xref: /linux-6.15/include/linux/skbuff.h (revision 82d00a93)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281  * ovs recirc_id. It will be set to the current chain by tc
282  * and read by ovs to recirc_id.
283  */
284 struct tc_skb_ext {
285 	__u32 chain;
286 };
287 #endif
288 
289 struct sk_buff_head {
290 	/* These two members must be first. */
291 	struct sk_buff	*next;
292 	struct sk_buff	*prev;
293 
294 	__u32		qlen;
295 	spinlock_t	lock;
296 };
297 
298 struct sk_buff;
299 
300 /* To allow 64K frame to be packed as single skb without frag_list we
301  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
302  * buffers which do not start on a page boundary.
303  *
304  * Since GRO uses frags we allocate at least 16 regardless of page
305  * size.
306  */
307 #if (65536/PAGE_SIZE + 1) < 16
308 #define MAX_SKB_FRAGS 16UL
309 #else
310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
311 #endif
312 extern int sysctl_max_skb_frags;
313 
314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
315  * segment using its current segmentation instead.
316  */
317 #define GSO_BY_FRAGS	0xFFFF
318 
319 typedef struct bio_vec skb_frag_t;
320 
321 /**
322  * skb_frag_size() - Returns the size of a skb fragment
323  * @frag: skb fragment
324  */
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->bv_len;
328 }
329 
330 /**
331  * skb_frag_size_set() - Sets the size of a skb fragment
332  * @frag: skb fragment
333  * @size: size of fragment
334  */
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->bv_len = size;
338 }
339 
340 /**
341  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
342  * @frag: skb fragment
343  * @delta: value to add
344  */
345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
346 {
347 	frag->bv_len += delta;
348 }
349 
350 /**
351  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
352  * @frag: skb fragment
353  * @delta: value to subtract
354  */
355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
356 {
357 	frag->bv_len -= delta;
358 }
359 
360 /**
361  * skb_frag_must_loop - Test if %p is a high memory page
362  * @p: fragment's page
363  */
364 static inline bool skb_frag_must_loop(struct page *p)
365 {
366 #if defined(CONFIG_HIGHMEM)
367 	if (PageHighMem(p))
368 		return true;
369 #endif
370 	return false;
371 }
372 
373 /**
374  *	skb_frag_foreach_page - loop over pages in a fragment
375  *
376  *	@f:		skb frag to operate on
377  *	@f_off:		offset from start of f->bv_page
378  *	@f_len:		length from f_off to loop over
379  *	@p:		(temp var) current page
380  *	@p_off:		(temp var) offset from start of current page,
381  *	                           non-zero only on first page.
382  *	@p_len:		(temp var) length in current page,
383  *				   < PAGE_SIZE only on first and last page.
384  *	@copied:	(temp var) length so far, excluding current p_len.
385  *
386  *	A fragment can hold a compound page, in which case per-page
387  *	operations, notably kmap_atomic, must be called for each
388  *	regular page.
389  */
390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
391 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
392 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
393 	     p_len = skb_frag_must_loop(p) ?				\
394 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
395 	     copied = 0;						\
396 	     copied < f_len;						\
397 	     copied += p_len, p++, p_off = 0,				\
398 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
399 
400 #define HAVE_HW_TIME_STAMP
401 
402 /**
403  * struct skb_shared_hwtstamps - hardware time stamps
404  * @hwtstamp:	hardware time stamp transformed into duration
405  *		since arbitrary point in time
406  *
407  * Software time stamps generated by ktime_get_real() are stored in
408  * skb->tstamp.
409  *
410  * hwtstamps can only be compared against other hwtstamps from
411  * the same device.
412  *
413  * This structure is attached to packets as part of the
414  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
415  */
416 struct skb_shared_hwtstamps {
417 	ktime_t	hwtstamp;
418 };
419 
420 /* Definitions for tx_flags in struct skb_shared_info */
421 enum {
422 	/* generate hardware time stamp */
423 	SKBTX_HW_TSTAMP = 1 << 0,
424 
425 	/* generate software time stamp when queueing packet to NIC */
426 	SKBTX_SW_TSTAMP = 1 << 1,
427 
428 	/* device driver is going to provide hardware time stamp */
429 	SKBTX_IN_PROGRESS = 1 << 2,
430 
431 	/* device driver supports TX zero-copy buffers */
432 	SKBTX_DEV_ZEROCOPY = 1 << 3,
433 
434 	/* generate wifi status information (where possible) */
435 	SKBTX_WIFI_STATUS = 1 << 4,
436 
437 	/* This indicates at least one fragment might be overwritten
438 	 * (as in vmsplice(), sendfile() ...)
439 	 * If we need to compute a TX checksum, we'll need to copy
440 	 * all frags to avoid possible bad checksum
441 	 */
442 	SKBTX_SHARED_FRAG = 1 << 5,
443 
444 	/* generate software time stamp when entering packet scheduling */
445 	SKBTX_SCHED_TSTAMP = 1 << 6,
446 };
447 
448 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
449 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
450 				 SKBTX_SCHED_TSTAMP)
451 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
452 
453 /*
454  * The callback notifies userspace to release buffers when skb DMA is done in
455  * lower device, the skb last reference should be 0 when calling this.
456  * The zerocopy_success argument is true if zero copy transmit occurred,
457  * false on data copy or out of memory error caused by data copy attempt.
458  * The ctx field is used to track device context.
459  * The desc field is used to track userspace buffer index.
460  */
461 struct ubuf_info {
462 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
463 	union {
464 		struct {
465 			unsigned long desc;
466 			void *ctx;
467 		};
468 		struct {
469 			u32 id;
470 			u16 len;
471 			u16 zerocopy:1;
472 			u32 bytelen;
473 		};
474 	};
475 	refcount_t refcnt;
476 
477 	struct mmpin {
478 		struct user_struct *user;
479 		unsigned int num_pg;
480 	} mmp;
481 };
482 
483 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
484 
485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
486 void mm_unaccount_pinned_pages(struct mmpin *mmp);
487 
488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
490 					struct ubuf_info *uarg);
491 
492 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
493 {
494 	refcount_inc(&uarg->refcnt);
495 }
496 
497 void sock_zerocopy_put(struct ubuf_info *uarg);
498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
499 
500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
501 
502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
504 			     struct msghdr *msg, int len,
505 			     struct ubuf_info *uarg);
506 
507 /* This data is invariant across clones and lives at
508  * the end of the header data, ie. at skb->end.
509  */
510 struct skb_shared_info {
511 	__u8		__unused;
512 	__u8		meta_len;
513 	__u8		nr_frags;
514 	__u8		tx_flags;
515 	unsigned short	gso_size;
516 	/* Warning: this field is not always filled in (UFO)! */
517 	unsigned short	gso_segs;
518 	struct sk_buff	*frag_list;
519 	struct skb_shared_hwtstamps hwtstamps;
520 	unsigned int	gso_type;
521 	u32		tskey;
522 
523 	/*
524 	 * Warning : all fields before dataref are cleared in __alloc_skb()
525 	 */
526 	atomic_t	dataref;
527 
528 	/* Intermediate layers must ensure that destructor_arg
529 	 * remains valid until skb destructor */
530 	void *		destructor_arg;
531 
532 	/* must be last field, see pskb_expand_head() */
533 	skb_frag_t	frags[MAX_SKB_FRAGS];
534 };
535 
536 /* We divide dataref into two halves.  The higher 16 bits hold references
537  * to the payload part of skb->data.  The lower 16 bits hold references to
538  * the entire skb->data.  A clone of a headerless skb holds the length of
539  * the header in skb->hdr_len.
540  *
541  * All users must obey the rule that the skb->data reference count must be
542  * greater than or equal to the payload reference count.
543  *
544  * Holding a reference to the payload part means that the user does not
545  * care about modifications to the header part of skb->data.
546  */
547 #define SKB_DATAREF_SHIFT 16
548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
549 
550 
551 enum {
552 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
553 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
554 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
555 };
556 
557 enum {
558 	SKB_GSO_TCPV4 = 1 << 0,
559 
560 	/* This indicates the skb is from an untrusted source. */
561 	SKB_GSO_DODGY = 1 << 1,
562 
563 	/* This indicates the tcp segment has CWR set. */
564 	SKB_GSO_TCP_ECN = 1 << 2,
565 
566 	SKB_GSO_TCP_FIXEDID = 1 << 3,
567 
568 	SKB_GSO_TCPV6 = 1 << 4,
569 
570 	SKB_GSO_FCOE = 1 << 5,
571 
572 	SKB_GSO_GRE = 1 << 6,
573 
574 	SKB_GSO_GRE_CSUM = 1 << 7,
575 
576 	SKB_GSO_IPXIP4 = 1 << 8,
577 
578 	SKB_GSO_IPXIP6 = 1 << 9,
579 
580 	SKB_GSO_UDP_TUNNEL = 1 << 10,
581 
582 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
583 
584 	SKB_GSO_PARTIAL = 1 << 12,
585 
586 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
587 
588 	SKB_GSO_SCTP = 1 << 14,
589 
590 	SKB_GSO_ESP = 1 << 15,
591 
592 	SKB_GSO_UDP = 1 << 16,
593 
594 	SKB_GSO_UDP_L4 = 1 << 17,
595 
596 	SKB_GSO_FRAGLIST = 1 << 18,
597 };
598 
599 #if BITS_PER_LONG > 32
600 #define NET_SKBUFF_DATA_USES_OFFSET 1
601 #endif
602 
603 #ifdef NET_SKBUFF_DATA_USES_OFFSET
604 typedef unsigned int sk_buff_data_t;
605 #else
606 typedef unsigned char *sk_buff_data_t;
607 #endif
608 
609 /**
610  *	struct sk_buff - socket buffer
611  *	@next: Next buffer in list
612  *	@prev: Previous buffer in list
613  *	@tstamp: Time we arrived/left
614  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
615  *		for retransmit timer
616  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
617  *	@list: queue head
618  *	@sk: Socket we are owned by
619  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
620  *		fragmentation management
621  *	@dev: Device we arrived on/are leaving by
622  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
623  *	@cb: Control buffer. Free for use by every layer. Put private vars here
624  *	@_skb_refdst: destination entry (with norefcount bit)
625  *	@sp: the security path, used for xfrm
626  *	@len: Length of actual data
627  *	@data_len: Data length
628  *	@mac_len: Length of link layer header
629  *	@hdr_len: writable header length of cloned skb
630  *	@csum: Checksum (must include start/offset pair)
631  *	@csum_start: Offset from skb->head where checksumming should start
632  *	@csum_offset: Offset from csum_start where checksum should be stored
633  *	@priority: Packet queueing priority
634  *	@ignore_df: allow local fragmentation
635  *	@cloned: Head may be cloned (check refcnt to be sure)
636  *	@ip_summed: Driver fed us an IP checksum
637  *	@nohdr: Payload reference only, must not modify header
638  *	@pkt_type: Packet class
639  *	@fclone: skbuff clone status
640  *	@ipvs_property: skbuff is owned by ipvs
641  *	@inner_protocol_type: whether the inner protocol is
642  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
643  *	@remcsum_offload: remote checksum offload is enabled
644  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
645  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
646  *	@tc_skip_classify: do not classify packet. set by IFB device
647  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
648  *	@redirected: packet was redirected by packet classifier
649  *	@from_ingress: packet was redirected from the ingress path
650  *	@peeked: this packet has been seen already, so stats have been
651  *		done for it, don't do them again
652  *	@nf_trace: netfilter packet trace flag
653  *	@protocol: Packet protocol from driver
654  *	@destructor: Destruct function
655  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
656  *	@_nfct: Associated connection, if any (with nfctinfo bits)
657  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
658  *	@skb_iif: ifindex of device we arrived on
659  *	@tc_index: Traffic control index
660  *	@hash: the packet hash
661  *	@queue_mapping: Queue mapping for multiqueue devices
662  *	@head_frag: skb was allocated from page fragments,
663  *		not allocated by kmalloc() or vmalloc().
664  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
665  *	@active_extensions: active extensions (skb_ext_id types)
666  *	@ndisc_nodetype: router type (from link layer)
667  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
668  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
669  *		ports.
670  *	@sw_hash: indicates hash was computed in software stack
671  *	@wifi_acked_valid: wifi_acked was set
672  *	@wifi_acked: whether frame was acked on wifi or not
673  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
674  *	@encapsulation: indicates the inner headers in the skbuff are valid
675  *	@encap_hdr_csum: software checksum is needed
676  *	@csum_valid: checksum is already valid
677  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
678  *	@csum_complete_sw: checksum was completed by software
679  *	@csum_level: indicates the number of consecutive checksums found in
680  *		the packet minus one that have been verified as
681  *		CHECKSUM_UNNECESSARY (max 3)
682  *	@dst_pending_confirm: need to confirm neighbour
683  *	@decrypted: Decrypted SKB
684  *	@napi_id: id of the NAPI struct this skb came from
685  *	@sender_cpu: (aka @napi_id) source CPU in XPS
686  *	@secmark: security marking
687  *	@mark: Generic packet mark
688  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
689  *		at the tail of an sk_buff
690  *	@vlan_present: VLAN tag is present
691  *	@vlan_proto: vlan encapsulation protocol
692  *	@vlan_tci: vlan tag control information
693  *	@inner_protocol: Protocol (encapsulation)
694  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
695  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
696  *	@inner_transport_header: Inner transport layer header (encapsulation)
697  *	@inner_network_header: Network layer header (encapsulation)
698  *	@inner_mac_header: Link layer header (encapsulation)
699  *	@transport_header: Transport layer header
700  *	@network_header: Network layer header
701  *	@mac_header: Link layer header
702  *	@tail: Tail pointer
703  *	@end: End pointer
704  *	@head: Head of buffer
705  *	@data: Data head pointer
706  *	@truesize: Buffer size
707  *	@users: User count - see {datagram,tcp}.c
708  *	@extensions: allocated extensions, valid if active_extensions is nonzero
709  */
710 
711 struct sk_buff {
712 	union {
713 		struct {
714 			/* These two members must be first. */
715 			struct sk_buff		*next;
716 			struct sk_buff		*prev;
717 
718 			union {
719 				struct net_device	*dev;
720 				/* Some protocols might use this space to store information,
721 				 * while device pointer would be NULL.
722 				 * UDP receive path is one user.
723 				 */
724 				unsigned long		dev_scratch;
725 			};
726 		};
727 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
728 		struct list_head	list;
729 	};
730 
731 	union {
732 		struct sock		*sk;
733 		int			ip_defrag_offset;
734 	};
735 
736 	union {
737 		ktime_t		tstamp;
738 		u64		skb_mstamp_ns; /* earliest departure time */
739 	};
740 	/*
741 	 * This is the control buffer. It is free to use for every
742 	 * layer. Please put your private variables there. If you
743 	 * want to keep them across layers you have to do a skb_clone()
744 	 * first. This is owned by whoever has the skb queued ATM.
745 	 */
746 	char			cb[48] __aligned(8);
747 
748 	union {
749 		struct {
750 			unsigned long	_skb_refdst;
751 			void		(*destructor)(struct sk_buff *skb);
752 		};
753 		struct list_head	tcp_tsorted_anchor;
754 	};
755 
756 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
757 	unsigned long		 _nfct;
758 #endif
759 	unsigned int		len,
760 				data_len;
761 	__u16			mac_len,
762 				hdr_len;
763 
764 	/* Following fields are _not_ copied in __copy_skb_header()
765 	 * Note that queue_mapping is here mostly to fill a hole.
766 	 */
767 	__u16			queue_mapping;
768 
769 /* if you move cloned around you also must adapt those constants */
770 #ifdef __BIG_ENDIAN_BITFIELD
771 #define CLONED_MASK	(1 << 7)
772 #else
773 #define CLONED_MASK	1
774 #endif
775 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
776 
777 	/* private: */
778 	__u8			__cloned_offset[0];
779 	/* public: */
780 	__u8			cloned:1,
781 				nohdr:1,
782 				fclone:2,
783 				peeked:1,
784 				head_frag:1,
785 				pfmemalloc:1;
786 #ifdef CONFIG_SKB_EXTENSIONS
787 	__u8			active_extensions;
788 #endif
789 	/* fields enclosed in headers_start/headers_end are copied
790 	 * using a single memcpy() in __copy_skb_header()
791 	 */
792 	/* private: */
793 	__u32			headers_start[0];
794 	/* public: */
795 
796 /* if you move pkt_type around you also must adapt those constants */
797 #ifdef __BIG_ENDIAN_BITFIELD
798 #define PKT_TYPE_MAX	(7 << 5)
799 #else
800 #define PKT_TYPE_MAX	7
801 #endif
802 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
803 
804 	/* private: */
805 	__u8			__pkt_type_offset[0];
806 	/* public: */
807 	__u8			pkt_type:3;
808 	__u8			ignore_df:1;
809 	__u8			nf_trace:1;
810 	__u8			ip_summed:2;
811 	__u8			ooo_okay:1;
812 
813 	__u8			l4_hash:1;
814 	__u8			sw_hash:1;
815 	__u8			wifi_acked_valid:1;
816 	__u8			wifi_acked:1;
817 	__u8			no_fcs:1;
818 	/* Indicates the inner headers are valid in the skbuff. */
819 	__u8			encapsulation:1;
820 	__u8			encap_hdr_csum:1;
821 	__u8			csum_valid:1;
822 
823 #ifdef __BIG_ENDIAN_BITFIELD
824 #define PKT_VLAN_PRESENT_BIT	7
825 #else
826 #define PKT_VLAN_PRESENT_BIT	0
827 #endif
828 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
829 	/* private: */
830 	__u8			__pkt_vlan_present_offset[0];
831 	/* public: */
832 	__u8			vlan_present:1;
833 	__u8			csum_complete_sw:1;
834 	__u8			csum_level:2;
835 	__u8			csum_not_inet:1;
836 	__u8			dst_pending_confirm:1;
837 #ifdef CONFIG_IPV6_NDISC_NODETYPE
838 	__u8			ndisc_nodetype:2;
839 #endif
840 
841 	__u8			ipvs_property:1;
842 	__u8			inner_protocol_type:1;
843 	__u8			remcsum_offload:1;
844 #ifdef CONFIG_NET_SWITCHDEV
845 	__u8			offload_fwd_mark:1;
846 	__u8			offload_l3_fwd_mark:1;
847 #endif
848 #ifdef CONFIG_NET_CLS_ACT
849 	__u8			tc_skip_classify:1;
850 	__u8			tc_at_ingress:1;
851 #endif
852 #ifdef CONFIG_NET_REDIRECT
853 	__u8			redirected:1;
854 	__u8			from_ingress:1;
855 #endif
856 #ifdef CONFIG_TLS_DEVICE
857 	__u8			decrypted:1;
858 #endif
859 
860 #ifdef CONFIG_NET_SCHED
861 	__u16			tc_index;	/* traffic control index */
862 #endif
863 
864 	union {
865 		__wsum		csum;
866 		struct {
867 			__u16	csum_start;
868 			__u16	csum_offset;
869 		};
870 	};
871 	__u32			priority;
872 	int			skb_iif;
873 	__u32			hash;
874 	__be16			vlan_proto;
875 	__u16			vlan_tci;
876 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
877 	union {
878 		unsigned int	napi_id;
879 		unsigned int	sender_cpu;
880 	};
881 #endif
882 #ifdef CONFIG_NETWORK_SECMARK
883 	__u32		secmark;
884 #endif
885 
886 	union {
887 		__u32		mark;
888 		__u32		reserved_tailroom;
889 	};
890 
891 	union {
892 		__be16		inner_protocol;
893 		__u8		inner_ipproto;
894 	};
895 
896 	__u16			inner_transport_header;
897 	__u16			inner_network_header;
898 	__u16			inner_mac_header;
899 
900 	__be16			protocol;
901 	__u16			transport_header;
902 	__u16			network_header;
903 	__u16			mac_header;
904 
905 	/* private: */
906 	__u32			headers_end[0];
907 	/* public: */
908 
909 	/* These elements must be at the end, see alloc_skb() for details.  */
910 	sk_buff_data_t		tail;
911 	sk_buff_data_t		end;
912 	unsigned char		*head,
913 				*data;
914 	unsigned int		truesize;
915 	refcount_t		users;
916 
917 #ifdef CONFIG_SKB_EXTENSIONS
918 	/* only useable after checking ->active_extensions != 0 */
919 	struct skb_ext		*extensions;
920 #endif
921 };
922 
923 #ifdef __KERNEL__
924 /*
925  *	Handling routines are only of interest to the kernel
926  */
927 
928 #define SKB_ALLOC_FCLONE	0x01
929 #define SKB_ALLOC_RX		0x02
930 #define SKB_ALLOC_NAPI		0x04
931 
932 /**
933  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
934  * @skb: buffer
935  */
936 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
937 {
938 	return unlikely(skb->pfmemalloc);
939 }
940 
941 /*
942  * skb might have a dst pointer attached, refcounted or not.
943  * _skb_refdst low order bit is set if refcount was _not_ taken
944  */
945 #define SKB_DST_NOREF	1UL
946 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
947 
948 /**
949  * skb_dst - returns skb dst_entry
950  * @skb: buffer
951  *
952  * Returns skb dst_entry, regardless of reference taken or not.
953  */
954 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
955 {
956 	/* If refdst was not refcounted, check we still are in a
957 	 * rcu_read_lock section
958 	 */
959 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
960 		!rcu_read_lock_held() &&
961 		!rcu_read_lock_bh_held());
962 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
963 }
964 
965 /**
966  * skb_dst_set - sets skb dst
967  * @skb: buffer
968  * @dst: dst entry
969  *
970  * Sets skb dst, assuming a reference was taken on dst and should
971  * be released by skb_dst_drop()
972  */
973 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
974 {
975 	skb->_skb_refdst = (unsigned long)dst;
976 }
977 
978 /**
979  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
980  * @skb: buffer
981  * @dst: dst entry
982  *
983  * Sets skb dst, assuming a reference was not taken on dst.
984  * If dst entry is cached, we do not take reference and dst_release
985  * will be avoided by refdst_drop. If dst entry is not cached, we take
986  * reference, so that last dst_release can destroy the dst immediately.
987  */
988 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
989 {
990 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
991 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
992 }
993 
994 /**
995  * skb_dst_is_noref - Test if skb dst isn't refcounted
996  * @skb: buffer
997  */
998 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
999 {
1000 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1001 }
1002 
1003 /**
1004  * skb_rtable - Returns the skb &rtable
1005  * @skb: buffer
1006  */
1007 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1008 {
1009 	return (struct rtable *)skb_dst(skb);
1010 }
1011 
1012 /* For mangling skb->pkt_type from user space side from applications
1013  * such as nft, tc, etc, we only allow a conservative subset of
1014  * possible pkt_types to be set.
1015 */
1016 static inline bool skb_pkt_type_ok(u32 ptype)
1017 {
1018 	return ptype <= PACKET_OTHERHOST;
1019 }
1020 
1021 /**
1022  * skb_napi_id - Returns the skb's NAPI id
1023  * @skb: buffer
1024  */
1025 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1026 {
1027 #ifdef CONFIG_NET_RX_BUSY_POLL
1028 	return skb->napi_id;
1029 #else
1030 	return 0;
1031 #endif
1032 }
1033 
1034 /**
1035  * skb_unref - decrement the skb's reference count
1036  * @skb: buffer
1037  *
1038  * Returns true if we can free the skb.
1039  */
1040 static inline bool skb_unref(struct sk_buff *skb)
1041 {
1042 	if (unlikely(!skb))
1043 		return false;
1044 	if (likely(refcount_read(&skb->users) == 1))
1045 		smp_rmb();
1046 	else if (likely(!refcount_dec_and_test(&skb->users)))
1047 		return false;
1048 
1049 	return true;
1050 }
1051 
1052 void skb_release_head_state(struct sk_buff *skb);
1053 void kfree_skb(struct sk_buff *skb);
1054 void kfree_skb_list(struct sk_buff *segs);
1055 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1056 void skb_tx_error(struct sk_buff *skb);
1057 void consume_skb(struct sk_buff *skb);
1058 void __consume_stateless_skb(struct sk_buff *skb);
1059 void  __kfree_skb(struct sk_buff *skb);
1060 extern struct kmem_cache *skbuff_head_cache;
1061 
1062 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1063 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1064 		      bool *fragstolen, int *delta_truesize);
1065 
1066 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1067 			    int node);
1068 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1069 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1070 struct sk_buff *build_skb_around(struct sk_buff *skb,
1071 				 void *data, unsigned int frag_size);
1072 
1073 /**
1074  * alloc_skb - allocate a network buffer
1075  * @size: size to allocate
1076  * @priority: allocation mask
1077  *
1078  * This function is a convenient wrapper around __alloc_skb().
1079  */
1080 static inline struct sk_buff *alloc_skb(unsigned int size,
1081 					gfp_t priority)
1082 {
1083 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1084 }
1085 
1086 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1087 				     unsigned long data_len,
1088 				     int max_page_order,
1089 				     int *errcode,
1090 				     gfp_t gfp_mask);
1091 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1092 
1093 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1094 struct sk_buff_fclones {
1095 	struct sk_buff	skb1;
1096 
1097 	struct sk_buff	skb2;
1098 
1099 	refcount_t	fclone_ref;
1100 };
1101 
1102 /**
1103  *	skb_fclone_busy - check if fclone is busy
1104  *	@sk: socket
1105  *	@skb: buffer
1106  *
1107  * Returns true if skb is a fast clone, and its clone is not freed.
1108  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1109  * so we also check that this didnt happen.
1110  */
1111 static inline bool skb_fclone_busy(const struct sock *sk,
1112 				   const struct sk_buff *skb)
1113 {
1114 	const struct sk_buff_fclones *fclones;
1115 
1116 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1117 
1118 	return skb->fclone == SKB_FCLONE_ORIG &&
1119 	       refcount_read(&fclones->fclone_ref) > 1 &&
1120 	       fclones->skb2.sk == sk;
1121 }
1122 
1123 /**
1124  * alloc_skb_fclone - allocate a network buffer from fclone cache
1125  * @size: size to allocate
1126  * @priority: allocation mask
1127  *
1128  * This function is a convenient wrapper around __alloc_skb().
1129  */
1130 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1131 					       gfp_t priority)
1132 {
1133 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1134 }
1135 
1136 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1137 void skb_headers_offset_update(struct sk_buff *skb, int off);
1138 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1139 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1140 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1141 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1142 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1143 				   gfp_t gfp_mask, bool fclone);
1144 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1145 					  gfp_t gfp_mask)
1146 {
1147 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1148 }
1149 
1150 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1151 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1152 				     unsigned int headroom);
1153 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1154 				int newtailroom, gfp_t priority);
1155 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1156 				     int offset, int len);
1157 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1158 			      int offset, int len);
1159 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1160 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1161 
1162 /**
1163  *	skb_pad			-	zero pad the tail of an skb
1164  *	@skb: buffer to pad
1165  *	@pad: space to pad
1166  *
1167  *	Ensure that a buffer is followed by a padding area that is zero
1168  *	filled. Used by network drivers which may DMA or transfer data
1169  *	beyond the buffer end onto the wire.
1170  *
1171  *	May return error in out of memory cases. The skb is freed on error.
1172  */
1173 static inline int skb_pad(struct sk_buff *skb, int pad)
1174 {
1175 	return __skb_pad(skb, pad, true);
1176 }
1177 #define dev_kfree_skb(a)	consume_skb(a)
1178 
1179 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1180 			 int offset, size_t size);
1181 
1182 struct skb_seq_state {
1183 	__u32		lower_offset;
1184 	__u32		upper_offset;
1185 	__u32		frag_idx;
1186 	__u32		stepped_offset;
1187 	struct sk_buff	*root_skb;
1188 	struct sk_buff	*cur_skb;
1189 	__u8		*frag_data;
1190 };
1191 
1192 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1193 			  unsigned int to, struct skb_seq_state *st);
1194 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1195 			  struct skb_seq_state *st);
1196 void skb_abort_seq_read(struct skb_seq_state *st);
1197 
1198 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1199 			   unsigned int to, struct ts_config *config);
1200 
1201 /*
1202  * Packet hash types specify the type of hash in skb_set_hash.
1203  *
1204  * Hash types refer to the protocol layer addresses which are used to
1205  * construct a packet's hash. The hashes are used to differentiate or identify
1206  * flows of the protocol layer for the hash type. Hash types are either
1207  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1208  *
1209  * Properties of hashes:
1210  *
1211  * 1) Two packets in different flows have different hash values
1212  * 2) Two packets in the same flow should have the same hash value
1213  *
1214  * A hash at a higher layer is considered to be more specific. A driver should
1215  * set the most specific hash possible.
1216  *
1217  * A driver cannot indicate a more specific hash than the layer at which a hash
1218  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1219  *
1220  * A driver may indicate a hash level which is less specific than the
1221  * actual layer the hash was computed on. For instance, a hash computed
1222  * at L4 may be considered an L3 hash. This should only be done if the
1223  * driver can't unambiguously determine that the HW computed the hash at
1224  * the higher layer. Note that the "should" in the second property above
1225  * permits this.
1226  */
1227 enum pkt_hash_types {
1228 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1229 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1230 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1231 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1232 };
1233 
1234 static inline void skb_clear_hash(struct sk_buff *skb)
1235 {
1236 	skb->hash = 0;
1237 	skb->sw_hash = 0;
1238 	skb->l4_hash = 0;
1239 }
1240 
1241 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1242 {
1243 	if (!skb->l4_hash)
1244 		skb_clear_hash(skb);
1245 }
1246 
1247 static inline void
1248 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1249 {
1250 	skb->l4_hash = is_l4;
1251 	skb->sw_hash = is_sw;
1252 	skb->hash = hash;
1253 }
1254 
1255 static inline void
1256 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1257 {
1258 	/* Used by drivers to set hash from HW */
1259 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1260 }
1261 
1262 static inline void
1263 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1264 {
1265 	__skb_set_hash(skb, hash, true, is_l4);
1266 }
1267 
1268 void __skb_get_hash(struct sk_buff *skb);
1269 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1270 u32 skb_get_poff(const struct sk_buff *skb);
1271 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1272 		   const struct flow_keys_basic *keys, int hlen);
1273 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1274 			    void *data, int hlen_proto);
1275 
1276 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1277 					int thoff, u8 ip_proto)
1278 {
1279 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1280 }
1281 
1282 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1283 			     const struct flow_dissector_key *key,
1284 			     unsigned int key_count);
1285 
1286 #ifdef CONFIG_NET
1287 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1288 				  union bpf_attr __user *uattr);
1289 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1290 				       struct bpf_prog *prog);
1291 
1292 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1293 #else
1294 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1295 						union bpf_attr __user *uattr)
1296 {
1297 	return -EOPNOTSUPP;
1298 }
1299 
1300 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1301 						     struct bpf_prog *prog)
1302 {
1303 	return -EOPNOTSUPP;
1304 }
1305 
1306 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1307 {
1308 	return -EOPNOTSUPP;
1309 }
1310 #endif
1311 
1312 struct bpf_flow_dissector;
1313 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1314 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1315 
1316 bool __skb_flow_dissect(const struct net *net,
1317 			const struct sk_buff *skb,
1318 			struct flow_dissector *flow_dissector,
1319 			void *target_container,
1320 			void *data, __be16 proto, int nhoff, int hlen,
1321 			unsigned int flags);
1322 
1323 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1324 				    struct flow_dissector *flow_dissector,
1325 				    void *target_container, unsigned int flags)
1326 {
1327 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1328 				  target_container, NULL, 0, 0, 0, flags);
1329 }
1330 
1331 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1332 					      struct flow_keys *flow,
1333 					      unsigned int flags)
1334 {
1335 	memset(flow, 0, sizeof(*flow));
1336 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1337 				  flow, NULL, 0, 0, 0, flags);
1338 }
1339 
1340 static inline bool
1341 skb_flow_dissect_flow_keys_basic(const struct net *net,
1342 				 const struct sk_buff *skb,
1343 				 struct flow_keys_basic *flow, void *data,
1344 				 __be16 proto, int nhoff, int hlen,
1345 				 unsigned int flags)
1346 {
1347 	memset(flow, 0, sizeof(*flow));
1348 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1349 				  data, proto, nhoff, hlen, flags);
1350 }
1351 
1352 void skb_flow_dissect_meta(const struct sk_buff *skb,
1353 			   struct flow_dissector *flow_dissector,
1354 			   void *target_container);
1355 
1356 /* Gets a skb connection tracking info, ctinfo map should be a
1357  * a map of mapsize to translate enum ip_conntrack_info states
1358  * to user states.
1359  */
1360 void
1361 skb_flow_dissect_ct(const struct sk_buff *skb,
1362 		    struct flow_dissector *flow_dissector,
1363 		    void *target_container,
1364 		    u16 *ctinfo_map,
1365 		    size_t mapsize);
1366 void
1367 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1368 			     struct flow_dissector *flow_dissector,
1369 			     void *target_container);
1370 
1371 static inline __u32 skb_get_hash(struct sk_buff *skb)
1372 {
1373 	if (!skb->l4_hash && !skb->sw_hash)
1374 		__skb_get_hash(skb);
1375 
1376 	return skb->hash;
1377 }
1378 
1379 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1380 {
1381 	if (!skb->l4_hash && !skb->sw_hash) {
1382 		struct flow_keys keys;
1383 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1384 
1385 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1386 	}
1387 
1388 	return skb->hash;
1389 }
1390 
1391 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1392 			   const siphash_key_t *perturb);
1393 
1394 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1395 {
1396 	return skb->hash;
1397 }
1398 
1399 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1400 {
1401 	to->hash = from->hash;
1402 	to->sw_hash = from->sw_hash;
1403 	to->l4_hash = from->l4_hash;
1404 };
1405 
1406 static inline void skb_copy_decrypted(struct sk_buff *to,
1407 				      const struct sk_buff *from)
1408 {
1409 #ifdef CONFIG_TLS_DEVICE
1410 	to->decrypted = from->decrypted;
1411 #endif
1412 }
1413 
1414 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1415 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1416 {
1417 	return skb->head + skb->end;
1418 }
1419 
1420 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1421 {
1422 	return skb->end;
1423 }
1424 #else
1425 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1426 {
1427 	return skb->end;
1428 }
1429 
1430 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1431 {
1432 	return skb->end - skb->head;
1433 }
1434 #endif
1435 
1436 /* Internal */
1437 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1438 
1439 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1440 {
1441 	return &skb_shinfo(skb)->hwtstamps;
1442 }
1443 
1444 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1445 {
1446 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1447 
1448 	return is_zcopy ? skb_uarg(skb) : NULL;
1449 }
1450 
1451 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1452 				 bool *have_ref)
1453 {
1454 	if (skb && uarg && !skb_zcopy(skb)) {
1455 		if (unlikely(have_ref && *have_ref))
1456 			*have_ref = false;
1457 		else
1458 			sock_zerocopy_get(uarg);
1459 		skb_shinfo(skb)->destructor_arg = uarg;
1460 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1461 	}
1462 }
1463 
1464 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1465 {
1466 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1467 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1468 }
1469 
1470 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1471 {
1472 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1473 }
1474 
1475 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1476 {
1477 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1478 }
1479 
1480 /* Release a reference on a zerocopy structure */
1481 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1482 {
1483 	struct ubuf_info *uarg = skb_zcopy(skb);
1484 
1485 	if (uarg) {
1486 		if (skb_zcopy_is_nouarg(skb)) {
1487 			/* no notification callback */
1488 		} else if (uarg->callback == sock_zerocopy_callback) {
1489 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1490 			sock_zerocopy_put(uarg);
1491 		} else {
1492 			uarg->callback(uarg, zerocopy);
1493 		}
1494 
1495 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1496 	}
1497 }
1498 
1499 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1500 static inline void skb_zcopy_abort(struct sk_buff *skb)
1501 {
1502 	struct ubuf_info *uarg = skb_zcopy(skb);
1503 
1504 	if (uarg) {
1505 		sock_zerocopy_put_abort(uarg, false);
1506 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1507 	}
1508 }
1509 
1510 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1511 {
1512 	skb->next = NULL;
1513 }
1514 
1515 /* Iterate through singly-linked GSO fragments of an skb. */
1516 #define skb_list_walk_safe(first, skb, next_skb)                               \
1517 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1518 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1519 
1520 static inline void skb_list_del_init(struct sk_buff *skb)
1521 {
1522 	__list_del_entry(&skb->list);
1523 	skb_mark_not_on_list(skb);
1524 }
1525 
1526 /**
1527  *	skb_queue_empty - check if a queue is empty
1528  *	@list: queue head
1529  *
1530  *	Returns true if the queue is empty, false otherwise.
1531  */
1532 static inline int skb_queue_empty(const struct sk_buff_head *list)
1533 {
1534 	return list->next == (const struct sk_buff *) list;
1535 }
1536 
1537 /**
1538  *	skb_queue_empty_lockless - check if a queue is empty
1539  *	@list: queue head
1540  *
1541  *	Returns true if the queue is empty, false otherwise.
1542  *	This variant can be used in lockless contexts.
1543  */
1544 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1545 {
1546 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1547 }
1548 
1549 
1550 /**
1551  *	skb_queue_is_last - check if skb is the last entry in the queue
1552  *	@list: queue head
1553  *	@skb: buffer
1554  *
1555  *	Returns true if @skb is the last buffer on the list.
1556  */
1557 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1558 				     const struct sk_buff *skb)
1559 {
1560 	return skb->next == (const struct sk_buff *) list;
1561 }
1562 
1563 /**
1564  *	skb_queue_is_first - check if skb is the first entry in the queue
1565  *	@list: queue head
1566  *	@skb: buffer
1567  *
1568  *	Returns true if @skb is the first buffer on the list.
1569  */
1570 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1571 				      const struct sk_buff *skb)
1572 {
1573 	return skb->prev == (const struct sk_buff *) list;
1574 }
1575 
1576 /**
1577  *	skb_queue_next - return the next packet in the queue
1578  *	@list: queue head
1579  *	@skb: current buffer
1580  *
1581  *	Return the next packet in @list after @skb.  It is only valid to
1582  *	call this if skb_queue_is_last() evaluates to false.
1583  */
1584 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1585 					     const struct sk_buff *skb)
1586 {
1587 	/* This BUG_ON may seem severe, but if we just return then we
1588 	 * are going to dereference garbage.
1589 	 */
1590 	BUG_ON(skb_queue_is_last(list, skb));
1591 	return skb->next;
1592 }
1593 
1594 /**
1595  *	skb_queue_prev - return the prev packet in the queue
1596  *	@list: queue head
1597  *	@skb: current buffer
1598  *
1599  *	Return the prev packet in @list before @skb.  It is only valid to
1600  *	call this if skb_queue_is_first() evaluates to false.
1601  */
1602 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1603 					     const struct sk_buff *skb)
1604 {
1605 	/* This BUG_ON may seem severe, but if we just return then we
1606 	 * are going to dereference garbage.
1607 	 */
1608 	BUG_ON(skb_queue_is_first(list, skb));
1609 	return skb->prev;
1610 }
1611 
1612 /**
1613  *	skb_get - reference buffer
1614  *	@skb: buffer to reference
1615  *
1616  *	Makes another reference to a socket buffer and returns a pointer
1617  *	to the buffer.
1618  */
1619 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1620 {
1621 	refcount_inc(&skb->users);
1622 	return skb;
1623 }
1624 
1625 /*
1626  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1627  */
1628 
1629 /**
1630  *	skb_cloned - is the buffer a clone
1631  *	@skb: buffer to check
1632  *
1633  *	Returns true if the buffer was generated with skb_clone() and is
1634  *	one of multiple shared copies of the buffer. Cloned buffers are
1635  *	shared data so must not be written to under normal circumstances.
1636  */
1637 static inline int skb_cloned(const struct sk_buff *skb)
1638 {
1639 	return skb->cloned &&
1640 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1641 }
1642 
1643 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1644 {
1645 	might_sleep_if(gfpflags_allow_blocking(pri));
1646 
1647 	if (skb_cloned(skb))
1648 		return pskb_expand_head(skb, 0, 0, pri);
1649 
1650 	return 0;
1651 }
1652 
1653 /**
1654  *	skb_header_cloned - is the header a clone
1655  *	@skb: buffer to check
1656  *
1657  *	Returns true if modifying the header part of the buffer requires
1658  *	the data to be copied.
1659  */
1660 static inline int skb_header_cloned(const struct sk_buff *skb)
1661 {
1662 	int dataref;
1663 
1664 	if (!skb->cloned)
1665 		return 0;
1666 
1667 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1668 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1669 	return dataref != 1;
1670 }
1671 
1672 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1673 {
1674 	might_sleep_if(gfpflags_allow_blocking(pri));
1675 
1676 	if (skb_header_cloned(skb))
1677 		return pskb_expand_head(skb, 0, 0, pri);
1678 
1679 	return 0;
1680 }
1681 
1682 /**
1683  *	__skb_header_release - release reference to header
1684  *	@skb: buffer to operate on
1685  */
1686 static inline void __skb_header_release(struct sk_buff *skb)
1687 {
1688 	skb->nohdr = 1;
1689 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1690 }
1691 
1692 
1693 /**
1694  *	skb_shared - is the buffer shared
1695  *	@skb: buffer to check
1696  *
1697  *	Returns true if more than one person has a reference to this
1698  *	buffer.
1699  */
1700 static inline int skb_shared(const struct sk_buff *skb)
1701 {
1702 	return refcount_read(&skb->users) != 1;
1703 }
1704 
1705 /**
1706  *	skb_share_check - check if buffer is shared and if so clone it
1707  *	@skb: buffer to check
1708  *	@pri: priority for memory allocation
1709  *
1710  *	If the buffer is shared the buffer is cloned and the old copy
1711  *	drops a reference. A new clone with a single reference is returned.
1712  *	If the buffer is not shared the original buffer is returned. When
1713  *	being called from interrupt status or with spinlocks held pri must
1714  *	be GFP_ATOMIC.
1715  *
1716  *	NULL is returned on a memory allocation failure.
1717  */
1718 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1719 {
1720 	might_sleep_if(gfpflags_allow_blocking(pri));
1721 	if (skb_shared(skb)) {
1722 		struct sk_buff *nskb = skb_clone(skb, pri);
1723 
1724 		if (likely(nskb))
1725 			consume_skb(skb);
1726 		else
1727 			kfree_skb(skb);
1728 		skb = nskb;
1729 	}
1730 	return skb;
1731 }
1732 
1733 /*
1734  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1735  *	packets to handle cases where we have a local reader and forward
1736  *	and a couple of other messy ones. The normal one is tcpdumping
1737  *	a packet thats being forwarded.
1738  */
1739 
1740 /**
1741  *	skb_unshare - make a copy of a shared buffer
1742  *	@skb: buffer to check
1743  *	@pri: priority for memory allocation
1744  *
1745  *	If the socket buffer is a clone then this function creates a new
1746  *	copy of the data, drops a reference count on the old copy and returns
1747  *	the new copy with the reference count at 1. If the buffer is not a clone
1748  *	the original buffer is returned. When called with a spinlock held or
1749  *	from interrupt state @pri must be %GFP_ATOMIC
1750  *
1751  *	%NULL is returned on a memory allocation failure.
1752  */
1753 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1754 					  gfp_t pri)
1755 {
1756 	might_sleep_if(gfpflags_allow_blocking(pri));
1757 	if (skb_cloned(skb)) {
1758 		struct sk_buff *nskb = skb_copy(skb, pri);
1759 
1760 		/* Free our shared copy */
1761 		if (likely(nskb))
1762 			consume_skb(skb);
1763 		else
1764 			kfree_skb(skb);
1765 		skb = nskb;
1766 	}
1767 	return skb;
1768 }
1769 
1770 /**
1771  *	skb_peek - peek at the head of an &sk_buff_head
1772  *	@list_: list to peek at
1773  *
1774  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1775  *	be careful with this one. A peek leaves the buffer on the
1776  *	list and someone else may run off with it. You must hold
1777  *	the appropriate locks or have a private queue to do this.
1778  *
1779  *	Returns %NULL for an empty list or a pointer to the head element.
1780  *	The reference count is not incremented and the reference is therefore
1781  *	volatile. Use with caution.
1782  */
1783 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1784 {
1785 	struct sk_buff *skb = list_->next;
1786 
1787 	if (skb == (struct sk_buff *)list_)
1788 		skb = NULL;
1789 	return skb;
1790 }
1791 
1792 /**
1793  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1794  *	@list_: list to peek at
1795  *
1796  *	Like skb_peek(), but the caller knows that the list is not empty.
1797  */
1798 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1799 {
1800 	return list_->next;
1801 }
1802 
1803 /**
1804  *	skb_peek_next - peek skb following the given one from a queue
1805  *	@skb: skb to start from
1806  *	@list_: list to peek at
1807  *
1808  *	Returns %NULL when the end of the list is met or a pointer to the
1809  *	next element. The reference count is not incremented and the
1810  *	reference is therefore volatile. Use with caution.
1811  */
1812 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1813 		const struct sk_buff_head *list_)
1814 {
1815 	struct sk_buff *next = skb->next;
1816 
1817 	if (next == (struct sk_buff *)list_)
1818 		next = NULL;
1819 	return next;
1820 }
1821 
1822 /**
1823  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1824  *	@list_: list to peek at
1825  *
1826  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1827  *	be careful with this one. A peek leaves the buffer on the
1828  *	list and someone else may run off with it. You must hold
1829  *	the appropriate locks or have a private queue to do this.
1830  *
1831  *	Returns %NULL for an empty list or a pointer to the tail element.
1832  *	The reference count is not incremented and the reference is therefore
1833  *	volatile. Use with caution.
1834  */
1835 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1836 {
1837 	struct sk_buff *skb = READ_ONCE(list_->prev);
1838 
1839 	if (skb == (struct sk_buff *)list_)
1840 		skb = NULL;
1841 	return skb;
1842 
1843 }
1844 
1845 /**
1846  *	skb_queue_len	- get queue length
1847  *	@list_: list to measure
1848  *
1849  *	Return the length of an &sk_buff queue.
1850  */
1851 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1852 {
1853 	return list_->qlen;
1854 }
1855 
1856 /**
1857  *	skb_queue_len_lockless	- get queue length
1858  *	@list_: list to measure
1859  *
1860  *	Return the length of an &sk_buff queue.
1861  *	This variant can be used in lockless contexts.
1862  */
1863 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1864 {
1865 	return READ_ONCE(list_->qlen);
1866 }
1867 
1868 /**
1869  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1870  *	@list: queue to initialize
1871  *
1872  *	This initializes only the list and queue length aspects of
1873  *	an sk_buff_head object.  This allows to initialize the list
1874  *	aspects of an sk_buff_head without reinitializing things like
1875  *	the spinlock.  It can also be used for on-stack sk_buff_head
1876  *	objects where the spinlock is known to not be used.
1877  */
1878 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1879 {
1880 	list->prev = list->next = (struct sk_buff *)list;
1881 	list->qlen = 0;
1882 }
1883 
1884 /*
1885  * This function creates a split out lock class for each invocation;
1886  * this is needed for now since a whole lot of users of the skb-queue
1887  * infrastructure in drivers have different locking usage (in hardirq)
1888  * than the networking core (in softirq only). In the long run either the
1889  * network layer or drivers should need annotation to consolidate the
1890  * main types of usage into 3 classes.
1891  */
1892 static inline void skb_queue_head_init(struct sk_buff_head *list)
1893 {
1894 	spin_lock_init(&list->lock);
1895 	__skb_queue_head_init(list);
1896 }
1897 
1898 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1899 		struct lock_class_key *class)
1900 {
1901 	skb_queue_head_init(list);
1902 	lockdep_set_class(&list->lock, class);
1903 }
1904 
1905 /*
1906  *	Insert an sk_buff on a list.
1907  *
1908  *	The "__skb_xxxx()" functions are the non-atomic ones that
1909  *	can only be called with interrupts disabled.
1910  */
1911 static inline void __skb_insert(struct sk_buff *newsk,
1912 				struct sk_buff *prev, struct sk_buff *next,
1913 				struct sk_buff_head *list)
1914 {
1915 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1916 	 * for the opposite READ_ONCE()
1917 	 */
1918 	WRITE_ONCE(newsk->next, next);
1919 	WRITE_ONCE(newsk->prev, prev);
1920 	WRITE_ONCE(next->prev, newsk);
1921 	WRITE_ONCE(prev->next, newsk);
1922 	list->qlen++;
1923 }
1924 
1925 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1926 				      struct sk_buff *prev,
1927 				      struct sk_buff *next)
1928 {
1929 	struct sk_buff *first = list->next;
1930 	struct sk_buff *last = list->prev;
1931 
1932 	WRITE_ONCE(first->prev, prev);
1933 	WRITE_ONCE(prev->next, first);
1934 
1935 	WRITE_ONCE(last->next, next);
1936 	WRITE_ONCE(next->prev, last);
1937 }
1938 
1939 /**
1940  *	skb_queue_splice - join two skb lists, this is designed for stacks
1941  *	@list: the new list to add
1942  *	@head: the place to add it in the first list
1943  */
1944 static inline void skb_queue_splice(const struct sk_buff_head *list,
1945 				    struct sk_buff_head *head)
1946 {
1947 	if (!skb_queue_empty(list)) {
1948 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1949 		head->qlen += list->qlen;
1950 	}
1951 }
1952 
1953 /**
1954  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1955  *	@list: the new list to add
1956  *	@head: the place to add it in the first list
1957  *
1958  *	The list at @list is reinitialised
1959  */
1960 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1961 					 struct sk_buff_head *head)
1962 {
1963 	if (!skb_queue_empty(list)) {
1964 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1965 		head->qlen += list->qlen;
1966 		__skb_queue_head_init(list);
1967 	}
1968 }
1969 
1970 /**
1971  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1972  *	@list: the new list to add
1973  *	@head: the place to add it in the first list
1974  */
1975 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1976 					 struct sk_buff_head *head)
1977 {
1978 	if (!skb_queue_empty(list)) {
1979 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1980 		head->qlen += list->qlen;
1981 	}
1982 }
1983 
1984 /**
1985  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1986  *	@list: the new list to add
1987  *	@head: the place to add it in the first list
1988  *
1989  *	Each of the lists is a queue.
1990  *	The list at @list is reinitialised
1991  */
1992 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1993 					      struct sk_buff_head *head)
1994 {
1995 	if (!skb_queue_empty(list)) {
1996 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1997 		head->qlen += list->qlen;
1998 		__skb_queue_head_init(list);
1999 	}
2000 }
2001 
2002 /**
2003  *	__skb_queue_after - queue a buffer at the list head
2004  *	@list: list to use
2005  *	@prev: place after this buffer
2006  *	@newsk: buffer to queue
2007  *
2008  *	Queue a buffer int the middle of a list. This function takes no locks
2009  *	and you must therefore hold required locks before calling it.
2010  *
2011  *	A buffer cannot be placed on two lists at the same time.
2012  */
2013 static inline void __skb_queue_after(struct sk_buff_head *list,
2014 				     struct sk_buff *prev,
2015 				     struct sk_buff *newsk)
2016 {
2017 	__skb_insert(newsk, prev, prev->next, list);
2018 }
2019 
2020 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2021 		struct sk_buff_head *list);
2022 
2023 static inline void __skb_queue_before(struct sk_buff_head *list,
2024 				      struct sk_buff *next,
2025 				      struct sk_buff *newsk)
2026 {
2027 	__skb_insert(newsk, next->prev, next, list);
2028 }
2029 
2030 /**
2031  *	__skb_queue_head - queue a buffer at the list head
2032  *	@list: list to use
2033  *	@newsk: buffer to queue
2034  *
2035  *	Queue a buffer at the start of a list. This function takes no locks
2036  *	and you must therefore hold required locks before calling it.
2037  *
2038  *	A buffer cannot be placed on two lists at the same time.
2039  */
2040 static inline void __skb_queue_head(struct sk_buff_head *list,
2041 				    struct sk_buff *newsk)
2042 {
2043 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2044 }
2045 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2046 
2047 /**
2048  *	__skb_queue_tail - queue a buffer at the list tail
2049  *	@list: list to use
2050  *	@newsk: buffer to queue
2051  *
2052  *	Queue a buffer at the end of a list. This function takes no locks
2053  *	and you must therefore hold required locks before calling it.
2054  *
2055  *	A buffer cannot be placed on two lists at the same time.
2056  */
2057 static inline void __skb_queue_tail(struct sk_buff_head *list,
2058 				   struct sk_buff *newsk)
2059 {
2060 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2061 }
2062 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2063 
2064 /*
2065  * remove sk_buff from list. _Must_ be called atomically, and with
2066  * the list known..
2067  */
2068 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2069 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2070 {
2071 	struct sk_buff *next, *prev;
2072 
2073 	WRITE_ONCE(list->qlen, list->qlen - 1);
2074 	next	   = skb->next;
2075 	prev	   = skb->prev;
2076 	skb->next  = skb->prev = NULL;
2077 	WRITE_ONCE(next->prev, prev);
2078 	WRITE_ONCE(prev->next, next);
2079 }
2080 
2081 /**
2082  *	__skb_dequeue - remove from the head of the queue
2083  *	@list: list to dequeue from
2084  *
2085  *	Remove the head of the list. This function does not take any locks
2086  *	so must be used with appropriate locks held only. The head item is
2087  *	returned or %NULL if the list is empty.
2088  */
2089 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2090 {
2091 	struct sk_buff *skb = skb_peek(list);
2092 	if (skb)
2093 		__skb_unlink(skb, list);
2094 	return skb;
2095 }
2096 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2097 
2098 /**
2099  *	__skb_dequeue_tail - remove from the tail of the queue
2100  *	@list: list to dequeue from
2101  *
2102  *	Remove the tail of the list. This function does not take any locks
2103  *	so must be used with appropriate locks held only. The tail item is
2104  *	returned or %NULL if the list is empty.
2105  */
2106 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2107 {
2108 	struct sk_buff *skb = skb_peek_tail(list);
2109 	if (skb)
2110 		__skb_unlink(skb, list);
2111 	return skb;
2112 }
2113 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2114 
2115 
2116 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2117 {
2118 	return skb->data_len;
2119 }
2120 
2121 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2122 {
2123 	return skb->len - skb->data_len;
2124 }
2125 
2126 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2127 {
2128 	unsigned int i, len = 0;
2129 
2130 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2131 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2132 	return len;
2133 }
2134 
2135 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2136 {
2137 	return skb_headlen(skb) + __skb_pagelen(skb);
2138 }
2139 
2140 /**
2141  * __skb_fill_page_desc - initialise a paged fragment in an skb
2142  * @skb: buffer containing fragment to be initialised
2143  * @i: paged fragment index to initialise
2144  * @page: the page to use for this fragment
2145  * @off: the offset to the data with @page
2146  * @size: the length of the data
2147  *
2148  * Initialises the @i'th fragment of @skb to point to &size bytes at
2149  * offset @off within @page.
2150  *
2151  * Does not take any additional reference on the fragment.
2152  */
2153 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2154 					struct page *page, int off, int size)
2155 {
2156 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2157 
2158 	/*
2159 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2160 	 * that not all callers have unique ownership of the page but rely
2161 	 * on page_is_pfmemalloc doing the right thing(tm).
2162 	 */
2163 	frag->bv_page		  = page;
2164 	frag->bv_offset		  = off;
2165 	skb_frag_size_set(frag, size);
2166 
2167 	page = compound_head(page);
2168 	if (page_is_pfmemalloc(page))
2169 		skb->pfmemalloc	= true;
2170 }
2171 
2172 /**
2173  * skb_fill_page_desc - initialise a paged fragment in an skb
2174  * @skb: buffer containing fragment to be initialised
2175  * @i: paged fragment index to initialise
2176  * @page: the page to use for this fragment
2177  * @off: the offset to the data with @page
2178  * @size: the length of the data
2179  *
2180  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2181  * @skb to point to @size bytes at offset @off within @page. In
2182  * addition updates @skb such that @i is the last fragment.
2183  *
2184  * Does not take any additional reference on the fragment.
2185  */
2186 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2187 				      struct page *page, int off, int size)
2188 {
2189 	__skb_fill_page_desc(skb, i, page, off, size);
2190 	skb_shinfo(skb)->nr_frags = i + 1;
2191 }
2192 
2193 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2194 		     int size, unsigned int truesize);
2195 
2196 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2197 			  unsigned int truesize);
2198 
2199 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2200 
2201 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2202 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2203 {
2204 	return skb->head + skb->tail;
2205 }
2206 
2207 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2208 {
2209 	skb->tail = skb->data - skb->head;
2210 }
2211 
2212 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2213 {
2214 	skb_reset_tail_pointer(skb);
2215 	skb->tail += offset;
2216 }
2217 
2218 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2219 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2220 {
2221 	return skb->tail;
2222 }
2223 
2224 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2225 {
2226 	skb->tail = skb->data;
2227 }
2228 
2229 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2230 {
2231 	skb->tail = skb->data + offset;
2232 }
2233 
2234 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2235 
2236 /*
2237  *	Add data to an sk_buff
2238  */
2239 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2240 void *skb_put(struct sk_buff *skb, unsigned int len);
2241 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2242 {
2243 	void *tmp = skb_tail_pointer(skb);
2244 	SKB_LINEAR_ASSERT(skb);
2245 	skb->tail += len;
2246 	skb->len  += len;
2247 	return tmp;
2248 }
2249 
2250 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2251 {
2252 	void *tmp = __skb_put(skb, len);
2253 
2254 	memset(tmp, 0, len);
2255 	return tmp;
2256 }
2257 
2258 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2259 				   unsigned int len)
2260 {
2261 	void *tmp = __skb_put(skb, len);
2262 
2263 	memcpy(tmp, data, len);
2264 	return tmp;
2265 }
2266 
2267 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2268 {
2269 	*(u8 *)__skb_put(skb, 1) = val;
2270 }
2271 
2272 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2273 {
2274 	void *tmp = skb_put(skb, len);
2275 
2276 	memset(tmp, 0, len);
2277 
2278 	return tmp;
2279 }
2280 
2281 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2282 				 unsigned int len)
2283 {
2284 	void *tmp = skb_put(skb, len);
2285 
2286 	memcpy(tmp, data, len);
2287 
2288 	return tmp;
2289 }
2290 
2291 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2292 {
2293 	*(u8 *)skb_put(skb, 1) = val;
2294 }
2295 
2296 void *skb_push(struct sk_buff *skb, unsigned int len);
2297 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2298 {
2299 	skb->data -= len;
2300 	skb->len  += len;
2301 	return skb->data;
2302 }
2303 
2304 void *skb_pull(struct sk_buff *skb, unsigned int len);
2305 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2306 {
2307 	skb->len -= len;
2308 	BUG_ON(skb->len < skb->data_len);
2309 	return skb->data += len;
2310 }
2311 
2312 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2313 {
2314 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2315 }
2316 
2317 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2318 
2319 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2320 {
2321 	if (len > skb_headlen(skb) &&
2322 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2323 		return NULL;
2324 	skb->len -= len;
2325 	return skb->data += len;
2326 }
2327 
2328 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2329 {
2330 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2331 }
2332 
2333 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2334 {
2335 	if (likely(len <= skb_headlen(skb)))
2336 		return true;
2337 	if (unlikely(len > skb->len))
2338 		return false;
2339 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2340 }
2341 
2342 void skb_condense(struct sk_buff *skb);
2343 
2344 /**
2345  *	skb_headroom - bytes at buffer head
2346  *	@skb: buffer to check
2347  *
2348  *	Return the number of bytes of free space at the head of an &sk_buff.
2349  */
2350 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2351 {
2352 	return skb->data - skb->head;
2353 }
2354 
2355 /**
2356  *	skb_tailroom - bytes at buffer end
2357  *	@skb: buffer to check
2358  *
2359  *	Return the number of bytes of free space at the tail of an sk_buff
2360  */
2361 static inline int skb_tailroom(const struct sk_buff *skb)
2362 {
2363 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2364 }
2365 
2366 /**
2367  *	skb_availroom - bytes at buffer end
2368  *	@skb: buffer to check
2369  *
2370  *	Return the number of bytes of free space at the tail of an sk_buff
2371  *	allocated by sk_stream_alloc()
2372  */
2373 static inline int skb_availroom(const struct sk_buff *skb)
2374 {
2375 	if (skb_is_nonlinear(skb))
2376 		return 0;
2377 
2378 	return skb->end - skb->tail - skb->reserved_tailroom;
2379 }
2380 
2381 /**
2382  *	skb_reserve - adjust headroom
2383  *	@skb: buffer to alter
2384  *	@len: bytes to move
2385  *
2386  *	Increase the headroom of an empty &sk_buff by reducing the tail
2387  *	room. This is only allowed for an empty buffer.
2388  */
2389 static inline void skb_reserve(struct sk_buff *skb, int len)
2390 {
2391 	skb->data += len;
2392 	skb->tail += len;
2393 }
2394 
2395 /**
2396  *	skb_tailroom_reserve - adjust reserved_tailroom
2397  *	@skb: buffer to alter
2398  *	@mtu: maximum amount of headlen permitted
2399  *	@needed_tailroom: minimum amount of reserved_tailroom
2400  *
2401  *	Set reserved_tailroom so that headlen can be as large as possible but
2402  *	not larger than mtu and tailroom cannot be smaller than
2403  *	needed_tailroom.
2404  *	The required headroom should already have been reserved before using
2405  *	this function.
2406  */
2407 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2408 					unsigned int needed_tailroom)
2409 {
2410 	SKB_LINEAR_ASSERT(skb);
2411 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2412 		/* use at most mtu */
2413 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2414 	else
2415 		/* use up to all available space */
2416 		skb->reserved_tailroom = needed_tailroom;
2417 }
2418 
2419 #define ENCAP_TYPE_ETHER	0
2420 #define ENCAP_TYPE_IPPROTO	1
2421 
2422 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2423 					  __be16 protocol)
2424 {
2425 	skb->inner_protocol = protocol;
2426 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2427 }
2428 
2429 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2430 					 __u8 ipproto)
2431 {
2432 	skb->inner_ipproto = ipproto;
2433 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2434 }
2435 
2436 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2437 {
2438 	skb->inner_mac_header = skb->mac_header;
2439 	skb->inner_network_header = skb->network_header;
2440 	skb->inner_transport_header = skb->transport_header;
2441 }
2442 
2443 static inline void skb_reset_mac_len(struct sk_buff *skb)
2444 {
2445 	skb->mac_len = skb->network_header - skb->mac_header;
2446 }
2447 
2448 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2449 							*skb)
2450 {
2451 	return skb->head + skb->inner_transport_header;
2452 }
2453 
2454 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2455 {
2456 	return skb_inner_transport_header(skb) - skb->data;
2457 }
2458 
2459 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2460 {
2461 	skb->inner_transport_header = skb->data - skb->head;
2462 }
2463 
2464 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2465 						   const int offset)
2466 {
2467 	skb_reset_inner_transport_header(skb);
2468 	skb->inner_transport_header += offset;
2469 }
2470 
2471 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2472 {
2473 	return skb->head + skb->inner_network_header;
2474 }
2475 
2476 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2477 {
2478 	skb->inner_network_header = skb->data - skb->head;
2479 }
2480 
2481 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2482 						const int offset)
2483 {
2484 	skb_reset_inner_network_header(skb);
2485 	skb->inner_network_header += offset;
2486 }
2487 
2488 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2489 {
2490 	return skb->head + skb->inner_mac_header;
2491 }
2492 
2493 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2494 {
2495 	skb->inner_mac_header = skb->data - skb->head;
2496 }
2497 
2498 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2499 					    const int offset)
2500 {
2501 	skb_reset_inner_mac_header(skb);
2502 	skb->inner_mac_header += offset;
2503 }
2504 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2505 {
2506 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2507 }
2508 
2509 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2510 {
2511 	return skb->head + skb->transport_header;
2512 }
2513 
2514 static inline void skb_reset_transport_header(struct sk_buff *skb)
2515 {
2516 	skb->transport_header = skb->data - skb->head;
2517 }
2518 
2519 static inline void skb_set_transport_header(struct sk_buff *skb,
2520 					    const int offset)
2521 {
2522 	skb_reset_transport_header(skb);
2523 	skb->transport_header += offset;
2524 }
2525 
2526 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2527 {
2528 	return skb->head + skb->network_header;
2529 }
2530 
2531 static inline void skb_reset_network_header(struct sk_buff *skb)
2532 {
2533 	skb->network_header = skb->data - skb->head;
2534 }
2535 
2536 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2537 {
2538 	skb_reset_network_header(skb);
2539 	skb->network_header += offset;
2540 }
2541 
2542 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2543 {
2544 	return skb->head + skb->mac_header;
2545 }
2546 
2547 static inline int skb_mac_offset(const struct sk_buff *skb)
2548 {
2549 	return skb_mac_header(skb) - skb->data;
2550 }
2551 
2552 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2553 {
2554 	return skb->network_header - skb->mac_header;
2555 }
2556 
2557 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2558 {
2559 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2560 }
2561 
2562 static inline void skb_reset_mac_header(struct sk_buff *skb)
2563 {
2564 	skb->mac_header = skb->data - skb->head;
2565 }
2566 
2567 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2568 {
2569 	skb_reset_mac_header(skb);
2570 	skb->mac_header += offset;
2571 }
2572 
2573 static inline void skb_pop_mac_header(struct sk_buff *skb)
2574 {
2575 	skb->mac_header = skb->network_header;
2576 }
2577 
2578 static inline void skb_probe_transport_header(struct sk_buff *skb)
2579 {
2580 	struct flow_keys_basic keys;
2581 
2582 	if (skb_transport_header_was_set(skb))
2583 		return;
2584 
2585 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2586 					     NULL, 0, 0, 0, 0))
2587 		skb_set_transport_header(skb, keys.control.thoff);
2588 }
2589 
2590 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2591 {
2592 	if (skb_mac_header_was_set(skb)) {
2593 		const unsigned char *old_mac = skb_mac_header(skb);
2594 
2595 		skb_set_mac_header(skb, -skb->mac_len);
2596 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2597 	}
2598 }
2599 
2600 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2601 {
2602 	return skb->csum_start - skb_headroom(skb);
2603 }
2604 
2605 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2606 {
2607 	return skb->head + skb->csum_start;
2608 }
2609 
2610 static inline int skb_transport_offset(const struct sk_buff *skb)
2611 {
2612 	return skb_transport_header(skb) - skb->data;
2613 }
2614 
2615 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2616 {
2617 	return skb->transport_header - skb->network_header;
2618 }
2619 
2620 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2621 {
2622 	return skb->inner_transport_header - skb->inner_network_header;
2623 }
2624 
2625 static inline int skb_network_offset(const struct sk_buff *skb)
2626 {
2627 	return skb_network_header(skb) - skb->data;
2628 }
2629 
2630 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2631 {
2632 	return skb_inner_network_header(skb) - skb->data;
2633 }
2634 
2635 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2636 {
2637 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2638 }
2639 
2640 /*
2641  * CPUs often take a performance hit when accessing unaligned memory
2642  * locations. The actual performance hit varies, it can be small if the
2643  * hardware handles it or large if we have to take an exception and fix it
2644  * in software.
2645  *
2646  * Since an ethernet header is 14 bytes network drivers often end up with
2647  * the IP header at an unaligned offset. The IP header can be aligned by
2648  * shifting the start of the packet by 2 bytes. Drivers should do this
2649  * with:
2650  *
2651  * skb_reserve(skb, NET_IP_ALIGN);
2652  *
2653  * The downside to this alignment of the IP header is that the DMA is now
2654  * unaligned. On some architectures the cost of an unaligned DMA is high
2655  * and this cost outweighs the gains made by aligning the IP header.
2656  *
2657  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2658  * to be overridden.
2659  */
2660 #ifndef NET_IP_ALIGN
2661 #define NET_IP_ALIGN	2
2662 #endif
2663 
2664 /*
2665  * The networking layer reserves some headroom in skb data (via
2666  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2667  * the header has to grow. In the default case, if the header has to grow
2668  * 32 bytes or less we avoid the reallocation.
2669  *
2670  * Unfortunately this headroom changes the DMA alignment of the resulting
2671  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2672  * on some architectures. An architecture can override this value,
2673  * perhaps setting it to a cacheline in size (since that will maintain
2674  * cacheline alignment of the DMA). It must be a power of 2.
2675  *
2676  * Various parts of the networking layer expect at least 32 bytes of
2677  * headroom, you should not reduce this.
2678  *
2679  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2680  * to reduce average number of cache lines per packet.
2681  * get_rps_cpus() for example only access one 64 bytes aligned block :
2682  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2683  */
2684 #ifndef NET_SKB_PAD
2685 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2686 #endif
2687 
2688 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2689 
2690 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2691 {
2692 	if (WARN_ON(skb_is_nonlinear(skb)))
2693 		return;
2694 	skb->len = len;
2695 	skb_set_tail_pointer(skb, len);
2696 }
2697 
2698 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2699 {
2700 	__skb_set_length(skb, len);
2701 }
2702 
2703 void skb_trim(struct sk_buff *skb, unsigned int len);
2704 
2705 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2706 {
2707 	if (skb->data_len)
2708 		return ___pskb_trim(skb, len);
2709 	__skb_trim(skb, len);
2710 	return 0;
2711 }
2712 
2713 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2714 {
2715 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2716 }
2717 
2718 /**
2719  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2720  *	@skb: buffer to alter
2721  *	@len: new length
2722  *
2723  *	This is identical to pskb_trim except that the caller knows that
2724  *	the skb is not cloned so we should never get an error due to out-
2725  *	of-memory.
2726  */
2727 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2728 {
2729 	int err = pskb_trim(skb, len);
2730 	BUG_ON(err);
2731 }
2732 
2733 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2734 {
2735 	unsigned int diff = len - skb->len;
2736 
2737 	if (skb_tailroom(skb) < diff) {
2738 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2739 					   GFP_ATOMIC);
2740 		if (ret)
2741 			return ret;
2742 	}
2743 	__skb_set_length(skb, len);
2744 	return 0;
2745 }
2746 
2747 /**
2748  *	skb_orphan - orphan a buffer
2749  *	@skb: buffer to orphan
2750  *
2751  *	If a buffer currently has an owner then we call the owner's
2752  *	destructor function and make the @skb unowned. The buffer continues
2753  *	to exist but is no longer charged to its former owner.
2754  */
2755 static inline void skb_orphan(struct sk_buff *skb)
2756 {
2757 	if (skb->destructor) {
2758 		skb->destructor(skb);
2759 		skb->destructor = NULL;
2760 		skb->sk		= NULL;
2761 	} else {
2762 		BUG_ON(skb->sk);
2763 	}
2764 }
2765 
2766 /**
2767  *	skb_orphan_frags - orphan the frags contained in a buffer
2768  *	@skb: buffer to orphan frags from
2769  *	@gfp_mask: allocation mask for replacement pages
2770  *
2771  *	For each frag in the SKB which needs a destructor (i.e. has an
2772  *	owner) create a copy of that frag and release the original
2773  *	page by calling the destructor.
2774  */
2775 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2776 {
2777 	if (likely(!skb_zcopy(skb)))
2778 		return 0;
2779 	if (!skb_zcopy_is_nouarg(skb) &&
2780 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2781 		return 0;
2782 	return skb_copy_ubufs(skb, gfp_mask);
2783 }
2784 
2785 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2786 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2787 {
2788 	if (likely(!skb_zcopy(skb)))
2789 		return 0;
2790 	return skb_copy_ubufs(skb, gfp_mask);
2791 }
2792 
2793 /**
2794  *	__skb_queue_purge - empty a list
2795  *	@list: list to empty
2796  *
2797  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2798  *	the list and one reference dropped. This function does not take the
2799  *	list lock and the caller must hold the relevant locks to use it.
2800  */
2801 static inline void __skb_queue_purge(struct sk_buff_head *list)
2802 {
2803 	struct sk_buff *skb;
2804 	while ((skb = __skb_dequeue(list)) != NULL)
2805 		kfree_skb(skb);
2806 }
2807 void skb_queue_purge(struct sk_buff_head *list);
2808 
2809 unsigned int skb_rbtree_purge(struct rb_root *root);
2810 
2811 void *netdev_alloc_frag(unsigned int fragsz);
2812 
2813 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2814 				   gfp_t gfp_mask);
2815 
2816 /**
2817  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2818  *	@dev: network device to receive on
2819  *	@length: length to allocate
2820  *
2821  *	Allocate a new &sk_buff and assign it a usage count of one. The
2822  *	buffer has unspecified headroom built in. Users should allocate
2823  *	the headroom they think they need without accounting for the
2824  *	built in space. The built in space is used for optimisations.
2825  *
2826  *	%NULL is returned if there is no free memory. Although this function
2827  *	allocates memory it can be called from an interrupt.
2828  */
2829 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2830 					       unsigned int length)
2831 {
2832 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2833 }
2834 
2835 /* legacy helper around __netdev_alloc_skb() */
2836 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2837 					      gfp_t gfp_mask)
2838 {
2839 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2840 }
2841 
2842 /* legacy helper around netdev_alloc_skb() */
2843 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2844 {
2845 	return netdev_alloc_skb(NULL, length);
2846 }
2847 
2848 
2849 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2850 		unsigned int length, gfp_t gfp)
2851 {
2852 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2853 
2854 	if (NET_IP_ALIGN && skb)
2855 		skb_reserve(skb, NET_IP_ALIGN);
2856 	return skb;
2857 }
2858 
2859 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2860 		unsigned int length)
2861 {
2862 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2863 }
2864 
2865 static inline void skb_free_frag(void *addr)
2866 {
2867 	page_frag_free(addr);
2868 }
2869 
2870 void *napi_alloc_frag(unsigned int fragsz);
2871 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2872 				 unsigned int length, gfp_t gfp_mask);
2873 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2874 					     unsigned int length)
2875 {
2876 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2877 }
2878 void napi_consume_skb(struct sk_buff *skb, int budget);
2879 
2880 void __kfree_skb_flush(void);
2881 void __kfree_skb_defer(struct sk_buff *skb);
2882 
2883 /**
2884  * __dev_alloc_pages - allocate page for network Rx
2885  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2886  * @order: size of the allocation
2887  *
2888  * Allocate a new page.
2889  *
2890  * %NULL is returned if there is no free memory.
2891 */
2892 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2893 					     unsigned int order)
2894 {
2895 	/* This piece of code contains several assumptions.
2896 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2897 	 * 2.  The expectation is the user wants a compound page.
2898 	 * 3.  If requesting a order 0 page it will not be compound
2899 	 *     due to the check to see if order has a value in prep_new_page
2900 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2901 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2902 	 */
2903 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2904 
2905 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2906 }
2907 
2908 static inline struct page *dev_alloc_pages(unsigned int order)
2909 {
2910 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2911 }
2912 
2913 /**
2914  * __dev_alloc_page - allocate a page for network Rx
2915  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2916  *
2917  * Allocate a new page.
2918  *
2919  * %NULL is returned if there is no free memory.
2920  */
2921 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2922 {
2923 	return __dev_alloc_pages(gfp_mask, 0);
2924 }
2925 
2926 static inline struct page *dev_alloc_page(void)
2927 {
2928 	return dev_alloc_pages(0);
2929 }
2930 
2931 /**
2932  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2933  *	@page: The page that was allocated from skb_alloc_page
2934  *	@skb: The skb that may need pfmemalloc set
2935  */
2936 static inline void skb_propagate_pfmemalloc(struct page *page,
2937 					     struct sk_buff *skb)
2938 {
2939 	if (page_is_pfmemalloc(page))
2940 		skb->pfmemalloc = true;
2941 }
2942 
2943 /**
2944  * skb_frag_off() - Returns the offset of a skb fragment
2945  * @frag: the paged fragment
2946  */
2947 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2948 {
2949 	return frag->bv_offset;
2950 }
2951 
2952 /**
2953  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2954  * @frag: skb fragment
2955  * @delta: value to add
2956  */
2957 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2958 {
2959 	frag->bv_offset += delta;
2960 }
2961 
2962 /**
2963  * skb_frag_off_set() - Sets the offset of a skb fragment
2964  * @frag: skb fragment
2965  * @offset: offset of fragment
2966  */
2967 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2968 {
2969 	frag->bv_offset = offset;
2970 }
2971 
2972 /**
2973  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2974  * @fragto: skb fragment where offset is set
2975  * @fragfrom: skb fragment offset is copied from
2976  */
2977 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2978 				     const skb_frag_t *fragfrom)
2979 {
2980 	fragto->bv_offset = fragfrom->bv_offset;
2981 }
2982 
2983 /**
2984  * skb_frag_page - retrieve the page referred to by a paged fragment
2985  * @frag: the paged fragment
2986  *
2987  * Returns the &struct page associated with @frag.
2988  */
2989 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2990 {
2991 	return frag->bv_page;
2992 }
2993 
2994 /**
2995  * __skb_frag_ref - take an addition reference on a paged fragment.
2996  * @frag: the paged fragment
2997  *
2998  * Takes an additional reference on the paged fragment @frag.
2999  */
3000 static inline void __skb_frag_ref(skb_frag_t *frag)
3001 {
3002 	get_page(skb_frag_page(frag));
3003 }
3004 
3005 /**
3006  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3007  * @skb: the buffer
3008  * @f: the fragment offset.
3009  *
3010  * Takes an additional reference on the @f'th paged fragment of @skb.
3011  */
3012 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3013 {
3014 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3015 }
3016 
3017 /**
3018  * __skb_frag_unref - release a reference on a paged fragment.
3019  * @frag: the paged fragment
3020  *
3021  * Releases a reference on the paged fragment @frag.
3022  */
3023 static inline void __skb_frag_unref(skb_frag_t *frag)
3024 {
3025 	put_page(skb_frag_page(frag));
3026 }
3027 
3028 /**
3029  * skb_frag_unref - release a reference on a paged fragment of an skb.
3030  * @skb: the buffer
3031  * @f: the fragment offset
3032  *
3033  * Releases a reference on the @f'th paged fragment of @skb.
3034  */
3035 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3036 {
3037 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3038 }
3039 
3040 /**
3041  * skb_frag_address - gets the address of the data contained in a paged fragment
3042  * @frag: the paged fragment buffer
3043  *
3044  * Returns the address of the data within @frag. The page must already
3045  * be mapped.
3046  */
3047 static inline void *skb_frag_address(const skb_frag_t *frag)
3048 {
3049 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3050 }
3051 
3052 /**
3053  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3054  * @frag: the paged fragment buffer
3055  *
3056  * Returns the address of the data within @frag. Checks that the page
3057  * is mapped and returns %NULL otherwise.
3058  */
3059 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3060 {
3061 	void *ptr = page_address(skb_frag_page(frag));
3062 	if (unlikely(!ptr))
3063 		return NULL;
3064 
3065 	return ptr + skb_frag_off(frag);
3066 }
3067 
3068 /**
3069  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3070  * @fragto: skb fragment where page is set
3071  * @fragfrom: skb fragment page is copied from
3072  */
3073 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3074 				      const skb_frag_t *fragfrom)
3075 {
3076 	fragto->bv_page = fragfrom->bv_page;
3077 }
3078 
3079 /**
3080  * __skb_frag_set_page - sets the page contained in a paged fragment
3081  * @frag: the paged fragment
3082  * @page: the page to set
3083  *
3084  * Sets the fragment @frag to contain @page.
3085  */
3086 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3087 {
3088 	frag->bv_page = page;
3089 }
3090 
3091 /**
3092  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3093  * @skb: the buffer
3094  * @f: the fragment offset
3095  * @page: the page to set
3096  *
3097  * Sets the @f'th fragment of @skb to contain @page.
3098  */
3099 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3100 				     struct page *page)
3101 {
3102 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3103 }
3104 
3105 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3106 
3107 /**
3108  * skb_frag_dma_map - maps a paged fragment via the DMA API
3109  * @dev: the device to map the fragment to
3110  * @frag: the paged fragment to map
3111  * @offset: the offset within the fragment (starting at the
3112  *          fragment's own offset)
3113  * @size: the number of bytes to map
3114  * @dir: the direction of the mapping (``PCI_DMA_*``)
3115  *
3116  * Maps the page associated with @frag to @device.
3117  */
3118 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3119 					  const skb_frag_t *frag,
3120 					  size_t offset, size_t size,
3121 					  enum dma_data_direction dir)
3122 {
3123 	return dma_map_page(dev, skb_frag_page(frag),
3124 			    skb_frag_off(frag) + offset, size, dir);
3125 }
3126 
3127 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3128 					gfp_t gfp_mask)
3129 {
3130 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3131 }
3132 
3133 
3134 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3135 						  gfp_t gfp_mask)
3136 {
3137 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3138 }
3139 
3140 
3141 /**
3142  *	skb_clone_writable - is the header of a clone writable
3143  *	@skb: buffer to check
3144  *	@len: length up to which to write
3145  *
3146  *	Returns true if modifying the header part of the cloned buffer
3147  *	does not requires the data to be copied.
3148  */
3149 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3150 {
3151 	return !skb_header_cloned(skb) &&
3152 	       skb_headroom(skb) + len <= skb->hdr_len;
3153 }
3154 
3155 static inline int skb_try_make_writable(struct sk_buff *skb,
3156 					unsigned int write_len)
3157 {
3158 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3159 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3160 }
3161 
3162 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3163 			    int cloned)
3164 {
3165 	int delta = 0;
3166 
3167 	if (headroom > skb_headroom(skb))
3168 		delta = headroom - skb_headroom(skb);
3169 
3170 	if (delta || cloned)
3171 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3172 					GFP_ATOMIC);
3173 	return 0;
3174 }
3175 
3176 /**
3177  *	skb_cow - copy header of skb when it is required
3178  *	@skb: buffer to cow
3179  *	@headroom: needed headroom
3180  *
3181  *	If the skb passed lacks sufficient headroom or its data part
3182  *	is shared, data is reallocated. If reallocation fails, an error
3183  *	is returned and original skb is not changed.
3184  *
3185  *	The result is skb with writable area skb->head...skb->tail
3186  *	and at least @headroom of space at head.
3187  */
3188 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3189 {
3190 	return __skb_cow(skb, headroom, skb_cloned(skb));
3191 }
3192 
3193 /**
3194  *	skb_cow_head - skb_cow but only making the head writable
3195  *	@skb: buffer to cow
3196  *	@headroom: needed headroom
3197  *
3198  *	This function is identical to skb_cow except that we replace the
3199  *	skb_cloned check by skb_header_cloned.  It should be used when
3200  *	you only need to push on some header and do not need to modify
3201  *	the data.
3202  */
3203 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3204 {
3205 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3206 }
3207 
3208 /**
3209  *	skb_padto	- pad an skbuff up to a minimal size
3210  *	@skb: buffer to pad
3211  *	@len: minimal length
3212  *
3213  *	Pads up a buffer to ensure the trailing bytes exist and are
3214  *	blanked. If the buffer already contains sufficient data it
3215  *	is untouched. Otherwise it is extended. Returns zero on
3216  *	success. The skb is freed on error.
3217  */
3218 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3219 {
3220 	unsigned int size = skb->len;
3221 	if (likely(size >= len))
3222 		return 0;
3223 	return skb_pad(skb, len - size);
3224 }
3225 
3226 /**
3227  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3228  *	@skb: buffer to pad
3229  *	@len: minimal length
3230  *	@free_on_error: free buffer on error
3231  *
3232  *	Pads up a buffer to ensure the trailing bytes exist and are
3233  *	blanked. If the buffer already contains sufficient data it
3234  *	is untouched. Otherwise it is extended. Returns zero on
3235  *	success. The skb is freed on error if @free_on_error is true.
3236  */
3237 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3238 				  bool free_on_error)
3239 {
3240 	unsigned int size = skb->len;
3241 
3242 	if (unlikely(size < len)) {
3243 		len -= size;
3244 		if (__skb_pad(skb, len, free_on_error))
3245 			return -ENOMEM;
3246 		__skb_put(skb, len);
3247 	}
3248 	return 0;
3249 }
3250 
3251 /**
3252  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3253  *	@skb: buffer to pad
3254  *	@len: minimal length
3255  *
3256  *	Pads up a buffer to ensure the trailing bytes exist and are
3257  *	blanked. If the buffer already contains sufficient data it
3258  *	is untouched. Otherwise it is extended. Returns zero on
3259  *	success. The skb is freed on error.
3260  */
3261 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3262 {
3263 	return __skb_put_padto(skb, len, true);
3264 }
3265 
3266 static inline int skb_add_data(struct sk_buff *skb,
3267 			       struct iov_iter *from, int copy)
3268 {
3269 	const int off = skb->len;
3270 
3271 	if (skb->ip_summed == CHECKSUM_NONE) {
3272 		__wsum csum = 0;
3273 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3274 					         &csum, from)) {
3275 			skb->csum = csum_block_add(skb->csum, csum, off);
3276 			return 0;
3277 		}
3278 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3279 		return 0;
3280 
3281 	__skb_trim(skb, off);
3282 	return -EFAULT;
3283 }
3284 
3285 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3286 				    const struct page *page, int off)
3287 {
3288 	if (skb_zcopy(skb))
3289 		return false;
3290 	if (i) {
3291 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3292 
3293 		return page == skb_frag_page(frag) &&
3294 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3295 	}
3296 	return false;
3297 }
3298 
3299 static inline int __skb_linearize(struct sk_buff *skb)
3300 {
3301 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3302 }
3303 
3304 /**
3305  *	skb_linearize - convert paged skb to linear one
3306  *	@skb: buffer to linarize
3307  *
3308  *	If there is no free memory -ENOMEM is returned, otherwise zero
3309  *	is returned and the old skb data released.
3310  */
3311 static inline int skb_linearize(struct sk_buff *skb)
3312 {
3313 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3314 }
3315 
3316 /**
3317  * skb_has_shared_frag - can any frag be overwritten
3318  * @skb: buffer to test
3319  *
3320  * Return true if the skb has at least one frag that might be modified
3321  * by an external entity (as in vmsplice()/sendfile())
3322  */
3323 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3324 {
3325 	return skb_is_nonlinear(skb) &&
3326 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3327 }
3328 
3329 /**
3330  *	skb_linearize_cow - make sure skb is linear and writable
3331  *	@skb: buffer to process
3332  *
3333  *	If there is no free memory -ENOMEM is returned, otherwise zero
3334  *	is returned and the old skb data released.
3335  */
3336 static inline int skb_linearize_cow(struct sk_buff *skb)
3337 {
3338 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3339 	       __skb_linearize(skb) : 0;
3340 }
3341 
3342 static __always_inline void
3343 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3344 		     unsigned int off)
3345 {
3346 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3347 		skb->csum = csum_block_sub(skb->csum,
3348 					   csum_partial(start, len, 0), off);
3349 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3350 		 skb_checksum_start_offset(skb) < 0)
3351 		skb->ip_summed = CHECKSUM_NONE;
3352 }
3353 
3354 /**
3355  *	skb_postpull_rcsum - update checksum for received skb after pull
3356  *	@skb: buffer to update
3357  *	@start: start of data before pull
3358  *	@len: length of data pulled
3359  *
3360  *	After doing a pull on a received packet, you need to call this to
3361  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3362  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3363  */
3364 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3365 				      const void *start, unsigned int len)
3366 {
3367 	__skb_postpull_rcsum(skb, start, len, 0);
3368 }
3369 
3370 static __always_inline void
3371 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3372 		     unsigned int off)
3373 {
3374 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3375 		skb->csum = csum_block_add(skb->csum,
3376 					   csum_partial(start, len, 0), off);
3377 }
3378 
3379 /**
3380  *	skb_postpush_rcsum - update checksum for received skb after push
3381  *	@skb: buffer to update
3382  *	@start: start of data after push
3383  *	@len: length of data pushed
3384  *
3385  *	After doing a push on a received packet, you need to call this to
3386  *	update the CHECKSUM_COMPLETE checksum.
3387  */
3388 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3389 				      const void *start, unsigned int len)
3390 {
3391 	__skb_postpush_rcsum(skb, start, len, 0);
3392 }
3393 
3394 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3395 
3396 /**
3397  *	skb_push_rcsum - push skb and update receive checksum
3398  *	@skb: buffer to update
3399  *	@len: length of data pulled
3400  *
3401  *	This function performs an skb_push on the packet and updates
3402  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3403  *	receive path processing instead of skb_push unless you know
3404  *	that the checksum difference is zero (e.g., a valid IP header)
3405  *	or you are setting ip_summed to CHECKSUM_NONE.
3406  */
3407 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3408 {
3409 	skb_push(skb, len);
3410 	skb_postpush_rcsum(skb, skb->data, len);
3411 	return skb->data;
3412 }
3413 
3414 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3415 /**
3416  *	pskb_trim_rcsum - trim received skb and update checksum
3417  *	@skb: buffer to trim
3418  *	@len: new length
3419  *
3420  *	This is exactly the same as pskb_trim except that it ensures the
3421  *	checksum of received packets are still valid after the operation.
3422  *	It can change skb pointers.
3423  */
3424 
3425 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3426 {
3427 	if (likely(len >= skb->len))
3428 		return 0;
3429 	return pskb_trim_rcsum_slow(skb, len);
3430 }
3431 
3432 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3433 {
3434 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3435 		skb->ip_summed = CHECKSUM_NONE;
3436 	__skb_trim(skb, len);
3437 	return 0;
3438 }
3439 
3440 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3441 {
3442 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3443 		skb->ip_summed = CHECKSUM_NONE;
3444 	return __skb_grow(skb, len);
3445 }
3446 
3447 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3448 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3449 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3450 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3451 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3452 
3453 #define skb_queue_walk(queue, skb) \
3454 		for (skb = (queue)->next;					\
3455 		     skb != (struct sk_buff *)(queue);				\
3456 		     skb = skb->next)
3457 
3458 #define skb_queue_walk_safe(queue, skb, tmp)					\
3459 		for (skb = (queue)->next, tmp = skb->next;			\
3460 		     skb != (struct sk_buff *)(queue);				\
3461 		     skb = tmp, tmp = skb->next)
3462 
3463 #define skb_queue_walk_from(queue, skb)						\
3464 		for (; skb != (struct sk_buff *)(queue);			\
3465 		     skb = skb->next)
3466 
3467 #define skb_rbtree_walk(skb, root)						\
3468 		for (skb = skb_rb_first(root); skb != NULL;			\
3469 		     skb = skb_rb_next(skb))
3470 
3471 #define skb_rbtree_walk_from(skb)						\
3472 		for (; skb != NULL;						\
3473 		     skb = skb_rb_next(skb))
3474 
3475 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3476 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3477 		     skb = tmp)
3478 
3479 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3480 		for (tmp = skb->next;						\
3481 		     skb != (struct sk_buff *)(queue);				\
3482 		     skb = tmp, tmp = skb->next)
3483 
3484 #define skb_queue_reverse_walk(queue, skb) \
3485 		for (skb = (queue)->prev;					\
3486 		     skb != (struct sk_buff *)(queue);				\
3487 		     skb = skb->prev)
3488 
3489 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3490 		for (skb = (queue)->prev, tmp = skb->prev;			\
3491 		     skb != (struct sk_buff *)(queue);				\
3492 		     skb = tmp, tmp = skb->prev)
3493 
3494 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3495 		for (tmp = skb->prev;						\
3496 		     skb != (struct sk_buff *)(queue);				\
3497 		     skb = tmp, tmp = skb->prev)
3498 
3499 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3500 {
3501 	return skb_shinfo(skb)->frag_list != NULL;
3502 }
3503 
3504 static inline void skb_frag_list_init(struct sk_buff *skb)
3505 {
3506 	skb_shinfo(skb)->frag_list = NULL;
3507 }
3508 
3509 #define skb_walk_frags(skb, iter)	\
3510 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3511 
3512 
3513 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3514 				int *err, long *timeo_p,
3515 				const struct sk_buff *skb);
3516 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3517 					  struct sk_buff_head *queue,
3518 					  unsigned int flags,
3519 					  int *off, int *err,
3520 					  struct sk_buff **last);
3521 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3522 					struct sk_buff_head *queue,
3523 					unsigned int flags, int *off, int *err,
3524 					struct sk_buff **last);
3525 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3526 				    struct sk_buff_head *sk_queue,
3527 				    unsigned int flags, int *off, int *err);
3528 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3529 				  int *err);
3530 __poll_t datagram_poll(struct file *file, struct socket *sock,
3531 			   struct poll_table_struct *wait);
3532 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3533 			   struct iov_iter *to, int size);
3534 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3535 					struct msghdr *msg, int size)
3536 {
3537 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3538 }
3539 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3540 				   struct msghdr *msg);
3541 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3542 			   struct iov_iter *to, int len,
3543 			   struct ahash_request *hash);
3544 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3545 				 struct iov_iter *from, int len);
3546 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3547 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3548 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3549 static inline void skb_free_datagram_locked(struct sock *sk,
3550 					    struct sk_buff *skb)
3551 {
3552 	__skb_free_datagram_locked(sk, skb, 0);
3553 }
3554 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3555 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3556 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3557 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3558 			      int len, __wsum csum);
3559 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3560 		    struct pipe_inode_info *pipe, unsigned int len,
3561 		    unsigned int flags);
3562 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3563 			 int len);
3564 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3565 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3566 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3567 		 int len, int hlen);
3568 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3569 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3570 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3571 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3572 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3573 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3574 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3575 				 unsigned int offset);
3576 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3577 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3578 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3579 int skb_vlan_pop(struct sk_buff *skb);
3580 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3581 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3582 		  int mac_len, bool ethernet);
3583 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3584 		 bool ethernet);
3585 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3586 int skb_mpls_dec_ttl(struct sk_buff *skb);
3587 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3588 			     gfp_t gfp);
3589 
3590 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3591 {
3592 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3593 }
3594 
3595 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3596 {
3597 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3598 }
3599 
3600 struct skb_checksum_ops {
3601 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3602 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3603 };
3604 
3605 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3606 
3607 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3608 		      __wsum csum, const struct skb_checksum_ops *ops);
3609 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3610 		    __wsum csum);
3611 
3612 static inline void * __must_check
3613 __skb_header_pointer(const struct sk_buff *skb, int offset,
3614 		     int len, void *data, int hlen, void *buffer)
3615 {
3616 	if (hlen - offset >= len)
3617 		return data + offset;
3618 
3619 	if (!skb ||
3620 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3621 		return NULL;
3622 
3623 	return buffer;
3624 }
3625 
3626 static inline void * __must_check
3627 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3628 {
3629 	return __skb_header_pointer(skb, offset, len, skb->data,
3630 				    skb_headlen(skb), buffer);
3631 }
3632 
3633 /**
3634  *	skb_needs_linearize - check if we need to linearize a given skb
3635  *			      depending on the given device features.
3636  *	@skb: socket buffer to check
3637  *	@features: net device features
3638  *
3639  *	Returns true if either:
3640  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3641  *	2. skb is fragmented and the device does not support SG.
3642  */
3643 static inline bool skb_needs_linearize(struct sk_buff *skb,
3644 				       netdev_features_t features)
3645 {
3646 	return skb_is_nonlinear(skb) &&
3647 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3648 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3649 }
3650 
3651 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3652 					     void *to,
3653 					     const unsigned int len)
3654 {
3655 	memcpy(to, skb->data, len);
3656 }
3657 
3658 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3659 						    const int offset, void *to,
3660 						    const unsigned int len)
3661 {
3662 	memcpy(to, skb->data + offset, len);
3663 }
3664 
3665 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3666 					   const void *from,
3667 					   const unsigned int len)
3668 {
3669 	memcpy(skb->data, from, len);
3670 }
3671 
3672 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3673 						  const int offset,
3674 						  const void *from,
3675 						  const unsigned int len)
3676 {
3677 	memcpy(skb->data + offset, from, len);
3678 }
3679 
3680 void skb_init(void);
3681 
3682 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3683 {
3684 	return skb->tstamp;
3685 }
3686 
3687 /**
3688  *	skb_get_timestamp - get timestamp from a skb
3689  *	@skb: skb to get stamp from
3690  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3691  *
3692  *	Timestamps are stored in the skb as offsets to a base timestamp.
3693  *	This function converts the offset back to a struct timeval and stores
3694  *	it in stamp.
3695  */
3696 static inline void skb_get_timestamp(const struct sk_buff *skb,
3697 				     struct __kernel_old_timeval *stamp)
3698 {
3699 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3700 }
3701 
3702 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3703 					 struct __kernel_sock_timeval *stamp)
3704 {
3705 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3706 
3707 	stamp->tv_sec = ts.tv_sec;
3708 	stamp->tv_usec = ts.tv_nsec / 1000;
3709 }
3710 
3711 static inline void skb_get_timestampns(const struct sk_buff *skb,
3712 				       struct __kernel_old_timespec *stamp)
3713 {
3714 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3715 
3716 	stamp->tv_sec = ts.tv_sec;
3717 	stamp->tv_nsec = ts.tv_nsec;
3718 }
3719 
3720 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3721 					   struct __kernel_timespec *stamp)
3722 {
3723 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3724 
3725 	stamp->tv_sec = ts.tv_sec;
3726 	stamp->tv_nsec = ts.tv_nsec;
3727 }
3728 
3729 static inline void __net_timestamp(struct sk_buff *skb)
3730 {
3731 	skb->tstamp = ktime_get_real();
3732 }
3733 
3734 static inline ktime_t net_timedelta(ktime_t t)
3735 {
3736 	return ktime_sub(ktime_get_real(), t);
3737 }
3738 
3739 static inline ktime_t net_invalid_timestamp(void)
3740 {
3741 	return 0;
3742 }
3743 
3744 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3745 {
3746 	return skb_shinfo(skb)->meta_len;
3747 }
3748 
3749 static inline void *skb_metadata_end(const struct sk_buff *skb)
3750 {
3751 	return skb_mac_header(skb);
3752 }
3753 
3754 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3755 					  const struct sk_buff *skb_b,
3756 					  u8 meta_len)
3757 {
3758 	const void *a = skb_metadata_end(skb_a);
3759 	const void *b = skb_metadata_end(skb_b);
3760 	/* Using more efficient varaiant than plain call to memcmp(). */
3761 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3762 	u64 diffs = 0;
3763 
3764 	switch (meta_len) {
3765 #define __it(x, op) (x -= sizeof(u##op))
3766 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3767 	case 32: diffs |= __it_diff(a, b, 64);
3768 		 /* fall through */
3769 	case 24: diffs |= __it_diff(a, b, 64);
3770 		 /* fall through */
3771 	case 16: diffs |= __it_diff(a, b, 64);
3772 		 /* fall through */
3773 	case  8: diffs |= __it_diff(a, b, 64);
3774 		break;
3775 	case 28: diffs |= __it_diff(a, b, 64);
3776 		 /* fall through */
3777 	case 20: diffs |= __it_diff(a, b, 64);
3778 		 /* fall through */
3779 	case 12: diffs |= __it_diff(a, b, 64);
3780 		 /* fall through */
3781 	case  4: diffs |= __it_diff(a, b, 32);
3782 		break;
3783 	}
3784 	return diffs;
3785 #else
3786 	return memcmp(a - meta_len, b - meta_len, meta_len);
3787 #endif
3788 }
3789 
3790 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3791 					const struct sk_buff *skb_b)
3792 {
3793 	u8 len_a = skb_metadata_len(skb_a);
3794 	u8 len_b = skb_metadata_len(skb_b);
3795 
3796 	if (!(len_a | len_b))
3797 		return false;
3798 
3799 	return len_a != len_b ?
3800 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3801 }
3802 
3803 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3804 {
3805 	skb_shinfo(skb)->meta_len = meta_len;
3806 }
3807 
3808 static inline void skb_metadata_clear(struct sk_buff *skb)
3809 {
3810 	skb_metadata_set(skb, 0);
3811 }
3812 
3813 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3814 
3815 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3816 
3817 void skb_clone_tx_timestamp(struct sk_buff *skb);
3818 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3819 
3820 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3821 
3822 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3823 {
3824 }
3825 
3826 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3827 {
3828 	return false;
3829 }
3830 
3831 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3832 
3833 /**
3834  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3835  *
3836  * PHY drivers may accept clones of transmitted packets for
3837  * timestamping via their phy_driver.txtstamp method. These drivers
3838  * must call this function to return the skb back to the stack with a
3839  * timestamp.
3840  *
3841  * @skb: clone of the the original outgoing packet
3842  * @hwtstamps: hardware time stamps
3843  *
3844  */
3845 void skb_complete_tx_timestamp(struct sk_buff *skb,
3846 			       struct skb_shared_hwtstamps *hwtstamps);
3847 
3848 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3849 		     struct skb_shared_hwtstamps *hwtstamps,
3850 		     struct sock *sk, int tstype);
3851 
3852 /**
3853  * skb_tstamp_tx - queue clone of skb with send time stamps
3854  * @orig_skb:	the original outgoing packet
3855  * @hwtstamps:	hardware time stamps, may be NULL if not available
3856  *
3857  * If the skb has a socket associated, then this function clones the
3858  * skb (thus sharing the actual data and optional structures), stores
3859  * the optional hardware time stamping information (if non NULL) or
3860  * generates a software time stamp (otherwise), then queues the clone
3861  * to the error queue of the socket.  Errors are silently ignored.
3862  */
3863 void skb_tstamp_tx(struct sk_buff *orig_skb,
3864 		   struct skb_shared_hwtstamps *hwtstamps);
3865 
3866 /**
3867  * skb_tx_timestamp() - Driver hook for transmit timestamping
3868  *
3869  * Ethernet MAC Drivers should call this function in their hard_xmit()
3870  * function immediately before giving the sk_buff to the MAC hardware.
3871  *
3872  * Specifically, one should make absolutely sure that this function is
3873  * called before TX completion of this packet can trigger.  Otherwise
3874  * the packet could potentially already be freed.
3875  *
3876  * @skb: A socket buffer.
3877  */
3878 static inline void skb_tx_timestamp(struct sk_buff *skb)
3879 {
3880 	skb_clone_tx_timestamp(skb);
3881 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3882 		skb_tstamp_tx(skb, NULL);
3883 }
3884 
3885 /**
3886  * skb_complete_wifi_ack - deliver skb with wifi status
3887  *
3888  * @skb: the original outgoing packet
3889  * @acked: ack status
3890  *
3891  */
3892 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3893 
3894 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3895 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3896 
3897 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3898 {
3899 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3900 		skb->csum_valid ||
3901 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3902 		 skb_checksum_start_offset(skb) >= 0));
3903 }
3904 
3905 /**
3906  *	skb_checksum_complete - Calculate checksum of an entire packet
3907  *	@skb: packet to process
3908  *
3909  *	This function calculates the checksum over the entire packet plus
3910  *	the value of skb->csum.  The latter can be used to supply the
3911  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3912  *	checksum.
3913  *
3914  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3915  *	this function can be used to verify that checksum on received
3916  *	packets.  In that case the function should return zero if the
3917  *	checksum is correct.  In particular, this function will return zero
3918  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3919  *	hardware has already verified the correctness of the checksum.
3920  */
3921 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3922 {
3923 	return skb_csum_unnecessary(skb) ?
3924 	       0 : __skb_checksum_complete(skb);
3925 }
3926 
3927 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3928 {
3929 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3930 		if (skb->csum_level == 0)
3931 			skb->ip_summed = CHECKSUM_NONE;
3932 		else
3933 			skb->csum_level--;
3934 	}
3935 }
3936 
3937 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3938 {
3939 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3940 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3941 			skb->csum_level++;
3942 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3943 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3944 		skb->csum_level = 0;
3945 	}
3946 }
3947 
3948 /* Check if we need to perform checksum complete validation.
3949  *
3950  * Returns true if checksum complete is needed, false otherwise
3951  * (either checksum is unnecessary or zero checksum is allowed).
3952  */
3953 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3954 						  bool zero_okay,
3955 						  __sum16 check)
3956 {
3957 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3958 		skb->csum_valid = 1;
3959 		__skb_decr_checksum_unnecessary(skb);
3960 		return false;
3961 	}
3962 
3963 	return true;
3964 }
3965 
3966 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3967  * in checksum_init.
3968  */
3969 #define CHECKSUM_BREAK 76
3970 
3971 /* Unset checksum-complete
3972  *
3973  * Unset checksum complete can be done when packet is being modified
3974  * (uncompressed for instance) and checksum-complete value is
3975  * invalidated.
3976  */
3977 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3978 {
3979 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3980 		skb->ip_summed = CHECKSUM_NONE;
3981 }
3982 
3983 /* Validate (init) checksum based on checksum complete.
3984  *
3985  * Return values:
3986  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3987  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3988  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3989  *   non-zero: value of invalid checksum
3990  *
3991  */
3992 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3993 						       bool complete,
3994 						       __wsum psum)
3995 {
3996 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3997 		if (!csum_fold(csum_add(psum, skb->csum))) {
3998 			skb->csum_valid = 1;
3999 			return 0;
4000 		}
4001 	}
4002 
4003 	skb->csum = psum;
4004 
4005 	if (complete || skb->len <= CHECKSUM_BREAK) {
4006 		__sum16 csum;
4007 
4008 		csum = __skb_checksum_complete(skb);
4009 		skb->csum_valid = !csum;
4010 		return csum;
4011 	}
4012 
4013 	return 0;
4014 }
4015 
4016 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4017 {
4018 	return 0;
4019 }
4020 
4021 /* Perform checksum validate (init). Note that this is a macro since we only
4022  * want to calculate the pseudo header which is an input function if necessary.
4023  * First we try to validate without any computation (checksum unnecessary) and
4024  * then calculate based on checksum complete calling the function to compute
4025  * pseudo header.
4026  *
4027  * Return values:
4028  *   0: checksum is validated or try to in skb_checksum_complete
4029  *   non-zero: value of invalid checksum
4030  */
4031 #define __skb_checksum_validate(skb, proto, complete,			\
4032 				zero_okay, check, compute_pseudo)	\
4033 ({									\
4034 	__sum16 __ret = 0;						\
4035 	skb->csum_valid = 0;						\
4036 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4037 		__ret = __skb_checksum_validate_complete(skb,		\
4038 				complete, compute_pseudo(skb, proto));	\
4039 	__ret;								\
4040 })
4041 
4042 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4043 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4044 
4045 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4046 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4047 
4048 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4049 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4050 
4051 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4052 					 compute_pseudo)		\
4053 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4054 
4055 #define skb_checksum_simple_validate(skb)				\
4056 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4057 
4058 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4059 {
4060 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4061 }
4062 
4063 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4064 {
4065 	skb->csum = ~pseudo;
4066 	skb->ip_summed = CHECKSUM_COMPLETE;
4067 }
4068 
4069 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4070 do {									\
4071 	if (__skb_checksum_convert_check(skb))				\
4072 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4073 } while (0)
4074 
4075 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4076 					      u16 start, u16 offset)
4077 {
4078 	skb->ip_summed = CHECKSUM_PARTIAL;
4079 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4080 	skb->csum_offset = offset - start;
4081 }
4082 
4083 /* Update skbuf and packet to reflect the remote checksum offload operation.
4084  * When called, ptr indicates the starting point for skb->csum when
4085  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4086  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4087  */
4088 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4089 				       int start, int offset, bool nopartial)
4090 {
4091 	__wsum delta;
4092 
4093 	if (!nopartial) {
4094 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4095 		return;
4096 	}
4097 
4098 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4099 		__skb_checksum_complete(skb);
4100 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4101 	}
4102 
4103 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4104 
4105 	/* Adjust skb->csum since we changed the packet */
4106 	skb->csum = csum_add(skb->csum, delta);
4107 }
4108 
4109 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4110 {
4111 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4112 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4113 #else
4114 	return NULL;
4115 #endif
4116 }
4117 
4118 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4119 {
4120 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4121 	return skb->_nfct;
4122 #else
4123 	return 0UL;
4124 #endif
4125 }
4126 
4127 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4128 {
4129 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4130 	skb->_nfct = nfct;
4131 #endif
4132 }
4133 
4134 #ifdef CONFIG_SKB_EXTENSIONS
4135 enum skb_ext_id {
4136 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4137 	SKB_EXT_BRIDGE_NF,
4138 #endif
4139 #ifdef CONFIG_XFRM
4140 	SKB_EXT_SEC_PATH,
4141 #endif
4142 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4143 	TC_SKB_EXT,
4144 #endif
4145 #if IS_ENABLED(CONFIG_MPTCP)
4146 	SKB_EXT_MPTCP,
4147 #endif
4148 	SKB_EXT_NUM, /* must be last */
4149 };
4150 
4151 /**
4152  *	struct skb_ext - sk_buff extensions
4153  *	@refcnt: 1 on allocation, deallocated on 0
4154  *	@offset: offset to add to @data to obtain extension address
4155  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4156  *	@data: start of extension data, variable sized
4157  *
4158  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4159  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4160  */
4161 struct skb_ext {
4162 	refcount_t refcnt;
4163 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4164 	u8 chunks;		/* same */
4165 	char data[] __aligned(8);
4166 };
4167 
4168 struct skb_ext *__skb_ext_alloc(void);
4169 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4170 		    struct skb_ext *ext);
4171 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4172 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4173 void __skb_ext_put(struct skb_ext *ext);
4174 
4175 static inline void skb_ext_put(struct sk_buff *skb)
4176 {
4177 	if (skb->active_extensions)
4178 		__skb_ext_put(skb->extensions);
4179 }
4180 
4181 static inline void __skb_ext_copy(struct sk_buff *dst,
4182 				  const struct sk_buff *src)
4183 {
4184 	dst->active_extensions = src->active_extensions;
4185 
4186 	if (src->active_extensions) {
4187 		struct skb_ext *ext = src->extensions;
4188 
4189 		refcount_inc(&ext->refcnt);
4190 		dst->extensions = ext;
4191 	}
4192 }
4193 
4194 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4195 {
4196 	skb_ext_put(dst);
4197 	__skb_ext_copy(dst, src);
4198 }
4199 
4200 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4201 {
4202 	return !!ext->offset[i];
4203 }
4204 
4205 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4206 {
4207 	return skb->active_extensions & (1 << id);
4208 }
4209 
4210 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4211 {
4212 	if (skb_ext_exist(skb, id))
4213 		__skb_ext_del(skb, id);
4214 }
4215 
4216 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4217 {
4218 	if (skb_ext_exist(skb, id)) {
4219 		struct skb_ext *ext = skb->extensions;
4220 
4221 		return (void *)ext + (ext->offset[id] << 3);
4222 	}
4223 
4224 	return NULL;
4225 }
4226 
4227 static inline void skb_ext_reset(struct sk_buff *skb)
4228 {
4229 	if (unlikely(skb->active_extensions)) {
4230 		__skb_ext_put(skb->extensions);
4231 		skb->active_extensions = 0;
4232 	}
4233 }
4234 
4235 static inline bool skb_has_extensions(struct sk_buff *skb)
4236 {
4237 	return unlikely(skb->active_extensions);
4238 }
4239 #else
4240 static inline void skb_ext_put(struct sk_buff *skb) {}
4241 static inline void skb_ext_reset(struct sk_buff *skb) {}
4242 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4243 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4244 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4245 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4246 #endif /* CONFIG_SKB_EXTENSIONS */
4247 
4248 static inline void nf_reset_ct(struct sk_buff *skb)
4249 {
4250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4251 	nf_conntrack_put(skb_nfct(skb));
4252 	skb->_nfct = 0;
4253 #endif
4254 }
4255 
4256 static inline void nf_reset_trace(struct sk_buff *skb)
4257 {
4258 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4259 	skb->nf_trace = 0;
4260 #endif
4261 }
4262 
4263 static inline void ipvs_reset(struct sk_buff *skb)
4264 {
4265 #if IS_ENABLED(CONFIG_IP_VS)
4266 	skb->ipvs_property = 0;
4267 #endif
4268 }
4269 
4270 /* Note: This doesn't put any conntrack info in dst. */
4271 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4272 			     bool copy)
4273 {
4274 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4275 	dst->_nfct = src->_nfct;
4276 	nf_conntrack_get(skb_nfct(src));
4277 #endif
4278 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4279 	if (copy)
4280 		dst->nf_trace = src->nf_trace;
4281 #endif
4282 }
4283 
4284 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4285 {
4286 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4287 	nf_conntrack_put(skb_nfct(dst));
4288 #endif
4289 	__nf_copy(dst, src, true);
4290 }
4291 
4292 #ifdef CONFIG_NETWORK_SECMARK
4293 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4294 {
4295 	to->secmark = from->secmark;
4296 }
4297 
4298 static inline void skb_init_secmark(struct sk_buff *skb)
4299 {
4300 	skb->secmark = 0;
4301 }
4302 #else
4303 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4304 { }
4305 
4306 static inline void skb_init_secmark(struct sk_buff *skb)
4307 { }
4308 #endif
4309 
4310 static inline int secpath_exists(const struct sk_buff *skb)
4311 {
4312 #ifdef CONFIG_XFRM
4313 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4314 #else
4315 	return 0;
4316 #endif
4317 }
4318 
4319 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4320 {
4321 	return !skb->destructor &&
4322 		!secpath_exists(skb) &&
4323 		!skb_nfct(skb) &&
4324 		!skb->_skb_refdst &&
4325 		!skb_has_frag_list(skb);
4326 }
4327 
4328 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4329 {
4330 	skb->queue_mapping = queue_mapping;
4331 }
4332 
4333 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4334 {
4335 	return skb->queue_mapping;
4336 }
4337 
4338 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4339 {
4340 	to->queue_mapping = from->queue_mapping;
4341 }
4342 
4343 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4344 {
4345 	skb->queue_mapping = rx_queue + 1;
4346 }
4347 
4348 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4349 {
4350 	return skb->queue_mapping - 1;
4351 }
4352 
4353 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4354 {
4355 	return skb->queue_mapping != 0;
4356 }
4357 
4358 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4359 {
4360 	skb->dst_pending_confirm = val;
4361 }
4362 
4363 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4364 {
4365 	return skb->dst_pending_confirm != 0;
4366 }
4367 
4368 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4369 {
4370 #ifdef CONFIG_XFRM
4371 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4372 #else
4373 	return NULL;
4374 #endif
4375 }
4376 
4377 /* Keeps track of mac header offset relative to skb->head.
4378  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4379  * For non-tunnel skb it points to skb_mac_header() and for
4380  * tunnel skb it points to outer mac header.
4381  * Keeps track of level of encapsulation of network headers.
4382  */
4383 struct skb_gso_cb {
4384 	union {
4385 		int	mac_offset;
4386 		int	data_offset;
4387 	};
4388 	int	encap_level;
4389 	__wsum	csum;
4390 	__u16	csum_start;
4391 };
4392 #define SKB_GSO_CB_OFFSET	32
4393 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4394 
4395 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4396 {
4397 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4398 		SKB_GSO_CB(inner_skb)->mac_offset;
4399 }
4400 
4401 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4402 {
4403 	int new_headroom, headroom;
4404 	int ret;
4405 
4406 	headroom = skb_headroom(skb);
4407 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4408 	if (ret)
4409 		return ret;
4410 
4411 	new_headroom = skb_headroom(skb);
4412 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4413 	return 0;
4414 }
4415 
4416 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4417 {
4418 	/* Do not update partial checksums if remote checksum is enabled. */
4419 	if (skb->remcsum_offload)
4420 		return;
4421 
4422 	SKB_GSO_CB(skb)->csum = res;
4423 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4424 }
4425 
4426 /* Compute the checksum for a gso segment. First compute the checksum value
4427  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4428  * then add in skb->csum (checksum from csum_start to end of packet).
4429  * skb->csum and csum_start are then updated to reflect the checksum of the
4430  * resultant packet starting from the transport header-- the resultant checksum
4431  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4432  * header.
4433  */
4434 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4435 {
4436 	unsigned char *csum_start = skb_transport_header(skb);
4437 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4438 	__wsum partial = SKB_GSO_CB(skb)->csum;
4439 
4440 	SKB_GSO_CB(skb)->csum = res;
4441 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4442 
4443 	return csum_fold(csum_partial(csum_start, plen, partial));
4444 }
4445 
4446 static inline bool skb_is_gso(const struct sk_buff *skb)
4447 {
4448 	return skb_shinfo(skb)->gso_size;
4449 }
4450 
4451 /* Note: Should be called only if skb_is_gso(skb) is true */
4452 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4453 {
4454 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4455 }
4456 
4457 /* Note: Should be called only if skb_is_gso(skb) is true */
4458 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4459 {
4460 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4461 }
4462 
4463 /* Note: Should be called only if skb_is_gso(skb) is true */
4464 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4465 {
4466 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4467 }
4468 
4469 static inline void skb_gso_reset(struct sk_buff *skb)
4470 {
4471 	skb_shinfo(skb)->gso_size = 0;
4472 	skb_shinfo(skb)->gso_segs = 0;
4473 	skb_shinfo(skb)->gso_type = 0;
4474 }
4475 
4476 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4477 					 u16 increment)
4478 {
4479 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4480 		return;
4481 	shinfo->gso_size += increment;
4482 }
4483 
4484 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4485 					 u16 decrement)
4486 {
4487 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4488 		return;
4489 	shinfo->gso_size -= decrement;
4490 }
4491 
4492 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4493 
4494 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4495 {
4496 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4497 	 * wanted then gso_type will be set. */
4498 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4499 
4500 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4501 	    unlikely(shinfo->gso_type == 0)) {
4502 		__skb_warn_lro_forwarding(skb);
4503 		return true;
4504 	}
4505 	return false;
4506 }
4507 
4508 static inline void skb_forward_csum(struct sk_buff *skb)
4509 {
4510 	/* Unfortunately we don't support this one.  Any brave souls? */
4511 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4512 		skb->ip_summed = CHECKSUM_NONE;
4513 }
4514 
4515 /**
4516  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4517  * @skb: skb to check
4518  *
4519  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4520  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4521  * use this helper, to document places where we make this assertion.
4522  */
4523 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4524 {
4525 #ifdef DEBUG
4526 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4527 #endif
4528 }
4529 
4530 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4531 
4532 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4533 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4534 				     unsigned int transport_len,
4535 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4536 
4537 /**
4538  * skb_head_is_locked - Determine if the skb->head is locked down
4539  * @skb: skb to check
4540  *
4541  * The head on skbs build around a head frag can be removed if they are
4542  * not cloned.  This function returns true if the skb head is locked down
4543  * due to either being allocated via kmalloc, or by being a clone with
4544  * multiple references to the head.
4545  */
4546 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4547 {
4548 	return !skb->head_frag || skb_cloned(skb);
4549 }
4550 
4551 /* Local Checksum Offload.
4552  * Compute outer checksum based on the assumption that the
4553  * inner checksum will be offloaded later.
4554  * See Documentation/networking/checksum-offloads.rst for
4555  * explanation of how this works.
4556  * Fill in outer checksum adjustment (e.g. with sum of outer
4557  * pseudo-header) before calling.
4558  * Also ensure that inner checksum is in linear data area.
4559  */
4560 static inline __wsum lco_csum(struct sk_buff *skb)
4561 {
4562 	unsigned char *csum_start = skb_checksum_start(skb);
4563 	unsigned char *l4_hdr = skb_transport_header(skb);
4564 	__wsum partial;
4565 
4566 	/* Start with complement of inner checksum adjustment */
4567 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4568 						    skb->csum_offset));
4569 
4570 	/* Add in checksum of our headers (incl. outer checksum
4571 	 * adjustment filled in by caller) and return result.
4572 	 */
4573 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4574 }
4575 
4576 static inline bool skb_is_redirected(const struct sk_buff *skb)
4577 {
4578 #ifdef CONFIG_NET_REDIRECT
4579 	return skb->redirected;
4580 #else
4581 	return false;
4582 #endif
4583 }
4584 
4585 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4586 {
4587 #ifdef CONFIG_NET_REDIRECT
4588 	skb->redirected = 1;
4589 	skb->from_ingress = from_ingress;
4590 	if (skb->from_ingress)
4591 		skb->tstamp = 0;
4592 #endif
4593 }
4594 
4595 static inline void skb_reset_redirect(struct sk_buff *skb)
4596 {
4597 #ifdef CONFIG_NET_REDIRECT
4598 	skb->redirected = 0;
4599 #endif
4600 }
4601 
4602 #endif	/* __KERNEL__ */
4603 #endif	/* _LINUX_SKBUFF_H */
4604