xref: /linux-6.15/include/linux/skbuff.h (revision 8a79633b)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 
249 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
250 struct nf_conntrack {
251 	atomic_t use;
252 };
253 #endif
254 
255 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
256 struct nf_bridge_info {
257 	refcount_t		use;
258 	enum {
259 		BRNF_PROTO_UNCHANGED,
260 		BRNF_PROTO_8021Q,
261 		BRNF_PROTO_PPPOE
262 	} orig_proto:8;
263 	u8			pkt_otherhost:1;
264 	u8			in_prerouting:1;
265 	u8			bridged_dnat:1;
266 	__u16			frag_max_size;
267 	struct net_device	*physindev;
268 
269 	/* always valid & non-NULL from FORWARD on, for physdev match */
270 	struct net_device	*physoutdev;
271 	union {
272 		/* prerouting: detect dnat in orig/reply direction */
273 		__be32          ipv4_daddr;
274 		struct in6_addr ipv6_daddr;
275 
276 		/* after prerouting + nat detected: store original source
277 		 * mac since neigh resolution overwrites it, only used while
278 		 * skb is out in neigh layer.
279 		 */
280 		char neigh_header[8];
281 	};
282 };
283 #endif
284 
285 struct sk_buff_head {
286 	/* These two members must be first. */
287 	struct sk_buff	*next;
288 	struct sk_buff	*prev;
289 
290 	__u32		qlen;
291 	spinlock_t	lock;
292 };
293 
294 struct sk_buff;
295 
296 /* To allow 64K frame to be packed as single skb without frag_list we
297  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298  * buffers which do not start on a page boundary.
299  *
300  * Since GRO uses frags we allocate at least 16 regardless of page
301  * size.
302  */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309 
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311  * segment using its current segmentation instead.
312  */
313 #define GSO_BY_FRAGS	0xFFFF
314 
315 typedef struct skb_frag_struct skb_frag_t;
316 
317 struct skb_frag_struct {
318 	struct {
319 		struct page *p;
320 	} page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 	__u32 page_offset;
323 	__u32 size;
324 #else
325 	__u16 page_offset;
326 	__u16 size;
327 #endif
328 };
329 
330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->size;
333 }
334 
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->size = size;
338 }
339 
340 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
341 {
342 	frag->size += delta;
343 }
344 
345 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
346 {
347 	frag->size -= delta;
348 }
349 
350 static inline bool skb_frag_must_loop(struct page *p)
351 {
352 #if defined(CONFIG_HIGHMEM)
353 	if (PageHighMem(p))
354 		return true;
355 #endif
356 	return false;
357 }
358 
359 /**
360  *	skb_frag_foreach_page - loop over pages in a fragment
361  *
362  *	@f:		skb frag to operate on
363  *	@f_off:		offset from start of f->page.p
364  *	@f_len:		length from f_off to loop over
365  *	@p:		(temp var) current page
366  *	@p_off:		(temp var) offset from start of current page,
367  *	                           non-zero only on first page.
368  *	@p_len:		(temp var) length in current page,
369  *				   < PAGE_SIZE only on first and last page.
370  *	@copied:	(temp var) length so far, excluding current p_len.
371  *
372  *	A fragment can hold a compound page, in which case per-page
373  *	operations, notably kmap_atomic, must be called for each
374  *	regular page.
375  */
376 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
377 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
378 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
379 	     p_len = skb_frag_must_loop(p) ?				\
380 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
381 	     copied = 0;						\
382 	     copied < f_len;						\
383 	     copied += p_len, p++, p_off = 0,				\
384 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
385 
386 #define HAVE_HW_TIME_STAMP
387 
388 /**
389  * struct skb_shared_hwtstamps - hardware time stamps
390  * @hwtstamp:	hardware time stamp transformed into duration
391  *		since arbitrary point in time
392  *
393  * Software time stamps generated by ktime_get_real() are stored in
394  * skb->tstamp.
395  *
396  * hwtstamps can only be compared against other hwtstamps from
397  * the same device.
398  *
399  * This structure is attached to packets as part of the
400  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
401  */
402 struct skb_shared_hwtstamps {
403 	ktime_t	hwtstamp;
404 };
405 
406 /* Definitions for tx_flags in struct skb_shared_info */
407 enum {
408 	/* generate hardware time stamp */
409 	SKBTX_HW_TSTAMP = 1 << 0,
410 
411 	/* generate software time stamp when queueing packet to NIC */
412 	SKBTX_SW_TSTAMP = 1 << 1,
413 
414 	/* device driver is going to provide hardware time stamp */
415 	SKBTX_IN_PROGRESS = 1 << 2,
416 
417 	/* device driver supports TX zero-copy buffers */
418 	SKBTX_DEV_ZEROCOPY = 1 << 3,
419 
420 	/* generate wifi status information (where possible) */
421 	SKBTX_WIFI_STATUS = 1 << 4,
422 
423 	/* This indicates at least one fragment might be overwritten
424 	 * (as in vmsplice(), sendfile() ...)
425 	 * If we need to compute a TX checksum, we'll need to copy
426 	 * all frags to avoid possible bad checksum
427 	 */
428 	SKBTX_SHARED_FRAG = 1 << 5,
429 
430 	/* generate software time stamp when entering packet scheduling */
431 	SKBTX_SCHED_TSTAMP = 1 << 6,
432 };
433 
434 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
435 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
436 				 SKBTX_SCHED_TSTAMP)
437 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438 
439 /*
440  * The callback notifies userspace to release buffers when skb DMA is done in
441  * lower device, the skb last reference should be 0 when calling this.
442  * The zerocopy_success argument is true if zero copy transmit occurred,
443  * false on data copy or out of memory error caused by data copy attempt.
444  * The ctx field is used to track device context.
445  * The desc field is used to track userspace buffer index.
446  */
447 struct ubuf_info {
448 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
449 	union {
450 		struct {
451 			unsigned long desc;
452 			void *ctx;
453 		};
454 		struct {
455 			u32 id;
456 			u16 len;
457 			u16 zerocopy:1;
458 			u32 bytelen;
459 		};
460 	};
461 	refcount_t refcnt;
462 
463 	struct mmpin {
464 		struct user_struct *user;
465 		unsigned int num_pg;
466 	} mmp;
467 };
468 
469 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
470 
471 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
472 void mm_unaccount_pinned_pages(struct mmpin *mmp);
473 
474 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
475 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
476 					struct ubuf_info *uarg);
477 
478 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
479 {
480 	refcount_inc(&uarg->refcnt);
481 }
482 
483 void sock_zerocopy_put(struct ubuf_info *uarg);
484 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
485 
486 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
487 
488 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
489 			     struct msghdr *msg, int len,
490 			     struct ubuf_info *uarg);
491 
492 /* This data is invariant across clones and lives at
493  * the end of the header data, ie. at skb->end.
494  */
495 struct skb_shared_info {
496 	__u8		__unused;
497 	__u8		meta_len;
498 	__u8		nr_frags;
499 	__u8		tx_flags;
500 	unsigned short	gso_size;
501 	/* Warning: this field is not always filled in (UFO)! */
502 	unsigned short	gso_segs;
503 	struct sk_buff	*frag_list;
504 	struct skb_shared_hwtstamps hwtstamps;
505 	unsigned int	gso_type;
506 	u32		tskey;
507 
508 	/*
509 	 * Warning : all fields before dataref are cleared in __alloc_skb()
510 	 */
511 	atomic_t	dataref;
512 
513 	/* Intermediate layers must ensure that destructor_arg
514 	 * remains valid until skb destructor */
515 	void *		destructor_arg;
516 
517 	/* must be last field, see pskb_expand_head() */
518 	skb_frag_t	frags[MAX_SKB_FRAGS];
519 };
520 
521 /* We divide dataref into two halves.  The higher 16 bits hold references
522  * to the payload part of skb->data.  The lower 16 bits hold references to
523  * the entire skb->data.  A clone of a headerless skb holds the length of
524  * the header in skb->hdr_len.
525  *
526  * All users must obey the rule that the skb->data reference count must be
527  * greater than or equal to the payload reference count.
528  *
529  * Holding a reference to the payload part means that the user does not
530  * care about modifications to the header part of skb->data.
531  */
532 #define SKB_DATAREF_SHIFT 16
533 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
534 
535 
536 enum {
537 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
538 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
539 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
540 };
541 
542 enum {
543 	SKB_GSO_TCPV4 = 1 << 0,
544 
545 	/* This indicates the skb is from an untrusted source. */
546 	SKB_GSO_DODGY = 1 << 1,
547 
548 	/* This indicates the tcp segment has CWR set. */
549 	SKB_GSO_TCP_ECN = 1 << 2,
550 
551 	SKB_GSO_TCP_FIXEDID = 1 << 3,
552 
553 	SKB_GSO_TCPV6 = 1 << 4,
554 
555 	SKB_GSO_FCOE = 1 << 5,
556 
557 	SKB_GSO_GRE = 1 << 6,
558 
559 	SKB_GSO_GRE_CSUM = 1 << 7,
560 
561 	SKB_GSO_IPXIP4 = 1 << 8,
562 
563 	SKB_GSO_IPXIP6 = 1 << 9,
564 
565 	SKB_GSO_UDP_TUNNEL = 1 << 10,
566 
567 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
568 
569 	SKB_GSO_PARTIAL = 1 << 12,
570 
571 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
572 
573 	SKB_GSO_SCTP = 1 << 14,
574 
575 	SKB_GSO_ESP = 1 << 15,
576 
577 	SKB_GSO_UDP = 1 << 16,
578 
579 	SKB_GSO_UDP_L4 = 1 << 17,
580 };
581 
582 #if BITS_PER_LONG > 32
583 #define NET_SKBUFF_DATA_USES_OFFSET 1
584 #endif
585 
586 #ifdef NET_SKBUFF_DATA_USES_OFFSET
587 typedef unsigned int sk_buff_data_t;
588 #else
589 typedef unsigned char *sk_buff_data_t;
590 #endif
591 
592 /**
593  *	struct sk_buff - socket buffer
594  *	@next: Next buffer in list
595  *	@prev: Previous buffer in list
596  *	@tstamp: Time we arrived/left
597  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
598  *	@sk: Socket we are owned by
599  *	@dev: Device we arrived on/are leaving by
600  *	@cb: Control buffer. Free for use by every layer. Put private vars here
601  *	@_skb_refdst: destination entry (with norefcount bit)
602  *	@sp: the security path, used for xfrm
603  *	@len: Length of actual data
604  *	@data_len: Data length
605  *	@mac_len: Length of link layer header
606  *	@hdr_len: writable header length of cloned skb
607  *	@csum: Checksum (must include start/offset pair)
608  *	@csum_start: Offset from skb->head where checksumming should start
609  *	@csum_offset: Offset from csum_start where checksum should be stored
610  *	@priority: Packet queueing priority
611  *	@ignore_df: allow local fragmentation
612  *	@cloned: Head may be cloned (check refcnt to be sure)
613  *	@ip_summed: Driver fed us an IP checksum
614  *	@nohdr: Payload reference only, must not modify header
615  *	@pkt_type: Packet class
616  *	@fclone: skbuff clone status
617  *	@ipvs_property: skbuff is owned by ipvs
618  *	@tc_skip_classify: do not classify packet. set by IFB device
619  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
620  *	@tc_redirected: packet was redirected by a tc action
621  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
622  *	@peeked: this packet has been seen already, so stats have been
623  *		done for it, don't do them again
624  *	@nf_trace: netfilter packet trace flag
625  *	@protocol: Packet protocol from driver
626  *	@destructor: Destruct function
627  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
628  *	@_nfct: Associated connection, if any (with nfctinfo bits)
629  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
630  *	@skb_iif: ifindex of device we arrived on
631  *	@tc_index: Traffic control index
632  *	@hash: the packet hash
633  *	@queue_mapping: Queue mapping for multiqueue devices
634  *	@xmit_more: More SKBs are pending for this queue
635  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
636  *	@ndisc_nodetype: router type (from link layer)
637  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
638  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
639  *		ports.
640  *	@sw_hash: indicates hash was computed in software stack
641  *	@wifi_acked_valid: wifi_acked was set
642  *	@wifi_acked: whether frame was acked on wifi or not
643  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
644  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
645  *	@dst_pending_confirm: need to confirm neighbour
646  *	@decrypted: Decrypted SKB
647   *	@napi_id: id of the NAPI struct this skb came from
648  *	@secmark: security marking
649  *	@mark: Generic packet mark
650  *	@vlan_proto: vlan encapsulation protocol
651  *	@vlan_tci: vlan tag control information
652  *	@inner_protocol: Protocol (encapsulation)
653  *	@inner_transport_header: Inner transport layer header (encapsulation)
654  *	@inner_network_header: Network layer header (encapsulation)
655  *	@inner_mac_header: Link layer header (encapsulation)
656  *	@transport_header: Transport layer header
657  *	@network_header: Network layer header
658  *	@mac_header: Link layer header
659  *	@tail: Tail pointer
660  *	@end: End pointer
661  *	@head: Head of buffer
662  *	@data: Data head pointer
663  *	@truesize: Buffer size
664  *	@users: User count - see {datagram,tcp}.c
665  */
666 
667 struct sk_buff {
668 	union {
669 		struct {
670 			/* These two members must be first. */
671 			struct sk_buff		*next;
672 			struct sk_buff		*prev;
673 
674 			union {
675 				struct net_device	*dev;
676 				/* Some protocols might use this space to store information,
677 				 * while device pointer would be NULL.
678 				 * UDP receive path is one user.
679 				 */
680 				unsigned long		dev_scratch;
681 			};
682 		};
683 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
684 		struct list_head	list;
685 	};
686 
687 	union {
688 		struct sock		*sk;
689 		int			ip_defrag_offset;
690 	};
691 
692 	union {
693 		ktime_t		tstamp;
694 		u64		skb_mstamp_ns; /* earliest departure time */
695 	};
696 	/*
697 	 * This is the control buffer. It is free to use for every
698 	 * layer. Please put your private variables there. If you
699 	 * want to keep them across layers you have to do a skb_clone()
700 	 * first. This is owned by whoever has the skb queued ATM.
701 	 */
702 	char			cb[48] __aligned(8);
703 
704 	union {
705 		struct {
706 			unsigned long	_skb_refdst;
707 			void		(*destructor)(struct sk_buff *skb);
708 		};
709 		struct list_head	tcp_tsorted_anchor;
710 	};
711 
712 #ifdef CONFIG_XFRM
713 	struct	sec_path	*sp;
714 #endif
715 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
716 	unsigned long		 _nfct;
717 #endif
718 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
719 	struct nf_bridge_info	*nf_bridge;
720 #endif
721 	unsigned int		len,
722 				data_len;
723 	__u16			mac_len,
724 				hdr_len;
725 
726 	/* Following fields are _not_ copied in __copy_skb_header()
727 	 * Note that queue_mapping is here mostly to fill a hole.
728 	 */
729 	__u16			queue_mapping;
730 
731 /* if you move cloned around you also must adapt those constants */
732 #ifdef __BIG_ENDIAN_BITFIELD
733 #define CLONED_MASK	(1 << 7)
734 #else
735 #define CLONED_MASK	1
736 #endif
737 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
738 
739 	__u8			__cloned_offset[0];
740 	__u8			cloned:1,
741 				nohdr:1,
742 				fclone:2,
743 				peeked:1,
744 				head_frag:1,
745 				xmit_more:1,
746 				pfmemalloc:1;
747 
748 	/* fields enclosed in headers_start/headers_end are copied
749 	 * using a single memcpy() in __copy_skb_header()
750 	 */
751 	/* private: */
752 	__u32			headers_start[0];
753 	/* public: */
754 
755 /* if you move pkt_type around you also must adapt those constants */
756 #ifdef __BIG_ENDIAN_BITFIELD
757 #define PKT_TYPE_MAX	(7 << 5)
758 #else
759 #define PKT_TYPE_MAX	7
760 #endif
761 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
762 
763 	__u8			__pkt_type_offset[0];
764 	__u8			pkt_type:3;
765 	__u8			ignore_df:1;
766 	__u8			nf_trace:1;
767 	__u8			ip_summed:2;
768 	__u8			ooo_okay:1;
769 
770 	__u8			l4_hash:1;
771 	__u8			sw_hash:1;
772 	__u8			wifi_acked_valid:1;
773 	__u8			wifi_acked:1;
774 	__u8			no_fcs:1;
775 	/* Indicates the inner headers are valid in the skbuff. */
776 	__u8			encapsulation:1;
777 	__u8			encap_hdr_csum:1;
778 	__u8			csum_valid:1;
779 
780 	__u8			csum_complete_sw:1;
781 	__u8			csum_level:2;
782 	__u8			csum_not_inet:1;
783 	__u8			dst_pending_confirm:1;
784 #ifdef CONFIG_IPV6_NDISC_NODETYPE
785 	__u8			ndisc_nodetype:2;
786 #endif
787 	__u8			ipvs_property:1;
788 
789 	__u8			inner_protocol_type:1;
790 	__u8			remcsum_offload:1;
791 #ifdef CONFIG_NET_SWITCHDEV
792 	__u8			offload_fwd_mark:1;
793 	__u8			offload_mr_fwd_mark:1;
794 #endif
795 #ifdef CONFIG_NET_CLS_ACT
796 	__u8			tc_skip_classify:1;
797 	__u8			tc_at_ingress:1;
798 	__u8			tc_redirected:1;
799 	__u8			tc_from_ingress:1;
800 #endif
801 #ifdef CONFIG_TLS_DEVICE
802 	__u8			decrypted:1;
803 #endif
804 
805 #ifdef CONFIG_NET_SCHED
806 	__u16			tc_index;	/* traffic control index */
807 #endif
808 
809 	union {
810 		__wsum		csum;
811 		struct {
812 			__u16	csum_start;
813 			__u16	csum_offset;
814 		};
815 	};
816 	__u32			priority;
817 	int			skb_iif;
818 	__u32			hash;
819 	__be16			vlan_proto;
820 	__u16			vlan_tci;
821 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
822 	union {
823 		unsigned int	napi_id;
824 		unsigned int	sender_cpu;
825 	};
826 #endif
827 #ifdef CONFIG_NETWORK_SECMARK
828 	__u32		secmark;
829 #endif
830 
831 	union {
832 		__u32		mark;
833 		__u32		reserved_tailroom;
834 	};
835 
836 	union {
837 		__be16		inner_protocol;
838 		__u8		inner_ipproto;
839 	};
840 
841 	__u16			inner_transport_header;
842 	__u16			inner_network_header;
843 	__u16			inner_mac_header;
844 
845 	__be16			protocol;
846 	__u16			transport_header;
847 	__u16			network_header;
848 	__u16			mac_header;
849 
850 	/* private: */
851 	__u32			headers_end[0];
852 	/* public: */
853 
854 	/* These elements must be at the end, see alloc_skb() for details.  */
855 	sk_buff_data_t		tail;
856 	sk_buff_data_t		end;
857 	unsigned char		*head,
858 				*data;
859 	unsigned int		truesize;
860 	refcount_t		users;
861 };
862 
863 #ifdef __KERNEL__
864 /*
865  *	Handling routines are only of interest to the kernel
866  */
867 
868 #define SKB_ALLOC_FCLONE	0x01
869 #define SKB_ALLOC_RX		0x02
870 #define SKB_ALLOC_NAPI		0x04
871 
872 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
873 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
874 {
875 	return unlikely(skb->pfmemalloc);
876 }
877 
878 /*
879  * skb might have a dst pointer attached, refcounted or not.
880  * _skb_refdst low order bit is set if refcount was _not_ taken
881  */
882 #define SKB_DST_NOREF	1UL
883 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
884 
885 #define SKB_NFCT_PTRMASK	~(7UL)
886 /**
887  * skb_dst - returns skb dst_entry
888  * @skb: buffer
889  *
890  * Returns skb dst_entry, regardless of reference taken or not.
891  */
892 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
893 {
894 	/* If refdst was not refcounted, check we still are in a
895 	 * rcu_read_lock section
896 	 */
897 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
898 		!rcu_read_lock_held() &&
899 		!rcu_read_lock_bh_held());
900 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
901 }
902 
903 /**
904  * skb_dst_set - sets skb dst
905  * @skb: buffer
906  * @dst: dst entry
907  *
908  * Sets skb dst, assuming a reference was taken on dst and should
909  * be released by skb_dst_drop()
910  */
911 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
912 {
913 	skb->_skb_refdst = (unsigned long)dst;
914 }
915 
916 /**
917  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
918  * @skb: buffer
919  * @dst: dst entry
920  *
921  * Sets skb dst, assuming a reference was not taken on dst.
922  * If dst entry is cached, we do not take reference and dst_release
923  * will be avoided by refdst_drop. If dst entry is not cached, we take
924  * reference, so that last dst_release can destroy the dst immediately.
925  */
926 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
927 {
928 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
929 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
930 }
931 
932 /**
933  * skb_dst_is_noref - Test if skb dst isn't refcounted
934  * @skb: buffer
935  */
936 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
937 {
938 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
939 }
940 
941 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
942 {
943 	return (struct rtable *)skb_dst(skb);
944 }
945 
946 /* For mangling skb->pkt_type from user space side from applications
947  * such as nft, tc, etc, we only allow a conservative subset of
948  * possible pkt_types to be set.
949 */
950 static inline bool skb_pkt_type_ok(u32 ptype)
951 {
952 	return ptype <= PACKET_OTHERHOST;
953 }
954 
955 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
956 {
957 #ifdef CONFIG_NET_RX_BUSY_POLL
958 	return skb->napi_id;
959 #else
960 	return 0;
961 #endif
962 }
963 
964 /* decrement the reference count and return true if we can free the skb */
965 static inline bool skb_unref(struct sk_buff *skb)
966 {
967 	if (unlikely(!skb))
968 		return false;
969 	if (likely(refcount_read(&skb->users) == 1))
970 		smp_rmb();
971 	else if (likely(!refcount_dec_and_test(&skb->users)))
972 		return false;
973 
974 	return true;
975 }
976 
977 void skb_release_head_state(struct sk_buff *skb);
978 void kfree_skb(struct sk_buff *skb);
979 void kfree_skb_list(struct sk_buff *segs);
980 void skb_tx_error(struct sk_buff *skb);
981 void consume_skb(struct sk_buff *skb);
982 void __consume_stateless_skb(struct sk_buff *skb);
983 void  __kfree_skb(struct sk_buff *skb);
984 extern struct kmem_cache *skbuff_head_cache;
985 
986 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
987 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
988 		      bool *fragstolen, int *delta_truesize);
989 
990 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
991 			    int node);
992 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
993 struct sk_buff *build_skb(void *data, unsigned int frag_size);
994 static inline struct sk_buff *alloc_skb(unsigned int size,
995 					gfp_t priority)
996 {
997 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
998 }
999 
1000 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1001 				     unsigned long data_len,
1002 				     int max_page_order,
1003 				     int *errcode,
1004 				     gfp_t gfp_mask);
1005 
1006 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1007 struct sk_buff_fclones {
1008 	struct sk_buff	skb1;
1009 
1010 	struct sk_buff	skb2;
1011 
1012 	refcount_t	fclone_ref;
1013 };
1014 
1015 /**
1016  *	skb_fclone_busy - check if fclone is busy
1017  *	@sk: socket
1018  *	@skb: buffer
1019  *
1020  * Returns true if skb is a fast clone, and its clone is not freed.
1021  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1022  * so we also check that this didnt happen.
1023  */
1024 static inline bool skb_fclone_busy(const struct sock *sk,
1025 				   const struct sk_buff *skb)
1026 {
1027 	const struct sk_buff_fclones *fclones;
1028 
1029 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1030 
1031 	return skb->fclone == SKB_FCLONE_ORIG &&
1032 	       refcount_read(&fclones->fclone_ref) > 1 &&
1033 	       fclones->skb2.sk == sk;
1034 }
1035 
1036 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1037 					       gfp_t priority)
1038 {
1039 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1040 }
1041 
1042 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1043 void skb_headers_offset_update(struct sk_buff *skb, int off);
1044 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1045 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1046 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1047 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1048 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1049 				   gfp_t gfp_mask, bool fclone);
1050 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1051 					  gfp_t gfp_mask)
1052 {
1053 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1054 }
1055 
1056 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1057 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1058 				     unsigned int headroom);
1059 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1060 				int newtailroom, gfp_t priority);
1061 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1062 				     int offset, int len);
1063 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1064 			      int offset, int len);
1065 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1066 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1067 
1068 /**
1069  *	skb_pad			-	zero pad the tail of an skb
1070  *	@skb: buffer to pad
1071  *	@pad: space to pad
1072  *
1073  *	Ensure that a buffer is followed by a padding area that is zero
1074  *	filled. Used by network drivers which may DMA or transfer data
1075  *	beyond the buffer end onto the wire.
1076  *
1077  *	May return error in out of memory cases. The skb is freed on error.
1078  */
1079 static inline int skb_pad(struct sk_buff *skb, int pad)
1080 {
1081 	return __skb_pad(skb, pad, true);
1082 }
1083 #define dev_kfree_skb(a)	consume_skb(a)
1084 
1085 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1086 			 int offset, size_t size);
1087 
1088 struct skb_seq_state {
1089 	__u32		lower_offset;
1090 	__u32		upper_offset;
1091 	__u32		frag_idx;
1092 	__u32		stepped_offset;
1093 	struct sk_buff	*root_skb;
1094 	struct sk_buff	*cur_skb;
1095 	__u8		*frag_data;
1096 };
1097 
1098 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1099 			  unsigned int to, struct skb_seq_state *st);
1100 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1101 			  struct skb_seq_state *st);
1102 void skb_abort_seq_read(struct skb_seq_state *st);
1103 
1104 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1105 			   unsigned int to, struct ts_config *config);
1106 
1107 /*
1108  * Packet hash types specify the type of hash in skb_set_hash.
1109  *
1110  * Hash types refer to the protocol layer addresses which are used to
1111  * construct a packet's hash. The hashes are used to differentiate or identify
1112  * flows of the protocol layer for the hash type. Hash types are either
1113  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1114  *
1115  * Properties of hashes:
1116  *
1117  * 1) Two packets in different flows have different hash values
1118  * 2) Two packets in the same flow should have the same hash value
1119  *
1120  * A hash at a higher layer is considered to be more specific. A driver should
1121  * set the most specific hash possible.
1122  *
1123  * A driver cannot indicate a more specific hash than the layer at which a hash
1124  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1125  *
1126  * A driver may indicate a hash level which is less specific than the
1127  * actual layer the hash was computed on. For instance, a hash computed
1128  * at L4 may be considered an L3 hash. This should only be done if the
1129  * driver can't unambiguously determine that the HW computed the hash at
1130  * the higher layer. Note that the "should" in the second property above
1131  * permits this.
1132  */
1133 enum pkt_hash_types {
1134 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1135 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1136 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1137 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1138 };
1139 
1140 static inline void skb_clear_hash(struct sk_buff *skb)
1141 {
1142 	skb->hash = 0;
1143 	skb->sw_hash = 0;
1144 	skb->l4_hash = 0;
1145 }
1146 
1147 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1148 {
1149 	if (!skb->l4_hash)
1150 		skb_clear_hash(skb);
1151 }
1152 
1153 static inline void
1154 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1155 {
1156 	skb->l4_hash = is_l4;
1157 	skb->sw_hash = is_sw;
1158 	skb->hash = hash;
1159 }
1160 
1161 static inline void
1162 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1163 {
1164 	/* Used by drivers to set hash from HW */
1165 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1166 }
1167 
1168 static inline void
1169 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1170 {
1171 	__skb_set_hash(skb, hash, true, is_l4);
1172 }
1173 
1174 void __skb_get_hash(struct sk_buff *skb);
1175 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1176 u32 skb_get_poff(const struct sk_buff *skb);
1177 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1178 		   const struct flow_keys_basic *keys, int hlen);
1179 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1180 			    void *data, int hlen_proto);
1181 
1182 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1183 					int thoff, u8 ip_proto)
1184 {
1185 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1186 }
1187 
1188 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1189 			     const struct flow_dissector_key *key,
1190 			     unsigned int key_count);
1191 
1192 #ifdef CONFIG_NET
1193 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1194 				       struct bpf_prog *prog);
1195 
1196 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1197 #else
1198 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1199 						     struct bpf_prog *prog)
1200 {
1201 	return -EOPNOTSUPP;
1202 }
1203 
1204 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1205 {
1206 	return -EOPNOTSUPP;
1207 }
1208 #endif
1209 
1210 bool __skb_flow_dissect(const struct sk_buff *skb,
1211 			struct flow_dissector *flow_dissector,
1212 			void *target_container,
1213 			void *data, __be16 proto, int nhoff, int hlen,
1214 			unsigned int flags);
1215 
1216 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1217 				    struct flow_dissector *flow_dissector,
1218 				    void *target_container, unsigned int flags)
1219 {
1220 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1221 				  NULL, 0, 0, 0, flags);
1222 }
1223 
1224 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1225 					      struct flow_keys *flow,
1226 					      unsigned int flags)
1227 {
1228 	memset(flow, 0, sizeof(*flow));
1229 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1230 				  NULL, 0, 0, 0, flags);
1231 }
1232 
1233 static inline bool
1234 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1235 				 struct flow_keys_basic *flow, void *data,
1236 				 __be16 proto, int nhoff, int hlen,
1237 				 unsigned int flags)
1238 {
1239 	memset(flow, 0, sizeof(*flow));
1240 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1241 				  data, proto, nhoff, hlen, flags);
1242 }
1243 
1244 void
1245 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1246 			     struct flow_dissector *flow_dissector,
1247 			     void *target_container);
1248 
1249 static inline __u32 skb_get_hash(struct sk_buff *skb)
1250 {
1251 	if (!skb->l4_hash && !skb->sw_hash)
1252 		__skb_get_hash(skb);
1253 
1254 	return skb->hash;
1255 }
1256 
1257 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1258 {
1259 	if (!skb->l4_hash && !skb->sw_hash) {
1260 		struct flow_keys keys;
1261 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1262 
1263 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1264 	}
1265 
1266 	return skb->hash;
1267 }
1268 
1269 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1270 
1271 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1272 {
1273 	return skb->hash;
1274 }
1275 
1276 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1277 {
1278 	to->hash = from->hash;
1279 	to->sw_hash = from->sw_hash;
1280 	to->l4_hash = from->l4_hash;
1281 };
1282 
1283 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1284 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1285 {
1286 	return skb->head + skb->end;
1287 }
1288 
1289 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1290 {
1291 	return skb->end;
1292 }
1293 #else
1294 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1295 {
1296 	return skb->end;
1297 }
1298 
1299 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1300 {
1301 	return skb->end - skb->head;
1302 }
1303 #endif
1304 
1305 /* Internal */
1306 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1307 
1308 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1309 {
1310 	return &skb_shinfo(skb)->hwtstamps;
1311 }
1312 
1313 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1314 {
1315 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1316 
1317 	return is_zcopy ? skb_uarg(skb) : NULL;
1318 }
1319 
1320 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1321 {
1322 	if (skb && uarg && !skb_zcopy(skb)) {
1323 		sock_zerocopy_get(uarg);
1324 		skb_shinfo(skb)->destructor_arg = uarg;
1325 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1326 	}
1327 }
1328 
1329 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1330 {
1331 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1332 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1333 }
1334 
1335 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1336 {
1337 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1338 }
1339 
1340 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1341 {
1342 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1343 }
1344 
1345 /* Release a reference on a zerocopy structure */
1346 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1347 {
1348 	struct ubuf_info *uarg = skb_zcopy(skb);
1349 
1350 	if (uarg) {
1351 		if (uarg->callback == sock_zerocopy_callback) {
1352 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1353 			sock_zerocopy_put(uarg);
1354 		} else if (!skb_zcopy_is_nouarg(skb)) {
1355 			uarg->callback(uarg, zerocopy);
1356 		}
1357 
1358 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1359 	}
1360 }
1361 
1362 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1363 static inline void skb_zcopy_abort(struct sk_buff *skb)
1364 {
1365 	struct ubuf_info *uarg = skb_zcopy(skb);
1366 
1367 	if (uarg) {
1368 		sock_zerocopy_put_abort(uarg);
1369 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1370 	}
1371 }
1372 
1373 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1374 {
1375 	skb->next = NULL;
1376 }
1377 
1378 static inline void skb_list_del_init(struct sk_buff *skb)
1379 {
1380 	__list_del_entry(&skb->list);
1381 	skb_mark_not_on_list(skb);
1382 }
1383 
1384 /**
1385  *	skb_queue_empty - check if a queue is empty
1386  *	@list: queue head
1387  *
1388  *	Returns true if the queue is empty, false otherwise.
1389  */
1390 static inline int skb_queue_empty(const struct sk_buff_head *list)
1391 {
1392 	return list->next == (const struct sk_buff *) list;
1393 }
1394 
1395 /**
1396  *	skb_queue_is_last - check if skb is the last entry in the queue
1397  *	@list: queue head
1398  *	@skb: buffer
1399  *
1400  *	Returns true if @skb is the last buffer on the list.
1401  */
1402 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1403 				     const struct sk_buff *skb)
1404 {
1405 	return skb->next == (const struct sk_buff *) list;
1406 }
1407 
1408 /**
1409  *	skb_queue_is_first - check if skb is the first entry in the queue
1410  *	@list: queue head
1411  *	@skb: buffer
1412  *
1413  *	Returns true if @skb is the first buffer on the list.
1414  */
1415 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1416 				      const struct sk_buff *skb)
1417 {
1418 	return skb->prev == (const struct sk_buff *) list;
1419 }
1420 
1421 /**
1422  *	skb_queue_next - return the next packet in the queue
1423  *	@list: queue head
1424  *	@skb: current buffer
1425  *
1426  *	Return the next packet in @list after @skb.  It is only valid to
1427  *	call this if skb_queue_is_last() evaluates to false.
1428  */
1429 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1430 					     const struct sk_buff *skb)
1431 {
1432 	/* This BUG_ON may seem severe, but if we just return then we
1433 	 * are going to dereference garbage.
1434 	 */
1435 	BUG_ON(skb_queue_is_last(list, skb));
1436 	return skb->next;
1437 }
1438 
1439 /**
1440  *	skb_queue_prev - return the prev packet in the queue
1441  *	@list: queue head
1442  *	@skb: current buffer
1443  *
1444  *	Return the prev packet in @list before @skb.  It is only valid to
1445  *	call this if skb_queue_is_first() evaluates to false.
1446  */
1447 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1448 					     const struct sk_buff *skb)
1449 {
1450 	/* This BUG_ON may seem severe, but if we just return then we
1451 	 * are going to dereference garbage.
1452 	 */
1453 	BUG_ON(skb_queue_is_first(list, skb));
1454 	return skb->prev;
1455 }
1456 
1457 /**
1458  *	skb_get - reference buffer
1459  *	@skb: buffer to reference
1460  *
1461  *	Makes another reference to a socket buffer and returns a pointer
1462  *	to the buffer.
1463  */
1464 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1465 {
1466 	refcount_inc(&skb->users);
1467 	return skb;
1468 }
1469 
1470 /*
1471  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1472  */
1473 
1474 /**
1475  *	skb_cloned - is the buffer a clone
1476  *	@skb: buffer to check
1477  *
1478  *	Returns true if the buffer was generated with skb_clone() and is
1479  *	one of multiple shared copies of the buffer. Cloned buffers are
1480  *	shared data so must not be written to under normal circumstances.
1481  */
1482 static inline int skb_cloned(const struct sk_buff *skb)
1483 {
1484 	return skb->cloned &&
1485 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1486 }
1487 
1488 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1489 {
1490 	might_sleep_if(gfpflags_allow_blocking(pri));
1491 
1492 	if (skb_cloned(skb))
1493 		return pskb_expand_head(skb, 0, 0, pri);
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  *	skb_header_cloned - is the header a clone
1500  *	@skb: buffer to check
1501  *
1502  *	Returns true if modifying the header part of the buffer requires
1503  *	the data to be copied.
1504  */
1505 static inline int skb_header_cloned(const struct sk_buff *skb)
1506 {
1507 	int dataref;
1508 
1509 	if (!skb->cloned)
1510 		return 0;
1511 
1512 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1513 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1514 	return dataref != 1;
1515 }
1516 
1517 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1518 {
1519 	might_sleep_if(gfpflags_allow_blocking(pri));
1520 
1521 	if (skb_header_cloned(skb))
1522 		return pskb_expand_head(skb, 0, 0, pri);
1523 
1524 	return 0;
1525 }
1526 
1527 /**
1528  *	__skb_header_release - release reference to header
1529  *	@skb: buffer to operate on
1530  */
1531 static inline void __skb_header_release(struct sk_buff *skb)
1532 {
1533 	skb->nohdr = 1;
1534 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1535 }
1536 
1537 
1538 /**
1539  *	skb_shared - is the buffer shared
1540  *	@skb: buffer to check
1541  *
1542  *	Returns true if more than one person has a reference to this
1543  *	buffer.
1544  */
1545 static inline int skb_shared(const struct sk_buff *skb)
1546 {
1547 	return refcount_read(&skb->users) != 1;
1548 }
1549 
1550 /**
1551  *	skb_share_check - check if buffer is shared and if so clone it
1552  *	@skb: buffer to check
1553  *	@pri: priority for memory allocation
1554  *
1555  *	If the buffer is shared the buffer is cloned and the old copy
1556  *	drops a reference. A new clone with a single reference is returned.
1557  *	If the buffer is not shared the original buffer is returned. When
1558  *	being called from interrupt status or with spinlocks held pri must
1559  *	be GFP_ATOMIC.
1560  *
1561  *	NULL is returned on a memory allocation failure.
1562  */
1563 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1564 {
1565 	might_sleep_if(gfpflags_allow_blocking(pri));
1566 	if (skb_shared(skb)) {
1567 		struct sk_buff *nskb = skb_clone(skb, pri);
1568 
1569 		if (likely(nskb))
1570 			consume_skb(skb);
1571 		else
1572 			kfree_skb(skb);
1573 		skb = nskb;
1574 	}
1575 	return skb;
1576 }
1577 
1578 /*
1579  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1580  *	packets to handle cases where we have a local reader and forward
1581  *	and a couple of other messy ones. The normal one is tcpdumping
1582  *	a packet thats being forwarded.
1583  */
1584 
1585 /**
1586  *	skb_unshare - make a copy of a shared buffer
1587  *	@skb: buffer to check
1588  *	@pri: priority for memory allocation
1589  *
1590  *	If the socket buffer is a clone then this function creates a new
1591  *	copy of the data, drops a reference count on the old copy and returns
1592  *	the new copy with the reference count at 1. If the buffer is not a clone
1593  *	the original buffer is returned. When called with a spinlock held or
1594  *	from interrupt state @pri must be %GFP_ATOMIC
1595  *
1596  *	%NULL is returned on a memory allocation failure.
1597  */
1598 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1599 					  gfp_t pri)
1600 {
1601 	might_sleep_if(gfpflags_allow_blocking(pri));
1602 	if (skb_cloned(skb)) {
1603 		struct sk_buff *nskb = skb_copy(skb, pri);
1604 
1605 		/* Free our shared copy */
1606 		if (likely(nskb))
1607 			consume_skb(skb);
1608 		else
1609 			kfree_skb(skb);
1610 		skb = nskb;
1611 	}
1612 	return skb;
1613 }
1614 
1615 /**
1616  *	skb_peek - peek at the head of an &sk_buff_head
1617  *	@list_: list to peek at
1618  *
1619  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1620  *	be careful with this one. A peek leaves the buffer on the
1621  *	list and someone else may run off with it. You must hold
1622  *	the appropriate locks or have a private queue to do this.
1623  *
1624  *	Returns %NULL for an empty list or a pointer to the head element.
1625  *	The reference count is not incremented and the reference is therefore
1626  *	volatile. Use with caution.
1627  */
1628 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1629 {
1630 	struct sk_buff *skb = list_->next;
1631 
1632 	if (skb == (struct sk_buff *)list_)
1633 		skb = NULL;
1634 	return skb;
1635 }
1636 
1637 /**
1638  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1639  *	@list_: list to peek at
1640  *
1641  *	Like skb_peek(), but the caller knows that the list is not empty.
1642  */
1643 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1644 {
1645 	return list_->next;
1646 }
1647 
1648 /**
1649  *	skb_peek_next - peek skb following the given one from a queue
1650  *	@skb: skb to start from
1651  *	@list_: list to peek at
1652  *
1653  *	Returns %NULL when the end of the list is met or a pointer to the
1654  *	next element. The reference count is not incremented and the
1655  *	reference is therefore volatile. Use with caution.
1656  */
1657 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1658 		const struct sk_buff_head *list_)
1659 {
1660 	struct sk_buff *next = skb->next;
1661 
1662 	if (next == (struct sk_buff *)list_)
1663 		next = NULL;
1664 	return next;
1665 }
1666 
1667 /**
1668  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1669  *	@list_: list to peek at
1670  *
1671  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1672  *	be careful with this one. A peek leaves the buffer on the
1673  *	list and someone else may run off with it. You must hold
1674  *	the appropriate locks or have a private queue to do this.
1675  *
1676  *	Returns %NULL for an empty list or a pointer to the tail element.
1677  *	The reference count is not incremented and the reference is therefore
1678  *	volatile. Use with caution.
1679  */
1680 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1681 {
1682 	struct sk_buff *skb = list_->prev;
1683 
1684 	if (skb == (struct sk_buff *)list_)
1685 		skb = NULL;
1686 	return skb;
1687 
1688 }
1689 
1690 /**
1691  *	skb_queue_len	- get queue length
1692  *	@list_: list to measure
1693  *
1694  *	Return the length of an &sk_buff queue.
1695  */
1696 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1697 {
1698 	return list_->qlen;
1699 }
1700 
1701 /**
1702  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1703  *	@list: queue to initialize
1704  *
1705  *	This initializes only the list and queue length aspects of
1706  *	an sk_buff_head object.  This allows to initialize the list
1707  *	aspects of an sk_buff_head without reinitializing things like
1708  *	the spinlock.  It can also be used for on-stack sk_buff_head
1709  *	objects where the spinlock is known to not be used.
1710  */
1711 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1712 {
1713 	list->prev = list->next = (struct sk_buff *)list;
1714 	list->qlen = 0;
1715 }
1716 
1717 /*
1718  * This function creates a split out lock class for each invocation;
1719  * this is needed for now since a whole lot of users of the skb-queue
1720  * infrastructure in drivers have different locking usage (in hardirq)
1721  * than the networking core (in softirq only). In the long run either the
1722  * network layer or drivers should need annotation to consolidate the
1723  * main types of usage into 3 classes.
1724  */
1725 static inline void skb_queue_head_init(struct sk_buff_head *list)
1726 {
1727 	spin_lock_init(&list->lock);
1728 	__skb_queue_head_init(list);
1729 }
1730 
1731 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1732 		struct lock_class_key *class)
1733 {
1734 	skb_queue_head_init(list);
1735 	lockdep_set_class(&list->lock, class);
1736 }
1737 
1738 /*
1739  *	Insert an sk_buff on a list.
1740  *
1741  *	The "__skb_xxxx()" functions are the non-atomic ones that
1742  *	can only be called with interrupts disabled.
1743  */
1744 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1745 		struct sk_buff_head *list);
1746 static inline void __skb_insert(struct sk_buff *newsk,
1747 				struct sk_buff *prev, struct sk_buff *next,
1748 				struct sk_buff_head *list)
1749 {
1750 	newsk->next = next;
1751 	newsk->prev = prev;
1752 	next->prev  = prev->next = newsk;
1753 	list->qlen++;
1754 }
1755 
1756 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1757 				      struct sk_buff *prev,
1758 				      struct sk_buff *next)
1759 {
1760 	struct sk_buff *first = list->next;
1761 	struct sk_buff *last = list->prev;
1762 
1763 	first->prev = prev;
1764 	prev->next = first;
1765 
1766 	last->next = next;
1767 	next->prev = last;
1768 }
1769 
1770 /**
1771  *	skb_queue_splice - join two skb lists, this is designed for stacks
1772  *	@list: the new list to add
1773  *	@head: the place to add it in the first list
1774  */
1775 static inline void skb_queue_splice(const struct sk_buff_head *list,
1776 				    struct sk_buff_head *head)
1777 {
1778 	if (!skb_queue_empty(list)) {
1779 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1780 		head->qlen += list->qlen;
1781 	}
1782 }
1783 
1784 /**
1785  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1786  *	@list: the new list to add
1787  *	@head: the place to add it in the first list
1788  *
1789  *	The list at @list is reinitialised
1790  */
1791 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1792 					 struct sk_buff_head *head)
1793 {
1794 	if (!skb_queue_empty(list)) {
1795 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1796 		head->qlen += list->qlen;
1797 		__skb_queue_head_init(list);
1798 	}
1799 }
1800 
1801 /**
1802  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1803  *	@list: the new list to add
1804  *	@head: the place to add it in the first list
1805  */
1806 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1807 					 struct sk_buff_head *head)
1808 {
1809 	if (!skb_queue_empty(list)) {
1810 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1811 		head->qlen += list->qlen;
1812 	}
1813 }
1814 
1815 /**
1816  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1817  *	@list: the new list to add
1818  *	@head: the place to add it in the first list
1819  *
1820  *	Each of the lists is a queue.
1821  *	The list at @list is reinitialised
1822  */
1823 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1824 					      struct sk_buff_head *head)
1825 {
1826 	if (!skb_queue_empty(list)) {
1827 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1828 		head->qlen += list->qlen;
1829 		__skb_queue_head_init(list);
1830 	}
1831 }
1832 
1833 /**
1834  *	__skb_queue_after - queue a buffer at the list head
1835  *	@list: list to use
1836  *	@prev: place after this buffer
1837  *	@newsk: buffer to queue
1838  *
1839  *	Queue a buffer int the middle of a list. This function takes no locks
1840  *	and you must therefore hold required locks before calling it.
1841  *
1842  *	A buffer cannot be placed on two lists at the same time.
1843  */
1844 static inline void __skb_queue_after(struct sk_buff_head *list,
1845 				     struct sk_buff *prev,
1846 				     struct sk_buff *newsk)
1847 {
1848 	__skb_insert(newsk, prev, prev->next, list);
1849 }
1850 
1851 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1852 		struct sk_buff_head *list);
1853 
1854 static inline void __skb_queue_before(struct sk_buff_head *list,
1855 				      struct sk_buff *next,
1856 				      struct sk_buff *newsk)
1857 {
1858 	__skb_insert(newsk, next->prev, next, list);
1859 }
1860 
1861 /**
1862  *	__skb_queue_head - queue a buffer at the list head
1863  *	@list: list to use
1864  *	@newsk: buffer to queue
1865  *
1866  *	Queue a buffer at the start of a list. This function takes no locks
1867  *	and you must therefore hold required locks before calling it.
1868  *
1869  *	A buffer cannot be placed on two lists at the same time.
1870  */
1871 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1872 static inline void __skb_queue_head(struct sk_buff_head *list,
1873 				    struct sk_buff *newsk)
1874 {
1875 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1876 }
1877 
1878 /**
1879  *	__skb_queue_tail - queue a buffer at the list tail
1880  *	@list: list to use
1881  *	@newsk: buffer to queue
1882  *
1883  *	Queue a buffer at the end of a list. This function takes no locks
1884  *	and you must therefore hold required locks before calling it.
1885  *
1886  *	A buffer cannot be placed on two lists at the same time.
1887  */
1888 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1889 static inline void __skb_queue_tail(struct sk_buff_head *list,
1890 				   struct sk_buff *newsk)
1891 {
1892 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1893 }
1894 
1895 /*
1896  * remove sk_buff from list. _Must_ be called atomically, and with
1897  * the list known..
1898  */
1899 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1900 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1901 {
1902 	struct sk_buff *next, *prev;
1903 
1904 	list->qlen--;
1905 	next	   = skb->next;
1906 	prev	   = skb->prev;
1907 	skb->next  = skb->prev = NULL;
1908 	next->prev = prev;
1909 	prev->next = next;
1910 }
1911 
1912 /**
1913  *	__skb_dequeue - remove from the head of the queue
1914  *	@list: list to dequeue from
1915  *
1916  *	Remove the head of the list. This function does not take any locks
1917  *	so must be used with appropriate locks held only. The head item is
1918  *	returned or %NULL if the list is empty.
1919  */
1920 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1921 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1922 {
1923 	struct sk_buff *skb = skb_peek(list);
1924 	if (skb)
1925 		__skb_unlink(skb, list);
1926 	return skb;
1927 }
1928 
1929 /**
1930  *	__skb_dequeue_tail - remove from the tail of the queue
1931  *	@list: list to dequeue from
1932  *
1933  *	Remove the tail of the list. This function does not take any locks
1934  *	so must be used with appropriate locks held only. The tail item is
1935  *	returned or %NULL if the list is empty.
1936  */
1937 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1938 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1939 {
1940 	struct sk_buff *skb = skb_peek_tail(list);
1941 	if (skb)
1942 		__skb_unlink(skb, list);
1943 	return skb;
1944 }
1945 
1946 
1947 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1948 {
1949 	return skb->data_len;
1950 }
1951 
1952 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1953 {
1954 	return skb->len - skb->data_len;
1955 }
1956 
1957 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1958 {
1959 	unsigned int i, len = 0;
1960 
1961 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1962 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1963 	return len;
1964 }
1965 
1966 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1967 {
1968 	return skb_headlen(skb) + __skb_pagelen(skb);
1969 }
1970 
1971 /**
1972  * __skb_fill_page_desc - initialise a paged fragment in an skb
1973  * @skb: buffer containing fragment to be initialised
1974  * @i: paged fragment index to initialise
1975  * @page: the page to use for this fragment
1976  * @off: the offset to the data with @page
1977  * @size: the length of the data
1978  *
1979  * Initialises the @i'th fragment of @skb to point to &size bytes at
1980  * offset @off within @page.
1981  *
1982  * Does not take any additional reference on the fragment.
1983  */
1984 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1985 					struct page *page, int off, int size)
1986 {
1987 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1988 
1989 	/*
1990 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1991 	 * that not all callers have unique ownership of the page but rely
1992 	 * on page_is_pfmemalloc doing the right thing(tm).
1993 	 */
1994 	frag->page.p		  = page;
1995 	frag->page_offset	  = off;
1996 	skb_frag_size_set(frag, size);
1997 
1998 	page = compound_head(page);
1999 	if (page_is_pfmemalloc(page))
2000 		skb->pfmemalloc	= true;
2001 }
2002 
2003 /**
2004  * skb_fill_page_desc - initialise a paged fragment in an skb
2005  * @skb: buffer containing fragment to be initialised
2006  * @i: paged fragment index to initialise
2007  * @page: the page to use for this fragment
2008  * @off: the offset to the data with @page
2009  * @size: the length of the data
2010  *
2011  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2012  * @skb to point to @size bytes at offset @off within @page. In
2013  * addition updates @skb such that @i is the last fragment.
2014  *
2015  * Does not take any additional reference on the fragment.
2016  */
2017 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2018 				      struct page *page, int off, int size)
2019 {
2020 	__skb_fill_page_desc(skb, i, page, off, size);
2021 	skb_shinfo(skb)->nr_frags = i + 1;
2022 }
2023 
2024 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2025 		     int size, unsigned int truesize);
2026 
2027 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2028 			  unsigned int truesize);
2029 
2030 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
2031 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
2032 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2033 
2034 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2035 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2036 {
2037 	return skb->head + skb->tail;
2038 }
2039 
2040 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2041 {
2042 	skb->tail = skb->data - skb->head;
2043 }
2044 
2045 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2046 {
2047 	skb_reset_tail_pointer(skb);
2048 	skb->tail += offset;
2049 }
2050 
2051 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2052 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2053 {
2054 	return skb->tail;
2055 }
2056 
2057 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2058 {
2059 	skb->tail = skb->data;
2060 }
2061 
2062 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2063 {
2064 	skb->tail = skb->data + offset;
2065 }
2066 
2067 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2068 
2069 /*
2070  *	Add data to an sk_buff
2071  */
2072 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2073 void *skb_put(struct sk_buff *skb, unsigned int len);
2074 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2075 {
2076 	void *tmp = skb_tail_pointer(skb);
2077 	SKB_LINEAR_ASSERT(skb);
2078 	skb->tail += len;
2079 	skb->len  += len;
2080 	return tmp;
2081 }
2082 
2083 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2084 {
2085 	void *tmp = __skb_put(skb, len);
2086 
2087 	memset(tmp, 0, len);
2088 	return tmp;
2089 }
2090 
2091 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2092 				   unsigned int len)
2093 {
2094 	void *tmp = __skb_put(skb, len);
2095 
2096 	memcpy(tmp, data, len);
2097 	return tmp;
2098 }
2099 
2100 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2101 {
2102 	*(u8 *)__skb_put(skb, 1) = val;
2103 }
2104 
2105 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2106 {
2107 	void *tmp = skb_put(skb, len);
2108 
2109 	memset(tmp, 0, len);
2110 
2111 	return tmp;
2112 }
2113 
2114 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2115 				 unsigned int len)
2116 {
2117 	void *tmp = skb_put(skb, len);
2118 
2119 	memcpy(tmp, data, len);
2120 
2121 	return tmp;
2122 }
2123 
2124 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2125 {
2126 	*(u8 *)skb_put(skb, 1) = val;
2127 }
2128 
2129 void *skb_push(struct sk_buff *skb, unsigned int len);
2130 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2131 {
2132 	skb->data -= len;
2133 	skb->len  += len;
2134 	return skb->data;
2135 }
2136 
2137 void *skb_pull(struct sk_buff *skb, unsigned int len);
2138 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2139 {
2140 	skb->len -= len;
2141 	BUG_ON(skb->len < skb->data_len);
2142 	return skb->data += len;
2143 }
2144 
2145 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2146 {
2147 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2148 }
2149 
2150 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2151 
2152 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2153 {
2154 	if (len > skb_headlen(skb) &&
2155 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2156 		return NULL;
2157 	skb->len -= len;
2158 	return skb->data += len;
2159 }
2160 
2161 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2162 {
2163 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2164 }
2165 
2166 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2167 {
2168 	if (likely(len <= skb_headlen(skb)))
2169 		return 1;
2170 	if (unlikely(len > skb->len))
2171 		return 0;
2172 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2173 }
2174 
2175 void skb_condense(struct sk_buff *skb);
2176 
2177 /**
2178  *	skb_headroom - bytes at buffer head
2179  *	@skb: buffer to check
2180  *
2181  *	Return the number of bytes of free space at the head of an &sk_buff.
2182  */
2183 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2184 {
2185 	return skb->data - skb->head;
2186 }
2187 
2188 /**
2189  *	skb_tailroom - bytes at buffer end
2190  *	@skb: buffer to check
2191  *
2192  *	Return the number of bytes of free space at the tail of an sk_buff
2193  */
2194 static inline int skb_tailroom(const struct sk_buff *skb)
2195 {
2196 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2197 }
2198 
2199 /**
2200  *	skb_availroom - bytes at buffer end
2201  *	@skb: buffer to check
2202  *
2203  *	Return the number of bytes of free space at the tail of an sk_buff
2204  *	allocated by sk_stream_alloc()
2205  */
2206 static inline int skb_availroom(const struct sk_buff *skb)
2207 {
2208 	if (skb_is_nonlinear(skb))
2209 		return 0;
2210 
2211 	return skb->end - skb->tail - skb->reserved_tailroom;
2212 }
2213 
2214 /**
2215  *	skb_reserve - adjust headroom
2216  *	@skb: buffer to alter
2217  *	@len: bytes to move
2218  *
2219  *	Increase the headroom of an empty &sk_buff by reducing the tail
2220  *	room. This is only allowed for an empty buffer.
2221  */
2222 static inline void skb_reserve(struct sk_buff *skb, int len)
2223 {
2224 	skb->data += len;
2225 	skb->tail += len;
2226 }
2227 
2228 /**
2229  *	skb_tailroom_reserve - adjust reserved_tailroom
2230  *	@skb: buffer to alter
2231  *	@mtu: maximum amount of headlen permitted
2232  *	@needed_tailroom: minimum amount of reserved_tailroom
2233  *
2234  *	Set reserved_tailroom so that headlen can be as large as possible but
2235  *	not larger than mtu and tailroom cannot be smaller than
2236  *	needed_tailroom.
2237  *	The required headroom should already have been reserved before using
2238  *	this function.
2239  */
2240 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2241 					unsigned int needed_tailroom)
2242 {
2243 	SKB_LINEAR_ASSERT(skb);
2244 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2245 		/* use at most mtu */
2246 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2247 	else
2248 		/* use up to all available space */
2249 		skb->reserved_tailroom = needed_tailroom;
2250 }
2251 
2252 #define ENCAP_TYPE_ETHER	0
2253 #define ENCAP_TYPE_IPPROTO	1
2254 
2255 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2256 					  __be16 protocol)
2257 {
2258 	skb->inner_protocol = protocol;
2259 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2260 }
2261 
2262 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2263 					 __u8 ipproto)
2264 {
2265 	skb->inner_ipproto = ipproto;
2266 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2267 }
2268 
2269 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2270 {
2271 	skb->inner_mac_header = skb->mac_header;
2272 	skb->inner_network_header = skb->network_header;
2273 	skb->inner_transport_header = skb->transport_header;
2274 }
2275 
2276 static inline void skb_reset_mac_len(struct sk_buff *skb)
2277 {
2278 	skb->mac_len = skb->network_header - skb->mac_header;
2279 }
2280 
2281 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2282 							*skb)
2283 {
2284 	return skb->head + skb->inner_transport_header;
2285 }
2286 
2287 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2288 {
2289 	return skb_inner_transport_header(skb) - skb->data;
2290 }
2291 
2292 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2293 {
2294 	skb->inner_transport_header = skb->data - skb->head;
2295 }
2296 
2297 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2298 						   const int offset)
2299 {
2300 	skb_reset_inner_transport_header(skb);
2301 	skb->inner_transport_header += offset;
2302 }
2303 
2304 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2305 {
2306 	return skb->head + skb->inner_network_header;
2307 }
2308 
2309 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2310 {
2311 	skb->inner_network_header = skb->data - skb->head;
2312 }
2313 
2314 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2315 						const int offset)
2316 {
2317 	skb_reset_inner_network_header(skb);
2318 	skb->inner_network_header += offset;
2319 }
2320 
2321 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2322 {
2323 	return skb->head + skb->inner_mac_header;
2324 }
2325 
2326 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2327 {
2328 	skb->inner_mac_header = skb->data - skb->head;
2329 }
2330 
2331 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2332 					    const int offset)
2333 {
2334 	skb_reset_inner_mac_header(skb);
2335 	skb->inner_mac_header += offset;
2336 }
2337 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2338 {
2339 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2340 }
2341 
2342 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2343 {
2344 	return skb->head + skb->transport_header;
2345 }
2346 
2347 static inline void skb_reset_transport_header(struct sk_buff *skb)
2348 {
2349 	skb->transport_header = skb->data - skb->head;
2350 }
2351 
2352 static inline void skb_set_transport_header(struct sk_buff *skb,
2353 					    const int offset)
2354 {
2355 	skb_reset_transport_header(skb);
2356 	skb->transport_header += offset;
2357 }
2358 
2359 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2360 {
2361 	return skb->head + skb->network_header;
2362 }
2363 
2364 static inline void skb_reset_network_header(struct sk_buff *skb)
2365 {
2366 	skb->network_header = skb->data - skb->head;
2367 }
2368 
2369 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2370 {
2371 	skb_reset_network_header(skb);
2372 	skb->network_header += offset;
2373 }
2374 
2375 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2376 {
2377 	return skb->head + skb->mac_header;
2378 }
2379 
2380 static inline int skb_mac_offset(const struct sk_buff *skb)
2381 {
2382 	return skb_mac_header(skb) - skb->data;
2383 }
2384 
2385 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2386 {
2387 	return skb->network_header - skb->mac_header;
2388 }
2389 
2390 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2391 {
2392 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2393 }
2394 
2395 static inline void skb_reset_mac_header(struct sk_buff *skb)
2396 {
2397 	skb->mac_header = skb->data - skb->head;
2398 }
2399 
2400 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2401 {
2402 	skb_reset_mac_header(skb);
2403 	skb->mac_header += offset;
2404 }
2405 
2406 static inline void skb_pop_mac_header(struct sk_buff *skb)
2407 {
2408 	skb->mac_header = skb->network_header;
2409 }
2410 
2411 static inline void skb_probe_transport_header(struct sk_buff *skb,
2412 					      const int offset_hint)
2413 {
2414 	struct flow_keys_basic keys;
2415 
2416 	if (skb_transport_header_was_set(skb))
2417 		return;
2418 
2419 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2420 		skb_set_transport_header(skb, keys.control.thoff);
2421 	else
2422 		skb_set_transport_header(skb, offset_hint);
2423 }
2424 
2425 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2426 {
2427 	if (skb_mac_header_was_set(skb)) {
2428 		const unsigned char *old_mac = skb_mac_header(skb);
2429 
2430 		skb_set_mac_header(skb, -skb->mac_len);
2431 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2432 	}
2433 }
2434 
2435 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2436 {
2437 	return skb->csum_start - skb_headroom(skb);
2438 }
2439 
2440 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2441 {
2442 	return skb->head + skb->csum_start;
2443 }
2444 
2445 static inline int skb_transport_offset(const struct sk_buff *skb)
2446 {
2447 	return skb_transport_header(skb) - skb->data;
2448 }
2449 
2450 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2451 {
2452 	return skb->transport_header - skb->network_header;
2453 }
2454 
2455 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2456 {
2457 	return skb->inner_transport_header - skb->inner_network_header;
2458 }
2459 
2460 static inline int skb_network_offset(const struct sk_buff *skb)
2461 {
2462 	return skb_network_header(skb) - skb->data;
2463 }
2464 
2465 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2466 {
2467 	return skb_inner_network_header(skb) - skb->data;
2468 }
2469 
2470 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2471 {
2472 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2473 }
2474 
2475 /*
2476  * CPUs often take a performance hit when accessing unaligned memory
2477  * locations. The actual performance hit varies, it can be small if the
2478  * hardware handles it or large if we have to take an exception and fix it
2479  * in software.
2480  *
2481  * Since an ethernet header is 14 bytes network drivers often end up with
2482  * the IP header at an unaligned offset. The IP header can be aligned by
2483  * shifting the start of the packet by 2 bytes. Drivers should do this
2484  * with:
2485  *
2486  * skb_reserve(skb, NET_IP_ALIGN);
2487  *
2488  * The downside to this alignment of the IP header is that the DMA is now
2489  * unaligned. On some architectures the cost of an unaligned DMA is high
2490  * and this cost outweighs the gains made by aligning the IP header.
2491  *
2492  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2493  * to be overridden.
2494  */
2495 #ifndef NET_IP_ALIGN
2496 #define NET_IP_ALIGN	2
2497 #endif
2498 
2499 /*
2500  * The networking layer reserves some headroom in skb data (via
2501  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2502  * the header has to grow. In the default case, if the header has to grow
2503  * 32 bytes or less we avoid the reallocation.
2504  *
2505  * Unfortunately this headroom changes the DMA alignment of the resulting
2506  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2507  * on some architectures. An architecture can override this value,
2508  * perhaps setting it to a cacheline in size (since that will maintain
2509  * cacheline alignment of the DMA). It must be a power of 2.
2510  *
2511  * Various parts of the networking layer expect at least 32 bytes of
2512  * headroom, you should not reduce this.
2513  *
2514  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2515  * to reduce average number of cache lines per packet.
2516  * get_rps_cpus() for example only access one 64 bytes aligned block :
2517  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2518  */
2519 #ifndef NET_SKB_PAD
2520 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2521 #endif
2522 
2523 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2524 
2525 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2526 {
2527 	if (unlikely(skb_is_nonlinear(skb))) {
2528 		WARN_ON(1);
2529 		return;
2530 	}
2531 	skb->len = len;
2532 	skb_set_tail_pointer(skb, len);
2533 }
2534 
2535 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2536 {
2537 	__skb_set_length(skb, len);
2538 }
2539 
2540 void skb_trim(struct sk_buff *skb, unsigned int len);
2541 
2542 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2543 {
2544 	if (skb->data_len)
2545 		return ___pskb_trim(skb, len);
2546 	__skb_trim(skb, len);
2547 	return 0;
2548 }
2549 
2550 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2551 {
2552 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2553 }
2554 
2555 /**
2556  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2557  *	@skb: buffer to alter
2558  *	@len: new length
2559  *
2560  *	This is identical to pskb_trim except that the caller knows that
2561  *	the skb is not cloned so we should never get an error due to out-
2562  *	of-memory.
2563  */
2564 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2565 {
2566 	int err = pskb_trim(skb, len);
2567 	BUG_ON(err);
2568 }
2569 
2570 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2571 {
2572 	unsigned int diff = len - skb->len;
2573 
2574 	if (skb_tailroom(skb) < diff) {
2575 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2576 					   GFP_ATOMIC);
2577 		if (ret)
2578 			return ret;
2579 	}
2580 	__skb_set_length(skb, len);
2581 	return 0;
2582 }
2583 
2584 /**
2585  *	skb_orphan - orphan a buffer
2586  *	@skb: buffer to orphan
2587  *
2588  *	If a buffer currently has an owner then we call the owner's
2589  *	destructor function and make the @skb unowned. The buffer continues
2590  *	to exist but is no longer charged to its former owner.
2591  */
2592 static inline void skb_orphan(struct sk_buff *skb)
2593 {
2594 	if (skb->destructor) {
2595 		skb->destructor(skb);
2596 		skb->destructor = NULL;
2597 		skb->sk		= NULL;
2598 	} else {
2599 		BUG_ON(skb->sk);
2600 	}
2601 }
2602 
2603 /**
2604  *	skb_orphan_frags - orphan the frags contained in a buffer
2605  *	@skb: buffer to orphan frags from
2606  *	@gfp_mask: allocation mask for replacement pages
2607  *
2608  *	For each frag in the SKB which needs a destructor (i.e. has an
2609  *	owner) create a copy of that frag and release the original
2610  *	page by calling the destructor.
2611  */
2612 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2613 {
2614 	if (likely(!skb_zcopy(skb)))
2615 		return 0;
2616 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2617 		return 0;
2618 	return skb_copy_ubufs(skb, gfp_mask);
2619 }
2620 
2621 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2622 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2623 {
2624 	if (likely(!skb_zcopy(skb)))
2625 		return 0;
2626 	return skb_copy_ubufs(skb, gfp_mask);
2627 }
2628 
2629 /**
2630  *	__skb_queue_purge - empty a list
2631  *	@list: list to empty
2632  *
2633  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2634  *	the list and one reference dropped. This function does not take the
2635  *	list lock and the caller must hold the relevant locks to use it.
2636  */
2637 void skb_queue_purge(struct sk_buff_head *list);
2638 static inline void __skb_queue_purge(struct sk_buff_head *list)
2639 {
2640 	struct sk_buff *skb;
2641 	while ((skb = __skb_dequeue(list)) != NULL)
2642 		kfree_skb(skb);
2643 }
2644 
2645 unsigned int skb_rbtree_purge(struct rb_root *root);
2646 
2647 void *netdev_alloc_frag(unsigned int fragsz);
2648 
2649 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2650 				   gfp_t gfp_mask);
2651 
2652 /**
2653  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2654  *	@dev: network device to receive on
2655  *	@length: length to allocate
2656  *
2657  *	Allocate a new &sk_buff and assign it a usage count of one. The
2658  *	buffer has unspecified headroom built in. Users should allocate
2659  *	the headroom they think they need without accounting for the
2660  *	built in space. The built in space is used for optimisations.
2661  *
2662  *	%NULL is returned if there is no free memory. Although this function
2663  *	allocates memory it can be called from an interrupt.
2664  */
2665 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2666 					       unsigned int length)
2667 {
2668 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2669 }
2670 
2671 /* legacy helper around __netdev_alloc_skb() */
2672 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2673 					      gfp_t gfp_mask)
2674 {
2675 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2676 }
2677 
2678 /* legacy helper around netdev_alloc_skb() */
2679 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2680 {
2681 	return netdev_alloc_skb(NULL, length);
2682 }
2683 
2684 
2685 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2686 		unsigned int length, gfp_t gfp)
2687 {
2688 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2689 
2690 	if (NET_IP_ALIGN && skb)
2691 		skb_reserve(skb, NET_IP_ALIGN);
2692 	return skb;
2693 }
2694 
2695 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2696 		unsigned int length)
2697 {
2698 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2699 }
2700 
2701 static inline void skb_free_frag(void *addr)
2702 {
2703 	page_frag_free(addr);
2704 }
2705 
2706 void *napi_alloc_frag(unsigned int fragsz);
2707 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2708 				 unsigned int length, gfp_t gfp_mask);
2709 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2710 					     unsigned int length)
2711 {
2712 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2713 }
2714 void napi_consume_skb(struct sk_buff *skb, int budget);
2715 
2716 void __kfree_skb_flush(void);
2717 void __kfree_skb_defer(struct sk_buff *skb);
2718 
2719 /**
2720  * __dev_alloc_pages - allocate page for network Rx
2721  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2722  * @order: size of the allocation
2723  *
2724  * Allocate a new page.
2725  *
2726  * %NULL is returned if there is no free memory.
2727 */
2728 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2729 					     unsigned int order)
2730 {
2731 	/* This piece of code contains several assumptions.
2732 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2733 	 * 2.  The expectation is the user wants a compound page.
2734 	 * 3.  If requesting a order 0 page it will not be compound
2735 	 *     due to the check to see if order has a value in prep_new_page
2736 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2737 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2738 	 */
2739 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2740 
2741 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2742 }
2743 
2744 static inline struct page *dev_alloc_pages(unsigned int order)
2745 {
2746 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2747 }
2748 
2749 /**
2750  * __dev_alloc_page - allocate a page for network Rx
2751  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2752  *
2753  * Allocate a new page.
2754  *
2755  * %NULL is returned if there is no free memory.
2756  */
2757 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2758 {
2759 	return __dev_alloc_pages(gfp_mask, 0);
2760 }
2761 
2762 static inline struct page *dev_alloc_page(void)
2763 {
2764 	return dev_alloc_pages(0);
2765 }
2766 
2767 /**
2768  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2769  *	@page: The page that was allocated from skb_alloc_page
2770  *	@skb: The skb that may need pfmemalloc set
2771  */
2772 static inline void skb_propagate_pfmemalloc(struct page *page,
2773 					     struct sk_buff *skb)
2774 {
2775 	if (page_is_pfmemalloc(page))
2776 		skb->pfmemalloc = true;
2777 }
2778 
2779 /**
2780  * skb_frag_page - retrieve the page referred to by a paged fragment
2781  * @frag: the paged fragment
2782  *
2783  * Returns the &struct page associated with @frag.
2784  */
2785 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2786 {
2787 	return frag->page.p;
2788 }
2789 
2790 /**
2791  * __skb_frag_ref - take an addition reference on a paged fragment.
2792  * @frag: the paged fragment
2793  *
2794  * Takes an additional reference on the paged fragment @frag.
2795  */
2796 static inline void __skb_frag_ref(skb_frag_t *frag)
2797 {
2798 	get_page(skb_frag_page(frag));
2799 }
2800 
2801 /**
2802  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2803  * @skb: the buffer
2804  * @f: the fragment offset.
2805  *
2806  * Takes an additional reference on the @f'th paged fragment of @skb.
2807  */
2808 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2809 {
2810 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2811 }
2812 
2813 /**
2814  * __skb_frag_unref - release a reference on a paged fragment.
2815  * @frag: the paged fragment
2816  *
2817  * Releases a reference on the paged fragment @frag.
2818  */
2819 static inline void __skb_frag_unref(skb_frag_t *frag)
2820 {
2821 	put_page(skb_frag_page(frag));
2822 }
2823 
2824 /**
2825  * skb_frag_unref - release a reference on a paged fragment of an skb.
2826  * @skb: the buffer
2827  * @f: the fragment offset
2828  *
2829  * Releases a reference on the @f'th paged fragment of @skb.
2830  */
2831 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2832 {
2833 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2834 }
2835 
2836 /**
2837  * skb_frag_address - gets the address of the data contained in a paged fragment
2838  * @frag: the paged fragment buffer
2839  *
2840  * Returns the address of the data within @frag. The page must already
2841  * be mapped.
2842  */
2843 static inline void *skb_frag_address(const skb_frag_t *frag)
2844 {
2845 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2846 }
2847 
2848 /**
2849  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2850  * @frag: the paged fragment buffer
2851  *
2852  * Returns the address of the data within @frag. Checks that the page
2853  * is mapped and returns %NULL otherwise.
2854  */
2855 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2856 {
2857 	void *ptr = page_address(skb_frag_page(frag));
2858 	if (unlikely(!ptr))
2859 		return NULL;
2860 
2861 	return ptr + frag->page_offset;
2862 }
2863 
2864 /**
2865  * __skb_frag_set_page - sets the page contained in a paged fragment
2866  * @frag: the paged fragment
2867  * @page: the page to set
2868  *
2869  * Sets the fragment @frag to contain @page.
2870  */
2871 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2872 {
2873 	frag->page.p = page;
2874 }
2875 
2876 /**
2877  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2878  * @skb: the buffer
2879  * @f: the fragment offset
2880  * @page: the page to set
2881  *
2882  * Sets the @f'th fragment of @skb to contain @page.
2883  */
2884 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2885 				     struct page *page)
2886 {
2887 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2888 }
2889 
2890 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2891 
2892 /**
2893  * skb_frag_dma_map - maps a paged fragment via the DMA API
2894  * @dev: the device to map the fragment to
2895  * @frag: the paged fragment to map
2896  * @offset: the offset within the fragment (starting at the
2897  *          fragment's own offset)
2898  * @size: the number of bytes to map
2899  * @dir: the direction of the mapping (``PCI_DMA_*``)
2900  *
2901  * Maps the page associated with @frag to @device.
2902  */
2903 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2904 					  const skb_frag_t *frag,
2905 					  size_t offset, size_t size,
2906 					  enum dma_data_direction dir)
2907 {
2908 	return dma_map_page(dev, skb_frag_page(frag),
2909 			    frag->page_offset + offset, size, dir);
2910 }
2911 
2912 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2913 					gfp_t gfp_mask)
2914 {
2915 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2916 }
2917 
2918 
2919 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2920 						  gfp_t gfp_mask)
2921 {
2922 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2923 }
2924 
2925 
2926 /**
2927  *	skb_clone_writable - is the header of a clone writable
2928  *	@skb: buffer to check
2929  *	@len: length up to which to write
2930  *
2931  *	Returns true if modifying the header part of the cloned buffer
2932  *	does not requires the data to be copied.
2933  */
2934 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2935 {
2936 	return !skb_header_cloned(skb) &&
2937 	       skb_headroom(skb) + len <= skb->hdr_len;
2938 }
2939 
2940 static inline int skb_try_make_writable(struct sk_buff *skb,
2941 					unsigned int write_len)
2942 {
2943 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2944 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945 }
2946 
2947 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2948 			    int cloned)
2949 {
2950 	int delta = 0;
2951 
2952 	if (headroom > skb_headroom(skb))
2953 		delta = headroom - skb_headroom(skb);
2954 
2955 	if (delta || cloned)
2956 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2957 					GFP_ATOMIC);
2958 	return 0;
2959 }
2960 
2961 /**
2962  *	skb_cow - copy header of skb when it is required
2963  *	@skb: buffer to cow
2964  *	@headroom: needed headroom
2965  *
2966  *	If the skb passed lacks sufficient headroom or its data part
2967  *	is shared, data is reallocated. If reallocation fails, an error
2968  *	is returned and original skb is not changed.
2969  *
2970  *	The result is skb with writable area skb->head...skb->tail
2971  *	and at least @headroom of space at head.
2972  */
2973 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2974 {
2975 	return __skb_cow(skb, headroom, skb_cloned(skb));
2976 }
2977 
2978 /**
2979  *	skb_cow_head - skb_cow but only making the head writable
2980  *	@skb: buffer to cow
2981  *	@headroom: needed headroom
2982  *
2983  *	This function is identical to skb_cow except that we replace the
2984  *	skb_cloned check by skb_header_cloned.  It should be used when
2985  *	you only need to push on some header and do not need to modify
2986  *	the data.
2987  */
2988 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2989 {
2990 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2991 }
2992 
2993 /**
2994  *	skb_padto	- pad an skbuff up to a minimal size
2995  *	@skb: buffer to pad
2996  *	@len: minimal length
2997  *
2998  *	Pads up a buffer to ensure the trailing bytes exist and are
2999  *	blanked. If the buffer already contains sufficient data it
3000  *	is untouched. Otherwise it is extended. Returns zero on
3001  *	success. The skb is freed on error.
3002  */
3003 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3004 {
3005 	unsigned int size = skb->len;
3006 	if (likely(size >= len))
3007 		return 0;
3008 	return skb_pad(skb, len - size);
3009 }
3010 
3011 /**
3012  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3013  *	@skb: buffer to pad
3014  *	@len: minimal length
3015  *	@free_on_error: free buffer on error
3016  *
3017  *	Pads up a buffer to ensure the trailing bytes exist and are
3018  *	blanked. If the buffer already contains sufficient data it
3019  *	is untouched. Otherwise it is extended. Returns zero on
3020  *	success. The skb is freed on error if @free_on_error is true.
3021  */
3022 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3023 				  bool free_on_error)
3024 {
3025 	unsigned int size = skb->len;
3026 
3027 	if (unlikely(size < len)) {
3028 		len -= size;
3029 		if (__skb_pad(skb, len, free_on_error))
3030 			return -ENOMEM;
3031 		__skb_put(skb, len);
3032 	}
3033 	return 0;
3034 }
3035 
3036 /**
3037  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3038  *	@skb: buffer to pad
3039  *	@len: minimal length
3040  *
3041  *	Pads up a buffer to ensure the trailing bytes exist and are
3042  *	blanked. If the buffer already contains sufficient data it
3043  *	is untouched. Otherwise it is extended. Returns zero on
3044  *	success. The skb is freed on error.
3045  */
3046 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3047 {
3048 	return __skb_put_padto(skb, len, true);
3049 }
3050 
3051 static inline int skb_add_data(struct sk_buff *skb,
3052 			       struct iov_iter *from, int copy)
3053 {
3054 	const int off = skb->len;
3055 
3056 	if (skb->ip_summed == CHECKSUM_NONE) {
3057 		__wsum csum = 0;
3058 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3059 					         &csum, from)) {
3060 			skb->csum = csum_block_add(skb->csum, csum, off);
3061 			return 0;
3062 		}
3063 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3064 		return 0;
3065 
3066 	__skb_trim(skb, off);
3067 	return -EFAULT;
3068 }
3069 
3070 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3071 				    const struct page *page, int off)
3072 {
3073 	if (skb_zcopy(skb))
3074 		return false;
3075 	if (i) {
3076 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3077 
3078 		return page == skb_frag_page(frag) &&
3079 		       off == frag->page_offset + skb_frag_size(frag);
3080 	}
3081 	return false;
3082 }
3083 
3084 static inline int __skb_linearize(struct sk_buff *skb)
3085 {
3086 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3087 }
3088 
3089 /**
3090  *	skb_linearize - convert paged skb to linear one
3091  *	@skb: buffer to linarize
3092  *
3093  *	If there is no free memory -ENOMEM is returned, otherwise zero
3094  *	is returned and the old skb data released.
3095  */
3096 static inline int skb_linearize(struct sk_buff *skb)
3097 {
3098 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3099 }
3100 
3101 /**
3102  * skb_has_shared_frag - can any frag be overwritten
3103  * @skb: buffer to test
3104  *
3105  * Return true if the skb has at least one frag that might be modified
3106  * by an external entity (as in vmsplice()/sendfile())
3107  */
3108 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3109 {
3110 	return skb_is_nonlinear(skb) &&
3111 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3112 }
3113 
3114 /**
3115  *	skb_linearize_cow - make sure skb is linear and writable
3116  *	@skb: buffer to process
3117  *
3118  *	If there is no free memory -ENOMEM is returned, otherwise zero
3119  *	is returned and the old skb data released.
3120  */
3121 static inline int skb_linearize_cow(struct sk_buff *skb)
3122 {
3123 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3124 	       __skb_linearize(skb) : 0;
3125 }
3126 
3127 static __always_inline void
3128 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3129 		     unsigned int off)
3130 {
3131 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3132 		skb->csum = csum_block_sub(skb->csum,
3133 					   csum_partial(start, len, 0), off);
3134 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3135 		 skb_checksum_start_offset(skb) < 0)
3136 		skb->ip_summed = CHECKSUM_NONE;
3137 }
3138 
3139 /**
3140  *	skb_postpull_rcsum - update checksum for received skb after pull
3141  *	@skb: buffer to update
3142  *	@start: start of data before pull
3143  *	@len: length of data pulled
3144  *
3145  *	After doing a pull on a received packet, you need to call this to
3146  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3147  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3148  */
3149 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3150 				      const void *start, unsigned int len)
3151 {
3152 	__skb_postpull_rcsum(skb, start, len, 0);
3153 }
3154 
3155 static __always_inline void
3156 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3157 		     unsigned int off)
3158 {
3159 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3160 		skb->csum = csum_block_add(skb->csum,
3161 					   csum_partial(start, len, 0), off);
3162 }
3163 
3164 /**
3165  *	skb_postpush_rcsum - update checksum for received skb after push
3166  *	@skb: buffer to update
3167  *	@start: start of data after push
3168  *	@len: length of data pushed
3169  *
3170  *	After doing a push on a received packet, you need to call this to
3171  *	update the CHECKSUM_COMPLETE checksum.
3172  */
3173 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3174 				      const void *start, unsigned int len)
3175 {
3176 	__skb_postpush_rcsum(skb, start, len, 0);
3177 }
3178 
3179 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3180 
3181 /**
3182  *	skb_push_rcsum - push skb and update receive checksum
3183  *	@skb: buffer to update
3184  *	@len: length of data pulled
3185  *
3186  *	This function performs an skb_push on the packet and updates
3187  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3188  *	receive path processing instead of skb_push unless you know
3189  *	that the checksum difference is zero (e.g., a valid IP header)
3190  *	or you are setting ip_summed to CHECKSUM_NONE.
3191  */
3192 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3193 {
3194 	skb_push(skb, len);
3195 	skb_postpush_rcsum(skb, skb->data, len);
3196 	return skb->data;
3197 }
3198 
3199 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3200 /**
3201  *	pskb_trim_rcsum - trim received skb and update checksum
3202  *	@skb: buffer to trim
3203  *	@len: new length
3204  *
3205  *	This is exactly the same as pskb_trim except that it ensures the
3206  *	checksum of received packets are still valid after the operation.
3207  */
3208 
3209 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3210 {
3211 	if (likely(len >= skb->len))
3212 		return 0;
3213 	return pskb_trim_rcsum_slow(skb, len);
3214 }
3215 
3216 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3217 {
3218 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3219 		skb->ip_summed = CHECKSUM_NONE;
3220 	__skb_trim(skb, len);
3221 	return 0;
3222 }
3223 
3224 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3225 {
3226 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3227 		skb->ip_summed = CHECKSUM_NONE;
3228 	return __skb_grow(skb, len);
3229 }
3230 
3231 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3232 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3233 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3234 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3235 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3236 
3237 #define skb_queue_walk(queue, skb) \
3238 		for (skb = (queue)->next;					\
3239 		     skb != (struct sk_buff *)(queue);				\
3240 		     skb = skb->next)
3241 
3242 #define skb_queue_walk_safe(queue, skb, tmp)					\
3243 		for (skb = (queue)->next, tmp = skb->next;			\
3244 		     skb != (struct sk_buff *)(queue);				\
3245 		     skb = tmp, tmp = skb->next)
3246 
3247 #define skb_queue_walk_from(queue, skb)						\
3248 		for (; skb != (struct sk_buff *)(queue);			\
3249 		     skb = skb->next)
3250 
3251 #define skb_rbtree_walk(skb, root)						\
3252 		for (skb = skb_rb_first(root); skb != NULL;			\
3253 		     skb = skb_rb_next(skb))
3254 
3255 #define skb_rbtree_walk_from(skb)						\
3256 		for (; skb != NULL;						\
3257 		     skb = skb_rb_next(skb))
3258 
3259 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3260 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3261 		     skb = tmp)
3262 
3263 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3264 		for (tmp = skb->next;						\
3265 		     skb != (struct sk_buff *)(queue);				\
3266 		     skb = tmp, tmp = skb->next)
3267 
3268 #define skb_queue_reverse_walk(queue, skb) \
3269 		for (skb = (queue)->prev;					\
3270 		     skb != (struct sk_buff *)(queue);				\
3271 		     skb = skb->prev)
3272 
3273 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3274 		for (skb = (queue)->prev, tmp = skb->prev;			\
3275 		     skb != (struct sk_buff *)(queue);				\
3276 		     skb = tmp, tmp = skb->prev)
3277 
3278 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3279 		for (tmp = skb->prev;						\
3280 		     skb != (struct sk_buff *)(queue);				\
3281 		     skb = tmp, tmp = skb->prev)
3282 
3283 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3284 {
3285 	return skb_shinfo(skb)->frag_list != NULL;
3286 }
3287 
3288 static inline void skb_frag_list_init(struct sk_buff *skb)
3289 {
3290 	skb_shinfo(skb)->frag_list = NULL;
3291 }
3292 
3293 #define skb_walk_frags(skb, iter)	\
3294 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3295 
3296 
3297 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3298 				const struct sk_buff *skb);
3299 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3300 					  struct sk_buff_head *queue,
3301 					  unsigned int flags,
3302 					  void (*destructor)(struct sock *sk,
3303 							   struct sk_buff *skb),
3304 					  int *peeked, int *off, int *err,
3305 					  struct sk_buff **last);
3306 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3307 					void (*destructor)(struct sock *sk,
3308 							   struct sk_buff *skb),
3309 					int *peeked, int *off, int *err,
3310 					struct sk_buff **last);
3311 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3312 				    void (*destructor)(struct sock *sk,
3313 						       struct sk_buff *skb),
3314 				    int *peeked, int *off, int *err);
3315 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3316 				  int *err);
3317 __poll_t datagram_poll(struct file *file, struct socket *sock,
3318 			   struct poll_table_struct *wait);
3319 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3320 			   struct iov_iter *to, int size);
3321 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3322 					struct msghdr *msg, int size)
3323 {
3324 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3325 }
3326 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3327 				   struct msghdr *msg);
3328 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3329 				 struct iov_iter *from, int len);
3330 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3331 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3332 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3333 static inline void skb_free_datagram_locked(struct sock *sk,
3334 					    struct sk_buff *skb)
3335 {
3336 	__skb_free_datagram_locked(sk, skb, 0);
3337 }
3338 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3339 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3340 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3341 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3342 			      int len, __wsum csum);
3343 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3344 		    struct pipe_inode_info *pipe, unsigned int len,
3345 		    unsigned int flags);
3346 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3347 			 int len);
3348 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3349 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3350 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3351 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3352 		 int len, int hlen);
3353 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3354 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3355 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3356 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3357 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3358 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3359 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3360 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3361 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3362 int skb_vlan_pop(struct sk_buff *skb);
3363 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3364 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3365 			     gfp_t gfp);
3366 
3367 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3368 {
3369 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3370 }
3371 
3372 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3373 {
3374 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3375 }
3376 
3377 struct skb_checksum_ops {
3378 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3379 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3380 };
3381 
3382 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3383 
3384 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3385 		      __wsum csum, const struct skb_checksum_ops *ops);
3386 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3387 		    __wsum csum);
3388 
3389 static inline void * __must_check
3390 __skb_header_pointer(const struct sk_buff *skb, int offset,
3391 		     int len, void *data, int hlen, void *buffer)
3392 {
3393 	if (hlen - offset >= len)
3394 		return data + offset;
3395 
3396 	if (!skb ||
3397 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3398 		return NULL;
3399 
3400 	return buffer;
3401 }
3402 
3403 static inline void * __must_check
3404 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3405 {
3406 	return __skb_header_pointer(skb, offset, len, skb->data,
3407 				    skb_headlen(skb), buffer);
3408 }
3409 
3410 /**
3411  *	skb_needs_linearize - check if we need to linearize a given skb
3412  *			      depending on the given device features.
3413  *	@skb: socket buffer to check
3414  *	@features: net device features
3415  *
3416  *	Returns true if either:
3417  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3418  *	2. skb is fragmented and the device does not support SG.
3419  */
3420 static inline bool skb_needs_linearize(struct sk_buff *skb,
3421 				       netdev_features_t features)
3422 {
3423 	return skb_is_nonlinear(skb) &&
3424 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3425 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3426 }
3427 
3428 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3429 					     void *to,
3430 					     const unsigned int len)
3431 {
3432 	memcpy(to, skb->data, len);
3433 }
3434 
3435 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3436 						    const int offset, void *to,
3437 						    const unsigned int len)
3438 {
3439 	memcpy(to, skb->data + offset, len);
3440 }
3441 
3442 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3443 					   const void *from,
3444 					   const unsigned int len)
3445 {
3446 	memcpy(skb->data, from, len);
3447 }
3448 
3449 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3450 						  const int offset,
3451 						  const void *from,
3452 						  const unsigned int len)
3453 {
3454 	memcpy(skb->data + offset, from, len);
3455 }
3456 
3457 void skb_init(void);
3458 
3459 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3460 {
3461 	return skb->tstamp;
3462 }
3463 
3464 /**
3465  *	skb_get_timestamp - get timestamp from a skb
3466  *	@skb: skb to get stamp from
3467  *	@stamp: pointer to struct timeval to store stamp in
3468  *
3469  *	Timestamps are stored in the skb as offsets to a base timestamp.
3470  *	This function converts the offset back to a struct timeval and stores
3471  *	it in stamp.
3472  */
3473 static inline void skb_get_timestamp(const struct sk_buff *skb,
3474 				     struct timeval *stamp)
3475 {
3476 	*stamp = ktime_to_timeval(skb->tstamp);
3477 }
3478 
3479 static inline void skb_get_timestampns(const struct sk_buff *skb,
3480 				       struct timespec *stamp)
3481 {
3482 	*stamp = ktime_to_timespec(skb->tstamp);
3483 }
3484 
3485 static inline void __net_timestamp(struct sk_buff *skb)
3486 {
3487 	skb->tstamp = ktime_get_real();
3488 }
3489 
3490 static inline ktime_t net_timedelta(ktime_t t)
3491 {
3492 	return ktime_sub(ktime_get_real(), t);
3493 }
3494 
3495 static inline ktime_t net_invalid_timestamp(void)
3496 {
3497 	return 0;
3498 }
3499 
3500 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3501 {
3502 	return skb_shinfo(skb)->meta_len;
3503 }
3504 
3505 static inline void *skb_metadata_end(const struct sk_buff *skb)
3506 {
3507 	return skb_mac_header(skb);
3508 }
3509 
3510 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3511 					  const struct sk_buff *skb_b,
3512 					  u8 meta_len)
3513 {
3514 	const void *a = skb_metadata_end(skb_a);
3515 	const void *b = skb_metadata_end(skb_b);
3516 	/* Using more efficient varaiant than plain call to memcmp(). */
3517 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3518 	u64 diffs = 0;
3519 
3520 	switch (meta_len) {
3521 #define __it(x, op) (x -= sizeof(u##op))
3522 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3523 	case 32: diffs |= __it_diff(a, b, 64);
3524 		 /* fall through */
3525 	case 24: diffs |= __it_diff(a, b, 64);
3526 		 /* fall through */
3527 	case 16: diffs |= __it_diff(a, b, 64);
3528 		 /* fall through */
3529 	case  8: diffs |= __it_diff(a, b, 64);
3530 		break;
3531 	case 28: diffs |= __it_diff(a, b, 64);
3532 		 /* fall through */
3533 	case 20: diffs |= __it_diff(a, b, 64);
3534 		 /* fall through */
3535 	case 12: diffs |= __it_diff(a, b, 64);
3536 		 /* fall through */
3537 	case  4: diffs |= __it_diff(a, b, 32);
3538 		break;
3539 	}
3540 	return diffs;
3541 #else
3542 	return memcmp(a - meta_len, b - meta_len, meta_len);
3543 #endif
3544 }
3545 
3546 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3547 					const struct sk_buff *skb_b)
3548 {
3549 	u8 len_a = skb_metadata_len(skb_a);
3550 	u8 len_b = skb_metadata_len(skb_b);
3551 
3552 	if (!(len_a | len_b))
3553 		return false;
3554 
3555 	return len_a != len_b ?
3556 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3557 }
3558 
3559 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3560 {
3561 	skb_shinfo(skb)->meta_len = meta_len;
3562 }
3563 
3564 static inline void skb_metadata_clear(struct sk_buff *skb)
3565 {
3566 	skb_metadata_set(skb, 0);
3567 }
3568 
3569 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3570 
3571 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3572 
3573 void skb_clone_tx_timestamp(struct sk_buff *skb);
3574 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3575 
3576 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3577 
3578 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3579 {
3580 }
3581 
3582 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3583 {
3584 	return false;
3585 }
3586 
3587 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3588 
3589 /**
3590  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3591  *
3592  * PHY drivers may accept clones of transmitted packets for
3593  * timestamping via their phy_driver.txtstamp method. These drivers
3594  * must call this function to return the skb back to the stack with a
3595  * timestamp.
3596  *
3597  * @skb: clone of the the original outgoing packet
3598  * @hwtstamps: hardware time stamps
3599  *
3600  */
3601 void skb_complete_tx_timestamp(struct sk_buff *skb,
3602 			       struct skb_shared_hwtstamps *hwtstamps);
3603 
3604 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3605 		     struct skb_shared_hwtstamps *hwtstamps,
3606 		     struct sock *sk, int tstype);
3607 
3608 /**
3609  * skb_tstamp_tx - queue clone of skb with send time stamps
3610  * @orig_skb:	the original outgoing packet
3611  * @hwtstamps:	hardware time stamps, may be NULL if not available
3612  *
3613  * If the skb has a socket associated, then this function clones the
3614  * skb (thus sharing the actual data and optional structures), stores
3615  * the optional hardware time stamping information (if non NULL) or
3616  * generates a software time stamp (otherwise), then queues the clone
3617  * to the error queue of the socket.  Errors are silently ignored.
3618  */
3619 void skb_tstamp_tx(struct sk_buff *orig_skb,
3620 		   struct skb_shared_hwtstamps *hwtstamps);
3621 
3622 /**
3623  * skb_tx_timestamp() - Driver hook for transmit timestamping
3624  *
3625  * Ethernet MAC Drivers should call this function in their hard_xmit()
3626  * function immediately before giving the sk_buff to the MAC hardware.
3627  *
3628  * Specifically, one should make absolutely sure that this function is
3629  * called before TX completion of this packet can trigger.  Otherwise
3630  * the packet could potentially already be freed.
3631  *
3632  * @skb: A socket buffer.
3633  */
3634 static inline void skb_tx_timestamp(struct sk_buff *skb)
3635 {
3636 	skb_clone_tx_timestamp(skb);
3637 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3638 		skb_tstamp_tx(skb, NULL);
3639 }
3640 
3641 /**
3642  * skb_complete_wifi_ack - deliver skb with wifi status
3643  *
3644  * @skb: the original outgoing packet
3645  * @acked: ack status
3646  *
3647  */
3648 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3649 
3650 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3651 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3652 
3653 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3654 {
3655 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3656 		skb->csum_valid ||
3657 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3658 		 skb_checksum_start_offset(skb) >= 0));
3659 }
3660 
3661 /**
3662  *	skb_checksum_complete - Calculate checksum of an entire packet
3663  *	@skb: packet to process
3664  *
3665  *	This function calculates the checksum over the entire packet plus
3666  *	the value of skb->csum.  The latter can be used to supply the
3667  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3668  *	checksum.
3669  *
3670  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3671  *	this function can be used to verify that checksum on received
3672  *	packets.  In that case the function should return zero if the
3673  *	checksum is correct.  In particular, this function will return zero
3674  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3675  *	hardware has already verified the correctness of the checksum.
3676  */
3677 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3678 {
3679 	return skb_csum_unnecessary(skb) ?
3680 	       0 : __skb_checksum_complete(skb);
3681 }
3682 
3683 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3684 {
3685 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3686 		if (skb->csum_level == 0)
3687 			skb->ip_summed = CHECKSUM_NONE;
3688 		else
3689 			skb->csum_level--;
3690 	}
3691 }
3692 
3693 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3694 {
3695 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3696 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3697 			skb->csum_level++;
3698 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3699 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3700 		skb->csum_level = 0;
3701 	}
3702 }
3703 
3704 /* Check if we need to perform checksum complete validation.
3705  *
3706  * Returns true if checksum complete is needed, false otherwise
3707  * (either checksum is unnecessary or zero checksum is allowed).
3708  */
3709 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3710 						  bool zero_okay,
3711 						  __sum16 check)
3712 {
3713 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3714 		skb->csum_valid = 1;
3715 		__skb_decr_checksum_unnecessary(skb);
3716 		return false;
3717 	}
3718 
3719 	return true;
3720 }
3721 
3722 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3723  * in checksum_init.
3724  */
3725 #define CHECKSUM_BREAK 76
3726 
3727 /* Unset checksum-complete
3728  *
3729  * Unset checksum complete can be done when packet is being modified
3730  * (uncompressed for instance) and checksum-complete value is
3731  * invalidated.
3732  */
3733 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3734 {
3735 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3736 		skb->ip_summed = CHECKSUM_NONE;
3737 }
3738 
3739 /* Validate (init) checksum based on checksum complete.
3740  *
3741  * Return values:
3742  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3743  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3744  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3745  *   non-zero: value of invalid checksum
3746  *
3747  */
3748 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3749 						       bool complete,
3750 						       __wsum psum)
3751 {
3752 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3753 		if (!csum_fold(csum_add(psum, skb->csum))) {
3754 			skb->csum_valid = 1;
3755 			return 0;
3756 		}
3757 	}
3758 
3759 	skb->csum = psum;
3760 
3761 	if (complete || skb->len <= CHECKSUM_BREAK) {
3762 		__sum16 csum;
3763 
3764 		csum = __skb_checksum_complete(skb);
3765 		skb->csum_valid = !csum;
3766 		return csum;
3767 	}
3768 
3769 	return 0;
3770 }
3771 
3772 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3773 {
3774 	return 0;
3775 }
3776 
3777 /* Perform checksum validate (init). Note that this is a macro since we only
3778  * want to calculate the pseudo header which is an input function if necessary.
3779  * First we try to validate without any computation (checksum unnecessary) and
3780  * then calculate based on checksum complete calling the function to compute
3781  * pseudo header.
3782  *
3783  * Return values:
3784  *   0: checksum is validated or try to in skb_checksum_complete
3785  *   non-zero: value of invalid checksum
3786  */
3787 #define __skb_checksum_validate(skb, proto, complete,			\
3788 				zero_okay, check, compute_pseudo)	\
3789 ({									\
3790 	__sum16 __ret = 0;						\
3791 	skb->csum_valid = 0;						\
3792 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3793 		__ret = __skb_checksum_validate_complete(skb,		\
3794 				complete, compute_pseudo(skb, proto));	\
3795 	__ret;								\
3796 })
3797 
3798 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3799 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3800 
3801 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3802 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3803 
3804 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3805 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3806 
3807 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3808 					 compute_pseudo)		\
3809 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3810 
3811 #define skb_checksum_simple_validate(skb)				\
3812 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3813 
3814 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3815 {
3816 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3817 }
3818 
3819 static inline void __skb_checksum_convert(struct sk_buff *skb,
3820 					  __sum16 check, __wsum pseudo)
3821 {
3822 	skb->csum = ~pseudo;
3823 	skb->ip_summed = CHECKSUM_COMPLETE;
3824 }
3825 
3826 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3827 do {									\
3828 	if (__skb_checksum_convert_check(skb))				\
3829 		__skb_checksum_convert(skb, check,			\
3830 				       compute_pseudo(skb, proto));	\
3831 } while (0)
3832 
3833 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3834 					      u16 start, u16 offset)
3835 {
3836 	skb->ip_summed = CHECKSUM_PARTIAL;
3837 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3838 	skb->csum_offset = offset - start;
3839 }
3840 
3841 /* Update skbuf and packet to reflect the remote checksum offload operation.
3842  * When called, ptr indicates the starting point for skb->csum when
3843  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3844  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3845  */
3846 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3847 				       int start, int offset, bool nopartial)
3848 {
3849 	__wsum delta;
3850 
3851 	if (!nopartial) {
3852 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3853 		return;
3854 	}
3855 
3856 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3857 		__skb_checksum_complete(skb);
3858 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3859 	}
3860 
3861 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3862 
3863 	/* Adjust skb->csum since we changed the packet */
3864 	skb->csum = csum_add(skb->csum, delta);
3865 }
3866 
3867 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3868 {
3869 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3870 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3871 #else
3872 	return NULL;
3873 #endif
3874 }
3875 
3876 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3877 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3878 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3879 {
3880 	if (nfct && atomic_dec_and_test(&nfct->use))
3881 		nf_conntrack_destroy(nfct);
3882 }
3883 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3884 {
3885 	if (nfct)
3886 		atomic_inc(&nfct->use);
3887 }
3888 #endif
3889 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3890 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3891 {
3892 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3893 		kfree(nf_bridge);
3894 }
3895 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3896 {
3897 	if (nf_bridge)
3898 		refcount_inc(&nf_bridge->use);
3899 }
3900 #endif /* CONFIG_BRIDGE_NETFILTER */
3901 static inline void nf_reset(struct sk_buff *skb)
3902 {
3903 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3904 	nf_conntrack_put(skb_nfct(skb));
3905 	skb->_nfct = 0;
3906 #endif
3907 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3908 	nf_bridge_put(skb->nf_bridge);
3909 	skb->nf_bridge = NULL;
3910 #endif
3911 }
3912 
3913 static inline void nf_reset_trace(struct sk_buff *skb)
3914 {
3915 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3916 	skb->nf_trace = 0;
3917 #endif
3918 }
3919 
3920 static inline void ipvs_reset(struct sk_buff *skb)
3921 {
3922 #if IS_ENABLED(CONFIG_IP_VS)
3923 	skb->ipvs_property = 0;
3924 #endif
3925 }
3926 
3927 /* Note: This doesn't put any conntrack and bridge info in dst. */
3928 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3929 			     bool copy)
3930 {
3931 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3932 	dst->_nfct = src->_nfct;
3933 	nf_conntrack_get(skb_nfct(src));
3934 #endif
3935 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3936 	dst->nf_bridge  = src->nf_bridge;
3937 	nf_bridge_get(src->nf_bridge);
3938 #endif
3939 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3940 	if (copy)
3941 		dst->nf_trace = src->nf_trace;
3942 #endif
3943 }
3944 
3945 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3946 {
3947 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3948 	nf_conntrack_put(skb_nfct(dst));
3949 #endif
3950 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3951 	nf_bridge_put(dst->nf_bridge);
3952 #endif
3953 	__nf_copy(dst, src, true);
3954 }
3955 
3956 #ifdef CONFIG_NETWORK_SECMARK
3957 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3958 {
3959 	to->secmark = from->secmark;
3960 }
3961 
3962 static inline void skb_init_secmark(struct sk_buff *skb)
3963 {
3964 	skb->secmark = 0;
3965 }
3966 #else
3967 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3968 { }
3969 
3970 static inline void skb_init_secmark(struct sk_buff *skb)
3971 { }
3972 #endif
3973 
3974 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3975 {
3976 	return !skb->destructor &&
3977 #if IS_ENABLED(CONFIG_XFRM)
3978 		!skb->sp &&
3979 #endif
3980 		!skb_nfct(skb) &&
3981 		!skb->_skb_refdst &&
3982 		!skb_has_frag_list(skb);
3983 }
3984 
3985 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3986 {
3987 	skb->queue_mapping = queue_mapping;
3988 }
3989 
3990 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3991 {
3992 	return skb->queue_mapping;
3993 }
3994 
3995 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3996 {
3997 	to->queue_mapping = from->queue_mapping;
3998 }
3999 
4000 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4001 {
4002 	skb->queue_mapping = rx_queue + 1;
4003 }
4004 
4005 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4006 {
4007 	return skb->queue_mapping - 1;
4008 }
4009 
4010 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4011 {
4012 	return skb->queue_mapping != 0;
4013 }
4014 
4015 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4016 {
4017 	skb->dst_pending_confirm = val;
4018 }
4019 
4020 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4021 {
4022 	return skb->dst_pending_confirm != 0;
4023 }
4024 
4025 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
4026 {
4027 #ifdef CONFIG_XFRM
4028 	return skb->sp;
4029 #else
4030 	return NULL;
4031 #endif
4032 }
4033 
4034 /* Keeps track of mac header offset relative to skb->head.
4035  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4036  * For non-tunnel skb it points to skb_mac_header() and for
4037  * tunnel skb it points to outer mac header.
4038  * Keeps track of level of encapsulation of network headers.
4039  */
4040 struct skb_gso_cb {
4041 	union {
4042 		int	mac_offset;
4043 		int	data_offset;
4044 	};
4045 	int	encap_level;
4046 	__wsum	csum;
4047 	__u16	csum_start;
4048 };
4049 #define SKB_SGO_CB_OFFSET	32
4050 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4051 
4052 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4053 {
4054 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4055 		SKB_GSO_CB(inner_skb)->mac_offset;
4056 }
4057 
4058 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4059 {
4060 	int new_headroom, headroom;
4061 	int ret;
4062 
4063 	headroom = skb_headroom(skb);
4064 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4065 	if (ret)
4066 		return ret;
4067 
4068 	new_headroom = skb_headroom(skb);
4069 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4070 	return 0;
4071 }
4072 
4073 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4074 {
4075 	/* Do not update partial checksums if remote checksum is enabled. */
4076 	if (skb->remcsum_offload)
4077 		return;
4078 
4079 	SKB_GSO_CB(skb)->csum = res;
4080 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4081 }
4082 
4083 /* Compute the checksum for a gso segment. First compute the checksum value
4084  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4085  * then add in skb->csum (checksum from csum_start to end of packet).
4086  * skb->csum and csum_start are then updated to reflect the checksum of the
4087  * resultant packet starting from the transport header-- the resultant checksum
4088  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4089  * header.
4090  */
4091 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4092 {
4093 	unsigned char *csum_start = skb_transport_header(skb);
4094 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4095 	__wsum partial = SKB_GSO_CB(skb)->csum;
4096 
4097 	SKB_GSO_CB(skb)->csum = res;
4098 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4099 
4100 	return csum_fold(csum_partial(csum_start, plen, partial));
4101 }
4102 
4103 static inline bool skb_is_gso(const struct sk_buff *skb)
4104 {
4105 	return skb_shinfo(skb)->gso_size;
4106 }
4107 
4108 /* Note: Should be called only if skb_is_gso(skb) is true */
4109 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4110 {
4111 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4112 }
4113 
4114 /* Note: Should be called only if skb_is_gso(skb) is true */
4115 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4116 {
4117 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4118 }
4119 
4120 static inline void skb_gso_reset(struct sk_buff *skb)
4121 {
4122 	skb_shinfo(skb)->gso_size = 0;
4123 	skb_shinfo(skb)->gso_segs = 0;
4124 	skb_shinfo(skb)->gso_type = 0;
4125 }
4126 
4127 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4128 					 u16 increment)
4129 {
4130 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4131 		return;
4132 	shinfo->gso_size += increment;
4133 }
4134 
4135 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4136 					 u16 decrement)
4137 {
4138 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4139 		return;
4140 	shinfo->gso_size -= decrement;
4141 }
4142 
4143 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4144 
4145 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4146 {
4147 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4148 	 * wanted then gso_type will be set. */
4149 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4150 
4151 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4152 	    unlikely(shinfo->gso_type == 0)) {
4153 		__skb_warn_lro_forwarding(skb);
4154 		return true;
4155 	}
4156 	return false;
4157 }
4158 
4159 static inline void skb_forward_csum(struct sk_buff *skb)
4160 {
4161 	/* Unfortunately we don't support this one.  Any brave souls? */
4162 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4163 		skb->ip_summed = CHECKSUM_NONE;
4164 }
4165 
4166 /**
4167  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4168  * @skb: skb to check
4169  *
4170  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4171  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4172  * use this helper, to document places where we make this assertion.
4173  */
4174 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4175 {
4176 #ifdef DEBUG
4177 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4178 #endif
4179 }
4180 
4181 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4182 
4183 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4184 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4185 				     unsigned int transport_len,
4186 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4187 
4188 /**
4189  * skb_head_is_locked - Determine if the skb->head is locked down
4190  * @skb: skb to check
4191  *
4192  * The head on skbs build around a head frag can be removed if they are
4193  * not cloned.  This function returns true if the skb head is locked down
4194  * due to either being allocated via kmalloc, or by being a clone with
4195  * multiple references to the head.
4196  */
4197 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4198 {
4199 	return !skb->head_frag || skb_cloned(skb);
4200 }
4201 
4202 /* Local Checksum Offload.
4203  * Compute outer checksum based on the assumption that the
4204  * inner checksum will be offloaded later.
4205  * See Documentation/networking/checksum-offloads.txt for
4206  * explanation of how this works.
4207  * Fill in outer checksum adjustment (e.g. with sum of outer
4208  * pseudo-header) before calling.
4209  * Also ensure that inner checksum is in linear data area.
4210  */
4211 static inline __wsum lco_csum(struct sk_buff *skb)
4212 {
4213 	unsigned char *csum_start = skb_checksum_start(skb);
4214 	unsigned char *l4_hdr = skb_transport_header(skb);
4215 	__wsum partial;
4216 
4217 	/* Start with complement of inner checksum adjustment */
4218 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4219 						    skb->csum_offset));
4220 
4221 	/* Add in checksum of our headers (incl. outer checksum
4222 	 * adjustment filled in by caller) and return result.
4223 	 */
4224 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4225 }
4226 
4227 #endif	/* __KERNEL__ */
4228 #endif	/* _LINUX_SKBUFF_H */
4229