xref: /linux-6.15/include/linux/skbuff.h (revision 87eee9c5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 
46 /* The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * A. IP checksum related features
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * The checksum related features are:
57  *
58  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
59  *			  IP (one's complement) checksum for any combination
60  *			  of protocols or protocol layering. The checksum is
61  *			  computed and set in a packet per the CHECKSUM_PARTIAL
62  *			  interface (see below).
63  *
64  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65  *			  TCP or UDP packets over IPv4. These are specifically
66  *			  unencapsulated packets of the form IPv4|TCP or
67  *			  IPv4|UDP where the Protocol field in the IPv4 header
68  *			  is TCP or UDP. The IPv4 header may contain IP options.
69  *			  This feature cannot be set in features for a device
70  *			  with NETIF_F_HW_CSUM also set. This feature is being
71  *			  DEPRECATED (see below).
72  *
73  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74  *			  TCP or UDP packets over IPv6. These are specifically
75  *			  unencapsulated packets of the form IPv6|TCP or
76  *			  IPv6|UDP where the Next Header field in the IPv6
77  *			  header is either TCP or UDP. IPv6 extension headers
78  *			  are not supported with this feature. This feature
79  *			  cannot be set in features for a device with
80  *			  NETIF_F_HW_CSUM also set. This feature is being
81  *			  DEPRECATED (see below).
82  *
83  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84  *			 This flag is only used to disable the RX checksum
85  *			 feature for a device. The stack will accept receive
86  *			 checksum indication in packets received on a device
87  *			 regardless of whether NETIF_F_RXCSUM is set.
88  *
89  * B. Checksumming of received packets by device. Indication of checksum
90  *    verification is set in skb->ip_summed. Possible values are:
91  *
92  * CHECKSUM_NONE:
93  *
94  *   Device did not checksum this packet e.g. due to lack of capabilities.
95  *   The packet contains full (though not verified) checksum in packet but
96  *   not in skb->csum. Thus, skb->csum is undefined in this case.
97  *
98  * CHECKSUM_UNNECESSARY:
99  *
100  *   The hardware you're dealing with doesn't calculate the full checksum
101  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103  *   if their checksums are okay. skb->csum is still undefined in this case
104  *   though. A driver or device must never modify the checksum field in the
105  *   packet even if checksum is verified.
106  *
107  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
108  *     TCP: IPv6 and IPv4.
109  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
111  *       may perform further validation in this case.
112  *     GRE: only if the checksum is present in the header.
113  *     SCTP: indicates the CRC in SCTP header has been validated.
114  *     FCOE: indicates the CRC in FC frame has been validated.
115  *
116  *   skb->csum_level indicates the number of consecutive checksums found in
117  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119  *   and a device is able to verify the checksums for UDP (possibly zero),
120  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121  *   two. If the device were only able to verify the UDP checksum and not
122  *   GRE, either because it doesn't support GRE checksum or because GRE
123  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124  *   not considered in this case).
125  *
126  * CHECKSUM_COMPLETE:
127  *
128  *   This is the most generic way. The device supplied checksum of the _whole_
129  *   packet as seen by netif_rx() and fills in skb->csum. This means the
130  *   hardware doesn't need to parse L3/L4 headers to implement this.
131  *
132  *   Notes:
133  *   - Even if device supports only some protocols, but is able to produce
134  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136  *
137  * CHECKSUM_PARTIAL:
138  *
139  *   A checksum is set up to be offloaded to a device as described in the
140  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
141  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
142  *   on the same host, or it may be set in the input path in GRO or remote
143  *   checksum offload. For the purposes of checksum verification, the checksum
144  *   referred to by skb->csum_start + skb->csum_offset and any preceding
145  *   checksums in the packet are considered verified. Any checksums in the
146  *   packet that are after the checksum being offloaded are not considered to
147  *   be verified.
148  *
149  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150  *    in the skb->ip_summed for a packet. Values are:
151  *
152  * CHECKSUM_PARTIAL:
153  *
154  *   The driver is required to checksum the packet as seen by hard_start_xmit()
155  *   from skb->csum_start up to the end, and to record/write the checksum at
156  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
157  *   csum_start and csum_offset values are valid values given the length and
158  *   offset of the packet, but it should not attempt to validate that the
159  *   checksum refers to a legitimate transport layer checksum -- it is the
160  *   purview of the stack to validate that csum_start and csum_offset are set
161  *   correctly.
162  *
163  *   When the stack requests checksum offload for a packet, the driver MUST
164  *   ensure that the checksum is set correctly. A driver can either offload the
165  *   checksum calculation to the device, or call skb_checksum_help (in the case
166  *   that the device does not support offload for a particular checksum).
167  *
168  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170  *   checksum offload capability.
171  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172  *   on network device checksumming capabilities: if a packet does not match
173  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
174  *   csum_not_inet, see item D.) is called to resolve the checksum.
175  *
176  * CHECKSUM_NONE:
177  *
178  *   The skb was already checksummed by the protocol, or a checksum is not
179  *   required.
180  *
181  * CHECKSUM_UNNECESSARY:
182  *
183  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
184  *   output.
185  *
186  * CHECKSUM_COMPLETE:
187  *   Not used in checksum output. If a driver observes a packet with this value
188  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189  *
190  * D. Non-IP checksum (CRC) offloads
191  *
192  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193  *     offloading the SCTP CRC in a packet. To perform this offload the stack
194  *     will set csum_start and csum_offset accordingly, set ip_summed to
195  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
198  *     must verify which offload is configured for a packet by testing the
199  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201  *
202  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203  *     offloading the FCOE CRC in a packet. To perform this offload the stack
204  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205  *     accordingly. Note that there is no indication in the skbuff that the
206  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207  *     both IP checksum offload and FCOE CRC offload must verify which offload
208  *     is configured for a packet, presumably by inspecting packet headers.
209  *
210  * E. Checksumming on output with GSO.
211  *
212  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215  * part of the GSO operation is implied. If a checksum is being offloaded
216  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217  * csum_offset are set to refer to the outermost checksum being offloaded
218  * (two offloaded checksums are possible with UDP encapsulation).
219  */
220 
221 /* Don't change this without changing skb_csum_unnecessary! */
222 #define CHECKSUM_NONE		0
223 #define CHECKSUM_UNNECESSARY	1
224 #define CHECKSUM_COMPLETE	2
225 #define CHECKSUM_PARTIAL	3
226 
227 /* Maximum value in skb->csum_level */
228 #define SKB_MAX_CSUM_LEVEL	3
229 
230 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
231 #define SKB_WITH_OVERHEAD(X)	\
232 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 #define SKB_MAX_ORDER(X, ORDER) \
234 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
236 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
237 
238 /* return minimum truesize of one skb containing X bytes of data */
239 #define SKB_TRUESIZE(X) ((X) +						\
240 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
241 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242 
243 struct ahash_request;
244 struct net_device;
245 struct scatterlist;
246 struct pipe_inode_info;
247 struct iov_iter;
248 struct napi_struct;
249 struct bpf_prog;
250 union bpf_attr;
251 struct skb_ext;
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	enum {
256 		BRNF_PROTO_UNCHANGED,
257 		BRNF_PROTO_8021Q,
258 		BRNF_PROTO_PPPOE
259 	} orig_proto:8;
260 	u8			pkt_otherhost:1;
261 	u8			in_prerouting:1;
262 	u8			bridged_dnat:1;
263 	__u16			frag_max_size;
264 	struct net_device	*physindev;
265 
266 	/* always valid & non-NULL from FORWARD on, for physdev match */
267 	struct net_device	*physoutdev;
268 	union {
269 		/* prerouting: detect dnat in orig/reply direction */
270 		__be32          ipv4_daddr;
271 		struct in6_addr ipv6_daddr;
272 
273 		/* after prerouting + nat detected: store original source
274 		 * mac since neigh resolution overwrites it, only used while
275 		 * skb is out in neigh layer.
276 		 */
277 		char neigh_header[8];
278 	};
279 };
280 #endif
281 
282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
283 /* Chain in tc_skb_ext will be used to share the tc chain with
284  * ovs recirc_id. It will be set to the current chain by tc
285  * and read by ovs to recirc_id.
286  */
287 struct tc_skb_ext {
288 	__u32 chain;
289 	__u16 mru;
290 	__u16 zone;
291 	bool post_ct;
292 };
293 #endif
294 
295 struct sk_buff_head {
296 	/* These two members must be first to match sk_buff. */
297 	struct_group_tagged(sk_buff_list, list,
298 		struct sk_buff	*next;
299 		struct sk_buff	*prev;
300 	);
301 
302 	__u32		qlen;
303 	spinlock_t	lock;
304 };
305 
306 struct sk_buff;
307 
308 /* To allow 64K frame to be packed as single skb without frag_list we
309  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
310  * buffers which do not start on a page boundary.
311  *
312  * Since GRO uses frags we allocate at least 16 regardless of page
313  * size.
314  */
315 #if (65536/PAGE_SIZE + 1) < 16
316 #define MAX_SKB_FRAGS 16UL
317 #else
318 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
319 #endif
320 extern int sysctl_max_skb_frags;
321 
322 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
323  * segment using its current segmentation instead.
324  */
325 #define GSO_BY_FRAGS	0xFFFF
326 
327 typedef struct bio_vec skb_frag_t;
328 
329 /**
330  * skb_frag_size() - Returns the size of a skb fragment
331  * @frag: skb fragment
332  */
333 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
334 {
335 	return frag->bv_len;
336 }
337 
338 /**
339  * skb_frag_size_set() - Sets the size of a skb fragment
340  * @frag: skb fragment
341  * @size: size of fragment
342  */
343 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
344 {
345 	frag->bv_len = size;
346 }
347 
348 /**
349  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
350  * @frag: skb fragment
351  * @delta: value to add
352  */
353 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
354 {
355 	frag->bv_len += delta;
356 }
357 
358 /**
359  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
360  * @frag: skb fragment
361  * @delta: value to subtract
362  */
363 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
364 {
365 	frag->bv_len -= delta;
366 }
367 
368 /**
369  * skb_frag_must_loop - Test if %p is a high memory page
370  * @p: fragment's page
371  */
372 static inline bool skb_frag_must_loop(struct page *p)
373 {
374 #if defined(CONFIG_HIGHMEM)
375 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
376 		return true;
377 #endif
378 	return false;
379 }
380 
381 /**
382  *	skb_frag_foreach_page - loop over pages in a fragment
383  *
384  *	@f:		skb frag to operate on
385  *	@f_off:		offset from start of f->bv_page
386  *	@f_len:		length from f_off to loop over
387  *	@p:		(temp var) current page
388  *	@p_off:		(temp var) offset from start of current page,
389  *	                           non-zero only on first page.
390  *	@p_len:		(temp var) length in current page,
391  *				   < PAGE_SIZE only on first and last page.
392  *	@copied:	(temp var) length so far, excluding current p_len.
393  *
394  *	A fragment can hold a compound page, in which case per-page
395  *	operations, notably kmap_atomic, must be called for each
396  *	regular page.
397  */
398 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
399 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
400 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
401 	     p_len = skb_frag_must_loop(p) ?				\
402 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
403 	     copied = 0;						\
404 	     copied < f_len;						\
405 	     copied += p_len, p++, p_off = 0,				\
406 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
407 
408 #define HAVE_HW_TIME_STAMP
409 
410 /**
411  * struct skb_shared_hwtstamps - hardware time stamps
412  * @hwtstamp:	hardware time stamp transformed into duration
413  *		since arbitrary point in time
414  *
415  * Software time stamps generated by ktime_get_real() are stored in
416  * skb->tstamp.
417  *
418  * hwtstamps can only be compared against other hwtstamps from
419  * the same device.
420  *
421  * This structure is attached to packets as part of the
422  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
423  */
424 struct skb_shared_hwtstamps {
425 	ktime_t	hwtstamp;
426 };
427 
428 /* Definitions for tx_flags in struct skb_shared_info */
429 enum {
430 	/* generate hardware time stamp */
431 	SKBTX_HW_TSTAMP = 1 << 0,
432 
433 	/* generate software time stamp when queueing packet to NIC */
434 	SKBTX_SW_TSTAMP = 1 << 1,
435 
436 	/* device driver is going to provide hardware time stamp */
437 	SKBTX_IN_PROGRESS = 1 << 2,
438 
439 	/* generate wifi status information (where possible) */
440 	SKBTX_WIFI_STATUS = 1 << 4,
441 
442 	/* generate software time stamp when entering packet scheduling */
443 	SKBTX_SCHED_TSTAMP = 1 << 6,
444 };
445 
446 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
447 				 SKBTX_SCHED_TSTAMP)
448 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
449 
450 /* Definitions for flags in struct skb_shared_info */
451 enum {
452 	/* use zcopy routines */
453 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
454 
455 	/* This indicates at least one fragment might be overwritten
456 	 * (as in vmsplice(), sendfile() ...)
457 	 * If we need to compute a TX checksum, we'll need to copy
458 	 * all frags to avoid possible bad checksum
459 	 */
460 	SKBFL_SHARED_FRAG = BIT(1),
461 
462 	/* segment contains only zerocopy data and should not be
463 	 * charged to the kernel memory.
464 	 */
465 	SKBFL_PURE_ZEROCOPY = BIT(2),
466 };
467 
468 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
469 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
470 
471 /*
472  * The callback notifies userspace to release buffers when skb DMA is done in
473  * lower device, the skb last reference should be 0 when calling this.
474  * The zerocopy_success argument is true if zero copy transmit occurred,
475  * false on data copy or out of memory error caused by data copy attempt.
476  * The ctx field is used to track device context.
477  * The desc field is used to track userspace buffer index.
478  */
479 struct ubuf_info {
480 	void (*callback)(struct sk_buff *, struct ubuf_info *,
481 			 bool zerocopy_success);
482 	union {
483 		struct {
484 			unsigned long desc;
485 			void *ctx;
486 		};
487 		struct {
488 			u32 id;
489 			u16 len;
490 			u16 zerocopy:1;
491 			u32 bytelen;
492 		};
493 	};
494 	refcount_t refcnt;
495 	u8 flags;
496 
497 	struct mmpin {
498 		struct user_struct *user;
499 		unsigned int num_pg;
500 	} mmp;
501 };
502 
503 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
504 
505 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
506 void mm_unaccount_pinned_pages(struct mmpin *mmp);
507 
508 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
509 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
510 				       struct ubuf_info *uarg);
511 
512 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
513 
514 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
515 			   bool success);
516 
517 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
518 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
519 			     struct msghdr *msg, int len,
520 			     struct ubuf_info *uarg);
521 
522 /* This data is invariant across clones and lives at
523  * the end of the header data, ie. at skb->end.
524  */
525 struct skb_shared_info {
526 	__u8		flags;
527 	__u8		meta_len;
528 	__u8		nr_frags;
529 	__u8		tx_flags;
530 	unsigned short	gso_size;
531 	/* Warning: this field is not always filled in (UFO)! */
532 	unsigned short	gso_segs;
533 	struct sk_buff	*frag_list;
534 	struct skb_shared_hwtstamps hwtstamps;
535 	unsigned int	gso_type;
536 	u32		tskey;
537 
538 	/*
539 	 * Warning : all fields before dataref are cleared in __alloc_skb()
540 	 */
541 	atomic_t	dataref;
542 
543 	/* Intermediate layers must ensure that destructor_arg
544 	 * remains valid until skb destructor */
545 	void *		destructor_arg;
546 
547 	/* must be last field, see pskb_expand_head() */
548 	skb_frag_t	frags[MAX_SKB_FRAGS];
549 };
550 
551 /* We divide dataref into two halves.  The higher 16 bits hold references
552  * to the payload part of skb->data.  The lower 16 bits hold references to
553  * the entire skb->data.  A clone of a headerless skb holds the length of
554  * the header in skb->hdr_len.
555  *
556  * All users must obey the rule that the skb->data reference count must be
557  * greater than or equal to the payload reference count.
558  *
559  * Holding a reference to the payload part means that the user does not
560  * care about modifications to the header part of skb->data.
561  */
562 #define SKB_DATAREF_SHIFT 16
563 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
564 
565 
566 enum {
567 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
568 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
569 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
570 };
571 
572 enum {
573 	SKB_GSO_TCPV4 = 1 << 0,
574 
575 	/* This indicates the skb is from an untrusted source. */
576 	SKB_GSO_DODGY = 1 << 1,
577 
578 	/* This indicates the tcp segment has CWR set. */
579 	SKB_GSO_TCP_ECN = 1 << 2,
580 
581 	SKB_GSO_TCP_FIXEDID = 1 << 3,
582 
583 	SKB_GSO_TCPV6 = 1 << 4,
584 
585 	SKB_GSO_FCOE = 1 << 5,
586 
587 	SKB_GSO_GRE = 1 << 6,
588 
589 	SKB_GSO_GRE_CSUM = 1 << 7,
590 
591 	SKB_GSO_IPXIP4 = 1 << 8,
592 
593 	SKB_GSO_IPXIP6 = 1 << 9,
594 
595 	SKB_GSO_UDP_TUNNEL = 1 << 10,
596 
597 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
598 
599 	SKB_GSO_PARTIAL = 1 << 12,
600 
601 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
602 
603 	SKB_GSO_SCTP = 1 << 14,
604 
605 	SKB_GSO_ESP = 1 << 15,
606 
607 	SKB_GSO_UDP = 1 << 16,
608 
609 	SKB_GSO_UDP_L4 = 1 << 17,
610 
611 	SKB_GSO_FRAGLIST = 1 << 18,
612 };
613 
614 #if BITS_PER_LONG > 32
615 #define NET_SKBUFF_DATA_USES_OFFSET 1
616 #endif
617 
618 #ifdef NET_SKBUFF_DATA_USES_OFFSET
619 typedef unsigned int sk_buff_data_t;
620 #else
621 typedef unsigned char *sk_buff_data_t;
622 #endif
623 
624 /**
625  *	struct sk_buff - socket buffer
626  *	@next: Next buffer in list
627  *	@prev: Previous buffer in list
628  *	@tstamp: Time we arrived/left
629  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
630  *		for retransmit timer
631  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
632  *	@list: queue head
633  *	@ll_node: anchor in an llist (eg socket defer_list)
634  *	@sk: Socket we are owned by
635  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
636  *		fragmentation management
637  *	@dev: Device we arrived on/are leaving by
638  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
639  *	@cb: Control buffer. Free for use by every layer. Put private vars here
640  *	@_skb_refdst: destination entry (with norefcount bit)
641  *	@sp: the security path, used for xfrm
642  *	@len: Length of actual data
643  *	@data_len: Data length
644  *	@mac_len: Length of link layer header
645  *	@hdr_len: writable header length of cloned skb
646  *	@csum: Checksum (must include start/offset pair)
647  *	@csum_start: Offset from skb->head where checksumming should start
648  *	@csum_offset: Offset from csum_start where checksum should be stored
649  *	@priority: Packet queueing priority
650  *	@ignore_df: allow local fragmentation
651  *	@cloned: Head may be cloned (check refcnt to be sure)
652  *	@ip_summed: Driver fed us an IP checksum
653  *	@nohdr: Payload reference only, must not modify header
654  *	@pkt_type: Packet class
655  *	@fclone: skbuff clone status
656  *	@ipvs_property: skbuff is owned by ipvs
657  *	@inner_protocol_type: whether the inner protocol is
658  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
659  *	@remcsum_offload: remote checksum offload is enabled
660  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
661  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
662  *	@tc_skip_classify: do not classify packet. set by IFB device
663  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
664  *	@redirected: packet was redirected by packet classifier
665  *	@from_ingress: packet was redirected from the ingress path
666  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
667  *	@peeked: this packet has been seen already, so stats have been
668  *		done for it, don't do them again
669  *	@nf_trace: netfilter packet trace flag
670  *	@protocol: Packet protocol from driver
671  *	@destructor: Destruct function
672  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
673  *	@_sk_redir: socket redirection information for skmsg
674  *	@_nfct: Associated connection, if any (with nfctinfo bits)
675  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
676  *	@skb_iif: ifindex of device we arrived on
677  *	@tc_index: Traffic control index
678  *	@hash: the packet hash
679  *	@queue_mapping: Queue mapping for multiqueue devices
680  *	@head_frag: skb was allocated from page fragments,
681  *		not allocated by kmalloc() or vmalloc().
682  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
683  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
684  *		page_pool support on driver)
685  *	@active_extensions: active extensions (skb_ext_id types)
686  *	@ndisc_nodetype: router type (from link layer)
687  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
688  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
689  *		ports.
690  *	@sw_hash: indicates hash was computed in software stack
691  *	@wifi_acked_valid: wifi_acked was set
692  *	@wifi_acked: whether frame was acked on wifi or not
693  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
694  *	@encapsulation: indicates the inner headers in the skbuff are valid
695  *	@encap_hdr_csum: software checksum is needed
696  *	@csum_valid: checksum is already valid
697  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
698  *	@csum_complete_sw: checksum was completed by software
699  *	@csum_level: indicates the number of consecutive checksums found in
700  *		the packet minus one that have been verified as
701  *		CHECKSUM_UNNECESSARY (max 3)
702  *	@dst_pending_confirm: need to confirm neighbour
703  *	@decrypted: Decrypted SKB
704  *	@slow_gro: state present at GRO time, slower prepare step required
705  *	@napi_id: id of the NAPI struct this skb came from
706  *	@sender_cpu: (aka @napi_id) source CPU in XPS
707  *	@secmark: security marking
708  *	@mark: Generic packet mark
709  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
710  *		at the tail of an sk_buff
711  *	@vlan_present: VLAN tag is present
712  *	@vlan_proto: vlan encapsulation protocol
713  *	@vlan_tci: vlan tag control information
714  *	@inner_protocol: Protocol (encapsulation)
715  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
716  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
717  *	@inner_transport_header: Inner transport layer header (encapsulation)
718  *	@inner_network_header: Network layer header (encapsulation)
719  *	@inner_mac_header: Link layer header (encapsulation)
720  *	@transport_header: Transport layer header
721  *	@network_header: Network layer header
722  *	@mac_header: Link layer header
723  *	@kcov_handle: KCOV remote handle for remote coverage collection
724  *	@tail: Tail pointer
725  *	@end: End pointer
726  *	@head: Head of buffer
727  *	@data: Data head pointer
728  *	@truesize: Buffer size
729  *	@users: User count - see {datagram,tcp}.c
730  *	@extensions: allocated extensions, valid if active_extensions is nonzero
731  */
732 
733 struct sk_buff {
734 	union {
735 		struct {
736 			/* These two members must be first to match sk_buff_head. */
737 			struct sk_buff		*next;
738 			struct sk_buff		*prev;
739 
740 			union {
741 				struct net_device	*dev;
742 				/* Some protocols might use this space to store information,
743 				 * while device pointer would be NULL.
744 				 * UDP receive path is one user.
745 				 */
746 				unsigned long		dev_scratch;
747 			};
748 		};
749 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
750 		struct list_head	list;
751 		struct llist_node	ll_node;
752 	};
753 
754 	union {
755 		struct sock		*sk;
756 		int			ip_defrag_offset;
757 	};
758 
759 	union {
760 		ktime_t		tstamp;
761 		u64		skb_mstamp_ns; /* earliest departure time */
762 	};
763 	/*
764 	 * This is the control buffer. It is free to use for every
765 	 * layer. Please put your private variables there. If you
766 	 * want to keep them across layers you have to do a skb_clone()
767 	 * first. This is owned by whoever has the skb queued ATM.
768 	 */
769 	char			cb[48] __aligned(8);
770 
771 	union {
772 		struct {
773 			unsigned long	_skb_refdst;
774 			void		(*destructor)(struct sk_buff *skb);
775 		};
776 		struct list_head	tcp_tsorted_anchor;
777 #ifdef CONFIG_NET_SOCK_MSG
778 		unsigned long		_sk_redir;
779 #endif
780 	};
781 
782 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
783 	unsigned long		 _nfct;
784 #endif
785 	unsigned int		len,
786 				data_len;
787 	__u16			mac_len,
788 				hdr_len;
789 
790 	/* Following fields are _not_ copied in __copy_skb_header()
791 	 * Note that queue_mapping is here mostly to fill a hole.
792 	 */
793 	__u16			queue_mapping;
794 
795 /* if you move cloned around you also must adapt those constants */
796 #ifdef __BIG_ENDIAN_BITFIELD
797 #define CLONED_MASK	(1 << 7)
798 #else
799 #define CLONED_MASK	1
800 #endif
801 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
802 
803 	/* private: */
804 	__u8			__cloned_offset[0];
805 	/* public: */
806 	__u8			cloned:1,
807 				nohdr:1,
808 				fclone:2,
809 				peeked:1,
810 				head_frag:1,
811 				pfmemalloc:1,
812 				pp_recycle:1; /* page_pool recycle indicator */
813 #ifdef CONFIG_SKB_EXTENSIONS
814 	__u8			active_extensions;
815 #endif
816 
817 	/* Fields enclosed in headers group are copied
818 	 * using a single memcpy() in __copy_skb_header()
819 	 */
820 	struct_group(headers,
821 
822 	/* private: */
823 	__u8			__pkt_type_offset[0];
824 	/* public: */
825 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
826 	__u8			ignore_df:1;
827 	__u8			nf_trace:1;
828 	__u8			ip_summed:2;
829 	__u8			ooo_okay:1;
830 
831 	__u8			l4_hash:1;
832 	__u8			sw_hash:1;
833 	__u8			wifi_acked_valid:1;
834 	__u8			wifi_acked:1;
835 	__u8			no_fcs:1;
836 	/* Indicates the inner headers are valid in the skbuff. */
837 	__u8			encapsulation:1;
838 	__u8			encap_hdr_csum:1;
839 	__u8			csum_valid:1;
840 
841 	/* private: */
842 	__u8			__pkt_vlan_present_offset[0];
843 	/* public: */
844 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
845 	__u8			csum_complete_sw:1;
846 	__u8			csum_level:2;
847 	__u8			csum_not_inet:1;
848 	__u8			dst_pending_confirm:1;
849 #ifdef CONFIG_IPV6_NDISC_NODETYPE
850 	__u8			ndisc_nodetype:2;
851 #endif
852 
853 	__u8			ipvs_property:1;
854 	__u8			inner_protocol_type:1;
855 	__u8			remcsum_offload:1;
856 #ifdef CONFIG_NET_SWITCHDEV
857 	__u8			offload_fwd_mark:1;
858 	__u8			offload_l3_fwd_mark:1;
859 #endif
860 #ifdef CONFIG_NET_CLS_ACT
861 	__u8			tc_skip_classify:1;
862 	__u8			tc_at_ingress:1;
863 #endif
864 	__u8			redirected:1;
865 #ifdef CONFIG_NET_REDIRECT
866 	__u8			from_ingress:1;
867 #endif
868 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
869 	__u8			nf_skip_egress:1;
870 #endif
871 #ifdef CONFIG_TLS_DEVICE
872 	__u8			decrypted:1;
873 #endif
874 	__u8			slow_gro:1;
875 
876 #ifdef CONFIG_NET_SCHED
877 	__u16			tc_index;	/* traffic control index */
878 #endif
879 
880 	union {
881 		__wsum		csum;
882 		struct {
883 			__u16	csum_start;
884 			__u16	csum_offset;
885 		};
886 	};
887 	__u32			priority;
888 	int			skb_iif;
889 	__u32			hash;
890 	__be16			vlan_proto;
891 	__u16			vlan_tci;
892 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
893 	union {
894 		unsigned int	napi_id;
895 		unsigned int	sender_cpu;
896 	};
897 #endif
898 #ifdef CONFIG_NETWORK_SECMARK
899 	__u32		secmark;
900 #endif
901 
902 	union {
903 		__u32		mark;
904 		__u32		reserved_tailroom;
905 	};
906 
907 	union {
908 		__be16		inner_protocol;
909 		__u8		inner_ipproto;
910 	};
911 
912 	__u16			inner_transport_header;
913 	__u16			inner_network_header;
914 	__u16			inner_mac_header;
915 
916 	__be16			protocol;
917 	__u16			transport_header;
918 	__u16			network_header;
919 	__u16			mac_header;
920 
921 #ifdef CONFIG_KCOV
922 	u64			kcov_handle;
923 #endif
924 
925 	); /* end headers group */
926 
927 	/* These elements must be at the end, see alloc_skb() for details.  */
928 	sk_buff_data_t		tail;
929 	sk_buff_data_t		end;
930 	unsigned char		*head,
931 				*data;
932 	unsigned int		truesize;
933 	refcount_t		users;
934 
935 #ifdef CONFIG_SKB_EXTENSIONS
936 	/* only useable after checking ->active_extensions != 0 */
937 	struct skb_ext		*extensions;
938 #endif
939 };
940 
941 /* if you move pkt_type around you also must adapt those constants */
942 #ifdef __BIG_ENDIAN_BITFIELD
943 #define PKT_TYPE_MAX	(7 << 5)
944 #else
945 #define PKT_TYPE_MAX	7
946 #endif
947 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
948 
949 /* if you move pkt_vlan_present around you also must adapt these constants */
950 #ifdef __BIG_ENDIAN_BITFIELD
951 #define PKT_VLAN_PRESENT_BIT	7
952 #else
953 #define PKT_VLAN_PRESENT_BIT	0
954 #endif
955 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
956 
957 #ifdef __KERNEL__
958 /*
959  *	Handling routines are only of interest to the kernel
960  */
961 
962 #define SKB_ALLOC_FCLONE	0x01
963 #define SKB_ALLOC_RX		0x02
964 #define SKB_ALLOC_NAPI		0x04
965 
966 /**
967  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
968  * @skb: buffer
969  */
970 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
971 {
972 	return unlikely(skb->pfmemalloc);
973 }
974 
975 /*
976  * skb might have a dst pointer attached, refcounted or not.
977  * _skb_refdst low order bit is set if refcount was _not_ taken
978  */
979 #define SKB_DST_NOREF	1UL
980 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
981 
982 /**
983  * skb_dst - returns skb dst_entry
984  * @skb: buffer
985  *
986  * Returns skb dst_entry, regardless of reference taken or not.
987  */
988 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
989 {
990 	/* If refdst was not refcounted, check we still are in a
991 	 * rcu_read_lock section
992 	 */
993 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
994 		!rcu_read_lock_held() &&
995 		!rcu_read_lock_bh_held());
996 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
997 }
998 
999 /**
1000  * skb_dst_set - sets skb dst
1001  * @skb: buffer
1002  * @dst: dst entry
1003  *
1004  * Sets skb dst, assuming a reference was taken on dst and should
1005  * be released by skb_dst_drop()
1006  */
1007 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1008 {
1009 	skb->slow_gro |= !!dst;
1010 	skb->_skb_refdst = (unsigned long)dst;
1011 }
1012 
1013 /**
1014  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1015  * @skb: buffer
1016  * @dst: dst entry
1017  *
1018  * Sets skb dst, assuming a reference was not taken on dst.
1019  * If dst entry is cached, we do not take reference and dst_release
1020  * will be avoided by refdst_drop. If dst entry is not cached, we take
1021  * reference, so that last dst_release can destroy the dst immediately.
1022  */
1023 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1024 {
1025 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1026 	skb->slow_gro |= !!dst;
1027 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1028 }
1029 
1030 /**
1031  * skb_dst_is_noref - Test if skb dst isn't refcounted
1032  * @skb: buffer
1033  */
1034 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1035 {
1036 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1037 }
1038 
1039 /**
1040  * skb_rtable - Returns the skb &rtable
1041  * @skb: buffer
1042  */
1043 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1044 {
1045 	return (struct rtable *)skb_dst(skb);
1046 }
1047 
1048 /* For mangling skb->pkt_type from user space side from applications
1049  * such as nft, tc, etc, we only allow a conservative subset of
1050  * possible pkt_types to be set.
1051 */
1052 static inline bool skb_pkt_type_ok(u32 ptype)
1053 {
1054 	return ptype <= PACKET_OTHERHOST;
1055 }
1056 
1057 /**
1058  * skb_napi_id - Returns the skb's NAPI id
1059  * @skb: buffer
1060  */
1061 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1062 {
1063 #ifdef CONFIG_NET_RX_BUSY_POLL
1064 	return skb->napi_id;
1065 #else
1066 	return 0;
1067 #endif
1068 }
1069 
1070 /**
1071  * skb_unref - decrement the skb's reference count
1072  * @skb: buffer
1073  *
1074  * Returns true if we can free the skb.
1075  */
1076 static inline bool skb_unref(struct sk_buff *skb)
1077 {
1078 	if (unlikely(!skb))
1079 		return false;
1080 	if (likely(refcount_read(&skb->users) == 1))
1081 		smp_rmb();
1082 	else if (likely(!refcount_dec_and_test(&skb->users)))
1083 		return false;
1084 
1085 	return true;
1086 }
1087 
1088 void skb_release_head_state(struct sk_buff *skb);
1089 void kfree_skb(struct sk_buff *skb);
1090 void kfree_skb_list(struct sk_buff *segs);
1091 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1092 void skb_tx_error(struct sk_buff *skb);
1093 
1094 #ifdef CONFIG_TRACEPOINTS
1095 void consume_skb(struct sk_buff *skb);
1096 #else
1097 static inline void consume_skb(struct sk_buff *skb)
1098 {
1099 	return kfree_skb(skb);
1100 }
1101 #endif
1102 
1103 void __consume_stateless_skb(struct sk_buff *skb);
1104 void  __kfree_skb(struct sk_buff *skb);
1105 extern struct kmem_cache *skbuff_head_cache;
1106 
1107 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1108 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1109 		      bool *fragstolen, int *delta_truesize);
1110 
1111 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1112 			    int node);
1113 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1114 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1115 struct sk_buff *build_skb_around(struct sk_buff *skb,
1116 				 void *data, unsigned int frag_size);
1117 
1118 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1119 
1120 /**
1121  * alloc_skb - allocate a network buffer
1122  * @size: size to allocate
1123  * @priority: allocation mask
1124  *
1125  * This function is a convenient wrapper around __alloc_skb().
1126  */
1127 static inline struct sk_buff *alloc_skb(unsigned int size,
1128 					gfp_t priority)
1129 {
1130 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1131 }
1132 
1133 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1134 				     unsigned long data_len,
1135 				     int max_page_order,
1136 				     int *errcode,
1137 				     gfp_t gfp_mask);
1138 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1139 
1140 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1141 struct sk_buff_fclones {
1142 	struct sk_buff	skb1;
1143 
1144 	struct sk_buff	skb2;
1145 
1146 	refcount_t	fclone_ref;
1147 };
1148 
1149 /**
1150  *	skb_fclone_busy - check if fclone is busy
1151  *	@sk: socket
1152  *	@skb: buffer
1153  *
1154  * Returns true if skb is a fast clone, and its clone is not freed.
1155  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1156  * so we also check that this didnt happen.
1157  */
1158 static inline bool skb_fclone_busy(const struct sock *sk,
1159 				   const struct sk_buff *skb)
1160 {
1161 	const struct sk_buff_fclones *fclones;
1162 
1163 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1164 
1165 	return skb->fclone == SKB_FCLONE_ORIG &&
1166 	       refcount_read(&fclones->fclone_ref) > 1 &&
1167 	       READ_ONCE(fclones->skb2.sk) == sk;
1168 }
1169 
1170 /**
1171  * alloc_skb_fclone - allocate a network buffer from fclone cache
1172  * @size: size to allocate
1173  * @priority: allocation mask
1174  *
1175  * This function is a convenient wrapper around __alloc_skb().
1176  */
1177 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1178 					       gfp_t priority)
1179 {
1180 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1181 }
1182 
1183 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1184 void skb_headers_offset_update(struct sk_buff *skb, int off);
1185 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1186 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1187 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1188 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1189 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1190 				   gfp_t gfp_mask, bool fclone);
1191 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1192 					  gfp_t gfp_mask)
1193 {
1194 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1195 }
1196 
1197 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1198 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1199 				     unsigned int headroom);
1200 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1201 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1202 				int newtailroom, gfp_t priority);
1203 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1204 				     int offset, int len);
1205 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1206 			      int offset, int len);
1207 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1208 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1209 
1210 /**
1211  *	skb_pad			-	zero pad the tail of an skb
1212  *	@skb: buffer to pad
1213  *	@pad: space to pad
1214  *
1215  *	Ensure that a buffer is followed by a padding area that is zero
1216  *	filled. Used by network drivers which may DMA or transfer data
1217  *	beyond the buffer end onto the wire.
1218  *
1219  *	May return error in out of memory cases. The skb is freed on error.
1220  */
1221 static inline int skb_pad(struct sk_buff *skb, int pad)
1222 {
1223 	return __skb_pad(skb, pad, true);
1224 }
1225 #define dev_kfree_skb(a)	consume_skb(a)
1226 
1227 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1228 			 int offset, size_t size);
1229 
1230 struct skb_seq_state {
1231 	__u32		lower_offset;
1232 	__u32		upper_offset;
1233 	__u32		frag_idx;
1234 	__u32		stepped_offset;
1235 	struct sk_buff	*root_skb;
1236 	struct sk_buff	*cur_skb;
1237 	__u8		*frag_data;
1238 	__u32		frag_off;
1239 };
1240 
1241 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1242 			  unsigned int to, struct skb_seq_state *st);
1243 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1244 			  struct skb_seq_state *st);
1245 void skb_abort_seq_read(struct skb_seq_state *st);
1246 
1247 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1248 			   unsigned int to, struct ts_config *config);
1249 
1250 /*
1251  * Packet hash types specify the type of hash in skb_set_hash.
1252  *
1253  * Hash types refer to the protocol layer addresses which are used to
1254  * construct a packet's hash. The hashes are used to differentiate or identify
1255  * flows of the protocol layer for the hash type. Hash types are either
1256  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1257  *
1258  * Properties of hashes:
1259  *
1260  * 1) Two packets in different flows have different hash values
1261  * 2) Two packets in the same flow should have the same hash value
1262  *
1263  * A hash at a higher layer is considered to be more specific. A driver should
1264  * set the most specific hash possible.
1265  *
1266  * A driver cannot indicate a more specific hash than the layer at which a hash
1267  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1268  *
1269  * A driver may indicate a hash level which is less specific than the
1270  * actual layer the hash was computed on. For instance, a hash computed
1271  * at L4 may be considered an L3 hash. This should only be done if the
1272  * driver can't unambiguously determine that the HW computed the hash at
1273  * the higher layer. Note that the "should" in the second property above
1274  * permits this.
1275  */
1276 enum pkt_hash_types {
1277 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1278 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1279 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1280 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1281 };
1282 
1283 static inline void skb_clear_hash(struct sk_buff *skb)
1284 {
1285 	skb->hash = 0;
1286 	skb->sw_hash = 0;
1287 	skb->l4_hash = 0;
1288 }
1289 
1290 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1291 {
1292 	if (!skb->l4_hash)
1293 		skb_clear_hash(skb);
1294 }
1295 
1296 static inline void
1297 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1298 {
1299 	skb->l4_hash = is_l4;
1300 	skb->sw_hash = is_sw;
1301 	skb->hash = hash;
1302 }
1303 
1304 static inline void
1305 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1306 {
1307 	/* Used by drivers to set hash from HW */
1308 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1309 }
1310 
1311 static inline void
1312 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1313 {
1314 	__skb_set_hash(skb, hash, true, is_l4);
1315 }
1316 
1317 void __skb_get_hash(struct sk_buff *skb);
1318 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1319 u32 skb_get_poff(const struct sk_buff *skb);
1320 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1321 		   const struct flow_keys_basic *keys, int hlen);
1322 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1323 			    const void *data, int hlen_proto);
1324 
1325 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1326 					int thoff, u8 ip_proto)
1327 {
1328 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1329 }
1330 
1331 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1332 			     const struct flow_dissector_key *key,
1333 			     unsigned int key_count);
1334 
1335 struct bpf_flow_dissector;
1336 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1337 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1338 
1339 bool __skb_flow_dissect(const struct net *net,
1340 			const struct sk_buff *skb,
1341 			struct flow_dissector *flow_dissector,
1342 			void *target_container, const void *data,
1343 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1344 
1345 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1346 				    struct flow_dissector *flow_dissector,
1347 				    void *target_container, unsigned int flags)
1348 {
1349 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1350 				  target_container, NULL, 0, 0, 0, flags);
1351 }
1352 
1353 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1354 					      struct flow_keys *flow,
1355 					      unsigned int flags)
1356 {
1357 	memset(flow, 0, sizeof(*flow));
1358 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1359 				  flow, NULL, 0, 0, 0, flags);
1360 }
1361 
1362 static inline bool
1363 skb_flow_dissect_flow_keys_basic(const struct net *net,
1364 				 const struct sk_buff *skb,
1365 				 struct flow_keys_basic *flow,
1366 				 const void *data, __be16 proto,
1367 				 int nhoff, int hlen, unsigned int flags)
1368 {
1369 	memset(flow, 0, sizeof(*flow));
1370 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1371 				  data, proto, nhoff, hlen, flags);
1372 }
1373 
1374 void skb_flow_dissect_meta(const struct sk_buff *skb,
1375 			   struct flow_dissector *flow_dissector,
1376 			   void *target_container);
1377 
1378 /* Gets a skb connection tracking info, ctinfo map should be a
1379  * map of mapsize to translate enum ip_conntrack_info states
1380  * to user states.
1381  */
1382 void
1383 skb_flow_dissect_ct(const struct sk_buff *skb,
1384 		    struct flow_dissector *flow_dissector,
1385 		    void *target_container,
1386 		    u16 *ctinfo_map, size_t mapsize,
1387 		    bool post_ct, u16 zone);
1388 void
1389 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1390 			     struct flow_dissector *flow_dissector,
1391 			     void *target_container);
1392 
1393 void skb_flow_dissect_hash(const struct sk_buff *skb,
1394 			   struct flow_dissector *flow_dissector,
1395 			   void *target_container);
1396 
1397 static inline __u32 skb_get_hash(struct sk_buff *skb)
1398 {
1399 	if (!skb->l4_hash && !skb->sw_hash)
1400 		__skb_get_hash(skb);
1401 
1402 	return skb->hash;
1403 }
1404 
1405 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1406 {
1407 	if (!skb->l4_hash && !skb->sw_hash) {
1408 		struct flow_keys keys;
1409 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1410 
1411 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1412 	}
1413 
1414 	return skb->hash;
1415 }
1416 
1417 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1418 			   const siphash_key_t *perturb);
1419 
1420 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1421 {
1422 	return skb->hash;
1423 }
1424 
1425 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1426 {
1427 	to->hash = from->hash;
1428 	to->sw_hash = from->sw_hash;
1429 	to->l4_hash = from->l4_hash;
1430 };
1431 
1432 static inline void skb_copy_decrypted(struct sk_buff *to,
1433 				      const struct sk_buff *from)
1434 {
1435 #ifdef CONFIG_TLS_DEVICE
1436 	to->decrypted = from->decrypted;
1437 #endif
1438 }
1439 
1440 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1441 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1442 {
1443 	return skb->head + skb->end;
1444 }
1445 
1446 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1447 {
1448 	return skb->end;
1449 }
1450 #else
1451 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1452 {
1453 	return skb->end;
1454 }
1455 
1456 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1457 {
1458 	return skb->end - skb->head;
1459 }
1460 #endif
1461 
1462 /* Internal */
1463 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1464 
1465 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1466 {
1467 	return &skb_shinfo(skb)->hwtstamps;
1468 }
1469 
1470 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1471 {
1472 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1473 
1474 	return is_zcopy ? skb_uarg(skb) : NULL;
1475 }
1476 
1477 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1478 {
1479 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1480 }
1481 
1482 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1483 				       const struct sk_buff *skb2)
1484 {
1485 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1486 }
1487 
1488 static inline void net_zcopy_get(struct ubuf_info *uarg)
1489 {
1490 	refcount_inc(&uarg->refcnt);
1491 }
1492 
1493 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1494 {
1495 	skb_shinfo(skb)->destructor_arg = uarg;
1496 	skb_shinfo(skb)->flags |= uarg->flags;
1497 }
1498 
1499 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1500 				 bool *have_ref)
1501 {
1502 	if (skb && uarg && !skb_zcopy(skb)) {
1503 		if (unlikely(have_ref && *have_ref))
1504 			*have_ref = false;
1505 		else
1506 			net_zcopy_get(uarg);
1507 		skb_zcopy_init(skb, uarg);
1508 	}
1509 }
1510 
1511 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1512 {
1513 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1514 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1515 }
1516 
1517 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1518 {
1519 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1520 }
1521 
1522 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1523 {
1524 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1525 }
1526 
1527 static inline void net_zcopy_put(struct ubuf_info *uarg)
1528 {
1529 	if (uarg)
1530 		uarg->callback(NULL, uarg, true);
1531 }
1532 
1533 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1534 {
1535 	if (uarg) {
1536 		if (uarg->callback == msg_zerocopy_callback)
1537 			msg_zerocopy_put_abort(uarg, have_uref);
1538 		else if (have_uref)
1539 			net_zcopy_put(uarg);
1540 	}
1541 }
1542 
1543 /* Release a reference on a zerocopy structure */
1544 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1545 {
1546 	struct ubuf_info *uarg = skb_zcopy(skb);
1547 
1548 	if (uarg) {
1549 		if (!skb_zcopy_is_nouarg(skb))
1550 			uarg->callback(skb, uarg, zerocopy_success);
1551 
1552 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1553 	}
1554 }
1555 
1556 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1557 {
1558 	skb->next = NULL;
1559 }
1560 
1561 /* Iterate through singly-linked GSO fragments of an skb. */
1562 #define skb_list_walk_safe(first, skb, next_skb)                               \
1563 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1564 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1565 
1566 static inline void skb_list_del_init(struct sk_buff *skb)
1567 {
1568 	__list_del_entry(&skb->list);
1569 	skb_mark_not_on_list(skb);
1570 }
1571 
1572 /**
1573  *	skb_queue_empty - check if a queue is empty
1574  *	@list: queue head
1575  *
1576  *	Returns true if the queue is empty, false otherwise.
1577  */
1578 static inline int skb_queue_empty(const struct sk_buff_head *list)
1579 {
1580 	return list->next == (const struct sk_buff *) list;
1581 }
1582 
1583 /**
1584  *	skb_queue_empty_lockless - check if a queue is empty
1585  *	@list: queue head
1586  *
1587  *	Returns true if the queue is empty, false otherwise.
1588  *	This variant can be used in lockless contexts.
1589  */
1590 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1591 {
1592 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1593 }
1594 
1595 
1596 /**
1597  *	skb_queue_is_last - check if skb is the last entry in the queue
1598  *	@list: queue head
1599  *	@skb: buffer
1600  *
1601  *	Returns true if @skb is the last buffer on the list.
1602  */
1603 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1604 				     const struct sk_buff *skb)
1605 {
1606 	return skb->next == (const struct sk_buff *) list;
1607 }
1608 
1609 /**
1610  *	skb_queue_is_first - check if skb is the first entry in the queue
1611  *	@list: queue head
1612  *	@skb: buffer
1613  *
1614  *	Returns true if @skb is the first buffer on the list.
1615  */
1616 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1617 				      const struct sk_buff *skb)
1618 {
1619 	return skb->prev == (const struct sk_buff *) list;
1620 }
1621 
1622 /**
1623  *	skb_queue_next - return the next packet in the queue
1624  *	@list: queue head
1625  *	@skb: current buffer
1626  *
1627  *	Return the next packet in @list after @skb.  It is only valid to
1628  *	call this if skb_queue_is_last() evaluates to false.
1629  */
1630 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1631 					     const struct sk_buff *skb)
1632 {
1633 	/* This BUG_ON may seem severe, but if we just return then we
1634 	 * are going to dereference garbage.
1635 	 */
1636 	BUG_ON(skb_queue_is_last(list, skb));
1637 	return skb->next;
1638 }
1639 
1640 /**
1641  *	skb_queue_prev - return the prev packet in the queue
1642  *	@list: queue head
1643  *	@skb: current buffer
1644  *
1645  *	Return the prev packet in @list before @skb.  It is only valid to
1646  *	call this if skb_queue_is_first() evaluates to false.
1647  */
1648 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1649 					     const struct sk_buff *skb)
1650 {
1651 	/* This BUG_ON may seem severe, but if we just return then we
1652 	 * are going to dereference garbage.
1653 	 */
1654 	BUG_ON(skb_queue_is_first(list, skb));
1655 	return skb->prev;
1656 }
1657 
1658 /**
1659  *	skb_get - reference buffer
1660  *	@skb: buffer to reference
1661  *
1662  *	Makes another reference to a socket buffer and returns a pointer
1663  *	to the buffer.
1664  */
1665 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1666 {
1667 	refcount_inc(&skb->users);
1668 	return skb;
1669 }
1670 
1671 /*
1672  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1673  */
1674 
1675 /**
1676  *	skb_cloned - is the buffer a clone
1677  *	@skb: buffer to check
1678  *
1679  *	Returns true if the buffer was generated with skb_clone() and is
1680  *	one of multiple shared copies of the buffer. Cloned buffers are
1681  *	shared data so must not be written to under normal circumstances.
1682  */
1683 static inline int skb_cloned(const struct sk_buff *skb)
1684 {
1685 	return skb->cloned &&
1686 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1687 }
1688 
1689 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1690 {
1691 	might_sleep_if(gfpflags_allow_blocking(pri));
1692 
1693 	if (skb_cloned(skb))
1694 		return pskb_expand_head(skb, 0, 0, pri);
1695 
1696 	return 0;
1697 }
1698 
1699 /* This variant of skb_unclone() makes sure skb->truesize is not changed */
1700 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1701 {
1702 	might_sleep_if(gfpflags_allow_blocking(pri));
1703 
1704 	if (skb_cloned(skb)) {
1705 		unsigned int save = skb->truesize;
1706 		int res;
1707 
1708 		res = pskb_expand_head(skb, 0, 0, pri);
1709 		skb->truesize = save;
1710 		return res;
1711 	}
1712 	return 0;
1713 }
1714 
1715 /**
1716  *	skb_header_cloned - is the header a clone
1717  *	@skb: buffer to check
1718  *
1719  *	Returns true if modifying the header part of the buffer requires
1720  *	the data to be copied.
1721  */
1722 static inline int skb_header_cloned(const struct sk_buff *skb)
1723 {
1724 	int dataref;
1725 
1726 	if (!skb->cloned)
1727 		return 0;
1728 
1729 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1730 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1731 	return dataref != 1;
1732 }
1733 
1734 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1735 {
1736 	might_sleep_if(gfpflags_allow_blocking(pri));
1737 
1738 	if (skb_header_cloned(skb))
1739 		return pskb_expand_head(skb, 0, 0, pri);
1740 
1741 	return 0;
1742 }
1743 
1744 /**
1745  *	__skb_header_release - release reference to header
1746  *	@skb: buffer to operate on
1747  */
1748 static inline void __skb_header_release(struct sk_buff *skb)
1749 {
1750 	skb->nohdr = 1;
1751 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1752 }
1753 
1754 
1755 /**
1756  *	skb_shared - is the buffer shared
1757  *	@skb: buffer to check
1758  *
1759  *	Returns true if more than one person has a reference to this
1760  *	buffer.
1761  */
1762 static inline int skb_shared(const struct sk_buff *skb)
1763 {
1764 	return refcount_read(&skb->users) != 1;
1765 }
1766 
1767 /**
1768  *	skb_share_check - check if buffer is shared and if so clone it
1769  *	@skb: buffer to check
1770  *	@pri: priority for memory allocation
1771  *
1772  *	If the buffer is shared the buffer is cloned and the old copy
1773  *	drops a reference. A new clone with a single reference is returned.
1774  *	If the buffer is not shared the original buffer is returned. When
1775  *	being called from interrupt status or with spinlocks held pri must
1776  *	be GFP_ATOMIC.
1777  *
1778  *	NULL is returned on a memory allocation failure.
1779  */
1780 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1781 {
1782 	might_sleep_if(gfpflags_allow_blocking(pri));
1783 	if (skb_shared(skb)) {
1784 		struct sk_buff *nskb = skb_clone(skb, pri);
1785 
1786 		if (likely(nskb))
1787 			consume_skb(skb);
1788 		else
1789 			kfree_skb(skb);
1790 		skb = nskb;
1791 	}
1792 	return skb;
1793 }
1794 
1795 /*
1796  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1797  *	packets to handle cases where we have a local reader and forward
1798  *	and a couple of other messy ones. The normal one is tcpdumping
1799  *	a packet thats being forwarded.
1800  */
1801 
1802 /**
1803  *	skb_unshare - make a copy of a shared buffer
1804  *	@skb: buffer to check
1805  *	@pri: priority for memory allocation
1806  *
1807  *	If the socket buffer is a clone then this function creates a new
1808  *	copy of the data, drops a reference count on the old copy and returns
1809  *	the new copy with the reference count at 1. If the buffer is not a clone
1810  *	the original buffer is returned. When called with a spinlock held or
1811  *	from interrupt state @pri must be %GFP_ATOMIC
1812  *
1813  *	%NULL is returned on a memory allocation failure.
1814  */
1815 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1816 					  gfp_t pri)
1817 {
1818 	might_sleep_if(gfpflags_allow_blocking(pri));
1819 	if (skb_cloned(skb)) {
1820 		struct sk_buff *nskb = skb_copy(skb, pri);
1821 
1822 		/* Free our shared copy */
1823 		if (likely(nskb))
1824 			consume_skb(skb);
1825 		else
1826 			kfree_skb(skb);
1827 		skb = nskb;
1828 	}
1829 	return skb;
1830 }
1831 
1832 /**
1833  *	skb_peek - peek at the head of an &sk_buff_head
1834  *	@list_: list to peek at
1835  *
1836  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1837  *	be careful with this one. A peek leaves the buffer on the
1838  *	list and someone else may run off with it. You must hold
1839  *	the appropriate locks or have a private queue to do this.
1840  *
1841  *	Returns %NULL for an empty list or a pointer to the head element.
1842  *	The reference count is not incremented and the reference is therefore
1843  *	volatile. Use with caution.
1844  */
1845 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1846 {
1847 	struct sk_buff *skb = list_->next;
1848 
1849 	if (skb == (struct sk_buff *)list_)
1850 		skb = NULL;
1851 	return skb;
1852 }
1853 
1854 /**
1855  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1856  *	@list_: list to peek at
1857  *
1858  *	Like skb_peek(), but the caller knows that the list is not empty.
1859  */
1860 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1861 {
1862 	return list_->next;
1863 }
1864 
1865 /**
1866  *	skb_peek_next - peek skb following the given one from a queue
1867  *	@skb: skb to start from
1868  *	@list_: list to peek at
1869  *
1870  *	Returns %NULL when the end of the list is met or a pointer to the
1871  *	next element. The reference count is not incremented and the
1872  *	reference is therefore volatile. Use with caution.
1873  */
1874 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1875 		const struct sk_buff_head *list_)
1876 {
1877 	struct sk_buff *next = skb->next;
1878 
1879 	if (next == (struct sk_buff *)list_)
1880 		next = NULL;
1881 	return next;
1882 }
1883 
1884 /**
1885  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1886  *	@list_: list to peek at
1887  *
1888  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1889  *	be careful with this one. A peek leaves the buffer on the
1890  *	list and someone else may run off with it. You must hold
1891  *	the appropriate locks or have a private queue to do this.
1892  *
1893  *	Returns %NULL for an empty list or a pointer to the tail element.
1894  *	The reference count is not incremented and the reference is therefore
1895  *	volatile. Use with caution.
1896  */
1897 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1898 {
1899 	struct sk_buff *skb = READ_ONCE(list_->prev);
1900 
1901 	if (skb == (struct sk_buff *)list_)
1902 		skb = NULL;
1903 	return skb;
1904 
1905 }
1906 
1907 /**
1908  *	skb_queue_len	- get queue length
1909  *	@list_: list to measure
1910  *
1911  *	Return the length of an &sk_buff queue.
1912  */
1913 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1914 {
1915 	return list_->qlen;
1916 }
1917 
1918 /**
1919  *	skb_queue_len_lockless	- get queue length
1920  *	@list_: list to measure
1921  *
1922  *	Return the length of an &sk_buff queue.
1923  *	This variant can be used in lockless contexts.
1924  */
1925 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1926 {
1927 	return READ_ONCE(list_->qlen);
1928 }
1929 
1930 /**
1931  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1932  *	@list: queue to initialize
1933  *
1934  *	This initializes only the list and queue length aspects of
1935  *	an sk_buff_head object.  This allows to initialize the list
1936  *	aspects of an sk_buff_head without reinitializing things like
1937  *	the spinlock.  It can also be used for on-stack sk_buff_head
1938  *	objects where the spinlock is known to not be used.
1939  */
1940 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1941 {
1942 	list->prev = list->next = (struct sk_buff *)list;
1943 	list->qlen = 0;
1944 }
1945 
1946 /*
1947  * This function creates a split out lock class for each invocation;
1948  * this is needed for now since a whole lot of users of the skb-queue
1949  * infrastructure in drivers have different locking usage (in hardirq)
1950  * than the networking core (in softirq only). In the long run either the
1951  * network layer or drivers should need annotation to consolidate the
1952  * main types of usage into 3 classes.
1953  */
1954 static inline void skb_queue_head_init(struct sk_buff_head *list)
1955 {
1956 	spin_lock_init(&list->lock);
1957 	__skb_queue_head_init(list);
1958 }
1959 
1960 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1961 		struct lock_class_key *class)
1962 {
1963 	skb_queue_head_init(list);
1964 	lockdep_set_class(&list->lock, class);
1965 }
1966 
1967 /*
1968  *	Insert an sk_buff on a list.
1969  *
1970  *	The "__skb_xxxx()" functions are the non-atomic ones that
1971  *	can only be called with interrupts disabled.
1972  */
1973 static inline void __skb_insert(struct sk_buff *newsk,
1974 				struct sk_buff *prev, struct sk_buff *next,
1975 				struct sk_buff_head *list)
1976 {
1977 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1978 	 * for the opposite READ_ONCE()
1979 	 */
1980 	WRITE_ONCE(newsk->next, next);
1981 	WRITE_ONCE(newsk->prev, prev);
1982 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
1983 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
1984 	WRITE_ONCE(list->qlen, list->qlen + 1);
1985 }
1986 
1987 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1988 				      struct sk_buff *prev,
1989 				      struct sk_buff *next)
1990 {
1991 	struct sk_buff *first = list->next;
1992 	struct sk_buff *last = list->prev;
1993 
1994 	WRITE_ONCE(first->prev, prev);
1995 	WRITE_ONCE(prev->next, first);
1996 
1997 	WRITE_ONCE(last->next, next);
1998 	WRITE_ONCE(next->prev, last);
1999 }
2000 
2001 /**
2002  *	skb_queue_splice - join two skb lists, this is designed for stacks
2003  *	@list: the new list to add
2004  *	@head: the place to add it in the first list
2005  */
2006 static inline void skb_queue_splice(const struct sk_buff_head *list,
2007 				    struct sk_buff_head *head)
2008 {
2009 	if (!skb_queue_empty(list)) {
2010 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2011 		head->qlen += list->qlen;
2012 	}
2013 }
2014 
2015 /**
2016  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2017  *	@list: the new list to add
2018  *	@head: the place to add it in the first list
2019  *
2020  *	The list at @list is reinitialised
2021  */
2022 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2023 					 struct sk_buff_head *head)
2024 {
2025 	if (!skb_queue_empty(list)) {
2026 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2027 		head->qlen += list->qlen;
2028 		__skb_queue_head_init(list);
2029 	}
2030 }
2031 
2032 /**
2033  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2034  *	@list: the new list to add
2035  *	@head: the place to add it in the first list
2036  */
2037 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2038 					 struct sk_buff_head *head)
2039 {
2040 	if (!skb_queue_empty(list)) {
2041 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2042 		head->qlen += list->qlen;
2043 	}
2044 }
2045 
2046 /**
2047  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2048  *	@list: the new list to add
2049  *	@head: the place to add it in the first list
2050  *
2051  *	Each of the lists is a queue.
2052  *	The list at @list is reinitialised
2053  */
2054 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2055 					      struct sk_buff_head *head)
2056 {
2057 	if (!skb_queue_empty(list)) {
2058 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2059 		head->qlen += list->qlen;
2060 		__skb_queue_head_init(list);
2061 	}
2062 }
2063 
2064 /**
2065  *	__skb_queue_after - queue a buffer at the list head
2066  *	@list: list to use
2067  *	@prev: place after this buffer
2068  *	@newsk: buffer to queue
2069  *
2070  *	Queue a buffer int the middle of a list. This function takes no locks
2071  *	and you must therefore hold required locks before calling it.
2072  *
2073  *	A buffer cannot be placed on two lists at the same time.
2074  */
2075 static inline void __skb_queue_after(struct sk_buff_head *list,
2076 				     struct sk_buff *prev,
2077 				     struct sk_buff *newsk)
2078 {
2079 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2080 }
2081 
2082 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2083 		struct sk_buff_head *list);
2084 
2085 static inline void __skb_queue_before(struct sk_buff_head *list,
2086 				      struct sk_buff *next,
2087 				      struct sk_buff *newsk)
2088 {
2089 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2090 }
2091 
2092 /**
2093  *	__skb_queue_head - queue a buffer at the list head
2094  *	@list: list to use
2095  *	@newsk: buffer to queue
2096  *
2097  *	Queue a buffer at the start of a list. This function takes no locks
2098  *	and you must therefore hold required locks before calling it.
2099  *
2100  *	A buffer cannot be placed on two lists at the same time.
2101  */
2102 static inline void __skb_queue_head(struct sk_buff_head *list,
2103 				    struct sk_buff *newsk)
2104 {
2105 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2106 }
2107 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2108 
2109 /**
2110  *	__skb_queue_tail - queue a buffer at the list tail
2111  *	@list: list to use
2112  *	@newsk: buffer to queue
2113  *
2114  *	Queue a buffer at the end of a list. This function takes no locks
2115  *	and you must therefore hold required locks before calling it.
2116  *
2117  *	A buffer cannot be placed on two lists at the same time.
2118  */
2119 static inline void __skb_queue_tail(struct sk_buff_head *list,
2120 				   struct sk_buff *newsk)
2121 {
2122 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2123 }
2124 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2125 
2126 /*
2127  * remove sk_buff from list. _Must_ be called atomically, and with
2128  * the list known..
2129  */
2130 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2131 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2132 {
2133 	struct sk_buff *next, *prev;
2134 
2135 	WRITE_ONCE(list->qlen, list->qlen - 1);
2136 	next	   = skb->next;
2137 	prev	   = skb->prev;
2138 	skb->next  = skb->prev = NULL;
2139 	WRITE_ONCE(next->prev, prev);
2140 	WRITE_ONCE(prev->next, next);
2141 }
2142 
2143 /**
2144  *	__skb_dequeue - remove from the head of the queue
2145  *	@list: list to dequeue from
2146  *
2147  *	Remove the head of the list. This function does not take any locks
2148  *	so must be used with appropriate locks held only. The head item is
2149  *	returned or %NULL if the list is empty.
2150  */
2151 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2152 {
2153 	struct sk_buff *skb = skb_peek(list);
2154 	if (skb)
2155 		__skb_unlink(skb, list);
2156 	return skb;
2157 }
2158 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2159 
2160 /**
2161  *	__skb_dequeue_tail - remove from the tail of the queue
2162  *	@list: list to dequeue from
2163  *
2164  *	Remove the tail of the list. This function does not take any locks
2165  *	so must be used with appropriate locks held only. The tail item is
2166  *	returned or %NULL if the list is empty.
2167  */
2168 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2169 {
2170 	struct sk_buff *skb = skb_peek_tail(list);
2171 	if (skb)
2172 		__skb_unlink(skb, list);
2173 	return skb;
2174 }
2175 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2176 
2177 
2178 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2179 {
2180 	return skb->data_len;
2181 }
2182 
2183 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2184 {
2185 	return skb->len - skb->data_len;
2186 }
2187 
2188 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2189 {
2190 	unsigned int i, len = 0;
2191 
2192 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2193 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2194 	return len;
2195 }
2196 
2197 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2198 {
2199 	return skb_headlen(skb) + __skb_pagelen(skb);
2200 }
2201 
2202 /**
2203  * __skb_fill_page_desc - initialise a paged fragment in an skb
2204  * @skb: buffer containing fragment to be initialised
2205  * @i: paged fragment index to initialise
2206  * @page: the page to use for this fragment
2207  * @off: the offset to the data with @page
2208  * @size: the length of the data
2209  *
2210  * Initialises the @i'th fragment of @skb to point to &size bytes at
2211  * offset @off within @page.
2212  *
2213  * Does not take any additional reference on the fragment.
2214  */
2215 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2216 					struct page *page, int off, int size)
2217 {
2218 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2219 
2220 	/*
2221 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2222 	 * that not all callers have unique ownership of the page but rely
2223 	 * on page_is_pfmemalloc doing the right thing(tm).
2224 	 */
2225 	frag->bv_page		  = page;
2226 	frag->bv_offset		  = off;
2227 	skb_frag_size_set(frag, size);
2228 
2229 	page = compound_head(page);
2230 	if (page_is_pfmemalloc(page))
2231 		skb->pfmemalloc	= true;
2232 }
2233 
2234 /**
2235  * skb_fill_page_desc - initialise a paged fragment in an skb
2236  * @skb: buffer containing fragment to be initialised
2237  * @i: paged fragment index to initialise
2238  * @page: the page to use for this fragment
2239  * @off: the offset to the data with @page
2240  * @size: the length of the data
2241  *
2242  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2243  * @skb to point to @size bytes at offset @off within @page. In
2244  * addition updates @skb such that @i is the last fragment.
2245  *
2246  * Does not take any additional reference on the fragment.
2247  */
2248 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2249 				      struct page *page, int off, int size)
2250 {
2251 	__skb_fill_page_desc(skb, i, page, off, size);
2252 	skb_shinfo(skb)->nr_frags = i + 1;
2253 }
2254 
2255 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2256 		     int size, unsigned int truesize);
2257 
2258 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2259 			  unsigned int truesize);
2260 
2261 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2262 
2263 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2264 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2265 {
2266 	return skb->head + skb->tail;
2267 }
2268 
2269 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2270 {
2271 	skb->tail = skb->data - skb->head;
2272 }
2273 
2274 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2275 {
2276 	skb_reset_tail_pointer(skb);
2277 	skb->tail += offset;
2278 }
2279 
2280 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2281 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2282 {
2283 	return skb->tail;
2284 }
2285 
2286 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2287 {
2288 	skb->tail = skb->data;
2289 }
2290 
2291 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2292 {
2293 	skb->tail = skb->data + offset;
2294 }
2295 
2296 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2297 
2298 /*
2299  *	Add data to an sk_buff
2300  */
2301 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2302 void *skb_put(struct sk_buff *skb, unsigned int len);
2303 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2304 {
2305 	void *tmp = skb_tail_pointer(skb);
2306 	SKB_LINEAR_ASSERT(skb);
2307 	skb->tail += len;
2308 	skb->len  += len;
2309 	return tmp;
2310 }
2311 
2312 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2313 {
2314 	void *tmp = __skb_put(skb, len);
2315 
2316 	memset(tmp, 0, len);
2317 	return tmp;
2318 }
2319 
2320 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2321 				   unsigned int len)
2322 {
2323 	void *tmp = __skb_put(skb, len);
2324 
2325 	memcpy(tmp, data, len);
2326 	return tmp;
2327 }
2328 
2329 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2330 {
2331 	*(u8 *)__skb_put(skb, 1) = val;
2332 }
2333 
2334 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2335 {
2336 	void *tmp = skb_put(skb, len);
2337 
2338 	memset(tmp, 0, len);
2339 
2340 	return tmp;
2341 }
2342 
2343 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2344 				 unsigned int len)
2345 {
2346 	void *tmp = skb_put(skb, len);
2347 
2348 	memcpy(tmp, data, len);
2349 
2350 	return tmp;
2351 }
2352 
2353 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2354 {
2355 	*(u8 *)skb_put(skb, 1) = val;
2356 }
2357 
2358 void *skb_push(struct sk_buff *skb, unsigned int len);
2359 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2360 {
2361 	skb->data -= len;
2362 	skb->len  += len;
2363 	return skb->data;
2364 }
2365 
2366 void *skb_pull(struct sk_buff *skb, unsigned int len);
2367 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2368 {
2369 	skb->len -= len;
2370 	BUG_ON(skb->len < skb->data_len);
2371 	return skb->data += len;
2372 }
2373 
2374 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2375 {
2376 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2377 }
2378 
2379 void *skb_pull_data(struct sk_buff *skb, size_t len);
2380 
2381 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2382 
2383 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2384 {
2385 	if (len > skb_headlen(skb) &&
2386 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2387 		return NULL;
2388 	skb->len -= len;
2389 	return skb->data += len;
2390 }
2391 
2392 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2393 {
2394 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2395 }
2396 
2397 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2398 {
2399 	if (likely(len <= skb_headlen(skb)))
2400 		return true;
2401 	if (unlikely(len > skb->len))
2402 		return false;
2403 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2404 }
2405 
2406 void skb_condense(struct sk_buff *skb);
2407 
2408 /**
2409  *	skb_headroom - bytes at buffer head
2410  *	@skb: buffer to check
2411  *
2412  *	Return the number of bytes of free space at the head of an &sk_buff.
2413  */
2414 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2415 {
2416 	return skb->data - skb->head;
2417 }
2418 
2419 /**
2420  *	skb_tailroom - bytes at buffer end
2421  *	@skb: buffer to check
2422  *
2423  *	Return the number of bytes of free space at the tail of an sk_buff
2424  */
2425 static inline int skb_tailroom(const struct sk_buff *skb)
2426 {
2427 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2428 }
2429 
2430 /**
2431  *	skb_availroom - bytes at buffer end
2432  *	@skb: buffer to check
2433  *
2434  *	Return the number of bytes of free space at the tail of an sk_buff
2435  *	allocated by sk_stream_alloc()
2436  */
2437 static inline int skb_availroom(const struct sk_buff *skb)
2438 {
2439 	if (skb_is_nonlinear(skb))
2440 		return 0;
2441 
2442 	return skb->end - skb->tail - skb->reserved_tailroom;
2443 }
2444 
2445 /**
2446  *	skb_reserve - adjust headroom
2447  *	@skb: buffer to alter
2448  *	@len: bytes to move
2449  *
2450  *	Increase the headroom of an empty &sk_buff by reducing the tail
2451  *	room. This is only allowed for an empty buffer.
2452  */
2453 static inline void skb_reserve(struct sk_buff *skb, int len)
2454 {
2455 	skb->data += len;
2456 	skb->tail += len;
2457 }
2458 
2459 /**
2460  *	skb_tailroom_reserve - adjust reserved_tailroom
2461  *	@skb: buffer to alter
2462  *	@mtu: maximum amount of headlen permitted
2463  *	@needed_tailroom: minimum amount of reserved_tailroom
2464  *
2465  *	Set reserved_tailroom so that headlen can be as large as possible but
2466  *	not larger than mtu and tailroom cannot be smaller than
2467  *	needed_tailroom.
2468  *	The required headroom should already have been reserved before using
2469  *	this function.
2470  */
2471 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2472 					unsigned int needed_tailroom)
2473 {
2474 	SKB_LINEAR_ASSERT(skb);
2475 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2476 		/* use at most mtu */
2477 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2478 	else
2479 		/* use up to all available space */
2480 		skb->reserved_tailroom = needed_tailroom;
2481 }
2482 
2483 #define ENCAP_TYPE_ETHER	0
2484 #define ENCAP_TYPE_IPPROTO	1
2485 
2486 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2487 					  __be16 protocol)
2488 {
2489 	skb->inner_protocol = protocol;
2490 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2491 }
2492 
2493 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2494 					 __u8 ipproto)
2495 {
2496 	skb->inner_ipproto = ipproto;
2497 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2498 }
2499 
2500 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2501 {
2502 	skb->inner_mac_header = skb->mac_header;
2503 	skb->inner_network_header = skb->network_header;
2504 	skb->inner_transport_header = skb->transport_header;
2505 }
2506 
2507 static inline void skb_reset_mac_len(struct sk_buff *skb)
2508 {
2509 	skb->mac_len = skb->network_header - skb->mac_header;
2510 }
2511 
2512 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2513 							*skb)
2514 {
2515 	return skb->head + skb->inner_transport_header;
2516 }
2517 
2518 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2519 {
2520 	return skb_inner_transport_header(skb) - skb->data;
2521 }
2522 
2523 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2524 {
2525 	skb->inner_transport_header = skb->data - skb->head;
2526 }
2527 
2528 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2529 						   const int offset)
2530 {
2531 	skb_reset_inner_transport_header(skb);
2532 	skb->inner_transport_header += offset;
2533 }
2534 
2535 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2536 {
2537 	return skb->head + skb->inner_network_header;
2538 }
2539 
2540 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2541 {
2542 	skb->inner_network_header = skb->data - skb->head;
2543 }
2544 
2545 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2546 						const int offset)
2547 {
2548 	skb_reset_inner_network_header(skb);
2549 	skb->inner_network_header += offset;
2550 }
2551 
2552 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2553 {
2554 	return skb->head + skb->inner_mac_header;
2555 }
2556 
2557 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2558 {
2559 	skb->inner_mac_header = skb->data - skb->head;
2560 }
2561 
2562 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2563 					    const int offset)
2564 {
2565 	skb_reset_inner_mac_header(skb);
2566 	skb->inner_mac_header += offset;
2567 }
2568 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2569 {
2570 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2571 }
2572 
2573 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2574 {
2575 	return skb->head + skb->transport_header;
2576 }
2577 
2578 static inline void skb_reset_transport_header(struct sk_buff *skb)
2579 {
2580 	skb->transport_header = skb->data - skb->head;
2581 }
2582 
2583 static inline void skb_set_transport_header(struct sk_buff *skb,
2584 					    const int offset)
2585 {
2586 	skb_reset_transport_header(skb);
2587 	skb->transport_header += offset;
2588 }
2589 
2590 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2591 {
2592 	return skb->head + skb->network_header;
2593 }
2594 
2595 static inline void skb_reset_network_header(struct sk_buff *skb)
2596 {
2597 	skb->network_header = skb->data - skb->head;
2598 }
2599 
2600 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2601 {
2602 	skb_reset_network_header(skb);
2603 	skb->network_header += offset;
2604 }
2605 
2606 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2607 {
2608 	return skb->head + skb->mac_header;
2609 }
2610 
2611 static inline int skb_mac_offset(const struct sk_buff *skb)
2612 {
2613 	return skb_mac_header(skb) - skb->data;
2614 }
2615 
2616 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2617 {
2618 	return skb->network_header - skb->mac_header;
2619 }
2620 
2621 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2622 {
2623 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2624 }
2625 
2626 static inline void skb_unset_mac_header(struct sk_buff *skb)
2627 {
2628 	skb->mac_header = (typeof(skb->mac_header))~0U;
2629 }
2630 
2631 static inline void skb_reset_mac_header(struct sk_buff *skb)
2632 {
2633 	skb->mac_header = skb->data - skb->head;
2634 }
2635 
2636 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2637 {
2638 	skb_reset_mac_header(skb);
2639 	skb->mac_header += offset;
2640 }
2641 
2642 static inline void skb_pop_mac_header(struct sk_buff *skb)
2643 {
2644 	skb->mac_header = skb->network_header;
2645 }
2646 
2647 static inline void skb_probe_transport_header(struct sk_buff *skb)
2648 {
2649 	struct flow_keys_basic keys;
2650 
2651 	if (skb_transport_header_was_set(skb))
2652 		return;
2653 
2654 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2655 					     NULL, 0, 0, 0, 0))
2656 		skb_set_transport_header(skb, keys.control.thoff);
2657 }
2658 
2659 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2660 {
2661 	if (skb_mac_header_was_set(skb)) {
2662 		const unsigned char *old_mac = skb_mac_header(skb);
2663 
2664 		skb_set_mac_header(skb, -skb->mac_len);
2665 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2666 	}
2667 }
2668 
2669 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2670 {
2671 	return skb->csum_start - skb_headroom(skb);
2672 }
2673 
2674 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2675 {
2676 	return skb->head + skb->csum_start;
2677 }
2678 
2679 static inline int skb_transport_offset(const struct sk_buff *skb)
2680 {
2681 	return skb_transport_header(skb) - skb->data;
2682 }
2683 
2684 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2685 {
2686 	return skb->transport_header - skb->network_header;
2687 }
2688 
2689 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2690 {
2691 	return skb->inner_transport_header - skb->inner_network_header;
2692 }
2693 
2694 static inline int skb_network_offset(const struct sk_buff *skb)
2695 {
2696 	return skb_network_header(skb) - skb->data;
2697 }
2698 
2699 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2700 {
2701 	return skb_inner_network_header(skb) - skb->data;
2702 }
2703 
2704 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2705 {
2706 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2707 }
2708 
2709 /*
2710  * CPUs often take a performance hit when accessing unaligned memory
2711  * locations. The actual performance hit varies, it can be small if the
2712  * hardware handles it or large if we have to take an exception and fix it
2713  * in software.
2714  *
2715  * Since an ethernet header is 14 bytes network drivers often end up with
2716  * the IP header at an unaligned offset. The IP header can be aligned by
2717  * shifting the start of the packet by 2 bytes. Drivers should do this
2718  * with:
2719  *
2720  * skb_reserve(skb, NET_IP_ALIGN);
2721  *
2722  * The downside to this alignment of the IP header is that the DMA is now
2723  * unaligned. On some architectures the cost of an unaligned DMA is high
2724  * and this cost outweighs the gains made by aligning the IP header.
2725  *
2726  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2727  * to be overridden.
2728  */
2729 #ifndef NET_IP_ALIGN
2730 #define NET_IP_ALIGN	2
2731 #endif
2732 
2733 /*
2734  * The networking layer reserves some headroom in skb data (via
2735  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2736  * the header has to grow. In the default case, if the header has to grow
2737  * 32 bytes or less we avoid the reallocation.
2738  *
2739  * Unfortunately this headroom changes the DMA alignment of the resulting
2740  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2741  * on some architectures. An architecture can override this value,
2742  * perhaps setting it to a cacheline in size (since that will maintain
2743  * cacheline alignment of the DMA). It must be a power of 2.
2744  *
2745  * Various parts of the networking layer expect at least 32 bytes of
2746  * headroom, you should not reduce this.
2747  *
2748  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2749  * to reduce average number of cache lines per packet.
2750  * get_rps_cpu() for example only access one 64 bytes aligned block :
2751  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2752  */
2753 #ifndef NET_SKB_PAD
2754 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2755 #endif
2756 
2757 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2758 
2759 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2760 {
2761 	if (WARN_ON(skb_is_nonlinear(skb)))
2762 		return;
2763 	skb->len = len;
2764 	skb_set_tail_pointer(skb, len);
2765 }
2766 
2767 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2768 {
2769 	__skb_set_length(skb, len);
2770 }
2771 
2772 void skb_trim(struct sk_buff *skb, unsigned int len);
2773 
2774 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2775 {
2776 	if (skb->data_len)
2777 		return ___pskb_trim(skb, len);
2778 	__skb_trim(skb, len);
2779 	return 0;
2780 }
2781 
2782 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2783 {
2784 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2785 }
2786 
2787 /**
2788  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2789  *	@skb: buffer to alter
2790  *	@len: new length
2791  *
2792  *	This is identical to pskb_trim except that the caller knows that
2793  *	the skb is not cloned so we should never get an error due to out-
2794  *	of-memory.
2795  */
2796 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2797 {
2798 	int err = pskb_trim(skb, len);
2799 	BUG_ON(err);
2800 }
2801 
2802 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2803 {
2804 	unsigned int diff = len - skb->len;
2805 
2806 	if (skb_tailroom(skb) < diff) {
2807 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2808 					   GFP_ATOMIC);
2809 		if (ret)
2810 			return ret;
2811 	}
2812 	__skb_set_length(skb, len);
2813 	return 0;
2814 }
2815 
2816 /**
2817  *	skb_orphan - orphan a buffer
2818  *	@skb: buffer to orphan
2819  *
2820  *	If a buffer currently has an owner then we call the owner's
2821  *	destructor function and make the @skb unowned. The buffer continues
2822  *	to exist but is no longer charged to its former owner.
2823  */
2824 static inline void skb_orphan(struct sk_buff *skb)
2825 {
2826 	if (skb->destructor) {
2827 		skb->destructor(skb);
2828 		skb->destructor = NULL;
2829 		skb->sk		= NULL;
2830 	} else {
2831 		BUG_ON(skb->sk);
2832 	}
2833 }
2834 
2835 /**
2836  *	skb_orphan_frags - orphan the frags contained in a buffer
2837  *	@skb: buffer to orphan frags from
2838  *	@gfp_mask: allocation mask for replacement pages
2839  *
2840  *	For each frag in the SKB which needs a destructor (i.e. has an
2841  *	owner) create a copy of that frag and release the original
2842  *	page by calling the destructor.
2843  */
2844 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2845 {
2846 	if (likely(!skb_zcopy(skb)))
2847 		return 0;
2848 	if (!skb_zcopy_is_nouarg(skb) &&
2849 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2850 		return 0;
2851 	return skb_copy_ubufs(skb, gfp_mask);
2852 }
2853 
2854 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2855 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2856 {
2857 	if (likely(!skb_zcopy(skb)))
2858 		return 0;
2859 	return skb_copy_ubufs(skb, gfp_mask);
2860 }
2861 
2862 /**
2863  *	__skb_queue_purge - empty a list
2864  *	@list: list to empty
2865  *
2866  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2867  *	the list and one reference dropped. This function does not take the
2868  *	list lock and the caller must hold the relevant locks to use it.
2869  */
2870 static inline void __skb_queue_purge(struct sk_buff_head *list)
2871 {
2872 	struct sk_buff *skb;
2873 	while ((skb = __skb_dequeue(list)) != NULL)
2874 		kfree_skb(skb);
2875 }
2876 void skb_queue_purge(struct sk_buff_head *list);
2877 
2878 unsigned int skb_rbtree_purge(struct rb_root *root);
2879 
2880 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2881 
2882 /**
2883  * netdev_alloc_frag - allocate a page fragment
2884  * @fragsz: fragment size
2885  *
2886  * Allocates a frag from a page for receive buffer.
2887  * Uses GFP_ATOMIC allocations.
2888  */
2889 static inline void *netdev_alloc_frag(unsigned int fragsz)
2890 {
2891 	return __netdev_alloc_frag_align(fragsz, ~0u);
2892 }
2893 
2894 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2895 					    unsigned int align)
2896 {
2897 	WARN_ON_ONCE(!is_power_of_2(align));
2898 	return __netdev_alloc_frag_align(fragsz, -align);
2899 }
2900 
2901 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2902 				   gfp_t gfp_mask);
2903 
2904 /**
2905  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2906  *	@dev: network device to receive on
2907  *	@length: length to allocate
2908  *
2909  *	Allocate a new &sk_buff and assign it a usage count of one. The
2910  *	buffer has unspecified headroom built in. Users should allocate
2911  *	the headroom they think they need without accounting for the
2912  *	built in space. The built in space is used for optimisations.
2913  *
2914  *	%NULL is returned if there is no free memory. Although this function
2915  *	allocates memory it can be called from an interrupt.
2916  */
2917 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2918 					       unsigned int length)
2919 {
2920 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2921 }
2922 
2923 /* legacy helper around __netdev_alloc_skb() */
2924 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2925 					      gfp_t gfp_mask)
2926 {
2927 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2928 }
2929 
2930 /* legacy helper around netdev_alloc_skb() */
2931 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2932 {
2933 	return netdev_alloc_skb(NULL, length);
2934 }
2935 
2936 
2937 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2938 		unsigned int length, gfp_t gfp)
2939 {
2940 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2941 
2942 	if (NET_IP_ALIGN && skb)
2943 		skb_reserve(skb, NET_IP_ALIGN);
2944 	return skb;
2945 }
2946 
2947 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2948 		unsigned int length)
2949 {
2950 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2951 }
2952 
2953 static inline void skb_free_frag(void *addr)
2954 {
2955 	page_frag_free(addr);
2956 }
2957 
2958 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2959 
2960 static inline void *napi_alloc_frag(unsigned int fragsz)
2961 {
2962 	return __napi_alloc_frag_align(fragsz, ~0u);
2963 }
2964 
2965 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2966 					  unsigned int align)
2967 {
2968 	WARN_ON_ONCE(!is_power_of_2(align));
2969 	return __napi_alloc_frag_align(fragsz, -align);
2970 }
2971 
2972 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2973 				 unsigned int length, gfp_t gfp_mask);
2974 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2975 					     unsigned int length)
2976 {
2977 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2978 }
2979 void napi_consume_skb(struct sk_buff *skb, int budget);
2980 
2981 void napi_skb_free_stolen_head(struct sk_buff *skb);
2982 void __kfree_skb_defer(struct sk_buff *skb);
2983 
2984 /**
2985  * __dev_alloc_pages - allocate page for network Rx
2986  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2987  * @order: size of the allocation
2988  *
2989  * Allocate a new page.
2990  *
2991  * %NULL is returned if there is no free memory.
2992 */
2993 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2994 					     unsigned int order)
2995 {
2996 	/* This piece of code contains several assumptions.
2997 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2998 	 * 2.  The expectation is the user wants a compound page.
2999 	 * 3.  If requesting a order 0 page it will not be compound
3000 	 *     due to the check to see if order has a value in prep_new_page
3001 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3002 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3003 	 */
3004 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3005 
3006 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3007 }
3008 
3009 static inline struct page *dev_alloc_pages(unsigned int order)
3010 {
3011 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3012 }
3013 
3014 /**
3015  * __dev_alloc_page - allocate a page for network Rx
3016  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3017  *
3018  * Allocate a new page.
3019  *
3020  * %NULL is returned if there is no free memory.
3021  */
3022 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3023 {
3024 	return __dev_alloc_pages(gfp_mask, 0);
3025 }
3026 
3027 static inline struct page *dev_alloc_page(void)
3028 {
3029 	return dev_alloc_pages(0);
3030 }
3031 
3032 /**
3033  * dev_page_is_reusable - check whether a page can be reused for network Rx
3034  * @page: the page to test
3035  *
3036  * A page shouldn't be considered for reusing/recycling if it was allocated
3037  * under memory pressure or at a distant memory node.
3038  *
3039  * Returns false if this page should be returned to page allocator, true
3040  * otherwise.
3041  */
3042 static inline bool dev_page_is_reusable(const struct page *page)
3043 {
3044 	return likely(page_to_nid(page) == numa_mem_id() &&
3045 		      !page_is_pfmemalloc(page));
3046 }
3047 
3048 /**
3049  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3050  *	@page: The page that was allocated from skb_alloc_page
3051  *	@skb: The skb that may need pfmemalloc set
3052  */
3053 static inline void skb_propagate_pfmemalloc(const struct page *page,
3054 					    struct sk_buff *skb)
3055 {
3056 	if (page_is_pfmemalloc(page))
3057 		skb->pfmemalloc = true;
3058 }
3059 
3060 /**
3061  * skb_frag_off() - Returns the offset of a skb fragment
3062  * @frag: the paged fragment
3063  */
3064 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3065 {
3066 	return frag->bv_offset;
3067 }
3068 
3069 /**
3070  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3071  * @frag: skb fragment
3072  * @delta: value to add
3073  */
3074 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3075 {
3076 	frag->bv_offset += delta;
3077 }
3078 
3079 /**
3080  * skb_frag_off_set() - Sets the offset of a skb fragment
3081  * @frag: skb fragment
3082  * @offset: offset of fragment
3083  */
3084 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3085 {
3086 	frag->bv_offset = offset;
3087 }
3088 
3089 /**
3090  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3091  * @fragto: skb fragment where offset is set
3092  * @fragfrom: skb fragment offset is copied from
3093  */
3094 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3095 				     const skb_frag_t *fragfrom)
3096 {
3097 	fragto->bv_offset = fragfrom->bv_offset;
3098 }
3099 
3100 /**
3101  * skb_frag_page - retrieve the page referred to by a paged fragment
3102  * @frag: the paged fragment
3103  *
3104  * Returns the &struct page associated with @frag.
3105  */
3106 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3107 {
3108 	return frag->bv_page;
3109 }
3110 
3111 /**
3112  * __skb_frag_ref - take an addition reference on a paged fragment.
3113  * @frag: the paged fragment
3114  *
3115  * Takes an additional reference on the paged fragment @frag.
3116  */
3117 static inline void __skb_frag_ref(skb_frag_t *frag)
3118 {
3119 	get_page(skb_frag_page(frag));
3120 }
3121 
3122 /**
3123  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3124  * @skb: the buffer
3125  * @f: the fragment offset.
3126  *
3127  * Takes an additional reference on the @f'th paged fragment of @skb.
3128  */
3129 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3130 {
3131 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3132 }
3133 
3134 /**
3135  * __skb_frag_unref - release a reference on a paged fragment.
3136  * @frag: the paged fragment
3137  * @recycle: recycle the page if allocated via page_pool
3138  *
3139  * Releases a reference on the paged fragment @frag
3140  * or recycles the page via the page_pool API.
3141  */
3142 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3143 {
3144 	struct page *page = skb_frag_page(frag);
3145 
3146 #ifdef CONFIG_PAGE_POOL
3147 	if (recycle && page_pool_return_skb_page(page))
3148 		return;
3149 #endif
3150 	put_page(page);
3151 }
3152 
3153 /**
3154  * skb_frag_unref - release a reference on a paged fragment of an skb.
3155  * @skb: the buffer
3156  * @f: the fragment offset
3157  *
3158  * Releases a reference on the @f'th paged fragment of @skb.
3159  */
3160 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3161 {
3162 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3163 }
3164 
3165 /**
3166  * skb_frag_address - gets the address of the data contained in a paged fragment
3167  * @frag: the paged fragment buffer
3168  *
3169  * Returns the address of the data within @frag. The page must already
3170  * be mapped.
3171  */
3172 static inline void *skb_frag_address(const skb_frag_t *frag)
3173 {
3174 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3175 }
3176 
3177 /**
3178  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3179  * @frag: the paged fragment buffer
3180  *
3181  * Returns the address of the data within @frag. Checks that the page
3182  * is mapped and returns %NULL otherwise.
3183  */
3184 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3185 {
3186 	void *ptr = page_address(skb_frag_page(frag));
3187 	if (unlikely(!ptr))
3188 		return NULL;
3189 
3190 	return ptr + skb_frag_off(frag);
3191 }
3192 
3193 /**
3194  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3195  * @fragto: skb fragment where page is set
3196  * @fragfrom: skb fragment page is copied from
3197  */
3198 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3199 				      const skb_frag_t *fragfrom)
3200 {
3201 	fragto->bv_page = fragfrom->bv_page;
3202 }
3203 
3204 /**
3205  * __skb_frag_set_page - sets the page contained in a paged fragment
3206  * @frag: the paged fragment
3207  * @page: the page to set
3208  *
3209  * Sets the fragment @frag to contain @page.
3210  */
3211 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3212 {
3213 	frag->bv_page = page;
3214 }
3215 
3216 /**
3217  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3218  * @skb: the buffer
3219  * @f: the fragment offset
3220  * @page: the page to set
3221  *
3222  * Sets the @f'th fragment of @skb to contain @page.
3223  */
3224 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3225 				     struct page *page)
3226 {
3227 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3228 }
3229 
3230 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3231 
3232 /**
3233  * skb_frag_dma_map - maps a paged fragment via the DMA API
3234  * @dev: the device to map the fragment to
3235  * @frag: the paged fragment to map
3236  * @offset: the offset within the fragment (starting at the
3237  *          fragment's own offset)
3238  * @size: the number of bytes to map
3239  * @dir: the direction of the mapping (``PCI_DMA_*``)
3240  *
3241  * Maps the page associated with @frag to @device.
3242  */
3243 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3244 					  const skb_frag_t *frag,
3245 					  size_t offset, size_t size,
3246 					  enum dma_data_direction dir)
3247 {
3248 	return dma_map_page(dev, skb_frag_page(frag),
3249 			    skb_frag_off(frag) + offset, size, dir);
3250 }
3251 
3252 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3253 					gfp_t gfp_mask)
3254 {
3255 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3256 }
3257 
3258 
3259 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3260 						  gfp_t gfp_mask)
3261 {
3262 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3263 }
3264 
3265 
3266 /**
3267  *	skb_clone_writable - is the header of a clone writable
3268  *	@skb: buffer to check
3269  *	@len: length up to which to write
3270  *
3271  *	Returns true if modifying the header part of the cloned buffer
3272  *	does not requires the data to be copied.
3273  */
3274 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3275 {
3276 	return !skb_header_cloned(skb) &&
3277 	       skb_headroom(skb) + len <= skb->hdr_len;
3278 }
3279 
3280 static inline int skb_try_make_writable(struct sk_buff *skb,
3281 					unsigned int write_len)
3282 {
3283 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3284 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3285 }
3286 
3287 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3288 			    int cloned)
3289 {
3290 	int delta = 0;
3291 
3292 	if (headroom > skb_headroom(skb))
3293 		delta = headroom - skb_headroom(skb);
3294 
3295 	if (delta || cloned)
3296 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3297 					GFP_ATOMIC);
3298 	return 0;
3299 }
3300 
3301 /**
3302  *	skb_cow - copy header of skb when it is required
3303  *	@skb: buffer to cow
3304  *	@headroom: needed headroom
3305  *
3306  *	If the skb passed lacks sufficient headroom or its data part
3307  *	is shared, data is reallocated. If reallocation fails, an error
3308  *	is returned and original skb is not changed.
3309  *
3310  *	The result is skb with writable area skb->head...skb->tail
3311  *	and at least @headroom of space at head.
3312  */
3313 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3314 {
3315 	return __skb_cow(skb, headroom, skb_cloned(skb));
3316 }
3317 
3318 /**
3319  *	skb_cow_head - skb_cow but only making the head writable
3320  *	@skb: buffer to cow
3321  *	@headroom: needed headroom
3322  *
3323  *	This function is identical to skb_cow except that we replace the
3324  *	skb_cloned check by skb_header_cloned.  It should be used when
3325  *	you only need to push on some header and do not need to modify
3326  *	the data.
3327  */
3328 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3329 {
3330 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3331 }
3332 
3333 /**
3334  *	skb_padto	- pad an skbuff up to a minimal size
3335  *	@skb: buffer to pad
3336  *	@len: minimal length
3337  *
3338  *	Pads up a buffer to ensure the trailing bytes exist and are
3339  *	blanked. If the buffer already contains sufficient data it
3340  *	is untouched. Otherwise it is extended. Returns zero on
3341  *	success. The skb is freed on error.
3342  */
3343 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3344 {
3345 	unsigned int size = skb->len;
3346 	if (likely(size >= len))
3347 		return 0;
3348 	return skb_pad(skb, len - size);
3349 }
3350 
3351 /**
3352  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3353  *	@skb: buffer to pad
3354  *	@len: minimal length
3355  *	@free_on_error: free buffer on error
3356  *
3357  *	Pads up a buffer to ensure the trailing bytes exist and are
3358  *	blanked. If the buffer already contains sufficient data it
3359  *	is untouched. Otherwise it is extended. Returns zero on
3360  *	success. The skb is freed on error if @free_on_error is true.
3361  */
3362 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3363 					       unsigned int len,
3364 					       bool free_on_error)
3365 {
3366 	unsigned int size = skb->len;
3367 
3368 	if (unlikely(size < len)) {
3369 		len -= size;
3370 		if (__skb_pad(skb, len, free_on_error))
3371 			return -ENOMEM;
3372 		__skb_put(skb, len);
3373 	}
3374 	return 0;
3375 }
3376 
3377 /**
3378  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3379  *	@skb: buffer to pad
3380  *	@len: minimal length
3381  *
3382  *	Pads up a buffer to ensure the trailing bytes exist and are
3383  *	blanked. If the buffer already contains sufficient data it
3384  *	is untouched. Otherwise it is extended. Returns zero on
3385  *	success. The skb is freed on error.
3386  */
3387 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3388 {
3389 	return __skb_put_padto(skb, len, true);
3390 }
3391 
3392 static inline int skb_add_data(struct sk_buff *skb,
3393 			       struct iov_iter *from, int copy)
3394 {
3395 	const int off = skb->len;
3396 
3397 	if (skb->ip_summed == CHECKSUM_NONE) {
3398 		__wsum csum = 0;
3399 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3400 					         &csum, from)) {
3401 			skb->csum = csum_block_add(skb->csum, csum, off);
3402 			return 0;
3403 		}
3404 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3405 		return 0;
3406 
3407 	__skb_trim(skb, off);
3408 	return -EFAULT;
3409 }
3410 
3411 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3412 				    const struct page *page, int off)
3413 {
3414 	if (skb_zcopy(skb))
3415 		return false;
3416 	if (i) {
3417 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3418 
3419 		return page == skb_frag_page(frag) &&
3420 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3421 	}
3422 	return false;
3423 }
3424 
3425 static inline int __skb_linearize(struct sk_buff *skb)
3426 {
3427 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3428 }
3429 
3430 /**
3431  *	skb_linearize - convert paged skb to linear one
3432  *	@skb: buffer to linarize
3433  *
3434  *	If there is no free memory -ENOMEM is returned, otherwise zero
3435  *	is returned and the old skb data released.
3436  */
3437 static inline int skb_linearize(struct sk_buff *skb)
3438 {
3439 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3440 }
3441 
3442 /**
3443  * skb_has_shared_frag - can any frag be overwritten
3444  * @skb: buffer to test
3445  *
3446  * Return true if the skb has at least one frag that might be modified
3447  * by an external entity (as in vmsplice()/sendfile())
3448  */
3449 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3450 {
3451 	return skb_is_nonlinear(skb) &&
3452 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3453 }
3454 
3455 /**
3456  *	skb_linearize_cow - make sure skb is linear and writable
3457  *	@skb: buffer to process
3458  *
3459  *	If there is no free memory -ENOMEM is returned, otherwise zero
3460  *	is returned and the old skb data released.
3461  */
3462 static inline int skb_linearize_cow(struct sk_buff *skb)
3463 {
3464 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3465 	       __skb_linearize(skb) : 0;
3466 }
3467 
3468 static __always_inline void
3469 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3470 		     unsigned int off)
3471 {
3472 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3473 		skb->csum = csum_block_sub(skb->csum,
3474 					   csum_partial(start, len, 0), off);
3475 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3476 		 skb_checksum_start_offset(skb) < 0)
3477 		skb->ip_summed = CHECKSUM_NONE;
3478 }
3479 
3480 /**
3481  *	skb_postpull_rcsum - update checksum for received skb after pull
3482  *	@skb: buffer to update
3483  *	@start: start of data before pull
3484  *	@len: length of data pulled
3485  *
3486  *	After doing a pull on a received packet, you need to call this to
3487  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3488  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3489  */
3490 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3491 				      const void *start, unsigned int len)
3492 {
3493 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3494 		skb->csum = wsum_negate(csum_partial(start, len,
3495 						     wsum_negate(skb->csum)));
3496 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3497 		 skb_checksum_start_offset(skb) < 0)
3498 		skb->ip_summed = CHECKSUM_NONE;
3499 }
3500 
3501 static __always_inline void
3502 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3503 		     unsigned int off)
3504 {
3505 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3506 		skb->csum = csum_block_add(skb->csum,
3507 					   csum_partial(start, len, 0), off);
3508 }
3509 
3510 /**
3511  *	skb_postpush_rcsum - update checksum for received skb after push
3512  *	@skb: buffer to update
3513  *	@start: start of data after push
3514  *	@len: length of data pushed
3515  *
3516  *	After doing a push on a received packet, you need to call this to
3517  *	update the CHECKSUM_COMPLETE checksum.
3518  */
3519 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3520 				      const void *start, unsigned int len)
3521 {
3522 	__skb_postpush_rcsum(skb, start, len, 0);
3523 }
3524 
3525 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3526 
3527 /**
3528  *	skb_push_rcsum - push skb and update receive checksum
3529  *	@skb: buffer to update
3530  *	@len: length of data pulled
3531  *
3532  *	This function performs an skb_push on the packet and updates
3533  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3534  *	receive path processing instead of skb_push unless you know
3535  *	that the checksum difference is zero (e.g., a valid IP header)
3536  *	or you are setting ip_summed to CHECKSUM_NONE.
3537  */
3538 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3539 {
3540 	skb_push(skb, len);
3541 	skb_postpush_rcsum(skb, skb->data, len);
3542 	return skb->data;
3543 }
3544 
3545 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3546 /**
3547  *	pskb_trim_rcsum - trim received skb and update checksum
3548  *	@skb: buffer to trim
3549  *	@len: new length
3550  *
3551  *	This is exactly the same as pskb_trim except that it ensures the
3552  *	checksum of received packets are still valid after the operation.
3553  *	It can change skb pointers.
3554  */
3555 
3556 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3557 {
3558 	if (likely(len >= skb->len))
3559 		return 0;
3560 	return pskb_trim_rcsum_slow(skb, len);
3561 }
3562 
3563 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3564 {
3565 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3566 		skb->ip_summed = CHECKSUM_NONE;
3567 	__skb_trim(skb, len);
3568 	return 0;
3569 }
3570 
3571 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3572 {
3573 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3574 		skb->ip_summed = CHECKSUM_NONE;
3575 	return __skb_grow(skb, len);
3576 }
3577 
3578 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3579 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3580 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3581 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3582 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3583 
3584 #define skb_queue_walk(queue, skb) \
3585 		for (skb = (queue)->next;					\
3586 		     skb != (struct sk_buff *)(queue);				\
3587 		     skb = skb->next)
3588 
3589 #define skb_queue_walk_safe(queue, skb, tmp)					\
3590 		for (skb = (queue)->next, tmp = skb->next;			\
3591 		     skb != (struct sk_buff *)(queue);				\
3592 		     skb = tmp, tmp = skb->next)
3593 
3594 #define skb_queue_walk_from(queue, skb)						\
3595 		for (; skb != (struct sk_buff *)(queue);			\
3596 		     skb = skb->next)
3597 
3598 #define skb_rbtree_walk(skb, root)						\
3599 		for (skb = skb_rb_first(root); skb != NULL;			\
3600 		     skb = skb_rb_next(skb))
3601 
3602 #define skb_rbtree_walk_from(skb)						\
3603 		for (; skb != NULL;						\
3604 		     skb = skb_rb_next(skb))
3605 
3606 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3607 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3608 		     skb = tmp)
3609 
3610 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3611 		for (tmp = skb->next;						\
3612 		     skb != (struct sk_buff *)(queue);				\
3613 		     skb = tmp, tmp = skb->next)
3614 
3615 #define skb_queue_reverse_walk(queue, skb) \
3616 		for (skb = (queue)->prev;					\
3617 		     skb != (struct sk_buff *)(queue);				\
3618 		     skb = skb->prev)
3619 
3620 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3621 		for (skb = (queue)->prev, tmp = skb->prev;			\
3622 		     skb != (struct sk_buff *)(queue);				\
3623 		     skb = tmp, tmp = skb->prev)
3624 
3625 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3626 		for (tmp = skb->prev;						\
3627 		     skb != (struct sk_buff *)(queue);				\
3628 		     skb = tmp, tmp = skb->prev)
3629 
3630 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3631 {
3632 	return skb_shinfo(skb)->frag_list != NULL;
3633 }
3634 
3635 static inline void skb_frag_list_init(struct sk_buff *skb)
3636 {
3637 	skb_shinfo(skb)->frag_list = NULL;
3638 }
3639 
3640 #define skb_walk_frags(skb, iter)	\
3641 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3642 
3643 
3644 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3645 				int *err, long *timeo_p,
3646 				const struct sk_buff *skb);
3647 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3648 					  struct sk_buff_head *queue,
3649 					  unsigned int flags,
3650 					  int *off, int *err,
3651 					  struct sk_buff **last);
3652 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3653 					struct sk_buff_head *queue,
3654 					unsigned int flags, int *off, int *err,
3655 					struct sk_buff **last);
3656 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3657 				    struct sk_buff_head *sk_queue,
3658 				    unsigned int flags, int *off, int *err);
3659 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3660 				  int *err);
3661 __poll_t datagram_poll(struct file *file, struct socket *sock,
3662 			   struct poll_table_struct *wait);
3663 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3664 			   struct iov_iter *to, int size);
3665 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3666 					struct msghdr *msg, int size)
3667 {
3668 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3669 }
3670 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3671 				   struct msghdr *msg);
3672 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3673 			   struct iov_iter *to, int len,
3674 			   struct ahash_request *hash);
3675 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3676 				 struct iov_iter *from, int len);
3677 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3678 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3679 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3680 static inline void skb_free_datagram_locked(struct sock *sk,
3681 					    struct sk_buff *skb)
3682 {
3683 	__skb_free_datagram_locked(sk, skb, 0);
3684 }
3685 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3686 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3687 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3688 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3689 			      int len);
3690 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3691 		    struct pipe_inode_info *pipe, unsigned int len,
3692 		    unsigned int flags);
3693 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3694 			 int len);
3695 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3696 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3697 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3698 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3699 		 int len, int hlen);
3700 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3701 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3702 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3703 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3704 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3705 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3706 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3707 				 unsigned int offset);
3708 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3709 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3710 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3711 int skb_vlan_pop(struct sk_buff *skb);
3712 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3713 int skb_eth_pop(struct sk_buff *skb);
3714 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3715 		 const unsigned char *src);
3716 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3717 		  int mac_len, bool ethernet);
3718 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3719 		 bool ethernet);
3720 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3721 int skb_mpls_dec_ttl(struct sk_buff *skb);
3722 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3723 			     gfp_t gfp);
3724 
3725 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3726 {
3727 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3728 }
3729 
3730 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3731 {
3732 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3733 }
3734 
3735 struct skb_checksum_ops {
3736 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3737 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3738 };
3739 
3740 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3741 
3742 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3743 		      __wsum csum, const struct skb_checksum_ops *ops);
3744 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3745 		    __wsum csum);
3746 
3747 static inline void * __must_check
3748 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3749 		     const void *data, int hlen, void *buffer)
3750 {
3751 	if (likely(hlen - offset >= len))
3752 		return (void *)data + offset;
3753 
3754 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3755 		return NULL;
3756 
3757 	return buffer;
3758 }
3759 
3760 static inline void * __must_check
3761 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3762 {
3763 	return __skb_header_pointer(skb, offset, len, skb->data,
3764 				    skb_headlen(skb), buffer);
3765 }
3766 
3767 /**
3768  *	skb_needs_linearize - check if we need to linearize a given skb
3769  *			      depending on the given device features.
3770  *	@skb: socket buffer to check
3771  *	@features: net device features
3772  *
3773  *	Returns true if either:
3774  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3775  *	2. skb is fragmented and the device does not support SG.
3776  */
3777 static inline bool skb_needs_linearize(struct sk_buff *skb,
3778 				       netdev_features_t features)
3779 {
3780 	return skb_is_nonlinear(skb) &&
3781 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3782 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3783 }
3784 
3785 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3786 					     void *to,
3787 					     const unsigned int len)
3788 {
3789 	memcpy(to, skb->data, len);
3790 }
3791 
3792 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3793 						    const int offset, void *to,
3794 						    const unsigned int len)
3795 {
3796 	memcpy(to, skb->data + offset, len);
3797 }
3798 
3799 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3800 					   const void *from,
3801 					   const unsigned int len)
3802 {
3803 	memcpy(skb->data, from, len);
3804 }
3805 
3806 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3807 						  const int offset,
3808 						  const void *from,
3809 						  const unsigned int len)
3810 {
3811 	memcpy(skb->data + offset, from, len);
3812 }
3813 
3814 void skb_init(void);
3815 
3816 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3817 {
3818 	return skb->tstamp;
3819 }
3820 
3821 /**
3822  *	skb_get_timestamp - get timestamp from a skb
3823  *	@skb: skb to get stamp from
3824  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3825  *
3826  *	Timestamps are stored in the skb as offsets to a base timestamp.
3827  *	This function converts the offset back to a struct timeval and stores
3828  *	it in stamp.
3829  */
3830 static inline void skb_get_timestamp(const struct sk_buff *skb,
3831 				     struct __kernel_old_timeval *stamp)
3832 {
3833 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3834 }
3835 
3836 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3837 					 struct __kernel_sock_timeval *stamp)
3838 {
3839 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3840 
3841 	stamp->tv_sec = ts.tv_sec;
3842 	stamp->tv_usec = ts.tv_nsec / 1000;
3843 }
3844 
3845 static inline void skb_get_timestampns(const struct sk_buff *skb,
3846 				       struct __kernel_old_timespec *stamp)
3847 {
3848 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3849 
3850 	stamp->tv_sec = ts.tv_sec;
3851 	stamp->tv_nsec = ts.tv_nsec;
3852 }
3853 
3854 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3855 					   struct __kernel_timespec *stamp)
3856 {
3857 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3858 
3859 	stamp->tv_sec = ts.tv_sec;
3860 	stamp->tv_nsec = ts.tv_nsec;
3861 }
3862 
3863 static inline void __net_timestamp(struct sk_buff *skb)
3864 {
3865 	skb->tstamp = ktime_get_real();
3866 }
3867 
3868 static inline ktime_t net_timedelta(ktime_t t)
3869 {
3870 	return ktime_sub(ktime_get_real(), t);
3871 }
3872 
3873 static inline ktime_t net_invalid_timestamp(void)
3874 {
3875 	return 0;
3876 }
3877 
3878 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3879 {
3880 	return skb_shinfo(skb)->meta_len;
3881 }
3882 
3883 static inline void *skb_metadata_end(const struct sk_buff *skb)
3884 {
3885 	return skb_mac_header(skb);
3886 }
3887 
3888 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3889 					  const struct sk_buff *skb_b,
3890 					  u8 meta_len)
3891 {
3892 	const void *a = skb_metadata_end(skb_a);
3893 	const void *b = skb_metadata_end(skb_b);
3894 	/* Using more efficient varaiant than plain call to memcmp(). */
3895 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3896 	u64 diffs = 0;
3897 
3898 	switch (meta_len) {
3899 #define __it(x, op) (x -= sizeof(u##op))
3900 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3901 	case 32: diffs |= __it_diff(a, b, 64);
3902 		fallthrough;
3903 	case 24: diffs |= __it_diff(a, b, 64);
3904 		fallthrough;
3905 	case 16: diffs |= __it_diff(a, b, 64);
3906 		fallthrough;
3907 	case  8: diffs |= __it_diff(a, b, 64);
3908 		break;
3909 	case 28: diffs |= __it_diff(a, b, 64);
3910 		fallthrough;
3911 	case 20: diffs |= __it_diff(a, b, 64);
3912 		fallthrough;
3913 	case 12: diffs |= __it_diff(a, b, 64);
3914 		fallthrough;
3915 	case  4: diffs |= __it_diff(a, b, 32);
3916 		break;
3917 	}
3918 	return diffs;
3919 #else
3920 	return memcmp(a - meta_len, b - meta_len, meta_len);
3921 #endif
3922 }
3923 
3924 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3925 					const struct sk_buff *skb_b)
3926 {
3927 	u8 len_a = skb_metadata_len(skb_a);
3928 	u8 len_b = skb_metadata_len(skb_b);
3929 
3930 	if (!(len_a | len_b))
3931 		return false;
3932 
3933 	return len_a != len_b ?
3934 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3935 }
3936 
3937 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3938 {
3939 	skb_shinfo(skb)->meta_len = meta_len;
3940 }
3941 
3942 static inline void skb_metadata_clear(struct sk_buff *skb)
3943 {
3944 	skb_metadata_set(skb, 0);
3945 }
3946 
3947 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3948 
3949 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3950 
3951 void skb_clone_tx_timestamp(struct sk_buff *skb);
3952 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3953 
3954 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3955 
3956 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3957 {
3958 }
3959 
3960 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3961 {
3962 	return false;
3963 }
3964 
3965 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3966 
3967 /**
3968  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3969  *
3970  * PHY drivers may accept clones of transmitted packets for
3971  * timestamping via their phy_driver.txtstamp method. These drivers
3972  * must call this function to return the skb back to the stack with a
3973  * timestamp.
3974  *
3975  * @skb: clone of the original outgoing packet
3976  * @hwtstamps: hardware time stamps
3977  *
3978  */
3979 void skb_complete_tx_timestamp(struct sk_buff *skb,
3980 			       struct skb_shared_hwtstamps *hwtstamps);
3981 
3982 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3983 		     struct skb_shared_hwtstamps *hwtstamps,
3984 		     struct sock *sk, int tstype);
3985 
3986 /**
3987  * skb_tstamp_tx - queue clone of skb with send time stamps
3988  * @orig_skb:	the original outgoing packet
3989  * @hwtstamps:	hardware time stamps, may be NULL if not available
3990  *
3991  * If the skb has a socket associated, then this function clones the
3992  * skb (thus sharing the actual data and optional structures), stores
3993  * the optional hardware time stamping information (if non NULL) or
3994  * generates a software time stamp (otherwise), then queues the clone
3995  * to the error queue of the socket.  Errors are silently ignored.
3996  */
3997 void skb_tstamp_tx(struct sk_buff *orig_skb,
3998 		   struct skb_shared_hwtstamps *hwtstamps);
3999 
4000 /**
4001  * skb_tx_timestamp() - Driver hook for transmit timestamping
4002  *
4003  * Ethernet MAC Drivers should call this function in their hard_xmit()
4004  * function immediately before giving the sk_buff to the MAC hardware.
4005  *
4006  * Specifically, one should make absolutely sure that this function is
4007  * called before TX completion of this packet can trigger.  Otherwise
4008  * the packet could potentially already be freed.
4009  *
4010  * @skb: A socket buffer.
4011  */
4012 static inline void skb_tx_timestamp(struct sk_buff *skb)
4013 {
4014 	skb_clone_tx_timestamp(skb);
4015 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4016 		skb_tstamp_tx(skb, NULL);
4017 }
4018 
4019 /**
4020  * skb_complete_wifi_ack - deliver skb with wifi status
4021  *
4022  * @skb: the original outgoing packet
4023  * @acked: ack status
4024  *
4025  */
4026 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4027 
4028 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4029 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4030 
4031 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4032 {
4033 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4034 		skb->csum_valid ||
4035 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4036 		 skb_checksum_start_offset(skb) >= 0));
4037 }
4038 
4039 /**
4040  *	skb_checksum_complete - Calculate checksum of an entire packet
4041  *	@skb: packet to process
4042  *
4043  *	This function calculates the checksum over the entire packet plus
4044  *	the value of skb->csum.  The latter can be used to supply the
4045  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4046  *	checksum.
4047  *
4048  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4049  *	this function can be used to verify that checksum on received
4050  *	packets.  In that case the function should return zero if the
4051  *	checksum is correct.  In particular, this function will return zero
4052  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4053  *	hardware has already verified the correctness of the checksum.
4054  */
4055 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4056 {
4057 	return skb_csum_unnecessary(skb) ?
4058 	       0 : __skb_checksum_complete(skb);
4059 }
4060 
4061 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4062 {
4063 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4064 		if (skb->csum_level == 0)
4065 			skb->ip_summed = CHECKSUM_NONE;
4066 		else
4067 			skb->csum_level--;
4068 	}
4069 }
4070 
4071 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4072 {
4073 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4074 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4075 			skb->csum_level++;
4076 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4077 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4078 		skb->csum_level = 0;
4079 	}
4080 }
4081 
4082 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4083 {
4084 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4085 		skb->ip_summed = CHECKSUM_NONE;
4086 		skb->csum_level = 0;
4087 	}
4088 }
4089 
4090 /* Check if we need to perform checksum complete validation.
4091  *
4092  * Returns true if checksum complete is needed, false otherwise
4093  * (either checksum is unnecessary or zero checksum is allowed).
4094  */
4095 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4096 						  bool zero_okay,
4097 						  __sum16 check)
4098 {
4099 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4100 		skb->csum_valid = 1;
4101 		__skb_decr_checksum_unnecessary(skb);
4102 		return false;
4103 	}
4104 
4105 	return true;
4106 }
4107 
4108 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4109  * in checksum_init.
4110  */
4111 #define CHECKSUM_BREAK 76
4112 
4113 /* Unset checksum-complete
4114  *
4115  * Unset checksum complete can be done when packet is being modified
4116  * (uncompressed for instance) and checksum-complete value is
4117  * invalidated.
4118  */
4119 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4120 {
4121 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4122 		skb->ip_summed = CHECKSUM_NONE;
4123 }
4124 
4125 /* Validate (init) checksum based on checksum complete.
4126  *
4127  * Return values:
4128  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4129  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4130  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4131  *   non-zero: value of invalid checksum
4132  *
4133  */
4134 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4135 						       bool complete,
4136 						       __wsum psum)
4137 {
4138 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4139 		if (!csum_fold(csum_add(psum, skb->csum))) {
4140 			skb->csum_valid = 1;
4141 			return 0;
4142 		}
4143 	}
4144 
4145 	skb->csum = psum;
4146 
4147 	if (complete || skb->len <= CHECKSUM_BREAK) {
4148 		__sum16 csum;
4149 
4150 		csum = __skb_checksum_complete(skb);
4151 		skb->csum_valid = !csum;
4152 		return csum;
4153 	}
4154 
4155 	return 0;
4156 }
4157 
4158 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4159 {
4160 	return 0;
4161 }
4162 
4163 /* Perform checksum validate (init). Note that this is a macro since we only
4164  * want to calculate the pseudo header which is an input function if necessary.
4165  * First we try to validate without any computation (checksum unnecessary) and
4166  * then calculate based on checksum complete calling the function to compute
4167  * pseudo header.
4168  *
4169  * Return values:
4170  *   0: checksum is validated or try to in skb_checksum_complete
4171  *   non-zero: value of invalid checksum
4172  */
4173 #define __skb_checksum_validate(skb, proto, complete,			\
4174 				zero_okay, check, compute_pseudo)	\
4175 ({									\
4176 	__sum16 __ret = 0;						\
4177 	skb->csum_valid = 0;						\
4178 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4179 		__ret = __skb_checksum_validate_complete(skb,		\
4180 				complete, compute_pseudo(skb, proto));	\
4181 	__ret;								\
4182 })
4183 
4184 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4185 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4186 
4187 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4188 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4189 
4190 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4191 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4192 
4193 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4194 					 compute_pseudo)		\
4195 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4196 
4197 #define skb_checksum_simple_validate(skb)				\
4198 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4199 
4200 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4201 {
4202 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4203 }
4204 
4205 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4206 {
4207 	skb->csum = ~pseudo;
4208 	skb->ip_summed = CHECKSUM_COMPLETE;
4209 }
4210 
4211 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4212 do {									\
4213 	if (__skb_checksum_convert_check(skb))				\
4214 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4215 } while (0)
4216 
4217 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4218 					      u16 start, u16 offset)
4219 {
4220 	skb->ip_summed = CHECKSUM_PARTIAL;
4221 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4222 	skb->csum_offset = offset - start;
4223 }
4224 
4225 /* Update skbuf and packet to reflect the remote checksum offload operation.
4226  * When called, ptr indicates the starting point for skb->csum when
4227  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4228  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4229  */
4230 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4231 				       int start, int offset, bool nopartial)
4232 {
4233 	__wsum delta;
4234 
4235 	if (!nopartial) {
4236 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4237 		return;
4238 	}
4239 
4240 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4241 		__skb_checksum_complete(skb);
4242 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4243 	}
4244 
4245 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4246 
4247 	/* Adjust skb->csum since we changed the packet */
4248 	skb->csum = csum_add(skb->csum, delta);
4249 }
4250 
4251 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4252 {
4253 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4254 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4255 #else
4256 	return NULL;
4257 #endif
4258 }
4259 
4260 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4261 {
4262 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4263 	return skb->_nfct;
4264 #else
4265 	return 0UL;
4266 #endif
4267 }
4268 
4269 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4270 {
4271 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4272 	skb->slow_gro |= !!nfct;
4273 	skb->_nfct = nfct;
4274 #endif
4275 }
4276 
4277 #ifdef CONFIG_SKB_EXTENSIONS
4278 enum skb_ext_id {
4279 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4280 	SKB_EXT_BRIDGE_NF,
4281 #endif
4282 #ifdef CONFIG_XFRM
4283 	SKB_EXT_SEC_PATH,
4284 #endif
4285 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4286 	TC_SKB_EXT,
4287 #endif
4288 #if IS_ENABLED(CONFIG_MPTCP)
4289 	SKB_EXT_MPTCP,
4290 #endif
4291 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4292 	SKB_EXT_MCTP,
4293 #endif
4294 	SKB_EXT_NUM, /* must be last */
4295 };
4296 
4297 /**
4298  *	struct skb_ext - sk_buff extensions
4299  *	@refcnt: 1 on allocation, deallocated on 0
4300  *	@offset: offset to add to @data to obtain extension address
4301  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4302  *	@data: start of extension data, variable sized
4303  *
4304  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4305  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4306  */
4307 struct skb_ext {
4308 	refcount_t refcnt;
4309 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4310 	u8 chunks;		/* same */
4311 	char data[] __aligned(8);
4312 };
4313 
4314 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4315 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4316 		    struct skb_ext *ext);
4317 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4318 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4319 void __skb_ext_put(struct skb_ext *ext);
4320 
4321 static inline void skb_ext_put(struct sk_buff *skb)
4322 {
4323 	if (skb->active_extensions)
4324 		__skb_ext_put(skb->extensions);
4325 }
4326 
4327 static inline void __skb_ext_copy(struct sk_buff *dst,
4328 				  const struct sk_buff *src)
4329 {
4330 	dst->active_extensions = src->active_extensions;
4331 
4332 	if (src->active_extensions) {
4333 		struct skb_ext *ext = src->extensions;
4334 
4335 		refcount_inc(&ext->refcnt);
4336 		dst->extensions = ext;
4337 	}
4338 }
4339 
4340 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4341 {
4342 	skb_ext_put(dst);
4343 	__skb_ext_copy(dst, src);
4344 }
4345 
4346 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4347 {
4348 	return !!ext->offset[i];
4349 }
4350 
4351 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4352 {
4353 	return skb->active_extensions & (1 << id);
4354 }
4355 
4356 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4357 {
4358 	if (skb_ext_exist(skb, id))
4359 		__skb_ext_del(skb, id);
4360 }
4361 
4362 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4363 {
4364 	if (skb_ext_exist(skb, id)) {
4365 		struct skb_ext *ext = skb->extensions;
4366 
4367 		return (void *)ext + (ext->offset[id] << 3);
4368 	}
4369 
4370 	return NULL;
4371 }
4372 
4373 static inline void skb_ext_reset(struct sk_buff *skb)
4374 {
4375 	if (unlikely(skb->active_extensions)) {
4376 		__skb_ext_put(skb->extensions);
4377 		skb->active_extensions = 0;
4378 	}
4379 }
4380 
4381 static inline bool skb_has_extensions(struct sk_buff *skb)
4382 {
4383 	return unlikely(skb->active_extensions);
4384 }
4385 #else
4386 static inline void skb_ext_put(struct sk_buff *skb) {}
4387 static inline void skb_ext_reset(struct sk_buff *skb) {}
4388 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4389 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4390 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4391 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4392 #endif /* CONFIG_SKB_EXTENSIONS */
4393 
4394 static inline void nf_reset_ct(struct sk_buff *skb)
4395 {
4396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4397 	nf_conntrack_put(skb_nfct(skb));
4398 	skb->_nfct = 0;
4399 #endif
4400 }
4401 
4402 static inline void nf_reset_trace(struct sk_buff *skb)
4403 {
4404 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4405 	skb->nf_trace = 0;
4406 #endif
4407 }
4408 
4409 static inline void ipvs_reset(struct sk_buff *skb)
4410 {
4411 #if IS_ENABLED(CONFIG_IP_VS)
4412 	skb->ipvs_property = 0;
4413 #endif
4414 }
4415 
4416 /* Note: This doesn't put any conntrack info in dst. */
4417 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4418 			     bool copy)
4419 {
4420 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4421 	dst->_nfct = src->_nfct;
4422 	nf_conntrack_get(skb_nfct(src));
4423 #endif
4424 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4425 	if (copy)
4426 		dst->nf_trace = src->nf_trace;
4427 #endif
4428 }
4429 
4430 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4431 {
4432 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4433 	nf_conntrack_put(skb_nfct(dst));
4434 #endif
4435 	dst->slow_gro = src->slow_gro;
4436 	__nf_copy(dst, src, true);
4437 }
4438 
4439 #ifdef CONFIG_NETWORK_SECMARK
4440 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4441 {
4442 	to->secmark = from->secmark;
4443 }
4444 
4445 static inline void skb_init_secmark(struct sk_buff *skb)
4446 {
4447 	skb->secmark = 0;
4448 }
4449 #else
4450 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4451 { }
4452 
4453 static inline void skb_init_secmark(struct sk_buff *skb)
4454 { }
4455 #endif
4456 
4457 static inline int secpath_exists(const struct sk_buff *skb)
4458 {
4459 #ifdef CONFIG_XFRM
4460 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4461 #else
4462 	return 0;
4463 #endif
4464 }
4465 
4466 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4467 {
4468 	return !skb->destructor &&
4469 		!secpath_exists(skb) &&
4470 		!skb_nfct(skb) &&
4471 		!skb->_skb_refdst &&
4472 		!skb_has_frag_list(skb);
4473 }
4474 
4475 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4476 {
4477 	skb->queue_mapping = queue_mapping;
4478 }
4479 
4480 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4481 {
4482 	return skb->queue_mapping;
4483 }
4484 
4485 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4486 {
4487 	to->queue_mapping = from->queue_mapping;
4488 }
4489 
4490 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4491 {
4492 	skb->queue_mapping = rx_queue + 1;
4493 }
4494 
4495 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4496 {
4497 	return skb->queue_mapping - 1;
4498 }
4499 
4500 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4501 {
4502 	return skb->queue_mapping != 0;
4503 }
4504 
4505 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4506 {
4507 	skb->dst_pending_confirm = val;
4508 }
4509 
4510 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4511 {
4512 	return skb->dst_pending_confirm != 0;
4513 }
4514 
4515 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4516 {
4517 #ifdef CONFIG_XFRM
4518 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4519 #else
4520 	return NULL;
4521 #endif
4522 }
4523 
4524 /* Keeps track of mac header offset relative to skb->head.
4525  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4526  * For non-tunnel skb it points to skb_mac_header() and for
4527  * tunnel skb it points to outer mac header.
4528  * Keeps track of level of encapsulation of network headers.
4529  */
4530 struct skb_gso_cb {
4531 	union {
4532 		int	mac_offset;
4533 		int	data_offset;
4534 	};
4535 	int	encap_level;
4536 	__wsum	csum;
4537 	__u16	csum_start;
4538 };
4539 #define SKB_GSO_CB_OFFSET	32
4540 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4541 
4542 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4543 {
4544 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4545 		SKB_GSO_CB(inner_skb)->mac_offset;
4546 }
4547 
4548 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4549 {
4550 	int new_headroom, headroom;
4551 	int ret;
4552 
4553 	headroom = skb_headroom(skb);
4554 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4555 	if (ret)
4556 		return ret;
4557 
4558 	new_headroom = skb_headroom(skb);
4559 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4560 	return 0;
4561 }
4562 
4563 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4564 {
4565 	/* Do not update partial checksums if remote checksum is enabled. */
4566 	if (skb->remcsum_offload)
4567 		return;
4568 
4569 	SKB_GSO_CB(skb)->csum = res;
4570 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4571 }
4572 
4573 /* Compute the checksum for a gso segment. First compute the checksum value
4574  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4575  * then add in skb->csum (checksum from csum_start to end of packet).
4576  * skb->csum and csum_start are then updated to reflect the checksum of the
4577  * resultant packet starting from the transport header-- the resultant checksum
4578  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4579  * header.
4580  */
4581 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4582 {
4583 	unsigned char *csum_start = skb_transport_header(skb);
4584 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4585 	__wsum partial = SKB_GSO_CB(skb)->csum;
4586 
4587 	SKB_GSO_CB(skb)->csum = res;
4588 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4589 
4590 	return csum_fold(csum_partial(csum_start, plen, partial));
4591 }
4592 
4593 static inline bool skb_is_gso(const struct sk_buff *skb)
4594 {
4595 	return skb_shinfo(skb)->gso_size;
4596 }
4597 
4598 /* Note: Should be called only if skb_is_gso(skb) is true */
4599 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4600 {
4601 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4602 }
4603 
4604 /* Note: Should be called only if skb_is_gso(skb) is true */
4605 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4606 {
4607 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4608 }
4609 
4610 /* Note: Should be called only if skb_is_gso(skb) is true */
4611 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4612 {
4613 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4614 }
4615 
4616 static inline void skb_gso_reset(struct sk_buff *skb)
4617 {
4618 	skb_shinfo(skb)->gso_size = 0;
4619 	skb_shinfo(skb)->gso_segs = 0;
4620 	skb_shinfo(skb)->gso_type = 0;
4621 }
4622 
4623 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4624 					 u16 increment)
4625 {
4626 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4627 		return;
4628 	shinfo->gso_size += increment;
4629 }
4630 
4631 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4632 					 u16 decrement)
4633 {
4634 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4635 		return;
4636 	shinfo->gso_size -= decrement;
4637 }
4638 
4639 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4640 
4641 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4642 {
4643 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4644 	 * wanted then gso_type will be set. */
4645 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4646 
4647 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4648 	    unlikely(shinfo->gso_type == 0)) {
4649 		__skb_warn_lro_forwarding(skb);
4650 		return true;
4651 	}
4652 	return false;
4653 }
4654 
4655 static inline void skb_forward_csum(struct sk_buff *skb)
4656 {
4657 	/* Unfortunately we don't support this one.  Any brave souls? */
4658 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4659 		skb->ip_summed = CHECKSUM_NONE;
4660 }
4661 
4662 /**
4663  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4664  * @skb: skb to check
4665  *
4666  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4667  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4668  * use this helper, to document places where we make this assertion.
4669  */
4670 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4671 {
4672 #ifdef DEBUG
4673 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4674 #endif
4675 }
4676 
4677 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4678 
4679 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4680 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4681 				     unsigned int transport_len,
4682 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4683 
4684 /**
4685  * skb_head_is_locked - Determine if the skb->head is locked down
4686  * @skb: skb to check
4687  *
4688  * The head on skbs build around a head frag can be removed if they are
4689  * not cloned.  This function returns true if the skb head is locked down
4690  * due to either being allocated via kmalloc, or by being a clone with
4691  * multiple references to the head.
4692  */
4693 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4694 {
4695 	return !skb->head_frag || skb_cloned(skb);
4696 }
4697 
4698 /* Local Checksum Offload.
4699  * Compute outer checksum based on the assumption that the
4700  * inner checksum will be offloaded later.
4701  * See Documentation/networking/checksum-offloads.rst for
4702  * explanation of how this works.
4703  * Fill in outer checksum adjustment (e.g. with sum of outer
4704  * pseudo-header) before calling.
4705  * Also ensure that inner checksum is in linear data area.
4706  */
4707 static inline __wsum lco_csum(struct sk_buff *skb)
4708 {
4709 	unsigned char *csum_start = skb_checksum_start(skb);
4710 	unsigned char *l4_hdr = skb_transport_header(skb);
4711 	__wsum partial;
4712 
4713 	/* Start with complement of inner checksum adjustment */
4714 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4715 						    skb->csum_offset));
4716 
4717 	/* Add in checksum of our headers (incl. outer checksum
4718 	 * adjustment filled in by caller) and return result.
4719 	 */
4720 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4721 }
4722 
4723 static inline bool skb_is_redirected(const struct sk_buff *skb)
4724 {
4725 	return skb->redirected;
4726 }
4727 
4728 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4729 {
4730 	skb->redirected = 1;
4731 #ifdef CONFIG_NET_REDIRECT
4732 	skb->from_ingress = from_ingress;
4733 	if (skb->from_ingress)
4734 		skb->tstamp = 0;
4735 #endif
4736 }
4737 
4738 static inline void skb_reset_redirect(struct sk_buff *skb)
4739 {
4740 	skb->redirected = 0;
4741 }
4742 
4743 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4744 {
4745 	return skb->csum_not_inet;
4746 }
4747 
4748 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4749 				       const u64 kcov_handle)
4750 {
4751 #ifdef CONFIG_KCOV
4752 	skb->kcov_handle = kcov_handle;
4753 #endif
4754 }
4755 
4756 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4757 {
4758 #ifdef CONFIG_KCOV
4759 	return skb->kcov_handle;
4760 #else
4761 	return 0;
4762 #endif
4763 }
4764 
4765 #ifdef CONFIG_PAGE_POOL
4766 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4767 {
4768 	skb->pp_recycle = 1;
4769 }
4770 #endif
4771 
4772 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4773 {
4774 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4775 		return false;
4776 	return page_pool_return_skb_page(virt_to_page(data));
4777 }
4778 
4779 #endif	/* __KERNEL__ */
4780 #endif	/* _LINUX_SKBUFF_H */
4781