1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <linux/llist.h> 40 #include <net/flow.h> 41 #include <net/page_pool.h> 42 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 43 #include <linux/netfilter/nf_conntrack_common.h> 44 #endif 45 46 /* The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * A. IP checksum related features 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * The checksum related features are: 57 * 58 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 59 * IP (one's complement) checksum for any combination 60 * of protocols or protocol layering. The checksum is 61 * computed and set in a packet per the CHECKSUM_PARTIAL 62 * interface (see below). 63 * 64 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 65 * TCP or UDP packets over IPv4. These are specifically 66 * unencapsulated packets of the form IPv4|TCP or 67 * IPv4|UDP where the Protocol field in the IPv4 header 68 * is TCP or UDP. The IPv4 header may contain IP options. 69 * This feature cannot be set in features for a device 70 * with NETIF_F_HW_CSUM also set. This feature is being 71 * DEPRECATED (see below). 72 * 73 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv6. These are specifically 75 * unencapsulated packets of the form IPv6|TCP or 76 * IPv6|UDP where the Next Header field in the IPv6 77 * header is either TCP or UDP. IPv6 extension headers 78 * are not supported with this feature. This feature 79 * cannot be set in features for a device with 80 * NETIF_F_HW_CSUM also set. This feature is being 81 * DEPRECATED (see below). 82 * 83 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 84 * This flag is only used to disable the RX checksum 85 * feature for a device. The stack will accept receive 86 * checksum indication in packets received on a device 87 * regardless of whether NETIF_F_RXCSUM is set. 88 * 89 * B. Checksumming of received packets by device. Indication of checksum 90 * verification is set in skb->ip_summed. Possible values are: 91 * 92 * CHECKSUM_NONE: 93 * 94 * Device did not checksum this packet e.g. due to lack of capabilities. 95 * The packet contains full (though not verified) checksum in packet but 96 * not in skb->csum. Thus, skb->csum is undefined in this case. 97 * 98 * CHECKSUM_UNNECESSARY: 99 * 100 * The hardware you're dealing with doesn't calculate the full checksum 101 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 102 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 103 * if their checksums are okay. skb->csum is still undefined in this case 104 * though. A driver or device must never modify the checksum field in the 105 * packet even if checksum is verified. 106 * 107 * CHECKSUM_UNNECESSARY is applicable to following protocols: 108 * TCP: IPv6 and IPv4. 109 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 110 * zero UDP checksum for either IPv4 or IPv6, the networking stack 111 * may perform further validation in this case. 112 * GRE: only if the checksum is present in the header. 113 * SCTP: indicates the CRC in SCTP header has been validated. 114 * FCOE: indicates the CRC in FC frame has been validated. 115 * 116 * skb->csum_level indicates the number of consecutive checksums found in 117 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 118 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 119 * and a device is able to verify the checksums for UDP (possibly zero), 120 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to 121 * two. If the device were only able to verify the UDP checksum and not 122 * GRE, either because it doesn't support GRE checksum or because GRE 123 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 124 * not considered in this case). 125 * 126 * CHECKSUM_COMPLETE: 127 * 128 * This is the most generic way. The device supplied checksum of the _whole_ 129 * packet as seen by netif_rx() and fills in skb->csum. This means the 130 * hardware doesn't need to parse L3/L4 headers to implement this. 131 * 132 * Notes: 133 * - Even if device supports only some protocols, but is able to produce 134 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 135 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 136 * 137 * CHECKSUM_PARTIAL: 138 * 139 * A checksum is set up to be offloaded to a device as described in the 140 * output description for CHECKSUM_PARTIAL. This may occur on a packet 141 * received directly from another Linux OS, e.g., a virtualized Linux kernel 142 * on the same host, or it may be set in the input path in GRO or remote 143 * checksum offload. For the purposes of checksum verification, the checksum 144 * referred to by skb->csum_start + skb->csum_offset and any preceding 145 * checksums in the packet are considered verified. Any checksums in the 146 * packet that are after the checksum being offloaded are not considered to 147 * be verified. 148 * 149 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 150 * in the skb->ip_summed for a packet. Values are: 151 * 152 * CHECKSUM_PARTIAL: 153 * 154 * The driver is required to checksum the packet as seen by hard_start_xmit() 155 * from skb->csum_start up to the end, and to record/write the checksum at 156 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 157 * csum_start and csum_offset values are valid values given the length and 158 * offset of the packet, but it should not attempt to validate that the 159 * checksum refers to a legitimate transport layer checksum -- it is the 160 * purview of the stack to validate that csum_start and csum_offset are set 161 * correctly. 162 * 163 * When the stack requests checksum offload for a packet, the driver MUST 164 * ensure that the checksum is set correctly. A driver can either offload the 165 * checksum calculation to the device, or call skb_checksum_help (in the case 166 * that the device does not support offload for a particular checksum). 167 * 168 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 169 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 170 * checksum offload capability. 171 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 172 * on network device checksumming capabilities: if a packet does not match 173 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 174 * csum_not_inet, see item D.) is called to resolve the checksum. 175 * 176 * CHECKSUM_NONE: 177 * 178 * The skb was already checksummed by the protocol, or a checksum is not 179 * required. 180 * 181 * CHECKSUM_UNNECESSARY: 182 * 183 * This has the same meaning as CHECKSUM_NONE for checksum offload on 184 * output. 185 * 186 * CHECKSUM_COMPLETE: 187 * Not used in checksum output. If a driver observes a packet with this value 188 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. 189 * 190 * D. Non-IP checksum (CRC) offloads 191 * 192 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 193 * offloading the SCTP CRC in a packet. To perform this offload the stack 194 * will set csum_start and csum_offset accordingly, set ip_summed to 195 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 196 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 197 * A driver that supports both IP checksum offload and SCTP CRC32c offload 198 * must verify which offload is configured for a packet by testing the 199 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 200 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 201 * 202 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 203 * offloading the FCOE CRC in a packet. To perform this offload the stack 204 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 205 * accordingly. Note that there is no indication in the skbuff that the 206 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 207 * both IP checksum offload and FCOE CRC offload must verify which offload 208 * is configured for a packet, presumably by inspecting packet headers. 209 * 210 * E. Checksumming on output with GSO. 211 * 212 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 213 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 214 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 215 * part of the GSO operation is implied. If a checksum is being offloaded 216 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and 217 * csum_offset are set to refer to the outermost checksum being offloaded 218 * (two offloaded checksums are possible with UDP encapsulation). 219 */ 220 221 /* Don't change this without changing skb_csum_unnecessary! */ 222 #define CHECKSUM_NONE 0 223 #define CHECKSUM_UNNECESSARY 1 224 #define CHECKSUM_COMPLETE 2 225 #define CHECKSUM_PARTIAL 3 226 227 /* Maximum value in skb->csum_level */ 228 #define SKB_MAX_CSUM_LEVEL 3 229 230 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 231 #define SKB_WITH_OVERHEAD(X) \ 232 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 233 #define SKB_MAX_ORDER(X, ORDER) \ 234 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 235 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 236 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 237 238 /* return minimum truesize of one skb containing X bytes of data */ 239 #define SKB_TRUESIZE(X) ((X) + \ 240 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 242 243 struct ahash_request; 244 struct net_device; 245 struct scatterlist; 246 struct pipe_inode_info; 247 struct iov_iter; 248 struct napi_struct; 249 struct bpf_prog; 250 union bpf_attr; 251 struct skb_ext; 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 enum { 256 BRNF_PROTO_UNCHANGED, 257 BRNF_PROTO_8021Q, 258 BRNF_PROTO_PPPOE 259 } orig_proto:8; 260 u8 pkt_otherhost:1; 261 u8 in_prerouting:1; 262 u8 bridged_dnat:1; 263 __u16 frag_max_size; 264 struct net_device *physindev; 265 266 /* always valid & non-NULL from FORWARD on, for physdev match */ 267 struct net_device *physoutdev; 268 union { 269 /* prerouting: detect dnat in orig/reply direction */ 270 __be32 ipv4_daddr; 271 struct in6_addr ipv6_daddr; 272 273 /* after prerouting + nat detected: store original source 274 * mac since neigh resolution overwrites it, only used while 275 * skb is out in neigh layer. 276 */ 277 char neigh_header[8]; 278 }; 279 }; 280 #endif 281 282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 283 /* Chain in tc_skb_ext will be used to share the tc chain with 284 * ovs recirc_id. It will be set to the current chain by tc 285 * and read by ovs to recirc_id. 286 */ 287 struct tc_skb_ext { 288 __u32 chain; 289 __u16 mru; 290 __u16 zone; 291 bool post_ct; 292 }; 293 #endif 294 295 struct sk_buff_head { 296 /* These two members must be first to match sk_buff. */ 297 struct_group_tagged(sk_buff_list, list, 298 struct sk_buff *next; 299 struct sk_buff *prev; 300 ); 301 302 __u32 qlen; 303 spinlock_t lock; 304 }; 305 306 struct sk_buff; 307 308 /* To allow 64K frame to be packed as single skb without frag_list we 309 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 310 * buffers which do not start on a page boundary. 311 * 312 * Since GRO uses frags we allocate at least 16 regardless of page 313 * size. 314 */ 315 #if (65536/PAGE_SIZE + 1) < 16 316 #define MAX_SKB_FRAGS 16UL 317 #else 318 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 319 #endif 320 extern int sysctl_max_skb_frags; 321 322 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 323 * segment using its current segmentation instead. 324 */ 325 #define GSO_BY_FRAGS 0xFFFF 326 327 typedef struct bio_vec skb_frag_t; 328 329 /** 330 * skb_frag_size() - Returns the size of a skb fragment 331 * @frag: skb fragment 332 */ 333 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 334 { 335 return frag->bv_len; 336 } 337 338 /** 339 * skb_frag_size_set() - Sets the size of a skb fragment 340 * @frag: skb fragment 341 * @size: size of fragment 342 */ 343 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 344 { 345 frag->bv_len = size; 346 } 347 348 /** 349 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 350 * @frag: skb fragment 351 * @delta: value to add 352 */ 353 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 354 { 355 frag->bv_len += delta; 356 } 357 358 /** 359 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 360 * @frag: skb fragment 361 * @delta: value to subtract 362 */ 363 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 364 { 365 frag->bv_len -= delta; 366 } 367 368 /** 369 * skb_frag_must_loop - Test if %p is a high memory page 370 * @p: fragment's page 371 */ 372 static inline bool skb_frag_must_loop(struct page *p) 373 { 374 #if defined(CONFIG_HIGHMEM) 375 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 376 return true; 377 #endif 378 return false; 379 } 380 381 /** 382 * skb_frag_foreach_page - loop over pages in a fragment 383 * 384 * @f: skb frag to operate on 385 * @f_off: offset from start of f->bv_page 386 * @f_len: length from f_off to loop over 387 * @p: (temp var) current page 388 * @p_off: (temp var) offset from start of current page, 389 * non-zero only on first page. 390 * @p_len: (temp var) length in current page, 391 * < PAGE_SIZE only on first and last page. 392 * @copied: (temp var) length so far, excluding current p_len. 393 * 394 * A fragment can hold a compound page, in which case per-page 395 * operations, notably kmap_atomic, must be called for each 396 * regular page. 397 */ 398 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 399 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 400 p_off = (f_off) & (PAGE_SIZE - 1), \ 401 p_len = skb_frag_must_loop(p) ? \ 402 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 403 copied = 0; \ 404 copied < f_len; \ 405 copied += p_len, p++, p_off = 0, \ 406 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 407 408 #define HAVE_HW_TIME_STAMP 409 410 /** 411 * struct skb_shared_hwtstamps - hardware time stamps 412 * @hwtstamp: hardware time stamp transformed into duration 413 * since arbitrary point in time 414 * 415 * Software time stamps generated by ktime_get_real() are stored in 416 * skb->tstamp. 417 * 418 * hwtstamps can only be compared against other hwtstamps from 419 * the same device. 420 * 421 * This structure is attached to packets as part of the 422 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 423 */ 424 struct skb_shared_hwtstamps { 425 ktime_t hwtstamp; 426 }; 427 428 /* Definitions for tx_flags in struct skb_shared_info */ 429 enum { 430 /* generate hardware time stamp */ 431 SKBTX_HW_TSTAMP = 1 << 0, 432 433 /* generate software time stamp when queueing packet to NIC */ 434 SKBTX_SW_TSTAMP = 1 << 1, 435 436 /* device driver is going to provide hardware time stamp */ 437 SKBTX_IN_PROGRESS = 1 << 2, 438 439 /* generate wifi status information (where possible) */ 440 SKBTX_WIFI_STATUS = 1 << 4, 441 442 /* generate software time stamp when entering packet scheduling */ 443 SKBTX_SCHED_TSTAMP = 1 << 6, 444 }; 445 446 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 447 SKBTX_SCHED_TSTAMP) 448 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 449 450 /* Definitions for flags in struct skb_shared_info */ 451 enum { 452 /* use zcopy routines */ 453 SKBFL_ZEROCOPY_ENABLE = BIT(0), 454 455 /* This indicates at least one fragment might be overwritten 456 * (as in vmsplice(), sendfile() ...) 457 * If we need to compute a TX checksum, we'll need to copy 458 * all frags to avoid possible bad checksum 459 */ 460 SKBFL_SHARED_FRAG = BIT(1), 461 462 /* segment contains only zerocopy data and should not be 463 * charged to the kernel memory. 464 */ 465 SKBFL_PURE_ZEROCOPY = BIT(2), 466 }; 467 468 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 469 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY) 470 471 /* 472 * The callback notifies userspace to release buffers when skb DMA is done in 473 * lower device, the skb last reference should be 0 when calling this. 474 * The zerocopy_success argument is true if zero copy transmit occurred, 475 * false on data copy or out of memory error caused by data copy attempt. 476 * The ctx field is used to track device context. 477 * The desc field is used to track userspace buffer index. 478 */ 479 struct ubuf_info { 480 void (*callback)(struct sk_buff *, struct ubuf_info *, 481 bool zerocopy_success); 482 union { 483 struct { 484 unsigned long desc; 485 void *ctx; 486 }; 487 struct { 488 u32 id; 489 u16 len; 490 u16 zerocopy:1; 491 u32 bytelen; 492 }; 493 }; 494 refcount_t refcnt; 495 u8 flags; 496 497 struct mmpin { 498 struct user_struct *user; 499 unsigned int num_pg; 500 } mmp; 501 }; 502 503 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 504 505 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 506 void mm_unaccount_pinned_pages(struct mmpin *mmp); 507 508 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size); 509 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 510 struct ubuf_info *uarg); 511 512 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 513 514 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 515 bool success); 516 517 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 518 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 519 struct msghdr *msg, int len, 520 struct ubuf_info *uarg); 521 522 /* This data is invariant across clones and lives at 523 * the end of the header data, ie. at skb->end. 524 */ 525 struct skb_shared_info { 526 __u8 flags; 527 __u8 meta_len; 528 __u8 nr_frags; 529 __u8 tx_flags; 530 unsigned short gso_size; 531 /* Warning: this field is not always filled in (UFO)! */ 532 unsigned short gso_segs; 533 struct sk_buff *frag_list; 534 struct skb_shared_hwtstamps hwtstamps; 535 unsigned int gso_type; 536 u32 tskey; 537 538 /* 539 * Warning : all fields before dataref are cleared in __alloc_skb() 540 */ 541 atomic_t dataref; 542 543 /* Intermediate layers must ensure that destructor_arg 544 * remains valid until skb destructor */ 545 void * destructor_arg; 546 547 /* must be last field, see pskb_expand_head() */ 548 skb_frag_t frags[MAX_SKB_FRAGS]; 549 }; 550 551 /* We divide dataref into two halves. The higher 16 bits hold references 552 * to the payload part of skb->data. The lower 16 bits hold references to 553 * the entire skb->data. A clone of a headerless skb holds the length of 554 * the header in skb->hdr_len. 555 * 556 * All users must obey the rule that the skb->data reference count must be 557 * greater than or equal to the payload reference count. 558 * 559 * Holding a reference to the payload part means that the user does not 560 * care about modifications to the header part of skb->data. 561 */ 562 #define SKB_DATAREF_SHIFT 16 563 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 564 565 566 enum { 567 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 568 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 569 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 570 }; 571 572 enum { 573 SKB_GSO_TCPV4 = 1 << 0, 574 575 /* This indicates the skb is from an untrusted source. */ 576 SKB_GSO_DODGY = 1 << 1, 577 578 /* This indicates the tcp segment has CWR set. */ 579 SKB_GSO_TCP_ECN = 1 << 2, 580 581 SKB_GSO_TCP_FIXEDID = 1 << 3, 582 583 SKB_GSO_TCPV6 = 1 << 4, 584 585 SKB_GSO_FCOE = 1 << 5, 586 587 SKB_GSO_GRE = 1 << 6, 588 589 SKB_GSO_GRE_CSUM = 1 << 7, 590 591 SKB_GSO_IPXIP4 = 1 << 8, 592 593 SKB_GSO_IPXIP6 = 1 << 9, 594 595 SKB_GSO_UDP_TUNNEL = 1 << 10, 596 597 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 598 599 SKB_GSO_PARTIAL = 1 << 12, 600 601 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 602 603 SKB_GSO_SCTP = 1 << 14, 604 605 SKB_GSO_ESP = 1 << 15, 606 607 SKB_GSO_UDP = 1 << 16, 608 609 SKB_GSO_UDP_L4 = 1 << 17, 610 611 SKB_GSO_FRAGLIST = 1 << 18, 612 }; 613 614 #if BITS_PER_LONG > 32 615 #define NET_SKBUFF_DATA_USES_OFFSET 1 616 #endif 617 618 #ifdef NET_SKBUFF_DATA_USES_OFFSET 619 typedef unsigned int sk_buff_data_t; 620 #else 621 typedef unsigned char *sk_buff_data_t; 622 #endif 623 624 /** 625 * struct sk_buff - socket buffer 626 * @next: Next buffer in list 627 * @prev: Previous buffer in list 628 * @tstamp: Time we arrived/left 629 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 630 * for retransmit timer 631 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 632 * @list: queue head 633 * @ll_node: anchor in an llist (eg socket defer_list) 634 * @sk: Socket we are owned by 635 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 636 * fragmentation management 637 * @dev: Device we arrived on/are leaving by 638 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 639 * @cb: Control buffer. Free for use by every layer. Put private vars here 640 * @_skb_refdst: destination entry (with norefcount bit) 641 * @sp: the security path, used for xfrm 642 * @len: Length of actual data 643 * @data_len: Data length 644 * @mac_len: Length of link layer header 645 * @hdr_len: writable header length of cloned skb 646 * @csum: Checksum (must include start/offset pair) 647 * @csum_start: Offset from skb->head where checksumming should start 648 * @csum_offset: Offset from csum_start where checksum should be stored 649 * @priority: Packet queueing priority 650 * @ignore_df: allow local fragmentation 651 * @cloned: Head may be cloned (check refcnt to be sure) 652 * @ip_summed: Driver fed us an IP checksum 653 * @nohdr: Payload reference only, must not modify header 654 * @pkt_type: Packet class 655 * @fclone: skbuff clone status 656 * @ipvs_property: skbuff is owned by ipvs 657 * @inner_protocol_type: whether the inner protocol is 658 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 659 * @remcsum_offload: remote checksum offload is enabled 660 * @offload_fwd_mark: Packet was L2-forwarded in hardware 661 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 662 * @tc_skip_classify: do not classify packet. set by IFB device 663 * @tc_at_ingress: used within tc_classify to distinguish in/egress 664 * @redirected: packet was redirected by packet classifier 665 * @from_ingress: packet was redirected from the ingress path 666 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 667 * @peeked: this packet has been seen already, so stats have been 668 * done for it, don't do them again 669 * @nf_trace: netfilter packet trace flag 670 * @protocol: Packet protocol from driver 671 * @destructor: Destruct function 672 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 673 * @_sk_redir: socket redirection information for skmsg 674 * @_nfct: Associated connection, if any (with nfctinfo bits) 675 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 676 * @skb_iif: ifindex of device we arrived on 677 * @tc_index: Traffic control index 678 * @hash: the packet hash 679 * @queue_mapping: Queue mapping for multiqueue devices 680 * @head_frag: skb was allocated from page fragments, 681 * not allocated by kmalloc() or vmalloc(). 682 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 683 * @pp_recycle: mark the packet for recycling instead of freeing (implies 684 * page_pool support on driver) 685 * @active_extensions: active extensions (skb_ext_id types) 686 * @ndisc_nodetype: router type (from link layer) 687 * @ooo_okay: allow the mapping of a socket to a queue to be changed 688 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 689 * ports. 690 * @sw_hash: indicates hash was computed in software stack 691 * @wifi_acked_valid: wifi_acked was set 692 * @wifi_acked: whether frame was acked on wifi or not 693 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 694 * @encapsulation: indicates the inner headers in the skbuff are valid 695 * @encap_hdr_csum: software checksum is needed 696 * @csum_valid: checksum is already valid 697 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 698 * @csum_complete_sw: checksum was completed by software 699 * @csum_level: indicates the number of consecutive checksums found in 700 * the packet minus one that have been verified as 701 * CHECKSUM_UNNECESSARY (max 3) 702 * @dst_pending_confirm: need to confirm neighbour 703 * @decrypted: Decrypted SKB 704 * @slow_gro: state present at GRO time, slower prepare step required 705 * @napi_id: id of the NAPI struct this skb came from 706 * @sender_cpu: (aka @napi_id) source CPU in XPS 707 * @secmark: security marking 708 * @mark: Generic packet mark 709 * @reserved_tailroom: (aka @mark) number of bytes of free space available 710 * at the tail of an sk_buff 711 * @vlan_present: VLAN tag is present 712 * @vlan_proto: vlan encapsulation protocol 713 * @vlan_tci: vlan tag control information 714 * @inner_protocol: Protocol (encapsulation) 715 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 716 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 717 * @inner_transport_header: Inner transport layer header (encapsulation) 718 * @inner_network_header: Network layer header (encapsulation) 719 * @inner_mac_header: Link layer header (encapsulation) 720 * @transport_header: Transport layer header 721 * @network_header: Network layer header 722 * @mac_header: Link layer header 723 * @kcov_handle: KCOV remote handle for remote coverage collection 724 * @tail: Tail pointer 725 * @end: End pointer 726 * @head: Head of buffer 727 * @data: Data head pointer 728 * @truesize: Buffer size 729 * @users: User count - see {datagram,tcp}.c 730 * @extensions: allocated extensions, valid if active_extensions is nonzero 731 */ 732 733 struct sk_buff { 734 union { 735 struct { 736 /* These two members must be first to match sk_buff_head. */ 737 struct sk_buff *next; 738 struct sk_buff *prev; 739 740 union { 741 struct net_device *dev; 742 /* Some protocols might use this space to store information, 743 * while device pointer would be NULL. 744 * UDP receive path is one user. 745 */ 746 unsigned long dev_scratch; 747 }; 748 }; 749 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 750 struct list_head list; 751 struct llist_node ll_node; 752 }; 753 754 union { 755 struct sock *sk; 756 int ip_defrag_offset; 757 }; 758 759 union { 760 ktime_t tstamp; 761 u64 skb_mstamp_ns; /* earliest departure time */ 762 }; 763 /* 764 * This is the control buffer. It is free to use for every 765 * layer. Please put your private variables there. If you 766 * want to keep them across layers you have to do a skb_clone() 767 * first. This is owned by whoever has the skb queued ATM. 768 */ 769 char cb[48] __aligned(8); 770 771 union { 772 struct { 773 unsigned long _skb_refdst; 774 void (*destructor)(struct sk_buff *skb); 775 }; 776 struct list_head tcp_tsorted_anchor; 777 #ifdef CONFIG_NET_SOCK_MSG 778 unsigned long _sk_redir; 779 #endif 780 }; 781 782 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 783 unsigned long _nfct; 784 #endif 785 unsigned int len, 786 data_len; 787 __u16 mac_len, 788 hdr_len; 789 790 /* Following fields are _not_ copied in __copy_skb_header() 791 * Note that queue_mapping is here mostly to fill a hole. 792 */ 793 __u16 queue_mapping; 794 795 /* if you move cloned around you also must adapt those constants */ 796 #ifdef __BIG_ENDIAN_BITFIELD 797 #define CLONED_MASK (1 << 7) 798 #else 799 #define CLONED_MASK 1 800 #endif 801 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 802 803 /* private: */ 804 __u8 __cloned_offset[0]; 805 /* public: */ 806 __u8 cloned:1, 807 nohdr:1, 808 fclone:2, 809 peeked:1, 810 head_frag:1, 811 pfmemalloc:1, 812 pp_recycle:1; /* page_pool recycle indicator */ 813 #ifdef CONFIG_SKB_EXTENSIONS 814 __u8 active_extensions; 815 #endif 816 817 /* Fields enclosed in headers group are copied 818 * using a single memcpy() in __copy_skb_header() 819 */ 820 struct_group(headers, 821 822 /* private: */ 823 __u8 __pkt_type_offset[0]; 824 /* public: */ 825 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 826 __u8 ignore_df:1; 827 __u8 nf_trace:1; 828 __u8 ip_summed:2; 829 __u8 ooo_okay:1; 830 831 __u8 l4_hash:1; 832 __u8 sw_hash:1; 833 __u8 wifi_acked_valid:1; 834 __u8 wifi_acked:1; 835 __u8 no_fcs:1; 836 /* Indicates the inner headers are valid in the skbuff. */ 837 __u8 encapsulation:1; 838 __u8 encap_hdr_csum:1; 839 __u8 csum_valid:1; 840 841 /* private: */ 842 __u8 __pkt_vlan_present_offset[0]; 843 /* public: */ 844 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 845 __u8 csum_complete_sw:1; 846 __u8 csum_level:2; 847 __u8 csum_not_inet:1; 848 __u8 dst_pending_confirm:1; 849 #ifdef CONFIG_IPV6_NDISC_NODETYPE 850 __u8 ndisc_nodetype:2; 851 #endif 852 853 __u8 ipvs_property:1; 854 __u8 inner_protocol_type:1; 855 __u8 remcsum_offload:1; 856 #ifdef CONFIG_NET_SWITCHDEV 857 __u8 offload_fwd_mark:1; 858 __u8 offload_l3_fwd_mark:1; 859 #endif 860 #ifdef CONFIG_NET_CLS_ACT 861 __u8 tc_skip_classify:1; 862 __u8 tc_at_ingress:1; 863 #endif 864 __u8 redirected:1; 865 #ifdef CONFIG_NET_REDIRECT 866 __u8 from_ingress:1; 867 #endif 868 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 869 __u8 nf_skip_egress:1; 870 #endif 871 #ifdef CONFIG_TLS_DEVICE 872 __u8 decrypted:1; 873 #endif 874 __u8 slow_gro:1; 875 876 #ifdef CONFIG_NET_SCHED 877 __u16 tc_index; /* traffic control index */ 878 #endif 879 880 union { 881 __wsum csum; 882 struct { 883 __u16 csum_start; 884 __u16 csum_offset; 885 }; 886 }; 887 __u32 priority; 888 int skb_iif; 889 __u32 hash; 890 __be16 vlan_proto; 891 __u16 vlan_tci; 892 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 893 union { 894 unsigned int napi_id; 895 unsigned int sender_cpu; 896 }; 897 #endif 898 #ifdef CONFIG_NETWORK_SECMARK 899 __u32 secmark; 900 #endif 901 902 union { 903 __u32 mark; 904 __u32 reserved_tailroom; 905 }; 906 907 union { 908 __be16 inner_protocol; 909 __u8 inner_ipproto; 910 }; 911 912 __u16 inner_transport_header; 913 __u16 inner_network_header; 914 __u16 inner_mac_header; 915 916 __be16 protocol; 917 __u16 transport_header; 918 __u16 network_header; 919 __u16 mac_header; 920 921 #ifdef CONFIG_KCOV 922 u64 kcov_handle; 923 #endif 924 925 ); /* end headers group */ 926 927 /* These elements must be at the end, see alloc_skb() for details. */ 928 sk_buff_data_t tail; 929 sk_buff_data_t end; 930 unsigned char *head, 931 *data; 932 unsigned int truesize; 933 refcount_t users; 934 935 #ifdef CONFIG_SKB_EXTENSIONS 936 /* only useable after checking ->active_extensions != 0 */ 937 struct skb_ext *extensions; 938 #endif 939 }; 940 941 /* if you move pkt_type around you also must adapt those constants */ 942 #ifdef __BIG_ENDIAN_BITFIELD 943 #define PKT_TYPE_MAX (7 << 5) 944 #else 945 #define PKT_TYPE_MAX 7 946 #endif 947 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 948 949 /* if you move pkt_vlan_present around you also must adapt these constants */ 950 #ifdef __BIG_ENDIAN_BITFIELD 951 #define PKT_VLAN_PRESENT_BIT 7 952 #else 953 #define PKT_VLAN_PRESENT_BIT 0 954 #endif 955 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 956 957 #ifdef __KERNEL__ 958 /* 959 * Handling routines are only of interest to the kernel 960 */ 961 962 #define SKB_ALLOC_FCLONE 0x01 963 #define SKB_ALLOC_RX 0x02 964 #define SKB_ALLOC_NAPI 0x04 965 966 /** 967 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 968 * @skb: buffer 969 */ 970 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 971 { 972 return unlikely(skb->pfmemalloc); 973 } 974 975 /* 976 * skb might have a dst pointer attached, refcounted or not. 977 * _skb_refdst low order bit is set if refcount was _not_ taken 978 */ 979 #define SKB_DST_NOREF 1UL 980 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 981 982 /** 983 * skb_dst - returns skb dst_entry 984 * @skb: buffer 985 * 986 * Returns skb dst_entry, regardless of reference taken or not. 987 */ 988 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 989 { 990 /* If refdst was not refcounted, check we still are in a 991 * rcu_read_lock section 992 */ 993 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 994 !rcu_read_lock_held() && 995 !rcu_read_lock_bh_held()); 996 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 997 } 998 999 /** 1000 * skb_dst_set - sets skb dst 1001 * @skb: buffer 1002 * @dst: dst entry 1003 * 1004 * Sets skb dst, assuming a reference was taken on dst and should 1005 * be released by skb_dst_drop() 1006 */ 1007 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1008 { 1009 skb->slow_gro |= !!dst; 1010 skb->_skb_refdst = (unsigned long)dst; 1011 } 1012 1013 /** 1014 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1015 * @skb: buffer 1016 * @dst: dst entry 1017 * 1018 * Sets skb dst, assuming a reference was not taken on dst. 1019 * If dst entry is cached, we do not take reference and dst_release 1020 * will be avoided by refdst_drop. If dst entry is not cached, we take 1021 * reference, so that last dst_release can destroy the dst immediately. 1022 */ 1023 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1024 { 1025 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1026 skb->slow_gro |= !!dst; 1027 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1028 } 1029 1030 /** 1031 * skb_dst_is_noref - Test if skb dst isn't refcounted 1032 * @skb: buffer 1033 */ 1034 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1035 { 1036 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1037 } 1038 1039 /** 1040 * skb_rtable - Returns the skb &rtable 1041 * @skb: buffer 1042 */ 1043 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1044 { 1045 return (struct rtable *)skb_dst(skb); 1046 } 1047 1048 /* For mangling skb->pkt_type from user space side from applications 1049 * such as nft, tc, etc, we only allow a conservative subset of 1050 * possible pkt_types to be set. 1051 */ 1052 static inline bool skb_pkt_type_ok(u32 ptype) 1053 { 1054 return ptype <= PACKET_OTHERHOST; 1055 } 1056 1057 /** 1058 * skb_napi_id - Returns the skb's NAPI id 1059 * @skb: buffer 1060 */ 1061 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1062 { 1063 #ifdef CONFIG_NET_RX_BUSY_POLL 1064 return skb->napi_id; 1065 #else 1066 return 0; 1067 #endif 1068 } 1069 1070 /** 1071 * skb_unref - decrement the skb's reference count 1072 * @skb: buffer 1073 * 1074 * Returns true if we can free the skb. 1075 */ 1076 static inline bool skb_unref(struct sk_buff *skb) 1077 { 1078 if (unlikely(!skb)) 1079 return false; 1080 if (likely(refcount_read(&skb->users) == 1)) 1081 smp_rmb(); 1082 else if (likely(!refcount_dec_and_test(&skb->users))) 1083 return false; 1084 1085 return true; 1086 } 1087 1088 void skb_release_head_state(struct sk_buff *skb); 1089 void kfree_skb(struct sk_buff *skb); 1090 void kfree_skb_list(struct sk_buff *segs); 1091 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1092 void skb_tx_error(struct sk_buff *skb); 1093 1094 #ifdef CONFIG_TRACEPOINTS 1095 void consume_skb(struct sk_buff *skb); 1096 #else 1097 static inline void consume_skb(struct sk_buff *skb) 1098 { 1099 return kfree_skb(skb); 1100 } 1101 #endif 1102 1103 void __consume_stateless_skb(struct sk_buff *skb); 1104 void __kfree_skb(struct sk_buff *skb); 1105 extern struct kmem_cache *skbuff_head_cache; 1106 1107 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1108 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1109 bool *fragstolen, int *delta_truesize); 1110 1111 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1112 int node); 1113 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1114 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1115 struct sk_buff *build_skb_around(struct sk_buff *skb, 1116 void *data, unsigned int frag_size); 1117 1118 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1119 1120 /** 1121 * alloc_skb - allocate a network buffer 1122 * @size: size to allocate 1123 * @priority: allocation mask 1124 * 1125 * This function is a convenient wrapper around __alloc_skb(). 1126 */ 1127 static inline struct sk_buff *alloc_skb(unsigned int size, 1128 gfp_t priority) 1129 { 1130 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1131 } 1132 1133 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1134 unsigned long data_len, 1135 int max_page_order, 1136 int *errcode, 1137 gfp_t gfp_mask); 1138 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1139 1140 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1141 struct sk_buff_fclones { 1142 struct sk_buff skb1; 1143 1144 struct sk_buff skb2; 1145 1146 refcount_t fclone_ref; 1147 }; 1148 1149 /** 1150 * skb_fclone_busy - check if fclone is busy 1151 * @sk: socket 1152 * @skb: buffer 1153 * 1154 * Returns true if skb is a fast clone, and its clone is not freed. 1155 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1156 * so we also check that this didnt happen. 1157 */ 1158 static inline bool skb_fclone_busy(const struct sock *sk, 1159 const struct sk_buff *skb) 1160 { 1161 const struct sk_buff_fclones *fclones; 1162 1163 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1164 1165 return skb->fclone == SKB_FCLONE_ORIG && 1166 refcount_read(&fclones->fclone_ref) > 1 && 1167 READ_ONCE(fclones->skb2.sk) == sk; 1168 } 1169 1170 /** 1171 * alloc_skb_fclone - allocate a network buffer from fclone cache 1172 * @size: size to allocate 1173 * @priority: allocation mask 1174 * 1175 * This function is a convenient wrapper around __alloc_skb(). 1176 */ 1177 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1178 gfp_t priority) 1179 { 1180 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1181 } 1182 1183 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1184 void skb_headers_offset_update(struct sk_buff *skb, int off); 1185 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1186 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1187 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1188 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1189 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1190 gfp_t gfp_mask, bool fclone); 1191 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1192 gfp_t gfp_mask) 1193 { 1194 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1195 } 1196 1197 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1198 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1199 unsigned int headroom); 1200 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1201 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1202 int newtailroom, gfp_t priority); 1203 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1204 int offset, int len); 1205 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1206 int offset, int len); 1207 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1208 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1209 1210 /** 1211 * skb_pad - zero pad the tail of an skb 1212 * @skb: buffer to pad 1213 * @pad: space to pad 1214 * 1215 * Ensure that a buffer is followed by a padding area that is zero 1216 * filled. Used by network drivers which may DMA or transfer data 1217 * beyond the buffer end onto the wire. 1218 * 1219 * May return error in out of memory cases. The skb is freed on error. 1220 */ 1221 static inline int skb_pad(struct sk_buff *skb, int pad) 1222 { 1223 return __skb_pad(skb, pad, true); 1224 } 1225 #define dev_kfree_skb(a) consume_skb(a) 1226 1227 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1228 int offset, size_t size); 1229 1230 struct skb_seq_state { 1231 __u32 lower_offset; 1232 __u32 upper_offset; 1233 __u32 frag_idx; 1234 __u32 stepped_offset; 1235 struct sk_buff *root_skb; 1236 struct sk_buff *cur_skb; 1237 __u8 *frag_data; 1238 __u32 frag_off; 1239 }; 1240 1241 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1242 unsigned int to, struct skb_seq_state *st); 1243 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1244 struct skb_seq_state *st); 1245 void skb_abort_seq_read(struct skb_seq_state *st); 1246 1247 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1248 unsigned int to, struct ts_config *config); 1249 1250 /* 1251 * Packet hash types specify the type of hash in skb_set_hash. 1252 * 1253 * Hash types refer to the protocol layer addresses which are used to 1254 * construct a packet's hash. The hashes are used to differentiate or identify 1255 * flows of the protocol layer for the hash type. Hash types are either 1256 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1257 * 1258 * Properties of hashes: 1259 * 1260 * 1) Two packets in different flows have different hash values 1261 * 2) Two packets in the same flow should have the same hash value 1262 * 1263 * A hash at a higher layer is considered to be more specific. A driver should 1264 * set the most specific hash possible. 1265 * 1266 * A driver cannot indicate a more specific hash than the layer at which a hash 1267 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1268 * 1269 * A driver may indicate a hash level which is less specific than the 1270 * actual layer the hash was computed on. For instance, a hash computed 1271 * at L4 may be considered an L3 hash. This should only be done if the 1272 * driver can't unambiguously determine that the HW computed the hash at 1273 * the higher layer. Note that the "should" in the second property above 1274 * permits this. 1275 */ 1276 enum pkt_hash_types { 1277 PKT_HASH_TYPE_NONE, /* Undefined type */ 1278 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1279 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1280 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1281 }; 1282 1283 static inline void skb_clear_hash(struct sk_buff *skb) 1284 { 1285 skb->hash = 0; 1286 skb->sw_hash = 0; 1287 skb->l4_hash = 0; 1288 } 1289 1290 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1291 { 1292 if (!skb->l4_hash) 1293 skb_clear_hash(skb); 1294 } 1295 1296 static inline void 1297 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1298 { 1299 skb->l4_hash = is_l4; 1300 skb->sw_hash = is_sw; 1301 skb->hash = hash; 1302 } 1303 1304 static inline void 1305 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1306 { 1307 /* Used by drivers to set hash from HW */ 1308 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1309 } 1310 1311 static inline void 1312 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1313 { 1314 __skb_set_hash(skb, hash, true, is_l4); 1315 } 1316 1317 void __skb_get_hash(struct sk_buff *skb); 1318 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1319 u32 skb_get_poff(const struct sk_buff *skb); 1320 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1321 const struct flow_keys_basic *keys, int hlen); 1322 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1323 const void *data, int hlen_proto); 1324 1325 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1326 int thoff, u8 ip_proto) 1327 { 1328 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1329 } 1330 1331 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1332 const struct flow_dissector_key *key, 1333 unsigned int key_count); 1334 1335 struct bpf_flow_dissector; 1336 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1337 __be16 proto, int nhoff, int hlen, unsigned int flags); 1338 1339 bool __skb_flow_dissect(const struct net *net, 1340 const struct sk_buff *skb, 1341 struct flow_dissector *flow_dissector, 1342 void *target_container, const void *data, 1343 __be16 proto, int nhoff, int hlen, unsigned int flags); 1344 1345 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1346 struct flow_dissector *flow_dissector, 1347 void *target_container, unsigned int flags) 1348 { 1349 return __skb_flow_dissect(NULL, skb, flow_dissector, 1350 target_container, NULL, 0, 0, 0, flags); 1351 } 1352 1353 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1354 struct flow_keys *flow, 1355 unsigned int flags) 1356 { 1357 memset(flow, 0, sizeof(*flow)); 1358 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1359 flow, NULL, 0, 0, 0, flags); 1360 } 1361 1362 static inline bool 1363 skb_flow_dissect_flow_keys_basic(const struct net *net, 1364 const struct sk_buff *skb, 1365 struct flow_keys_basic *flow, 1366 const void *data, __be16 proto, 1367 int nhoff, int hlen, unsigned int flags) 1368 { 1369 memset(flow, 0, sizeof(*flow)); 1370 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1371 data, proto, nhoff, hlen, flags); 1372 } 1373 1374 void skb_flow_dissect_meta(const struct sk_buff *skb, 1375 struct flow_dissector *flow_dissector, 1376 void *target_container); 1377 1378 /* Gets a skb connection tracking info, ctinfo map should be a 1379 * map of mapsize to translate enum ip_conntrack_info states 1380 * to user states. 1381 */ 1382 void 1383 skb_flow_dissect_ct(const struct sk_buff *skb, 1384 struct flow_dissector *flow_dissector, 1385 void *target_container, 1386 u16 *ctinfo_map, size_t mapsize, 1387 bool post_ct, u16 zone); 1388 void 1389 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1390 struct flow_dissector *flow_dissector, 1391 void *target_container); 1392 1393 void skb_flow_dissect_hash(const struct sk_buff *skb, 1394 struct flow_dissector *flow_dissector, 1395 void *target_container); 1396 1397 static inline __u32 skb_get_hash(struct sk_buff *skb) 1398 { 1399 if (!skb->l4_hash && !skb->sw_hash) 1400 __skb_get_hash(skb); 1401 1402 return skb->hash; 1403 } 1404 1405 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1406 { 1407 if (!skb->l4_hash && !skb->sw_hash) { 1408 struct flow_keys keys; 1409 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1410 1411 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1412 } 1413 1414 return skb->hash; 1415 } 1416 1417 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1418 const siphash_key_t *perturb); 1419 1420 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1421 { 1422 return skb->hash; 1423 } 1424 1425 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1426 { 1427 to->hash = from->hash; 1428 to->sw_hash = from->sw_hash; 1429 to->l4_hash = from->l4_hash; 1430 }; 1431 1432 static inline void skb_copy_decrypted(struct sk_buff *to, 1433 const struct sk_buff *from) 1434 { 1435 #ifdef CONFIG_TLS_DEVICE 1436 to->decrypted = from->decrypted; 1437 #endif 1438 } 1439 1440 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1441 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1442 { 1443 return skb->head + skb->end; 1444 } 1445 1446 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1447 { 1448 return skb->end; 1449 } 1450 #else 1451 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1452 { 1453 return skb->end; 1454 } 1455 1456 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1457 { 1458 return skb->end - skb->head; 1459 } 1460 #endif 1461 1462 /* Internal */ 1463 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1464 1465 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1466 { 1467 return &skb_shinfo(skb)->hwtstamps; 1468 } 1469 1470 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1471 { 1472 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1473 1474 return is_zcopy ? skb_uarg(skb) : NULL; 1475 } 1476 1477 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1478 { 1479 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1480 } 1481 1482 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1483 const struct sk_buff *skb2) 1484 { 1485 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1486 } 1487 1488 static inline void net_zcopy_get(struct ubuf_info *uarg) 1489 { 1490 refcount_inc(&uarg->refcnt); 1491 } 1492 1493 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1494 { 1495 skb_shinfo(skb)->destructor_arg = uarg; 1496 skb_shinfo(skb)->flags |= uarg->flags; 1497 } 1498 1499 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1500 bool *have_ref) 1501 { 1502 if (skb && uarg && !skb_zcopy(skb)) { 1503 if (unlikely(have_ref && *have_ref)) 1504 *have_ref = false; 1505 else 1506 net_zcopy_get(uarg); 1507 skb_zcopy_init(skb, uarg); 1508 } 1509 } 1510 1511 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1512 { 1513 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1514 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1515 } 1516 1517 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1518 { 1519 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1520 } 1521 1522 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1523 { 1524 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1525 } 1526 1527 static inline void net_zcopy_put(struct ubuf_info *uarg) 1528 { 1529 if (uarg) 1530 uarg->callback(NULL, uarg, true); 1531 } 1532 1533 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1534 { 1535 if (uarg) { 1536 if (uarg->callback == msg_zerocopy_callback) 1537 msg_zerocopy_put_abort(uarg, have_uref); 1538 else if (have_uref) 1539 net_zcopy_put(uarg); 1540 } 1541 } 1542 1543 /* Release a reference on a zerocopy structure */ 1544 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1545 { 1546 struct ubuf_info *uarg = skb_zcopy(skb); 1547 1548 if (uarg) { 1549 if (!skb_zcopy_is_nouarg(skb)) 1550 uarg->callback(skb, uarg, zerocopy_success); 1551 1552 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1553 } 1554 } 1555 1556 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1557 { 1558 skb->next = NULL; 1559 } 1560 1561 /* Iterate through singly-linked GSO fragments of an skb. */ 1562 #define skb_list_walk_safe(first, skb, next_skb) \ 1563 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1564 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1565 1566 static inline void skb_list_del_init(struct sk_buff *skb) 1567 { 1568 __list_del_entry(&skb->list); 1569 skb_mark_not_on_list(skb); 1570 } 1571 1572 /** 1573 * skb_queue_empty - check if a queue is empty 1574 * @list: queue head 1575 * 1576 * Returns true if the queue is empty, false otherwise. 1577 */ 1578 static inline int skb_queue_empty(const struct sk_buff_head *list) 1579 { 1580 return list->next == (const struct sk_buff *) list; 1581 } 1582 1583 /** 1584 * skb_queue_empty_lockless - check if a queue is empty 1585 * @list: queue head 1586 * 1587 * Returns true if the queue is empty, false otherwise. 1588 * This variant can be used in lockless contexts. 1589 */ 1590 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1591 { 1592 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1593 } 1594 1595 1596 /** 1597 * skb_queue_is_last - check if skb is the last entry in the queue 1598 * @list: queue head 1599 * @skb: buffer 1600 * 1601 * Returns true if @skb is the last buffer on the list. 1602 */ 1603 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1604 const struct sk_buff *skb) 1605 { 1606 return skb->next == (const struct sk_buff *) list; 1607 } 1608 1609 /** 1610 * skb_queue_is_first - check if skb is the first entry in the queue 1611 * @list: queue head 1612 * @skb: buffer 1613 * 1614 * Returns true if @skb is the first buffer on the list. 1615 */ 1616 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1617 const struct sk_buff *skb) 1618 { 1619 return skb->prev == (const struct sk_buff *) list; 1620 } 1621 1622 /** 1623 * skb_queue_next - return the next packet in the queue 1624 * @list: queue head 1625 * @skb: current buffer 1626 * 1627 * Return the next packet in @list after @skb. It is only valid to 1628 * call this if skb_queue_is_last() evaluates to false. 1629 */ 1630 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1631 const struct sk_buff *skb) 1632 { 1633 /* This BUG_ON may seem severe, but if we just return then we 1634 * are going to dereference garbage. 1635 */ 1636 BUG_ON(skb_queue_is_last(list, skb)); 1637 return skb->next; 1638 } 1639 1640 /** 1641 * skb_queue_prev - return the prev packet in the queue 1642 * @list: queue head 1643 * @skb: current buffer 1644 * 1645 * Return the prev packet in @list before @skb. It is only valid to 1646 * call this if skb_queue_is_first() evaluates to false. 1647 */ 1648 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1649 const struct sk_buff *skb) 1650 { 1651 /* This BUG_ON may seem severe, but if we just return then we 1652 * are going to dereference garbage. 1653 */ 1654 BUG_ON(skb_queue_is_first(list, skb)); 1655 return skb->prev; 1656 } 1657 1658 /** 1659 * skb_get - reference buffer 1660 * @skb: buffer to reference 1661 * 1662 * Makes another reference to a socket buffer and returns a pointer 1663 * to the buffer. 1664 */ 1665 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1666 { 1667 refcount_inc(&skb->users); 1668 return skb; 1669 } 1670 1671 /* 1672 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1673 */ 1674 1675 /** 1676 * skb_cloned - is the buffer a clone 1677 * @skb: buffer to check 1678 * 1679 * Returns true if the buffer was generated with skb_clone() and is 1680 * one of multiple shared copies of the buffer. Cloned buffers are 1681 * shared data so must not be written to under normal circumstances. 1682 */ 1683 static inline int skb_cloned(const struct sk_buff *skb) 1684 { 1685 return skb->cloned && 1686 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1687 } 1688 1689 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1690 { 1691 might_sleep_if(gfpflags_allow_blocking(pri)); 1692 1693 if (skb_cloned(skb)) 1694 return pskb_expand_head(skb, 0, 0, pri); 1695 1696 return 0; 1697 } 1698 1699 /* This variant of skb_unclone() makes sure skb->truesize is not changed */ 1700 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1701 { 1702 might_sleep_if(gfpflags_allow_blocking(pri)); 1703 1704 if (skb_cloned(skb)) { 1705 unsigned int save = skb->truesize; 1706 int res; 1707 1708 res = pskb_expand_head(skb, 0, 0, pri); 1709 skb->truesize = save; 1710 return res; 1711 } 1712 return 0; 1713 } 1714 1715 /** 1716 * skb_header_cloned - is the header a clone 1717 * @skb: buffer to check 1718 * 1719 * Returns true if modifying the header part of the buffer requires 1720 * the data to be copied. 1721 */ 1722 static inline int skb_header_cloned(const struct sk_buff *skb) 1723 { 1724 int dataref; 1725 1726 if (!skb->cloned) 1727 return 0; 1728 1729 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1730 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1731 return dataref != 1; 1732 } 1733 1734 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1735 { 1736 might_sleep_if(gfpflags_allow_blocking(pri)); 1737 1738 if (skb_header_cloned(skb)) 1739 return pskb_expand_head(skb, 0, 0, pri); 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * __skb_header_release - release reference to header 1746 * @skb: buffer to operate on 1747 */ 1748 static inline void __skb_header_release(struct sk_buff *skb) 1749 { 1750 skb->nohdr = 1; 1751 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1752 } 1753 1754 1755 /** 1756 * skb_shared - is the buffer shared 1757 * @skb: buffer to check 1758 * 1759 * Returns true if more than one person has a reference to this 1760 * buffer. 1761 */ 1762 static inline int skb_shared(const struct sk_buff *skb) 1763 { 1764 return refcount_read(&skb->users) != 1; 1765 } 1766 1767 /** 1768 * skb_share_check - check if buffer is shared and if so clone it 1769 * @skb: buffer to check 1770 * @pri: priority for memory allocation 1771 * 1772 * If the buffer is shared the buffer is cloned and the old copy 1773 * drops a reference. A new clone with a single reference is returned. 1774 * If the buffer is not shared the original buffer is returned. When 1775 * being called from interrupt status or with spinlocks held pri must 1776 * be GFP_ATOMIC. 1777 * 1778 * NULL is returned on a memory allocation failure. 1779 */ 1780 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1781 { 1782 might_sleep_if(gfpflags_allow_blocking(pri)); 1783 if (skb_shared(skb)) { 1784 struct sk_buff *nskb = skb_clone(skb, pri); 1785 1786 if (likely(nskb)) 1787 consume_skb(skb); 1788 else 1789 kfree_skb(skb); 1790 skb = nskb; 1791 } 1792 return skb; 1793 } 1794 1795 /* 1796 * Copy shared buffers into a new sk_buff. We effectively do COW on 1797 * packets to handle cases where we have a local reader and forward 1798 * and a couple of other messy ones. The normal one is tcpdumping 1799 * a packet thats being forwarded. 1800 */ 1801 1802 /** 1803 * skb_unshare - make a copy of a shared buffer 1804 * @skb: buffer to check 1805 * @pri: priority for memory allocation 1806 * 1807 * If the socket buffer is a clone then this function creates a new 1808 * copy of the data, drops a reference count on the old copy and returns 1809 * the new copy with the reference count at 1. If the buffer is not a clone 1810 * the original buffer is returned. When called with a spinlock held or 1811 * from interrupt state @pri must be %GFP_ATOMIC 1812 * 1813 * %NULL is returned on a memory allocation failure. 1814 */ 1815 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1816 gfp_t pri) 1817 { 1818 might_sleep_if(gfpflags_allow_blocking(pri)); 1819 if (skb_cloned(skb)) { 1820 struct sk_buff *nskb = skb_copy(skb, pri); 1821 1822 /* Free our shared copy */ 1823 if (likely(nskb)) 1824 consume_skb(skb); 1825 else 1826 kfree_skb(skb); 1827 skb = nskb; 1828 } 1829 return skb; 1830 } 1831 1832 /** 1833 * skb_peek - peek at the head of an &sk_buff_head 1834 * @list_: list to peek at 1835 * 1836 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1837 * be careful with this one. A peek leaves the buffer on the 1838 * list and someone else may run off with it. You must hold 1839 * the appropriate locks or have a private queue to do this. 1840 * 1841 * Returns %NULL for an empty list or a pointer to the head element. 1842 * The reference count is not incremented and the reference is therefore 1843 * volatile. Use with caution. 1844 */ 1845 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1846 { 1847 struct sk_buff *skb = list_->next; 1848 1849 if (skb == (struct sk_buff *)list_) 1850 skb = NULL; 1851 return skb; 1852 } 1853 1854 /** 1855 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1856 * @list_: list to peek at 1857 * 1858 * Like skb_peek(), but the caller knows that the list is not empty. 1859 */ 1860 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1861 { 1862 return list_->next; 1863 } 1864 1865 /** 1866 * skb_peek_next - peek skb following the given one from a queue 1867 * @skb: skb to start from 1868 * @list_: list to peek at 1869 * 1870 * Returns %NULL when the end of the list is met or a pointer to the 1871 * next element. The reference count is not incremented and the 1872 * reference is therefore volatile. Use with caution. 1873 */ 1874 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1875 const struct sk_buff_head *list_) 1876 { 1877 struct sk_buff *next = skb->next; 1878 1879 if (next == (struct sk_buff *)list_) 1880 next = NULL; 1881 return next; 1882 } 1883 1884 /** 1885 * skb_peek_tail - peek at the tail of an &sk_buff_head 1886 * @list_: list to peek at 1887 * 1888 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1889 * be careful with this one. A peek leaves the buffer on the 1890 * list and someone else may run off with it. You must hold 1891 * the appropriate locks or have a private queue to do this. 1892 * 1893 * Returns %NULL for an empty list or a pointer to the tail element. 1894 * The reference count is not incremented and the reference is therefore 1895 * volatile. Use with caution. 1896 */ 1897 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1898 { 1899 struct sk_buff *skb = READ_ONCE(list_->prev); 1900 1901 if (skb == (struct sk_buff *)list_) 1902 skb = NULL; 1903 return skb; 1904 1905 } 1906 1907 /** 1908 * skb_queue_len - get queue length 1909 * @list_: list to measure 1910 * 1911 * Return the length of an &sk_buff queue. 1912 */ 1913 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1914 { 1915 return list_->qlen; 1916 } 1917 1918 /** 1919 * skb_queue_len_lockless - get queue length 1920 * @list_: list to measure 1921 * 1922 * Return the length of an &sk_buff queue. 1923 * This variant can be used in lockless contexts. 1924 */ 1925 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 1926 { 1927 return READ_ONCE(list_->qlen); 1928 } 1929 1930 /** 1931 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1932 * @list: queue to initialize 1933 * 1934 * This initializes only the list and queue length aspects of 1935 * an sk_buff_head object. This allows to initialize the list 1936 * aspects of an sk_buff_head without reinitializing things like 1937 * the spinlock. It can also be used for on-stack sk_buff_head 1938 * objects where the spinlock is known to not be used. 1939 */ 1940 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1941 { 1942 list->prev = list->next = (struct sk_buff *)list; 1943 list->qlen = 0; 1944 } 1945 1946 /* 1947 * This function creates a split out lock class for each invocation; 1948 * this is needed for now since a whole lot of users of the skb-queue 1949 * infrastructure in drivers have different locking usage (in hardirq) 1950 * than the networking core (in softirq only). In the long run either the 1951 * network layer or drivers should need annotation to consolidate the 1952 * main types of usage into 3 classes. 1953 */ 1954 static inline void skb_queue_head_init(struct sk_buff_head *list) 1955 { 1956 spin_lock_init(&list->lock); 1957 __skb_queue_head_init(list); 1958 } 1959 1960 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1961 struct lock_class_key *class) 1962 { 1963 skb_queue_head_init(list); 1964 lockdep_set_class(&list->lock, class); 1965 } 1966 1967 /* 1968 * Insert an sk_buff on a list. 1969 * 1970 * The "__skb_xxxx()" functions are the non-atomic ones that 1971 * can only be called with interrupts disabled. 1972 */ 1973 static inline void __skb_insert(struct sk_buff *newsk, 1974 struct sk_buff *prev, struct sk_buff *next, 1975 struct sk_buff_head *list) 1976 { 1977 /* See skb_queue_empty_lockless() and skb_peek_tail() 1978 * for the opposite READ_ONCE() 1979 */ 1980 WRITE_ONCE(newsk->next, next); 1981 WRITE_ONCE(newsk->prev, prev); 1982 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 1983 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 1984 WRITE_ONCE(list->qlen, list->qlen + 1); 1985 } 1986 1987 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1988 struct sk_buff *prev, 1989 struct sk_buff *next) 1990 { 1991 struct sk_buff *first = list->next; 1992 struct sk_buff *last = list->prev; 1993 1994 WRITE_ONCE(first->prev, prev); 1995 WRITE_ONCE(prev->next, first); 1996 1997 WRITE_ONCE(last->next, next); 1998 WRITE_ONCE(next->prev, last); 1999 } 2000 2001 /** 2002 * skb_queue_splice - join two skb lists, this is designed for stacks 2003 * @list: the new list to add 2004 * @head: the place to add it in the first list 2005 */ 2006 static inline void skb_queue_splice(const struct sk_buff_head *list, 2007 struct sk_buff_head *head) 2008 { 2009 if (!skb_queue_empty(list)) { 2010 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2011 head->qlen += list->qlen; 2012 } 2013 } 2014 2015 /** 2016 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2017 * @list: the new list to add 2018 * @head: the place to add it in the first list 2019 * 2020 * The list at @list is reinitialised 2021 */ 2022 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2023 struct sk_buff_head *head) 2024 { 2025 if (!skb_queue_empty(list)) { 2026 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2027 head->qlen += list->qlen; 2028 __skb_queue_head_init(list); 2029 } 2030 } 2031 2032 /** 2033 * skb_queue_splice_tail - join two skb lists, each list being a queue 2034 * @list: the new list to add 2035 * @head: the place to add it in the first list 2036 */ 2037 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2038 struct sk_buff_head *head) 2039 { 2040 if (!skb_queue_empty(list)) { 2041 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2042 head->qlen += list->qlen; 2043 } 2044 } 2045 2046 /** 2047 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2048 * @list: the new list to add 2049 * @head: the place to add it in the first list 2050 * 2051 * Each of the lists is a queue. 2052 * The list at @list is reinitialised 2053 */ 2054 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2055 struct sk_buff_head *head) 2056 { 2057 if (!skb_queue_empty(list)) { 2058 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2059 head->qlen += list->qlen; 2060 __skb_queue_head_init(list); 2061 } 2062 } 2063 2064 /** 2065 * __skb_queue_after - queue a buffer at the list head 2066 * @list: list to use 2067 * @prev: place after this buffer 2068 * @newsk: buffer to queue 2069 * 2070 * Queue a buffer int the middle of a list. This function takes no locks 2071 * and you must therefore hold required locks before calling it. 2072 * 2073 * A buffer cannot be placed on two lists at the same time. 2074 */ 2075 static inline void __skb_queue_after(struct sk_buff_head *list, 2076 struct sk_buff *prev, 2077 struct sk_buff *newsk) 2078 { 2079 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2080 } 2081 2082 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2083 struct sk_buff_head *list); 2084 2085 static inline void __skb_queue_before(struct sk_buff_head *list, 2086 struct sk_buff *next, 2087 struct sk_buff *newsk) 2088 { 2089 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2090 } 2091 2092 /** 2093 * __skb_queue_head - queue a buffer at the list head 2094 * @list: list to use 2095 * @newsk: buffer to queue 2096 * 2097 * Queue a buffer at the start of a list. This function takes no locks 2098 * and you must therefore hold required locks before calling it. 2099 * 2100 * A buffer cannot be placed on two lists at the same time. 2101 */ 2102 static inline void __skb_queue_head(struct sk_buff_head *list, 2103 struct sk_buff *newsk) 2104 { 2105 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2106 } 2107 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2108 2109 /** 2110 * __skb_queue_tail - queue a buffer at the list tail 2111 * @list: list to use 2112 * @newsk: buffer to queue 2113 * 2114 * Queue a buffer at the end of a list. This function takes no locks 2115 * and you must therefore hold required locks before calling it. 2116 * 2117 * A buffer cannot be placed on two lists at the same time. 2118 */ 2119 static inline void __skb_queue_tail(struct sk_buff_head *list, 2120 struct sk_buff *newsk) 2121 { 2122 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2123 } 2124 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2125 2126 /* 2127 * remove sk_buff from list. _Must_ be called atomically, and with 2128 * the list known.. 2129 */ 2130 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2131 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2132 { 2133 struct sk_buff *next, *prev; 2134 2135 WRITE_ONCE(list->qlen, list->qlen - 1); 2136 next = skb->next; 2137 prev = skb->prev; 2138 skb->next = skb->prev = NULL; 2139 WRITE_ONCE(next->prev, prev); 2140 WRITE_ONCE(prev->next, next); 2141 } 2142 2143 /** 2144 * __skb_dequeue - remove from the head of the queue 2145 * @list: list to dequeue from 2146 * 2147 * Remove the head of the list. This function does not take any locks 2148 * so must be used with appropriate locks held only. The head item is 2149 * returned or %NULL if the list is empty. 2150 */ 2151 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2152 { 2153 struct sk_buff *skb = skb_peek(list); 2154 if (skb) 2155 __skb_unlink(skb, list); 2156 return skb; 2157 } 2158 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2159 2160 /** 2161 * __skb_dequeue_tail - remove from the tail of the queue 2162 * @list: list to dequeue from 2163 * 2164 * Remove the tail of the list. This function does not take any locks 2165 * so must be used with appropriate locks held only. The tail item is 2166 * returned or %NULL if the list is empty. 2167 */ 2168 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2169 { 2170 struct sk_buff *skb = skb_peek_tail(list); 2171 if (skb) 2172 __skb_unlink(skb, list); 2173 return skb; 2174 } 2175 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2176 2177 2178 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2179 { 2180 return skb->data_len; 2181 } 2182 2183 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2184 { 2185 return skb->len - skb->data_len; 2186 } 2187 2188 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2189 { 2190 unsigned int i, len = 0; 2191 2192 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2193 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2194 return len; 2195 } 2196 2197 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2198 { 2199 return skb_headlen(skb) + __skb_pagelen(skb); 2200 } 2201 2202 /** 2203 * __skb_fill_page_desc - initialise a paged fragment in an skb 2204 * @skb: buffer containing fragment to be initialised 2205 * @i: paged fragment index to initialise 2206 * @page: the page to use for this fragment 2207 * @off: the offset to the data with @page 2208 * @size: the length of the data 2209 * 2210 * Initialises the @i'th fragment of @skb to point to &size bytes at 2211 * offset @off within @page. 2212 * 2213 * Does not take any additional reference on the fragment. 2214 */ 2215 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2216 struct page *page, int off, int size) 2217 { 2218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2219 2220 /* 2221 * Propagate page pfmemalloc to the skb if we can. The problem is 2222 * that not all callers have unique ownership of the page but rely 2223 * on page_is_pfmemalloc doing the right thing(tm). 2224 */ 2225 frag->bv_page = page; 2226 frag->bv_offset = off; 2227 skb_frag_size_set(frag, size); 2228 2229 page = compound_head(page); 2230 if (page_is_pfmemalloc(page)) 2231 skb->pfmemalloc = true; 2232 } 2233 2234 /** 2235 * skb_fill_page_desc - initialise a paged fragment in an skb 2236 * @skb: buffer containing fragment to be initialised 2237 * @i: paged fragment index to initialise 2238 * @page: the page to use for this fragment 2239 * @off: the offset to the data with @page 2240 * @size: the length of the data 2241 * 2242 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2243 * @skb to point to @size bytes at offset @off within @page. In 2244 * addition updates @skb such that @i is the last fragment. 2245 * 2246 * Does not take any additional reference on the fragment. 2247 */ 2248 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2249 struct page *page, int off, int size) 2250 { 2251 __skb_fill_page_desc(skb, i, page, off, size); 2252 skb_shinfo(skb)->nr_frags = i + 1; 2253 } 2254 2255 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2256 int size, unsigned int truesize); 2257 2258 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2259 unsigned int truesize); 2260 2261 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2262 2263 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2264 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2265 { 2266 return skb->head + skb->tail; 2267 } 2268 2269 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2270 { 2271 skb->tail = skb->data - skb->head; 2272 } 2273 2274 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2275 { 2276 skb_reset_tail_pointer(skb); 2277 skb->tail += offset; 2278 } 2279 2280 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2281 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2282 { 2283 return skb->tail; 2284 } 2285 2286 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2287 { 2288 skb->tail = skb->data; 2289 } 2290 2291 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2292 { 2293 skb->tail = skb->data + offset; 2294 } 2295 2296 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2297 2298 /* 2299 * Add data to an sk_buff 2300 */ 2301 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2302 void *skb_put(struct sk_buff *skb, unsigned int len); 2303 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2304 { 2305 void *tmp = skb_tail_pointer(skb); 2306 SKB_LINEAR_ASSERT(skb); 2307 skb->tail += len; 2308 skb->len += len; 2309 return tmp; 2310 } 2311 2312 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2313 { 2314 void *tmp = __skb_put(skb, len); 2315 2316 memset(tmp, 0, len); 2317 return tmp; 2318 } 2319 2320 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2321 unsigned int len) 2322 { 2323 void *tmp = __skb_put(skb, len); 2324 2325 memcpy(tmp, data, len); 2326 return tmp; 2327 } 2328 2329 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2330 { 2331 *(u8 *)__skb_put(skb, 1) = val; 2332 } 2333 2334 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2335 { 2336 void *tmp = skb_put(skb, len); 2337 2338 memset(tmp, 0, len); 2339 2340 return tmp; 2341 } 2342 2343 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2344 unsigned int len) 2345 { 2346 void *tmp = skb_put(skb, len); 2347 2348 memcpy(tmp, data, len); 2349 2350 return tmp; 2351 } 2352 2353 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2354 { 2355 *(u8 *)skb_put(skb, 1) = val; 2356 } 2357 2358 void *skb_push(struct sk_buff *skb, unsigned int len); 2359 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2360 { 2361 skb->data -= len; 2362 skb->len += len; 2363 return skb->data; 2364 } 2365 2366 void *skb_pull(struct sk_buff *skb, unsigned int len); 2367 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2368 { 2369 skb->len -= len; 2370 BUG_ON(skb->len < skb->data_len); 2371 return skb->data += len; 2372 } 2373 2374 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2375 { 2376 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2377 } 2378 2379 void *skb_pull_data(struct sk_buff *skb, size_t len); 2380 2381 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2382 2383 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2384 { 2385 if (len > skb_headlen(skb) && 2386 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2387 return NULL; 2388 skb->len -= len; 2389 return skb->data += len; 2390 } 2391 2392 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2393 { 2394 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2395 } 2396 2397 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2398 { 2399 if (likely(len <= skb_headlen(skb))) 2400 return true; 2401 if (unlikely(len > skb->len)) 2402 return false; 2403 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2404 } 2405 2406 void skb_condense(struct sk_buff *skb); 2407 2408 /** 2409 * skb_headroom - bytes at buffer head 2410 * @skb: buffer to check 2411 * 2412 * Return the number of bytes of free space at the head of an &sk_buff. 2413 */ 2414 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2415 { 2416 return skb->data - skb->head; 2417 } 2418 2419 /** 2420 * skb_tailroom - bytes at buffer end 2421 * @skb: buffer to check 2422 * 2423 * Return the number of bytes of free space at the tail of an sk_buff 2424 */ 2425 static inline int skb_tailroom(const struct sk_buff *skb) 2426 { 2427 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2428 } 2429 2430 /** 2431 * skb_availroom - bytes at buffer end 2432 * @skb: buffer to check 2433 * 2434 * Return the number of bytes of free space at the tail of an sk_buff 2435 * allocated by sk_stream_alloc() 2436 */ 2437 static inline int skb_availroom(const struct sk_buff *skb) 2438 { 2439 if (skb_is_nonlinear(skb)) 2440 return 0; 2441 2442 return skb->end - skb->tail - skb->reserved_tailroom; 2443 } 2444 2445 /** 2446 * skb_reserve - adjust headroom 2447 * @skb: buffer to alter 2448 * @len: bytes to move 2449 * 2450 * Increase the headroom of an empty &sk_buff by reducing the tail 2451 * room. This is only allowed for an empty buffer. 2452 */ 2453 static inline void skb_reserve(struct sk_buff *skb, int len) 2454 { 2455 skb->data += len; 2456 skb->tail += len; 2457 } 2458 2459 /** 2460 * skb_tailroom_reserve - adjust reserved_tailroom 2461 * @skb: buffer to alter 2462 * @mtu: maximum amount of headlen permitted 2463 * @needed_tailroom: minimum amount of reserved_tailroom 2464 * 2465 * Set reserved_tailroom so that headlen can be as large as possible but 2466 * not larger than mtu and tailroom cannot be smaller than 2467 * needed_tailroom. 2468 * The required headroom should already have been reserved before using 2469 * this function. 2470 */ 2471 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2472 unsigned int needed_tailroom) 2473 { 2474 SKB_LINEAR_ASSERT(skb); 2475 if (mtu < skb_tailroom(skb) - needed_tailroom) 2476 /* use at most mtu */ 2477 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2478 else 2479 /* use up to all available space */ 2480 skb->reserved_tailroom = needed_tailroom; 2481 } 2482 2483 #define ENCAP_TYPE_ETHER 0 2484 #define ENCAP_TYPE_IPPROTO 1 2485 2486 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2487 __be16 protocol) 2488 { 2489 skb->inner_protocol = protocol; 2490 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2491 } 2492 2493 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2494 __u8 ipproto) 2495 { 2496 skb->inner_ipproto = ipproto; 2497 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2498 } 2499 2500 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2501 { 2502 skb->inner_mac_header = skb->mac_header; 2503 skb->inner_network_header = skb->network_header; 2504 skb->inner_transport_header = skb->transport_header; 2505 } 2506 2507 static inline void skb_reset_mac_len(struct sk_buff *skb) 2508 { 2509 skb->mac_len = skb->network_header - skb->mac_header; 2510 } 2511 2512 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2513 *skb) 2514 { 2515 return skb->head + skb->inner_transport_header; 2516 } 2517 2518 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2519 { 2520 return skb_inner_transport_header(skb) - skb->data; 2521 } 2522 2523 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2524 { 2525 skb->inner_transport_header = skb->data - skb->head; 2526 } 2527 2528 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2529 const int offset) 2530 { 2531 skb_reset_inner_transport_header(skb); 2532 skb->inner_transport_header += offset; 2533 } 2534 2535 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2536 { 2537 return skb->head + skb->inner_network_header; 2538 } 2539 2540 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2541 { 2542 skb->inner_network_header = skb->data - skb->head; 2543 } 2544 2545 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2546 const int offset) 2547 { 2548 skb_reset_inner_network_header(skb); 2549 skb->inner_network_header += offset; 2550 } 2551 2552 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2553 { 2554 return skb->head + skb->inner_mac_header; 2555 } 2556 2557 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2558 { 2559 skb->inner_mac_header = skb->data - skb->head; 2560 } 2561 2562 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2563 const int offset) 2564 { 2565 skb_reset_inner_mac_header(skb); 2566 skb->inner_mac_header += offset; 2567 } 2568 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2569 { 2570 return skb->transport_header != (typeof(skb->transport_header))~0U; 2571 } 2572 2573 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2574 { 2575 return skb->head + skb->transport_header; 2576 } 2577 2578 static inline void skb_reset_transport_header(struct sk_buff *skb) 2579 { 2580 skb->transport_header = skb->data - skb->head; 2581 } 2582 2583 static inline void skb_set_transport_header(struct sk_buff *skb, 2584 const int offset) 2585 { 2586 skb_reset_transport_header(skb); 2587 skb->transport_header += offset; 2588 } 2589 2590 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2591 { 2592 return skb->head + skb->network_header; 2593 } 2594 2595 static inline void skb_reset_network_header(struct sk_buff *skb) 2596 { 2597 skb->network_header = skb->data - skb->head; 2598 } 2599 2600 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2601 { 2602 skb_reset_network_header(skb); 2603 skb->network_header += offset; 2604 } 2605 2606 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2607 { 2608 return skb->head + skb->mac_header; 2609 } 2610 2611 static inline int skb_mac_offset(const struct sk_buff *skb) 2612 { 2613 return skb_mac_header(skb) - skb->data; 2614 } 2615 2616 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2617 { 2618 return skb->network_header - skb->mac_header; 2619 } 2620 2621 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2622 { 2623 return skb->mac_header != (typeof(skb->mac_header))~0U; 2624 } 2625 2626 static inline void skb_unset_mac_header(struct sk_buff *skb) 2627 { 2628 skb->mac_header = (typeof(skb->mac_header))~0U; 2629 } 2630 2631 static inline void skb_reset_mac_header(struct sk_buff *skb) 2632 { 2633 skb->mac_header = skb->data - skb->head; 2634 } 2635 2636 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2637 { 2638 skb_reset_mac_header(skb); 2639 skb->mac_header += offset; 2640 } 2641 2642 static inline void skb_pop_mac_header(struct sk_buff *skb) 2643 { 2644 skb->mac_header = skb->network_header; 2645 } 2646 2647 static inline void skb_probe_transport_header(struct sk_buff *skb) 2648 { 2649 struct flow_keys_basic keys; 2650 2651 if (skb_transport_header_was_set(skb)) 2652 return; 2653 2654 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2655 NULL, 0, 0, 0, 0)) 2656 skb_set_transport_header(skb, keys.control.thoff); 2657 } 2658 2659 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2660 { 2661 if (skb_mac_header_was_set(skb)) { 2662 const unsigned char *old_mac = skb_mac_header(skb); 2663 2664 skb_set_mac_header(skb, -skb->mac_len); 2665 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2666 } 2667 } 2668 2669 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2670 { 2671 return skb->csum_start - skb_headroom(skb); 2672 } 2673 2674 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2675 { 2676 return skb->head + skb->csum_start; 2677 } 2678 2679 static inline int skb_transport_offset(const struct sk_buff *skb) 2680 { 2681 return skb_transport_header(skb) - skb->data; 2682 } 2683 2684 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2685 { 2686 return skb->transport_header - skb->network_header; 2687 } 2688 2689 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2690 { 2691 return skb->inner_transport_header - skb->inner_network_header; 2692 } 2693 2694 static inline int skb_network_offset(const struct sk_buff *skb) 2695 { 2696 return skb_network_header(skb) - skb->data; 2697 } 2698 2699 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2700 { 2701 return skb_inner_network_header(skb) - skb->data; 2702 } 2703 2704 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2705 { 2706 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2707 } 2708 2709 /* 2710 * CPUs often take a performance hit when accessing unaligned memory 2711 * locations. The actual performance hit varies, it can be small if the 2712 * hardware handles it or large if we have to take an exception and fix it 2713 * in software. 2714 * 2715 * Since an ethernet header is 14 bytes network drivers often end up with 2716 * the IP header at an unaligned offset. The IP header can be aligned by 2717 * shifting the start of the packet by 2 bytes. Drivers should do this 2718 * with: 2719 * 2720 * skb_reserve(skb, NET_IP_ALIGN); 2721 * 2722 * The downside to this alignment of the IP header is that the DMA is now 2723 * unaligned. On some architectures the cost of an unaligned DMA is high 2724 * and this cost outweighs the gains made by aligning the IP header. 2725 * 2726 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2727 * to be overridden. 2728 */ 2729 #ifndef NET_IP_ALIGN 2730 #define NET_IP_ALIGN 2 2731 #endif 2732 2733 /* 2734 * The networking layer reserves some headroom in skb data (via 2735 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2736 * the header has to grow. In the default case, if the header has to grow 2737 * 32 bytes or less we avoid the reallocation. 2738 * 2739 * Unfortunately this headroom changes the DMA alignment of the resulting 2740 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2741 * on some architectures. An architecture can override this value, 2742 * perhaps setting it to a cacheline in size (since that will maintain 2743 * cacheline alignment of the DMA). It must be a power of 2. 2744 * 2745 * Various parts of the networking layer expect at least 32 bytes of 2746 * headroom, you should not reduce this. 2747 * 2748 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2749 * to reduce average number of cache lines per packet. 2750 * get_rps_cpu() for example only access one 64 bytes aligned block : 2751 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2752 */ 2753 #ifndef NET_SKB_PAD 2754 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2755 #endif 2756 2757 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2758 2759 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2760 { 2761 if (WARN_ON(skb_is_nonlinear(skb))) 2762 return; 2763 skb->len = len; 2764 skb_set_tail_pointer(skb, len); 2765 } 2766 2767 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2768 { 2769 __skb_set_length(skb, len); 2770 } 2771 2772 void skb_trim(struct sk_buff *skb, unsigned int len); 2773 2774 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2775 { 2776 if (skb->data_len) 2777 return ___pskb_trim(skb, len); 2778 __skb_trim(skb, len); 2779 return 0; 2780 } 2781 2782 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2783 { 2784 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2785 } 2786 2787 /** 2788 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2789 * @skb: buffer to alter 2790 * @len: new length 2791 * 2792 * This is identical to pskb_trim except that the caller knows that 2793 * the skb is not cloned so we should never get an error due to out- 2794 * of-memory. 2795 */ 2796 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2797 { 2798 int err = pskb_trim(skb, len); 2799 BUG_ON(err); 2800 } 2801 2802 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2803 { 2804 unsigned int diff = len - skb->len; 2805 2806 if (skb_tailroom(skb) < diff) { 2807 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2808 GFP_ATOMIC); 2809 if (ret) 2810 return ret; 2811 } 2812 __skb_set_length(skb, len); 2813 return 0; 2814 } 2815 2816 /** 2817 * skb_orphan - orphan a buffer 2818 * @skb: buffer to orphan 2819 * 2820 * If a buffer currently has an owner then we call the owner's 2821 * destructor function and make the @skb unowned. The buffer continues 2822 * to exist but is no longer charged to its former owner. 2823 */ 2824 static inline void skb_orphan(struct sk_buff *skb) 2825 { 2826 if (skb->destructor) { 2827 skb->destructor(skb); 2828 skb->destructor = NULL; 2829 skb->sk = NULL; 2830 } else { 2831 BUG_ON(skb->sk); 2832 } 2833 } 2834 2835 /** 2836 * skb_orphan_frags - orphan the frags contained in a buffer 2837 * @skb: buffer to orphan frags from 2838 * @gfp_mask: allocation mask for replacement pages 2839 * 2840 * For each frag in the SKB which needs a destructor (i.e. has an 2841 * owner) create a copy of that frag and release the original 2842 * page by calling the destructor. 2843 */ 2844 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2845 { 2846 if (likely(!skb_zcopy(skb))) 2847 return 0; 2848 if (!skb_zcopy_is_nouarg(skb) && 2849 skb_uarg(skb)->callback == msg_zerocopy_callback) 2850 return 0; 2851 return skb_copy_ubufs(skb, gfp_mask); 2852 } 2853 2854 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2855 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2856 { 2857 if (likely(!skb_zcopy(skb))) 2858 return 0; 2859 return skb_copy_ubufs(skb, gfp_mask); 2860 } 2861 2862 /** 2863 * __skb_queue_purge - empty a list 2864 * @list: list to empty 2865 * 2866 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2867 * the list and one reference dropped. This function does not take the 2868 * list lock and the caller must hold the relevant locks to use it. 2869 */ 2870 static inline void __skb_queue_purge(struct sk_buff_head *list) 2871 { 2872 struct sk_buff *skb; 2873 while ((skb = __skb_dequeue(list)) != NULL) 2874 kfree_skb(skb); 2875 } 2876 void skb_queue_purge(struct sk_buff_head *list); 2877 2878 unsigned int skb_rbtree_purge(struct rb_root *root); 2879 2880 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 2881 2882 /** 2883 * netdev_alloc_frag - allocate a page fragment 2884 * @fragsz: fragment size 2885 * 2886 * Allocates a frag from a page for receive buffer. 2887 * Uses GFP_ATOMIC allocations. 2888 */ 2889 static inline void *netdev_alloc_frag(unsigned int fragsz) 2890 { 2891 return __netdev_alloc_frag_align(fragsz, ~0u); 2892 } 2893 2894 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 2895 unsigned int align) 2896 { 2897 WARN_ON_ONCE(!is_power_of_2(align)); 2898 return __netdev_alloc_frag_align(fragsz, -align); 2899 } 2900 2901 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2902 gfp_t gfp_mask); 2903 2904 /** 2905 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2906 * @dev: network device to receive on 2907 * @length: length to allocate 2908 * 2909 * Allocate a new &sk_buff and assign it a usage count of one. The 2910 * buffer has unspecified headroom built in. Users should allocate 2911 * the headroom they think they need without accounting for the 2912 * built in space. The built in space is used for optimisations. 2913 * 2914 * %NULL is returned if there is no free memory. Although this function 2915 * allocates memory it can be called from an interrupt. 2916 */ 2917 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2918 unsigned int length) 2919 { 2920 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2921 } 2922 2923 /* legacy helper around __netdev_alloc_skb() */ 2924 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2925 gfp_t gfp_mask) 2926 { 2927 return __netdev_alloc_skb(NULL, length, gfp_mask); 2928 } 2929 2930 /* legacy helper around netdev_alloc_skb() */ 2931 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2932 { 2933 return netdev_alloc_skb(NULL, length); 2934 } 2935 2936 2937 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2938 unsigned int length, gfp_t gfp) 2939 { 2940 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2941 2942 if (NET_IP_ALIGN && skb) 2943 skb_reserve(skb, NET_IP_ALIGN); 2944 return skb; 2945 } 2946 2947 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2948 unsigned int length) 2949 { 2950 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2951 } 2952 2953 static inline void skb_free_frag(void *addr) 2954 { 2955 page_frag_free(addr); 2956 } 2957 2958 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 2959 2960 static inline void *napi_alloc_frag(unsigned int fragsz) 2961 { 2962 return __napi_alloc_frag_align(fragsz, ~0u); 2963 } 2964 2965 static inline void *napi_alloc_frag_align(unsigned int fragsz, 2966 unsigned int align) 2967 { 2968 WARN_ON_ONCE(!is_power_of_2(align)); 2969 return __napi_alloc_frag_align(fragsz, -align); 2970 } 2971 2972 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2973 unsigned int length, gfp_t gfp_mask); 2974 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2975 unsigned int length) 2976 { 2977 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2978 } 2979 void napi_consume_skb(struct sk_buff *skb, int budget); 2980 2981 void napi_skb_free_stolen_head(struct sk_buff *skb); 2982 void __kfree_skb_defer(struct sk_buff *skb); 2983 2984 /** 2985 * __dev_alloc_pages - allocate page for network Rx 2986 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2987 * @order: size of the allocation 2988 * 2989 * Allocate a new page. 2990 * 2991 * %NULL is returned if there is no free memory. 2992 */ 2993 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2994 unsigned int order) 2995 { 2996 /* This piece of code contains several assumptions. 2997 * 1. This is for device Rx, therefor a cold page is preferred. 2998 * 2. The expectation is the user wants a compound page. 2999 * 3. If requesting a order 0 page it will not be compound 3000 * due to the check to see if order has a value in prep_new_page 3001 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3002 * code in gfp_to_alloc_flags that should be enforcing this. 3003 */ 3004 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3005 3006 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3007 } 3008 3009 static inline struct page *dev_alloc_pages(unsigned int order) 3010 { 3011 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3012 } 3013 3014 /** 3015 * __dev_alloc_page - allocate a page for network Rx 3016 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3017 * 3018 * Allocate a new page. 3019 * 3020 * %NULL is returned if there is no free memory. 3021 */ 3022 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3023 { 3024 return __dev_alloc_pages(gfp_mask, 0); 3025 } 3026 3027 static inline struct page *dev_alloc_page(void) 3028 { 3029 return dev_alloc_pages(0); 3030 } 3031 3032 /** 3033 * dev_page_is_reusable - check whether a page can be reused for network Rx 3034 * @page: the page to test 3035 * 3036 * A page shouldn't be considered for reusing/recycling if it was allocated 3037 * under memory pressure or at a distant memory node. 3038 * 3039 * Returns false if this page should be returned to page allocator, true 3040 * otherwise. 3041 */ 3042 static inline bool dev_page_is_reusable(const struct page *page) 3043 { 3044 return likely(page_to_nid(page) == numa_mem_id() && 3045 !page_is_pfmemalloc(page)); 3046 } 3047 3048 /** 3049 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3050 * @page: The page that was allocated from skb_alloc_page 3051 * @skb: The skb that may need pfmemalloc set 3052 */ 3053 static inline void skb_propagate_pfmemalloc(const struct page *page, 3054 struct sk_buff *skb) 3055 { 3056 if (page_is_pfmemalloc(page)) 3057 skb->pfmemalloc = true; 3058 } 3059 3060 /** 3061 * skb_frag_off() - Returns the offset of a skb fragment 3062 * @frag: the paged fragment 3063 */ 3064 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3065 { 3066 return frag->bv_offset; 3067 } 3068 3069 /** 3070 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3071 * @frag: skb fragment 3072 * @delta: value to add 3073 */ 3074 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3075 { 3076 frag->bv_offset += delta; 3077 } 3078 3079 /** 3080 * skb_frag_off_set() - Sets the offset of a skb fragment 3081 * @frag: skb fragment 3082 * @offset: offset of fragment 3083 */ 3084 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3085 { 3086 frag->bv_offset = offset; 3087 } 3088 3089 /** 3090 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3091 * @fragto: skb fragment where offset is set 3092 * @fragfrom: skb fragment offset is copied from 3093 */ 3094 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3095 const skb_frag_t *fragfrom) 3096 { 3097 fragto->bv_offset = fragfrom->bv_offset; 3098 } 3099 3100 /** 3101 * skb_frag_page - retrieve the page referred to by a paged fragment 3102 * @frag: the paged fragment 3103 * 3104 * Returns the &struct page associated with @frag. 3105 */ 3106 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3107 { 3108 return frag->bv_page; 3109 } 3110 3111 /** 3112 * __skb_frag_ref - take an addition reference on a paged fragment. 3113 * @frag: the paged fragment 3114 * 3115 * Takes an additional reference on the paged fragment @frag. 3116 */ 3117 static inline void __skb_frag_ref(skb_frag_t *frag) 3118 { 3119 get_page(skb_frag_page(frag)); 3120 } 3121 3122 /** 3123 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3124 * @skb: the buffer 3125 * @f: the fragment offset. 3126 * 3127 * Takes an additional reference on the @f'th paged fragment of @skb. 3128 */ 3129 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3130 { 3131 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3132 } 3133 3134 /** 3135 * __skb_frag_unref - release a reference on a paged fragment. 3136 * @frag: the paged fragment 3137 * @recycle: recycle the page if allocated via page_pool 3138 * 3139 * Releases a reference on the paged fragment @frag 3140 * or recycles the page via the page_pool API. 3141 */ 3142 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3143 { 3144 struct page *page = skb_frag_page(frag); 3145 3146 #ifdef CONFIG_PAGE_POOL 3147 if (recycle && page_pool_return_skb_page(page)) 3148 return; 3149 #endif 3150 put_page(page); 3151 } 3152 3153 /** 3154 * skb_frag_unref - release a reference on a paged fragment of an skb. 3155 * @skb: the buffer 3156 * @f: the fragment offset 3157 * 3158 * Releases a reference on the @f'th paged fragment of @skb. 3159 */ 3160 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3161 { 3162 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle); 3163 } 3164 3165 /** 3166 * skb_frag_address - gets the address of the data contained in a paged fragment 3167 * @frag: the paged fragment buffer 3168 * 3169 * Returns the address of the data within @frag. The page must already 3170 * be mapped. 3171 */ 3172 static inline void *skb_frag_address(const skb_frag_t *frag) 3173 { 3174 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3175 } 3176 3177 /** 3178 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3179 * @frag: the paged fragment buffer 3180 * 3181 * Returns the address of the data within @frag. Checks that the page 3182 * is mapped and returns %NULL otherwise. 3183 */ 3184 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3185 { 3186 void *ptr = page_address(skb_frag_page(frag)); 3187 if (unlikely(!ptr)) 3188 return NULL; 3189 3190 return ptr + skb_frag_off(frag); 3191 } 3192 3193 /** 3194 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3195 * @fragto: skb fragment where page is set 3196 * @fragfrom: skb fragment page is copied from 3197 */ 3198 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3199 const skb_frag_t *fragfrom) 3200 { 3201 fragto->bv_page = fragfrom->bv_page; 3202 } 3203 3204 /** 3205 * __skb_frag_set_page - sets the page contained in a paged fragment 3206 * @frag: the paged fragment 3207 * @page: the page to set 3208 * 3209 * Sets the fragment @frag to contain @page. 3210 */ 3211 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3212 { 3213 frag->bv_page = page; 3214 } 3215 3216 /** 3217 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3218 * @skb: the buffer 3219 * @f: the fragment offset 3220 * @page: the page to set 3221 * 3222 * Sets the @f'th fragment of @skb to contain @page. 3223 */ 3224 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3225 struct page *page) 3226 { 3227 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3228 } 3229 3230 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3231 3232 /** 3233 * skb_frag_dma_map - maps a paged fragment via the DMA API 3234 * @dev: the device to map the fragment to 3235 * @frag: the paged fragment to map 3236 * @offset: the offset within the fragment (starting at the 3237 * fragment's own offset) 3238 * @size: the number of bytes to map 3239 * @dir: the direction of the mapping (``PCI_DMA_*``) 3240 * 3241 * Maps the page associated with @frag to @device. 3242 */ 3243 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3244 const skb_frag_t *frag, 3245 size_t offset, size_t size, 3246 enum dma_data_direction dir) 3247 { 3248 return dma_map_page(dev, skb_frag_page(frag), 3249 skb_frag_off(frag) + offset, size, dir); 3250 } 3251 3252 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3253 gfp_t gfp_mask) 3254 { 3255 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3256 } 3257 3258 3259 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3260 gfp_t gfp_mask) 3261 { 3262 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3263 } 3264 3265 3266 /** 3267 * skb_clone_writable - is the header of a clone writable 3268 * @skb: buffer to check 3269 * @len: length up to which to write 3270 * 3271 * Returns true if modifying the header part of the cloned buffer 3272 * does not requires the data to be copied. 3273 */ 3274 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3275 { 3276 return !skb_header_cloned(skb) && 3277 skb_headroom(skb) + len <= skb->hdr_len; 3278 } 3279 3280 static inline int skb_try_make_writable(struct sk_buff *skb, 3281 unsigned int write_len) 3282 { 3283 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3284 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3285 } 3286 3287 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3288 int cloned) 3289 { 3290 int delta = 0; 3291 3292 if (headroom > skb_headroom(skb)) 3293 delta = headroom - skb_headroom(skb); 3294 3295 if (delta || cloned) 3296 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3297 GFP_ATOMIC); 3298 return 0; 3299 } 3300 3301 /** 3302 * skb_cow - copy header of skb when it is required 3303 * @skb: buffer to cow 3304 * @headroom: needed headroom 3305 * 3306 * If the skb passed lacks sufficient headroom or its data part 3307 * is shared, data is reallocated. If reallocation fails, an error 3308 * is returned and original skb is not changed. 3309 * 3310 * The result is skb with writable area skb->head...skb->tail 3311 * and at least @headroom of space at head. 3312 */ 3313 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3314 { 3315 return __skb_cow(skb, headroom, skb_cloned(skb)); 3316 } 3317 3318 /** 3319 * skb_cow_head - skb_cow but only making the head writable 3320 * @skb: buffer to cow 3321 * @headroom: needed headroom 3322 * 3323 * This function is identical to skb_cow except that we replace the 3324 * skb_cloned check by skb_header_cloned. It should be used when 3325 * you only need to push on some header and do not need to modify 3326 * the data. 3327 */ 3328 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3329 { 3330 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3331 } 3332 3333 /** 3334 * skb_padto - pad an skbuff up to a minimal size 3335 * @skb: buffer to pad 3336 * @len: minimal length 3337 * 3338 * Pads up a buffer to ensure the trailing bytes exist and are 3339 * blanked. If the buffer already contains sufficient data it 3340 * is untouched. Otherwise it is extended. Returns zero on 3341 * success. The skb is freed on error. 3342 */ 3343 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3344 { 3345 unsigned int size = skb->len; 3346 if (likely(size >= len)) 3347 return 0; 3348 return skb_pad(skb, len - size); 3349 } 3350 3351 /** 3352 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3353 * @skb: buffer to pad 3354 * @len: minimal length 3355 * @free_on_error: free buffer on error 3356 * 3357 * Pads up a buffer to ensure the trailing bytes exist and are 3358 * blanked. If the buffer already contains sufficient data it 3359 * is untouched. Otherwise it is extended. Returns zero on 3360 * success. The skb is freed on error if @free_on_error is true. 3361 */ 3362 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3363 unsigned int len, 3364 bool free_on_error) 3365 { 3366 unsigned int size = skb->len; 3367 3368 if (unlikely(size < len)) { 3369 len -= size; 3370 if (__skb_pad(skb, len, free_on_error)) 3371 return -ENOMEM; 3372 __skb_put(skb, len); 3373 } 3374 return 0; 3375 } 3376 3377 /** 3378 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3379 * @skb: buffer to pad 3380 * @len: minimal length 3381 * 3382 * Pads up a buffer to ensure the trailing bytes exist and are 3383 * blanked. If the buffer already contains sufficient data it 3384 * is untouched. Otherwise it is extended. Returns zero on 3385 * success. The skb is freed on error. 3386 */ 3387 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3388 { 3389 return __skb_put_padto(skb, len, true); 3390 } 3391 3392 static inline int skb_add_data(struct sk_buff *skb, 3393 struct iov_iter *from, int copy) 3394 { 3395 const int off = skb->len; 3396 3397 if (skb->ip_summed == CHECKSUM_NONE) { 3398 __wsum csum = 0; 3399 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3400 &csum, from)) { 3401 skb->csum = csum_block_add(skb->csum, csum, off); 3402 return 0; 3403 } 3404 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3405 return 0; 3406 3407 __skb_trim(skb, off); 3408 return -EFAULT; 3409 } 3410 3411 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3412 const struct page *page, int off) 3413 { 3414 if (skb_zcopy(skb)) 3415 return false; 3416 if (i) { 3417 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3418 3419 return page == skb_frag_page(frag) && 3420 off == skb_frag_off(frag) + skb_frag_size(frag); 3421 } 3422 return false; 3423 } 3424 3425 static inline int __skb_linearize(struct sk_buff *skb) 3426 { 3427 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3428 } 3429 3430 /** 3431 * skb_linearize - convert paged skb to linear one 3432 * @skb: buffer to linarize 3433 * 3434 * If there is no free memory -ENOMEM is returned, otherwise zero 3435 * is returned and the old skb data released. 3436 */ 3437 static inline int skb_linearize(struct sk_buff *skb) 3438 { 3439 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3440 } 3441 3442 /** 3443 * skb_has_shared_frag - can any frag be overwritten 3444 * @skb: buffer to test 3445 * 3446 * Return true if the skb has at least one frag that might be modified 3447 * by an external entity (as in vmsplice()/sendfile()) 3448 */ 3449 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3450 { 3451 return skb_is_nonlinear(skb) && 3452 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3453 } 3454 3455 /** 3456 * skb_linearize_cow - make sure skb is linear and writable 3457 * @skb: buffer to process 3458 * 3459 * If there is no free memory -ENOMEM is returned, otherwise zero 3460 * is returned and the old skb data released. 3461 */ 3462 static inline int skb_linearize_cow(struct sk_buff *skb) 3463 { 3464 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3465 __skb_linearize(skb) : 0; 3466 } 3467 3468 static __always_inline void 3469 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3470 unsigned int off) 3471 { 3472 if (skb->ip_summed == CHECKSUM_COMPLETE) 3473 skb->csum = csum_block_sub(skb->csum, 3474 csum_partial(start, len, 0), off); 3475 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3476 skb_checksum_start_offset(skb) < 0) 3477 skb->ip_summed = CHECKSUM_NONE; 3478 } 3479 3480 /** 3481 * skb_postpull_rcsum - update checksum for received skb after pull 3482 * @skb: buffer to update 3483 * @start: start of data before pull 3484 * @len: length of data pulled 3485 * 3486 * After doing a pull on a received packet, you need to call this to 3487 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3488 * CHECKSUM_NONE so that it can be recomputed from scratch. 3489 */ 3490 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3491 const void *start, unsigned int len) 3492 { 3493 if (skb->ip_summed == CHECKSUM_COMPLETE) 3494 skb->csum = wsum_negate(csum_partial(start, len, 3495 wsum_negate(skb->csum))); 3496 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3497 skb_checksum_start_offset(skb) < 0) 3498 skb->ip_summed = CHECKSUM_NONE; 3499 } 3500 3501 static __always_inline void 3502 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3503 unsigned int off) 3504 { 3505 if (skb->ip_summed == CHECKSUM_COMPLETE) 3506 skb->csum = csum_block_add(skb->csum, 3507 csum_partial(start, len, 0), off); 3508 } 3509 3510 /** 3511 * skb_postpush_rcsum - update checksum for received skb after push 3512 * @skb: buffer to update 3513 * @start: start of data after push 3514 * @len: length of data pushed 3515 * 3516 * After doing a push on a received packet, you need to call this to 3517 * update the CHECKSUM_COMPLETE checksum. 3518 */ 3519 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3520 const void *start, unsigned int len) 3521 { 3522 __skb_postpush_rcsum(skb, start, len, 0); 3523 } 3524 3525 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3526 3527 /** 3528 * skb_push_rcsum - push skb and update receive checksum 3529 * @skb: buffer to update 3530 * @len: length of data pulled 3531 * 3532 * This function performs an skb_push on the packet and updates 3533 * the CHECKSUM_COMPLETE checksum. It should be used on 3534 * receive path processing instead of skb_push unless you know 3535 * that the checksum difference is zero (e.g., a valid IP header) 3536 * or you are setting ip_summed to CHECKSUM_NONE. 3537 */ 3538 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3539 { 3540 skb_push(skb, len); 3541 skb_postpush_rcsum(skb, skb->data, len); 3542 return skb->data; 3543 } 3544 3545 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3546 /** 3547 * pskb_trim_rcsum - trim received skb and update checksum 3548 * @skb: buffer to trim 3549 * @len: new length 3550 * 3551 * This is exactly the same as pskb_trim except that it ensures the 3552 * checksum of received packets are still valid after the operation. 3553 * It can change skb pointers. 3554 */ 3555 3556 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3557 { 3558 if (likely(len >= skb->len)) 3559 return 0; 3560 return pskb_trim_rcsum_slow(skb, len); 3561 } 3562 3563 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3564 { 3565 if (skb->ip_summed == CHECKSUM_COMPLETE) 3566 skb->ip_summed = CHECKSUM_NONE; 3567 __skb_trim(skb, len); 3568 return 0; 3569 } 3570 3571 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3572 { 3573 if (skb->ip_summed == CHECKSUM_COMPLETE) 3574 skb->ip_summed = CHECKSUM_NONE; 3575 return __skb_grow(skb, len); 3576 } 3577 3578 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3579 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3580 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3581 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3582 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3583 3584 #define skb_queue_walk(queue, skb) \ 3585 for (skb = (queue)->next; \ 3586 skb != (struct sk_buff *)(queue); \ 3587 skb = skb->next) 3588 3589 #define skb_queue_walk_safe(queue, skb, tmp) \ 3590 for (skb = (queue)->next, tmp = skb->next; \ 3591 skb != (struct sk_buff *)(queue); \ 3592 skb = tmp, tmp = skb->next) 3593 3594 #define skb_queue_walk_from(queue, skb) \ 3595 for (; skb != (struct sk_buff *)(queue); \ 3596 skb = skb->next) 3597 3598 #define skb_rbtree_walk(skb, root) \ 3599 for (skb = skb_rb_first(root); skb != NULL; \ 3600 skb = skb_rb_next(skb)) 3601 3602 #define skb_rbtree_walk_from(skb) \ 3603 for (; skb != NULL; \ 3604 skb = skb_rb_next(skb)) 3605 3606 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3607 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3608 skb = tmp) 3609 3610 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3611 for (tmp = skb->next; \ 3612 skb != (struct sk_buff *)(queue); \ 3613 skb = tmp, tmp = skb->next) 3614 3615 #define skb_queue_reverse_walk(queue, skb) \ 3616 for (skb = (queue)->prev; \ 3617 skb != (struct sk_buff *)(queue); \ 3618 skb = skb->prev) 3619 3620 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3621 for (skb = (queue)->prev, tmp = skb->prev; \ 3622 skb != (struct sk_buff *)(queue); \ 3623 skb = tmp, tmp = skb->prev) 3624 3625 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3626 for (tmp = skb->prev; \ 3627 skb != (struct sk_buff *)(queue); \ 3628 skb = tmp, tmp = skb->prev) 3629 3630 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3631 { 3632 return skb_shinfo(skb)->frag_list != NULL; 3633 } 3634 3635 static inline void skb_frag_list_init(struct sk_buff *skb) 3636 { 3637 skb_shinfo(skb)->frag_list = NULL; 3638 } 3639 3640 #define skb_walk_frags(skb, iter) \ 3641 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3642 3643 3644 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3645 int *err, long *timeo_p, 3646 const struct sk_buff *skb); 3647 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3648 struct sk_buff_head *queue, 3649 unsigned int flags, 3650 int *off, int *err, 3651 struct sk_buff **last); 3652 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3653 struct sk_buff_head *queue, 3654 unsigned int flags, int *off, int *err, 3655 struct sk_buff **last); 3656 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3657 struct sk_buff_head *sk_queue, 3658 unsigned int flags, int *off, int *err); 3659 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3660 int *err); 3661 __poll_t datagram_poll(struct file *file, struct socket *sock, 3662 struct poll_table_struct *wait); 3663 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3664 struct iov_iter *to, int size); 3665 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3666 struct msghdr *msg, int size) 3667 { 3668 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3669 } 3670 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3671 struct msghdr *msg); 3672 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3673 struct iov_iter *to, int len, 3674 struct ahash_request *hash); 3675 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3676 struct iov_iter *from, int len); 3677 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3678 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3679 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3680 static inline void skb_free_datagram_locked(struct sock *sk, 3681 struct sk_buff *skb) 3682 { 3683 __skb_free_datagram_locked(sk, skb, 0); 3684 } 3685 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3686 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3687 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3688 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3689 int len); 3690 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3691 struct pipe_inode_info *pipe, unsigned int len, 3692 unsigned int flags); 3693 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3694 int len); 3695 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3696 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3697 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3698 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3699 int len, int hlen); 3700 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3701 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3702 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3703 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3704 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3705 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3706 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3707 unsigned int offset); 3708 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3709 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3710 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3711 int skb_vlan_pop(struct sk_buff *skb); 3712 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3713 int skb_eth_pop(struct sk_buff *skb); 3714 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3715 const unsigned char *src); 3716 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3717 int mac_len, bool ethernet); 3718 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3719 bool ethernet); 3720 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3721 int skb_mpls_dec_ttl(struct sk_buff *skb); 3722 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3723 gfp_t gfp); 3724 3725 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3726 { 3727 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3728 } 3729 3730 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3731 { 3732 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3733 } 3734 3735 struct skb_checksum_ops { 3736 __wsum (*update)(const void *mem, int len, __wsum wsum); 3737 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3738 }; 3739 3740 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3741 3742 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3743 __wsum csum, const struct skb_checksum_ops *ops); 3744 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3745 __wsum csum); 3746 3747 static inline void * __must_check 3748 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3749 const void *data, int hlen, void *buffer) 3750 { 3751 if (likely(hlen - offset >= len)) 3752 return (void *)data + offset; 3753 3754 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3755 return NULL; 3756 3757 return buffer; 3758 } 3759 3760 static inline void * __must_check 3761 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3762 { 3763 return __skb_header_pointer(skb, offset, len, skb->data, 3764 skb_headlen(skb), buffer); 3765 } 3766 3767 /** 3768 * skb_needs_linearize - check if we need to linearize a given skb 3769 * depending on the given device features. 3770 * @skb: socket buffer to check 3771 * @features: net device features 3772 * 3773 * Returns true if either: 3774 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3775 * 2. skb is fragmented and the device does not support SG. 3776 */ 3777 static inline bool skb_needs_linearize(struct sk_buff *skb, 3778 netdev_features_t features) 3779 { 3780 return skb_is_nonlinear(skb) && 3781 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3782 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3783 } 3784 3785 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3786 void *to, 3787 const unsigned int len) 3788 { 3789 memcpy(to, skb->data, len); 3790 } 3791 3792 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3793 const int offset, void *to, 3794 const unsigned int len) 3795 { 3796 memcpy(to, skb->data + offset, len); 3797 } 3798 3799 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3800 const void *from, 3801 const unsigned int len) 3802 { 3803 memcpy(skb->data, from, len); 3804 } 3805 3806 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3807 const int offset, 3808 const void *from, 3809 const unsigned int len) 3810 { 3811 memcpy(skb->data + offset, from, len); 3812 } 3813 3814 void skb_init(void); 3815 3816 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3817 { 3818 return skb->tstamp; 3819 } 3820 3821 /** 3822 * skb_get_timestamp - get timestamp from a skb 3823 * @skb: skb to get stamp from 3824 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3825 * 3826 * Timestamps are stored in the skb as offsets to a base timestamp. 3827 * This function converts the offset back to a struct timeval and stores 3828 * it in stamp. 3829 */ 3830 static inline void skb_get_timestamp(const struct sk_buff *skb, 3831 struct __kernel_old_timeval *stamp) 3832 { 3833 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3834 } 3835 3836 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3837 struct __kernel_sock_timeval *stamp) 3838 { 3839 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3840 3841 stamp->tv_sec = ts.tv_sec; 3842 stamp->tv_usec = ts.tv_nsec / 1000; 3843 } 3844 3845 static inline void skb_get_timestampns(const struct sk_buff *skb, 3846 struct __kernel_old_timespec *stamp) 3847 { 3848 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3849 3850 stamp->tv_sec = ts.tv_sec; 3851 stamp->tv_nsec = ts.tv_nsec; 3852 } 3853 3854 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3855 struct __kernel_timespec *stamp) 3856 { 3857 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3858 3859 stamp->tv_sec = ts.tv_sec; 3860 stamp->tv_nsec = ts.tv_nsec; 3861 } 3862 3863 static inline void __net_timestamp(struct sk_buff *skb) 3864 { 3865 skb->tstamp = ktime_get_real(); 3866 } 3867 3868 static inline ktime_t net_timedelta(ktime_t t) 3869 { 3870 return ktime_sub(ktime_get_real(), t); 3871 } 3872 3873 static inline ktime_t net_invalid_timestamp(void) 3874 { 3875 return 0; 3876 } 3877 3878 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3879 { 3880 return skb_shinfo(skb)->meta_len; 3881 } 3882 3883 static inline void *skb_metadata_end(const struct sk_buff *skb) 3884 { 3885 return skb_mac_header(skb); 3886 } 3887 3888 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3889 const struct sk_buff *skb_b, 3890 u8 meta_len) 3891 { 3892 const void *a = skb_metadata_end(skb_a); 3893 const void *b = skb_metadata_end(skb_b); 3894 /* Using more efficient varaiant than plain call to memcmp(). */ 3895 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3896 u64 diffs = 0; 3897 3898 switch (meta_len) { 3899 #define __it(x, op) (x -= sizeof(u##op)) 3900 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3901 case 32: diffs |= __it_diff(a, b, 64); 3902 fallthrough; 3903 case 24: diffs |= __it_diff(a, b, 64); 3904 fallthrough; 3905 case 16: diffs |= __it_diff(a, b, 64); 3906 fallthrough; 3907 case 8: diffs |= __it_diff(a, b, 64); 3908 break; 3909 case 28: diffs |= __it_diff(a, b, 64); 3910 fallthrough; 3911 case 20: diffs |= __it_diff(a, b, 64); 3912 fallthrough; 3913 case 12: diffs |= __it_diff(a, b, 64); 3914 fallthrough; 3915 case 4: diffs |= __it_diff(a, b, 32); 3916 break; 3917 } 3918 return diffs; 3919 #else 3920 return memcmp(a - meta_len, b - meta_len, meta_len); 3921 #endif 3922 } 3923 3924 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3925 const struct sk_buff *skb_b) 3926 { 3927 u8 len_a = skb_metadata_len(skb_a); 3928 u8 len_b = skb_metadata_len(skb_b); 3929 3930 if (!(len_a | len_b)) 3931 return false; 3932 3933 return len_a != len_b ? 3934 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3935 } 3936 3937 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3938 { 3939 skb_shinfo(skb)->meta_len = meta_len; 3940 } 3941 3942 static inline void skb_metadata_clear(struct sk_buff *skb) 3943 { 3944 skb_metadata_set(skb, 0); 3945 } 3946 3947 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3948 3949 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3950 3951 void skb_clone_tx_timestamp(struct sk_buff *skb); 3952 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3953 3954 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3955 3956 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3957 { 3958 } 3959 3960 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3961 { 3962 return false; 3963 } 3964 3965 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3966 3967 /** 3968 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3969 * 3970 * PHY drivers may accept clones of transmitted packets for 3971 * timestamping via their phy_driver.txtstamp method. These drivers 3972 * must call this function to return the skb back to the stack with a 3973 * timestamp. 3974 * 3975 * @skb: clone of the original outgoing packet 3976 * @hwtstamps: hardware time stamps 3977 * 3978 */ 3979 void skb_complete_tx_timestamp(struct sk_buff *skb, 3980 struct skb_shared_hwtstamps *hwtstamps); 3981 3982 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 3983 struct skb_shared_hwtstamps *hwtstamps, 3984 struct sock *sk, int tstype); 3985 3986 /** 3987 * skb_tstamp_tx - queue clone of skb with send time stamps 3988 * @orig_skb: the original outgoing packet 3989 * @hwtstamps: hardware time stamps, may be NULL if not available 3990 * 3991 * If the skb has a socket associated, then this function clones the 3992 * skb (thus sharing the actual data and optional structures), stores 3993 * the optional hardware time stamping information (if non NULL) or 3994 * generates a software time stamp (otherwise), then queues the clone 3995 * to the error queue of the socket. Errors are silently ignored. 3996 */ 3997 void skb_tstamp_tx(struct sk_buff *orig_skb, 3998 struct skb_shared_hwtstamps *hwtstamps); 3999 4000 /** 4001 * skb_tx_timestamp() - Driver hook for transmit timestamping 4002 * 4003 * Ethernet MAC Drivers should call this function in their hard_xmit() 4004 * function immediately before giving the sk_buff to the MAC hardware. 4005 * 4006 * Specifically, one should make absolutely sure that this function is 4007 * called before TX completion of this packet can trigger. Otherwise 4008 * the packet could potentially already be freed. 4009 * 4010 * @skb: A socket buffer. 4011 */ 4012 static inline void skb_tx_timestamp(struct sk_buff *skb) 4013 { 4014 skb_clone_tx_timestamp(skb); 4015 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4016 skb_tstamp_tx(skb, NULL); 4017 } 4018 4019 /** 4020 * skb_complete_wifi_ack - deliver skb with wifi status 4021 * 4022 * @skb: the original outgoing packet 4023 * @acked: ack status 4024 * 4025 */ 4026 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4027 4028 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4029 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4030 4031 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4032 { 4033 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4034 skb->csum_valid || 4035 (skb->ip_summed == CHECKSUM_PARTIAL && 4036 skb_checksum_start_offset(skb) >= 0)); 4037 } 4038 4039 /** 4040 * skb_checksum_complete - Calculate checksum of an entire packet 4041 * @skb: packet to process 4042 * 4043 * This function calculates the checksum over the entire packet plus 4044 * the value of skb->csum. The latter can be used to supply the 4045 * checksum of a pseudo header as used by TCP/UDP. It returns the 4046 * checksum. 4047 * 4048 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4049 * this function can be used to verify that checksum on received 4050 * packets. In that case the function should return zero if the 4051 * checksum is correct. In particular, this function will return zero 4052 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4053 * hardware has already verified the correctness of the checksum. 4054 */ 4055 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4056 { 4057 return skb_csum_unnecessary(skb) ? 4058 0 : __skb_checksum_complete(skb); 4059 } 4060 4061 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4062 { 4063 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4064 if (skb->csum_level == 0) 4065 skb->ip_summed = CHECKSUM_NONE; 4066 else 4067 skb->csum_level--; 4068 } 4069 } 4070 4071 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4072 { 4073 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4074 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4075 skb->csum_level++; 4076 } else if (skb->ip_summed == CHECKSUM_NONE) { 4077 skb->ip_summed = CHECKSUM_UNNECESSARY; 4078 skb->csum_level = 0; 4079 } 4080 } 4081 4082 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4083 { 4084 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4085 skb->ip_summed = CHECKSUM_NONE; 4086 skb->csum_level = 0; 4087 } 4088 } 4089 4090 /* Check if we need to perform checksum complete validation. 4091 * 4092 * Returns true if checksum complete is needed, false otherwise 4093 * (either checksum is unnecessary or zero checksum is allowed). 4094 */ 4095 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4096 bool zero_okay, 4097 __sum16 check) 4098 { 4099 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4100 skb->csum_valid = 1; 4101 __skb_decr_checksum_unnecessary(skb); 4102 return false; 4103 } 4104 4105 return true; 4106 } 4107 4108 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4109 * in checksum_init. 4110 */ 4111 #define CHECKSUM_BREAK 76 4112 4113 /* Unset checksum-complete 4114 * 4115 * Unset checksum complete can be done when packet is being modified 4116 * (uncompressed for instance) and checksum-complete value is 4117 * invalidated. 4118 */ 4119 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4120 { 4121 if (skb->ip_summed == CHECKSUM_COMPLETE) 4122 skb->ip_summed = CHECKSUM_NONE; 4123 } 4124 4125 /* Validate (init) checksum based on checksum complete. 4126 * 4127 * Return values: 4128 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4129 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4130 * checksum is stored in skb->csum for use in __skb_checksum_complete 4131 * non-zero: value of invalid checksum 4132 * 4133 */ 4134 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4135 bool complete, 4136 __wsum psum) 4137 { 4138 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4139 if (!csum_fold(csum_add(psum, skb->csum))) { 4140 skb->csum_valid = 1; 4141 return 0; 4142 } 4143 } 4144 4145 skb->csum = psum; 4146 4147 if (complete || skb->len <= CHECKSUM_BREAK) { 4148 __sum16 csum; 4149 4150 csum = __skb_checksum_complete(skb); 4151 skb->csum_valid = !csum; 4152 return csum; 4153 } 4154 4155 return 0; 4156 } 4157 4158 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4159 { 4160 return 0; 4161 } 4162 4163 /* Perform checksum validate (init). Note that this is a macro since we only 4164 * want to calculate the pseudo header which is an input function if necessary. 4165 * First we try to validate without any computation (checksum unnecessary) and 4166 * then calculate based on checksum complete calling the function to compute 4167 * pseudo header. 4168 * 4169 * Return values: 4170 * 0: checksum is validated or try to in skb_checksum_complete 4171 * non-zero: value of invalid checksum 4172 */ 4173 #define __skb_checksum_validate(skb, proto, complete, \ 4174 zero_okay, check, compute_pseudo) \ 4175 ({ \ 4176 __sum16 __ret = 0; \ 4177 skb->csum_valid = 0; \ 4178 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4179 __ret = __skb_checksum_validate_complete(skb, \ 4180 complete, compute_pseudo(skb, proto)); \ 4181 __ret; \ 4182 }) 4183 4184 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4185 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4186 4187 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4188 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4189 4190 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4191 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4192 4193 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4194 compute_pseudo) \ 4195 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4196 4197 #define skb_checksum_simple_validate(skb) \ 4198 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4199 4200 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4201 { 4202 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4203 } 4204 4205 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4206 { 4207 skb->csum = ~pseudo; 4208 skb->ip_summed = CHECKSUM_COMPLETE; 4209 } 4210 4211 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4212 do { \ 4213 if (__skb_checksum_convert_check(skb)) \ 4214 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4215 } while (0) 4216 4217 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4218 u16 start, u16 offset) 4219 { 4220 skb->ip_summed = CHECKSUM_PARTIAL; 4221 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4222 skb->csum_offset = offset - start; 4223 } 4224 4225 /* Update skbuf and packet to reflect the remote checksum offload operation. 4226 * When called, ptr indicates the starting point for skb->csum when 4227 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4228 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4229 */ 4230 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4231 int start, int offset, bool nopartial) 4232 { 4233 __wsum delta; 4234 4235 if (!nopartial) { 4236 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4237 return; 4238 } 4239 4240 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4241 __skb_checksum_complete(skb); 4242 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4243 } 4244 4245 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4246 4247 /* Adjust skb->csum since we changed the packet */ 4248 skb->csum = csum_add(skb->csum, delta); 4249 } 4250 4251 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4252 { 4253 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4254 return (void *)(skb->_nfct & NFCT_PTRMASK); 4255 #else 4256 return NULL; 4257 #endif 4258 } 4259 4260 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4261 { 4262 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4263 return skb->_nfct; 4264 #else 4265 return 0UL; 4266 #endif 4267 } 4268 4269 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4270 { 4271 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4272 skb->slow_gro |= !!nfct; 4273 skb->_nfct = nfct; 4274 #endif 4275 } 4276 4277 #ifdef CONFIG_SKB_EXTENSIONS 4278 enum skb_ext_id { 4279 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4280 SKB_EXT_BRIDGE_NF, 4281 #endif 4282 #ifdef CONFIG_XFRM 4283 SKB_EXT_SEC_PATH, 4284 #endif 4285 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4286 TC_SKB_EXT, 4287 #endif 4288 #if IS_ENABLED(CONFIG_MPTCP) 4289 SKB_EXT_MPTCP, 4290 #endif 4291 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4292 SKB_EXT_MCTP, 4293 #endif 4294 SKB_EXT_NUM, /* must be last */ 4295 }; 4296 4297 /** 4298 * struct skb_ext - sk_buff extensions 4299 * @refcnt: 1 on allocation, deallocated on 0 4300 * @offset: offset to add to @data to obtain extension address 4301 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4302 * @data: start of extension data, variable sized 4303 * 4304 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4305 * to use 'u8' types while allowing up to 2kb worth of extension data. 4306 */ 4307 struct skb_ext { 4308 refcount_t refcnt; 4309 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4310 u8 chunks; /* same */ 4311 char data[] __aligned(8); 4312 }; 4313 4314 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4315 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4316 struct skb_ext *ext); 4317 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4318 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4319 void __skb_ext_put(struct skb_ext *ext); 4320 4321 static inline void skb_ext_put(struct sk_buff *skb) 4322 { 4323 if (skb->active_extensions) 4324 __skb_ext_put(skb->extensions); 4325 } 4326 4327 static inline void __skb_ext_copy(struct sk_buff *dst, 4328 const struct sk_buff *src) 4329 { 4330 dst->active_extensions = src->active_extensions; 4331 4332 if (src->active_extensions) { 4333 struct skb_ext *ext = src->extensions; 4334 4335 refcount_inc(&ext->refcnt); 4336 dst->extensions = ext; 4337 } 4338 } 4339 4340 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4341 { 4342 skb_ext_put(dst); 4343 __skb_ext_copy(dst, src); 4344 } 4345 4346 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4347 { 4348 return !!ext->offset[i]; 4349 } 4350 4351 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4352 { 4353 return skb->active_extensions & (1 << id); 4354 } 4355 4356 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4357 { 4358 if (skb_ext_exist(skb, id)) 4359 __skb_ext_del(skb, id); 4360 } 4361 4362 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4363 { 4364 if (skb_ext_exist(skb, id)) { 4365 struct skb_ext *ext = skb->extensions; 4366 4367 return (void *)ext + (ext->offset[id] << 3); 4368 } 4369 4370 return NULL; 4371 } 4372 4373 static inline void skb_ext_reset(struct sk_buff *skb) 4374 { 4375 if (unlikely(skb->active_extensions)) { 4376 __skb_ext_put(skb->extensions); 4377 skb->active_extensions = 0; 4378 } 4379 } 4380 4381 static inline bool skb_has_extensions(struct sk_buff *skb) 4382 { 4383 return unlikely(skb->active_extensions); 4384 } 4385 #else 4386 static inline void skb_ext_put(struct sk_buff *skb) {} 4387 static inline void skb_ext_reset(struct sk_buff *skb) {} 4388 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4389 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4390 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4391 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4392 #endif /* CONFIG_SKB_EXTENSIONS */ 4393 4394 static inline void nf_reset_ct(struct sk_buff *skb) 4395 { 4396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4397 nf_conntrack_put(skb_nfct(skb)); 4398 skb->_nfct = 0; 4399 #endif 4400 } 4401 4402 static inline void nf_reset_trace(struct sk_buff *skb) 4403 { 4404 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4405 skb->nf_trace = 0; 4406 #endif 4407 } 4408 4409 static inline void ipvs_reset(struct sk_buff *skb) 4410 { 4411 #if IS_ENABLED(CONFIG_IP_VS) 4412 skb->ipvs_property = 0; 4413 #endif 4414 } 4415 4416 /* Note: This doesn't put any conntrack info in dst. */ 4417 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4418 bool copy) 4419 { 4420 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4421 dst->_nfct = src->_nfct; 4422 nf_conntrack_get(skb_nfct(src)); 4423 #endif 4424 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4425 if (copy) 4426 dst->nf_trace = src->nf_trace; 4427 #endif 4428 } 4429 4430 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4431 { 4432 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4433 nf_conntrack_put(skb_nfct(dst)); 4434 #endif 4435 dst->slow_gro = src->slow_gro; 4436 __nf_copy(dst, src, true); 4437 } 4438 4439 #ifdef CONFIG_NETWORK_SECMARK 4440 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4441 { 4442 to->secmark = from->secmark; 4443 } 4444 4445 static inline void skb_init_secmark(struct sk_buff *skb) 4446 { 4447 skb->secmark = 0; 4448 } 4449 #else 4450 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4451 { } 4452 4453 static inline void skb_init_secmark(struct sk_buff *skb) 4454 { } 4455 #endif 4456 4457 static inline int secpath_exists(const struct sk_buff *skb) 4458 { 4459 #ifdef CONFIG_XFRM 4460 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4461 #else 4462 return 0; 4463 #endif 4464 } 4465 4466 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4467 { 4468 return !skb->destructor && 4469 !secpath_exists(skb) && 4470 !skb_nfct(skb) && 4471 !skb->_skb_refdst && 4472 !skb_has_frag_list(skb); 4473 } 4474 4475 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4476 { 4477 skb->queue_mapping = queue_mapping; 4478 } 4479 4480 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4481 { 4482 return skb->queue_mapping; 4483 } 4484 4485 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4486 { 4487 to->queue_mapping = from->queue_mapping; 4488 } 4489 4490 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4491 { 4492 skb->queue_mapping = rx_queue + 1; 4493 } 4494 4495 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4496 { 4497 return skb->queue_mapping - 1; 4498 } 4499 4500 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4501 { 4502 return skb->queue_mapping != 0; 4503 } 4504 4505 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4506 { 4507 skb->dst_pending_confirm = val; 4508 } 4509 4510 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4511 { 4512 return skb->dst_pending_confirm != 0; 4513 } 4514 4515 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4516 { 4517 #ifdef CONFIG_XFRM 4518 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4519 #else 4520 return NULL; 4521 #endif 4522 } 4523 4524 /* Keeps track of mac header offset relative to skb->head. 4525 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4526 * For non-tunnel skb it points to skb_mac_header() and for 4527 * tunnel skb it points to outer mac header. 4528 * Keeps track of level of encapsulation of network headers. 4529 */ 4530 struct skb_gso_cb { 4531 union { 4532 int mac_offset; 4533 int data_offset; 4534 }; 4535 int encap_level; 4536 __wsum csum; 4537 __u16 csum_start; 4538 }; 4539 #define SKB_GSO_CB_OFFSET 32 4540 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4541 4542 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4543 { 4544 return (skb_mac_header(inner_skb) - inner_skb->head) - 4545 SKB_GSO_CB(inner_skb)->mac_offset; 4546 } 4547 4548 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4549 { 4550 int new_headroom, headroom; 4551 int ret; 4552 4553 headroom = skb_headroom(skb); 4554 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4555 if (ret) 4556 return ret; 4557 4558 new_headroom = skb_headroom(skb); 4559 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4560 return 0; 4561 } 4562 4563 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4564 { 4565 /* Do not update partial checksums if remote checksum is enabled. */ 4566 if (skb->remcsum_offload) 4567 return; 4568 4569 SKB_GSO_CB(skb)->csum = res; 4570 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4571 } 4572 4573 /* Compute the checksum for a gso segment. First compute the checksum value 4574 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4575 * then add in skb->csum (checksum from csum_start to end of packet). 4576 * skb->csum and csum_start are then updated to reflect the checksum of the 4577 * resultant packet starting from the transport header-- the resultant checksum 4578 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4579 * header. 4580 */ 4581 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4582 { 4583 unsigned char *csum_start = skb_transport_header(skb); 4584 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4585 __wsum partial = SKB_GSO_CB(skb)->csum; 4586 4587 SKB_GSO_CB(skb)->csum = res; 4588 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4589 4590 return csum_fold(csum_partial(csum_start, plen, partial)); 4591 } 4592 4593 static inline bool skb_is_gso(const struct sk_buff *skb) 4594 { 4595 return skb_shinfo(skb)->gso_size; 4596 } 4597 4598 /* Note: Should be called only if skb_is_gso(skb) is true */ 4599 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4600 { 4601 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4602 } 4603 4604 /* Note: Should be called only if skb_is_gso(skb) is true */ 4605 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4606 { 4607 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4608 } 4609 4610 /* Note: Should be called only if skb_is_gso(skb) is true */ 4611 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4612 { 4613 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4614 } 4615 4616 static inline void skb_gso_reset(struct sk_buff *skb) 4617 { 4618 skb_shinfo(skb)->gso_size = 0; 4619 skb_shinfo(skb)->gso_segs = 0; 4620 skb_shinfo(skb)->gso_type = 0; 4621 } 4622 4623 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4624 u16 increment) 4625 { 4626 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4627 return; 4628 shinfo->gso_size += increment; 4629 } 4630 4631 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4632 u16 decrement) 4633 { 4634 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4635 return; 4636 shinfo->gso_size -= decrement; 4637 } 4638 4639 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4640 4641 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4642 { 4643 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4644 * wanted then gso_type will be set. */ 4645 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4646 4647 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4648 unlikely(shinfo->gso_type == 0)) { 4649 __skb_warn_lro_forwarding(skb); 4650 return true; 4651 } 4652 return false; 4653 } 4654 4655 static inline void skb_forward_csum(struct sk_buff *skb) 4656 { 4657 /* Unfortunately we don't support this one. Any brave souls? */ 4658 if (skb->ip_summed == CHECKSUM_COMPLETE) 4659 skb->ip_summed = CHECKSUM_NONE; 4660 } 4661 4662 /** 4663 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4664 * @skb: skb to check 4665 * 4666 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4667 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4668 * use this helper, to document places where we make this assertion. 4669 */ 4670 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4671 { 4672 #ifdef DEBUG 4673 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4674 #endif 4675 } 4676 4677 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4678 4679 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4680 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4681 unsigned int transport_len, 4682 __sum16(*skb_chkf)(struct sk_buff *skb)); 4683 4684 /** 4685 * skb_head_is_locked - Determine if the skb->head is locked down 4686 * @skb: skb to check 4687 * 4688 * The head on skbs build around a head frag can be removed if they are 4689 * not cloned. This function returns true if the skb head is locked down 4690 * due to either being allocated via kmalloc, or by being a clone with 4691 * multiple references to the head. 4692 */ 4693 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4694 { 4695 return !skb->head_frag || skb_cloned(skb); 4696 } 4697 4698 /* Local Checksum Offload. 4699 * Compute outer checksum based on the assumption that the 4700 * inner checksum will be offloaded later. 4701 * See Documentation/networking/checksum-offloads.rst for 4702 * explanation of how this works. 4703 * Fill in outer checksum adjustment (e.g. with sum of outer 4704 * pseudo-header) before calling. 4705 * Also ensure that inner checksum is in linear data area. 4706 */ 4707 static inline __wsum lco_csum(struct sk_buff *skb) 4708 { 4709 unsigned char *csum_start = skb_checksum_start(skb); 4710 unsigned char *l4_hdr = skb_transport_header(skb); 4711 __wsum partial; 4712 4713 /* Start with complement of inner checksum adjustment */ 4714 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4715 skb->csum_offset)); 4716 4717 /* Add in checksum of our headers (incl. outer checksum 4718 * adjustment filled in by caller) and return result. 4719 */ 4720 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4721 } 4722 4723 static inline bool skb_is_redirected(const struct sk_buff *skb) 4724 { 4725 return skb->redirected; 4726 } 4727 4728 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4729 { 4730 skb->redirected = 1; 4731 #ifdef CONFIG_NET_REDIRECT 4732 skb->from_ingress = from_ingress; 4733 if (skb->from_ingress) 4734 skb->tstamp = 0; 4735 #endif 4736 } 4737 4738 static inline void skb_reset_redirect(struct sk_buff *skb) 4739 { 4740 skb->redirected = 0; 4741 } 4742 4743 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 4744 { 4745 return skb->csum_not_inet; 4746 } 4747 4748 static inline void skb_set_kcov_handle(struct sk_buff *skb, 4749 const u64 kcov_handle) 4750 { 4751 #ifdef CONFIG_KCOV 4752 skb->kcov_handle = kcov_handle; 4753 #endif 4754 } 4755 4756 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 4757 { 4758 #ifdef CONFIG_KCOV 4759 return skb->kcov_handle; 4760 #else 4761 return 0; 4762 #endif 4763 } 4764 4765 #ifdef CONFIG_PAGE_POOL 4766 static inline void skb_mark_for_recycle(struct sk_buff *skb) 4767 { 4768 skb->pp_recycle = 1; 4769 } 4770 #endif 4771 4772 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 4773 { 4774 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 4775 return false; 4776 return page_pool_return_skb_page(virt_to_page(data)); 4777 } 4778 4779 #endif /* __KERNEL__ */ 4780 #endif /* _LINUX_SKBUFF_H */ 4781