xref: /linux-6.15/include/linux/skbuff.h (revision 8d98efa8)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
133 	__u32 page_offset;
134 	__u32 size;
135 #else
136 	__u16 page_offset;
137 	__u16 size;
138 #endif
139 };
140 
141 #define HAVE_HW_TIME_STAMP
142 
143 /**
144  * struct skb_shared_hwtstamps - hardware time stamps
145  * @hwtstamp:	hardware time stamp transformed into duration
146  *		since arbitrary point in time
147  * @syststamp:	hwtstamp transformed to system time base
148  *
149  * Software time stamps generated by ktime_get_real() are stored in
150  * skb->tstamp. The relation between the different kinds of time
151  * stamps is as follows:
152  *
153  * syststamp and tstamp can be compared against each other in
154  * arbitrary combinations.  The accuracy of a
155  * syststamp/tstamp/"syststamp from other device" comparison is
156  * limited by the accuracy of the transformation into system time
157  * base. This depends on the device driver and its underlying
158  * hardware.
159  *
160  * hwtstamps can only be compared against other hwtstamps from
161  * the same device.
162  *
163  * This structure is attached to packets as part of the
164  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
165  */
166 struct skb_shared_hwtstamps {
167 	ktime_t	hwtstamp;
168 	ktime_t	syststamp;
169 };
170 
171 /* Definitions for tx_flags in struct skb_shared_info */
172 enum {
173 	/* generate hardware time stamp */
174 	SKBTX_HW_TSTAMP = 1 << 0,
175 
176 	/* generate software time stamp */
177 	SKBTX_SW_TSTAMP = 1 << 1,
178 
179 	/* device driver is going to provide hardware time stamp */
180 	SKBTX_IN_PROGRESS = 1 << 2,
181 
182 	/* ensure the originating sk reference is available on driver level */
183 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	unsigned short	nr_frags;
191 	unsigned short	gso_size;
192 	/* Warning: this field is not always filled in (UFO)! */
193 	unsigned short	gso_segs;
194 	unsigned short  gso_type;
195 	__be32          ip6_frag_id;
196 	__u8		tx_flags;
197 	struct sk_buff	*frag_list;
198 	struct skb_shared_hwtstamps hwtstamps;
199 
200 	/*
201 	 * Warning : all fields before dataref are cleared in __alloc_skb()
202 	 */
203 	atomic_t	dataref;
204 
205 	/* Intermediate layers must ensure that destructor_arg
206 	 * remains valid until skb destructor */
207 	void *		destructor_arg;
208 	/* must be last field, see pskb_expand_head() */
209 	skb_frag_t	frags[MAX_SKB_FRAGS];
210 };
211 
212 /* We divide dataref into two halves.  The higher 16 bits hold references
213  * to the payload part of skb->data.  The lower 16 bits hold references to
214  * the entire skb->data.  A clone of a headerless skb holds the length of
215  * the header in skb->hdr_len.
216  *
217  * All users must obey the rule that the skb->data reference count must be
218  * greater than or equal to the payload reference count.
219  *
220  * Holding a reference to the payload part means that the user does not
221  * care about modifications to the header part of skb->data.
222  */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225 
226 
227 enum {
228 	SKB_FCLONE_UNAVAILABLE,
229 	SKB_FCLONE_ORIG,
230 	SKB_FCLONE_CLONE,
231 };
232 
233 enum {
234 	SKB_GSO_TCPV4 = 1 << 0,
235 	SKB_GSO_UDP = 1 << 1,
236 
237 	/* This indicates the skb is from an untrusted source. */
238 	SKB_GSO_DODGY = 1 << 2,
239 
240 	/* This indicates the tcp segment has CWR set. */
241 	SKB_GSO_TCP_ECN = 1 << 3,
242 
243 	SKB_GSO_TCPV6 = 1 << 4,
244 
245 	SKB_GSO_FCOE = 1 << 5,
246 };
247 
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251 
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257 
258 /**
259  *	struct sk_buff - socket buffer
260  *	@next: Next buffer in list
261  *	@prev: Previous buffer in list
262  *	@sk: Socket we are owned by
263  *	@tstamp: Time we arrived
264  *	@dev: Device we arrived on/are leaving by
265  *	@transport_header: Transport layer header
266  *	@network_header: Network layer header
267  *	@mac_header: Link layer header
268  *	@_skb_refdst: destination entry (with norefcount bit)
269  *	@sp: the security path, used for xfrm
270  *	@cb: Control buffer. Free for use by every layer. Put private vars here
271  *	@len: Length of actual data
272  *	@data_len: Data length
273  *	@mac_len: Length of link layer header
274  *	@hdr_len: writable header length of cloned skb
275  *	@csum: Checksum (must include start/offset pair)
276  *	@csum_start: Offset from skb->head where checksumming should start
277  *	@csum_offset: Offset from csum_start where checksum should be stored
278  *	@local_df: allow local fragmentation
279  *	@cloned: Head may be cloned (check refcnt to be sure)
280  *	@nohdr: Payload reference only, must not modify header
281  *	@pkt_type: Packet class
282  *	@fclone: skbuff clone status
283  *	@ip_summed: Driver fed us an IP checksum
284  *	@priority: Packet queueing priority
285  *	@users: User count - see {datagram,tcp}.c
286  *	@protocol: Packet protocol from driver
287  *	@truesize: Buffer size
288  *	@head: Head of buffer
289  *	@data: Data head pointer
290  *	@tail: Tail pointer
291  *	@end: End pointer
292  *	@destructor: Destruct function
293  *	@mark: Generic packet mark
294  *	@nfct: Associated connection, if any
295  *	@ipvs_property: skbuff is owned by ipvs
296  *	@peeked: this packet has been seen already, so stats have been
297  *		done for it, don't do them again
298  *	@nf_trace: netfilter packet trace flag
299  *	@nfctinfo: Relationship of this skb to the connection
300  *	@nfct_reasm: netfilter conntrack re-assembly pointer
301  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302  *	@skb_iif: ifindex of device we arrived on
303  *	@rxhash: the packet hash computed on receive
304  *	@queue_mapping: Queue mapping for multiqueue devices
305  *	@tc_index: Traffic control index
306  *	@tc_verd: traffic control verdict
307  *	@ndisc_nodetype: router type (from link layer)
308  *	@dma_cookie: a cookie to one of several possible DMA operations
309  *		done by skb DMA functions
310  *	@secmark: security marking
311  *	@vlan_tci: vlan tag control information
312  */
313 
314 struct sk_buff {
315 	/* These two members must be first. */
316 	struct sk_buff		*next;
317 	struct sk_buff		*prev;
318 
319 	ktime_t			tstamp;
320 
321 	struct sock		*sk;
322 	struct net_device	*dev;
323 
324 	/*
325 	 * This is the control buffer. It is free to use for every
326 	 * layer. Please put your private variables there. If you
327 	 * want to keep them across layers you have to do a skb_clone()
328 	 * first. This is owned by whoever has the skb queued ATM.
329 	 */
330 	char			cb[48] __aligned(8);
331 
332 	unsigned long		_skb_refdst;
333 #ifdef CONFIG_XFRM
334 	struct	sec_path	*sp;
335 #endif
336 	unsigned int		len,
337 				data_len;
338 	__u16			mac_len,
339 				hdr_len;
340 	union {
341 		__wsum		csum;
342 		struct {
343 			__u16	csum_start;
344 			__u16	csum_offset;
345 		};
346 	};
347 	__u32			priority;
348 	kmemcheck_bitfield_begin(flags1);
349 	__u8			local_df:1,
350 				cloned:1,
351 				ip_summed:2,
352 				nohdr:1,
353 				nfctinfo:3;
354 	__u8			pkt_type:3,
355 				fclone:2,
356 				ipvs_property:1,
357 				peeked:1,
358 				nf_trace:1;
359 	kmemcheck_bitfield_end(flags1);
360 	__be16			protocol;
361 
362 	void			(*destructor)(struct sk_buff *skb);
363 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
364 	struct nf_conntrack	*nfct;
365 	struct sk_buff		*nfct_reasm;
366 #endif
367 #ifdef CONFIG_BRIDGE_NETFILTER
368 	struct nf_bridge_info	*nf_bridge;
369 #endif
370 
371 	int			skb_iif;
372 #ifdef CONFIG_NET_SCHED
373 	__u16			tc_index;	/* traffic control index */
374 #ifdef CONFIG_NET_CLS_ACT
375 	__u16			tc_verd;	/* traffic control verdict */
376 #endif
377 #endif
378 
379 	__u32			rxhash;
380 
381 	kmemcheck_bitfield_begin(flags2);
382 	__u16			queue_mapping:16;
383 #ifdef CONFIG_IPV6_NDISC_NODETYPE
384 	__u8			ndisc_nodetype:2,
385 				deliver_no_wcard:1;
386 #else
387 	__u8			deliver_no_wcard:1;
388 #endif
389 	kmemcheck_bitfield_end(flags2);
390 
391 	/* 0/14 bit hole */
392 
393 #ifdef CONFIG_NET_DMA
394 	dma_cookie_t		dma_cookie;
395 #endif
396 #ifdef CONFIG_NETWORK_SECMARK
397 	__u32			secmark;
398 #endif
399 	union {
400 		__u32		mark;
401 		__u32		dropcount;
402 	};
403 
404 	__u16			vlan_tci;
405 
406 	sk_buff_data_t		transport_header;
407 	sk_buff_data_t		network_header;
408 	sk_buff_data_t		mac_header;
409 	/* These elements must be at the end, see alloc_skb() for details.  */
410 	sk_buff_data_t		tail;
411 	sk_buff_data_t		end;
412 	unsigned char		*head,
413 				*data;
414 	unsigned int		truesize;
415 	atomic_t		users;
416 };
417 
418 #ifdef __KERNEL__
419 /*
420  *	Handling routines are only of interest to the kernel
421  */
422 #include <linux/slab.h>
423 
424 #include <asm/system.h>
425 
426 /*
427  * skb might have a dst pointer attached, refcounted or not.
428  * _skb_refdst low order bit is set if refcount was _not_ taken
429  */
430 #define SKB_DST_NOREF	1UL
431 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
432 
433 /**
434  * skb_dst - returns skb dst_entry
435  * @skb: buffer
436  *
437  * Returns skb dst_entry, regardless of reference taken or not.
438  */
439 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
440 {
441 	/* If refdst was not refcounted, check we still are in a
442 	 * rcu_read_lock section
443 	 */
444 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
445 		!rcu_read_lock_held() &&
446 		!rcu_read_lock_bh_held());
447 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
448 }
449 
450 /**
451  * skb_dst_set - sets skb dst
452  * @skb: buffer
453  * @dst: dst entry
454  *
455  * Sets skb dst, assuming a reference was taken on dst and should
456  * be released by skb_dst_drop()
457  */
458 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
459 {
460 	skb->_skb_refdst = (unsigned long)dst;
461 }
462 
463 /**
464  * skb_dst_set_noref - sets skb dst, without a reference
465  * @skb: buffer
466  * @dst: dst entry
467  *
468  * Sets skb dst, assuming a reference was not taken on dst
469  * skb_dst_drop() should not dst_release() this dst
470  */
471 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
472 {
473 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
474 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
475 }
476 
477 /**
478  * skb_dst_is_noref - Test if skb dst isnt refcounted
479  * @skb: buffer
480  */
481 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
482 {
483 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
484 }
485 
486 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
487 {
488 	return (struct rtable *)skb_dst(skb);
489 }
490 
491 extern void kfree_skb(struct sk_buff *skb);
492 extern void consume_skb(struct sk_buff *skb);
493 extern void	       __kfree_skb(struct sk_buff *skb);
494 extern struct sk_buff *__alloc_skb(unsigned int size,
495 				   gfp_t priority, int fclone, int node);
496 static inline struct sk_buff *alloc_skb(unsigned int size,
497 					gfp_t priority)
498 {
499 	return __alloc_skb(size, priority, 0, -1);
500 }
501 
502 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
503 					       gfp_t priority)
504 {
505 	return __alloc_skb(size, priority, 1, -1);
506 }
507 
508 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
509 
510 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
511 extern struct sk_buff *skb_clone(struct sk_buff *skb,
512 				 gfp_t priority);
513 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
514 				gfp_t priority);
515 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
516 				 gfp_t gfp_mask);
517 extern int	       pskb_expand_head(struct sk_buff *skb,
518 					int nhead, int ntail,
519 					gfp_t gfp_mask);
520 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
521 					    unsigned int headroom);
522 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
523 				       int newheadroom, int newtailroom,
524 				       gfp_t priority);
525 extern int	       skb_to_sgvec(struct sk_buff *skb,
526 				    struct scatterlist *sg, int offset,
527 				    int len);
528 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
529 				    struct sk_buff **trailer);
530 extern int	       skb_pad(struct sk_buff *skb, int pad);
531 #define dev_kfree_skb(a)	consume_skb(a)
532 
533 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
534 			int getfrag(void *from, char *to, int offset,
535 			int len,int odd, struct sk_buff *skb),
536 			void *from, int length);
537 
538 struct skb_seq_state {
539 	__u32		lower_offset;
540 	__u32		upper_offset;
541 	__u32		frag_idx;
542 	__u32		stepped_offset;
543 	struct sk_buff	*root_skb;
544 	struct sk_buff	*cur_skb;
545 	__u8		*frag_data;
546 };
547 
548 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
549 					   unsigned int from, unsigned int to,
550 					   struct skb_seq_state *st);
551 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
552 				   struct skb_seq_state *st);
553 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
554 
555 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
556 				    unsigned int to, struct ts_config *config,
557 				    struct ts_state *state);
558 
559 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
560 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
561 {
562 	if (!skb->rxhash)
563 		skb->rxhash = __skb_get_rxhash(skb);
564 
565 	return skb->rxhash;
566 }
567 
568 #ifdef NET_SKBUFF_DATA_USES_OFFSET
569 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
570 {
571 	return skb->head + skb->end;
572 }
573 #else
574 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
575 {
576 	return skb->end;
577 }
578 #endif
579 
580 /* Internal */
581 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
582 
583 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
584 {
585 	return &skb_shinfo(skb)->hwtstamps;
586 }
587 
588 /**
589  *	skb_queue_empty - check if a queue is empty
590  *	@list: queue head
591  *
592  *	Returns true if the queue is empty, false otherwise.
593  */
594 static inline int skb_queue_empty(const struct sk_buff_head *list)
595 {
596 	return list->next == (struct sk_buff *)list;
597 }
598 
599 /**
600  *	skb_queue_is_last - check if skb is the last entry in the queue
601  *	@list: queue head
602  *	@skb: buffer
603  *
604  *	Returns true if @skb is the last buffer on the list.
605  */
606 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
607 				     const struct sk_buff *skb)
608 {
609 	return skb->next == (struct sk_buff *)list;
610 }
611 
612 /**
613  *	skb_queue_is_first - check if skb is the first entry in the queue
614  *	@list: queue head
615  *	@skb: buffer
616  *
617  *	Returns true if @skb is the first buffer on the list.
618  */
619 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
620 				      const struct sk_buff *skb)
621 {
622 	return skb->prev == (struct sk_buff *)list;
623 }
624 
625 /**
626  *	skb_queue_next - return the next packet in the queue
627  *	@list: queue head
628  *	@skb: current buffer
629  *
630  *	Return the next packet in @list after @skb.  It is only valid to
631  *	call this if skb_queue_is_last() evaluates to false.
632  */
633 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
634 					     const struct sk_buff *skb)
635 {
636 	/* This BUG_ON may seem severe, but if we just return then we
637 	 * are going to dereference garbage.
638 	 */
639 	BUG_ON(skb_queue_is_last(list, skb));
640 	return skb->next;
641 }
642 
643 /**
644  *	skb_queue_prev - return the prev packet in the queue
645  *	@list: queue head
646  *	@skb: current buffer
647  *
648  *	Return the prev packet in @list before @skb.  It is only valid to
649  *	call this if skb_queue_is_first() evaluates to false.
650  */
651 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
652 					     const struct sk_buff *skb)
653 {
654 	/* This BUG_ON may seem severe, but if we just return then we
655 	 * are going to dereference garbage.
656 	 */
657 	BUG_ON(skb_queue_is_first(list, skb));
658 	return skb->prev;
659 }
660 
661 /**
662  *	skb_get - reference buffer
663  *	@skb: buffer to reference
664  *
665  *	Makes another reference to a socket buffer and returns a pointer
666  *	to the buffer.
667  */
668 static inline struct sk_buff *skb_get(struct sk_buff *skb)
669 {
670 	atomic_inc(&skb->users);
671 	return skb;
672 }
673 
674 /*
675  * If users == 1, we are the only owner and are can avoid redundant
676  * atomic change.
677  */
678 
679 /**
680  *	skb_cloned - is the buffer a clone
681  *	@skb: buffer to check
682  *
683  *	Returns true if the buffer was generated with skb_clone() and is
684  *	one of multiple shared copies of the buffer. Cloned buffers are
685  *	shared data so must not be written to under normal circumstances.
686  */
687 static inline int skb_cloned(const struct sk_buff *skb)
688 {
689 	return skb->cloned &&
690 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
691 }
692 
693 /**
694  *	skb_header_cloned - is the header a clone
695  *	@skb: buffer to check
696  *
697  *	Returns true if modifying the header part of the buffer requires
698  *	the data to be copied.
699  */
700 static inline int skb_header_cloned(const struct sk_buff *skb)
701 {
702 	int dataref;
703 
704 	if (!skb->cloned)
705 		return 0;
706 
707 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
708 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
709 	return dataref != 1;
710 }
711 
712 /**
713  *	skb_header_release - release reference to header
714  *	@skb: buffer to operate on
715  *
716  *	Drop a reference to the header part of the buffer.  This is done
717  *	by acquiring a payload reference.  You must not read from the header
718  *	part of skb->data after this.
719  */
720 static inline void skb_header_release(struct sk_buff *skb)
721 {
722 	BUG_ON(skb->nohdr);
723 	skb->nohdr = 1;
724 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
725 }
726 
727 /**
728  *	skb_shared - is the buffer shared
729  *	@skb: buffer to check
730  *
731  *	Returns true if more than one person has a reference to this
732  *	buffer.
733  */
734 static inline int skb_shared(const struct sk_buff *skb)
735 {
736 	return atomic_read(&skb->users) != 1;
737 }
738 
739 /**
740  *	skb_share_check - check if buffer is shared and if so clone it
741  *	@skb: buffer to check
742  *	@pri: priority for memory allocation
743  *
744  *	If the buffer is shared the buffer is cloned and the old copy
745  *	drops a reference. A new clone with a single reference is returned.
746  *	If the buffer is not shared the original buffer is returned. When
747  *	being called from interrupt status or with spinlocks held pri must
748  *	be GFP_ATOMIC.
749  *
750  *	NULL is returned on a memory allocation failure.
751  */
752 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
753 					      gfp_t pri)
754 {
755 	might_sleep_if(pri & __GFP_WAIT);
756 	if (skb_shared(skb)) {
757 		struct sk_buff *nskb = skb_clone(skb, pri);
758 		kfree_skb(skb);
759 		skb = nskb;
760 	}
761 	return skb;
762 }
763 
764 /*
765  *	Copy shared buffers into a new sk_buff. We effectively do COW on
766  *	packets to handle cases where we have a local reader and forward
767  *	and a couple of other messy ones. The normal one is tcpdumping
768  *	a packet thats being forwarded.
769  */
770 
771 /**
772  *	skb_unshare - make a copy of a shared buffer
773  *	@skb: buffer to check
774  *	@pri: priority for memory allocation
775  *
776  *	If the socket buffer is a clone then this function creates a new
777  *	copy of the data, drops a reference count on the old copy and returns
778  *	the new copy with the reference count at 1. If the buffer is not a clone
779  *	the original buffer is returned. When called with a spinlock held or
780  *	from interrupt state @pri must be %GFP_ATOMIC
781  *
782  *	%NULL is returned on a memory allocation failure.
783  */
784 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
785 					  gfp_t pri)
786 {
787 	might_sleep_if(pri & __GFP_WAIT);
788 	if (skb_cloned(skb)) {
789 		struct sk_buff *nskb = skb_copy(skb, pri);
790 		kfree_skb(skb);	/* Free our shared copy */
791 		skb = nskb;
792 	}
793 	return skb;
794 }
795 
796 /**
797  *	skb_peek - peek at the head of an &sk_buff_head
798  *	@list_: list to peek at
799  *
800  *	Peek an &sk_buff. Unlike most other operations you _MUST_
801  *	be careful with this one. A peek leaves the buffer on the
802  *	list and someone else may run off with it. You must hold
803  *	the appropriate locks or have a private queue to do this.
804  *
805  *	Returns %NULL for an empty list or a pointer to the head element.
806  *	The reference count is not incremented and the reference is therefore
807  *	volatile. Use with caution.
808  */
809 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
810 {
811 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
812 	if (list == (struct sk_buff *)list_)
813 		list = NULL;
814 	return list;
815 }
816 
817 /**
818  *	skb_peek_tail - peek at the tail of an &sk_buff_head
819  *	@list_: list to peek at
820  *
821  *	Peek an &sk_buff. Unlike most other operations you _MUST_
822  *	be careful with this one. A peek leaves the buffer on the
823  *	list and someone else may run off with it. You must hold
824  *	the appropriate locks or have a private queue to do this.
825  *
826  *	Returns %NULL for an empty list or a pointer to the tail element.
827  *	The reference count is not incremented and the reference is therefore
828  *	volatile. Use with caution.
829  */
830 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
831 {
832 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
833 	if (list == (struct sk_buff *)list_)
834 		list = NULL;
835 	return list;
836 }
837 
838 /**
839  *	skb_queue_len	- get queue length
840  *	@list_: list to measure
841  *
842  *	Return the length of an &sk_buff queue.
843  */
844 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
845 {
846 	return list_->qlen;
847 }
848 
849 /**
850  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
851  *	@list: queue to initialize
852  *
853  *	This initializes only the list and queue length aspects of
854  *	an sk_buff_head object.  This allows to initialize the list
855  *	aspects of an sk_buff_head without reinitializing things like
856  *	the spinlock.  It can also be used for on-stack sk_buff_head
857  *	objects where the spinlock is known to not be used.
858  */
859 static inline void __skb_queue_head_init(struct sk_buff_head *list)
860 {
861 	list->prev = list->next = (struct sk_buff *)list;
862 	list->qlen = 0;
863 }
864 
865 /*
866  * This function creates a split out lock class for each invocation;
867  * this is needed for now since a whole lot of users of the skb-queue
868  * infrastructure in drivers have different locking usage (in hardirq)
869  * than the networking core (in softirq only). In the long run either the
870  * network layer or drivers should need annotation to consolidate the
871  * main types of usage into 3 classes.
872  */
873 static inline void skb_queue_head_init(struct sk_buff_head *list)
874 {
875 	spin_lock_init(&list->lock);
876 	__skb_queue_head_init(list);
877 }
878 
879 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
880 		struct lock_class_key *class)
881 {
882 	skb_queue_head_init(list);
883 	lockdep_set_class(&list->lock, class);
884 }
885 
886 /*
887  *	Insert an sk_buff on a list.
888  *
889  *	The "__skb_xxxx()" functions are the non-atomic ones that
890  *	can only be called with interrupts disabled.
891  */
892 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
893 static inline void __skb_insert(struct sk_buff *newsk,
894 				struct sk_buff *prev, struct sk_buff *next,
895 				struct sk_buff_head *list)
896 {
897 	newsk->next = next;
898 	newsk->prev = prev;
899 	next->prev  = prev->next = newsk;
900 	list->qlen++;
901 }
902 
903 static inline void __skb_queue_splice(const struct sk_buff_head *list,
904 				      struct sk_buff *prev,
905 				      struct sk_buff *next)
906 {
907 	struct sk_buff *first = list->next;
908 	struct sk_buff *last = list->prev;
909 
910 	first->prev = prev;
911 	prev->next = first;
912 
913 	last->next = next;
914 	next->prev = last;
915 }
916 
917 /**
918  *	skb_queue_splice - join two skb lists, this is designed for stacks
919  *	@list: the new list to add
920  *	@head: the place to add it in the first list
921  */
922 static inline void skb_queue_splice(const struct sk_buff_head *list,
923 				    struct sk_buff_head *head)
924 {
925 	if (!skb_queue_empty(list)) {
926 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
927 		head->qlen += list->qlen;
928 	}
929 }
930 
931 /**
932  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
933  *	@list: the new list to add
934  *	@head: the place to add it in the first list
935  *
936  *	The list at @list is reinitialised
937  */
938 static inline void skb_queue_splice_init(struct sk_buff_head *list,
939 					 struct sk_buff_head *head)
940 {
941 	if (!skb_queue_empty(list)) {
942 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
943 		head->qlen += list->qlen;
944 		__skb_queue_head_init(list);
945 	}
946 }
947 
948 /**
949  *	skb_queue_splice_tail - join two skb lists, each list being a queue
950  *	@list: the new list to add
951  *	@head: the place to add it in the first list
952  */
953 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
954 					 struct sk_buff_head *head)
955 {
956 	if (!skb_queue_empty(list)) {
957 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
958 		head->qlen += list->qlen;
959 	}
960 }
961 
962 /**
963  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
964  *	@list: the new list to add
965  *	@head: the place to add it in the first list
966  *
967  *	Each of the lists is a queue.
968  *	The list at @list is reinitialised
969  */
970 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
971 					      struct sk_buff_head *head)
972 {
973 	if (!skb_queue_empty(list)) {
974 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
975 		head->qlen += list->qlen;
976 		__skb_queue_head_init(list);
977 	}
978 }
979 
980 /**
981  *	__skb_queue_after - queue a buffer at the list head
982  *	@list: list to use
983  *	@prev: place after this buffer
984  *	@newsk: buffer to queue
985  *
986  *	Queue a buffer int the middle of a list. This function takes no locks
987  *	and you must therefore hold required locks before calling it.
988  *
989  *	A buffer cannot be placed on two lists at the same time.
990  */
991 static inline void __skb_queue_after(struct sk_buff_head *list,
992 				     struct sk_buff *prev,
993 				     struct sk_buff *newsk)
994 {
995 	__skb_insert(newsk, prev, prev->next, list);
996 }
997 
998 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
999 		       struct sk_buff_head *list);
1000 
1001 static inline void __skb_queue_before(struct sk_buff_head *list,
1002 				      struct sk_buff *next,
1003 				      struct sk_buff *newsk)
1004 {
1005 	__skb_insert(newsk, next->prev, next, list);
1006 }
1007 
1008 /**
1009  *	__skb_queue_head - queue a buffer at the list head
1010  *	@list: list to use
1011  *	@newsk: buffer to queue
1012  *
1013  *	Queue a buffer at the start of a list. This function takes no locks
1014  *	and you must therefore hold required locks before calling it.
1015  *
1016  *	A buffer cannot be placed on two lists at the same time.
1017  */
1018 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1019 static inline void __skb_queue_head(struct sk_buff_head *list,
1020 				    struct sk_buff *newsk)
1021 {
1022 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1023 }
1024 
1025 /**
1026  *	__skb_queue_tail - queue a buffer at the list tail
1027  *	@list: list to use
1028  *	@newsk: buffer to queue
1029  *
1030  *	Queue a buffer at the end of a list. This function takes no locks
1031  *	and you must therefore hold required locks before calling it.
1032  *
1033  *	A buffer cannot be placed on two lists at the same time.
1034  */
1035 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1036 static inline void __skb_queue_tail(struct sk_buff_head *list,
1037 				   struct sk_buff *newsk)
1038 {
1039 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1040 }
1041 
1042 /*
1043  * remove sk_buff from list. _Must_ be called atomically, and with
1044  * the list known..
1045  */
1046 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1047 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1048 {
1049 	struct sk_buff *next, *prev;
1050 
1051 	list->qlen--;
1052 	next	   = skb->next;
1053 	prev	   = skb->prev;
1054 	skb->next  = skb->prev = NULL;
1055 	next->prev = prev;
1056 	prev->next = next;
1057 }
1058 
1059 /**
1060  *	__skb_dequeue - remove from the head of the queue
1061  *	@list: list to dequeue from
1062  *
1063  *	Remove the head of the list. This function does not take any locks
1064  *	so must be used with appropriate locks held only. The head item is
1065  *	returned or %NULL if the list is empty.
1066  */
1067 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1068 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1069 {
1070 	struct sk_buff *skb = skb_peek(list);
1071 	if (skb)
1072 		__skb_unlink(skb, list);
1073 	return skb;
1074 }
1075 
1076 /**
1077  *	__skb_dequeue_tail - remove from the tail of the queue
1078  *	@list: list to dequeue from
1079  *
1080  *	Remove the tail of the list. This function does not take any locks
1081  *	so must be used with appropriate locks held only. The tail item is
1082  *	returned or %NULL if the list is empty.
1083  */
1084 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1085 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1086 {
1087 	struct sk_buff *skb = skb_peek_tail(list);
1088 	if (skb)
1089 		__skb_unlink(skb, list);
1090 	return skb;
1091 }
1092 
1093 
1094 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1095 {
1096 	return skb->data_len;
1097 }
1098 
1099 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1100 {
1101 	return skb->len - skb->data_len;
1102 }
1103 
1104 static inline int skb_pagelen(const struct sk_buff *skb)
1105 {
1106 	int i, len = 0;
1107 
1108 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1109 		len += skb_shinfo(skb)->frags[i].size;
1110 	return len + skb_headlen(skb);
1111 }
1112 
1113 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1114 				      struct page *page, int off, int size)
1115 {
1116 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1117 
1118 	frag->page		  = page;
1119 	frag->page_offset	  = off;
1120 	frag->size		  = size;
1121 	skb_shinfo(skb)->nr_frags = i + 1;
1122 }
1123 
1124 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1125 			    int off, int size);
1126 
1127 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1128 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1129 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1130 
1131 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1132 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1133 {
1134 	return skb->head + skb->tail;
1135 }
1136 
1137 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1138 {
1139 	skb->tail = skb->data - skb->head;
1140 }
1141 
1142 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1143 {
1144 	skb_reset_tail_pointer(skb);
1145 	skb->tail += offset;
1146 }
1147 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1148 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1149 {
1150 	return skb->tail;
1151 }
1152 
1153 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1154 {
1155 	skb->tail = skb->data;
1156 }
1157 
1158 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1159 {
1160 	skb->tail = skb->data + offset;
1161 }
1162 
1163 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1164 
1165 /*
1166  *	Add data to an sk_buff
1167  */
1168 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1169 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1170 {
1171 	unsigned char *tmp = skb_tail_pointer(skb);
1172 	SKB_LINEAR_ASSERT(skb);
1173 	skb->tail += len;
1174 	skb->len  += len;
1175 	return tmp;
1176 }
1177 
1178 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1179 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1180 {
1181 	skb->data -= len;
1182 	skb->len  += len;
1183 	return skb->data;
1184 }
1185 
1186 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1187 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1188 {
1189 	skb->len -= len;
1190 	BUG_ON(skb->len < skb->data_len);
1191 	return skb->data += len;
1192 }
1193 
1194 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1195 {
1196 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1197 }
1198 
1199 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1200 
1201 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1202 {
1203 	if (len > skb_headlen(skb) &&
1204 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1205 		return NULL;
1206 	skb->len -= len;
1207 	return skb->data += len;
1208 }
1209 
1210 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1211 {
1212 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1213 }
1214 
1215 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1216 {
1217 	if (likely(len <= skb_headlen(skb)))
1218 		return 1;
1219 	if (unlikely(len > skb->len))
1220 		return 0;
1221 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1222 }
1223 
1224 /**
1225  *	skb_headroom - bytes at buffer head
1226  *	@skb: buffer to check
1227  *
1228  *	Return the number of bytes of free space at the head of an &sk_buff.
1229  */
1230 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1231 {
1232 	return skb->data - skb->head;
1233 }
1234 
1235 /**
1236  *	skb_tailroom - bytes at buffer end
1237  *	@skb: buffer to check
1238  *
1239  *	Return the number of bytes of free space at the tail of an sk_buff
1240  */
1241 static inline int skb_tailroom(const struct sk_buff *skb)
1242 {
1243 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1244 }
1245 
1246 /**
1247  *	skb_reserve - adjust headroom
1248  *	@skb: buffer to alter
1249  *	@len: bytes to move
1250  *
1251  *	Increase the headroom of an empty &sk_buff by reducing the tail
1252  *	room. This is only allowed for an empty buffer.
1253  */
1254 static inline void skb_reserve(struct sk_buff *skb, int len)
1255 {
1256 	skb->data += len;
1257 	skb->tail += len;
1258 }
1259 
1260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1261 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1262 {
1263 	return skb->head + skb->transport_header;
1264 }
1265 
1266 static inline void skb_reset_transport_header(struct sk_buff *skb)
1267 {
1268 	skb->transport_header = skb->data - skb->head;
1269 }
1270 
1271 static inline void skb_set_transport_header(struct sk_buff *skb,
1272 					    const int offset)
1273 {
1274 	skb_reset_transport_header(skb);
1275 	skb->transport_header += offset;
1276 }
1277 
1278 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1279 {
1280 	return skb->head + skb->network_header;
1281 }
1282 
1283 static inline void skb_reset_network_header(struct sk_buff *skb)
1284 {
1285 	skb->network_header = skb->data - skb->head;
1286 }
1287 
1288 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1289 {
1290 	skb_reset_network_header(skb);
1291 	skb->network_header += offset;
1292 }
1293 
1294 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1295 {
1296 	return skb->head + skb->mac_header;
1297 }
1298 
1299 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1300 {
1301 	return skb->mac_header != ~0U;
1302 }
1303 
1304 static inline void skb_reset_mac_header(struct sk_buff *skb)
1305 {
1306 	skb->mac_header = skb->data - skb->head;
1307 }
1308 
1309 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1310 {
1311 	skb_reset_mac_header(skb);
1312 	skb->mac_header += offset;
1313 }
1314 
1315 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1316 
1317 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1318 {
1319 	return skb->transport_header;
1320 }
1321 
1322 static inline void skb_reset_transport_header(struct sk_buff *skb)
1323 {
1324 	skb->transport_header = skb->data;
1325 }
1326 
1327 static inline void skb_set_transport_header(struct sk_buff *skb,
1328 					    const int offset)
1329 {
1330 	skb->transport_header = skb->data + offset;
1331 }
1332 
1333 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1334 {
1335 	return skb->network_header;
1336 }
1337 
1338 static inline void skb_reset_network_header(struct sk_buff *skb)
1339 {
1340 	skb->network_header = skb->data;
1341 }
1342 
1343 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1344 {
1345 	skb->network_header = skb->data + offset;
1346 }
1347 
1348 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1349 {
1350 	return skb->mac_header;
1351 }
1352 
1353 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1354 {
1355 	return skb->mac_header != NULL;
1356 }
1357 
1358 static inline void skb_reset_mac_header(struct sk_buff *skb)
1359 {
1360 	skb->mac_header = skb->data;
1361 }
1362 
1363 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1364 {
1365 	skb->mac_header = skb->data + offset;
1366 }
1367 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1368 
1369 static inline int skb_transport_offset(const struct sk_buff *skb)
1370 {
1371 	return skb_transport_header(skb) - skb->data;
1372 }
1373 
1374 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1375 {
1376 	return skb->transport_header - skb->network_header;
1377 }
1378 
1379 static inline int skb_network_offset(const struct sk_buff *skb)
1380 {
1381 	return skb_network_header(skb) - skb->data;
1382 }
1383 
1384 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1385 {
1386 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1387 }
1388 
1389 /*
1390  * CPUs often take a performance hit when accessing unaligned memory
1391  * locations. The actual performance hit varies, it can be small if the
1392  * hardware handles it or large if we have to take an exception and fix it
1393  * in software.
1394  *
1395  * Since an ethernet header is 14 bytes network drivers often end up with
1396  * the IP header at an unaligned offset. The IP header can be aligned by
1397  * shifting the start of the packet by 2 bytes. Drivers should do this
1398  * with:
1399  *
1400  * skb_reserve(skb, NET_IP_ALIGN);
1401  *
1402  * The downside to this alignment of the IP header is that the DMA is now
1403  * unaligned. On some architectures the cost of an unaligned DMA is high
1404  * and this cost outweighs the gains made by aligning the IP header.
1405  *
1406  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1407  * to be overridden.
1408  */
1409 #ifndef NET_IP_ALIGN
1410 #define NET_IP_ALIGN	2
1411 #endif
1412 
1413 /*
1414  * The networking layer reserves some headroom in skb data (via
1415  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1416  * the header has to grow. In the default case, if the header has to grow
1417  * 32 bytes or less we avoid the reallocation.
1418  *
1419  * Unfortunately this headroom changes the DMA alignment of the resulting
1420  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1421  * on some architectures. An architecture can override this value,
1422  * perhaps setting it to a cacheline in size (since that will maintain
1423  * cacheline alignment of the DMA). It must be a power of 2.
1424  *
1425  * Various parts of the networking layer expect at least 32 bytes of
1426  * headroom, you should not reduce this.
1427  *
1428  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1429  * to reduce average number of cache lines per packet.
1430  * get_rps_cpus() for example only access one 64 bytes aligned block :
1431  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1432  */
1433 #ifndef NET_SKB_PAD
1434 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1435 #endif
1436 
1437 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1438 
1439 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1440 {
1441 	if (unlikely(skb->data_len)) {
1442 		WARN_ON(1);
1443 		return;
1444 	}
1445 	skb->len = len;
1446 	skb_set_tail_pointer(skb, len);
1447 }
1448 
1449 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1450 
1451 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1452 {
1453 	if (skb->data_len)
1454 		return ___pskb_trim(skb, len);
1455 	__skb_trim(skb, len);
1456 	return 0;
1457 }
1458 
1459 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1460 {
1461 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1462 }
1463 
1464 /**
1465  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1466  *	@skb: buffer to alter
1467  *	@len: new length
1468  *
1469  *	This is identical to pskb_trim except that the caller knows that
1470  *	the skb is not cloned so we should never get an error due to out-
1471  *	of-memory.
1472  */
1473 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1474 {
1475 	int err = pskb_trim(skb, len);
1476 	BUG_ON(err);
1477 }
1478 
1479 /**
1480  *	skb_orphan - orphan a buffer
1481  *	@skb: buffer to orphan
1482  *
1483  *	If a buffer currently has an owner then we call the owner's
1484  *	destructor function and make the @skb unowned. The buffer continues
1485  *	to exist but is no longer charged to its former owner.
1486  */
1487 static inline void skb_orphan(struct sk_buff *skb)
1488 {
1489 	if (skb->destructor)
1490 		skb->destructor(skb);
1491 	skb->destructor = NULL;
1492 	skb->sk		= NULL;
1493 }
1494 
1495 /**
1496  *	__skb_queue_purge - empty a list
1497  *	@list: list to empty
1498  *
1499  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1500  *	the list and one reference dropped. This function does not take the
1501  *	list lock and the caller must hold the relevant locks to use it.
1502  */
1503 extern void skb_queue_purge(struct sk_buff_head *list);
1504 static inline void __skb_queue_purge(struct sk_buff_head *list)
1505 {
1506 	struct sk_buff *skb;
1507 	while ((skb = __skb_dequeue(list)) != NULL)
1508 		kfree_skb(skb);
1509 }
1510 
1511 /**
1512  *	__dev_alloc_skb - allocate an skbuff for receiving
1513  *	@length: length to allocate
1514  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1515  *
1516  *	Allocate a new &sk_buff and assign it a usage count of one. The
1517  *	buffer has unspecified headroom built in. Users should allocate
1518  *	the headroom they think they need without accounting for the
1519  *	built in space. The built in space is used for optimisations.
1520  *
1521  *	%NULL is returned if there is no free memory.
1522  */
1523 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1524 					      gfp_t gfp_mask)
1525 {
1526 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1527 	if (likely(skb))
1528 		skb_reserve(skb, NET_SKB_PAD);
1529 	return skb;
1530 }
1531 
1532 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1533 
1534 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1535 		unsigned int length, gfp_t gfp_mask);
1536 
1537 /**
1538  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1539  *	@dev: network device to receive on
1540  *	@length: length to allocate
1541  *
1542  *	Allocate a new &sk_buff and assign it a usage count of one. The
1543  *	buffer has unspecified headroom built in. Users should allocate
1544  *	the headroom they think they need without accounting for the
1545  *	built in space. The built in space is used for optimisations.
1546  *
1547  *	%NULL is returned if there is no free memory. Although this function
1548  *	allocates memory it can be called from an interrupt.
1549  */
1550 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1551 		unsigned int length)
1552 {
1553 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1554 }
1555 
1556 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1557 		unsigned int length)
1558 {
1559 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1560 
1561 	if (NET_IP_ALIGN && skb)
1562 		skb_reserve(skb, NET_IP_ALIGN);
1563 	return skb;
1564 }
1565 
1566 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1567 
1568 /**
1569  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1570  *	@dev: network device to receive on
1571  *
1572  * 	Allocate a new page node local to the specified device.
1573  *
1574  * 	%NULL is returned if there is no free memory.
1575  */
1576 static inline struct page *netdev_alloc_page(struct net_device *dev)
1577 {
1578 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1579 }
1580 
1581 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1582 {
1583 	__free_page(page);
1584 }
1585 
1586 /**
1587  *	skb_clone_writable - is the header of a clone writable
1588  *	@skb: buffer to check
1589  *	@len: length up to which to write
1590  *
1591  *	Returns true if modifying the header part of the cloned buffer
1592  *	does not requires the data to be copied.
1593  */
1594 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1595 {
1596 	return !skb_header_cloned(skb) &&
1597 	       skb_headroom(skb) + len <= skb->hdr_len;
1598 }
1599 
1600 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1601 			    int cloned)
1602 {
1603 	int delta = 0;
1604 
1605 	if (headroom < NET_SKB_PAD)
1606 		headroom = NET_SKB_PAD;
1607 	if (headroom > skb_headroom(skb))
1608 		delta = headroom - skb_headroom(skb);
1609 
1610 	if (delta || cloned)
1611 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1612 					GFP_ATOMIC);
1613 	return 0;
1614 }
1615 
1616 /**
1617  *	skb_cow - copy header of skb when it is required
1618  *	@skb: buffer to cow
1619  *	@headroom: needed headroom
1620  *
1621  *	If the skb passed lacks sufficient headroom or its data part
1622  *	is shared, data is reallocated. If reallocation fails, an error
1623  *	is returned and original skb is not changed.
1624  *
1625  *	The result is skb with writable area skb->head...skb->tail
1626  *	and at least @headroom of space at head.
1627  */
1628 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1629 {
1630 	return __skb_cow(skb, headroom, skb_cloned(skb));
1631 }
1632 
1633 /**
1634  *	skb_cow_head - skb_cow but only making the head writable
1635  *	@skb: buffer to cow
1636  *	@headroom: needed headroom
1637  *
1638  *	This function is identical to skb_cow except that we replace the
1639  *	skb_cloned check by skb_header_cloned.  It should be used when
1640  *	you only need to push on some header and do not need to modify
1641  *	the data.
1642  */
1643 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1644 {
1645 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1646 }
1647 
1648 /**
1649  *	skb_padto	- pad an skbuff up to a minimal size
1650  *	@skb: buffer to pad
1651  *	@len: minimal length
1652  *
1653  *	Pads up a buffer to ensure the trailing bytes exist and are
1654  *	blanked. If the buffer already contains sufficient data it
1655  *	is untouched. Otherwise it is extended. Returns zero on
1656  *	success. The skb is freed on error.
1657  */
1658 
1659 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1660 {
1661 	unsigned int size = skb->len;
1662 	if (likely(size >= len))
1663 		return 0;
1664 	return skb_pad(skb, len - size);
1665 }
1666 
1667 static inline int skb_add_data(struct sk_buff *skb,
1668 			       char __user *from, int copy)
1669 {
1670 	const int off = skb->len;
1671 
1672 	if (skb->ip_summed == CHECKSUM_NONE) {
1673 		int err = 0;
1674 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1675 							    copy, 0, &err);
1676 		if (!err) {
1677 			skb->csum = csum_block_add(skb->csum, csum, off);
1678 			return 0;
1679 		}
1680 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1681 		return 0;
1682 
1683 	__skb_trim(skb, off);
1684 	return -EFAULT;
1685 }
1686 
1687 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1688 				   struct page *page, int off)
1689 {
1690 	if (i) {
1691 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1692 
1693 		return page == frag->page &&
1694 		       off == frag->page_offset + frag->size;
1695 	}
1696 	return 0;
1697 }
1698 
1699 static inline int __skb_linearize(struct sk_buff *skb)
1700 {
1701 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1702 }
1703 
1704 /**
1705  *	skb_linearize - convert paged skb to linear one
1706  *	@skb: buffer to linarize
1707  *
1708  *	If there is no free memory -ENOMEM is returned, otherwise zero
1709  *	is returned and the old skb data released.
1710  */
1711 static inline int skb_linearize(struct sk_buff *skb)
1712 {
1713 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1714 }
1715 
1716 /**
1717  *	skb_linearize_cow - make sure skb is linear and writable
1718  *	@skb: buffer to process
1719  *
1720  *	If there is no free memory -ENOMEM is returned, otherwise zero
1721  *	is returned and the old skb data released.
1722  */
1723 static inline int skb_linearize_cow(struct sk_buff *skb)
1724 {
1725 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1726 	       __skb_linearize(skb) : 0;
1727 }
1728 
1729 /**
1730  *	skb_postpull_rcsum - update checksum for received skb after pull
1731  *	@skb: buffer to update
1732  *	@start: start of data before pull
1733  *	@len: length of data pulled
1734  *
1735  *	After doing a pull on a received packet, you need to call this to
1736  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1737  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1738  */
1739 
1740 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1741 				      const void *start, unsigned int len)
1742 {
1743 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1744 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1745 }
1746 
1747 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1748 
1749 /**
1750  *	pskb_trim_rcsum - trim received skb and update checksum
1751  *	@skb: buffer to trim
1752  *	@len: new length
1753  *
1754  *	This is exactly the same as pskb_trim except that it ensures the
1755  *	checksum of received packets are still valid after the operation.
1756  */
1757 
1758 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1759 {
1760 	if (likely(len >= skb->len))
1761 		return 0;
1762 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1763 		skb->ip_summed = CHECKSUM_NONE;
1764 	return __pskb_trim(skb, len);
1765 }
1766 
1767 #define skb_queue_walk(queue, skb) \
1768 		for (skb = (queue)->next;					\
1769 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1770 		     skb = skb->next)
1771 
1772 #define skb_queue_walk_safe(queue, skb, tmp)					\
1773 		for (skb = (queue)->next, tmp = skb->next;			\
1774 		     skb != (struct sk_buff *)(queue);				\
1775 		     skb = tmp, tmp = skb->next)
1776 
1777 #define skb_queue_walk_from(queue, skb)						\
1778 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1779 		     skb = skb->next)
1780 
1781 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1782 		for (tmp = skb->next;						\
1783 		     skb != (struct sk_buff *)(queue);				\
1784 		     skb = tmp, tmp = skb->next)
1785 
1786 #define skb_queue_reverse_walk(queue, skb) \
1787 		for (skb = (queue)->prev;					\
1788 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1789 		     skb = skb->prev)
1790 
1791 
1792 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1793 {
1794 	return skb_shinfo(skb)->frag_list != NULL;
1795 }
1796 
1797 static inline void skb_frag_list_init(struct sk_buff *skb)
1798 {
1799 	skb_shinfo(skb)->frag_list = NULL;
1800 }
1801 
1802 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1803 {
1804 	frag->next = skb_shinfo(skb)->frag_list;
1805 	skb_shinfo(skb)->frag_list = frag;
1806 }
1807 
1808 #define skb_walk_frags(skb, iter)	\
1809 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1810 
1811 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1812 					   int *peeked, int *err);
1813 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1814 					 int noblock, int *err);
1815 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1816 				     struct poll_table_struct *wait);
1817 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1818 					       int offset, struct iovec *to,
1819 					       int size);
1820 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1821 							int hlen,
1822 							struct iovec *iov);
1823 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1824 						    int offset,
1825 						    const struct iovec *from,
1826 						    int from_offset,
1827 						    int len);
1828 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1829 						     int offset,
1830 						     const struct iovec *to,
1831 						     int to_offset,
1832 						     int size);
1833 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1834 extern void	       skb_free_datagram_locked(struct sock *sk,
1835 						struct sk_buff *skb);
1836 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1837 					 unsigned int flags);
1838 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1839 				    int len, __wsum csum);
1840 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1841 				     void *to, int len);
1842 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1843 				      const void *from, int len);
1844 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1845 					      int offset, u8 *to, int len,
1846 					      __wsum csum);
1847 extern int             skb_splice_bits(struct sk_buff *skb,
1848 						unsigned int offset,
1849 						struct pipe_inode_info *pipe,
1850 						unsigned int len,
1851 						unsigned int flags);
1852 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1853 extern void	       skb_split(struct sk_buff *skb,
1854 				 struct sk_buff *skb1, const u32 len);
1855 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1856 				 int shiftlen);
1857 
1858 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1859 
1860 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1861 				       int len, void *buffer)
1862 {
1863 	int hlen = skb_headlen(skb);
1864 
1865 	if (hlen - offset >= len)
1866 		return skb->data + offset;
1867 
1868 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1869 		return NULL;
1870 
1871 	return buffer;
1872 }
1873 
1874 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1875 					     void *to,
1876 					     const unsigned int len)
1877 {
1878 	memcpy(to, skb->data, len);
1879 }
1880 
1881 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1882 						    const int offset, void *to,
1883 						    const unsigned int len)
1884 {
1885 	memcpy(to, skb->data + offset, len);
1886 }
1887 
1888 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1889 					   const void *from,
1890 					   const unsigned int len)
1891 {
1892 	memcpy(skb->data, from, len);
1893 }
1894 
1895 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1896 						  const int offset,
1897 						  const void *from,
1898 						  const unsigned int len)
1899 {
1900 	memcpy(skb->data + offset, from, len);
1901 }
1902 
1903 extern void skb_init(void);
1904 
1905 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1906 {
1907 	return skb->tstamp;
1908 }
1909 
1910 /**
1911  *	skb_get_timestamp - get timestamp from a skb
1912  *	@skb: skb to get stamp from
1913  *	@stamp: pointer to struct timeval to store stamp in
1914  *
1915  *	Timestamps are stored in the skb as offsets to a base timestamp.
1916  *	This function converts the offset back to a struct timeval and stores
1917  *	it in stamp.
1918  */
1919 static inline void skb_get_timestamp(const struct sk_buff *skb,
1920 				     struct timeval *stamp)
1921 {
1922 	*stamp = ktime_to_timeval(skb->tstamp);
1923 }
1924 
1925 static inline void skb_get_timestampns(const struct sk_buff *skb,
1926 				       struct timespec *stamp)
1927 {
1928 	*stamp = ktime_to_timespec(skb->tstamp);
1929 }
1930 
1931 static inline void __net_timestamp(struct sk_buff *skb)
1932 {
1933 	skb->tstamp = ktime_get_real();
1934 }
1935 
1936 static inline ktime_t net_timedelta(ktime_t t)
1937 {
1938 	return ktime_sub(ktime_get_real(), t);
1939 }
1940 
1941 static inline ktime_t net_invalid_timestamp(void)
1942 {
1943 	return ktime_set(0, 0);
1944 }
1945 
1946 extern void skb_timestamping_init(void);
1947 
1948 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1949 
1950 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1951 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1952 
1953 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1954 
1955 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1956 {
1957 }
1958 
1959 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1960 {
1961 	return false;
1962 }
1963 
1964 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1965 
1966 /**
1967  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1968  *
1969  * @skb: clone of the the original outgoing packet
1970  * @hwtstamps: hardware time stamps
1971  *
1972  */
1973 void skb_complete_tx_timestamp(struct sk_buff *skb,
1974 			       struct skb_shared_hwtstamps *hwtstamps);
1975 
1976 /**
1977  * skb_tstamp_tx - queue clone of skb with send time stamps
1978  * @orig_skb:	the original outgoing packet
1979  * @hwtstamps:	hardware time stamps, may be NULL if not available
1980  *
1981  * If the skb has a socket associated, then this function clones the
1982  * skb (thus sharing the actual data and optional structures), stores
1983  * the optional hardware time stamping information (if non NULL) or
1984  * generates a software time stamp (otherwise), then queues the clone
1985  * to the error queue of the socket.  Errors are silently ignored.
1986  */
1987 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1988 			struct skb_shared_hwtstamps *hwtstamps);
1989 
1990 static inline void sw_tx_timestamp(struct sk_buff *skb)
1991 {
1992 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
1993 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
1994 		skb_tstamp_tx(skb, NULL);
1995 }
1996 
1997 /**
1998  * skb_tx_timestamp() - Driver hook for transmit timestamping
1999  *
2000  * Ethernet MAC Drivers should call this function in their hard_xmit()
2001  * function as soon as possible after giving the sk_buff to the MAC
2002  * hardware, but before freeing the sk_buff.
2003  *
2004  * @skb: A socket buffer.
2005  */
2006 static inline void skb_tx_timestamp(struct sk_buff *skb)
2007 {
2008 	skb_clone_tx_timestamp(skb);
2009 	sw_tx_timestamp(skb);
2010 }
2011 
2012 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2013 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2014 
2015 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2016 {
2017 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2018 }
2019 
2020 /**
2021  *	skb_checksum_complete - Calculate checksum of an entire packet
2022  *	@skb: packet to process
2023  *
2024  *	This function calculates the checksum over the entire packet plus
2025  *	the value of skb->csum.  The latter can be used to supply the
2026  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2027  *	checksum.
2028  *
2029  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2030  *	this function can be used to verify that checksum on received
2031  *	packets.  In that case the function should return zero if the
2032  *	checksum is correct.  In particular, this function will return zero
2033  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2034  *	hardware has already verified the correctness of the checksum.
2035  */
2036 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2037 {
2038 	return skb_csum_unnecessary(skb) ?
2039 	       0 : __skb_checksum_complete(skb);
2040 }
2041 
2042 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2043 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2044 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2045 {
2046 	if (nfct && atomic_dec_and_test(&nfct->use))
2047 		nf_conntrack_destroy(nfct);
2048 }
2049 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2050 {
2051 	if (nfct)
2052 		atomic_inc(&nfct->use);
2053 }
2054 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2055 {
2056 	if (skb)
2057 		atomic_inc(&skb->users);
2058 }
2059 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2060 {
2061 	if (skb)
2062 		kfree_skb(skb);
2063 }
2064 #endif
2065 #ifdef CONFIG_BRIDGE_NETFILTER
2066 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2067 {
2068 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2069 		kfree(nf_bridge);
2070 }
2071 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2072 {
2073 	if (nf_bridge)
2074 		atomic_inc(&nf_bridge->use);
2075 }
2076 #endif /* CONFIG_BRIDGE_NETFILTER */
2077 static inline void nf_reset(struct sk_buff *skb)
2078 {
2079 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2080 	nf_conntrack_put(skb->nfct);
2081 	skb->nfct = NULL;
2082 	nf_conntrack_put_reasm(skb->nfct_reasm);
2083 	skb->nfct_reasm = NULL;
2084 #endif
2085 #ifdef CONFIG_BRIDGE_NETFILTER
2086 	nf_bridge_put(skb->nf_bridge);
2087 	skb->nf_bridge = NULL;
2088 #endif
2089 }
2090 
2091 /* Note: This doesn't put any conntrack and bridge info in dst. */
2092 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2093 {
2094 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2095 	dst->nfct = src->nfct;
2096 	nf_conntrack_get(src->nfct);
2097 	dst->nfctinfo = src->nfctinfo;
2098 	dst->nfct_reasm = src->nfct_reasm;
2099 	nf_conntrack_get_reasm(src->nfct_reasm);
2100 #endif
2101 #ifdef CONFIG_BRIDGE_NETFILTER
2102 	dst->nf_bridge  = src->nf_bridge;
2103 	nf_bridge_get(src->nf_bridge);
2104 #endif
2105 }
2106 
2107 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2108 {
2109 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2110 	nf_conntrack_put(dst->nfct);
2111 	nf_conntrack_put_reasm(dst->nfct_reasm);
2112 #endif
2113 #ifdef CONFIG_BRIDGE_NETFILTER
2114 	nf_bridge_put(dst->nf_bridge);
2115 #endif
2116 	__nf_copy(dst, src);
2117 }
2118 
2119 #ifdef CONFIG_NETWORK_SECMARK
2120 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2121 {
2122 	to->secmark = from->secmark;
2123 }
2124 
2125 static inline void skb_init_secmark(struct sk_buff *skb)
2126 {
2127 	skb->secmark = 0;
2128 }
2129 #else
2130 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2131 { }
2132 
2133 static inline void skb_init_secmark(struct sk_buff *skb)
2134 { }
2135 #endif
2136 
2137 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2138 {
2139 	skb->queue_mapping = queue_mapping;
2140 }
2141 
2142 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2143 {
2144 	return skb->queue_mapping;
2145 }
2146 
2147 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2148 {
2149 	to->queue_mapping = from->queue_mapping;
2150 }
2151 
2152 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2153 {
2154 	skb->queue_mapping = rx_queue + 1;
2155 }
2156 
2157 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2158 {
2159 	return skb->queue_mapping - 1;
2160 }
2161 
2162 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2163 {
2164 	return skb->queue_mapping != 0;
2165 }
2166 
2167 extern u16 skb_tx_hash(const struct net_device *dev,
2168 		       const struct sk_buff *skb);
2169 
2170 #ifdef CONFIG_XFRM
2171 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2172 {
2173 	return skb->sp;
2174 }
2175 #else
2176 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2177 {
2178 	return NULL;
2179 }
2180 #endif
2181 
2182 static inline int skb_is_gso(const struct sk_buff *skb)
2183 {
2184 	return skb_shinfo(skb)->gso_size;
2185 }
2186 
2187 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2188 {
2189 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2190 }
2191 
2192 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2193 
2194 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2195 {
2196 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2197 	 * wanted then gso_type will be set. */
2198 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2199 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2200 	    unlikely(shinfo->gso_type == 0)) {
2201 		__skb_warn_lro_forwarding(skb);
2202 		return true;
2203 	}
2204 	return false;
2205 }
2206 
2207 static inline void skb_forward_csum(struct sk_buff *skb)
2208 {
2209 	/* Unfortunately we don't support this one.  Any brave souls? */
2210 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2211 		skb->ip_summed = CHECKSUM_NONE;
2212 }
2213 
2214 /**
2215  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2216  * @skb: skb to check
2217  *
2218  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2219  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2220  * use this helper, to document places where we make this assertion.
2221  */
2222 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2223 {
2224 #ifdef DEBUG
2225 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2226 #endif
2227 }
2228 
2229 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2230 #endif	/* __KERNEL__ */
2231 #endif	/* _LINUX_SKBUFF_H */
2232