1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 struct bpf_prog; 247 union bpf_attr; 248 249 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 250 struct nf_conntrack { 251 atomic_t use; 252 }; 253 #endif 254 255 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 256 struct nf_bridge_info { 257 refcount_t use; 258 enum { 259 BRNF_PROTO_UNCHANGED, 260 BRNF_PROTO_8021Q, 261 BRNF_PROTO_PPPOE 262 } orig_proto:8; 263 u8 pkt_otherhost:1; 264 u8 in_prerouting:1; 265 u8 bridged_dnat:1; 266 __u16 frag_max_size; 267 struct net_device *physindev; 268 269 /* always valid & non-NULL from FORWARD on, for physdev match */ 270 struct net_device *physoutdev; 271 union { 272 /* prerouting: detect dnat in orig/reply direction */ 273 __be32 ipv4_daddr; 274 struct in6_addr ipv6_daddr; 275 276 /* after prerouting + nat detected: store original source 277 * mac since neigh resolution overwrites it, only used while 278 * skb is out in neigh layer. 279 */ 280 char neigh_header[8]; 281 }; 282 }; 283 #endif 284 285 struct sk_buff_head { 286 /* These two members must be first. */ 287 struct sk_buff *next; 288 struct sk_buff *prev; 289 290 __u32 qlen; 291 spinlock_t lock; 292 }; 293 294 struct sk_buff; 295 296 /* To allow 64K frame to be packed as single skb without frag_list we 297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 298 * buffers which do not start on a page boundary. 299 * 300 * Since GRO uses frags we allocate at least 16 regardless of page 301 * size. 302 */ 303 #if (65536/PAGE_SIZE + 1) < 16 304 #define MAX_SKB_FRAGS 16UL 305 #else 306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 307 #endif 308 extern int sysctl_max_skb_frags; 309 310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 311 * segment using its current segmentation instead. 312 */ 313 #define GSO_BY_FRAGS 0xFFFF 314 315 typedef struct skb_frag_struct skb_frag_t; 316 317 struct skb_frag_struct { 318 struct { 319 struct page *p; 320 } page; 321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 322 __u32 page_offset; 323 __u32 size; 324 #else 325 __u16 page_offset; 326 __u16 size; 327 #endif 328 }; 329 330 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 331 { 332 return frag->size; 333 } 334 335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 336 { 337 frag->size = size; 338 } 339 340 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 341 { 342 frag->size += delta; 343 } 344 345 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 346 { 347 frag->size -= delta; 348 } 349 350 static inline bool skb_frag_must_loop(struct page *p) 351 { 352 #if defined(CONFIG_HIGHMEM) 353 if (PageHighMem(p)) 354 return true; 355 #endif 356 return false; 357 } 358 359 /** 360 * skb_frag_foreach_page - loop over pages in a fragment 361 * 362 * @f: skb frag to operate on 363 * @f_off: offset from start of f->page.p 364 * @f_len: length from f_off to loop over 365 * @p: (temp var) current page 366 * @p_off: (temp var) offset from start of current page, 367 * non-zero only on first page. 368 * @p_len: (temp var) length in current page, 369 * < PAGE_SIZE only on first and last page. 370 * @copied: (temp var) length so far, excluding current p_len. 371 * 372 * A fragment can hold a compound page, in which case per-page 373 * operations, notably kmap_atomic, must be called for each 374 * regular page. 375 */ 376 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 378 p_off = (f_off) & (PAGE_SIZE - 1), \ 379 p_len = skb_frag_must_loop(p) ? \ 380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 381 copied = 0; \ 382 copied < f_len; \ 383 copied += p_len, p++, p_off = 0, \ 384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 385 386 #define HAVE_HW_TIME_STAMP 387 388 /** 389 * struct skb_shared_hwtstamps - hardware time stamps 390 * @hwtstamp: hardware time stamp transformed into duration 391 * since arbitrary point in time 392 * 393 * Software time stamps generated by ktime_get_real() are stored in 394 * skb->tstamp. 395 * 396 * hwtstamps can only be compared against other hwtstamps from 397 * the same device. 398 * 399 * This structure is attached to packets as part of the 400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 401 */ 402 struct skb_shared_hwtstamps { 403 ktime_t hwtstamp; 404 }; 405 406 /* Definitions for tx_flags in struct skb_shared_info */ 407 enum { 408 /* generate hardware time stamp */ 409 SKBTX_HW_TSTAMP = 1 << 0, 410 411 /* generate software time stamp when queueing packet to NIC */ 412 SKBTX_SW_TSTAMP = 1 << 1, 413 414 /* device driver is going to provide hardware time stamp */ 415 SKBTX_IN_PROGRESS = 1 << 2, 416 417 /* device driver supports TX zero-copy buffers */ 418 SKBTX_DEV_ZEROCOPY = 1 << 3, 419 420 /* generate wifi status information (where possible) */ 421 SKBTX_WIFI_STATUS = 1 << 4, 422 423 /* This indicates at least one fragment might be overwritten 424 * (as in vmsplice(), sendfile() ...) 425 * If we need to compute a TX checksum, we'll need to copy 426 * all frags to avoid possible bad checksum 427 */ 428 SKBTX_SHARED_FRAG = 1 << 5, 429 430 /* generate software time stamp when entering packet scheduling */ 431 SKBTX_SCHED_TSTAMP = 1 << 6, 432 }; 433 434 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 435 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 436 SKBTX_SCHED_TSTAMP) 437 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 438 439 /* 440 * The callback notifies userspace to release buffers when skb DMA is done in 441 * lower device, the skb last reference should be 0 when calling this. 442 * The zerocopy_success argument is true if zero copy transmit occurred, 443 * false on data copy or out of memory error caused by data copy attempt. 444 * The ctx field is used to track device context. 445 * The desc field is used to track userspace buffer index. 446 */ 447 struct ubuf_info { 448 void (*callback)(struct ubuf_info *, bool zerocopy_success); 449 union { 450 struct { 451 unsigned long desc; 452 void *ctx; 453 }; 454 struct { 455 u32 id; 456 u16 len; 457 u16 zerocopy:1; 458 u32 bytelen; 459 }; 460 }; 461 refcount_t refcnt; 462 463 struct mmpin { 464 struct user_struct *user; 465 unsigned int num_pg; 466 } mmp; 467 }; 468 469 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 470 471 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 472 void mm_unaccount_pinned_pages(struct mmpin *mmp); 473 474 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 475 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 476 struct ubuf_info *uarg); 477 478 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 479 { 480 refcount_inc(&uarg->refcnt); 481 } 482 483 void sock_zerocopy_put(struct ubuf_info *uarg); 484 void sock_zerocopy_put_abort(struct ubuf_info *uarg); 485 486 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 487 488 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 489 struct msghdr *msg, int len, 490 struct ubuf_info *uarg); 491 492 /* This data is invariant across clones and lives at 493 * the end of the header data, ie. at skb->end. 494 */ 495 struct skb_shared_info { 496 __u8 __unused; 497 __u8 meta_len; 498 __u8 nr_frags; 499 __u8 tx_flags; 500 unsigned short gso_size; 501 /* Warning: this field is not always filled in (UFO)! */ 502 unsigned short gso_segs; 503 struct sk_buff *frag_list; 504 struct skb_shared_hwtstamps hwtstamps; 505 unsigned int gso_type; 506 u32 tskey; 507 508 /* 509 * Warning : all fields before dataref are cleared in __alloc_skb() 510 */ 511 atomic_t dataref; 512 513 /* Intermediate layers must ensure that destructor_arg 514 * remains valid until skb destructor */ 515 void * destructor_arg; 516 517 /* must be last field, see pskb_expand_head() */ 518 skb_frag_t frags[MAX_SKB_FRAGS]; 519 }; 520 521 /* We divide dataref into two halves. The higher 16 bits hold references 522 * to the payload part of skb->data. The lower 16 bits hold references to 523 * the entire skb->data. A clone of a headerless skb holds the length of 524 * the header in skb->hdr_len. 525 * 526 * All users must obey the rule that the skb->data reference count must be 527 * greater than or equal to the payload reference count. 528 * 529 * Holding a reference to the payload part means that the user does not 530 * care about modifications to the header part of skb->data. 531 */ 532 #define SKB_DATAREF_SHIFT 16 533 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 534 535 536 enum { 537 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 538 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 539 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 540 }; 541 542 enum { 543 SKB_GSO_TCPV4 = 1 << 0, 544 545 /* This indicates the skb is from an untrusted source. */ 546 SKB_GSO_DODGY = 1 << 1, 547 548 /* This indicates the tcp segment has CWR set. */ 549 SKB_GSO_TCP_ECN = 1 << 2, 550 551 SKB_GSO_TCP_FIXEDID = 1 << 3, 552 553 SKB_GSO_TCPV6 = 1 << 4, 554 555 SKB_GSO_FCOE = 1 << 5, 556 557 SKB_GSO_GRE = 1 << 6, 558 559 SKB_GSO_GRE_CSUM = 1 << 7, 560 561 SKB_GSO_IPXIP4 = 1 << 8, 562 563 SKB_GSO_IPXIP6 = 1 << 9, 564 565 SKB_GSO_UDP_TUNNEL = 1 << 10, 566 567 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 568 569 SKB_GSO_PARTIAL = 1 << 12, 570 571 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 572 573 SKB_GSO_SCTP = 1 << 14, 574 575 SKB_GSO_ESP = 1 << 15, 576 577 SKB_GSO_UDP = 1 << 16, 578 579 SKB_GSO_UDP_L4 = 1 << 17, 580 }; 581 582 #if BITS_PER_LONG > 32 583 #define NET_SKBUFF_DATA_USES_OFFSET 1 584 #endif 585 586 #ifdef NET_SKBUFF_DATA_USES_OFFSET 587 typedef unsigned int sk_buff_data_t; 588 #else 589 typedef unsigned char *sk_buff_data_t; 590 #endif 591 592 /** 593 * struct sk_buff - socket buffer 594 * @next: Next buffer in list 595 * @prev: Previous buffer in list 596 * @tstamp: Time we arrived/left 597 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 598 * @sk: Socket we are owned by 599 * @dev: Device we arrived on/are leaving by 600 * @cb: Control buffer. Free for use by every layer. Put private vars here 601 * @_skb_refdst: destination entry (with norefcount bit) 602 * @sp: the security path, used for xfrm 603 * @len: Length of actual data 604 * @data_len: Data length 605 * @mac_len: Length of link layer header 606 * @hdr_len: writable header length of cloned skb 607 * @csum: Checksum (must include start/offset pair) 608 * @csum_start: Offset from skb->head where checksumming should start 609 * @csum_offset: Offset from csum_start where checksum should be stored 610 * @priority: Packet queueing priority 611 * @ignore_df: allow local fragmentation 612 * @cloned: Head may be cloned (check refcnt to be sure) 613 * @ip_summed: Driver fed us an IP checksum 614 * @nohdr: Payload reference only, must not modify header 615 * @pkt_type: Packet class 616 * @fclone: skbuff clone status 617 * @ipvs_property: skbuff is owned by ipvs 618 * @tc_skip_classify: do not classify packet. set by IFB device 619 * @tc_at_ingress: used within tc_classify to distinguish in/egress 620 * @tc_redirected: packet was redirected by a tc action 621 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 622 * @peeked: this packet has been seen already, so stats have been 623 * done for it, don't do them again 624 * @nf_trace: netfilter packet trace flag 625 * @protocol: Packet protocol from driver 626 * @destructor: Destruct function 627 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 628 * @_nfct: Associated connection, if any (with nfctinfo bits) 629 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 630 * @skb_iif: ifindex of device we arrived on 631 * @tc_index: Traffic control index 632 * @hash: the packet hash 633 * @queue_mapping: Queue mapping for multiqueue devices 634 * @xmit_more: More SKBs are pending for this queue 635 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 636 * @ndisc_nodetype: router type (from link layer) 637 * @ooo_okay: allow the mapping of a socket to a queue to be changed 638 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 639 * ports. 640 * @sw_hash: indicates hash was computed in software stack 641 * @wifi_acked_valid: wifi_acked was set 642 * @wifi_acked: whether frame was acked on wifi or not 643 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 644 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 645 * @dst_pending_confirm: need to confirm neighbour 646 * @decrypted: Decrypted SKB 647 * @napi_id: id of the NAPI struct this skb came from 648 * @secmark: security marking 649 * @mark: Generic packet mark 650 * @vlan_proto: vlan encapsulation protocol 651 * @vlan_tci: vlan tag control information 652 * @inner_protocol: Protocol (encapsulation) 653 * @inner_transport_header: Inner transport layer header (encapsulation) 654 * @inner_network_header: Network layer header (encapsulation) 655 * @inner_mac_header: Link layer header (encapsulation) 656 * @transport_header: Transport layer header 657 * @network_header: Network layer header 658 * @mac_header: Link layer header 659 * @tail: Tail pointer 660 * @end: End pointer 661 * @head: Head of buffer 662 * @data: Data head pointer 663 * @truesize: Buffer size 664 * @users: User count - see {datagram,tcp}.c 665 */ 666 667 struct sk_buff { 668 union { 669 struct { 670 /* These two members must be first. */ 671 struct sk_buff *next; 672 struct sk_buff *prev; 673 674 union { 675 struct net_device *dev; 676 /* Some protocols might use this space to store information, 677 * while device pointer would be NULL. 678 * UDP receive path is one user. 679 */ 680 unsigned long dev_scratch; 681 }; 682 }; 683 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 684 struct list_head list; 685 }; 686 687 union { 688 struct sock *sk; 689 int ip_defrag_offset; 690 }; 691 692 union { 693 ktime_t tstamp; 694 u64 skb_mstamp_ns; /* earliest departure time */ 695 }; 696 /* 697 * This is the control buffer. It is free to use for every 698 * layer. Please put your private variables there. If you 699 * want to keep them across layers you have to do a skb_clone() 700 * first. This is owned by whoever has the skb queued ATM. 701 */ 702 char cb[48] __aligned(8); 703 704 union { 705 struct { 706 unsigned long _skb_refdst; 707 void (*destructor)(struct sk_buff *skb); 708 }; 709 struct list_head tcp_tsorted_anchor; 710 }; 711 712 #ifdef CONFIG_XFRM 713 struct sec_path *sp; 714 #endif 715 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 716 unsigned long _nfct; 717 #endif 718 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 719 struct nf_bridge_info *nf_bridge; 720 #endif 721 unsigned int len, 722 data_len; 723 __u16 mac_len, 724 hdr_len; 725 726 /* Following fields are _not_ copied in __copy_skb_header() 727 * Note that queue_mapping is here mostly to fill a hole. 728 */ 729 __u16 queue_mapping; 730 731 /* if you move cloned around you also must adapt those constants */ 732 #ifdef __BIG_ENDIAN_BITFIELD 733 #define CLONED_MASK (1 << 7) 734 #else 735 #define CLONED_MASK 1 736 #endif 737 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 738 739 __u8 __cloned_offset[0]; 740 __u8 cloned:1, 741 nohdr:1, 742 fclone:2, 743 peeked:1, 744 head_frag:1, 745 xmit_more:1, 746 pfmemalloc:1; 747 748 /* fields enclosed in headers_start/headers_end are copied 749 * using a single memcpy() in __copy_skb_header() 750 */ 751 /* private: */ 752 __u32 headers_start[0]; 753 /* public: */ 754 755 /* if you move pkt_type around you also must adapt those constants */ 756 #ifdef __BIG_ENDIAN_BITFIELD 757 #define PKT_TYPE_MAX (7 << 5) 758 #else 759 #define PKT_TYPE_MAX 7 760 #endif 761 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 762 763 __u8 __pkt_type_offset[0]; 764 __u8 pkt_type:3; 765 __u8 ignore_df:1; 766 __u8 nf_trace:1; 767 __u8 ip_summed:2; 768 __u8 ooo_okay:1; 769 770 __u8 l4_hash:1; 771 __u8 sw_hash:1; 772 __u8 wifi_acked_valid:1; 773 __u8 wifi_acked:1; 774 __u8 no_fcs:1; 775 /* Indicates the inner headers are valid in the skbuff. */ 776 __u8 encapsulation:1; 777 __u8 encap_hdr_csum:1; 778 __u8 csum_valid:1; 779 780 __u8 csum_complete_sw:1; 781 __u8 csum_level:2; 782 __u8 csum_not_inet:1; 783 __u8 dst_pending_confirm:1; 784 #ifdef CONFIG_IPV6_NDISC_NODETYPE 785 __u8 ndisc_nodetype:2; 786 #endif 787 __u8 ipvs_property:1; 788 789 __u8 inner_protocol_type:1; 790 __u8 remcsum_offload:1; 791 #ifdef CONFIG_NET_SWITCHDEV 792 __u8 offload_fwd_mark:1; 793 __u8 offload_mr_fwd_mark:1; 794 #endif 795 #ifdef CONFIG_NET_CLS_ACT 796 __u8 tc_skip_classify:1; 797 __u8 tc_at_ingress:1; 798 __u8 tc_redirected:1; 799 __u8 tc_from_ingress:1; 800 #endif 801 #ifdef CONFIG_TLS_DEVICE 802 __u8 decrypted:1; 803 #endif 804 805 #ifdef CONFIG_NET_SCHED 806 __u16 tc_index; /* traffic control index */ 807 #endif 808 809 union { 810 __wsum csum; 811 struct { 812 __u16 csum_start; 813 __u16 csum_offset; 814 }; 815 }; 816 __u32 priority; 817 int skb_iif; 818 __u32 hash; 819 __be16 vlan_proto; 820 __u16 vlan_tci; 821 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 822 union { 823 unsigned int napi_id; 824 unsigned int sender_cpu; 825 }; 826 #endif 827 #ifdef CONFIG_NETWORK_SECMARK 828 __u32 secmark; 829 #endif 830 831 union { 832 __u32 mark; 833 __u32 reserved_tailroom; 834 }; 835 836 union { 837 __be16 inner_protocol; 838 __u8 inner_ipproto; 839 }; 840 841 __u16 inner_transport_header; 842 __u16 inner_network_header; 843 __u16 inner_mac_header; 844 845 __be16 protocol; 846 __u16 transport_header; 847 __u16 network_header; 848 __u16 mac_header; 849 850 /* private: */ 851 __u32 headers_end[0]; 852 /* public: */ 853 854 /* These elements must be at the end, see alloc_skb() for details. */ 855 sk_buff_data_t tail; 856 sk_buff_data_t end; 857 unsigned char *head, 858 *data; 859 unsigned int truesize; 860 refcount_t users; 861 }; 862 863 #ifdef __KERNEL__ 864 /* 865 * Handling routines are only of interest to the kernel 866 */ 867 868 #define SKB_ALLOC_FCLONE 0x01 869 #define SKB_ALLOC_RX 0x02 870 #define SKB_ALLOC_NAPI 0x04 871 872 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 873 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 874 { 875 return unlikely(skb->pfmemalloc); 876 } 877 878 /* 879 * skb might have a dst pointer attached, refcounted or not. 880 * _skb_refdst low order bit is set if refcount was _not_ taken 881 */ 882 #define SKB_DST_NOREF 1UL 883 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 884 885 #define SKB_NFCT_PTRMASK ~(7UL) 886 /** 887 * skb_dst - returns skb dst_entry 888 * @skb: buffer 889 * 890 * Returns skb dst_entry, regardless of reference taken or not. 891 */ 892 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 893 { 894 /* If refdst was not refcounted, check we still are in a 895 * rcu_read_lock section 896 */ 897 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 898 !rcu_read_lock_held() && 899 !rcu_read_lock_bh_held()); 900 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 901 } 902 903 /** 904 * skb_dst_set - sets skb dst 905 * @skb: buffer 906 * @dst: dst entry 907 * 908 * Sets skb dst, assuming a reference was taken on dst and should 909 * be released by skb_dst_drop() 910 */ 911 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 912 { 913 skb->_skb_refdst = (unsigned long)dst; 914 } 915 916 /** 917 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 918 * @skb: buffer 919 * @dst: dst entry 920 * 921 * Sets skb dst, assuming a reference was not taken on dst. 922 * If dst entry is cached, we do not take reference and dst_release 923 * will be avoided by refdst_drop. If dst entry is not cached, we take 924 * reference, so that last dst_release can destroy the dst immediately. 925 */ 926 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 927 { 928 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 929 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 930 } 931 932 /** 933 * skb_dst_is_noref - Test if skb dst isn't refcounted 934 * @skb: buffer 935 */ 936 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 937 { 938 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 939 } 940 941 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 942 { 943 return (struct rtable *)skb_dst(skb); 944 } 945 946 /* For mangling skb->pkt_type from user space side from applications 947 * such as nft, tc, etc, we only allow a conservative subset of 948 * possible pkt_types to be set. 949 */ 950 static inline bool skb_pkt_type_ok(u32 ptype) 951 { 952 return ptype <= PACKET_OTHERHOST; 953 } 954 955 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 956 { 957 #ifdef CONFIG_NET_RX_BUSY_POLL 958 return skb->napi_id; 959 #else 960 return 0; 961 #endif 962 } 963 964 /* decrement the reference count and return true if we can free the skb */ 965 static inline bool skb_unref(struct sk_buff *skb) 966 { 967 if (unlikely(!skb)) 968 return false; 969 if (likely(refcount_read(&skb->users) == 1)) 970 smp_rmb(); 971 else if (likely(!refcount_dec_and_test(&skb->users))) 972 return false; 973 974 return true; 975 } 976 977 void skb_release_head_state(struct sk_buff *skb); 978 void kfree_skb(struct sk_buff *skb); 979 void kfree_skb_list(struct sk_buff *segs); 980 void skb_tx_error(struct sk_buff *skb); 981 void consume_skb(struct sk_buff *skb); 982 void __consume_stateless_skb(struct sk_buff *skb); 983 void __kfree_skb(struct sk_buff *skb); 984 extern struct kmem_cache *skbuff_head_cache; 985 986 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 987 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 988 bool *fragstolen, int *delta_truesize); 989 990 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 991 int node); 992 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 993 struct sk_buff *build_skb(void *data, unsigned int frag_size); 994 static inline struct sk_buff *alloc_skb(unsigned int size, 995 gfp_t priority) 996 { 997 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 998 } 999 1000 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1001 unsigned long data_len, 1002 int max_page_order, 1003 int *errcode, 1004 gfp_t gfp_mask); 1005 1006 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1007 struct sk_buff_fclones { 1008 struct sk_buff skb1; 1009 1010 struct sk_buff skb2; 1011 1012 refcount_t fclone_ref; 1013 }; 1014 1015 /** 1016 * skb_fclone_busy - check if fclone is busy 1017 * @sk: socket 1018 * @skb: buffer 1019 * 1020 * Returns true if skb is a fast clone, and its clone is not freed. 1021 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1022 * so we also check that this didnt happen. 1023 */ 1024 static inline bool skb_fclone_busy(const struct sock *sk, 1025 const struct sk_buff *skb) 1026 { 1027 const struct sk_buff_fclones *fclones; 1028 1029 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1030 1031 return skb->fclone == SKB_FCLONE_ORIG && 1032 refcount_read(&fclones->fclone_ref) > 1 && 1033 fclones->skb2.sk == sk; 1034 } 1035 1036 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1037 gfp_t priority) 1038 { 1039 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1040 } 1041 1042 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1043 void skb_headers_offset_update(struct sk_buff *skb, int off); 1044 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1045 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1046 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1047 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1048 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1049 gfp_t gfp_mask, bool fclone); 1050 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1051 gfp_t gfp_mask) 1052 { 1053 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1054 } 1055 1056 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1057 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1058 unsigned int headroom); 1059 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1060 int newtailroom, gfp_t priority); 1061 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1062 int offset, int len); 1063 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1064 int offset, int len); 1065 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1066 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1067 1068 /** 1069 * skb_pad - zero pad the tail of an skb 1070 * @skb: buffer to pad 1071 * @pad: space to pad 1072 * 1073 * Ensure that a buffer is followed by a padding area that is zero 1074 * filled. Used by network drivers which may DMA or transfer data 1075 * beyond the buffer end onto the wire. 1076 * 1077 * May return error in out of memory cases. The skb is freed on error. 1078 */ 1079 static inline int skb_pad(struct sk_buff *skb, int pad) 1080 { 1081 return __skb_pad(skb, pad, true); 1082 } 1083 #define dev_kfree_skb(a) consume_skb(a) 1084 1085 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1086 int offset, size_t size); 1087 1088 struct skb_seq_state { 1089 __u32 lower_offset; 1090 __u32 upper_offset; 1091 __u32 frag_idx; 1092 __u32 stepped_offset; 1093 struct sk_buff *root_skb; 1094 struct sk_buff *cur_skb; 1095 __u8 *frag_data; 1096 }; 1097 1098 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1099 unsigned int to, struct skb_seq_state *st); 1100 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1101 struct skb_seq_state *st); 1102 void skb_abort_seq_read(struct skb_seq_state *st); 1103 1104 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1105 unsigned int to, struct ts_config *config); 1106 1107 /* 1108 * Packet hash types specify the type of hash in skb_set_hash. 1109 * 1110 * Hash types refer to the protocol layer addresses which are used to 1111 * construct a packet's hash. The hashes are used to differentiate or identify 1112 * flows of the protocol layer for the hash type. Hash types are either 1113 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1114 * 1115 * Properties of hashes: 1116 * 1117 * 1) Two packets in different flows have different hash values 1118 * 2) Two packets in the same flow should have the same hash value 1119 * 1120 * A hash at a higher layer is considered to be more specific. A driver should 1121 * set the most specific hash possible. 1122 * 1123 * A driver cannot indicate a more specific hash than the layer at which a hash 1124 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1125 * 1126 * A driver may indicate a hash level which is less specific than the 1127 * actual layer the hash was computed on. For instance, a hash computed 1128 * at L4 may be considered an L3 hash. This should only be done if the 1129 * driver can't unambiguously determine that the HW computed the hash at 1130 * the higher layer. Note that the "should" in the second property above 1131 * permits this. 1132 */ 1133 enum pkt_hash_types { 1134 PKT_HASH_TYPE_NONE, /* Undefined type */ 1135 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1136 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1137 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1138 }; 1139 1140 static inline void skb_clear_hash(struct sk_buff *skb) 1141 { 1142 skb->hash = 0; 1143 skb->sw_hash = 0; 1144 skb->l4_hash = 0; 1145 } 1146 1147 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1148 { 1149 if (!skb->l4_hash) 1150 skb_clear_hash(skb); 1151 } 1152 1153 static inline void 1154 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1155 { 1156 skb->l4_hash = is_l4; 1157 skb->sw_hash = is_sw; 1158 skb->hash = hash; 1159 } 1160 1161 static inline void 1162 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1163 { 1164 /* Used by drivers to set hash from HW */ 1165 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1166 } 1167 1168 static inline void 1169 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1170 { 1171 __skb_set_hash(skb, hash, true, is_l4); 1172 } 1173 1174 void __skb_get_hash(struct sk_buff *skb); 1175 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1176 u32 skb_get_poff(const struct sk_buff *skb); 1177 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1178 const struct flow_keys_basic *keys, int hlen); 1179 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1180 void *data, int hlen_proto); 1181 1182 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1183 int thoff, u8 ip_proto) 1184 { 1185 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1186 } 1187 1188 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1189 const struct flow_dissector_key *key, 1190 unsigned int key_count); 1191 1192 #ifdef CONFIG_NET 1193 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1194 struct bpf_prog *prog); 1195 1196 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1197 #else 1198 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1199 struct bpf_prog *prog) 1200 { 1201 return -EOPNOTSUPP; 1202 } 1203 1204 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1205 { 1206 return -EOPNOTSUPP; 1207 } 1208 #endif 1209 1210 bool __skb_flow_dissect(const struct sk_buff *skb, 1211 struct flow_dissector *flow_dissector, 1212 void *target_container, 1213 void *data, __be16 proto, int nhoff, int hlen, 1214 unsigned int flags); 1215 1216 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1217 struct flow_dissector *flow_dissector, 1218 void *target_container, unsigned int flags) 1219 { 1220 return __skb_flow_dissect(skb, flow_dissector, target_container, 1221 NULL, 0, 0, 0, flags); 1222 } 1223 1224 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1225 struct flow_keys *flow, 1226 unsigned int flags) 1227 { 1228 memset(flow, 0, sizeof(*flow)); 1229 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1230 NULL, 0, 0, 0, flags); 1231 } 1232 1233 static inline bool 1234 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb, 1235 struct flow_keys_basic *flow, void *data, 1236 __be16 proto, int nhoff, int hlen, 1237 unsigned int flags) 1238 { 1239 memset(flow, 0, sizeof(*flow)); 1240 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow, 1241 data, proto, nhoff, hlen, flags); 1242 } 1243 1244 void 1245 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1246 struct flow_dissector *flow_dissector, 1247 void *target_container); 1248 1249 static inline __u32 skb_get_hash(struct sk_buff *skb) 1250 { 1251 if (!skb->l4_hash && !skb->sw_hash) 1252 __skb_get_hash(skb); 1253 1254 return skb->hash; 1255 } 1256 1257 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1258 { 1259 if (!skb->l4_hash && !skb->sw_hash) { 1260 struct flow_keys keys; 1261 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1262 1263 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1264 } 1265 1266 return skb->hash; 1267 } 1268 1269 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1270 1271 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1272 { 1273 return skb->hash; 1274 } 1275 1276 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1277 { 1278 to->hash = from->hash; 1279 to->sw_hash = from->sw_hash; 1280 to->l4_hash = from->l4_hash; 1281 }; 1282 1283 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1284 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1285 { 1286 return skb->head + skb->end; 1287 } 1288 1289 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1290 { 1291 return skb->end; 1292 } 1293 #else 1294 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1295 { 1296 return skb->end; 1297 } 1298 1299 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1300 { 1301 return skb->end - skb->head; 1302 } 1303 #endif 1304 1305 /* Internal */ 1306 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1307 1308 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1309 { 1310 return &skb_shinfo(skb)->hwtstamps; 1311 } 1312 1313 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1314 { 1315 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1316 1317 return is_zcopy ? skb_uarg(skb) : NULL; 1318 } 1319 1320 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg) 1321 { 1322 if (skb && uarg && !skb_zcopy(skb)) { 1323 sock_zerocopy_get(uarg); 1324 skb_shinfo(skb)->destructor_arg = uarg; 1325 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1326 } 1327 } 1328 1329 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1330 { 1331 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1332 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1333 } 1334 1335 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1336 { 1337 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1338 } 1339 1340 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1341 { 1342 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1343 } 1344 1345 /* Release a reference on a zerocopy structure */ 1346 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1347 { 1348 struct ubuf_info *uarg = skb_zcopy(skb); 1349 1350 if (uarg) { 1351 if (uarg->callback == sock_zerocopy_callback) { 1352 uarg->zerocopy = uarg->zerocopy && zerocopy; 1353 sock_zerocopy_put(uarg); 1354 } else if (!skb_zcopy_is_nouarg(skb)) { 1355 uarg->callback(uarg, zerocopy); 1356 } 1357 1358 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1359 } 1360 } 1361 1362 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1363 static inline void skb_zcopy_abort(struct sk_buff *skb) 1364 { 1365 struct ubuf_info *uarg = skb_zcopy(skb); 1366 1367 if (uarg) { 1368 sock_zerocopy_put_abort(uarg); 1369 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1370 } 1371 } 1372 1373 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1374 { 1375 skb->next = NULL; 1376 } 1377 1378 static inline void skb_list_del_init(struct sk_buff *skb) 1379 { 1380 __list_del_entry(&skb->list); 1381 skb_mark_not_on_list(skb); 1382 } 1383 1384 /** 1385 * skb_queue_empty - check if a queue is empty 1386 * @list: queue head 1387 * 1388 * Returns true if the queue is empty, false otherwise. 1389 */ 1390 static inline int skb_queue_empty(const struct sk_buff_head *list) 1391 { 1392 return list->next == (const struct sk_buff *) list; 1393 } 1394 1395 /** 1396 * skb_queue_is_last - check if skb is the last entry in the queue 1397 * @list: queue head 1398 * @skb: buffer 1399 * 1400 * Returns true if @skb is the last buffer on the list. 1401 */ 1402 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1403 const struct sk_buff *skb) 1404 { 1405 return skb->next == (const struct sk_buff *) list; 1406 } 1407 1408 /** 1409 * skb_queue_is_first - check if skb is the first entry in the queue 1410 * @list: queue head 1411 * @skb: buffer 1412 * 1413 * Returns true if @skb is the first buffer on the list. 1414 */ 1415 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1416 const struct sk_buff *skb) 1417 { 1418 return skb->prev == (const struct sk_buff *) list; 1419 } 1420 1421 /** 1422 * skb_queue_next - return the next packet in the queue 1423 * @list: queue head 1424 * @skb: current buffer 1425 * 1426 * Return the next packet in @list after @skb. It is only valid to 1427 * call this if skb_queue_is_last() evaluates to false. 1428 */ 1429 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1430 const struct sk_buff *skb) 1431 { 1432 /* This BUG_ON may seem severe, but if we just return then we 1433 * are going to dereference garbage. 1434 */ 1435 BUG_ON(skb_queue_is_last(list, skb)); 1436 return skb->next; 1437 } 1438 1439 /** 1440 * skb_queue_prev - return the prev packet in the queue 1441 * @list: queue head 1442 * @skb: current buffer 1443 * 1444 * Return the prev packet in @list before @skb. It is only valid to 1445 * call this if skb_queue_is_first() evaluates to false. 1446 */ 1447 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1448 const struct sk_buff *skb) 1449 { 1450 /* This BUG_ON may seem severe, but if we just return then we 1451 * are going to dereference garbage. 1452 */ 1453 BUG_ON(skb_queue_is_first(list, skb)); 1454 return skb->prev; 1455 } 1456 1457 /** 1458 * skb_get - reference buffer 1459 * @skb: buffer to reference 1460 * 1461 * Makes another reference to a socket buffer and returns a pointer 1462 * to the buffer. 1463 */ 1464 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1465 { 1466 refcount_inc(&skb->users); 1467 return skb; 1468 } 1469 1470 /* 1471 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1472 */ 1473 1474 /** 1475 * skb_cloned - is the buffer a clone 1476 * @skb: buffer to check 1477 * 1478 * Returns true if the buffer was generated with skb_clone() and is 1479 * one of multiple shared copies of the buffer. Cloned buffers are 1480 * shared data so must not be written to under normal circumstances. 1481 */ 1482 static inline int skb_cloned(const struct sk_buff *skb) 1483 { 1484 return skb->cloned && 1485 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1486 } 1487 1488 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1489 { 1490 might_sleep_if(gfpflags_allow_blocking(pri)); 1491 1492 if (skb_cloned(skb)) 1493 return pskb_expand_head(skb, 0, 0, pri); 1494 1495 return 0; 1496 } 1497 1498 /** 1499 * skb_header_cloned - is the header a clone 1500 * @skb: buffer to check 1501 * 1502 * Returns true if modifying the header part of the buffer requires 1503 * the data to be copied. 1504 */ 1505 static inline int skb_header_cloned(const struct sk_buff *skb) 1506 { 1507 int dataref; 1508 1509 if (!skb->cloned) 1510 return 0; 1511 1512 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1513 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1514 return dataref != 1; 1515 } 1516 1517 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1518 { 1519 might_sleep_if(gfpflags_allow_blocking(pri)); 1520 1521 if (skb_header_cloned(skb)) 1522 return pskb_expand_head(skb, 0, 0, pri); 1523 1524 return 0; 1525 } 1526 1527 /** 1528 * __skb_header_release - release reference to header 1529 * @skb: buffer to operate on 1530 */ 1531 static inline void __skb_header_release(struct sk_buff *skb) 1532 { 1533 skb->nohdr = 1; 1534 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1535 } 1536 1537 1538 /** 1539 * skb_shared - is the buffer shared 1540 * @skb: buffer to check 1541 * 1542 * Returns true if more than one person has a reference to this 1543 * buffer. 1544 */ 1545 static inline int skb_shared(const struct sk_buff *skb) 1546 { 1547 return refcount_read(&skb->users) != 1; 1548 } 1549 1550 /** 1551 * skb_share_check - check if buffer is shared and if so clone it 1552 * @skb: buffer to check 1553 * @pri: priority for memory allocation 1554 * 1555 * If the buffer is shared the buffer is cloned and the old copy 1556 * drops a reference. A new clone with a single reference is returned. 1557 * If the buffer is not shared the original buffer is returned. When 1558 * being called from interrupt status or with spinlocks held pri must 1559 * be GFP_ATOMIC. 1560 * 1561 * NULL is returned on a memory allocation failure. 1562 */ 1563 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1564 { 1565 might_sleep_if(gfpflags_allow_blocking(pri)); 1566 if (skb_shared(skb)) { 1567 struct sk_buff *nskb = skb_clone(skb, pri); 1568 1569 if (likely(nskb)) 1570 consume_skb(skb); 1571 else 1572 kfree_skb(skb); 1573 skb = nskb; 1574 } 1575 return skb; 1576 } 1577 1578 /* 1579 * Copy shared buffers into a new sk_buff. We effectively do COW on 1580 * packets to handle cases where we have a local reader and forward 1581 * and a couple of other messy ones. The normal one is tcpdumping 1582 * a packet thats being forwarded. 1583 */ 1584 1585 /** 1586 * skb_unshare - make a copy of a shared buffer 1587 * @skb: buffer to check 1588 * @pri: priority for memory allocation 1589 * 1590 * If the socket buffer is a clone then this function creates a new 1591 * copy of the data, drops a reference count on the old copy and returns 1592 * the new copy with the reference count at 1. If the buffer is not a clone 1593 * the original buffer is returned. When called with a spinlock held or 1594 * from interrupt state @pri must be %GFP_ATOMIC 1595 * 1596 * %NULL is returned on a memory allocation failure. 1597 */ 1598 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1599 gfp_t pri) 1600 { 1601 might_sleep_if(gfpflags_allow_blocking(pri)); 1602 if (skb_cloned(skb)) { 1603 struct sk_buff *nskb = skb_copy(skb, pri); 1604 1605 /* Free our shared copy */ 1606 if (likely(nskb)) 1607 consume_skb(skb); 1608 else 1609 kfree_skb(skb); 1610 skb = nskb; 1611 } 1612 return skb; 1613 } 1614 1615 /** 1616 * skb_peek - peek at the head of an &sk_buff_head 1617 * @list_: list to peek at 1618 * 1619 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1620 * be careful with this one. A peek leaves the buffer on the 1621 * list and someone else may run off with it. You must hold 1622 * the appropriate locks or have a private queue to do this. 1623 * 1624 * Returns %NULL for an empty list or a pointer to the head element. 1625 * The reference count is not incremented and the reference is therefore 1626 * volatile. Use with caution. 1627 */ 1628 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1629 { 1630 struct sk_buff *skb = list_->next; 1631 1632 if (skb == (struct sk_buff *)list_) 1633 skb = NULL; 1634 return skb; 1635 } 1636 1637 /** 1638 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1639 * @list_: list to peek at 1640 * 1641 * Like skb_peek(), but the caller knows that the list is not empty. 1642 */ 1643 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1644 { 1645 return list_->next; 1646 } 1647 1648 /** 1649 * skb_peek_next - peek skb following the given one from a queue 1650 * @skb: skb to start from 1651 * @list_: list to peek at 1652 * 1653 * Returns %NULL when the end of the list is met or a pointer to the 1654 * next element. The reference count is not incremented and the 1655 * reference is therefore volatile. Use with caution. 1656 */ 1657 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1658 const struct sk_buff_head *list_) 1659 { 1660 struct sk_buff *next = skb->next; 1661 1662 if (next == (struct sk_buff *)list_) 1663 next = NULL; 1664 return next; 1665 } 1666 1667 /** 1668 * skb_peek_tail - peek at the tail of an &sk_buff_head 1669 * @list_: list to peek at 1670 * 1671 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1672 * be careful with this one. A peek leaves the buffer on the 1673 * list and someone else may run off with it. You must hold 1674 * the appropriate locks or have a private queue to do this. 1675 * 1676 * Returns %NULL for an empty list or a pointer to the tail element. 1677 * The reference count is not incremented and the reference is therefore 1678 * volatile. Use with caution. 1679 */ 1680 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1681 { 1682 struct sk_buff *skb = list_->prev; 1683 1684 if (skb == (struct sk_buff *)list_) 1685 skb = NULL; 1686 return skb; 1687 1688 } 1689 1690 /** 1691 * skb_queue_len - get queue length 1692 * @list_: list to measure 1693 * 1694 * Return the length of an &sk_buff queue. 1695 */ 1696 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1697 { 1698 return list_->qlen; 1699 } 1700 1701 /** 1702 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1703 * @list: queue to initialize 1704 * 1705 * This initializes only the list and queue length aspects of 1706 * an sk_buff_head object. This allows to initialize the list 1707 * aspects of an sk_buff_head without reinitializing things like 1708 * the spinlock. It can also be used for on-stack sk_buff_head 1709 * objects where the spinlock is known to not be used. 1710 */ 1711 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1712 { 1713 list->prev = list->next = (struct sk_buff *)list; 1714 list->qlen = 0; 1715 } 1716 1717 /* 1718 * This function creates a split out lock class for each invocation; 1719 * this is needed for now since a whole lot of users of the skb-queue 1720 * infrastructure in drivers have different locking usage (in hardirq) 1721 * than the networking core (in softirq only). In the long run either the 1722 * network layer or drivers should need annotation to consolidate the 1723 * main types of usage into 3 classes. 1724 */ 1725 static inline void skb_queue_head_init(struct sk_buff_head *list) 1726 { 1727 spin_lock_init(&list->lock); 1728 __skb_queue_head_init(list); 1729 } 1730 1731 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1732 struct lock_class_key *class) 1733 { 1734 skb_queue_head_init(list); 1735 lockdep_set_class(&list->lock, class); 1736 } 1737 1738 /* 1739 * Insert an sk_buff on a list. 1740 * 1741 * The "__skb_xxxx()" functions are the non-atomic ones that 1742 * can only be called with interrupts disabled. 1743 */ 1744 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1745 struct sk_buff_head *list); 1746 static inline void __skb_insert(struct sk_buff *newsk, 1747 struct sk_buff *prev, struct sk_buff *next, 1748 struct sk_buff_head *list) 1749 { 1750 newsk->next = next; 1751 newsk->prev = prev; 1752 next->prev = prev->next = newsk; 1753 list->qlen++; 1754 } 1755 1756 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1757 struct sk_buff *prev, 1758 struct sk_buff *next) 1759 { 1760 struct sk_buff *first = list->next; 1761 struct sk_buff *last = list->prev; 1762 1763 first->prev = prev; 1764 prev->next = first; 1765 1766 last->next = next; 1767 next->prev = last; 1768 } 1769 1770 /** 1771 * skb_queue_splice - join two skb lists, this is designed for stacks 1772 * @list: the new list to add 1773 * @head: the place to add it in the first list 1774 */ 1775 static inline void skb_queue_splice(const struct sk_buff_head *list, 1776 struct sk_buff_head *head) 1777 { 1778 if (!skb_queue_empty(list)) { 1779 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1780 head->qlen += list->qlen; 1781 } 1782 } 1783 1784 /** 1785 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1786 * @list: the new list to add 1787 * @head: the place to add it in the first list 1788 * 1789 * The list at @list is reinitialised 1790 */ 1791 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1792 struct sk_buff_head *head) 1793 { 1794 if (!skb_queue_empty(list)) { 1795 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1796 head->qlen += list->qlen; 1797 __skb_queue_head_init(list); 1798 } 1799 } 1800 1801 /** 1802 * skb_queue_splice_tail - join two skb lists, each list being a queue 1803 * @list: the new list to add 1804 * @head: the place to add it in the first list 1805 */ 1806 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1807 struct sk_buff_head *head) 1808 { 1809 if (!skb_queue_empty(list)) { 1810 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1811 head->qlen += list->qlen; 1812 } 1813 } 1814 1815 /** 1816 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1817 * @list: the new list to add 1818 * @head: the place to add it in the first list 1819 * 1820 * Each of the lists is a queue. 1821 * The list at @list is reinitialised 1822 */ 1823 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1824 struct sk_buff_head *head) 1825 { 1826 if (!skb_queue_empty(list)) { 1827 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1828 head->qlen += list->qlen; 1829 __skb_queue_head_init(list); 1830 } 1831 } 1832 1833 /** 1834 * __skb_queue_after - queue a buffer at the list head 1835 * @list: list to use 1836 * @prev: place after this buffer 1837 * @newsk: buffer to queue 1838 * 1839 * Queue a buffer int the middle of a list. This function takes no locks 1840 * and you must therefore hold required locks before calling it. 1841 * 1842 * A buffer cannot be placed on two lists at the same time. 1843 */ 1844 static inline void __skb_queue_after(struct sk_buff_head *list, 1845 struct sk_buff *prev, 1846 struct sk_buff *newsk) 1847 { 1848 __skb_insert(newsk, prev, prev->next, list); 1849 } 1850 1851 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1852 struct sk_buff_head *list); 1853 1854 static inline void __skb_queue_before(struct sk_buff_head *list, 1855 struct sk_buff *next, 1856 struct sk_buff *newsk) 1857 { 1858 __skb_insert(newsk, next->prev, next, list); 1859 } 1860 1861 /** 1862 * __skb_queue_head - queue a buffer at the list head 1863 * @list: list to use 1864 * @newsk: buffer to queue 1865 * 1866 * Queue a buffer at the start of a list. This function takes no locks 1867 * and you must therefore hold required locks before calling it. 1868 * 1869 * A buffer cannot be placed on two lists at the same time. 1870 */ 1871 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1872 static inline void __skb_queue_head(struct sk_buff_head *list, 1873 struct sk_buff *newsk) 1874 { 1875 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1876 } 1877 1878 /** 1879 * __skb_queue_tail - queue a buffer at the list tail 1880 * @list: list to use 1881 * @newsk: buffer to queue 1882 * 1883 * Queue a buffer at the end of a list. This function takes no locks 1884 * and you must therefore hold required locks before calling it. 1885 * 1886 * A buffer cannot be placed on two lists at the same time. 1887 */ 1888 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1889 static inline void __skb_queue_tail(struct sk_buff_head *list, 1890 struct sk_buff *newsk) 1891 { 1892 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1893 } 1894 1895 /* 1896 * remove sk_buff from list. _Must_ be called atomically, and with 1897 * the list known.. 1898 */ 1899 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1900 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1901 { 1902 struct sk_buff *next, *prev; 1903 1904 list->qlen--; 1905 next = skb->next; 1906 prev = skb->prev; 1907 skb->next = skb->prev = NULL; 1908 next->prev = prev; 1909 prev->next = next; 1910 } 1911 1912 /** 1913 * __skb_dequeue - remove from the head of the queue 1914 * @list: list to dequeue from 1915 * 1916 * Remove the head of the list. This function does not take any locks 1917 * so must be used with appropriate locks held only. The head item is 1918 * returned or %NULL if the list is empty. 1919 */ 1920 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1921 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1922 { 1923 struct sk_buff *skb = skb_peek(list); 1924 if (skb) 1925 __skb_unlink(skb, list); 1926 return skb; 1927 } 1928 1929 /** 1930 * __skb_dequeue_tail - remove from the tail of the queue 1931 * @list: list to dequeue from 1932 * 1933 * Remove the tail of the list. This function does not take any locks 1934 * so must be used with appropriate locks held only. The tail item is 1935 * returned or %NULL if the list is empty. 1936 */ 1937 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1938 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1939 { 1940 struct sk_buff *skb = skb_peek_tail(list); 1941 if (skb) 1942 __skb_unlink(skb, list); 1943 return skb; 1944 } 1945 1946 1947 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1948 { 1949 return skb->data_len; 1950 } 1951 1952 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1953 { 1954 return skb->len - skb->data_len; 1955 } 1956 1957 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 1958 { 1959 unsigned int i, len = 0; 1960 1961 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1962 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1963 return len; 1964 } 1965 1966 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1967 { 1968 return skb_headlen(skb) + __skb_pagelen(skb); 1969 } 1970 1971 /** 1972 * __skb_fill_page_desc - initialise a paged fragment in an skb 1973 * @skb: buffer containing fragment to be initialised 1974 * @i: paged fragment index to initialise 1975 * @page: the page to use for this fragment 1976 * @off: the offset to the data with @page 1977 * @size: the length of the data 1978 * 1979 * Initialises the @i'th fragment of @skb to point to &size bytes at 1980 * offset @off within @page. 1981 * 1982 * Does not take any additional reference on the fragment. 1983 */ 1984 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1985 struct page *page, int off, int size) 1986 { 1987 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1988 1989 /* 1990 * Propagate page pfmemalloc to the skb if we can. The problem is 1991 * that not all callers have unique ownership of the page but rely 1992 * on page_is_pfmemalloc doing the right thing(tm). 1993 */ 1994 frag->page.p = page; 1995 frag->page_offset = off; 1996 skb_frag_size_set(frag, size); 1997 1998 page = compound_head(page); 1999 if (page_is_pfmemalloc(page)) 2000 skb->pfmemalloc = true; 2001 } 2002 2003 /** 2004 * skb_fill_page_desc - initialise a paged fragment in an skb 2005 * @skb: buffer containing fragment to be initialised 2006 * @i: paged fragment index to initialise 2007 * @page: the page to use for this fragment 2008 * @off: the offset to the data with @page 2009 * @size: the length of the data 2010 * 2011 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2012 * @skb to point to @size bytes at offset @off within @page. In 2013 * addition updates @skb such that @i is the last fragment. 2014 * 2015 * Does not take any additional reference on the fragment. 2016 */ 2017 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2018 struct page *page, int off, int size) 2019 { 2020 __skb_fill_page_desc(skb, i, page, off, size); 2021 skb_shinfo(skb)->nr_frags = i + 1; 2022 } 2023 2024 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2025 int size, unsigned int truesize); 2026 2027 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2028 unsigned int truesize); 2029 2030 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 2031 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 2032 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2033 2034 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2035 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2036 { 2037 return skb->head + skb->tail; 2038 } 2039 2040 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2041 { 2042 skb->tail = skb->data - skb->head; 2043 } 2044 2045 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2046 { 2047 skb_reset_tail_pointer(skb); 2048 skb->tail += offset; 2049 } 2050 2051 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2052 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2053 { 2054 return skb->tail; 2055 } 2056 2057 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2058 { 2059 skb->tail = skb->data; 2060 } 2061 2062 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2063 { 2064 skb->tail = skb->data + offset; 2065 } 2066 2067 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2068 2069 /* 2070 * Add data to an sk_buff 2071 */ 2072 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2073 void *skb_put(struct sk_buff *skb, unsigned int len); 2074 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2075 { 2076 void *tmp = skb_tail_pointer(skb); 2077 SKB_LINEAR_ASSERT(skb); 2078 skb->tail += len; 2079 skb->len += len; 2080 return tmp; 2081 } 2082 2083 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2084 { 2085 void *tmp = __skb_put(skb, len); 2086 2087 memset(tmp, 0, len); 2088 return tmp; 2089 } 2090 2091 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2092 unsigned int len) 2093 { 2094 void *tmp = __skb_put(skb, len); 2095 2096 memcpy(tmp, data, len); 2097 return tmp; 2098 } 2099 2100 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2101 { 2102 *(u8 *)__skb_put(skb, 1) = val; 2103 } 2104 2105 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2106 { 2107 void *tmp = skb_put(skb, len); 2108 2109 memset(tmp, 0, len); 2110 2111 return tmp; 2112 } 2113 2114 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2115 unsigned int len) 2116 { 2117 void *tmp = skb_put(skb, len); 2118 2119 memcpy(tmp, data, len); 2120 2121 return tmp; 2122 } 2123 2124 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2125 { 2126 *(u8 *)skb_put(skb, 1) = val; 2127 } 2128 2129 void *skb_push(struct sk_buff *skb, unsigned int len); 2130 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2131 { 2132 skb->data -= len; 2133 skb->len += len; 2134 return skb->data; 2135 } 2136 2137 void *skb_pull(struct sk_buff *skb, unsigned int len); 2138 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2139 { 2140 skb->len -= len; 2141 BUG_ON(skb->len < skb->data_len); 2142 return skb->data += len; 2143 } 2144 2145 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2146 { 2147 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2148 } 2149 2150 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2151 2152 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2153 { 2154 if (len > skb_headlen(skb) && 2155 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2156 return NULL; 2157 skb->len -= len; 2158 return skb->data += len; 2159 } 2160 2161 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2162 { 2163 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2164 } 2165 2166 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2167 { 2168 if (likely(len <= skb_headlen(skb))) 2169 return 1; 2170 if (unlikely(len > skb->len)) 2171 return 0; 2172 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2173 } 2174 2175 void skb_condense(struct sk_buff *skb); 2176 2177 /** 2178 * skb_headroom - bytes at buffer head 2179 * @skb: buffer to check 2180 * 2181 * Return the number of bytes of free space at the head of an &sk_buff. 2182 */ 2183 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2184 { 2185 return skb->data - skb->head; 2186 } 2187 2188 /** 2189 * skb_tailroom - bytes at buffer end 2190 * @skb: buffer to check 2191 * 2192 * Return the number of bytes of free space at the tail of an sk_buff 2193 */ 2194 static inline int skb_tailroom(const struct sk_buff *skb) 2195 { 2196 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2197 } 2198 2199 /** 2200 * skb_availroom - bytes at buffer end 2201 * @skb: buffer to check 2202 * 2203 * Return the number of bytes of free space at the tail of an sk_buff 2204 * allocated by sk_stream_alloc() 2205 */ 2206 static inline int skb_availroom(const struct sk_buff *skb) 2207 { 2208 if (skb_is_nonlinear(skb)) 2209 return 0; 2210 2211 return skb->end - skb->tail - skb->reserved_tailroom; 2212 } 2213 2214 /** 2215 * skb_reserve - adjust headroom 2216 * @skb: buffer to alter 2217 * @len: bytes to move 2218 * 2219 * Increase the headroom of an empty &sk_buff by reducing the tail 2220 * room. This is only allowed for an empty buffer. 2221 */ 2222 static inline void skb_reserve(struct sk_buff *skb, int len) 2223 { 2224 skb->data += len; 2225 skb->tail += len; 2226 } 2227 2228 /** 2229 * skb_tailroom_reserve - adjust reserved_tailroom 2230 * @skb: buffer to alter 2231 * @mtu: maximum amount of headlen permitted 2232 * @needed_tailroom: minimum amount of reserved_tailroom 2233 * 2234 * Set reserved_tailroom so that headlen can be as large as possible but 2235 * not larger than mtu and tailroom cannot be smaller than 2236 * needed_tailroom. 2237 * The required headroom should already have been reserved before using 2238 * this function. 2239 */ 2240 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2241 unsigned int needed_tailroom) 2242 { 2243 SKB_LINEAR_ASSERT(skb); 2244 if (mtu < skb_tailroom(skb) - needed_tailroom) 2245 /* use at most mtu */ 2246 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2247 else 2248 /* use up to all available space */ 2249 skb->reserved_tailroom = needed_tailroom; 2250 } 2251 2252 #define ENCAP_TYPE_ETHER 0 2253 #define ENCAP_TYPE_IPPROTO 1 2254 2255 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2256 __be16 protocol) 2257 { 2258 skb->inner_protocol = protocol; 2259 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2260 } 2261 2262 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2263 __u8 ipproto) 2264 { 2265 skb->inner_ipproto = ipproto; 2266 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2267 } 2268 2269 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2270 { 2271 skb->inner_mac_header = skb->mac_header; 2272 skb->inner_network_header = skb->network_header; 2273 skb->inner_transport_header = skb->transport_header; 2274 } 2275 2276 static inline void skb_reset_mac_len(struct sk_buff *skb) 2277 { 2278 skb->mac_len = skb->network_header - skb->mac_header; 2279 } 2280 2281 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2282 *skb) 2283 { 2284 return skb->head + skb->inner_transport_header; 2285 } 2286 2287 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2288 { 2289 return skb_inner_transport_header(skb) - skb->data; 2290 } 2291 2292 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2293 { 2294 skb->inner_transport_header = skb->data - skb->head; 2295 } 2296 2297 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2298 const int offset) 2299 { 2300 skb_reset_inner_transport_header(skb); 2301 skb->inner_transport_header += offset; 2302 } 2303 2304 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2305 { 2306 return skb->head + skb->inner_network_header; 2307 } 2308 2309 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2310 { 2311 skb->inner_network_header = skb->data - skb->head; 2312 } 2313 2314 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2315 const int offset) 2316 { 2317 skb_reset_inner_network_header(skb); 2318 skb->inner_network_header += offset; 2319 } 2320 2321 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2322 { 2323 return skb->head + skb->inner_mac_header; 2324 } 2325 2326 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2327 { 2328 skb->inner_mac_header = skb->data - skb->head; 2329 } 2330 2331 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2332 const int offset) 2333 { 2334 skb_reset_inner_mac_header(skb); 2335 skb->inner_mac_header += offset; 2336 } 2337 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2338 { 2339 return skb->transport_header != (typeof(skb->transport_header))~0U; 2340 } 2341 2342 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2343 { 2344 return skb->head + skb->transport_header; 2345 } 2346 2347 static inline void skb_reset_transport_header(struct sk_buff *skb) 2348 { 2349 skb->transport_header = skb->data - skb->head; 2350 } 2351 2352 static inline void skb_set_transport_header(struct sk_buff *skb, 2353 const int offset) 2354 { 2355 skb_reset_transport_header(skb); 2356 skb->transport_header += offset; 2357 } 2358 2359 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2360 { 2361 return skb->head + skb->network_header; 2362 } 2363 2364 static inline void skb_reset_network_header(struct sk_buff *skb) 2365 { 2366 skb->network_header = skb->data - skb->head; 2367 } 2368 2369 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2370 { 2371 skb_reset_network_header(skb); 2372 skb->network_header += offset; 2373 } 2374 2375 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2376 { 2377 return skb->head + skb->mac_header; 2378 } 2379 2380 static inline int skb_mac_offset(const struct sk_buff *skb) 2381 { 2382 return skb_mac_header(skb) - skb->data; 2383 } 2384 2385 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2386 { 2387 return skb->network_header - skb->mac_header; 2388 } 2389 2390 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2391 { 2392 return skb->mac_header != (typeof(skb->mac_header))~0U; 2393 } 2394 2395 static inline void skb_reset_mac_header(struct sk_buff *skb) 2396 { 2397 skb->mac_header = skb->data - skb->head; 2398 } 2399 2400 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2401 { 2402 skb_reset_mac_header(skb); 2403 skb->mac_header += offset; 2404 } 2405 2406 static inline void skb_pop_mac_header(struct sk_buff *skb) 2407 { 2408 skb->mac_header = skb->network_header; 2409 } 2410 2411 static inline void skb_probe_transport_header(struct sk_buff *skb, 2412 const int offset_hint) 2413 { 2414 struct flow_keys_basic keys; 2415 2416 if (skb_transport_header_was_set(skb)) 2417 return; 2418 2419 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0)) 2420 skb_set_transport_header(skb, keys.control.thoff); 2421 else 2422 skb_set_transport_header(skb, offset_hint); 2423 } 2424 2425 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2426 { 2427 if (skb_mac_header_was_set(skb)) { 2428 const unsigned char *old_mac = skb_mac_header(skb); 2429 2430 skb_set_mac_header(skb, -skb->mac_len); 2431 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2432 } 2433 } 2434 2435 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2436 { 2437 return skb->csum_start - skb_headroom(skb); 2438 } 2439 2440 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2441 { 2442 return skb->head + skb->csum_start; 2443 } 2444 2445 static inline int skb_transport_offset(const struct sk_buff *skb) 2446 { 2447 return skb_transport_header(skb) - skb->data; 2448 } 2449 2450 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2451 { 2452 return skb->transport_header - skb->network_header; 2453 } 2454 2455 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2456 { 2457 return skb->inner_transport_header - skb->inner_network_header; 2458 } 2459 2460 static inline int skb_network_offset(const struct sk_buff *skb) 2461 { 2462 return skb_network_header(skb) - skb->data; 2463 } 2464 2465 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2466 { 2467 return skb_inner_network_header(skb) - skb->data; 2468 } 2469 2470 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2471 { 2472 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2473 } 2474 2475 /* 2476 * CPUs often take a performance hit when accessing unaligned memory 2477 * locations. The actual performance hit varies, it can be small if the 2478 * hardware handles it or large if we have to take an exception and fix it 2479 * in software. 2480 * 2481 * Since an ethernet header is 14 bytes network drivers often end up with 2482 * the IP header at an unaligned offset. The IP header can be aligned by 2483 * shifting the start of the packet by 2 bytes. Drivers should do this 2484 * with: 2485 * 2486 * skb_reserve(skb, NET_IP_ALIGN); 2487 * 2488 * The downside to this alignment of the IP header is that the DMA is now 2489 * unaligned. On some architectures the cost of an unaligned DMA is high 2490 * and this cost outweighs the gains made by aligning the IP header. 2491 * 2492 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2493 * to be overridden. 2494 */ 2495 #ifndef NET_IP_ALIGN 2496 #define NET_IP_ALIGN 2 2497 #endif 2498 2499 /* 2500 * The networking layer reserves some headroom in skb data (via 2501 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2502 * the header has to grow. In the default case, if the header has to grow 2503 * 32 bytes or less we avoid the reallocation. 2504 * 2505 * Unfortunately this headroom changes the DMA alignment of the resulting 2506 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2507 * on some architectures. An architecture can override this value, 2508 * perhaps setting it to a cacheline in size (since that will maintain 2509 * cacheline alignment of the DMA). It must be a power of 2. 2510 * 2511 * Various parts of the networking layer expect at least 32 bytes of 2512 * headroom, you should not reduce this. 2513 * 2514 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2515 * to reduce average number of cache lines per packet. 2516 * get_rps_cpus() for example only access one 64 bytes aligned block : 2517 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2518 */ 2519 #ifndef NET_SKB_PAD 2520 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2521 #endif 2522 2523 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2524 2525 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2526 { 2527 if (unlikely(skb_is_nonlinear(skb))) { 2528 WARN_ON(1); 2529 return; 2530 } 2531 skb->len = len; 2532 skb_set_tail_pointer(skb, len); 2533 } 2534 2535 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2536 { 2537 __skb_set_length(skb, len); 2538 } 2539 2540 void skb_trim(struct sk_buff *skb, unsigned int len); 2541 2542 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2543 { 2544 if (skb->data_len) 2545 return ___pskb_trim(skb, len); 2546 __skb_trim(skb, len); 2547 return 0; 2548 } 2549 2550 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2551 { 2552 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2553 } 2554 2555 /** 2556 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2557 * @skb: buffer to alter 2558 * @len: new length 2559 * 2560 * This is identical to pskb_trim except that the caller knows that 2561 * the skb is not cloned so we should never get an error due to out- 2562 * of-memory. 2563 */ 2564 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2565 { 2566 int err = pskb_trim(skb, len); 2567 BUG_ON(err); 2568 } 2569 2570 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2571 { 2572 unsigned int diff = len - skb->len; 2573 2574 if (skb_tailroom(skb) < diff) { 2575 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2576 GFP_ATOMIC); 2577 if (ret) 2578 return ret; 2579 } 2580 __skb_set_length(skb, len); 2581 return 0; 2582 } 2583 2584 /** 2585 * skb_orphan - orphan a buffer 2586 * @skb: buffer to orphan 2587 * 2588 * If a buffer currently has an owner then we call the owner's 2589 * destructor function and make the @skb unowned. The buffer continues 2590 * to exist but is no longer charged to its former owner. 2591 */ 2592 static inline void skb_orphan(struct sk_buff *skb) 2593 { 2594 if (skb->destructor) { 2595 skb->destructor(skb); 2596 skb->destructor = NULL; 2597 skb->sk = NULL; 2598 } else { 2599 BUG_ON(skb->sk); 2600 } 2601 } 2602 2603 /** 2604 * skb_orphan_frags - orphan the frags contained in a buffer 2605 * @skb: buffer to orphan frags from 2606 * @gfp_mask: allocation mask for replacement pages 2607 * 2608 * For each frag in the SKB which needs a destructor (i.e. has an 2609 * owner) create a copy of that frag and release the original 2610 * page by calling the destructor. 2611 */ 2612 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2613 { 2614 if (likely(!skb_zcopy(skb))) 2615 return 0; 2616 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2617 return 0; 2618 return skb_copy_ubufs(skb, gfp_mask); 2619 } 2620 2621 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2622 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2623 { 2624 if (likely(!skb_zcopy(skb))) 2625 return 0; 2626 return skb_copy_ubufs(skb, gfp_mask); 2627 } 2628 2629 /** 2630 * __skb_queue_purge - empty a list 2631 * @list: list to empty 2632 * 2633 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2634 * the list and one reference dropped. This function does not take the 2635 * list lock and the caller must hold the relevant locks to use it. 2636 */ 2637 void skb_queue_purge(struct sk_buff_head *list); 2638 static inline void __skb_queue_purge(struct sk_buff_head *list) 2639 { 2640 struct sk_buff *skb; 2641 while ((skb = __skb_dequeue(list)) != NULL) 2642 kfree_skb(skb); 2643 } 2644 2645 unsigned int skb_rbtree_purge(struct rb_root *root); 2646 2647 void *netdev_alloc_frag(unsigned int fragsz); 2648 2649 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2650 gfp_t gfp_mask); 2651 2652 /** 2653 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2654 * @dev: network device to receive on 2655 * @length: length to allocate 2656 * 2657 * Allocate a new &sk_buff and assign it a usage count of one. The 2658 * buffer has unspecified headroom built in. Users should allocate 2659 * the headroom they think they need without accounting for the 2660 * built in space. The built in space is used for optimisations. 2661 * 2662 * %NULL is returned if there is no free memory. Although this function 2663 * allocates memory it can be called from an interrupt. 2664 */ 2665 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2666 unsigned int length) 2667 { 2668 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2669 } 2670 2671 /* legacy helper around __netdev_alloc_skb() */ 2672 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2673 gfp_t gfp_mask) 2674 { 2675 return __netdev_alloc_skb(NULL, length, gfp_mask); 2676 } 2677 2678 /* legacy helper around netdev_alloc_skb() */ 2679 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2680 { 2681 return netdev_alloc_skb(NULL, length); 2682 } 2683 2684 2685 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2686 unsigned int length, gfp_t gfp) 2687 { 2688 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2689 2690 if (NET_IP_ALIGN && skb) 2691 skb_reserve(skb, NET_IP_ALIGN); 2692 return skb; 2693 } 2694 2695 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2696 unsigned int length) 2697 { 2698 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2699 } 2700 2701 static inline void skb_free_frag(void *addr) 2702 { 2703 page_frag_free(addr); 2704 } 2705 2706 void *napi_alloc_frag(unsigned int fragsz); 2707 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2708 unsigned int length, gfp_t gfp_mask); 2709 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2710 unsigned int length) 2711 { 2712 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2713 } 2714 void napi_consume_skb(struct sk_buff *skb, int budget); 2715 2716 void __kfree_skb_flush(void); 2717 void __kfree_skb_defer(struct sk_buff *skb); 2718 2719 /** 2720 * __dev_alloc_pages - allocate page for network Rx 2721 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2722 * @order: size of the allocation 2723 * 2724 * Allocate a new page. 2725 * 2726 * %NULL is returned if there is no free memory. 2727 */ 2728 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2729 unsigned int order) 2730 { 2731 /* This piece of code contains several assumptions. 2732 * 1. This is for device Rx, therefor a cold page is preferred. 2733 * 2. The expectation is the user wants a compound page. 2734 * 3. If requesting a order 0 page it will not be compound 2735 * due to the check to see if order has a value in prep_new_page 2736 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2737 * code in gfp_to_alloc_flags that should be enforcing this. 2738 */ 2739 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2740 2741 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2742 } 2743 2744 static inline struct page *dev_alloc_pages(unsigned int order) 2745 { 2746 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2747 } 2748 2749 /** 2750 * __dev_alloc_page - allocate a page for network Rx 2751 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2752 * 2753 * Allocate a new page. 2754 * 2755 * %NULL is returned if there is no free memory. 2756 */ 2757 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2758 { 2759 return __dev_alloc_pages(gfp_mask, 0); 2760 } 2761 2762 static inline struct page *dev_alloc_page(void) 2763 { 2764 return dev_alloc_pages(0); 2765 } 2766 2767 /** 2768 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2769 * @page: The page that was allocated from skb_alloc_page 2770 * @skb: The skb that may need pfmemalloc set 2771 */ 2772 static inline void skb_propagate_pfmemalloc(struct page *page, 2773 struct sk_buff *skb) 2774 { 2775 if (page_is_pfmemalloc(page)) 2776 skb->pfmemalloc = true; 2777 } 2778 2779 /** 2780 * skb_frag_page - retrieve the page referred to by a paged fragment 2781 * @frag: the paged fragment 2782 * 2783 * Returns the &struct page associated with @frag. 2784 */ 2785 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2786 { 2787 return frag->page.p; 2788 } 2789 2790 /** 2791 * __skb_frag_ref - take an addition reference on a paged fragment. 2792 * @frag: the paged fragment 2793 * 2794 * Takes an additional reference on the paged fragment @frag. 2795 */ 2796 static inline void __skb_frag_ref(skb_frag_t *frag) 2797 { 2798 get_page(skb_frag_page(frag)); 2799 } 2800 2801 /** 2802 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2803 * @skb: the buffer 2804 * @f: the fragment offset. 2805 * 2806 * Takes an additional reference on the @f'th paged fragment of @skb. 2807 */ 2808 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2809 { 2810 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2811 } 2812 2813 /** 2814 * __skb_frag_unref - release a reference on a paged fragment. 2815 * @frag: the paged fragment 2816 * 2817 * Releases a reference on the paged fragment @frag. 2818 */ 2819 static inline void __skb_frag_unref(skb_frag_t *frag) 2820 { 2821 put_page(skb_frag_page(frag)); 2822 } 2823 2824 /** 2825 * skb_frag_unref - release a reference on a paged fragment of an skb. 2826 * @skb: the buffer 2827 * @f: the fragment offset 2828 * 2829 * Releases a reference on the @f'th paged fragment of @skb. 2830 */ 2831 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2832 { 2833 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2834 } 2835 2836 /** 2837 * skb_frag_address - gets the address of the data contained in a paged fragment 2838 * @frag: the paged fragment buffer 2839 * 2840 * Returns the address of the data within @frag. The page must already 2841 * be mapped. 2842 */ 2843 static inline void *skb_frag_address(const skb_frag_t *frag) 2844 { 2845 return page_address(skb_frag_page(frag)) + frag->page_offset; 2846 } 2847 2848 /** 2849 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2850 * @frag: the paged fragment buffer 2851 * 2852 * Returns the address of the data within @frag. Checks that the page 2853 * is mapped and returns %NULL otherwise. 2854 */ 2855 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2856 { 2857 void *ptr = page_address(skb_frag_page(frag)); 2858 if (unlikely(!ptr)) 2859 return NULL; 2860 2861 return ptr + frag->page_offset; 2862 } 2863 2864 /** 2865 * __skb_frag_set_page - sets the page contained in a paged fragment 2866 * @frag: the paged fragment 2867 * @page: the page to set 2868 * 2869 * Sets the fragment @frag to contain @page. 2870 */ 2871 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2872 { 2873 frag->page.p = page; 2874 } 2875 2876 /** 2877 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2878 * @skb: the buffer 2879 * @f: the fragment offset 2880 * @page: the page to set 2881 * 2882 * Sets the @f'th fragment of @skb to contain @page. 2883 */ 2884 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2885 struct page *page) 2886 { 2887 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2888 } 2889 2890 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2891 2892 /** 2893 * skb_frag_dma_map - maps a paged fragment via the DMA API 2894 * @dev: the device to map the fragment to 2895 * @frag: the paged fragment to map 2896 * @offset: the offset within the fragment (starting at the 2897 * fragment's own offset) 2898 * @size: the number of bytes to map 2899 * @dir: the direction of the mapping (``PCI_DMA_*``) 2900 * 2901 * Maps the page associated with @frag to @device. 2902 */ 2903 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2904 const skb_frag_t *frag, 2905 size_t offset, size_t size, 2906 enum dma_data_direction dir) 2907 { 2908 return dma_map_page(dev, skb_frag_page(frag), 2909 frag->page_offset + offset, size, dir); 2910 } 2911 2912 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2913 gfp_t gfp_mask) 2914 { 2915 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2916 } 2917 2918 2919 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2920 gfp_t gfp_mask) 2921 { 2922 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2923 } 2924 2925 2926 /** 2927 * skb_clone_writable - is the header of a clone writable 2928 * @skb: buffer to check 2929 * @len: length up to which to write 2930 * 2931 * Returns true if modifying the header part of the cloned buffer 2932 * does not requires the data to be copied. 2933 */ 2934 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2935 { 2936 return !skb_header_cloned(skb) && 2937 skb_headroom(skb) + len <= skb->hdr_len; 2938 } 2939 2940 static inline int skb_try_make_writable(struct sk_buff *skb, 2941 unsigned int write_len) 2942 { 2943 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2944 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2945 } 2946 2947 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2948 int cloned) 2949 { 2950 int delta = 0; 2951 2952 if (headroom > skb_headroom(skb)) 2953 delta = headroom - skb_headroom(skb); 2954 2955 if (delta || cloned) 2956 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2957 GFP_ATOMIC); 2958 return 0; 2959 } 2960 2961 /** 2962 * skb_cow - copy header of skb when it is required 2963 * @skb: buffer to cow 2964 * @headroom: needed headroom 2965 * 2966 * If the skb passed lacks sufficient headroom or its data part 2967 * is shared, data is reallocated. If reallocation fails, an error 2968 * is returned and original skb is not changed. 2969 * 2970 * The result is skb with writable area skb->head...skb->tail 2971 * and at least @headroom of space at head. 2972 */ 2973 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2974 { 2975 return __skb_cow(skb, headroom, skb_cloned(skb)); 2976 } 2977 2978 /** 2979 * skb_cow_head - skb_cow but only making the head writable 2980 * @skb: buffer to cow 2981 * @headroom: needed headroom 2982 * 2983 * This function is identical to skb_cow except that we replace the 2984 * skb_cloned check by skb_header_cloned. It should be used when 2985 * you only need to push on some header and do not need to modify 2986 * the data. 2987 */ 2988 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2989 { 2990 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2991 } 2992 2993 /** 2994 * skb_padto - pad an skbuff up to a minimal size 2995 * @skb: buffer to pad 2996 * @len: minimal length 2997 * 2998 * Pads up a buffer to ensure the trailing bytes exist and are 2999 * blanked. If the buffer already contains sufficient data it 3000 * is untouched. Otherwise it is extended. Returns zero on 3001 * success. The skb is freed on error. 3002 */ 3003 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3004 { 3005 unsigned int size = skb->len; 3006 if (likely(size >= len)) 3007 return 0; 3008 return skb_pad(skb, len - size); 3009 } 3010 3011 /** 3012 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3013 * @skb: buffer to pad 3014 * @len: minimal length 3015 * @free_on_error: free buffer on error 3016 * 3017 * Pads up a buffer to ensure the trailing bytes exist and are 3018 * blanked. If the buffer already contains sufficient data it 3019 * is untouched. Otherwise it is extended. Returns zero on 3020 * success. The skb is freed on error if @free_on_error is true. 3021 */ 3022 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3023 bool free_on_error) 3024 { 3025 unsigned int size = skb->len; 3026 3027 if (unlikely(size < len)) { 3028 len -= size; 3029 if (__skb_pad(skb, len, free_on_error)) 3030 return -ENOMEM; 3031 __skb_put(skb, len); 3032 } 3033 return 0; 3034 } 3035 3036 /** 3037 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3038 * @skb: buffer to pad 3039 * @len: minimal length 3040 * 3041 * Pads up a buffer to ensure the trailing bytes exist and are 3042 * blanked. If the buffer already contains sufficient data it 3043 * is untouched. Otherwise it is extended. Returns zero on 3044 * success. The skb is freed on error. 3045 */ 3046 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3047 { 3048 return __skb_put_padto(skb, len, true); 3049 } 3050 3051 static inline int skb_add_data(struct sk_buff *skb, 3052 struct iov_iter *from, int copy) 3053 { 3054 const int off = skb->len; 3055 3056 if (skb->ip_summed == CHECKSUM_NONE) { 3057 __wsum csum = 0; 3058 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3059 &csum, from)) { 3060 skb->csum = csum_block_add(skb->csum, csum, off); 3061 return 0; 3062 } 3063 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3064 return 0; 3065 3066 __skb_trim(skb, off); 3067 return -EFAULT; 3068 } 3069 3070 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3071 const struct page *page, int off) 3072 { 3073 if (skb_zcopy(skb)) 3074 return false; 3075 if (i) { 3076 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3077 3078 return page == skb_frag_page(frag) && 3079 off == frag->page_offset + skb_frag_size(frag); 3080 } 3081 return false; 3082 } 3083 3084 static inline int __skb_linearize(struct sk_buff *skb) 3085 { 3086 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3087 } 3088 3089 /** 3090 * skb_linearize - convert paged skb to linear one 3091 * @skb: buffer to linarize 3092 * 3093 * If there is no free memory -ENOMEM is returned, otherwise zero 3094 * is returned and the old skb data released. 3095 */ 3096 static inline int skb_linearize(struct sk_buff *skb) 3097 { 3098 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3099 } 3100 3101 /** 3102 * skb_has_shared_frag - can any frag be overwritten 3103 * @skb: buffer to test 3104 * 3105 * Return true if the skb has at least one frag that might be modified 3106 * by an external entity (as in vmsplice()/sendfile()) 3107 */ 3108 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3109 { 3110 return skb_is_nonlinear(skb) && 3111 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3112 } 3113 3114 /** 3115 * skb_linearize_cow - make sure skb is linear and writable 3116 * @skb: buffer to process 3117 * 3118 * If there is no free memory -ENOMEM is returned, otherwise zero 3119 * is returned and the old skb data released. 3120 */ 3121 static inline int skb_linearize_cow(struct sk_buff *skb) 3122 { 3123 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3124 __skb_linearize(skb) : 0; 3125 } 3126 3127 static __always_inline void 3128 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3129 unsigned int off) 3130 { 3131 if (skb->ip_summed == CHECKSUM_COMPLETE) 3132 skb->csum = csum_block_sub(skb->csum, 3133 csum_partial(start, len, 0), off); 3134 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3135 skb_checksum_start_offset(skb) < 0) 3136 skb->ip_summed = CHECKSUM_NONE; 3137 } 3138 3139 /** 3140 * skb_postpull_rcsum - update checksum for received skb after pull 3141 * @skb: buffer to update 3142 * @start: start of data before pull 3143 * @len: length of data pulled 3144 * 3145 * After doing a pull on a received packet, you need to call this to 3146 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3147 * CHECKSUM_NONE so that it can be recomputed from scratch. 3148 */ 3149 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3150 const void *start, unsigned int len) 3151 { 3152 __skb_postpull_rcsum(skb, start, len, 0); 3153 } 3154 3155 static __always_inline void 3156 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3157 unsigned int off) 3158 { 3159 if (skb->ip_summed == CHECKSUM_COMPLETE) 3160 skb->csum = csum_block_add(skb->csum, 3161 csum_partial(start, len, 0), off); 3162 } 3163 3164 /** 3165 * skb_postpush_rcsum - update checksum for received skb after push 3166 * @skb: buffer to update 3167 * @start: start of data after push 3168 * @len: length of data pushed 3169 * 3170 * After doing a push on a received packet, you need to call this to 3171 * update the CHECKSUM_COMPLETE checksum. 3172 */ 3173 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3174 const void *start, unsigned int len) 3175 { 3176 __skb_postpush_rcsum(skb, start, len, 0); 3177 } 3178 3179 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3180 3181 /** 3182 * skb_push_rcsum - push skb and update receive checksum 3183 * @skb: buffer to update 3184 * @len: length of data pulled 3185 * 3186 * This function performs an skb_push on the packet and updates 3187 * the CHECKSUM_COMPLETE checksum. It should be used on 3188 * receive path processing instead of skb_push unless you know 3189 * that the checksum difference is zero (e.g., a valid IP header) 3190 * or you are setting ip_summed to CHECKSUM_NONE. 3191 */ 3192 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3193 { 3194 skb_push(skb, len); 3195 skb_postpush_rcsum(skb, skb->data, len); 3196 return skb->data; 3197 } 3198 3199 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3200 /** 3201 * pskb_trim_rcsum - trim received skb and update checksum 3202 * @skb: buffer to trim 3203 * @len: new length 3204 * 3205 * This is exactly the same as pskb_trim except that it ensures the 3206 * checksum of received packets are still valid after the operation. 3207 */ 3208 3209 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3210 { 3211 if (likely(len >= skb->len)) 3212 return 0; 3213 return pskb_trim_rcsum_slow(skb, len); 3214 } 3215 3216 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3217 { 3218 if (skb->ip_summed == CHECKSUM_COMPLETE) 3219 skb->ip_summed = CHECKSUM_NONE; 3220 __skb_trim(skb, len); 3221 return 0; 3222 } 3223 3224 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3225 { 3226 if (skb->ip_summed == CHECKSUM_COMPLETE) 3227 skb->ip_summed = CHECKSUM_NONE; 3228 return __skb_grow(skb, len); 3229 } 3230 3231 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3232 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3233 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3234 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3235 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3236 3237 #define skb_queue_walk(queue, skb) \ 3238 for (skb = (queue)->next; \ 3239 skb != (struct sk_buff *)(queue); \ 3240 skb = skb->next) 3241 3242 #define skb_queue_walk_safe(queue, skb, tmp) \ 3243 for (skb = (queue)->next, tmp = skb->next; \ 3244 skb != (struct sk_buff *)(queue); \ 3245 skb = tmp, tmp = skb->next) 3246 3247 #define skb_queue_walk_from(queue, skb) \ 3248 for (; skb != (struct sk_buff *)(queue); \ 3249 skb = skb->next) 3250 3251 #define skb_rbtree_walk(skb, root) \ 3252 for (skb = skb_rb_first(root); skb != NULL; \ 3253 skb = skb_rb_next(skb)) 3254 3255 #define skb_rbtree_walk_from(skb) \ 3256 for (; skb != NULL; \ 3257 skb = skb_rb_next(skb)) 3258 3259 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3260 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3261 skb = tmp) 3262 3263 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3264 for (tmp = skb->next; \ 3265 skb != (struct sk_buff *)(queue); \ 3266 skb = tmp, tmp = skb->next) 3267 3268 #define skb_queue_reverse_walk(queue, skb) \ 3269 for (skb = (queue)->prev; \ 3270 skb != (struct sk_buff *)(queue); \ 3271 skb = skb->prev) 3272 3273 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3274 for (skb = (queue)->prev, tmp = skb->prev; \ 3275 skb != (struct sk_buff *)(queue); \ 3276 skb = tmp, tmp = skb->prev) 3277 3278 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3279 for (tmp = skb->prev; \ 3280 skb != (struct sk_buff *)(queue); \ 3281 skb = tmp, tmp = skb->prev) 3282 3283 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3284 { 3285 return skb_shinfo(skb)->frag_list != NULL; 3286 } 3287 3288 static inline void skb_frag_list_init(struct sk_buff *skb) 3289 { 3290 skb_shinfo(skb)->frag_list = NULL; 3291 } 3292 3293 #define skb_walk_frags(skb, iter) \ 3294 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3295 3296 3297 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3298 const struct sk_buff *skb); 3299 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3300 struct sk_buff_head *queue, 3301 unsigned int flags, 3302 void (*destructor)(struct sock *sk, 3303 struct sk_buff *skb), 3304 int *peeked, int *off, int *err, 3305 struct sk_buff **last); 3306 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3307 void (*destructor)(struct sock *sk, 3308 struct sk_buff *skb), 3309 int *peeked, int *off, int *err, 3310 struct sk_buff **last); 3311 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3312 void (*destructor)(struct sock *sk, 3313 struct sk_buff *skb), 3314 int *peeked, int *off, int *err); 3315 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3316 int *err); 3317 __poll_t datagram_poll(struct file *file, struct socket *sock, 3318 struct poll_table_struct *wait); 3319 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3320 struct iov_iter *to, int size); 3321 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3322 struct msghdr *msg, int size) 3323 { 3324 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3325 } 3326 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3327 struct msghdr *msg); 3328 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3329 struct iov_iter *from, int len); 3330 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3331 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3332 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3333 static inline void skb_free_datagram_locked(struct sock *sk, 3334 struct sk_buff *skb) 3335 { 3336 __skb_free_datagram_locked(sk, skb, 0); 3337 } 3338 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3339 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3340 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3341 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3342 int len, __wsum csum); 3343 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3344 struct pipe_inode_info *pipe, unsigned int len, 3345 unsigned int flags); 3346 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3347 int len); 3348 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3349 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3350 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3351 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3352 int len, int hlen); 3353 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3354 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3355 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3356 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3357 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3358 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3359 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3360 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3361 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3362 int skb_vlan_pop(struct sk_buff *skb); 3363 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3364 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3365 gfp_t gfp); 3366 3367 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3368 { 3369 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3370 } 3371 3372 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3373 { 3374 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3375 } 3376 3377 struct skb_checksum_ops { 3378 __wsum (*update)(const void *mem, int len, __wsum wsum); 3379 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3380 }; 3381 3382 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3383 3384 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3385 __wsum csum, const struct skb_checksum_ops *ops); 3386 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3387 __wsum csum); 3388 3389 static inline void * __must_check 3390 __skb_header_pointer(const struct sk_buff *skb, int offset, 3391 int len, void *data, int hlen, void *buffer) 3392 { 3393 if (hlen - offset >= len) 3394 return data + offset; 3395 3396 if (!skb || 3397 skb_copy_bits(skb, offset, buffer, len) < 0) 3398 return NULL; 3399 3400 return buffer; 3401 } 3402 3403 static inline void * __must_check 3404 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3405 { 3406 return __skb_header_pointer(skb, offset, len, skb->data, 3407 skb_headlen(skb), buffer); 3408 } 3409 3410 /** 3411 * skb_needs_linearize - check if we need to linearize a given skb 3412 * depending on the given device features. 3413 * @skb: socket buffer to check 3414 * @features: net device features 3415 * 3416 * Returns true if either: 3417 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3418 * 2. skb is fragmented and the device does not support SG. 3419 */ 3420 static inline bool skb_needs_linearize(struct sk_buff *skb, 3421 netdev_features_t features) 3422 { 3423 return skb_is_nonlinear(skb) && 3424 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3425 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3426 } 3427 3428 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3429 void *to, 3430 const unsigned int len) 3431 { 3432 memcpy(to, skb->data, len); 3433 } 3434 3435 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3436 const int offset, void *to, 3437 const unsigned int len) 3438 { 3439 memcpy(to, skb->data + offset, len); 3440 } 3441 3442 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3443 const void *from, 3444 const unsigned int len) 3445 { 3446 memcpy(skb->data, from, len); 3447 } 3448 3449 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3450 const int offset, 3451 const void *from, 3452 const unsigned int len) 3453 { 3454 memcpy(skb->data + offset, from, len); 3455 } 3456 3457 void skb_init(void); 3458 3459 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3460 { 3461 return skb->tstamp; 3462 } 3463 3464 /** 3465 * skb_get_timestamp - get timestamp from a skb 3466 * @skb: skb to get stamp from 3467 * @stamp: pointer to struct timeval to store stamp in 3468 * 3469 * Timestamps are stored in the skb as offsets to a base timestamp. 3470 * This function converts the offset back to a struct timeval and stores 3471 * it in stamp. 3472 */ 3473 static inline void skb_get_timestamp(const struct sk_buff *skb, 3474 struct timeval *stamp) 3475 { 3476 *stamp = ktime_to_timeval(skb->tstamp); 3477 } 3478 3479 static inline void skb_get_timestampns(const struct sk_buff *skb, 3480 struct timespec *stamp) 3481 { 3482 *stamp = ktime_to_timespec(skb->tstamp); 3483 } 3484 3485 static inline void __net_timestamp(struct sk_buff *skb) 3486 { 3487 skb->tstamp = ktime_get_real(); 3488 } 3489 3490 static inline ktime_t net_timedelta(ktime_t t) 3491 { 3492 return ktime_sub(ktime_get_real(), t); 3493 } 3494 3495 static inline ktime_t net_invalid_timestamp(void) 3496 { 3497 return 0; 3498 } 3499 3500 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3501 { 3502 return skb_shinfo(skb)->meta_len; 3503 } 3504 3505 static inline void *skb_metadata_end(const struct sk_buff *skb) 3506 { 3507 return skb_mac_header(skb); 3508 } 3509 3510 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3511 const struct sk_buff *skb_b, 3512 u8 meta_len) 3513 { 3514 const void *a = skb_metadata_end(skb_a); 3515 const void *b = skb_metadata_end(skb_b); 3516 /* Using more efficient varaiant than plain call to memcmp(). */ 3517 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3518 u64 diffs = 0; 3519 3520 switch (meta_len) { 3521 #define __it(x, op) (x -= sizeof(u##op)) 3522 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3523 case 32: diffs |= __it_diff(a, b, 64); 3524 /* fall through */ 3525 case 24: diffs |= __it_diff(a, b, 64); 3526 /* fall through */ 3527 case 16: diffs |= __it_diff(a, b, 64); 3528 /* fall through */ 3529 case 8: diffs |= __it_diff(a, b, 64); 3530 break; 3531 case 28: diffs |= __it_diff(a, b, 64); 3532 /* fall through */ 3533 case 20: diffs |= __it_diff(a, b, 64); 3534 /* fall through */ 3535 case 12: diffs |= __it_diff(a, b, 64); 3536 /* fall through */ 3537 case 4: diffs |= __it_diff(a, b, 32); 3538 break; 3539 } 3540 return diffs; 3541 #else 3542 return memcmp(a - meta_len, b - meta_len, meta_len); 3543 #endif 3544 } 3545 3546 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3547 const struct sk_buff *skb_b) 3548 { 3549 u8 len_a = skb_metadata_len(skb_a); 3550 u8 len_b = skb_metadata_len(skb_b); 3551 3552 if (!(len_a | len_b)) 3553 return false; 3554 3555 return len_a != len_b ? 3556 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3557 } 3558 3559 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3560 { 3561 skb_shinfo(skb)->meta_len = meta_len; 3562 } 3563 3564 static inline void skb_metadata_clear(struct sk_buff *skb) 3565 { 3566 skb_metadata_set(skb, 0); 3567 } 3568 3569 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3570 3571 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3572 3573 void skb_clone_tx_timestamp(struct sk_buff *skb); 3574 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3575 3576 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3577 3578 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3579 { 3580 } 3581 3582 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3583 { 3584 return false; 3585 } 3586 3587 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3588 3589 /** 3590 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3591 * 3592 * PHY drivers may accept clones of transmitted packets for 3593 * timestamping via their phy_driver.txtstamp method. These drivers 3594 * must call this function to return the skb back to the stack with a 3595 * timestamp. 3596 * 3597 * @skb: clone of the the original outgoing packet 3598 * @hwtstamps: hardware time stamps 3599 * 3600 */ 3601 void skb_complete_tx_timestamp(struct sk_buff *skb, 3602 struct skb_shared_hwtstamps *hwtstamps); 3603 3604 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3605 struct skb_shared_hwtstamps *hwtstamps, 3606 struct sock *sk, int tstype); 3607 3608 /** 3609 * skb_tstamp_tx - queue clone of skb with send time stamps 3610 * @orig_skb: the original outgoing packet 3611 * @hwtstamps: hardware time stamps, may be NULL if not available 3612 * 3613 * If the skb has a socket associated, then this function clones the 3614 * skb (thus sharing the actual data and optional structures), stores 3615 * the optional hardware time stamping information (if non NULL) or 3616 * generates a software time stamp (otherwise), then queues the clone 3617 * to the error queue of the socket. Errors are silently ignored. 3618 */ 3619 void skb_tstamp_tx(struct sk_buff *orig_skb, 3620 struct skb_shared_hwtstamps *hwtstamps); 3621 3622 /** 3623 * skb_tx_timestamp() - Driver hook for transmit timestamping 3624 * 3625 * Ethernet MAC Drivers should call this function in their hard_xmit() 3626 * function immediately before giving the sk_buff to the MAC hardware. 3627 * 3628 * Specifically, one should make absolutely sure that this function is 3629 * called before TX completion of this packet can trigger. Otherwise 3630 * the packet could potentially already be freed. 3631 * 3632 * @skb: A socket buffer. 3633 */ 3634 static inline void skb_tx_timestamp(struct sk_buff *skb) 3635 { 3636 skb_clone_tx_timestamp(skb); 3637 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3638 skb_tstamp_tx(skb, NULL); 3639 } 3640 3641 /** 3642 * skb_complete_wifi_ack - deliver skb with wifi status 3643 * 3644 * @skb: the original outgoing packet 3645 * @acked: ack status 3646 * 3647 */ 3648 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3649 3650 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3651 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3652 3653 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3654 { 3655 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3656 skb->csum_valid || 3657 (skb->ip_summed == CHECKSUM_PARTIAL && 3658 skb_checksum_start_offset(skb) >= 0)); 3659 } 3660 3661 /** 3662 * skb_checksum_complete - Calculate checksum of an entire packet 3663 * @skb: packet to process 3664 * 3665 * This function calculates the checksum over the entire packet plus 3666 * the value of skb->csum. The latter can be used to supply the 3667 * checksum of a pseudo header as used by TCP/UDP. It returns the 3668 * checksum. 3669 * 3670 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3671 * this function can be used to verify that checksum on received 3672 * packets. In that case the function should return zero if the 3673 * checksum is correct. In particular, this function will return zero 3674 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3675 * hardware has already verified the correctness of the checksum. 3676 */ 3677 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3678 { 3679 return skb_csum_unnecessary(skb) ? 3680 0 : __skb_checksum_complete(skb); 3681 } 3682 3683 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3684 { 3685 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3686 if (skb->csum_level == 0) 3687 skb->ip_summed = CHECKSUM_NONE; 3688 else 3689 skb->csum_level--; 3690 } 3691 } 3692 3693 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3694 { 3695 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3696 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3697 skb->csum_level++; 3698 } else if (skb->ip_summed == CHECKSUM_NONE) { 3699 skb->ip_summed = CHECKSUM_UNNECESSARY; 3700 skb->csum_level = 0; 3701 } 3702 } 3703 3704 /* Check if we need to perform checksum complete validation. 3705 * 3706 * Returns true if checksum complete is needed, false otherwise 3707 * (either checksum is unnecessary or zero checksum is allowed). 3708 */ 3709 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3710 bool zero_okay, 3711 __sum16 check) 3712 { 3713 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3714 skb->csum_valid = 1; 3715 __skb_decr_checksum_unnecessary(skb); 3716 return false; 3717 } 3718 3719 return true; 3720 } 3721 3722 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3723 * in checksum_init. 3724 */ 3725 #define CHECKSUM_BREAK 76 3726 3727 /* Unset checksum-complete 3728 * 3729 * Unset checksum complete can be done when packet is being modified 3730 * (uncompressed for instance) and checksum-complete value is 3731 * invalidated. 3732 */ 3733 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3734 { 3735 if (skb->ip_summed == CHECKSUM_COMPLETE) 3736 skb->ip_summed = CHECKSUM_NONE; 3737 } 3738 3739 /* Validate (init) checksum based on checksum complete. 3740 * 3741 * Return values: 3742 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3743 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3744 * checksum is stored in skb->csum for use in __skb_checksum_complete 3745 * non-zero: value of invalid checksum 3746 * 3747 */ 3748 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3749 bool complete, 3750 __wsum psum) 3751 { 3752 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3753 if (!csum_fold(csum_add(psum, skb->csum))) { 3754 skb->csum_valid = 1; 3755 return 0; 3756 } 3757 } 3758 3759 skb->csum = psum; 3760 3761 if (complete || skb->len <= CHECKSUM_BREAK) { 3762 __sum16 csum; 3763 3764 csum = __skb_checksum_complete(skb); 3765 skb->csum_valid = !csum; 3766 return csum; 3767 } 3768 3769 return 0; 3770 } 3771 3772 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3773 { 3774 return 0; 3775 } 3776 3777 /* Perform checksum validate (init). Note that this is a macro since we only 3778 * want to calculate the pseudo header which is an input function if necessary. 3779 * First we try to validate without any computation (checksum unnecessary) and 3780 * then calculate based on checksum complete calling the function to compute 3781 * pseudo header. 3782 * 3783 * Return values: 3784 * 0: checksum is validated or try to in skb_checksum_complete 3785 * non-zero: value of invalid checksum 3786 */ 3787 #define __skb_checksum_validate(skb, proto, complete, \ 3788 zero_okay, check, compute_pseudo) \ 3789 ({ \ 3790 __sum16 __ret = 0; \ 3791 skb->csum_valid = 0; \ 3792 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3793 __ret = __skb_checksum_validate_complete(skb, \ 3794 complete, compute_pseudo(skb, proto)); \ 3795 __ret; \ 3796 }) 3797 3798 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3799 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3800 3801 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3802 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3803 3804 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3805 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3806 3807 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3808 compute_pseudo) \ 3809 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3810 3811 #define skb_checksum_simple_validate(skb) \ 3812 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3813 3814 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3815 { 3816 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3817 } 3818 3819 static inline void __skb_checksum_convert(struct sk_buff *skb, 3820 __sum16 check, __wsum pseudo) 3821 { 3822 skb->csum = ~pseudo; 3823 skb->ip_summed = CHECKSUM_COMPLETE; 3824 } 3825 3826 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3827 do { \ 3828 if (__skb_checksum_convert_check(skb)) \ 3829 __skb_checksum_convert(skb, check, \ 3830 compute_pseudo(skb, proto)); \ 3831 } while (0) 3832 3833 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3834 u16 start, u16 offset) 3835 { 3836 skb->ip_summed = CHECKSUM_PARTIAL; 3837 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3838 skb->csum_offset = offset - start; 3839 } 3840 3841 /* Update skbuf and packet to reflect the remote checksum offload operation. 3842 * When called, ptr indicates the starting point for skb->csum when 3843 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3844 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3845 */ 3846 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3847 int start, int offset, bool nopartial) 3848 { 3849 __wsum delta; 3850 3851 if (!nopartial) { 3852 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3853 return; 3854 } 3855 3856 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3857 __skb_checksum_complete(skb); 3858 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3859 } 3860 3861 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3862 3863 /* Adjust skb->csum since we changed the packet */ 3864 skb->csum = csum_add(skb->csum, delta); 3865 } 3866 3867 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3868 { 3869 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3870 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3871 #else 3872 return NULL; 3873 #endif 3874 } 3875 3876 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3877 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3878 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3879 { 3880 if (nfct && atomic_dec_and_test(&nfct->use)) 3881 nf_conntrack_destroy(nfct); 3882 } 3883 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3884 { 3885 if (nfct) 3886 atomic_inc(&nfct->use); 3887 } 3888 #endif 3889 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3890 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3891 { 3892 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3893 kfree(nf_bridge); 3894 } 3895 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3896 { 3897 if (nf_bridge) 3898 refcount_inc(&nf_bridge->use); 3899 } 3900 #endif /* CONFIG_BRIDGE_NETFILTER */ 3901 static inline void nf_reset(struct sk_buff *skb) 3902 { 3903 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3904 nf_conntrack_put(skb_nfct(skb)); 3905 skb->_nfct = 0; 3906 #endif 3907 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3908 nf_bridge_put(skb->nf_bridge); 3909 skb->nf_bridge = NULL; 3910 #endif 3911 } 3912 3913 static inline void nf_reset_trace(struct sk_buff *skb) 3914 { 3915 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3916 skb->nf_trace = 0; 3917 #endif 3918 } 3919 3920 static inline void ipvs_reset(struct sk_buff *skb) 3921 { 3922 #if IS_ENABLED(CONFIG_IP_VS) 3923 skb->ipvs_property = 0; 3924 #endif 3925 } 3926 3927 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3928 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3929 bool copy) 3930 { 3931 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3932 dst->_nfct = src->_nfct; 3933 nf_conntrack_get(skb_nfct(src)); 3934 #endif 3935 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3936 dst->nf_bridge = src->nf_bridge; 3937 nf_bridge_get(src->nf_bridge); 3938 #endif 3939 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3940 if (copy) 3941 dst->nf_trace = src->nf_trace; 3942 #endif 3943 } 3944 3945 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3946 { 3947 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3948 nf_conntrack_put(skb_nfct(dst)); 3949 #endif 3950 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3951 nf_bridge_put(dst->nf_bridge); 3952 #endif 3953 __nf_copy(dst, src, true); 3954 } 3955 3956 #ifdef CONFIG_NETWORK_SECMARK 3957 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3958 { 3959 to->secmark = from->secmark; 3960 } 3961 3962 static inline void skb_init_secmark(struct sk_buff *skb) 3963 { 3964 skb->secmark = 0; 3965 } 3966 #else 3967 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3968 { } 3969 3970 static inline void skb_init_secmark(struct sk_buff *skb) 3971 { } 3972 #endif 3973 3974 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3975 { 3976 return !skb->destructor && 3977 #if IS_ENABLED(CONFIG_XFRM) 3978 !skb->sp && 3979 #endif 3980 !skb_nfct(skb) && 3981 !skb->_skb_refdst && 3982 !skb_has_frag_list(skb); 3983 } 3984 3985 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3986 { 3987 skb->queue_mapping = queue_mapping; 3988 } 3989 3990 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3991 { 3992 return skb->queue_mapping; 3993 } 3994 3995 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3996 { 3997 to->queue_mapping = from->queue_mapping; 3998 } 3999 4000 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4001 { 4002 skb->queue_mapping = rx_queue + 1; 4003 } 4004 4005 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4006 { 4007 return skb->queue_mapping - 1; 4008 } 4009 4010 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4011 { 4012 return skb->queue_mapping != 0; 4013 } 4014 4015 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4016 { 4017 skb->dst_pending_confirm = val; 4018 } 4019 4020 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4021 { 4022 return skb->dst_pending_confirm != 0; 4023 } 4024 4025 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 4026 { 4027 #ifdef CONFIG_XFRM 4028 return skb->sp; 4029 #else 4030 return NULL; 4031 #endif 4032 } 4033 4034 /* Keeps track of mac header offset relative to skb->head. 4035 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4036 * For non-tunnel skb it points to skb_mac_header() and for 4037 * tunnel skb it points to outer mac header. 4038 * Keeps track of level of encapsulation of network headers. 4039 */ 4040 struct skb_gso_cb { 4041 union { 4042 int mac_offset; 4043 int data_offset; 4044 }; 4045 int encap_level; 4046 __wsum csum; 4047 __u16 csum_start; 4048 }; 4049 #define SKB_SGO_CB_OFFSET 32 4050 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4051 4052 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4053 { 4054 return (skb_mac_header(inner_skb) - inner_skb->head) - 4055 SKB_GSO_CB(inner_skb)->mac_offset; 4056 } 4057 4058 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4059 { 4060 int new_headroom, headroom; 4061 int ret; 4062 4063 headroom = skb_headroom(skb); 4064 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4065 if (ret) 4066 return ret; 4067 4068 new_headroom = skb_headroom(skb); 4069 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4070 return 0; 4071 } 4072 4073 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4074 { 4075 /* Do not update partial checksums if remote checksum is enabled. */ 4076 if (skb->remcsum_offload) 4077 return; 4078 4079 SKB_GSO_CB(skb)->csum = res; 4080 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4081 } 4082 4083 /* Compute the checksum for a gso segment. First compute the checksum value 4084 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4085 * then add in skb->csum (checksum from csum_start to end of packet). 4086 * skb->csum and csum_start are then updated to reflect the checksum of the 4087 * resultant packet starting from the transport header-- the resultant checksum 4088 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4089 * header. 4090 */ 4091 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4092 { 4093 unsigned char *csum_start = skb_transport_header(skb); 4094 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4095 __wsum partial = SKB_GSO_CB(skb)->csum; 4096 4097 SKB_GSO_CB(skb)->csum = res; 4098 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4099 4100 return csum_fold(csum_partial(csum_start, plen, partial)); 4101 } 4102 4103 static inline bool skb_is_gso(const struct sk_buff *skb) 4104 { 4105 return skb_shinfo(skb)->gso_size; 4106 } 4107 4108 /* Note: Should be called only if skb_is_gso(skb) is true */ 4109 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4110 { 4111 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4112 } 4113 4114 /* Note: Should be called only if skb_is_gso(skb) is true */ 4115 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4116 { 4117 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4118 } 4119 4120 static inline void skb_gso_reset(struct sk_buff *skb) 4121 { 4122 skb_shinfo(skb)->gso_size = 0; 4123 skb_shinfo(skb)->gso_segs = 0; 4124 skb_shinfo(skb)->gso_type = 0; 4125 } 4126 4127 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4128 u16 increment) 4129 { 4130 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4131 return; 4132 shinfo->gso_size += increment; 4133 } 4134 4135 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4136 u16 decrement) 4137 { 4138 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4139 return; 4140 shinfo->gso_size -= decrement; 4141 } 4142 4143 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4144 4145 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4146 { 4147 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4148 * wanted then gso_type will be set. */ 4149 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4150 4151 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4152 unlikely(shinfo->gso_type == 0)) { 4153 __skb_warn_lro_forwarding(skb); 4154 return true; 4155 } 4156 return false; 4157 } 4158 4159 static inline void skb_forward_csum(struct sk_buff *skb) 4160 { 4161 /* Unfortunately we don't support this one. Any brave souls? */ 4162 if (skb->ip_summed == CHECKSUM_COMPLETE) 4163 skb->ip_summed = CHECKSUM_NONE; 4164 } 4165 4166 /** 4167 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4168 * @skb: skb to check 4169 * 4170 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4171 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4172 * use this helper, to document places where we make this assertion. 4173 */ 4174 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4175 { 4176 #ifdef DEBUG 4177 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4178 #endif 4179 } 4180 4181 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4182 4183 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4184 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4185 unsigned int transport_len, 4186 __sum16(*skb_chkf)(struct sk_buff *skb)); 4187 4188 /** 4189 * skb_head_is_locked - Determine if the skb->head is locked down 4190 * @skb: skb to check 4191 * 4192 * The head on skbs build around a head frag can be removed if they are 4193 * not cloned. This function returns true if the skb head is locked down 4194 * due to either being allocated via kmalloc, or by being a clone with 4195 * multiple references to the head. 4196 */ 4197 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4198 { 4199 return !skb->head_frag || skb_cloned(skb); 4200 } 4201 4202 /* Local Checksum Offload. 4203 * Compute outer checksum based on the assumption that the 4204 * inner checksum will be offloaded later. 4205 * See Documentation/networking/checksum-offloads.txt for 4206 * explanation of how this works. 4207 * Fill in outer checksum adjustment (e.g. with sum of outer 4208 * pseudo-header) before calling. 4209 * Also ensure that inner checksum is in linear data area. 4210 */ 4211 static inline __wsum lco_csum(struct sk_buff *skb) 4212 { 4213 unsigned char *csum_start = skb_checksum_start(skb); 4214 unsigned char *l4_hdr = skb_transport_header(skb); 4215 __wsum partial; 4216 4217 /* Start with complement of inner checksum adjustment */ 4218 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4219 skb->csum_offset)); 4220 4221 /* Add in checksum of our headers (incl. outer checksum 4222 * adjustment filled in by caller) and return result. 4223 */ 4224 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4225 } 4226 4227 #endif /* __KERNEL__ */ 4228 #endif /* _LINUX_SKBUFF_H */ 4229