928 /**
1929  * skb_frag_page - retrieve the page refered to by a paged fragment
1930  * @frag: the paged fragment
1931  *
1932  * Returns the &struct page associated with @frag.
1933  */
1934 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1935 {
1936 	return frag->page.p;
1937 }
1938 
1939 /**
1940  * __skb_frag_ref - take an addition reference on a paged fragment.
1941  * @frag: the paged fragment
1942  *
1943  * Takes an additional reference on the paged fragment @frag.
1944  */
1945 static inline void __skb_frag_ref(skb_frag_t *frag)
1946 {
1947 	get_page(skb_frag_page(frag));
1948 }
1949 
1950 /**
1951  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1952  * @skb: the buffer
1953  * @f: the fragment offset.
1954  *
1955  * Takes an additional reference on the @f'th paged fragment of @skb.
1956  */
1957 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1958 {
1959 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1960 }
1961 
1962 /**
1963  * __skb_frag_unref - release a reference on a paged fragment.
1964  * @frag: the paged fragment
1965  *
1966  * Releases a reference on the paged fragment @frag.
1967  */
1968 static inline void __skb_frag_unref(skb_frag_t *frag)
1969 {
1970 	put_page(skb_frag_page(frag));
1971 }
1972 
1973 /**
1974  * skb_frag_unref - release a reference on a paged fragment of an skb.
1975  * @skb: the buffer
1976  * @f: the fragment offset
1977  *
1978  * Releases a reference on the @f'th paged fragment of @skb.
1979  */
1980 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1981 {
1982 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1983 }
1984 
1985 /**
1986  * skb_frag_address - gets the address of the data contained in a paged fragment
1987  * @frag: the paged fragment buffer
1988  *
1989  * Returns the address of the data within @frag. The page must already
1990  * be mapped.
1991  */
1992 static inline void *skb_frag_address(const skb_frag_t *frag)
1993 {
1994 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1995 }
1996 
1997 /**
1998  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1999  * @frag: the paged fragment buffer
2000  *
2001  * Returns the address of the data within @frag. Checks that the page
2002  * is mapped and returns %NULL otherwise.
2003  */
2004 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2005 {
2006 	void *ptr = page_address(skb_frag_page(frag));
2007 	if (unlikely(!ptr))
2008 		return NULL;
2009 
2010 	return ptr + frag->page_offset;
2011 }
2012 
2013 /**
2014  * __skb_frag_set_page - sets the page contained in a paged fragment
2015  * @frag: the paged fragment
2016  * @page: the page to set
2017  *
2018  * Sets the fragment @frag to contain @page.
2019  */
2020 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2021 {
2022 	frag->page.p = page;
2023 }
2024 
2025 /**
2026  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2027  * @skb: the buffer
2028  * @f: the fragment offset
2029  * @page: the page to set
2030  *
2031  * Sets the @f'th fragment of @skb to contain @page.
2032  */
2033 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2034 				     struct page *page)
2035 {
2036 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2037 }
2038 
2039 /**
2040  * skb_frag_dma_map - maps a paged fragment via the DMA API
2041  * @dev: the device to map the fragment to
2042  * @frag: the paged fragment to map
2043  * @offset: the offset within the fragment (starting at the
2044  *          fragment's own offset)
2045  * @size: the number of bytes to map
2046  * @dir: the direction of the mapping (%PCI_DMA_*)
2047  *
2048  * Maps the page associated with @frag to @device.
2049  */
2050 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2051 					  const skb_frag_t *frag,
2052 					  size_t offset, size_t size,
2053 					  enum dma_data_direction dir)
2054 {
2055 	return dma_map_page(dev, skb_frag_page(frag),
2056 			    frag->page_offset + offset, size, dir);
2057 }
2058 
2059 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2060 					gfp_t gfp_mask)
2061 {
2062 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2063 }
2064 
2065 /**
2066  *	skb_clone_writable - is the header of a clone writable
2067  *	@skb: buffer to check
2068  *	@len: length up to which to write
2069  *
2070  *	Returns true if modifying the header part of the cloned buffer
2071  *	does not requires the data to be copied.
2072  */
2073 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2074 {
2075 	return !skb_header_cloned(skb) &&
2076 	       skb_headroom(skb) + len <= skb->hdr_len;
2077 }
2078 
2079 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2080 			    int cloned)
2081 {
2082 	int delta = 0;
2083 
2084 	if (headroom > skb_headroom(skb))
2085 		delta = headroom - skb_headroom(skb);
2086 
2087 	if (delta || cloned)
2088 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2089 					GFP_ATOMIC);
2090 	return 0;
2091 }
2092 
2093 /**
2094  *	skb_cow - copy header of skb when it is required
2095  *	@skb: buffer to cow
2096  *	@headroom: needed headroom
2097  *
2098  *	If the skb passed lacks sufficient headroom or its data part
2099  *	is shared, data is reallocated. If reallocation fails, an error
2100  *	is returned and original skb is not changed.
2101  *
2102  *	The result is skb with writable area skb->head...skb->tail
2103  *	and at least @headroom of space at head.
2104  */
2105 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2106 {
2107 	return __skb_cow(skb, headroom, skb_cloned(skb));
2108 }
2109 
2110 /**
2111  *	skb_cow_head - skb_cow but only making the head writable
2112  *	@skb: buffer to cow
2113  *	@headroom: needed headroom
2114  *
2115  *	This function is identical to skb_cow except that we replace the
2116  *	skb_cloned check by skb_header_cloned.  It should be used when
2117  *	you only need to push on some header and do not need to modify
2118  *	the data.
2119  */
2120 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2121 {
2122 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2123 }
2124 
2125 /**
2126  *	skb_padto	- pad an skbuff up to a minimal size
2127  *	@skb: buffer to pad
2128  *	@len: minimal length
2129  *
2130  *	Pads up a buffer to ensure the trailing bytes exist and are
2131  *	blanked. If the buffer already contains sufficient data it
2132  *	is untouched. Otherwise it is extended. Returns zero on
2133  *	success. The skb is freed on error.
2134  */
2135 
2136 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2137 {
2138 	unsigned int size = skb->len;
2139 	if (likely(size >= len))
2140 		return 0;
2141 	return skb_pad(skb, len - size);
2142 }
2143 
2144 static inline int skb_add_data(struct sk_buff *skb,
2145 			       char __user *from, int copy)
2146 {
2147 	const int off = skb->len;
2148 
2149 	if (skb->ip_summed == CHECKSUM_NONE) {
2150 		int err = 0;
2151 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2152 							    copy, 0, &err);
2153 		if (!err) {
2154 			skb->csum = csum_block_add(skb->csum, csum, off);
2155 			return 0;
2156 		}
2157 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
2158 		return 0;
2159 
2160 	__skb_trim(skb, off);
2161 	return -EFAULT;
2162 }
2163 
2164 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2165 				    const struct page *page, int off)
2166 {
2167 	if (i) {
2168 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2169 
2170 		return page == skb_frag_page(frag) &&
2171 		       off == frag->page_offset + skb_frag_size(frag);
2172 	}
2173 	return false;
2174 }
2175 
2176 static inline int __skb_linearize(struct sk_buff *skb)
2177 {
2178 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2179 }
2180 
2181 /**
2182  *	skb_linearize - convert paged skb to linear one
2183  *	@skb: buffer to linarize
2184  *
2185  *	If there is no free memory -ENOMEM is returned, otherwise zero
2186  *	is returned and the old skb data released.
2187  */
2188 static inline int skb_linearize(struct sk_buff *skb)
2189 {
2190 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2191 }
2192 
2193 /**
2194  *	skb_linearize_cow - make sure skb is linear and writable
2195  *	@skb: buffer to process
2196  *
2197  *	If there is no free memory -ENOMEM is returned, otherwise zero
2198  *	is returned and the old skb data released.
2199  */
2200 static inline int skb_linearize_cow(struct sk_buff *skb)
2201 {
2202 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2203 	       __skb_linearize(skb) : 0;
2204 }
2205 
2206 /**
2207  *	skb_postpull_rcsum - update checksum for received skb after pull
2208  *	@skb: buffer to update
2209  *	@start: start of data before pull
2210  *	@len: length of data pulled
2211  *
2212  *	After doing a pull on a received packet, you need to call this to
2213  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2214  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2215  */
2216 
2217 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2218 				      const void *start, unsigned int len)
2219 {
2220 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2221 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2222 }
2223 
2224 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2225 
2226 /**
2227  *	pskb_trim_rcsum - trim received skb and update checksum
2228  *	@skb: buffer to trim
2229  *	@len: new length
2230  *
2231  *	This is exactly the same as pskb_trim except that it ensures the
2232  *	checksum of received packets are still valid after the operation.
2233  */
2234 
2235 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2236 {
2237 	if (likely(len >= skb->len))
2238 		return 0;
2239 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2240 		skb->ip_summed = CHECKSUM_NONE;
2241 	return __pskb_trim(skb, len);
2242 }
2243 
2244 #define skb_queue_walk(queue, skb) \
2245 		for (skb = (queue)->next;					\
2246 		     skb != (struct sk_buff *)(queue);				\
2247 		     skb = skb->next)
2248 
2249 #define skb_queue_walk_safe(queue, skb, tmp)					\
2250 		for (skb = (queue)->next, tmp = skb->next;			\
2251 		     skb != (struct sk_buff *)(queue);				\
2252 		     skb = tmp, tmp = skb->next)
2253 
2254 #define skb_queue_walk_from(queue, skb)						\
2255 		for (; skb != (struct sk_buff *)(queue);			\
2256 		     skb = skb->next)
2257 
2258 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2259 		for (tmp = skb->next;						\
2260 		     skb != (struct sk_buff *)(queue);				\
2261 		     skb = tmp, tmp = skb->next)
2262 
2263 #define skb_queue_reverse_walk(queue, skb) \
2264 		for (skb = (queue)->prev;					\
2265 		     skb != (struct sk_buff *)(queue);				\
2266 		     skb = skb->prev)
2267 
2268 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2269 		for (skb = (queue)->prev, tmp = skb->prev;			\
2270 		     skb != (struct sk_buff *)(queue);				\
2271 		     skb = tmp, tmp = skb->prev)
2272 
2273 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2274 		for (tmp = skb->prev;						\
2275 		     skb != (struct sk_buff *)(queue);				\
2276 		     skb = tmp, tmp = skb->prev)
2277 
2278 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2279 {
2280 	return skb_shinfo(skb)->frag_list != NULL;
2281 }
2282 
2283 static inline void skb_frag_list_init(struct sk_buff *skb)
2284 {
2285 	skb_shinfo(skb)->frag_list = NULL;
2286 }
2287 
2288 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2289 {
2290 	frag->next = skb_shinfo(skb)->frag_list;
2291 	skb_shinfo(skb)->frag_list = frag;
2292 }
2293 
2294 #define skb_walk_frags(skb, iter)	\
2295 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2296 
2297 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2298 					   int *peeked, int *off, int *err);
2299 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2300 					 int noblock, int *err);
2301 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2302 				     struct poll_table_struct *wait);
2303 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2304 					       int offset, struct iovec *to,
2305 					       int size);
2306 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2307 							int hlen,
2308 							struct iovec *iov);
2309 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2310 						    int offset,
2311 						    const struct iovec *from,
2312 						    int from_offset,
2313 						    int len);
2314 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2315 						     int offset,
2316 						     const struct iovec *to,
2317 						     int to_offset,
2318 						     int size);
2319 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2320 extern void	       skb_free_datagram_locked(struct sock *sk,
2321 						struct sk_buff *skb);
2322 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2323 					 unsigned int flags);
2324 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2325 				    int len, __wsum csum);
2326 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2327 				     void *to, int len);
2328 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2329 				      const void *from, int len);
2330 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2331 					      int offset, u8 *to, int len,
2332 					      __wsum csum);
2333 extern int             skb_splice_bits(struct sk_buff *skb,
2334 						unsigned int offset,
2335 						struct pipe_inode_info *pipe,
2336 						unsigned int len,
2337 						unsigned int flags);
2338 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2339 extern void	       skb_split(struct sk_buff *skb,
2340 				 struct sk_buff *skb1, const u32 len);
2341 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2342 				 int shiftlen);
2343 
2344 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2345 				   netdev_features_t features);
2346 
2347 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2348 				       int len, void *buffer)
2349 {
2350 	int hlen = skb_headlen(skb);
2351 
2352 	if (hlen - offset >= len)
2353 		return skb->data + offset;
2354 
2355 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2356 		return NULL;
2357 
2358 	return buffer;
2359 }
2360 
2361 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2362 					     void *to,
2363 					     const unsigned int len)
2364 {
2365 	memcpy(to, skb->data, len);
2366 }
2367 
2368 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2369 						    const int offset, void *to,
2370 						    const unsigned int len)
2371 {
2372 	memcpy(to, skb->data + offset, len);
2373 }
2374 
2375 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2376 					   const void *from,
2377 					   const unsigned int len)
2378 {
2379 	memcpy(skb->data, from, len);
2380 }
2381 
2382 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2383 						  const int offset,
2384 						  const void *from,
2385 						  const unsigned int len)
2386 {
2387 	memcpy(skb->data + offset, from, len);
2388 }
2389 
2390 extern void skb_init(void);
2391 
2392 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2393 {
2394 	return skb->tstamp;
2395 }
2396 
2397 /**
2398  *	skb_get_timestamp - get timestamp from a skb
2399  *	@skb: skb to get stamp from
2400  *	@stamp: pointer to struct timeval to store stamp in
2401  *
2402  *	Timestamps are stored in the skb as offsets to a base timestamp.
2403  *	This function converts the offset back to a struct timeval and stores
2404  *	it in stamp.
2405  */
2406 static inline void skb_get_timestamp(const struct sk_buff *skb,
2407 				     struct timeval *stamp)
2408 {
2409 	*stamp = ktime_to_timeval(skb->tstamp);
2410 }
2411 
2412 static inline void skb_get_timestampns(const struct sk_buff *skb,
2413 				       struct timespec *stamp)
2414 {
2415 	*stamp = ktime_to_timespec(skb->tstamp);
2416 }
2417 
2418 static inline void __net_timestamp(struct sk_buff *skb)
2419 {
2420 	skb->tstamp = ktime_get_real();
2421 }
2422 
2423 static inline ktime_t net_timedelta(ktime_t t)
2424 {
2425 	return ktime_sub(ktime_get_real(), t);
2426 }
2427 
2428 static inline ktime_t net_invalid_timestamp(void)
2429 {
2430 	return ktime_set(0, 0);
2431 }
2432 
2433 extern void skb_timestamping_init(void);
2434 
2435 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2436 
2437 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2438 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2439 
2440 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2441 
2442 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2443 {
2444 }
2445 
2446 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2447 {
2448 	return false;
2449 }
2450 
2451 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2452 
2453 /**
2454  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2455  *
2456  * PHY drivers may accept clones of transmitted packets for
2457  * timestamping via their phy_driver.txtstamp method. These drivers
2458  * must call this function to return the skb back to the stack, with
2459  * or without a timestamp.
2460  *
2461  * @skb: clone of the the original outgoing packet
2462  * @hwtstamps: hardware time stamps, may be NULL if not available
2463  *
2464  */
2465 void skb_complete_tx_timestamp(struct sk_buff *skb,
2466 			       struct skb_shared_hwtstamps *hwtstamps);
2467 
2468 /**
2469  * skb_tstamp_tx - queue clone of skb with send time stamps
2470  * @orig_skb:	the original outgoing packet
2471  * @hwtstamps:	hardware time stamps, may be NULL if not available
2472  *
2473  * If the skb has a socket associated, then this function clones the
2474  * skb (thus sharing the actual data and optional structures), stores
2475  * the optional hardware time stamping information (if non NULL) or
2476  * generates a software time stamp (otherwise), then queues the clone
2477  * to the error queue of the socket.  Errors are silently ignored.
2478  */
2479 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2480 			struct skb_shared_hwtstamps *hwtstamps);
2481 
2482 static inline void sw_tx_timestamp(struct sk_buff *skb)
2483 {
2484 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2485 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2486 		skb_tstamp_tx(skb, NULL);
2487 }
2488 
2489 /**
2490  * skb_tx_timestamp() - Driver hook for transmit timestamping
2491  *
2492  * Ethernet MAC Drivers should call this function in their hard_xmit()
2493  * function immediately before giving the sk_buff to the MAC hardware.
2494  *
2495  * @skb: A socket buffer.
2496  */
2497 static inline void skb_tx_timestamp(struct sk_buff *skb)
2498 {
2499 	skb_clone_tx_timestamp(skb);
2500 	sw_tx_timestamp(skb);
2501 }
2502 
2503 /**
2504  * skb_complete_wifi_ack - deliver skb with wifi status
2505  *
2506  * @skb: the original outgoing packet
2507  * @acked: ack status
2508  *
2509  */
2510 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2511 
2512 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2513 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2514 
2515 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2516 {
2517 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2518 }
2519 
2520 /**
2521  *	skb_checksum_complete - Calculate checksum of an entire packet
2522  *	@skb: packet to process
2523  *
2524  *	This function calculates the checksum over the entire packet plus
2525  *	the value of skb->csum.  The latter can be used to supply the
2526  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2527  *	checksum.
2528  *
2529  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2530  *	this function can be used to verify that checksum on received
2531  *	packets.  In that case the function should return zero if the
2532  *	checksum is correct.  In particular, this function will return zero
2533  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2534  *	hardware has already verified the correctness of the checksum.
2535  */
2536 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2537 {
2538 	return skb_csum_unnecessary(skb) ?
2539 	       0 : __skb_checksum_complete(skb);
2540 }
2541 
2542 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2543 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2544 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2545 {
2546 	if (nfct && atomic_dec_and_test(&nfct->use))
2547 		nf_conntrack_destroy(nfct);
2548 }
2549 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2550 {
2551 	if (nfct)
2552 		atomic_inc(&nfct->use);
2553 }
2554 #endif
2555 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2556 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2557 {
2558 	if (skb)
2559 		atomic_inc(&skb->users);
2560 }
2561 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2562 {
2563 	if (skb)
2564 		kfree_skb(skb);
2565 }
2566 #endif
2567 #ifdef CONFIG_BRIDGE_NETFILTER
2568 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2569 {
2570 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2571 		kfree(nf_bridge);
2572 }
2573 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2574 {
2575 	if (nf_bridge)
2576 		atomic_inc(&nf_bridge->use);
2577 }
2578 #endif /* CONFIG_BRIDGE_NETFILTER */
2579 static inline void nf_reset(struct sk_buff *skb)
2580 {
2581 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2582 	nf_conntrack_put(skb->nfct);
2583 	skb->nfct = NULL;
2584 #endif
2585 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2586 	nf_conntrack_put_reasm(skb->nfct_reasm);
2587 	skb->nfct_reasm = NULL;
2588 #endif
2589 #ifdef CONFIG_BRIDGE_NETFILTER
2590 	nf_bridge_put(skb->nf_bridge);
2591 	skb->nf_bridge = NULL;
2592 #endif
2593 }
2594 
2595 /* Note: This doesn't put any conntrack and bridge info in dst. */
2596 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2597 {
2598 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2599 	dst->nfct = src->nfct;
2600 	nf_conntrack_get(src->nfct);
2601 	dst->nfctinfo = src->nfctinfo;
2602 #endif
2603 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2604 	dst->nfct_reasm = src->nfct_reasm;
2605 	nf_conntrack_get_reasm(src->nfct_reasm);
2606 #endif
2607 #ifdef CONFIG_BRIDGE_NETFILTER
2608 	dst->nf_bridge  = src->nf_bridge;
2609 	nf_bridge_get(src->nf_bridge);
2610 #endif
2611 }
2612 
2613 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2614 {
2615 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2616 	nf_conntrack_put(dst->nfct);
2617 #endif
2618 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2619 	nf_conntrack_put_reasm(dst->nfct_reasm);
2620 #endif
2621 #ifdef CONFIG_BRIDGE_NETFILTER
2622 	nf_bridge_put(dst->nf_bridge);
2623 #endif
2624 	__nf_copy(dst, src);
2625 }
2626 
2627 #ifdef CONFIG_NETWORK_SECMARK
2628 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2629 {
2630 	to->secmark = from->secmark;
2631 }
2632 
2633 static inline void skb_init_secmark(struct sk_buff *skb)
2634 {
2635 	skb->secmark = 0;
2636 }
2637 #else
2638 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2639 { }
2640 
2641 static inline void skb_init_secmark(struct sk_buff *skb)
2642 { }
2643 #endif
2644 
2645 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2646 {
2647 	skb->queue_mapping = queue_mapping;
2648 }
2649 
2650 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2651 {
2652 	return skb->queue_mapping;
2653 }
2654 
2655 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2656 {
2657 	to->queue_mapping = from->queue_mapping;
2658 }
2659 
2660 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2661 {
2662 	skb->queue_mapping = rx_queue + 1;
2663 }
2664 
2665 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2666 {
2667 	return skb->queue_mapping - 1;
2668 }
2669 
2670 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2671 {
2672 	return skb->queue_mapping != 0;
2673 }
2674 
2675 extern u16 __skb_tx_hash(const struct net_device *dev,
2676 			 const struct sk_buff *skb,
2677 			 unsigned int num_tx_queues);
2678 
2679 #ifdef CONFIG_XFRM
2680 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2681 {
2682 	return skb->sp;
2683 }
2684 #else
2685 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2686 {
2687 	return NULL;
2688 }
2689 #endif
2690 
2691 static inline bool skb_is_gso(const struct sk_buff *skb)
2692 {
2693 	return skb_shinfo(skb)->gso_size;
2694 }
2695 
2696 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2697 {
2698 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2699 }
2700 
2701 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2702 
2703 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2704 {
2705 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2706 	 * wanted then gso_type will be set. */
2707 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2708 
2709 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2710 	    unlikely(shinfo->gso_type == 0)) {
2711 		__skb_warn_lro_forwarding(skb);
2712 		return true;
2713 	}
2714 	return false;
2715 }
2716 
2717 static inline void skb_forward_csum(struct sk_buff *skb)
2718 {
2719 	/* Unfortunately we don't support this one.  Any brave souls? */
2720 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2721 		skb->ip_summed = CHECKSUM_NONE;
2722 }
2723 
2724 /**
2725  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2726  * @skb: skb to check
2727  *
2728  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2729  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2730  * use this helper, to document places where we make this assertion.
2731  */
2732 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2733 {
2734 #ifdef DEBUG
2735 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2736 #endif
2737 }
2738 
2739 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2740 
2741 /**
2742  * skb_head_is_locked - Determine if the skb->head is locked down
2743  * @skb: skb to check
2744  *
2745  * The head on skbs build around a head frag can be removed if they are
2746  * not cloned.  This function returns true if the skb head is locked down
2747  * due to either being allocated via kmalloc, or by being a clone with
2748  * multiple references to the head.
2749  */
2750 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2751 {
2752 	return !skb->head_frag || skb_cloned(skb);
2753 }
2754 #endif	/* __KERNEL__ */
2755 #endif	/* _LINUX_SKBUFF_H */
2756