1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 struct bpf_prog; 247 union bpf_attr; 248 249 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 250 struct nf_conntrack { 251 atomic_t use; 252 }; 253 #endif 254 255 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 256 struct nf_bridge_info { 257 refcount_t use; 258 enum { 259 BRNF_PROTO_UNCHANGED, 260 BRNF_PROTO_8021Q, 261 BRNF_PROTO_PPPOE 262 } orig_proto:8; 263 u8 pkt_otherhost:1; 264 u8 in_prerouting:1; 265 u8 bridged_dnat:1; 266 __u16 frag_max_size; 267 struct net_device *physindev; 268 269 /* always valid & non-NULL from FORWARD on, for physdev match */ 270 struct net_device *physoutdev; 271 union { 272 /* prerouting: detect dnat in orig/reply direction */ 273 __be32 ipv4_daddr; 274 struct in6_addr ipv6_daddr; 275 276 /* after prerouting + nat detected: store original source 277 * mac since neigh resolution overwrites it, only used while 278 * skb is out in neigh layer. 279 */ 280 char neigh_header[8]; 281 }; 282 }; 283 #endif 284 285 struct sk_buff_head { 286 /* These two members must be first. */ 287 struct sk_buff *next; 288 struct sk_buff *prev; 289 290 __u32 qlen; 291 spinlock_t lock; 292 }; 293 294 struct sk_buff; 295 296 /* To allow 64K frame to be packed as single skb without frag_list we 297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 298 * buffers which do not start on a page boundary. 299 * 300 * Since GRO uses frags we allocate at least 16 regardless of page 301 * size. 302 */ 303 #if (65536/PAGE_SIZE + 1) < 16 304 #define MAX_SKB_FRAGS 16UL 305 #else 306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 307 #endif 308 extern int sysctl_max_skb_frags; 309 310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 311 * segment using its current segmentation instead. 312 */ 313 #define GSO_BY_FRAGS 0xFFFF 314 315 typedef struct skb_frag_struct skb_frag_t; 316 317 struct skb_frag_struct { 318 struct { 319 struct page *p; 320 } page; 321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 322 __u32 page_offset; 323 __u32 size; 324 #else 325 __u16 page_offset; 326 __u16 size; 327 #endif 328 }; 329 330 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 331 { 332 return frag->size; 333 } 334 335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 336 { 337 frag->size = size; 338 } 339 340 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 341 { 342 frag->size += delta; 343 } 344 345 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 346 { 347 frag->size -= delta; 348 } 349 350 static inline bool skb_frag_must_loop(struct page *p) 351 { 352 #if defined(CONFIG_HIGHMEM) 353 if (PageHighMem(p)) 354 return true; 355 #endif 356 return false; 357 } 358 359 /** 360 * skb_frag_foreach_page - loop over pages in a fragment 361 * 362 * @f: skb frag to operate on 363 * @f_off: offset from start of f->page.p 364 * @f_len: length from f_off to loop over 365 * @p: (temp var) current page 366 * @p_off: (temp var) offset from start of current page, 367 * non-zero only on first page. 368 * @p_len: (temp var) length in current page, 369 * < PAGE_SIZE only on first and last page. 370 * @copied: (temp var) length so far, excluding current p_len. 371 * 372 * A fragment can hold a compound page, in which case per-page 373 * operations, notably kmap_atomic, must be called for each 374 * regular page. 375 */ 376 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 378 p_off = (f_off) & (PAGE_SIZE - 1), \ 379 p_len = skb_frag_must_loop(p) ? \ 380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 381 copied = 0; \ 382 copied < f_len; \ 383 copied += p_len, p++, p_off = 0, \ 384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 385 386 #define HAVE_HW_TIME_STAMP 387 388 /** 389 * struct skb_shared_hwtstamps - hardware time stamps 390 * @hwtstamp: hardware time stamp transformed into duration 391 * since arbitrary point in time 392 * 393 * Software time stamps generated by ktime_get_real() are stored in 394 * skb->tstamp. 395 * 396 * hwtstamps can only be compared against other hwtstamps from 397 * the same device. 398 * 399 * This structure is attached to packets as part of the 400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 401 */ 402 struct skb_shared_hwtstamps { 403 ktime_t hwtstamp; 404 }; 405 406 /* Definitions for tx_flags in struct skb_shared_info */ 407 enum { 408 /* generate hardware time stamp */ 409 SKBTX_HW_TSTAMP = 1 << 0, 410 411 /* generate software time stamp when queueing packet to NIC */ 412 SKBTX_SW_TSTAMP = 1 << 1, 413 414 /* device driver is going to provide hardware time stamp */ 415 SKBTX_IN_PROGRESS = 1 << 2, 416 417 /* device driver supports TX zero-copy buffers */ 418 SKBTX_DEV_ZEROCOPY = 1 << 3, 419 420 /* generate wifi status information (where possible) */ 421 SKBTX_WIFI_STATUS = 1 << 4, 422 423 /* This indicates at least one fragment might be overwritten 424 * (as in vmsplice(), sendfile() ...) 425 * If we need to compute a TX checksum, we'll need to copy 426 * all frags to avoid possible bad checksum 427 */ 428 SKBTX_SHARED_FRAG = 1 << 5, 429 430 /* generate software time stamp when entering packet scheduling */ 431 SKBTX_SCHED_TSTAMP = 1 << 6, 432 }; 433 434 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 435 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 436 SKBTX_SCHED_TSTAMP) 437 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 438 439 /* 440 * The callback notifies userspace to release buffers when skb DMA is done in 441 * lower device, the skb last reference should be 0 when calling this. 442 * The zerocopy_success argument is true if zero copy transmit occurred, 443 * false on data copy or out of memory error caused by data copy attempt. 444 * The ctx field is used to track device context. 445 * The desc field is used to track userspace buffer index. 446 */ 447 struct ubuf_info { 448 void (*callback)(struct ubuf_info *, bool zerocopy_success); 449 union { 450 struct { 451 unsigned long desc; 452 void *ctx; 453 }; 454 struct { 455 u32 id; 456 u16 len; 457 u16 zerocopy:1; 458 u32 bytelen; 459 }; 460 }; 461 refcount_t refcnt; 462 463 struct mmpin { 464 struct user_struct *user; 465 unsigned int num_pg; 466 } mmp; 467 }; 468 469 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 470 471 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 472 void mm_unaccount_pinned_pages(struct mmpin *mmp); 473 474 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 475 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 476 struct ubuf_info *uarg); 477 478 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 479 { 480 refcount_inc(&uarg->refcnt); 481 } 482 483 void sock_zerocopy_put(struct ubuf_info *uarg); 484 void sock_zerocopy_put_abort(struct ubuf_info *uarg); 485 486 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 487 488 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 489 struct msghdr *msg, int len, 490 struct ubuf_info *uarg); 491 492 /* This data is invariant across clones and lives at 493 * the end of the header data, ie. at skb->end. 494 */ 495 struct skb_shared_info { 496 __u8 __unused; 497 __u8 meta_len; 498 __u8 nr_frags; 499 __u8 tx_flags; 500 unsigned short gso_size; 501 /* Warning: this field is not always filled in (UFO)! */ 502 unsigned short gso_segs; 503 struct sk_buff *frag_list; 504 struct skb_shared_hwtstamps hwtstamps; 505 unsigned int gso_type; 506 u32 tskey; 507 508 /* 509 * Warning : all fields before dataref are cleared in __alloc_skb() 510 */ 511 atomic_t dataref; 512 513 /* Intermediate layers must ensure that destructor_arg 514 * remains valid until skb destructor */ 515 void * destructor_arg; 516 517 /* must be last field, see pskb_expand_head() */ 518 skb_frag_t frags[MAX_SKB_FRAGS]; 519 }; 520 521 /* We divide dataref into two halves. The higher 16 bits hold references 522 * to the payload part of skb->data. The lower 16 bits hold references to 523 * the entire skb->data. A clone of a headerless skb holds the length of 524 * the header in skb->hdr_len. 525 * 526 * All users must obey the rule that the skb->data reference count must be 527 * greater than or equal to the payload reference count. 528 * 529 * Holding a reference to the payload part means that the user does not 530 * care about modifications to the header part of skb->data. 531 */ 532 #define SKB_DATAREF_SHIFT 16 533 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 534 535 536 enum { 537 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 538 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 539 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 540 }; 541 542 enum { 543 SKB_GSO_TCPV4 = 1 << 0, 544 545 /* This indicates the skb is from an untrusted source. */ 546 SKB_GSO_DODGY = 1 << 1, 547 548 /* This indicates the tcp segment has CWR set. */ 549 SKB_GSO_TCP_ECN = 1 << 2, 550 551 SKB_GSO_TCP_FIXEDID = 1 << 3, 552 553 SKB_GSO_TCPV6 = 1 << 4, 554 555 SKB_GSO_FCOE = 1 << 5, 556 557 SKB_GSO_GRE = 1 << 6, 558 559 SKB_GSO_GRE_CSUM = 1 << 7, 560 561 SKB_GSO_IPXIP4 = 1 << 8, 562 563 SKB_GSO_IPXIP6 = 1 << 9, 564 565 SKB_GSO_UDP_TUNNEL = 1 << 10, 566 567 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 568 569 SKB_GSO_PARTIAL = 1 << 12, 570 571 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 572 573 SKB_GSO_SCTP = 1 << 14, 574 575 SKB_GSO_ESP = 1 << 15, 576 577 SKB_GSO_UDP = 1 << 16, 578 579 SKB_GSO_UDP_L4 = 1 << 17, 580 }; 581 582 #if BITS_PER_LONG > 32 583 #define NET_SKBUFF_DATA_USES_OFFSET 1 584 #endif 585 586 #ifdef NET_SKBUFF_DATA_USES_OFFSET 587 typedef unsigned int sk_buff_data_t; 588 #else 589 typedef unsigned char *sk_buff_data_t; 590 #endif 591 592 /** 593 * struct sk_buff - socket buffer 594 * @next: Next buffer in list 595 * @prev: Previous buffer in list 596 * @tstamp: Time we arrived/left 597 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 598 * @sk: Socket we are owned by 599 * @dev: Device we arrived on/are leaving by 600 * @cb: Control buffer. Free for use by every layer. Put private vars here 601 * @_skb_refdst: destination entry (with norefcount bit) 602 * @sp: the security path, used for xfrm 603 * @len: Length of actual data 604 * @data_len: Data length 605 * @mac_len: Length of link layer header 606 * @hdr_len: writable header length of cloned skb 607 * @csum: Checksum (must include start/offset pair) 608 * @csum_start: Offset from skb->head where checksumming should start 609 * @csum_offset: Offset from csum_start where checksum should be stored 610 * @priority: Packet queueing priority 611 * @ignore_df: allow local fragmentation 612 * @cloned: Head may be cloned (check refcnt to be sure) 613 * @ip_summed: Driver fed us an IP checksum 614 * @nohdr: Payload reference only, must not modify header 615 * @pkt_type: Packet class 616 * @fclone: skbuff clone status 617 * @ipvs_property: skbuff is owned by ipvs 618 * @tc_skip_classify: do not classify packet. set by IFB device 619 * @tc_at_ingress: used within tc_classify to distinguish in/egress 620 * @tc_redirected: packet was redirected by a tc action 621 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 622 * @peeked: this packet has been seen already, so stats have been 623 * done for it, don't do them again 624 * @nf_trace: netfilter packet trace flag 625 * @protocol: Packet protocol from driver 626 * @destructor: Destruct function 627 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 628 * @_nfct: Associated connection, if any (with nfctinfo bits) 629 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 630 * @skb_iif: ifindex of device we arrived on 631 * @tc_index: Traffic control index 632 * @hash: the packet hash 633 * @queue_mapping: Queue mapping for multiqueue devices 634 * @xmit_more: More SKBs are pending for this queue 635 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 636 * @ndisc_nodetype: router type (from link layer) 637 * @ooo_okay: allow the mapping of a socket to a queue to be changed 638 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 639 * ports. 640 * @sw_hash: indicates hash was computed in software stack 641 * @wifi_acked_valid: wifi_acked was set 642 * @wifi_acked: whether frame was acked on wifi or not 643 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 644 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 645 * @dst_pending_confirm: need to confirm neighbour 646 * @decrypted: Decrypted SKB 647 * @napi_id: id of the NAPI struct this skb came from 648 * @secmark: security marking 649 * @mark: Generic packet mark 650 * @vlan_proto: vlan encapsulation protocol 651 * @vlan_tci: vlan tag control information 652 * @inner_protocol: Protocol (encapsulation) 653 * @inner_transport_header: Inner transport layer header (encapsulation) 654 * @inner_network_header: Network layer header (encapsulation) 655 * @inner_mac_header: Link layer header (encapsulation) 656 * @transport_header: Transport layer header 657 * @network_header: Network layer header 658 * @mac_header: Link layer header 659 * @tail: Tail pointer 660 * @end: End pointer 661 * @head: Head of buffer 662 * @data: Data head pointer 663 * @truesize: Buffer size 664 * @users: User count - see {datagram,tcp}.c 665 */ 666 667 struct sk_buff { 668 union { 669 struct { 670 /* These two members must be first. */ 671 struct sk_buff *next; 672 struct sk_buff *prev; 673 674 union { 675 struct net_device *dev; 676 /* Some protocols might use this space to store information, 677 * while device pointer would be NULL. 678 * UDP receive path is one user. 679 */ 680 unsigned long dev_scratch; 681 }; 682 }; 683 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 684 struct list_head list; 685 }; 686 687 union { 688 struct sock *sk; 689 int ip_defrag_offset; 690 }; 691 692 union { 693 ktime_t tstamp; 694 u64 skb_mstamp_ns; /* earliest departure time */ 695 }; 696 /* 697 * This is the control buffer. It is free to use for every 698 * layer. Please put your private variables there. If you 699 * want to keep them across layers you have to do a skb_clone() 700 * first. This is owned by whoever has the skb queued ATM. 701 */ 702 char cb[48] __aligned(8); 703 704 union { 705 struct { 706 unsigned long _skb_refdst; 707 void (*destructor)(struct sk_buff *skb); 708 }; 709 struct list_head tcp_tsorted_anchor; 710 }; 711 712 #ifdef CONFIG_XFRM 713 struct sec_path *sp; 714 #endif 715 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 716 unsigned long _nfct; 717 #endif 718 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 719 struct nf_bridge_info *nf_bridge; 720 #endif 721 unsigned int len, 722 data_len; 723 __u16 mac_len, 724 hdr_len; 725 726 /* Following fields are _not_ copied in __copy_skb_header() 727 * Note that queue_mapping is here mostly to fill a hole. 728 */ 729 __u16 queue_mapping; 730 731 /* if you move cloned around you also must adapt those constants */ 732 #ifdef __BIG_ENDIAN_BITFIELD 733 #define CLONED_MASK (1 << 7) 734 #else 735 #define CLONED_MASK 1 736 #endif 737 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 738 739 __u8 __cloned_offset[0]; 740 __u8 cloned:1, 741 nohdr:1, 742 fclone:2, 743 peeked:1, 744 head_frag:1, 745 xmit_more:1, 746 pfmemalloc:1; 747 748 /* fields enclosed in headers_start/headers_end are copied 749 * using a single memcpy() in __copy_skb_header() 750 */ 751 /* private: */ 752 __u32 headers_start[0]; 753 /* public: */ 754 755 /* if you move pkt_type around you also must adapt those constants */ 756 #ifdef __BIG_ENDIAN_BITFIELD 757 #define PKT_TYPE_MAX (7 << 5) 758 #else 759 #define PKT_TYPE_MAX 7 760 #endif 761 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 762 763 __u8 __pkt_type_offset[0]; 764 __u8 pkt_type:3; 765 __u8 ignore_df:1; 766 __u8 nf_trace:1; 767 __u8 ip_summed:2; 768 __u8 ooo_okay:1; 769 770 __u8 l4_hash:1; 771 __u8 sw_hash:1; 772 __u8 wifi_acked_valid:1; 773 __u8 wifi_acked:1; 774 __u8 no_fcs:1; 775 /* Indicates the inner headers are valid in the skbuff. */ 776 __u8 encapsulation:1; 777 __u8 encap_hdr_csum:1; 778 __u8 csum_valid:1; 779 780 __u8 csum_complete_sw:1; 781 __u8 csum_level:2; 782 __u8 csum_not_inet:1; 783 __u8 dst_pending_confirm:1; 784 #ifdef CONFIG_IPV6_NDISC_NODETYPE 785 __u8 ndisc_nodetype:2; 786 #endif 787 __u8 ipvs_property:1; 788 789 __u8 inner_protocol_type:1; 790 __u8 remcsum_offload:1; 791 #ifdef CONFIG_NET_SWITCHDEV 792 __u8 offload_fwd_mark:1; 793 __u8 offload_mr_fwd_mark:1; 794 #endif 795 #ifdef CONFIG_NET_CLS_ACT 796 __u8 tc_skip_classify:1; 797 __u8 tc_at_ingress:1; 798 __u8 tc_redirected:1; 799 __u8 tc_from_ingress:1; 800 #endif 801 #ifdef CONFIG_TLS_DEVICE 802 __u8 decrypted:1; 803 #endif 804 805 #ifdef CONFIG_NET_SCHED 806 __u16 tc_index; /* traffic control index */ 807 #endif 808 809 union { 810 __wsum csum; 811 struct { 812 __u16 csum_start; 813 __u16 csum_offset; 814 }; 815 }; 816 __u32 priority; 817 int skb_iif; 818 __u32 hash; 819 __be16 vlan_proto; 820 __u16 vlan_tci; 821 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 822 union { 823 unsigned int napi_id; 824 unsigned int sender_cpu; 825 }; 826 #endif 827 #ifdef CONFIG_NETWORK_SECMARK 828 __u32 secmark; 829 #endif 830 831 union { 832 __u32 mark; 833 __u32 reserved_tailroom; 834 }; 835 836 union { 837 __be16 inner_protocol; 838 __u8 inner_ipproto; 839 }; 840 841 __u16 inner_transport_header; 842 __u16 inner_network_header; 843 __u16 inner_mac_header; 844 845 __be16 protocol; 846 __u16 transport_header; 847 __u16 network_header; 848 __u16 mac_header; 849 850 /* private: */ 851 __u32 headers_end[0]; 852 /* public: */ 853 854 /* These elements must be at the end, see alloc_skb() for details. */ 855 sk_buff_data_t tail; 856 sk_buff_data_t end; 857 unsigned char *head, 858 *data; 859 unsigned int truesize; 860 refcount_t users; 861 }; 862 863 #ifdef __KERNEL__ 864 /* 865 * Handling routines are only of interest to the kernel 866 */ 867 868 #define SKB_ALLOC_FCLONE 0x01 869 #define SKB_ALLOC_RX 0x02 870 #define SKB_ALLOC_NAPI 0x04 871 872 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 873 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 874 { 875 return unlikely(skb->pfmemalloc); 876 } 877 878 /* 879 * skb might have a dst pointer attached, refcounted or not. 880 * _skb_refdst low order bit is set if refcount was _not_ taken 881 */ 882 #define SKB_DST_NOREF 1UL 883 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 884 885 #define SKB_NFCT_PTRMASK ~(7UL) 886 /** 887 * skb_dst - returns skb dst_entry 888 * @skb: buffer 889 * 890 * Returns skb dst_entry, regardless of reference taken or not. 891 */ 892 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 893 { 894 /* If refdst was not refcounted, check we still are in a 895 * rcu_read_lock section 896 */ 897 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 898 !rcu_read_lock_held() && 899 !rcu_read_lock_bh_held()); 900 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 901 } 902 903 /** 904 * skb_dst_set - sets skb dst 905 * @skb: buffer 906 * @dst: dst entry 907 * 908 * Sets skb dst, assuming a reference was taken on dst and should 909 * be released by skb_dst_drop() 910 */ 911 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 912 { 913 skb->_skb_refdst = (unsigned long)dst; 914 } 915 916 /** 917 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 918 * @skb: buffer 919 * @dst: dst entry 920 * 921 * Sets skb dst, assuming a reference was not taken on dst. 922 * If dst entry is cached, we do not take reference and dst_release 923 * will be avoided by refdst_drop. If dst entry is not cached, we take 924 * reference, so that last dst_release can destroy the dst immediately. 925 */ 926 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 927 { 928 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 929 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 930 } 931 932 /** 933 * skb_dst_is_noref - Test if skb dst isn't refcounted 934 * @skb: buffer 935 */ 936 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 937 { 938 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 939 } 940 941 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 942 { 943 return (struct rtable *)skb_dst(skb); 944 } 945 946 /* For mangling skb->pkt_type from user space side from applications 947 * such as nft, tc, etc, we only allow a conservative subset of 948 * possible pkt_types to be set. 949 */ 950 static inline bool skb_pkt_type_ok(u32 ptype) 951 { 952 return ptype <= PACKET_OTHERHOST; 953 } 954 955 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 956 { 957 #ifdef CONFIG_NET_RX_BUSY_POLL 958 return skb->napi_id; 959 #else 960 return 0; 961 #endif 962 } 963 964 /* decrement the reference count and return true if we can free the skb */ 965 static inline bool skb_unref(struct sk_buff *skb) 966 { 967 if (unlikely(!skb)) 968 return false; 969 if (likely(refcount_read(&skb->users) == 1)) 970 smp_rmb(); 971 else if (likely(!refcount_dec_and_test(&skb->users))) 972 return false; 973 974 return true; 975 } 976 977 void skb_release_head_state(struct sk_buff *skb); 978 void kfree_skb(struct sk_buff *skb); 979 void kfree_skb_list(struct sk_buff *segs); 980 void skb_tx_error(struct sk_buff *skb); 981 void consume_skb(struct sk_buff *skb); 982 void __consume_stateless_skb(struct sk_buff *skb); 983 void __kfree_skb(struct sk_buff *skb); 984 extern struct kmem_cache *skbuff_head_cache; 985 986 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 987 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 988 bool *fragstolen, int *delta_truesize); 989 990 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 991 int node); 992 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 993 struct sk_buff *build_skb(void *data, unsigned int frag_size); 994 static inline struct sk_buff *alloc_skb(unsigned int size, 995 gfp_t priority) 996 { 997 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 998 } 999 1000 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1001 unsigned long data_len, 1002 int max_page_order, 1003 int *errcode, 1004 gfp_t gfp_mask); 1005 1006 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1007 struct sk_buff_fclones { 1008 struct sk_buff skb1; 1009 1010 struct sk_buff skb2; 1011 1012 refcount_t fclone_ref; 1013 }; 1014 1015 /** 1016 * skb_fclone_busy - check if fclone is busy 1017 * @sk: socket 1018 * @skb: buffer 1019 * 1020 * Returns true if skb is a fast clone, and its clone is not freed. 1021 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1022 * so we also check that this didnt happen. 1023 */ 1024 static inline bool skb_fclone_busy(const struct sock *sk, 1025 const struct sk_buff *skb) 1026 { 1027 const struct sk_buff_fclones *fclones; 1028 1029 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1030 1031 return skb->fclone == SKB_FCLONE_ORIG && 1032 refcount_read(&fclones->fclone_ref) > 1 && 1033 fclones->skb2.sk == sk; 1034 } 1035 1036 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1037 gfp_t priority) 1038 { 1039 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1040 } 1041 1042 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1043 void skb_headers_offset_update(struct sk_buff *skb, int off); 1044 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1045 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1046 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1047 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1048 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1049 gfp_t gfp_mask, bool fclone); 1050 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1051 gfp_t gfp_mask) 1052 { 1053 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1054 } 1055 1056 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1057 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1058 unsigned int headroom); 1059 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1060 int newtailroom, gfp_t priority); 1061 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1062 int offset, int len); 1063 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1064 int offset, int len); 1065 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1066 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1067 1068 /** 1069 * skb_pad - zero pad the tail of an skb 1070 * @skb: buffer to pad 1071 * @pad: space to pad 1072 * 1073 * Ensure that a buffer is followed by a padding area that is zero 1074 * filled. Used by network drivers which may DMA or transfer data 1075 * beyond the buffer end onto the wire. 1076 * 1077 * May return error in out of memory cases. The skb is freed on error. 1078 */ 1079 static inline int skb_pad(struct sk_buff *skb, int pad) 1080 { 1081 return __skb_pad(skb, pad, true); 1082 } 1083 #define dev_kfree_skb(a) consume_skb(a) 1084 1085 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1086 int offset, size_t size); 1087 1088 struct skb_seq_state { 1089 __u32 lower_offset; 1090 __u32 upper_offset; 1091 __u32 frag_idx; 1092 __u32 stepped_offset; 1093 struct sk_buff *root_skb; 1094 struct sk_buff *cur_skb; 1095 __u8 *frag_data; 1096 }; 1097 1098 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1099 unsigned int to, struct skb_seq_state *st); 1100 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1101 struct skb_seq_state *st); 1102 void skb_abort_seq_read(struct skb_seq_state *st); 1103 1104 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1105 unsigned int to, struct ts_config *config); 1106 1107 /* 1108 * Packet hash types specify the type of hash in skb_set_hash. 1109 * 1110 * Hash types refer to the protocol layer addresses which are used to 1111 * construct a packet's hash. The hashes are used to differentiate or identify 1112 * flows of the protocol layer for the hash type. Hash types are either 1113 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1114 * 1115 * Properties of hashes: 1116 * 1117 * 1) Two packets in different flows have different hash values 1118 * 2) Two packets in the same flow should have the same hash value 1119 * 1120 * A hash at a higher layer is considered to be more specific. A driver should 1121 * set the most specific hash possible. 1122 * 1123 * A driver cannot indicate a more specific hash than the layer at which a hash 1124 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1125 * 1126 * A driver may indicate a hash level which is less specific than the 1127 * actual layer the hash was computed on. For instance, a hash computed 1128 * at L4 may be considered an L3 hash. This should only be done if the 1129 * driver can't unambiguously determine that the HW computed the hash at 1130 * the higher layer. Note that the "should" in the second property above 1131 * permits this. 1132 */ 1133 enum pkt_hash_types { 1134 PKT_HASH_TYPE_NONE, /* Undefined type */ 1135 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1136 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1137 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1138 }; 1139 1140 static inline void skb_clear_hash(struct sk_buff *skb) 1141 { 1142 skb->hash = 0; 1143 skb->sw_hash = 0; 1144 skb->l4_hash = 0; 1145 } 1146 1147 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1148 { 1149 if (!skb->l4_hash) 1150 skb_clear_hash(skb); 1151 } 1152 1153 static inline void 1154 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1155 { 1156 skb->l4_hash = is_l4; 1157 skb->sw_hash = is_sw; 1158 skb->hash = hash; 1159 } 1160 1161 static inline void 1162 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1163 { 1164 /* Used by drivers to set hash from HW */ 1165 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1166 } 1167 1168 static inline void 1169 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1170 { 1171 __skb_set_hash(skb, hash, true, is_l4); 1172 } 1173 1174 void __skb_get_hash(struct sk_buff *skb); 1175 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1176 u32 skb_get_poff(const struct sk_buff *skb); 1177 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1178 const struct flow_keys_basic *keys, int hlen); 1179 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1180 void *data, int hlen_proto); 1181 1182 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1183 int thoff, u8 ip_proto) 1184 { 1185 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1186 } 1187 1188 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1189 const struct flow_dissector_key *key, 1190 unsigned int key_count); 1191 1192 #ifdef CONFIG_NET 1193 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1194 struct bpf_prog *prog); 1195 1196 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1197 #else 1198 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1199 struct bpf_prog *prog) 1200 { 1201 return -EOPNOTSUPP; 1202 } 1203 1204 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1205 { 1206 return -EOPNOTSUPP; 1207 } 1208 #endif 1209 1210 bool __skb_flow_dissect(const struct sk_buff *skb, 1211 struct flow_dissector *flow_dissector, 1212 void *target_container, 1213 void *data, __be16 proto, int nhoff, int hlen, 1214 unsigned int flags); 1215 1216 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1217 struct flow_dissector *flow_dissector, 1218 void *target_container, unsigned int flags) 1219 { 1220 return __skb_flow_dissect(skb, flow_dissector, target_container, 1221 NULL, 0, 0, 0, flags); 1222 } 1223 1224 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1225 struct flow_keys *flow, 1226 unsigned int flags) 1227 { 1228 memset(flow, 0, sizeof(*flow)); 1229 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1230 NULL, 0, 0, 0, flags); 1231 } 1232 1233 static inline bool 1234 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb, 1235 struct flow_keys_basic *flow, void *data, 1236 __be16 proto, int nhoff, int hlen, 1237 unsigned int flags) 1238 { 1239 memset(flow, 0, sizeof(*flow)); 1240 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow, 1241 data, proto, nhoff, hlen, flags); 1242 } 1243 1244 void 1245 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1246 struct flow_dissector *flow_dissector, 1247 void *target_container); 1248 1249 static inline __u32 skb_get_hash(struct sk_buff *skb) 1250 { 1251 if (!skb->l4_hash && !skb->sw_hash) 1252 __skb_get_hash(skb); 1253 1254 return skb->hash; 1255 } 1256 1257 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1258 { 1259 if (!skb->l4_hash && !skb->sw_hash) { 1260 struct flow_keys keys; 1261 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1262 1263 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1264 } 1265 1266 return skb->hash; 1267 } 1268 1269 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1270 1271 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1272 { 1273 return skb->hash; 1274 } 1275 1276 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1277 { 1278 to->hash = from->hash; 1279 to->sw_hash = from->sw_hash; 1280 to->l4_hash = from->l4_hash; 1281 }; 1282 1283 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1284 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1285 { 1286 return skb->head + skb->end; 1287 } 1288 1289 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1290 { 1291 return skb->end; 1292 } 1293 #else 1294 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1295 { 1296 return skb->end; 1297 } 1298 1299 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1300 { 1301 return skb->end - skb->head; 1302 } 1303 #endif 1304 1305 /* Internal */ 1306 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1307 1308 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1309 { 1310 return &skb_shinfo(skb)->hwtstamps; 1311 } 1312 1313 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1314 { 1315 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1316 1317 return is_zcopy ? skb_uarg(skb) : NULL; 1318 } 1319 1320 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg) 1321 { 1322 if (skb && uarg && !skb_zcopy(skb)) { 1323 sock_zerocopy_get(uarg); 1324 skb_shinfo(skb)->destructor_arg = uarg; 1325 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1326 } 1327 } 1328 1329 /* Release a reference on a zerocopy structure */ 1330 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1331 { 1332 struct ubuf_info *uarg = skb_zcopy(skb); 1333 1334 if (uarg) { 1335 if (uarg->callback == sock_zerocopy_callback) { 1336 uarg->zerocopy = uarg->zerocopy && zerocopy; 1337 sock_zerocopy_put(uarg); 1338 } else { 1339 uarg->callback(uarg, zerocopy); 1340 } 1341 1342 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1343 } 1344 } 1345 1346 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1347 static inline void skb_zcopy_abort(struct sk_buff *skb) 1348 { 1349 struct ubuf_info *uarg = skb_zcopy(skb); 1350 1351 if (uarg) { 1352 sock_zerocopy_put_abort(uarg); 1353 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1354 } 1355 } 1356 1357 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1358 { 1359 skb->next = NULL; 1360 } 1361 1362 static inline void skb_list_del_init(struct sk_buff *skb) 1363 { 1364 __list_del_entry(&skb->list); 1365 skb_mark_not_on_list(skb); 1366 } 1367 1368 /** 1369 * skb_queue_empty - check if a queue is empty 1370 * @list: queue head 1371 * 1372 * Returns true if the queue is empty, false otherwise. 1373 */ 1374 static inline int skb_queue_empty(const struct sk_buff_head *list) 1375 { 1376 return list->next == (const struct sk_buff *) list; 1377 } 1378 1379 /** 1380 * skb_queue_is_last - check if skb is the last entry in the queue 1381 * @list: queue head 1382 * @skb: buffer 1383 * 1384 * Returns true if @skb is the last buffer on the list. 1385 */ 1386 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1387 const struct sk_buff *skb) 1388 { 1389 return skb->next == (const struct sk_buff *) list; 1390 } 1391 1392 /** 1393 * skb_queue_is_first - check if skb is the first entry in the queue 1394 * @list: queue head 1395 * @skb: buffer 1396 * 1397 * Returns true if @skb is the first buffer on the list. 1398 */ 1399 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1400 const struct sk_buff *skb) 1401 { 1402 return skb->prev == (const struct sk_buff *) list; 1403 } 1404 1405 /** 1406 * skb_queue_next - return the next packet in the queue 1407 * @list: queue head 1408 * @skb: current buffer 1409 * 1410 * Return the next packet in @list after @skb. It is only valid to 1411 * call this if skb_queue_is_last() evaluates to false. 1412 */ 1413 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1414 const struct sk_buff *skb) 1415 { 1416 /* This BUG_ON may seem severe, but if we just return then we 1417 * are going to dereference garbage. 1418 */ 1419 BUG_ON(skb_queue_is_last(list, skb)); 1420 return skb->next; 1421 } 1422 1423 /** 1424 * skb_queue_prev - return the prev packet in the queue 1425 * @list: queue head 1426 * @skb: current buffer 1427 * 1428 * Return the prev packet in @list before @skb. It is only valid to 1429 * call this if skb_queue_is_first() evaluates to false. 1430 */ 1431 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1432 const struct sk_buff *skb) 1433 { 1434 /* This BUG_ON may seem severe, but if we just return then we 1435 * are going to dereference garbage. 1436 */ 1437 BUG_ON(skb_queue_is_first(list, skb)); 1438 return skb->prev; 1439 } 1440 1441 /** 1442 * skb_get - reference buffer 1443 * @skb: buffer to reference 1444 * 1445 * Makes another reference to a socket buffer and returns a pointer 1446 * to the buffer. 1447 */ 1448 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1449 { 1450 refcount_inc(&skb->users); 1451 return skb; 1452 } 1453 1454 /* 1455 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1456 */ 1457 1458 /** 1459 * skb_cloned - is the buffer a clone 1460 * @skb: buffer to check 1461 * 1462 * Returns true if the buffer was generated with skb_clone() and is 1463 * one of multiple shared copies of the buffer. Cloned buffers are 1464 * shared data so must not be written to under normal circumstances. 1465 */ 1466 static inline int skb_cloned(const struct sk_buff *skb) 1467 { 1468 return skb->cloned && 1469 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1470 } 1471 1472 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1473 { 1474 might_sleep_if(gfpflags_allow_blocking(pri)); 1475 1476 if (skb_cloned(skb)) 1477 return pskb_expand_head(skb, 0, 0, pri); 1478 1479 return 0; 1480 } 1481 1482 /** 1483 * skb_header_cloned - is the header a clone 1484 * @skb: buffer to check 1485 * 1486 * Returns true if modifying the header part of the buffer requires 1487 * the data to be copied. 1488 */ 1489 static inline int skb_header_cloned(const struct sk_buff *skb) 1490 { 1491 int dataref; 1492 1493 if (!skb->cloned) 1494 return 0; 1495 1496 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1497 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1498 return dataref != 1; 1499 } 1500 1501 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1502 { 1503 might_sleep_if(gfpflags_allow_blocking(pri)); 1504 1505 if (skb_header_cloned(skb)) 1506 return pskb_expand_head(skb, 0, 0, pri); 1507 1508 return 0; 1509 } 1510 1511 /** 1512 * __skb_header_release - release reference to header 1513 * @skb: buffer to operate on 1514 */ 1515 static inline void __skb_header_release(struct sk_buff *skb) 1516 { 1517 skb->nohdr = 1; 1518 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1519 } 1520 1521 1522 /** 1523 * skb_shared - is the buffer shared 1524 * @skb: buffer to check 1525 * 1526 * Returns true if more than one person has a reference to this 1527 * buffer. 1528 */ 1529 static inline int skb_shared(const struct sk_buff *skb) 1530 { 1531 return refcount_read(&skb->users) != 1; 1532 } 1533 1534 /** 1535 * skb_share_check - check if buffer is shared and if so clone it 1536 * @skb: buffer to check 1537 * @pri: priority for memory allocation 1538 * 1539 * If the buffer is shared the buffer is cloned and the old copy 1540 * drops a reference. A new clone with a single reference is returned. 1541 * If the buffer is not shared the original buffer is returned. When 1542 * being called from interrupt status or with spinlocks held pri must 1543 * be GFP_ATOMIC. 1544 * 1545 * NULL is returned on a memory allocation failure. 1546 */ 1547 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1548 { 1549 might_sleep_if(gfpflags_allow_blocking(pri)); 1550 if (skb_shared(skb)) { 1551 struct sk_buff *nskb = skb_clone(skb, pri); 1552 1553 if (likely(nskb)) 1554 consume_skb(skb); 1555 else 1556 kfree_skb(skb); 1557 skb = nskb; 1558 } 1559 return skb; 1560 } 1561 1562 /* 1563 * Copy shared buffers into a new sk_buff. We effectively do COW on 1564 * packets to handle cases where we have a local reader and forward 1565 * and a couple of other messy ones. The normal one is tcpdumping 1566 * a packet thats being forwarded. 1567 */ 1568 1569 /** 1570 * skb_unshare - make a copy of a shared buffer 1571 * @skb: buffer to check 1572 * @pri: priority for memory allocation 1573 * 1574 * If the socket buffer is a clone then this function creates a new 1575 * copy of the data, drops a reference count on the old copy and returns 1576 * the new copy with the reference count at 1. If the buffer is not a clone 1577 * the original buffer is returned. When called with a spinlock held or 1578 * from interrupt state @pri must be %GFP_ATOMIC 1579 * 1580 * %NULL is returned on a memory allocation failure. 1581 */ 1582 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1583 gfp_t pri) 1584 { 1585 might_sleep_if(gfpflags_allow_blocking(pri)); 1586 if (skb_cloned(skb)) { 1587 struct sk_buff *nskb = skb_copy(skb, pri); 1588 1589 /* Free our shared copy */ 1590 if (likely(nskb)) 1591 consume_skb(skb); 1592 else 1593 kfree_skb(skb); 1594 skb = nskb; 1595 } 1596 return skb; 1597 } 1598 1599 /** 1600 * skb_peek - peek at the head of an &sk_buff_head 1601 * @list_: list to peek at 1602 * 1603 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1604 * be careful with this one. A peek leaves the buffer on the 1605 * list and someone else may run off with it. You must hold 1606 * the appropriate locks or have a private queue to do this. 1607 * 1608 * Returns %NULL for an empty list or a pointer to the head element. 1609 * The reference count is not incremented and the reference is therefore 1610 * volatile. Use with caution. 1611 */ 1612 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1613 { 1614 struct sk_buff *skb = list_->next; 1615 1616 if (skb == (struct sk_buff *)list_) 1617 skb = NULL; 1618 return skb; 1619 } 1620 1621 /** 1622 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1623 * @list_: list to peek at 1624 * 1625 * Like skb_peek(), but the caller knows that the list is not empty. 1626 */ 1627 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1628 { 1629 return list_->next; 1630 } 1631 1632 /** 1633 * skb_peek_next - peek skb following the given one from a queue 1634 * @skb: skb to start from 1635 * @list_: list to peek at 1636 * 1637 * Returns %NULL when the end of the list is met or a pointer to the 1638 * next element. The reference count is not incremented and the 1639 * reference is therefore volatile. Use with caution. 1640 */ 1641 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1642 const struct sk_buff_head *list_) 1643 { 1644 struct sk_buff *next = skb->next; 1645 1646 if (next == (struct sk_buff *)list_) 1647 next = NULL; 1648 return next; 1649 } 1650 1651 /** 1652 * skb_peek_tail - peek at the tail of an &sk_buff_head 1653 * @list_: list to peek at 1654 * 1655 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1656 * be careful with this one. A peek leaves the buffer on the 1657 * list and someone else may run off with it. You must hold 1658 * the appropriate locks or have a private queue to do this. 1659 * 1660 * Returns %NULL for an empty list or a pointer to the tail element. 1661 * The reference count is not incremented and the reference is therefore 1662 * volatile. Use with caution. 1663 */ 1664 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1665 { 1666 struct sk_buff *skb = list_->prev; 1667 1668 if (skb == (struct sk_buff *)list_) 1669 skb = NULL; 1670 return skb; 1671 1672 } 1673 1674 /** 1675 * skb_queue_len - get queue length 1676 * @list_: list to measure 1677 * 1678 * Return the length of an &sk_buff queue. 1679 */ 1680 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1681 { 1682 return list_->qlen; 1683 } 1684 1685 /** 1686 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1687 * @list: queue to initialize 1688 * 1689 * This initializes only the list and queue length aspects of 1690 * an sk_buff_head object. This allows to initialize the list 1691 * aspects of an sk_buff_head without reinitializing things like 1692 * the spinlock. It can also be used for on-stack sk_buff_head 1693 * objects where the spinlock is known to not be used. 1694 */ 1695 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1696 { 1697 list->prev = list->next = (struct sk_buff *)list; 1698 list->qlen = 0; 1699 } 1700 1701 /* 1702 * This function creates a split out lock class for each invocation; 1703 * this is needed for now since a whole lot of users of the skb-queue 1704 * infrastructure in drivers have different locking usage (in hardirq) 1705 * than the networking core (in softirq only). In the long run either the 1706 * network layer or drivers should need annotation to consolidate the 1707 * main types of usage into 3 classes. 1708 */ 1709 static inline void skb_queue_head_init(struct sk_buff_head *list) 1710 { 1711 spin_lock_init(&list->lock); 1712 __skb_queue_head_init(list); 1713 } 1714 1715 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1716 struct lock_class_key *class) 1717 { 1718 skb_queue_head_init(list); 1719 lockdep_set_class(&list->lock, class); 1720 } 1721 1722 /* 1723 * Insert an sk_buff on a list. 1724 * 1725 * The "__skb_xxxx()" functions are the non-atomic ones that 1726 * can only be called with interrupts disabled. 1727 */ 1728 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1729 struct sk_buff_head *list); 1730 static inline void __skb_insert(struct sk_buff *newsk, 1731 struct sk_buff *prev, struct sk_buff *next, 1732 struct sk_buff_head *list) 1733 { 1734 newsk->next = next; 1735 newsk->prev = prev; 1736 next->prev = prev->next = newsk; 1737 list->qlen++; 1738 } 1739 1740 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1741 struct sk_buff *prev, 1742 struct sk_buff *next) 1743 { 1744 struct sk_buff *first = list->next; 1745 struct sk_buff *last = list->prev; 1746 1747 first->prev = prev; 1748 prev->next = first; 1749 1750 last->next = next; 1751 next->prev = last; 1752 } 1753 1754 /** 1755 * skb_queue_splice - join two skb lists, this is designed for stacks 1756 * @list: the new list to add 1757 * @head: the place to add it in the first list 1758 */ 1759 static inline void skb_queue_splice(const struct sk_buff_head *list, 1760 struct sk_buff_head *head) 1761 { 1762 if (!skb_queue_empty(list)) { 1763 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1764 head->qlen += list->qlen; 1765 } 1766 } 1767 1768 /** 1769 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1770 * @list: the new list to add 1771 * @head: the place to add it in the first list 1772 * 1773 * The list at @list is reinitialised 1774 */ 1775 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1776 struct sk_buff_head *head) 1777 { 1778 if (!skb_queue_empty(list)) { 1779 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1780 head->qlen += list->qlen; 1781 __skb_queue_head_init(list); 1782 } 1783 } 1784 1785 /** 1786 * skb_queue_splice_tail - join two skb lists, each list being a queue 1787 * @list: the new list to add 1788 * @head: the place to add it in the first list 1789 */ 1790 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1791 struct sk_buff_head *head) 1792 { 1793 if (!skb_queue_empty(list)) { 1794 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1795 head->qlen += list->qlen; 1796 } 1797 } 1798 1799 /** 1800 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1801 * @list: the new list to add 1802 * @head: the place to add it in the first list 1803 * 1804 * Each of the lists is a queue. 1805 * The list at @list is reinitialised 1806 */ 1807 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1808 struct sk_buff_head *head) 1809 { 1810 if (!skb_queue_empty(list)) { 1811 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1812 head->qlen += list->qlen; 1813 __skb_queue_head_init(list); 1814 } 1815 } 1816 1817 /** 1818 * __skb_queue_after - queue a buffer at the list head 1819 * @list: list to use 1820 * @prev: place after this buffer 1821 * @newsk: buffer to queue 1822 * 1823 * Queue a buffer int the middle of a list. This function takes no locks 1824 * and you must therefore hold required locks before calling it. 1825 * 1826 * A buffer cannot be placed on two lists at the same time. 1827 */ 1828 static inline void __skb_queue_after(struct sk_buff_head *list, 1829 struct sk_buff *prev, 1830 struct sk_buff *newsk) 1831 { 1832 __skb_insert(newsk, prev, prev->next, list); 1833 } 1834 1835 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1836 struct sk_buff_head *list); 1837 1838 static inline void __skb_queue_before(struct sk_buff_head *list, 1839 struct sk_buff *next, 1840 struct sk_buff *newsk) 1841 { 1842 __skb_insert(newsk, next->prev, next, list); 1843 } 1844 1845 /** 1846 * __skb_queue_head - queue a buffer at the list head 1847 * @list: list to use 1848 * @newsk: buffer to queue 1849 * 1850 * Queue a buffer at the start of a list. This function takes no locks 1851 * and you must therefore hold required locks before calling it. 1852 * 1853 * A buffer cannot be placed on two lists at the same time. 1854 */ 1855 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1856 static inline void __skb_queue_head(struct sk_buff_head *list, 1857 struct sk_buff *newsk) 1858 { 1859 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1860 } 1861 1862 /** 1863 * __skb_queue_tail - queue a buffer at the list tail 1864 * @list: list to use 1865 * @newsk: buffer to queue 1866 * 1867 * Queue a buffer at the end of a list. This function takes no locks 1868 * and you must therefore hold required locks before calling it. 1869 * 1870 * A buffer cannot be placed on two lists at the same time. 1871 */ 1872 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1873 static inline void __skb_queue_tail(struct sk_buff_head *list, 1874 struct sk_buff *newsk) 1875 { 1876 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1877 } 1878 1879 /* 1880 * remove sk_buff from list. _Must_ be called atomically, and with 1881 * the list known.. 1882 */ 1883 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1884 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1885 { 1886 struct sk_buff *next, *prev; 1887 1888 list->qlen--; 1889 next = skb->next; 1890 prev = skb->prev; 1891 skb->next = skb->prev = NULL; 1892 next->prev = prev; 1893 prev->next = next; 1894 } 1895 1896 /** 1897 * __skb_dequeue - remove from the head of the queue 1898 * @list: list to dequeue from 1899 * 1900 * Remove the head of the list. This function does not take any locks 1901 * so must be used with appropriate locks held only. The head item is 1902 * returned or %NULL if the list is empty. 1903 */ 1904 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1905 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1906 { 1907 struct sk_buff *skb = skb_peek(list); 1908 if (skb) 1909 __skb_unlink(skb, list); 1910 return skb; 1911 } 1912 1913 /** 1914 * __skb_dequeue_tail - remove from the tail of the queue 1915 * @list: list to dequeue from 1916 * 1917 * Remove the tail of the list. This function does not take any locks 1918 * so must be used with appropriate locks held only. The tail item is 1919 * returned or %NULL if the list is empty. 1920 */ 1921 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1922 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1923 { 1924 struct sk_buff *skb = skb_peek_tail(list); 1925 if (skb) 1926 __skb_unlink(skb, list); 1927 return skb; 1928 } 1929 1930 1931 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1932 { 1933 return skb->data_len; 1934 } 1935 1936 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1937 { 1938 return skb->len - skb->data_len; 1939 } 1940 1941 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 1942 { 1943 unsigned int i, len = 0; 1944 1945 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1946 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1947 return len; 1948 } 1949 1950 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1951 { 1952 return skb_headlen(skb) + __skb_pagelen(skb); 1953 } 1954 1955 /** 1956 * __skb_fill_page_desc - initialise a paged fragment in an skb 1957 * @skb: buffer containing fragment to be initialised 1958 * @i: paged fragment index to initialise 1959 * @page: the page to use for this fragment 1960 * @off: the offset to the data with @page 1961 * @size: the length of the data 1962 * 1963 * Initialises the @i'th fragment of @skb to point to &size bytes at 1964 * offset @off within @page. 1965 * 1966 * Does not take any additional reference on the fragment. 1967 */ 1968 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1969 struct page *page, int off, int size) 1970 { 1971 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1972 1973 /* 1974 * Propagate page pfmemalloc to the skb if we can. The problem is 1975 * that not all callers have unique ownership of the page but rely 1976 * on page_is_pfmemalloc doing the right thing(tm). 1977 */ 1978 frag->page.p = page; 1979 frag->page_offset = off; 1980 skb_frag_size_set(frag, size); 1981 1982 page = compound_head(page); 1983 if (page_is_pfmemalloc(page)) 1984 skb->pfmemalloc = true; 1985 } 1986 1987 /** 1988 * skb_fill_page_desc - initialise a paged fragment in an skb 1989 * @skb: buffer containing fragment to be initialised 1990 * @i: paged fragment index to initialise 1991 * @page: the page to use for this fragment 1992 * @off: the offset to the data with @page 1993 * @size: the length of the data 1994 * 1995 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1996 * @skb to point to @size bytes at offset @off within @page. In 1997 * addition updates @skb such that @i is the last fragment. 1998 * 1999 * Does not take any additional reference on the fragment. 2000 */ 2001 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2002 struct page *page, int off, int size) 2003 { 2004 __skb_fill_page_desc(skb, i, page, off, size); 2005 skb_shinfo(skb)->nr_frags = i + 1; 2006 } 2007 2008 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2009 int size, unsigned int truesize); 2010 2011 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2012 unsigned int truesize); 2013 2014 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 2015 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 2016 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2017 2018 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2019 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2020 { 2021 return skb->head + skb->tail; 2022 } 2023 2024 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2025 { 2026 skb->tail = skb->data - skb->head; 2027 } 2028 2029 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2030 { 2031 skb_reset_tail_pointer(skb); 2032 skb->tail += offset; 2033 } 2034 2035 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2036 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2037 { 2038 return skb->tail; 2039 } 2040 2041 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2042 { 2043 skb->tail = skb->data; 2044 } 2045 2046 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2047 { 2048 skb->tail = skb->data + offset; 2049 } 2050 2051 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2052 2053 /* 2054 * Add data to an sk_buff 2055 */ 2056 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2057 void *skb_put(struct sk_buff *skb, unsigned int len); 2058 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2059 { 2060 void *tmp = skb_tail_pointer(skb); 2061 SKB_LINEAR_ASSERT(skb); 2062 skb->tail += len; 2063 skb->len += len; 2064 return tmp; 2065 } 2066 2067 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2068 { 2069 void *tmp = __skb_put(skb, len); 2070 2071 memset(tmp, 0, len); 2072 return tmp; 2073 } 2074 2075 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2076 unsigned int len) 2077 { 2078 void *tmp = __skb_put(skb, len); 2079 2080 memcpy(tmp, data, len); 2081 return tmp; 2082 } 2083 2084 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2085 { 2086 *(u8 *)__skb_put(skb, 1) = val; 2087 } 2088 2089 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2090 { 2091 void *tmp = skb_put(skb, len); 2092 2093 memset(tmp, 0, len); 2094 2095 return tmp; 2096 } 2097 2098 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2099 unsigned int len) 2100 { 2101 void *tmp = skb_put(skb, len); 2102 2103 memcpy(tmp, data, len); 2104 2105 return tmp; 2106 } 2107 2108 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2109 { 2110 *(u8 *)skb_put(skb, 1) = val; 2111 } 2112 2113 void *skb_push(struct sk_buff *skb, unsigned int len); 2114 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2115 { 2116 skb->data -= len; 2117 skb->len += len; 2118 return skb->data; 2119 } 2120 2121 void *skb_pull(struct sk_buff *skb, unsigned int len); 2122 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2123 { 2124 skb->len -= len; 2125 BUG_ON(skb->len < skb->data_len); 2126 return skb->data += len; 2127 } 2128 2129 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2130 { 2131 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2132 } 2133 2134 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2135 2136 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2137 { 2138 if (len > skb_headlen(skb) && 2139 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2140 return NULL; 2141 skb->len -= len; 2142 return skb->data += len; 2143 } 2144 2145 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2146 { 2147 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2148 } 2149 2150 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2151 { 2152 if (likely(len <= skb_headlen(skb))) 2153 return 1; 2154 if (unlikely(len > skb->len)) 2155 return 0; 2156 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2157 } 2158 2159 void skb_condense(struct sk_buff *skb); 2160 2161 /** 2162 * skb_headroom - bytes at buffer head 2163 * @skb: buffer to check 2164 * 2165 * Return the number of bytes of free space at the head of an &sk_buff. 2166 */ 2167 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2168 { 2169 return skb->data - skb->head; 2170 } 2171 2172 /** 2173 * skb_tailroom - bytes at buffer end 2174 * @skb: buffer to check 2175 * 2176 * Return the number of bytes of free space at the tail of an sk_buff 2177 */ 2178 static inline int skb_tailroom(const struct sk_buff *skb) 2179 { 2180 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2181 } 2182 2183 /** 2184 * skb_availroom - bytes at buffer end 2185 * @skb: buffer to check 2186 * 2187 * Return the number of bytes of free space at the tail of an sk_buff 2188 * allocated by sk_stream_alloc() 2189 */ 2190 static inline int skb_availroom(const struct sk_buff *skb) 2191 { 2192 if (skb_is_nonlinear(skb)) 2193 return 0; 2194 2195 return skb->end - skb->tail - skb->reserved_tailroom; 2196 } 2197 2198 /** 2199 * skb_reserve - adjust headroom 2200 * @skb: buffer to alter 2201 * @len: bytes to move 2202 * 2203 * Increase the headroom of an empty &sk_buff by reducing the tail 2204 * room. This is only allowed for an empty buffer. 2205 */ 2206 static inline void skb_reserve(struct sk_buff *skb, int len) 2207 { 2208 skb->data += len; 2209 skb->tail += len; 2210 } 2211 2212 /** 2213 * skb_tailroom_reserve - adjust reserved_tailroom 2214 * @skb: buffer to alter 2215 * @mtu: maximum amount of headlen permitted 2216 * @needed_tailroom: minimum amount of reserved_tailroom 2217 * 2218 * Set reserved_tailroom so that headlen can be as large as possible but 2219 * not larger than mtu and tailroom cannot be smaller than 2220 * needed_tailroom. 2221 * The required headroom should already have been reserved before using 2222 * this function. 2223 */ 2224 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2225 unsigned int needed_tailroom) 2226 { 2227 SKB_LINEAR_ASSERT(skb); 2228 if (mtu < skb_tailroom(skb) - needed_tailroom) 2229 /* use at most mtu */ 2230 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2231 else 2232 /* use up to all available space */ 2233 skb->reserved_tailroom = needed_tailroom; 2234 } 2235 2236 #define ENCAP_TYPE_ETHER 0 2237 #define ENCAP_TYPE_IPPROTO 1 2238 2239 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2240 __be16 protocol) 2241 { 2242 skb->inner_protocol = protocol; 2243 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2244 } 2245 2246 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2247 __u8 ipproto) 2248 { 2249 skb->inner_ipproto = ipproto; 2250 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2251 } 2252 2253 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2254 { 2255 skb->inner_mac_header = skb->mac_header; 2256 skb->inner_network_header = skb->network_header; 2257 skb->inner_transport_header = skb->transport_header; 2258 } 2259 2260 static inline void skb_reset_mac_len(struct sk_buff *skb) 2261 { 2262 skb->mac_len = skb->network_header - skb->mac_header; 2263 } 2264 2265 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2266 *skb) 2267 { 2268 return skb->head + skb->inner_transport_header; 2269 } 2270 2271 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2272 { 2273 return skb_inner_transport_header(skb) - skb->data; 2274 } 2275 2276 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2277 { 2278 skb->inner_transport_header = skb->data - skb->head; 2279 } 2280 2281 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2282 const int offset) 2283 { 2284 skb_reset_inner_transport_header(skb); 2285 skb->inner_transport_header += offset; 2286 } 2287 2288 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2289 { 2290 return skb->head + skb->inner_network_header; 2291 } 2292 2293 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2294 { 2295 skb->inner_network_header = skb->data - skb->head; 2296 } 2297 2298 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2299 const int offset) 2300 { 2301 skb_reset_inner_network_header(skb); 2302 skb->inner_network_header += offset; 2303 } 2304 2305 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2306 { 2307 return skb->head + skb->inner_mac_header; 2308 } 2309 2310 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2311 { 2312 skb->inner_mac_header = skb->data - skb->head; 2313 } 2314 2315 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2316 const int offset) 2317 { 2318 skb_reset_inner_mac_header(skb); 2319 skb->inner_mac_header += offset; 2320 } 2321 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2322 { 2323 return skb->transport_header != (typeof(skb->transport_header))~0U; 2324 } 2325 2326 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2327 { 2328 return skb->head + skb->transport_header; 2329 } 2330 2331 static inline void skb_reset_transport_header(struct sk_buff *skb) 2332 { 2333 skb->transport_header = skb->data - skb->head; 2334 } 2335 2336 static inline void skb_set_transport_header(struct sk_buff *skb, 2337 const int offset) 2338 { 2339 skb_reset_transport_header(skb); 2340 skb->transport_header += offset; 2341 } 2342 2343 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2344 { 2345 return skb->head + skb->network_header; 2346 } 2347 2348 static inline void skb_reset_network_header(struct sk_buff *skb) 2349 { 2350 skb->network_header = skb->data - skb->head; 2351 } 2352 2353 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2354 { 2355 skb_reset_network_header(skb); 2356 skb->network_header += offset; 2357 } 2358 2359 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2360 { 2361 return skb->head + skb->mac_header; 2362 } 2363 2364 static inline int skb_mac_offset(const struct sk_buff *skb) 2365 { 2366 return skb_mac_header(skb) - skb->data; 2367 } 2368 2369 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2370 { 2371 return skb->network_header - skb->mac_header; 2372 } 2373 2374 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2375 { 2376 return skb->mac_header != (typeof(skb->mac_header))~0U; 2377 } 2378 2379 static inline void skb_reset_mac_header(struct sk_buff *skb) 2380 { 2381 skb->mac_header = skb->data - skb->head; 2382 } 2383 2384 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2385 { 2386 skb_reset_mac_header(skb); 2387 skb->mac_header += offset; 2388 } 2389 2390 static inline void skb_pop_mac_header(struct sk_buff *skb) 2391 { 2392 skb->mac_header = skb->network_header; 2393 } 2394 2395 static inline void skb_probe_transport_header(struct sk_buff *skb, 2396 const int offset_hint) 2397 { 2398 struct flow_keys_basic keys; 2399 2400 if (skb_transport_header_was_set(skb)) 2401 return; 2402 2403 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0)) 2404 skb_set_transport_header(skb, keys.control.thoff); 2405 else 2406 skb_set_transport_header(skb, offset_hint); 2407 } 2408 2409 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2410 { 2411 if (skb_mac_header_was_set(skb)) { 2412 const unsigned char *old_mac = skb_mac_header(skb); 2413 2414 skb_set_mac_header(skb, -skb->mac_len); 2415 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2416 } 2417 } 2418 2419 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2420 { 2421 return skb->csum_start - skb_headroom(skb); 2422 } 2423 2424 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2425 { 2426 return skb->head + skb->csum_start; 2427 } 2428 2429 static inline int skb_transport_offset(const struct sk_buff *skb) 2430 { 2431 return skb_transport_header(skb) - skb->data; 2432 } 2433 2434 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2435 { 2436 return skb->transport_header - skb->network_header; 2437 } 2438 2439 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2440 { 2441 return skb->inner_transport_header - skb->inner_network_header; 2442 } 2443 2444 static inline int skb_network_offset(const struct sk_buff *skb) 2445 { 2446 return skb_network_header(skb) - skb->data; 2447 } 2448 2449 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2450 { 2451 return skb_inner_network_header(skb) - skb->data; 2452 } 2453 2454 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2455 { 2456 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2457 } 2458 2459 /* 2460 * CPUs often take a performance hit when accessing unaligned memory 2461 * locations. The actual performance hit varies, it can be small if the 2462 * hardware handles it or large if we have to take an exception and fix it 2463 * in software. 2464 * 2465 * Since an ethernet header is 14 bytes network drivers often end up with 2466 * the IP header at an unaligned offset. The IP header can be aligned by 2467 * shifting the start of the packet by 2 bytes. Drivers should do this 2468 * with: 2469 * 2470 * skb_reserve(skb, NET_IP_ALIGN); 2471 * 2472 * The downside to this alignment of the IP header is that the DMA is now 2473 * unaligned. On some architectures the cost of an unaligned DMA is high 2474 * and this cost outweighs the gains made by aligning the IP header. 2475 * 2476 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2477 * to be overridden. 2478 */ 2479 #ifndef NET_IP_ALIGN 2480 #define NET_IP_ALIGN 2 2481 #endif 2482 2483 /* 2484 * The networking layer reserves some headroom in skb data (via 2485 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2486 * the header has to grow. In the default case, if the header has to grow 2487 * 32 bytes or less we avoid the reallocation. 2488 * 2489 * Unfortunately this headroom changes the DMA alignment of the resulting 2490 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2491 * on some architectures. An architecture can override this value, 2492 * perhaps setting it to a cacheline in size (since that will maintain 2493 * cacheline alignment of the DMA). It must be a power of 2. 2494 * 2495 * Various parts of the networking layer expect at least 32 bytes of 2496 * headroom, you should not reduce this. 2497 * 2498 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2499 * to reduce average number of cache lines per packet. 2500 * get_rps_cpus() for example only access one 64 bytes aligned block : 2501 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2502 */ 2503 #ifndef NET_SKB_PAD 2504 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2505 #endif 2506 2507 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2508 2509 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2510 { 2511 if (unlikely(skb_is_nonlinear(skb))) { 2512 WARN_ON(1); 2513 return; 2514 } 2515 skb->len = len; 2516 skb_set_tail_pointer(skb, len); 2517 } 2518 2519 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2520 { 2521 __skb_set_length(skb, len); 2522 } 2523 2524 void skb_trim(struct sk_buff *skb, unsigned int len); 2525 2526 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2527 { 2528 if (skb->data_len) 2529 return ___pskb_trim(skb, len); 2530 __skb_trim(skb, len); 2531 return 0; 2532 } 2533 2534 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2535 { 2536 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2537 } 2538 2539 /** 2540 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2541 * @skb: buffer to alter 2542 * @len: new length 2543 * 2544 * This is identical to pskb_trim except that the caller knows that 2545 * the skb is not cloned so we should never get an error due to out- 2546 * of-memory. 2547 */ 2548 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2549 { 2550 int err = pskb_trim(skb, len); 2551 BUG_ON(err); 2552 } 2553 2554 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2555 { 2556 unsigned int diff = len - skb->len; 2557 2558 if (skb_tailroom(skb) < diff) { 2559 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2560 GFP_ATOMIC); 2561 if (ret) 2562 return ret; 2563 } 2564 __skb_set_length(skb, len); 2565 return 0; 2566 } 2567 2568 /** 2569 * skb_orphan - orphan a buffer 2570 * @skb: buffer to orphan 2571 * 2572 * If a buffer currently has an owner then we call the owner's 2573 * destructor function and make the @skb unowned. The buffer continues 2574 * to exist but is no longer charged to its former owner. 2575 */ 2576 static inline void skb_orphan(struct sk_buff *skb) 2577 { 2578 if (skb->destructor) { 2579 skb->destructor(skb); 2580 skb->destructor = NULL; 2581 skb->sk = NULL; 2582 } else { 2583 BUG_ON(skb->sk); 2584 } 2585 } 2586 2587 /** 2588 * skb_orphan_frags - orphan the frags contained in a buffer 2589 * @skb: buffer to orphan frags from 2590 * @gfp_mask: allocation mask for replacement pages 2591 * 2592 * For each frag in the SKB which needs a destructor (i.e. has an 2593 * owner) create a copy of that frag and release the original 2594 * page by calling the destructor. 2595 */ 2596 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2597 { 2598 if (likely(!skb_zcopy(skb))) 2599 return 0; 2600 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2601 return 0; 2602 return skb_copy_ubufs(skb, gfp_mask); 2603 } 2604 2605 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2606 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2607 { 2608 if (likely(!skb_zcopy(skb))) 2609 return 0; 2610 return skb_copy_ubufs(skb, gfp_mask); 2611 } 2612 2613 /** 2614 * __skb_queue_purge - empty a list 2615 * @list: list to empty 2616 * 2617 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2618 * the list and one reference dropped. This function does not take the 2619 * list lock and the caller must hold the relevant locks to use it. 2620 */ 2621 void skb_queue_purge(struct sk_buff_head *list); 2622 static inline void __skb_queue_purge(struct sk_buff_head *list) 2623 { 2624 struct sk_buff *skb; 2625 while ((skb = __skb_dequeue(list)) != NULL) 2626 kfree_skb(skb); 2627 } 2628 2629 unsigned int skb_rbtree_purge(struct rb_root *root); 2630 2631 void *netdev_alloc_frag(unsigned int fragsz); 2632 2633 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2634 gfp_t gfp_mask); 2635 2636 /** 2637 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2638 * @dev: network device to receive on 2639 * @length: length to allocate 2640 * 2641 * Allocate a new &sk_buff and assign it a usage count of one. The 2642 * buffer has unspecified headroom built in. Users should allocate 2643 * the headroom they think they need without accounting for the 2644 * built in space. The built in space is used for optimisations. 2645 * 2646 * %NULL is returned if there is no free memory. Although this function 2647 * allocates memory it can be called from an interrupt. 2648 */ 2649 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2650 unsigned int length) 2651 { 2652 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2653 } 2654 2655 /* legacy helper around __netdev_alloc_skb() */ 2656 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2657 gfp_t gfp_mask) 2658 { 2659 return __netdev_alloc_skb(NULL, length, gfp_mask); 2660 } 2661 2662 /* legacy helper around netdev_alloc_skb() */ 2663 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2664 { 2665 return netdev_alloc_skb(NULL, length); 2666 } 2667 2668 2669 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2670 unsigned int length, gfp_t gfp) 2671 { 2672 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2673 2674 if (NET_IP_ALIGN && skb) 2675 skb_reserve(skb, NET_IP_ALIGN); 2676 return skb; 2677 } 2678 2679 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2680 unsigned int length) 2681 { 2682 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2683 } 2684 2685 static inline void skb_free_frag(void *addr) 2686 { 2687 page_frag_free(addr); 2688 } 2689 2690 void *napi_alloc_frag(unsigned int fragsz); 2691 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2692 unsigned int length, gfp_t gfp_mask); 2693 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2694 unsigned int length) 2695 { 2696 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2697 } 2698 void napi_consume_skb(struct sk_buff *skb, int budget); 2699 2700 void __kfree_skb_flush(void); 2701 void __kfree_skb_defer(struct sk_buff *skb); 2702 2703 /** 2704 * __dev_alloc_pages - allocate page for network Rx 2705 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2706 * @order: size of the allocation 2707 * 2708 * Allocate a new page. 2709 * 2710 * %NULL is returned if there is no free memory. 2711 */ 2712 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2713 unsigned int order) 2714 { 2715 /* This piece of code contains several assumptions. 2716 * 1. This is for device Rx, therefor a cold page is preferred. 2717 * 2. The expectation is the user wants a compound page. 2718 * 3. If requesting a order 0 page it will not be compound 2719 * due to the check to see if order has a value in prep_new_page 2720 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2721 * code in gfp_to_alloc_flags that should be enforcing this. 2722 */ 2723 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2724 2725 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2726 } 2727 2728 static inline struct page *dev_alloc_pages(unsigned int order) 2729 { 2730 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2731 } 2732 2733 /** 2734 * __dev_alloc_page - allocate a page for network Rx 2735 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2736 * 2737 * Allocate a new page. 2738 * 2739 * %NULL is returned if there is no free memory. 2740 */ 2741 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2742 { 2743 return __dev_alloc_pages(gfp_mask, 0); 2744 } 2745 2746 static inline struct page *dev_alloc_page(void) 2747 { 2748 return dev_alloc_pages(0); 2749 } 2750 2751 /** 2752 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2753 * @page: The page that was allocated from skb_alloc_page 2754 * @skb: The skb that may need pfmemalloc set 2755 */ 2756 static inline void skb_propagate_pfmemalloc(struct page *page, 2757 struct sk_buff *skb) 2758 { 2759 if (page_is_pfmemalloc(page)) 2760 skb->pfmemalloc = true; 2761 } 2762 2763 /** 2764 * skb_frag_page - retrieve the page referred to by a paged fragment 2765 * @frag: the paged fragment 2766 * 2767 * Returns the &struct page associated with @frag. 2768 */ 2769 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2770 { 2771 return frag->page.p; 2772 } 2773 2774 /** 2775 * __skb_frag_ref - take an addition reference on a paged fragment. 2776 * @frag: the paged fragment 2777 * 2778 * Takes an additional reference on the paged fragment @frag. 2779 */ 2780 static inline void __skb_frag_ref(skb_frag_t *frag) 2781 { 2782 get_page(skb_frag_page(frag)); 2783 } 2784 2785 /** 2786 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2787 * @skb: the buffer 2788 * @f: the fragment offset. 2789 * 2790 * Takes an additional reference on the @f'th paged fragment of @skb. 2791 */ 2792 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2793 { 2794 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2795 } 2796 2797 /** 2798 * __skb_frag_unref - release a reference on a paged fragment. 2799 * @frag: the paged fragment 2800 * 2801 * Releases a reference on the paged fragment @frag. 2802 */ 2803 static inline void __skb_frag_unref(skb_frag_t *frag) 2804 { 2805 put_page(skb_frag_page(frag)); 2806 } 2807 2808 /** 2809 * skb_frag_unref - release a reference on a paged fragment of an skb. 2810 * @skb: the buffer 2811 * @f: the fragment offset 2812 * 2813 * Releases a reference on the @f'th paged fragment of @skb. 2814 */ 2815 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2816 { 2817 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2818 } 2819 2820 /** 2821 * skb_frag_address - gets the address of the data contained in a paged fragment 2822 * @frag: the paged fragment buffer 2823 * 2824 * Returns the address of the data within @frag. The page must already 2825 * be mapped. 2826 */ 2827 static inline void *skb_frag_address(const skb_frag_t *frag) 2828 { 2829 return page_address(skb_frag_page(frag)) + frag->page_offset; 2830 } 2831 2832 /** 2833 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2834 * @frag: the paged fragment buffer 2835 * 2836 * Returns the address of the data within @frag. Checks that the page 2837 * is mapped and returns %NULL otherwise. 2838 */ 2839 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2840 { 2841 void *ptr = page_address(skb_frag_page(frag)); 2842 if (unlikely(!ptr)) 2843 return NULL; 2844 2845 return ptr + frag->page_offset; 2846 } 2847 2848 /** 2849 * __skb_frag_set_page - sets the page contained in a paged fragment 2850 * @frag: the paged fragment 2851 * @page: the page to set 2852 * 2853 * Sets the fragment @frag to contain @page. 2854 */ 2855 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2856 { 2857 frag->page.p = page; 2858 } 2859 2860 /** 2861 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2862 * @skb: the buffer 2863 * @f: the fragment offset 2864 * @page: the page to set 2865 * 2866 * Sets the @f'th fragment of @skb to contain @page. 2867 */ 2868 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2869 struct page *page) 2870 { 2871 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2872 } 2873 2874 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2875 2876 /** 2877 * skb_frag_dma_map - maps a paged fragment via the DMA API 2878 * @dev: the device to map the fragment to 2879 * @frag: the paged fragment to map 2880 * @offset: the offset within the fragment (starting at the 2881 * fragment's own offset) 2882 * @size: the number of bytes to map 2883 * @dir: the direction of the mapping (``PCI_DMA_*``) 2884 * 2885 * Maps the page associated with @frag to @device. 2886 */ 2887 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2888 const skb_frag_t *frag, 2889 size_t offset, size_t size, 2890 enum dma_data_direction dir) 2891 { 2892 return dma_map_page(dev, skb_frag_page(frag), 2893 frag->page_offset + offset, size, dir); 2894 } 2895 2896 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2897 gfp_t gfp_mask) 2898 { 2899 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2900 } 2901 2902 2903 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2904 gfp_t gfp_mask) 2905 { 2906 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2907 } 2908 2909 2910 /** 2911 * skb_clone_writable - is the header of a clone writable 2912 * @skb: buffer to check 2913 * @len: length up to which to write 2914 * 2915 * Returns true if modifying the header part of the cloned buffer 2916 * does not requires the data to be copied. 2917 */ 2918 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2919 { 2920 return !skb_header_cloned(skb) && 2921 skb_headroom(skb) + len <= skb->hdr_len; 2922 } 2923 2924 static inline int skb_try_make_writable(struct sk_buff *skb, 2925 unsigned int write_len) 2926 { 2927 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2928 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2929 } 2930 2931 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2932 int cloned) 2933 { 2934 int delta = 0; 2935 2936 if (headroom > skb_headroom(skb)) 2937 delta = headroom - skb_headroom(skb); 2938 2939 if (delta || cloned) 2940 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2941 GFP_ATOMIC); 2942 return 0; 2943 } 2944 2945 /** 2946 * skb_cow - copy header of skb when it is required 2947 * @skb: buffer to cow 2948 * @headroom: needed headroom 2949 * 2950 * If the skb passed lacks sufficient headroom or its data part 2951 * is shared, data is reallocated. If reallocation fails, an error 2952 * is returned and original skb is not changed. 2953 * 2954 * The result is skb with writable area skb->head...skb->tail 2955 * and at least @headroom of space at head. 2956 */ 2957 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2958 { 2959 return __skb_cow(skb, headroom, skb_cloned(skb)); 2960 } 2961 2962 /** 2963 * skb_cow_head - skb_cow but only making the head writable 2964 * @skb: buffer to cow 2965 * @headroom: needed headroom 2966 * 2967 * This function is identical to skb_cow except that we replace the 2968 * skb_cloned check by skb_header_cloned. It should be used when 2969 * you only need to push on some header and do not need to modify 2970 * the data. 2971 */ 2972 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2973 { 2974 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2975 } 2976 2977 /** 2978 * skb_padto - pad an skbuff up to a minimal size 2979 * @skb: buffer to pad 2980 * @len: minimal length 2981 * 2982 * Pads up a buffer to ensure the trailing bytes exist and are 2983 * blanked. If the buffer already contains sufficient data it 2984 * is untouched. Otherwise it is extended. Returns zero on 2985 * success. The skb is freed on error. 2986 */ 2987 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2988 { 2989 unsigned int size = skb->len; 2990 if (likely(size >= len)) 2991 return 0; 2992 return skb_pad(skb, len - size); 2993 } 2994 2995 /** 2996 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2997 * @skb: buffer to pad 2998 * @len: minimal length 2999 * @free_on_error: free buffer on error 3000 * 3001 * Pads up a buffer to ensure the trailing bytes exist and are 3002 * blanked. If the buffer already contains sufficient data it 3003 * is untouched. Otherwise it is extended. Returns zero on 3004 * success. The skb is freed on error if @free_on_error is true. 3005 */ 3006 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3007 bool free_on_error) 3008 { 3009 unsigned int size = skb->len; 3010 3011 if (unlikely(size < len)) { 3012 len -= size; 3013 if (__skb_pad(skb, len, free_on_error)) 3014 return -ENOMEM; 3015 __skb_put(skb, len); 3016 } 3017 return 0; 3018 } 3019 3020 /** 3021 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3022 * @skb: buffer to pad 3023 * @len: minimal length 3024 * 3025 * Pads up a buffer to ensure the trailing bytes exist and are 3026 * blanked. If the buffer already contains sufficient data it 3027 * is untouched. Otherwise it is extended. Returns zero on 3028 * success. The skb is freed on error. 3029 */ 3030 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3031 { 3032 return __skb_put_padto(skb, len, true); 3033 } 3034 3035 static inline int skb_add_data(struct sk_buff *skb, 3036 struct iov_iter *from, int copy) 3037 { 3038 const int off = skb->len; 3039 3040 if (skb->ip_summed == CHECKSUM_NONE) { 3041 __wsum csum = 0; 3042 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3043 &csum, from)) { 3044 skb->csum = csum_block_add(skb->csum, csum, off); 3045 return 0; 3046 } 3047 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3048 return 0; 3049 3050 __skb_trim(skb, off); 3051 return -EFAULT; 3052 } 3053 3054 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3055 const struct page *page, int off) 3056 { 3057 if (skb_zcopy(skb)) 3058 return false; 3059 if (i) { 3060 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3061 3062 return page == skb_frag_page(frag) && 3063 off == frag->page_offset + skb_frag_size(frag); 3064 } 3065 return false; 3066 } 3067 3068 static inline int __skb_linearize(struct sk_buff *skb) 3069 { 3070 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3071 } 3072 3073 /** 3074 * skb_linearize - convert paged skb to linear one 3075 * @skb: buffer to linarize 3076 * 3077 * If there is no free memory -ENOMEM is returned, otherwise zero 3078 * is returned and the old skb data released. 3079 */ 3080 static inline int skb_linearize(struct sk_buff *skb) 3081 { 3082 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3083 } 3084 3085 /** 3086 * skb_has_shared_frag - can any frag be overwritten 3087 * @skb: buffer to test 3088 * 3089 * Return true if the skb has at least one frag that might be modified 3090 * by an external entity (as in vmsplice()/sendfile()) 3091 */ 3092 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3093 { 3094 return skb_is_nonlinear(skb) && 3095 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3096 } 3097 3098 /** 3099 * skb_linearize_cow - make sure skb is linear and writable 3100 * @skb: buffer to process 3101 * 3102 * If there is no free memory -ENOMEM is returned, otherwise zero 3103 * is returned and the old skb data released. 3104 */ 3105 static inline int skb_linearize_cow(struct sk_buff *skb) 3106 { 3107 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3108 __skb_linearize(skb) : 0; 3109 } 3110 3111 static __always_inline void 3112 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3113 unsigned int off) 3114 { 3115 if (skb->ip_summed == CHECKSUM_COMPLETE) 3116 skb->csum = csum_block_sub(skb->csum, 3117 csum_partial(start, len, 0), off); 3118 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3119 skb_checksum_start_offset(skb) < 0) 3120 skb->ip_summed = CHECKSUM_NONE; 3121 } 3122 3123 /** 3124 * skb_postpull_rcsum - update checksum for received skb after pull 3125 * @skb: buffer to update 3126 * @start: start of data before pull 3127 * @len: length of data pulled 3128 * 3129 * After doing a pull on a received packet, you need to call this to 3130 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3131 * CHECKSUM_NONE so that it can be recomputed from scratch. 3132 */ 3133 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3134 const void *start, unsigned int len) 3135 { 3136 __skb_postpull_rcsum(skb, start, len, 0); 3137 } 3138 3139 static __always_inline void 3140 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3141 unsigned int off) 3142 { 3143 if (skb->ip_summed == CHECKSUM_COMPLETE) 3144 skb->csum = csum_block_add(skb->csum, 3145 csum_partial(start, len, 0), off); 3146 } 3147 3148 /** 3149 * skb_postpush_rcsum - update checksum for received skb after push 3150 * @skb: buffer to update 3151 * @start: start of data after push 3152 * @len: length of data pushed 3153 * 3154 * After doing a push on a received packet, you need to call this to 3155 * update the CHECKSUM_COMPLETE checksum. 3156 */ 3157 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3158 const void *start, unsigned int len) 3159 { 3160 __skb_postpush_rcsum(skb, start, len, 0); 3161 } 3162 3163 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3164 3165 /** 3166 * skb_push_rcsum - push skb and update receive checksum 3167 * @skb: buffer to update 3168 * @len: length of data pulled 3169 * 3170 * This function performs an skb_push on the packet and updates 3171 * the CHECKSUM_COMPLETE checksum. It should be used on 3172 * receive path processing instead of skb_push unless you know 3173 * that the checksum difference is zero (e.g., a valid IP header) 3174 * or you are setting ip_summed to CHECKSUM_NONE. 3175 */ 3176 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3177 { 3178 skb_push(skb, len); 3179 skb_postpush_rcsum(skb, skb->data, len); 3180 return skb->data; 3181 } 3182 3183 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3184 /** 3185 * pskb_trim_rcsum - trim received skb and update checksum 3186 * @skb: buffer to trim 3187 * @len: new length 3188 * 3189 * This is exactly the same as pskb_trim except that it ensures the 3190 * checksum of received packets are still valid after the operation. 3191 */ 3192 3193 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3194 { 3195 if (likely(len >= skb->len)) 3196 return 0; 3197 return pskb_trim_rcsum_slow(skb, len); 3198 } 3199 3200 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3201 { 3202 if (skb->ip_summed == CHECKSUM_COMPLETE) 3203 skb->ip_summed = CHECKSUM_NONE; 3204 __skb_trim(skb, len); 3205 return 0; 3206 } 3207 3208 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3209 { 3210 if (skb->ip_summed == CHECKSUM_COMPLETE) 3211 skb->ip_summed = CHECKSUM_NONE; 3212 return __skb_grow(skb, len); 3213 } 3214 3215 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3216 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3217 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3218 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3219 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3220 3221 #define skb_queue_walk(queue, skb) \ 3222 for (skb = (queue)->next; \ 3223 skb != (struct sk_buff *)(queue); \ 3224 skb = skb->next) 3225 3226 #define skb_queue_walk_safe(queue, skb, tmp) \ 3227 for (skb = (queue)->next, tmp = skb->next; \ 3228 skb != (struct sk_buff *)(queue); \ 3229 skb = tmp, tmp = skb->next) 3230 3231 #define skb_queue_walk_from(queue, skb) \ 3232 for (; skb != (struct sk_buff *)(queue); \ 3233 skb = skb->next) 3234 3235 #define skb_rbtree_walk(skb, root) \ 3236 for (skb = skb_rb_first(root); skb != NULL; \ 3237 skb = skb_rb_next(skb)) 3238 3239 #define skb_rbtree_walk_from(skb) \ 3240 for (; skb != NULL; \ 3241 skb = skb_rb_next(skb)) 3242 3243 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3244 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3245 skb = tmp) 3246 3247 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3248 for (tmp = skb->next; \ 3249 skb != (struct sk_buff *)(queue); \ 3250 skb = tmp, tmp = skb->next) 3251 3252 #define skb_queue_reverse_walk(queue, skb) \ 3253 for (skb = (queue)->prev; \ 3254 skb != (struct sk_buff *)(queue); \ 3255 skb = skb->prev) 3256 3257 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3258 for (skb = (queue)->prev, tmp = skb->prev; \ 3259 skb != (struct sk_buff *)(queue); \ 3260 skb = tmp, tmp = skb->prev) 3261 3262 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3263 for (tmp = skb->prev; \ 3264 skb != (struct sk_buff *)(queue); \ 3265 skb = tmp, tmp = skb->prev) 3266 3267 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3268 { 3269 return skb_shinfo(skb)->frag_list != NULL; 3270 } 3271 3272 static inline void skb_frag_list_init(struct sk_buff *skb) 3273 { 3274 skb_shinfo(skb)->frag_list = NULL; 3275 } 3276 3277 #define skb_walk_frags(skb, iter) \ 3278 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3279 3280 3281 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3282 const struct sk_buff *skb); 3283 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3284 struct sk_buff_head *queue, 3285 unsigned int flags, 3286 void (*destructor)(struct sock *sk, 3287 struct sk_buff *skb), 3288 int *peeked, int *off, int *err, 3289 struct sk_buff **last); 3290 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3291 void (*destructor)(struct sock *sk, 3292 struct sk_buff *skb), 3293 int *peeked, int *off, int *err, 3294 struct sk_buff **last); 3295 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3296 void (*destructor)(struct sock *sk, 3297 struct sk_buff *skb), 3298 int *peeked, int *off, int *err); 3299 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3300 int *err); 3301 __poll_t datagram_poll(struct file *file, struct socket *sock, 3302 struct poll_table_struct *wait); 3303 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3304 struct iov_iter *to, int size); 3305 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3306 struct msghdr *msg, int size) 3307 { 3308 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3309 } 3310 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3311 struct msghdr *msg); 3312 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3313 struct iov_iter *from, int len); 3314 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3315 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3316 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3317 static inline void skb_free_datagram_locked(struct sock *sk, 3318 struct sk_buff *skb) 3319 { 3320 __skb_free_datagram_locked(sk, skb, 0); 3321 } 3322 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3323 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3324 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3325 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3326 int len, __wsum csum); 3327 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3328 struct pipe_inode_info *pipe, unsigned int len, 3329 unsigned int flags); 3330 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3331 int len); 3332 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3333 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3334 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3335 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3336 int len, int hlen); 3337 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3338 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3339 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3340 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3341 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3342 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3343 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3344 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3345 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3346 int skb_vlan_pop(struct sk_buff *skb); 3347 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3348 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3349 gfp_t gfp); 3350 3351 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3352 { 3353 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3354 } 3355 3356 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3357 { 3358 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3359 } 3360 3361 struct skb_checksum_ops { 3362 __wsum (*update)(const void *mem, int len, __wsum wsum); 3363 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3364 }; 3365 3366 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3367 3368 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3369 __wsum csum, const struct skb_checksum_ops *ops); 3370 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3371 __wsum csum); 3372 3373 static inline void * __must_check 3374 __skb_header_pointer(const struct sk_buff *skb, int offset, 3375 int len, void *data, int hlen, void *buffer) 3376 { 3377 if (hlen - offset >= len) 3378 return data + offset; 3379 3380 if (!skb || 3381 skb_copy_bits(skb, offset, buffer, len) < 0) 3382 return NULL; 3383 3384 return buffer; 3385 } 3386 3387 static inline void * __must_check 3388 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3389 { 3390 return __skb_header_pointer(skb, offset, len, skb->data, 3391 skb_headlen(skb), buffer); 3392 } 3393 3394 /** 3395 * skb_needs_linearize - check if we need to linearize a given skb 3396 * depending on the given device features. 3397 * @skb: socket buffer to check 3398 * @features: net device features 3399 * 3400 * Returns true if either: 3401 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3402 * 2. skb is fragmented and the device does not support SG. 3403 */ 3404 static inline bool skb_needs_linearize(struct sk_buff *skb, 3405 netdev_features_t features) 3406 { 3407 return skb_is_nonlinear(skb) && 3408 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3409 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3410 } 3411 3412 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3413 void *to, 3414 const unsigned int len) 3415 { 3416 memcpy(to, skb->data, len); 3417 } 3418 3419 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3420 const int offset, void *to, 3421 const unsigned int len) 3422 { 3423 memcpy(to, skb->data + offset, len); 3424 } 3425 3426 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3427 const void *from, 3428 const unsigned int len) 3429 { 3430 memcpy(skb->data, from, len); 3431 } 3432 3433 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3434 const int offset, 3435 const void *from, 3436 const unsigned int len) 3437 { 3438 memcpy(skb->data + offset, from, len); 3439 } 3440 3441 void skb_init(void); 3442 3443 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3444 { 3445 return skb->tstamp; 3446 } 3447 3448 /** 3449 * skb_get_timestamp - get timestamp from a skb 3450 * @skb: skb to get stamp from 3451 * @stamp: pointer to struct timeval to store stamp in 3452 * 3453 * Timestamps are stored in the skb as offsets to a base timestamp. 3454 * This function converts the offset back to a struct timeval and stores 3455 * it in stamp. 3456 */ 3457 static inline void skb_get_timestamp(const struct sk_buff *skb, 3458 struct timeval *stamp) 3459 { 3460 *stamp = ktime_to_timeval(skb->tstamp); 3461 } 3462 3463 static inline void skb_get_timestampns(const struct sk_buff *skb, 3464 struct timespec *stamp) 3465 { 3466 *stamp = ktime_to_timespec(skb->tstamp); 3467 } 3468 3469 static inline void __net_timestamp(struct sk_buff *skb) 3470 { 3471 skb->tstamp = ktime_get_real(); 3472 } 3473 3474 static inline ktime_t net_timedelta(ktime_t t) 3475 { 3476 return ktime_sub(ktime_get_real(), t); 3477 } 3478 3479 static inline ktime_t net_invalid_timestamp(void) 3480 { 3481 return 0; 3482 } 3483 3484 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3485 { 3486 return skb_shinfo(skb)->meta_len; 3487 } 3488 3489 static inline void *skb_metadata_end(const struct sk_buff *skb) 3490 { 3491 return skb_mac_header(skb); 3492 } 3493 3494 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3495 const struct sk_buff *skb_b, 3496 u8 meta_len) 3497 { 3498 const void *a = skb_metadata_end(skb_a); 3499 const void *b = skb_metadata_end(skb_b); 3500 /* Using more efficient varaiant than plain call to memcmp(). */ 3501 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3502 u64 diffs = 0; 3503 3504 switch (meta_len) { 3505 #define __it(x, op) (x -= sizeof(u##op)) 3506 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3507 case 32: diffs |= __it_diff(a, b, 64); 3508 /* fall through */ 3509 case 24: diffs |= __it_diff(a, b, 64); 3510 /* fall through */ 3511 case 16: diffs |= __it_diff(a, b, 64); 3512 /* fall through */ 3513 case 8: diffs |= __it_diff(a, b, 64); 3514 break; 3515 case 28: diffs |= __it_diff(a, b, 64); 3516 /* fall through */ 3517 case 20: diffs |= __it_diff(a, b, 64); 3518 /* fall through */ 3519 case 12: diffs |= __it_diff(a, b, 64); 3520 /* fall through */ 3521 case 4: diffs |= __it_diff(a, b, 32); 3522 break; 3523 } 3524 return diffs; 3525 #else 3526 return memcmp(a - meta_len, b - meta_len, meta_len); 3527 #endif 3528 } 3529 3530 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3531 const struct sk_buff *skb_b) 3532 { 3533 u8 len_a = skb_metadata_len(skb_a); 3534 u8 len_b = skb_metadata_len(skb_b); 3535 3536 if (!(len_a | len_b)) 3537 return false; 3538 3539 return len_a != len_b ? 3540 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3541 } 3542 3543 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3544 { 3545 skb_shinfo(skb)->meta_len = meta_len; 3546 } 3547 3548 static inline void skb_metadata_clear(struct sk_buff *skb) 3549 { 3550 skb_metadata_set(skb, 0); 3551 } 3552 3553 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3554 3555 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3556 3557 void skb_clone_tx_timestamp(struct sk_buff *skb); 3558 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3559 3560 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3561 3562 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3563 { 3564 } 3565 3566 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3567 { 3568 return false; 3569 } 3570 3571 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3572 3573 /** 3574 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3575 * 3576 * PHY drivers may accept clones of transmitted packets for 3577 * timestamping via their phy_driver.txtstamp method. These drivers 3578 * must call this function to return the skb back to the stack with a 3579 * timestamp. 3580 * 3581 * @skb: clone of the the original outgoing packet 3582 * @hwtstamps: hardware time stamps 3583 * 3584 */ 3585 void skb_complete_tx_timestamp(struct sk_buff *skb, 3586 struct skb_shared_hwtstamps *hwtstamps); 3587 3588 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3589 struct skb_shared_hwtstamps *hwtstamps, 3590 struct sock *sk, int tstype); 3591 3592 /** 3593 * skb_tstamp_tx - queue clone of skb with send time stamps 3594 * @orig_skb: the original outgoing packet 3595 * @hwtstamps: hardware time stamps, may be NULL if not available 3596 * 3597 * If the skb has a socket associated, then this function clones the 3598 * skb (thus sharing the actual data and optional structures), stores 3599 * the optional hardware time stamping information (if non NULL) or 3600 * generates a software time stamp (otherwise), then queues the clone 3601 * to the error queue of the socket. Errors are silently ignored. 3602 */ 3603 void skb_tstamp_tx(struct sk_buff *orig_skb, 3604 struct skb_shared_hwtstamps *hwtstamps); 3605 3606 /** 3607 * skb_tx_timestamp() - Driver hook for transmit timestamping 3608 * 3609 * Ethernet MAC Drivers should call this function in their hard_xmit() 3610 * function immediately before giving the sk_buff to the MAC hardware. 3611 * 3612 * Specifically, one should make absolutely sure that this function is 3613 * called before TX completion of this packet can trigger. Otherwise 3614 * the packet could potentially already be freed. 3615 * 3616 * @skb: A socket buffer. 3617 */ 3618 static inline void skb_tx_timestamp(struct sk_buff *skb) 3619 { 3620 skb_clone_tx_timestamp(skb); 3621 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3622 skb_tstamp_tx(skb, NULL); 3623 } 3624 3625 /** 3626 * skb_complete_wifi_ack - deliver skb with wifi status 3627 * 3628 * @skb: the original outgoing packet 3629 * @acked: ack status 3630 * 3631 */ 3632 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3633 3634 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3635 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3636 3637 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3638 { 3639 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3640 skb->csum_valid || 3641 (skb->ip_summed == CHECKSUM_PARTIAL && 3642 skb_checksum_start_offset(skb) >= 0)); 3643 } 3644 3645 /** 3646 * skb_checksum_complete - Calculate checksum of an entire packet 3647 * @skb: packet to process 3648 * 3649 * This function calculates the checksum over the entire packet plus 3650 * the value of skb->csum. The latter can be used to supply the 3651 * checksum of a pseudo header as used by TCP/UDP. It returns the 3652 * checksum. 3653 * 3654 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3655 * this function can be used to verify that checksum on received 3656 * packets. In that case the function should return zero if the 3657 * checksum is correct. In particular, this function will return zero 3658 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3659 * hardware has already verified the correctness of the checksum. 3660 */ 3661 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3662 { 3663 return skb_csum_unnecessary(skb) ? 3664 0 : __skb_checksum_complete(skb); 3665 } 3666 3667 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3668 { 3669 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3670 if (skb->csum_level == 0) 3671 skb->ip_summed = CHECKSUM_NONE; 3672 else 3673 skb->csum_level--; 3674 } 3675 } 3676 3677 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3678 { 3679 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3680 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3681 skb->csum_level++; 3682 } else if (skb->ip_summed == CHECKSUM_NONE) { 3683 skb->ip_summed = CHECKSUM_UNNECESSARY; 3684 skb->csum_level = 0; 3685 } 3686 } 3687 3688 /* Check if we need to perform checksum complete validation. 3689 * 3690 * Returns true if checksum complete is needed, false otherwise 3691 * (either checksum is unnecessary or zero checksum is allowed). 3692 */ 3693 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3694 bool zero_okay, 3695 __sum16 check) 3696 { 3697 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3698 skb->csum_valid = 1; 3699 __skb_decr_checksum_unnecessary(skb); 3700 return false; 3701 } 3702 3703 return true; 3704 } 3705 3706 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3707 * in checksum_init. 3708 */ 3709 #define CHECKSUM_BREAK 76 3710 3711 /* Unset checksum-complete 3712 * 3713 * Unset checksum complete can be done when packet is being modified 3714 * (uncompressed for instance) and checksum-complete value is 3715 * invalidated. 3716 */ 3717 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3718 { 3719 if (skb->ip_summed == CHECKSUM_COMPLETE) 3720 skb->ip_summed = CHECKSUM_NONE; 3721 } 3722 3723 /* Validate (init) checksum based on checksum complete. 3724 * 3725 * Return values: 3726 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3727 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3728 * checksum is stored in skb->csum for use in __skb_checksum_complete 3729 * non-zero: value of invalid checksum 3730 * 3731 */ 3732 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3733 bool complete, 3734 __wsum psum) 3735 { 3736 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3737 if (!csum_fold(csum_add(psum, skb->csum))) { 3738 skb->csum_valid = 1; 3739 return 0; 3740 } 3741 } 3742 3743 skb->csum = psum; 3744 3745 if (complete || skb->len <= CHECKSUM_BREAK) { 3746 __sum16 csum; 3747 3748 csum = __skb_checksum_complete(skb); 3749 skb->csum_valid = !csum; 3750 return csum; 3751 } 3752 3753 return 0; 3754 } 3755 3756 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3757 { 3758 return 0; 3759 } 3760 3761 /* Perform checksum validate (init). Note that this is a macro since we only 3762 * want to calculate the pseudo header which is an input function if necessary. 3763 * First we try to validate without any computation (checksum unnecessary) and 3764 * then calculate based on checksum complete calling the function to compute 3765 * pseudo header. 3766 * 3767 * Return values: 3768 * 0: checksum is validated or try to in skb_checksum_complete 3769 * non-zero: value of invalid checksum 3770 */ 3771 #define __skb_checksum_validate(skb, proto, complete, \ 3772 zero_okay, check, compute_pseudo) \ 3773 ({ \ 3774 __sum16 __ret = 0; \ 3775 skb->csum_valid = 0; \ 3776 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3777 __ret = __skb_checksum_validate_complete(skb, \ 3778 complete, compute_pseudo(skb, proto)); \ 3779 __ret; \ 3780 }) 3781 3782 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3783 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3784 3785 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3786 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3787 3788 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3789 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3790 3791 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3792 compute_pseudo) \ 3793 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3794 3795 #define skb_checksum_simple_validate(skb) \ 3796 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3797 3798 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3799 { 3800 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3801 } 3802 3803 static inline void __skb_checksum_convert(struct sk_buff *skb, 3804 __sum16 check, __wsum pseudo) 3805 { 3806 skb->csum = ~pseudo; 3807 skb->ip_summed = CHECKSUM_COMPLETE; 3808 } 3809 3810 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3811 do { \ 3812 if (__skb_checksum_convert_check(skb)) \ 3813 __skb_checksum_convert(skb, check, \ 3814 compute_pseudo(skb, proto)); \ 3815 } while (0) 3816 3817 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3818 u16 start, u16 offset) 3819 { 3820 skb->ip_summed = CHECKSUM_PARTIAL; 3821 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3822 skb->csum_offset = offset - start; 3823 } 3824 3825 /* Update skbuf and packet to reflect the remote checksum offload operation. 3826 * When called, ptr indicates the starting point for skb->csum when 3827 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3828 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3829 */ 3830 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3831 int start, int offset, bool nopartial) 3832 { 3833 __wsum delta; 3834 3835 if (!nopartial) { 3836 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3837 return; 3838 } 3839 3840 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3841 __skb_checksum_complete(skb); 3842 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3843 } 3844 3845 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3846 3847 /* Adjust skb->csum since we changed the packet */ 3848 skb->csum = csum_add(skb->csum, delta); 3849 } 3850 3851 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3852 { 3853 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3854 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3855 #else 3856 return NULL; 3857 #endif 3858 } 3859 3860 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3861 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3862 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3863 { 3864 if (nfct && atomic_dec_and_test(&nfct->use)) 3865 nf_conntrack_destroy(nfct); 3866 } 3867 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3868 { 3869 if (nfct) 3870 atomic_inc(&nfct->use); 3871 } 3872 #endif 3873 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3874 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3875 { 3876 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3877 kfree(nf_bridge); 3878 } 3879 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3880 { 3881 if (nf_bridge) 3882 refcount_inc(&nf_bridge->use); 3883 } 3884 #endif /* CONFIG_BRIDGE_NETFILTER */ 3885 static inline void nf_reset(struct sk_buff *skb) 3886 { 3887 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3888 nf_conntrack_put(skb_nfct(skb)); 3889 skb->_nfct = 0; 3890 #endif 3891 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3892 nf_bridge_put(skb->nf_bridge); 3893 skb->nf_bridge = NULL; 3894 #endif 3895 } 3896 3897 static inline void nf_reset_trace(struct sk_buff *skb) 3898 { 3899 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3900 skb->nf_trace = 0; 3901 #endif 3902 } 3903 3904 static inline void ipvs_reset(struct sk_buff *skb) 3905 { 3906 #if IS_ENABLED(CONFIG_IP_VS) 3907 skb->ipvs_property = 0; 3908 #endif 3909 } 3910 3911 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3912 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3913 bool copy) 3914 { 3915 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3916 dst->_nfct = src->_nfct; 3917 nf_conntrack_get(skb_nfct(src)); 3918 #endif 3919 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3920 dst->nf_bridge = src->nf_bridge; 3921 nf_bridge_get(src->nf_bridge); 3922 #endif 3923 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3924 if (copy) 3925 dst->nf_trace = src->nf_trace; 3926 #endif 3927 } 3928 3929 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3930 { 3931 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3932 nf_conntrack_put(skb_nfct(dst)); 3933 #endif 3934 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3935 nf_bridge_put(dst->nf_bridge); 3936 #endif 3937 __nf_copy(dst, src, true); 3938 } 3939 3940 #ifdef CONFIG_NETWORK_SECMARK 3941 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3942 { 3943 to->secmark = from->secmark; 3944 } 3945 3946 static inline void skb_init_secmark(struct sk_buff *skb) 3947 { 3948 skb->secmark = 0; 3949 } 3950 #else 3951 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3952 { } 3953 3954 static inline void skb_init_secmark(struct sk_buff *skb) 3955 { } 3956 #endif 3957 3958 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3959 { 3960 return !skb->destructor && 3961 #if IS_ENABLED(CONFIG_XFRM) 3962 !skb->sp && 3963 #endif 3964 !skb_nfct(skb) && 3965 !skb->_skb_refdst && 3966 !skb_has_frag_list(skb); 3967 } 3968 3969 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3970 { 3971 skb->queue_mapping = queue_mapping; 3972 } 3973 3974 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3975 { 3976 return skb->queue_mapping; 3977 } 3978 3979 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3980 { 3981 to->queue_mapping = from->queue_mapping; 3982 } 3983 3984 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3985 { 3986 skb->queue_mapping = rx_queue + 1; 3987 } 3988 3989 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3990 { 3991 return skb->queue_mapping - 1; 3992 } 3993 3994 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3995 { 3996 return skb->queue_mapping != 0; 3997 } 3998 3999 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4000 { 4001 skb->dst_pending_confirm = val; 4002 } 4003 4004 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4005 { 4006 return skb->dst_pending_confirm != 0; 4007 } 4008 4009 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 4010 { 4011 #ifdef CONFIG_XFRM 4012 return skb->sp; 4013 #else 4014 return NULL; 4015 #endif 4016 } 4017 4018 /* Keeps track of mac header offset relative to skb->head. 4019 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4020 * For non-tunnel skb it points to skb_mac_header() and for 4021 * tunnel skb it points to outer mac header. 4022 * Keeps track of level of encapsulation of network headers. 4023 */ 4024 struct skb_gso_cb { 4025 union { 4026 int mac_offset; 4027 int data_offset; 4028 }; 4029 int encap_level; 4030 __wsum csum; 4031 __u16 csum_start; 4032 }; 4033 #define SKB_SGO_CB_OFFSET 32 4034 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4035 4036 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4037 { 4038 return (skb_mac_header(inner_skb) - inner_skb->head) - 4039 SKB_GSO_CB(inner_skb)->mac_offset; 4040 } 4041 4042 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4043 { 4044 int new_headroom, headroom; 4045 int ret; 4046 4047 headroom = skb_headroom(skb); 4048 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4049 if (ret) 4050 return ret; 4051 4052 new_headroom = skb_headroom(skb); 4053 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4054 return 0; 4055 } 4056 4057 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4058 { 4059 /* Do not update partial checksums if remote checksum is enabled. */ 4060 if (skb->remcsum_offload) 4061 return; 4062 4063 SKB_GSO_CB(skb)->csum = res; 4064 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4065 } 4066 4067 /* Compute the checksum for a gso segment. First compute the checksum value 4068 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4069 * then add in skb->csum (checksum from csum_start to end of packet). 4070 * skb->csum and csum_start are then updated to reflect the checksum of the 4071 * resultant packet starting from the transport header-- the resultant checksum 4072 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4073 * header. 4074 */ 4075 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4076 { 4077 unsigned char *csum_start = skb_transport_header(skb); 4078 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4079 __wsum partial = SKB_GSO_CB(skb)->csum; 4080 4081 SKB_GSO_CB(skb)->csum = res; 4082 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4083 4084 return csum_fold(csum_partial(csum_start, plen, partial)); 4085 } 4086 4087 static inline bool skb_is_gso(const struct sk_buff *skb) 4088 { 4089 return skb_shinfo(skb)->gso_size; 4090 } 4091 4092 /* Note: Should be called only if skb_is_gso(skb) is true */ 4093 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4094 { 4095 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4096 } 4097 4098 /* Note: Should be called only if skb_is_gso(skb) is true */ 4099 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4100 { 4101 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4102 } 4103 4104 static inline void skb_gso_reset(struct sk_buff *skb) 4105 { 4106 skb_shinfo(skb)->gso_size = 0; 4107 skb_shinfo(skb)->gso_segs = 0; 4108 skb_shinfo(skb)->gso_type = 0; 4109 } 4110 4111 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4112 u16 increment) 4113 { 4114 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4115 return; 4116 shinfo->gso_size += increment; 4117 } 4118 4119 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4120 u16 decrement) 4121 { 4122 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4123 return; 4124 shinfo->gso_size -= decrement; 4125 } 4126 4127 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4128 4129 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4130 { 4131 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4132 * wanted then gso_type will be set. */ 4133 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4134 4135 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4136 unlikely(shinfo->gso_type == 0)) { 4137 __skb_warn_lro_forwarding(skb); 4138 return true; 4139 } 4140 return false; 4141 } 4142 4143 static inline void skb_forward_csum(struct sk_buff *skb) 4144 { 4145 /* Unfortunately we don't support this one. Any brave souls? */ 4146 if (skb->ip_summed == CHECKSUM_COMPLETE) 4147 skb->ip_summed = CHECKSUM_NONE; 4148 } 4149 4150 /** 4151 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4152 * @skb: skb to check 4153 * 4154 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4155 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4156 * use this helper, to document places where we make this assertion. 4157 */ 4158 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4159 { 4160 #ifdef DEBUG 4161 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4162 #endif 4163 } 4164 4165 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4166 4167 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4168 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4169 unsigned int transport_len, 4170 __sum16(*skb_chkf)(struct sk_buff *skb)); 4171 4172 /** 4173 * skb_head_is_locked - Determine if the skb->head is locked down 4174 * @skb: skb to check 4175 * 4176 * The head on skbs build around a head frag can be removed if they are 4177 * not cloned. This function returns true if the skb head is locked down 4178 * due to either being allocated via kmalloc, or by being a clone with 4179 * multiple references to the head. 4180 */ 4181 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4182 { 4183 return !skb->head_frag || skb_cloned(skb); 4184 } 4185 4186 /* Local Checksum Offload. 4187 * Compute outer checksum based on the assumption that the 4188 * inner checksum will be offloaded later. 4189 * See Documentation/networking/checksum-offloads.txt for 4190 * explanation of how this works. 4191 * Fill in outer checksum adjustment (e.g. with sum of outer 4192 * pseudo-header) before calling. 4193 * Also ensure that inner checksum is in linear data area. 4194 */ 4195 static inline __wsum lco_csum(struct sk_buff *skb) 4196 { 4197 unsigned char *csum_start = skb_checksum_start(skb); 4198 unsigned char *l4_hdr = skb_transport_header(skb); 4199 __wsum partial; 4200 4201 /* Start with complement of inner checksum adjustment */ 4202 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4203 skb->csum_offset)); 4204 4205 /* Add in checksum of our headers (incl. outer checksum 4206 * adjustment filled in by caller) and return result. 4207 */ 4208 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4209 } 4210 4211 #endif /* __KERNEL__ */ 4212 #endif /* _LINUX_SKBUFF_H */ 4213