xref: /linux-6.15/include/linux/skbuff.h (revision 7fcab099)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 /* Don't change this without changing skb_csum_unnecessary! */
33 #define CHECKSUM_NONE 0
34 #define CHECKSUM_UNNECESSARY 1
35 #define CHECKSUM_COMPLETE 2
36 #define CHECKSUM_PARTIAL 3
37 
38 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
39 				 ~(SMP_CACHE_BYTES - 1))
40 #define SKB_WITH_OVERHEAD(X)	\
41 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
42 #define SKB_MAX_ORDER(X, ORDER) \
43 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
44 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
46 
47 /* A. Checksumming of received packets by device.
48  *
49  *	NONE: device failed to checksum this packet.
50  *		skb->csum is undefined.
51  *
52  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
53  *		skb->csum is undefined.
54  *	      It is bad option, but, unfortunately, many of vendors do this.
55  *	      Apparently with secret goal to sell you new device, when you
56  *	      will add new protocol to your host. F.e. IPv6. 8)
57  *
58  *	COMPLETE: the most generic way. Device supplied checksum of _all_
59  *	    the packet as seen by netif_rx in skb->csum.
60  *	    NOTE: Even if device supports only some protocols, but
61  *	    is able to produce some skb->csum, it MUST use COMPLETE,
62  *	    not UNNECESSARY.
63  *
64  *	PARTIAL: identical to the case for output below.  This may occur
65  *	    on a packet received directly from another Linux OS, e.g.,
66  *	    a virtualised Linux kernel on the same host.  The packet can
67  *	    be treated in the same way as UNNECESSARY except that on
68  *	    output (i.e., forwarding) the checksum must be filled in
69  *	    by the OS or the hardware.
70  *
71  * B. Checksumming on output.
72  *
73  *	NONE: skb is checksummed by protocol or csum is not required.
74  *
75  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
76  *	from skb->csum_start to the end and to record the checksum
77  *	at skb->csum_start + skb->csum_offset.
78  *
79  *	Device must show its capabilities in dev->features, set
80  *	at device setup time.
81  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
82  *			  everything.
83  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
84  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
85  *			  TCP/UDP over IPv4. Sigh. Vendors like this
86  *			  way by an unknown reason. Though, see comment above
87  *			  about CHECKSUM_UNNECESSARY. 8)
88  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
89  *
90  *	Any questions? No questions, good. 		--ANK
91  */
92 
93 struct net_device;
94 struct scatterlist;
95 struct pipe_inode_info;
96 
97 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
98 struct nf_conntrack {
99 	atomic_t use;
100 };
101 #endif
102 
103 #ifdef CONFIG_BRIDGE_NETFILTER
104 struct nf_bridge_info {
105 	atomic_t use;
106 	struct net_device *physindev;
107 	struct net_device *physoutdev;
108 	unsigned int mask;
109 	unsigned long data[32 / sizeof(unsigned long)];
110 };
111 #endif
112 
113 struct sk_buff_head {
114 	/* These two members must be first. */
115 	struct sk_buff	*next;
116 	struct sk_buff	*prev;
117 
118 	__u32		qlen;
119 	spinlock_t	lock;
120 };
121 
122 struct sk_buff;
123 
124 /* To allow 64K frame to be packed as single skb without frag_list */
125 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
126 
127 typedef struct skb_frag_struct skb_frag_t;
128 
129 struct skb_frag_struct {
130 	struct page *page;
131 	__u32 page_offset;
132 	__u32 size;
133 };
134 
135 #define HAVE_HW_TIME_STAMP
136 
137 /**
138  * struct skb_shared_hwtstamps - hardware time stamps
139  * @hwtstamp:	hardware time stamp transformed into duration
140  *		since arbitrary point in time
141  * @syststamp:	hwtstamp transformed to system time base
142  *
143  * Software time stamps generated by ktime_get_real() are stored in
144  * skb->tstamp. The relation between the different kinds of time
145  * stamps is as follows:
146  *
147  * syststamp and tstamp can be compared against each other in
148  * arbitrary combinations.  The accuracy of a
149  * syststamp/tstamp/"syststamp from other device" comparison is
150  * limited by the accuracy of the transformation into system time
151  * base. This depends on the device driver and its underlying
152  * hardware.
153  *
154  * hwtstamps can only be compared against other hwtstamps from
155  * the same device.
156  *
157  * This structure is attached to packets as part of the
158  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
159  */
160 struct skb_shared_hwtstamps {
161 	ktime_t	hwtstamp;
162 	ktime_t	syststamp;
163 };
164 
165 /**
166  * struct skb_shared_tx - instructions for time stamping of outgoing packets
167  * @hardware:		generate hardware time stamp
168  * @software:		generate software time stamp
169  * @in_progress:	device driver is going to provide
170  *			hardware time stamp
171  * @flags:		all shared_tx flags
172  *
173  * These flags are attached to packets as part of the
174  * &skb_shared_info. Use skb_tx() to get a pointer.
175  */
176 union skb_shared_tx {
177 	struct {
178 		__u8	hardware:1,
179 			software:1,
180 			in_progress:1;
181 	};
182 	__u8 flags;
183 };
184 
185 /* This data is invariant across clones and lives at
186  * the end of the header data, ie. at skb->end.
187  */
188 struct skb_shared_info {
189 	atomic_t	dataref;
190 	unsigned short	nr_frags;
191 	unsigned short	gso_size;
192 #ifdef CONFIG_HAS_DMA
193 	dma_addr_t	dma_head;
194 #endif
195 	/* Warning: this field is not always filled in (UFO)! */
196 	unsigned short	gso_segs;
197 	unsigned short  gso_type;
198 	__be32          ip6_frag_id;
199 	union skb_shared_tx tx_flags;
200 	struct sk_buff	*frag_list;
201 	struct skb_shared_hwtstamps hwtstamps;
202 	skb_frag_t	frags[MAX_SKB_FRAGS];
203 #ifdef CONFIG_HAS_DMA
204 	dma_addr_t	dma_maps[MAX_SKB_FRAGS];
205 #endif
206 	/* Intermediate layers must ensure that destructor_arg
207 	 * remains valid until skb destructor */
208 	void *		destructor_arg;
209 };
210 
211 /* We divide dataref into two halves.  The higher 16 bits hold references
212  * to the payload part of skb->data.  The lower 16 bits hold references to
213  * the entire skb->data.  A clone of a headerless skb holds the length of
214  * the header in skb->hdr_len.
215  *
216  * All users must obey the rule that the skb->data reference count must be
217  * greater than or equal to the payload reference count.
218  *
219  * Holding a reference to the payload part means that the user does not
220  * care about modifications to the header part of skb->data.
221  */
222 #define SKB_DATAREF_SHIFT 16
223 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
224 
225 
226 enum {
227 	SKB_FCLONE_UNAVAILABLE,
228 	SKB_FCLONE_ORIG,
229 	SKB_FCLONE_CLONE,
230 };
231 
232 enum {
233 	SKB_GSO_TCPV4 = 1 << 0,
234 	SKB_GSO_UDP = 1 << 1,
235 
236 	/* This indicates the skb is from an untrusted source. */
237 	SKB_GSO_DODGY = 1 << 2,
238 
239 	/* This indicates the tcp segment has CWR set. */
240 	SKB_GSO_TCP_ECN = 1 << 3,
241 
242 	SKB_GSO_TCPV6 = 1 << 4,
243 
244 	SKB_GSO_FCOE = 1 << 5,
245 };
246 
247 #if BITS_PER_LONG > 32
248 #define NET_SKBUFF_DATA_USES_OFFSET 1
249 #endif
250 
251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
252 typedef unsigned int sk_buff_data_t;
253 #else
254 typedef unsigned char *sk_buff_data_t;
255 #endif
256 
257 /**
258  *	struct sk_buff - socket buffer
259  *	@next: Next buffer in list
260  *	@prev: Previous buffer in list
261  *	@sk: Socket we are owned by
262  *	@tstamp: Time we arrived
263  *	@dev: Device we arrived on/are leaving by
264  *	@transport_header: Transport layer header
265  *	@network_header: Network layer header
266  *	@mac_header: Link layer header
267  *	@dst: destination entry
268  *	@sp: the security path, used for xfrm
269  *	@cb: Control buffer. Free for use by every layer. Put private vars here
270  *	@len: Length of actual data
271  *	@data_len: Data length
272  *	@mac_len: Length of link layer header
273  *	@hdr_len: writable header length of cloned skb
274  *	@csum: Checksum (must include start/offset pair)
275  *	@csum_start: Offset from skb->head where checksumming should start
276  *	@csum_offset: Offset from csum_start where checksum should be stored
277  *	@local_df: allow local fragmentation
278  *	@cloned: Head may be cloned (check refcnt to be sure)
279  *	@nohdr: Payload reference only, must not modify header
280  *	@pkt_type: Packet class
281  *	@fclone: skbuff clone status
282  *	@ip_summed: Driver fed us an IP checksum
283  *	@priority: Packet queueing priority
284  *	@users: User count - see {datagram,tcp}.c
285  *	@protocol: Packet protocol from driver
286  *	@truesize: Buffer size
287  *	@head: Head of buffer
288  *	@data: Data head pointer
289  *	@tail: Tail pointer
290  *	@end: End pointer
291  *	@destructor: Destruct function
292  *	@mark: Generic packet mark
293  *	@nfct: Associated connection, if any
294  *	@ipvs_property: skbuff is owned by ipvs
295  *	@peeked: this packet has been seen already, so stats have been
296  *		done for it, don't do them again
297  *	@nf_trace: netfilter packet trace flag
298  *	@nfctinfo: Relationship of this skb to the connection
299  *	@nfct_reasm: netfilter conntrack re-assembly pointer
300  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
301  *	@iif: ifindex of device we arrived on
302  *	@queue_mapping: Queue mapping for multiqueue devices
303  *	@tc_index: Traffic control index
304  *	@tc_verd: traffic control verdict
305  *	@ndisc_nodetype: router type (from link layer)
306  *	@do_not_encrypt: set to prevent encryption of this frame
307  *	@dma_cookie: a cookie to one of several possible DMA operations
308  *		done by skb DMA functions
309  *	@secmark: security marking
310  *	@vlan_tci: vlan tag control information
311  */
312 
313 struct sk_buff {
314 	/* These two members must be first. */
315 	struct sk_buff		*next;
316 	struct sk_buff		*prev;
317 
318 	struct sock		*sk;
319 	ktime_t			tstamp;
320 	struct net_device	*dev;
321 
322 	unsigned long		_skb_dst;
323 #ifdef CONFIG_XFRM
324 	struct	sec_path	*sp;
325 #endif
326 	/*
327 	 * This is the control buffer. It is free to use for every
328 	 * layer. Please put your private variables there. If you
329 	 * want to keep them across layers you have to do a skb_clone()
330 	 * first. This is owned by whoever has the skb queued ATM.
331 	 */
332 	char			cb[48];
333 
334 	unsigned int		len,
335 				data_len;
336 	__u16			mac_len,
337 				hdr_len;
338 	union {
339 		__wsum		csum;
340 		struct {
341 			__u16	csum_start;
342 			__u16	csum_offset;
343 		};
344 	};
345 	__u32			priority;
346 	__u8			local_df:1,
347 				cloned:1,
348 				ip_summed:2,
349 				nohdr:1,
350 				nfctinfo:3;
351 	__u8			pkt_type:3,
352 				fclone:2,
353 				ipvs_property:1,
354 				peeked:1,
355 				nf_trace:1;
356 	__be16			protocol;
357 
358 	void			(*destructor)(struct sk_buff *skb);
359 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
360 	struct nf_conntrack	*nfct;
361 	struct sk_buff		*nfct_reasm;
362 #endif
363 #ifdef CONFIG_BRIDGE_NETFILTER
364 	struct nf_bridge_info	*nf_bridge;
365 #endif
366 
367 	int			iif;
368 	__u16			queue_mapping;
369 #ifdef CONFIG_NET_SCHED
370 	__u16			tc_index;	/* traffic control index */
371 #ifdef CONFIG_NET_CLS_ACT
372 	__u16			tc_verd;	/* traffic control verdict */
373 #endif
374 #endif
375 #ifdef CONFIG_IPV6_NDISC_NODETYPE
376 	__u8			ndisc_nodetype:2;
377 #endif
378 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
379 	__u8			do_not_encrypt:1;
380 #endif
381 	/* 0/13/14 bit hole */
382 
383 #ifdef CONFIG_NET_DMA
384 	dma_cookie_t		dma_cookie;
385 #endif
386 #ifdef CONFIG_NETWORK_SECMARK
387 	__u32			secmark;
388 #endif
389 
390 	__u32			mark;
391 
392 	__u16			vlan_tci;
393 
394 	sk_buff_data_t		transport_header;
395 	sk_buff_data_t		network_header;
396 	sk_buff_data_t		mac_header;
397 	/* These elements must be at the end, see alloc_skb() for details.  */
398 	sk_buff_data_t		tail;
399 	sk_buff_data_t		end;
400 	unsigned char		*head,
401 				*data;
402 	unsigned int		truesize;
403 	atomic_t		users;
404 };
405 
406 #ifdef __KERNEL__
407 /*
408  *	Handling routines are only of interest to the kernel
409  */
410 #include <linux/slab.h>
411 
412 #include <asm/system.h>
413 
414 #ifdef CONFIG_HAS_DMA
415 #include <linux/dma-mapping.h>
416 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
417 		       enum dma_data_direction dir);
418 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
419 			  enum dma_data_direction dir);
420 #endif
421 
422 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
423 {
424 	return (struct dst_entry *)skb->_skb_dst;
425 }
426 
427 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
428 {
429 	skb->_skb_dst = (unsigned long)dst;
430 }
431 
432 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
433 {
434 	return (struct rtable *)skb_dst(skb);
435 }
436 
437 extern void kfree_skb(struct sk_buff *skb);
438 extern void consume_skb(struct sk_buff *skb);
439 extern void	       __kfree_skb(struct sk_buff *skb);
440 extern struct sk_buff *__alloc_skb(unsigned int size,
441 				   gfp_t priority, int fclone, int node);
442 static inline struct sk_buff *alloc_skb(unsigned int size,
443 					gfp_t priority)
444 {
445 	return __alloc_skb(size, priority, 0, -1);
446 }
447 
448 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
449 					       gfp_t priority)
450 {
451 	return __alloc_skb(size, priority, 1, -1);
452 }
453 
454 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
455 
456 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
457 extern struct sk_buff *skb_clone(struct sk_buff *skb,
458 				 gfp_t priority);
459 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
460 				gfp_t priority);
461 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
462 				 gfp_t gfp_mask);
463 extern int	       pskb_expand_head(struct sk_buff *skb,
464 					int nhead, int ntail,
465 					gfp_t gfp_mask);
466 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
467 					    unsigned int headroom);
468 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
469 				       int newheadroom, int newtailroom,
470 				       gfp_t priority);
471 extern int	       skb_to_sgvec(struct sk_buff *skb,
472 				    struct scatterlist *sg, int offset,
473 				    int len);
474 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
475 				    struct sk_buff **trailer);
476 extern int	       skb_pad(struct sk_buff *skb, int pad);
477 #define dev_kfree_skb(a)	consume_skb(a)
478 #define dev_consume_skb(a)	kfree_skb_clean(a)
479 extern void	      skb_over_panic(struct sk_buff *skb, int len,
480 				     void *here);
481 extern void	      skb_under_panic(struct sk_buff *skb, int len,
482 				      void *here);
483 
484 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
485 			int getfrag(void *from, char *to, int offset,
486 			int len,int odd, struct sk_buff *skb),
487 			void *from, int length);
488 
489 struct skb_seq_state
490 {
491 	__u32		lower_offset;
492 	__u32		upper_offset;
493 	__u32		frag_idx;
494 	__u32		stepped_offset;
495 	struct sk_buff	*root_skb;
496 	struct sk_buff	*cur_skb;
497 	__u8		*frag_data;
498 };
499 
500 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
501 					   unsigned int from, unsigned int to,
502 					   struct skb_seq_state *st);
503 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
504 				   struct skb_seq_state *st);
505 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
506 
507 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
508 				    unsigned int to, struct ts_config *config,
509 				    struct ts_state *state);
510 
511 #ifdef NET_SKBUFF_DATA_USES_OFFSET
512 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
513 {
514 	return skb->head + skb->end;
515 }
516 #else
517 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
518 {
519 	return skb->end;
520 }
521 #endif
522 
523 /* Internal */
524 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
525 
526 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
527 {
528 	return &skb_shinfo(skb)->hwtstamps;
529 }
530 
531 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
532 {
533 	return &skb_shinfo(skb)->tx_flags;
534 }
535 
536 /**
537  *	skb_queue_empty - check if a queue is empty
538  *	@list: queue head
539  *
540  *	Returns true if the queue is empty, false otherwise.
541  */
542 static inline int skb_queue_empty(const struct sk_buff_head *list)
543 {
544 	return list->next == (struct sk_buff *)list;
545 }
546 
547 /**
548  *	skb_queue_is_last - check if skb is the last entry in the queue
549  *	@list: queue head
550  *	@skb: buffer
551  *
552  *	Returns true if @skb is the last buffer on the list.
553  */
554 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
555 				     const struct sk_buff *skb)
556 {
557 	return (skb->next == (struct sk_buff *) list);
558 }
559 
560 /**
561  *	skb_queue_is_first - check if skb is the first entry in the queue
562  *	@list: queue head
563  *	@skb: buffer
564  *
565  *	Returns true if @skb is the first buffer on the list.
566  */
567 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
568 				      const struct sk_buff *skb)
569 {
570 	return (skb->prev == (struct sk_buff *) list);
571 }
572 
573 /**
574  *	skb_queue_next - return the next packet in the queue
575  *	@list: queue head
576  *	@skb: current buffer
577  *
578  *	Return the next packet in @list after @skb.  It is only valid to
579  *	call this if skb_queue_is_last() evaluates to false.
580  */
581 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
582 					     const struct sk_buff *skb)
583 {
584 	/* This BUG_ON may seem severe, but if we just return then we
585 	 * are going to dereference garbage.
586 	 */
587 	BUG_ON(skb_queue_is_last(list, skb));
588 	return skb->next;
589 }
590 
591 /**
592  *	skb_queue_prev - return the prev packet in the queue
593  *	@list: queue head
594  *	@skb: current buffer
595  *
596  *	Return the prev packet in @list before @skb.  It is only valid to
597  *	call this if skb_queue_is_first() evaluates to false.
598  */
599 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
600 					     const struct sk_buff *skb)
601 {
602 	/* This BUG_ON may seem severe, but if we just return then we
603 	 * are going to dereference garbage.
604 	 */
605 	BUG_ON(skb_queue_is_first(list, skb));
606 	return skb->prev;
607 }
608 
609 /**
610  *	skb_get - reference buffer
611  *	@skb: buffer to reference
612  *
613  *	Makes another reference to a socket buffer and returns a pointer
614  *	to the buffer.
615  */
616 static inline struct sk_buff *skb_get(struct sk_buff *skb)
617 {
618 	atomic_inc(&skb->users);
619 	return skb;
620 }
621 
622 /*
623  * If users == 1, we are the only owner and are can avoid redundant
624  * atomic change.
625  */
626 
627 /**
628  *	skb_cloned - is the buffer a clone
629  *	@skb: buffer to check
630  *
631  *	Returns true if the buffer was generated with skb_clone() and is
632  *	one of multiple shared copies of the buffer. Cloned buffers are
633  *	shared data so must not be written to under normal circumstances.
634  */
635 static inline int skb_cloned(const struct sk_buff *skb)
636 {
637 	return skb->cloned &&
638 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
639 }
640 
641 /**
642  *	skb_header_cloned - is the header a clone
643  *	@skb: buffer to check
644  *
645  *	Returns true if modifying the header part of the buffer requires
646  *	the data to be copied.
647  */
648 static inline int skb_header_cloned(const struct sk_buff *skb)
649 {
650 	int dataref;
651 
652 	if (!skb->cloned)
653 		return 0;
654 
655 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
656 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
657 	return dataref != 1;
658 }
659 
660 /**
661  *	skb_header_release - release reference to header
662  *	@skb: buffer to operate on
663  *
664  *	Drop a reference to the header part of the buffer.  This is done
665  *	by acquiring a payload reference.  You must not read from the header
666  *	part of skb->data after this.
667  */
668 static inline void skb_header_release(struct sk_buff *skb)
669 {
670 	BUG_ON(skb->nohdr);
671 	skb->nohdr = 1;
672 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
673 }
674 
675 /**
676  *	skb_shared - is the buffer shared
677  *	@skb: buffer to check
678  *
679  *	Returns true if more than one person has a reference to this
680  *	buffer.
681  */
682 static inline int skb_shared(const struct sk_buff *skb)
683 {
684 	return atomic_read(&skb->users) != 1;
685 }
686 
687 /**
688  *	skb_share_check - check if buffer is shared and if so clone it
689  *	@skb: buffer to check
690  *	@pri: priority for memory allocation
691  *
692  *	If the buffer is shared the buffer is cloned and the old copy
693  *	drops a reference. A new clone with a single reference is returned.
694  *	If the buffer is not shared the original buffer is returned. When
695  *	being called from interrupt status or with spinlocks held pri must
696  *	be GFP_ATOMIC.
697  *
698  *	NULL is returned on a memory allocation failure.
699  */
700 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
701 					      gfp_t pri)
702 {
703 	might_sleep_if(pri & __GFP_WAIT);
704 	if (skb_shared(skb)) {
705 		struct sk_buff *nskb = skb_clone(skb, pri);
706 		kfree_skb(skb);
707 		skb = nskb;
708 	}
709 	return skb;
710 }
711 
712 /*
713  *	Copy shared buffers into a new sk_buff. We effectively do COW on
714  *	packets to handle cases where we have a local reader and forward
715  *	and a couple of other messy ones. The normal one is tcpdumping
716  *	a packet thats being forwarded.
717  */
718 
719 /**
720  *	skb_unshare - make a copy of a shared buffer
721  *	@skb: buffer to check
722  *	@pri: priority for memory allocation
723  *
724  *	If the socket buffer is a clone then this function creates a new
725  *	copy of the data, drops a reference count on the old copy and returns
726  *	the new copy with the reference count at 1. If the buffer is not a clone
727  *	the original buffer is returned. When called with a spinlock held or
728  *	from interrupt state @pri must be %GFP_ATOMIC
729  *
730  *	%NULL is returned on a memory allocation failure.
731  */
732 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
733 					  gfp_t pri)
734 {
735 	might_sleep_if(pri & __GFP_WAIT);
736 	if (skb_cloned(skb)) {
737 		struct sk_buff *nskb = skb_copy(skb, pri);
738 		kfree_skb(skb);	/* Free our shared copy */
739 		skb = nskb;
740 	}
741 	return skb;
742 }
743 
744 /**
745  *	skb_peek
746  *	@list_: list to peek at
747  *
748  *	Peek an &sk_buff. Unlike most other operations you _MUST_
749  *	be careful with this one. A peek leaves the buffer on the
750  *	list and someone else may run off with it. You must hold
751  *	the appropriate locks or have a private queue to do this.
752  *
753  *	Returns %NULL for an empty list or a pointer to the head element.
754  *	The reference count is not incremented and the reference is therefore
755  *	volatile. Use with caution.
756  */
757 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
758 {
759 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
760 	if (list == (struct sk_buff *)list_)
761 		list = NULL;
762 	return list;
763 }
764 
765 /**
766  *	skb_peek_tail
767  *	@list_: list to peek at
768  *
769  *	Peek an &sk_buff. Unlike most other operations you _MUST_
770  *	be careful with this one. A peek leaves the buffer on the
771  *	list and someone else may run off with it. You must hold
772  *	the appropriate locks or have a private queue to do this.
773  *
774  *	Returns %NULL for an empty list or a pointer to the tail element.
775  *	The reference count is not incremented and the reference is therefore
776  *	volatile. Use with caution.
777  */
778 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
779 {
780 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
781 	if (list == (struct sk_buff *)list_)
782 		list = NULL;
783 	return list;
784 }
785 
786 /**
787  *	skb_queue_len	- get queue length
788  *	@list_: list to measure
789  *
790  *	Return the length of an &sk_buff queue.
791  */
792 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
793 {
794 	return list_->qlen;
795 }
796 
797 /**
798  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
799  *	@list: queue to initialize
800  *
801  *	This initializes only the list and queue length aspects of
802  *	an sk_buff_head object.  This allows to initialize the list
803  *	aspects of an sk_buff_head without reinitializing things like
804  *	the spinlock.  It can also be used for on-stack sk_buff_head
805  *	objects where the spinlock is known to not be used.
806  */
807 static inline void __skb_queue_head_init(struct sk_buff_head *list)
808 {
809 	list->prev = list->next = (struct sk_buff *)list;
810 	list->qlen = 0;
811 }
812 
813 /*
814  * This function creates a split out lock class for each invocation;
815  * this is needed for now since a whole lot of users of the skb-queue
816  * infrastructure in drivers have different locking usage (in hardirq)
817  * than the networking core (in softirq only). In the long run either the
818  * network layer or drivers should need annotation to consolidate the
819  * main types of usage into 3 classes.
820  */
821 static inline void skb_queue_head_init(struct sk_buff_head *list)
822 {
823 	spin_lock_init(&list->lock);
824 	__skb_queue_head_init(list);
825 }
826 
827 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
828 		struct lock_class_key *class)
829 {
830 	skb_queue_head_init(list);
831 	lockdep_set_class(&list->lock, class);
832 }
833 
834 /*
835  *	Insert an sk_buff on a list.
836  *
837  *	The "__skb_xxxx()" functions are the non-atomic ones that
838  *	can only be called with interrupts disabled.
839  */
840 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
841 static inline void __skb_insert(struct sk_buff *newsk,
842 				struct sk_buff *prev, struct sk_buff *next,
843 				struct sk_buff_head *list)
844 {
845 	newsk->next = next;
846 	newsk->prev = prev;
847 	next->prev  = prev->next = newsk;
848 	list->qlen++;
849 }
850 
851 static inline void __skb_queue_splice(const struct sk_buff_head *list,
852 				      struct sk_buff *prev,
853 				      struct sk_buff *next)
854 {
855 	struct sk_buff *first = list->next;
856 	struct sk_buff *last = list->prev;
857 
858 	first->prev = prev;
859 	prev->next = first;
860 
861 	last->next = next;
862 	next->prev = last;
863 }
864 
865 /**
866  *	skb_queue_splice - join two skb lists, this is designed for stacks
867  *	@list: the new list to add
868  *	@head: the place to add it in the first list
869  */
870 static inline void skb_queue_splice(const struct sk_buff_head *list,
871 				    struct sk_buff_head *head)
872 {
873 	if (!skb_queue_empty(list)) {
874 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
875 		head->qlen += list->qlen;
876 	}
877 }
878 
879 /**
880  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
881  *	@list: the new list to add
882  *	@head: the place to add it in the first list
883  *
884  *	The list at @list is reinitialised
885  */
886 static inline void skb_queue_splice_init(struct sk_buff_head *list,
887 					 struct sk_buff_head *head)
888 {
889 	if (!skb_queue_empty(list)) {
890 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
891 		head->qlen += list->qlen;
892 		__skb_queue_head_init(list);
893 	}
894 }
895 
896 /**
897  *	skb_queue_splice_tail - join two skb lists, each list being a queue
898  *	@list: the new list to add
899  *	@head: the place to add it in the first list
900  */
901 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
902 					 struct sk_buff_head *head)
903 {
904 	if (!skb_queue_empty(list)) {
905 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
906 		head->qlen += list->qlen;
907 	}
908 }
909 
910 /**
911  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
912  *	@list: the new list to add
913  *	@head: the place to add it in the first list
914  *
915  *	Each of the lists is a queue.
916  *	The list at @list is reinitialised
917  */
918 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
919 					      struct sk_buff_head *head)
920 {
921 	if (!skb_queue_empty(list)) {
922 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
923 		head->qlen += list->qlen;
924 		__skb_queue_head_init(list);
925 	}
926 }
927 
928 /**
929  *	__skb_queue_after - queue a buffer at the list head
930  *	@list: list to use
931  *	@prev: place after this buffer
932  *	@newsk: buffer to queue
933  *
934  *	Queue a buffer int the middle of a list. This function takes no locks
935  *	and you must therefore hold required locks before calling it.
936  *
937  *	A buffer cannot be placed on two lists at the same time.
938  */
939 static inline void __skb_queue_after(struct sk_buff_head *list,
940 				     struct sk_buff *prev,
941 				     struct sk_buff *newsk)
942 {
943 	__skb_insert(newsk, prev, prev->next, list);
944 }
945 
946 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
947 		       struct sk_buff_head *list);
948 
949 static inline void __skb_queue_before(struct sk_buff_head *list,
950 				      struct sk_buff *next,
951 				      struct sk_buff *newsk)
952 {
953 	__skb_insert(newsk, next->prev, next, list);
954 }
955 
956 /**
957  *	__skb_queue_head - queue a buffer at the list head
958  *	@list: list to use
959  *	@newsk: buffer to queue
960  *
961  *	Queue a buffer at the start of a list. This function takes no locks
962  *	and you must therefore hold required locks before calling it.
963  *
964  *	A buffer cannot be placed on two lists at the same time.
965  */
966 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
967 static inline void __skb_queue_head(struct sk_buff_head *list,
968 				    struct sk_buff *newsk)
969 {
970 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
971 }
972 
973 /**
974  *	__skb_queue_tail - queue a buffer at the list tail
975  *	@list: list to use
976  *	@newsk: buffer to queue
977  *
978  *	Queue a buffer at the end of a list. This function takes no locks
979  *	and you must therefore hold required locks before calling it.
980  *
981  *	A buffer cannot be placed on two lists at the same time.
982  */
983 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
984 static inline void __skb_queue_tail(struct sk_buff_head *list,
985 				   struct sk_buff *newsk)
986 {
987 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
988 }
989 
990 /*
991  * remove sk_buff from list. _Must_ be called atomically, and with
992  * the list known..
993  */
994 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
995 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
996 {
997 	struct sk_buff *next, *prev;
998 
999 	list->qlen--;
1000 	next	   = skb->next;
1001 	prev	   = skb->prev;
1002 	skb->next  = skb->prev = NULL;
1003 	next->prev = prev;
1004 	prev->next = next;
1005 }
1006 
1007 /**
1008  *	__skb_dequeue - remove from the head of the queue
1009  *	@list: list to dequeue from
1010  *
1011  *	Remove the head of the list. This function does not take any locks
1012  *	so must be used with appropriate locks held only. The head item is
1013  *	returned or %NULL if the list is empty.
1014  */
1015 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1016 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1017 {
1018 	struct sk_buff *skb = skb_peek(list);
1019 	if (skb)
1020 		__skb_unlink(skb, list);
1021 	return skb;
1022 }
1023 
1024 /**
1025  *	__skb_dequeue_tail - remove from the tail of the queue
1026  *	@list: list to dequeue from
1027  *
1028  *	Remove the tail of the list. This function does not take any locks
1029  *	so must be used with appropriate locks held only. The tail item is
1030  *	returned or %NULL if the list is empty.
1031  */
1032 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1033 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1034 {
1035 	struct sk_buff *skb = skb_peek_tail(list);
1036 	if (skb)
1037 		__skb_unlink(skb, list);
1038 	return skb;
1039 }
1040 
1041 
1042 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1043 {
1044 	return skb->data_len;
1045 }
1046 
1047 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1048 {
1049 	return skb->len - skb->data_len;
1050 }
1051 
1052 static inline int skb_pagelen(const struct sk_buff *skb)
1053 {
1054 	int i, len = 0;
1055 
1056 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1057 		len += skb_shinfo(skb)->frags[i].size;
1058 	return len + skb_headlen(skb);
1059 }
1060 
1061 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1062 				      struct page *page, int off, int size)
1063 {
1064 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1065 
1066 	frag->page		  = page;
1067 	frag->page_offset	  = off;
1068 	frag->size		  = size;
1069 	skb_shinfo(skb)->nr_frags = i + 1;
1070 }
1071 
1072 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1073 			    int off, int size);
1074 
1075 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1076 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1077 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1078 
1079 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1080 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1081 {
1082 	return skb->head + skb->tail;
1083 }
1084 
1085 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1086 {
1087 	skb->tail = skb->data - skb->head;
1088 }
1089 
1090 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1091 {
1092 	skb_reset_tail_pointer(skb);
1093 	skb->tail += offset;
1094 }
1095 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1096 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1097 {
1098 	return skb->tail;
1099 }
1100 
1101 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1102 {
1103 	skb->tail = skb->data;
1104 }
1105 
1106 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1107 {
1108 	skb->tail = skb->data + offset;
1109 }
1110 
1111 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1112 
1113 /*
1114  *	Add data to an sk_buff
1115  */
1116 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1117 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1118 {
1119 	unsigned char *tmp = skb_tail_pointer(skb);
1120 	SKB_LINEAR_ASSERT(skb);
1121 	skb->tail += len;
1122 	skb->len  += len;
1123 	return tmp;
1124 }
1125 
1126 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1127 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1128 {
1129 	skb->data -= len;
1130 	skb->len  += len;
1131 	return skb->data;
1132 }
1133 
1134 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1135 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1136 {
1137 	skb->len -= len;
1138 	BUG_ON(skb->len < skb->data_len);
1139 	return skb->data += len;
1140 }
1141 
1142 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1143 
1144 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1145 {
1146 	if (len > skb_headlen(skb) &&
1147 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1148 		return NULL;
1149 	skb->len -= len;
1150 	return skb->data += len;
1151 }
1152 
1153 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1154 {
1155 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1156 }
1157 
1158 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1159 {
1160 	if (likely(len <= skb_headlen(skb)))
1161 		return 1;
1162 	if (unlikely(len > skb->len))
1163 		return 0;
1164 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1165 }
1166 
1167 /**
1168  *	skb_headroom - bytes at buffer head
1169  *	@skb: buffer to check
1170  *
1171  *	Return the number of bytes of free space at the head of an &sk_buff.
1172  */
1173 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1174 {
1175 	return skb->data - skb->head;
1176 }
1177 
1178 /**
1179  *	skb_tailroom - bytes at buffer end
1180  *	@skb: buffer to check
1181  *
1182  *	Return the number of bytes of free space at the tail of an sk_buff
1183  */
1184 static inline int skb_tailroom(const struct sk_buff *skb)
1185 {
1186 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1187 }
1188 
1189 /**
1190  *	skb_reserve - adjust headroom
1191  *	@skb: buffer to alter
1192  *	@len: bytes to move
1193  *
1194  *	Increase the headroom of an empty &sk_buff by reducing the tail
1195  *	room. This is only allowed for an empty buffer.
1196  */
1197 static inline void skb_reserve(struct sk_buff *skb, int len)
1198 {
1199 	skb->data += len;
1200 	skb->tail += len;
1201 }
1202 
1203 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1204 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1205 {
1206 	return skb->head + skb->transport_header;
1207 }
1208 
1209 static inline void skb_reset_transport_header(struct sk_buff *skb)
1210 {
1211 	skb->transport_header = skb->data - skb->head;
1212 }
1213 
1214 static inline void skb_set_transport_header(struct sk_buff *skb,
1215 					    const int offset)
1216 {
1217 	skb_reset_transport_header(skb);
1218 	skb->transport_header += offset;
1219 }
1220 
1221 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1222 {
1223 	return skb->head + skb->network_header;
1224 }
1225 
1226 static inline void skb_reset_network_header(struct sk_buff *skb)
1227 {
1228 	skb->network_header = skb->data - skb->head;
1229 }
1230 
1231 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1232 {
1233 	skb_reset_network_header(skb);
1234 	skb->network_header += offset;
1235 }
1236 
1237 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1238 {
1239 	return skb->head + skb->mac_header;
1240 }
1241 
1242 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1243 {
1244 	return skb->mac_header != ~0U;
1245 }
1246 
1247 static inline void skb_reset_mac_header(struct sk_buff *skb)
1248 {
1249 	skb->mac_header = skb->data - skb->head;
1250 }
1251 
1252 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1253 {
1254 	skb_reset_mac_header(skb);
1255 	skb->mac_header += offset;
1256 }
1257 
1258 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1259 
1260 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1261 {
1262 	return skb->transport_header;
1263 }
1264 
1265 static inline void skb_reset_transport_header(struct sk_buff *skb)
1266 {
1267 	skb->transport_header = skb->data;
1268 }
1269 
1270 static inline void skb_set_transport_header(struct sk_buff *skb,
1271 					    const int offset)
1272 {
1273 	skb->transport_header = skb->data + offset;
1274 }
1275 
1276 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1277 {
1278 	return skb->network_header;
1279 }
1280 
1281 static inline void skb_reset_network_header(struct sk_buff *skb)
1282 {
1283 	skb->network_header = skb->data;
1284 }
1285 
1286 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1287 {
1288 	skb->network_header = skb->data + offset;
1289 }
1290 
1291 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1292 {
1293 	return skb->mac_header;
1294 }
1295 
1296 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1297 {
1298 	return skb->mac_header != NULL;
1299 }
1300 
1301 static inline void skb_reset_mac_header(struct sk_buff *skb)
1302 {
1303 	skb->mac_header = skb->data;
1304 }
1305 
1306 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1307 {
1308 	skb->mac_header = skb->data + offset;
1309 }
1310 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1311 
1312 static inline int skb_transport_offset(const struct sk_buff *skb)
1313 {
1314 	return skb_transport_header(skb) - skb->data;
1315 }
1316 
1317 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1318 {
1319 	return skb->transport_header - skb->network_header;
1320 }
1321 
1322 static inline int skb_network_offset(const struct sk_buff *skb)
1323 {
1324 	return skb_network_header(skb) - skb->data;
1325 }
1326 
1327 /*
1328  * CPUs often take a performance hit when accessing unaligned memory
1329  * locations. The actual performance hit varies, it can be small if the
1330  * hardware handles it or large if we have to take an exception and fix it
1331  * in software.
1332  *
1333  * Since an ethernet header is 14 bytes network drivers often end up with
1334  * the IP header at an unaligned offset. The IP header can be aligned by
1335  * shifting the start of the packet by 2 bytes. Drivers should do this
1336  * with:
1337  *
1338  * skb_reserve(NET_IP_ALIGN);
1339  *
1340  * The downside to this alignment of the IP header is that the DMA is now
1341  * unaligned. On some architectures the cost of an unaligned DMA is high
1342  * and this cost outweighs the gains made by aligning the IP header.
1343  *
1344  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1345  * to be overridden.
1346  */
1347 #ifndef NET_IP_ALIGN
1348 #define NET_IP_ALIGN	2
1349 #endif
1350 
1351 /*
1352  * The networking layer reserves some headroom in skb data (via
1353  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1354  * the header has to grow. In the default case, if the header has to grow
1355  * 32 bytes or less we avoid the reallocation.
1356  *
1357  * Unfortunately this headroom changes the DMA alignment of the resulting
1358  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1359  * on some architectures. An architecture can override this value,
1360  * perhaps setting it to a cacheline in size (since that will maintain
1361  * cacheline alignment of the DMA). It must be a power of 2.
1362  *
1363  * Various parts of the networking layer expect at least 32 bytes of
1364  * headroom, you should not reduce this.
1365  */
1366 #ifndef NET_SKB_PAD
1367 #define NET_SKB_PAD	32
1368 #endif
1369 
1370 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1371 
1372 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1373 {
1374 	if (unlikely(skb->data_len)) {
1375 		WARN_ON(1);
1376 		return;
1377 	}
1378 	skb->len = len;
1379 	skb_set_tail_pointer(skb, len);
1380 }
1381 
1382 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1383 
1384 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1385 {
1386 	if (skb->data_len)
1387 		return ___pskb_trim(skb, len);
1388 	__skb_trim(skb, len);
1389 	return 0;
1390 }
1391 
1392 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1393 {
1394 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1395 }
1396 
1397 /**
1398  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1399  *	@skb: buffer to alter
1400  *	@len: new length
1401  *
1402  *	This is identical to pskb_trim except that the caller knows that
1403  *	the skb is not cloned so we should never get an error due to out-
1404  *	of-memory.
1405  */
1406 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1407 {
1408 	int err = pskb_trim(skb, len);
1409 	BUG_ON(err);
1410 }
1411 
1412 /**
1413  *	skb_orphan - orphan a buffer
1414  *	@skb: buffer to orphan
1415  *
1416  *	If a buffer currently has an owner then we call the owner's
1417  *	destructor function and make the @skb unowned. The buffer continues
1418  *	to exist but is no longer charged to its former owner.
1419  */
1420 static inline void skb_orphan(struct sk_buff *skb)
1421 {
1422 	if (skb->destructor)
1423 		skb->destructor(skb);
1424 	skb->destructor = NULL;
1425 	skb->sk		= NULL;
1426 }
1427 
1428 /**
1429  *	__skb_queue_purge - empty a list
1430  *	@list: list to empty
1431  *
1432  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1433  *	the list and one reference dropped. This function does not take the
1434  *	list lock and the caller must hold the relevant locks to use it.
1435  */
1436 extern void skb_queue_purge(struct sk_buff_head *list);
1437 static inline void __skb_queue_purge(struct sk_buff_head *list)
1438 {
1439 	struct sk_buff *skb;
1440 	while ((skb = __skb_dequeue(list)) != NULL)
1441 		kfree_skb(skb);
1442 }
1443 
1444 /**
1445  *	__dev_alloc_skb - allocate an skbuff for receiving
1446  *	@length: length to allocate
1447  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1448  *
1449  *	Allocate a new &sk_buff and assign it a usage count of one. The
1450  *	buffer has unspecified headroom built in. Users should allocate
1451  *	the headroom they think they need without accounting for the
1452  *	built in space. The built in space is used for optimisations.
1453  *
1454  *	%NULL is returned if there is no free memory.
1455  */
1456 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1457 					      gfp_t gfp_mask)
1458 {
1459 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1460 	if (likely(skb))
1461 		skb_reserve(skb, NET_SKB_PAD);
1462 	return skb;
1463 }
1464 
1465 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1466 
1467 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1468 		unsigned int length, gfp_t gfp_mask);
1469 
1470 /**
1471  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1472  *	@dev: network device to receive on
1473  *	@length: length to allocate
1474  *
1475  *	Allocate a new &sk_buff and assign it a usage count of one. The
1476  *	buffer has unspecified headroom built in. Users should allocate
1477  *	the headroom they think they need without accounting for the
1478  *	built in space. The built in space is used for optimisations.
1479  *
1480  *	%NULL is returned if there is no free memory. Although this function
1481  *	allocates memory it can be called from an interrupt.
1482  */
1483 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1484 		unsigned int length)
1485 {
1486 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1487 }
1488 
1489 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1490 
1491 /**
1492  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1493  *	@dev: network device to receive on
1494  *
1495  * 	Allocate a new page node local to the specified device.
1496  *
1497  * 	%NULL is returned if there is no free memory.
1498  */
1499 static inline struct page *netdev_alloc_page(struct net_device *dev)
1500 {
1501 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1502 }
1503 
1504 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1505 {
1506 	__free_page(page);
1507 }
1508 
1509 /**
1510  *	skb_clone_writable - is the header of a clone writable
1511  *	@skb: buffer to check
1512  *	@len: length up to which to write
1513  *
1514  *	Returns true if modifying the header part of the cloned buffer
1515  *	does not requires the data to be copied.
1516  */
1517 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1518 {
1519 	return !skb_header_cloned(skb) &&
1520 	       skb_headroom(skb) + len <= skb->hdr_len;
1521 }
1522 
1523 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1524 			    int cloned)
1525 {
1526 	int delta = 0;
1527 
1528 	if (headroom < NET_SKB_PAD)
1529 		headroom = NET_SKB_PAD;
1530 	if (headroom > skb_headroom(skb))
1531 		delta = headroom - skb_headroom(skb);
1532 
1533 	if (delta || cloned)
1534 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1535 					GFP_ATOMIC);
1536 	return 0;
1537 }
1538 
1539 /**
1540  *	skb_cow - copy header of skb when it is required
1541  *	@skb: buffer to cow
1542  *	@headroom: needed headroom
1543  *
1544  *	If the skb passed lacks sufficient headroom or its data part
1545  *	is shared, data is reallocated. If reallocation fails, an error
1546  *	is returned and original skb is not changed.
1547  *
1548  *	The result is skb with writable area skb->head...skb->tail
1549  *	and at least @headroom of space at head.
1550  */
1551 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1552 {
1553 	return __skb_cow(skb, headroom, skb_cloned(skb));
1554 }
1555 
1556 /**
1557  *	skb_cow_head - skb_cow but only making the head writable
1558  *	@skb: buffer to cow
1559  *	@headroom: needed headroom
1560  *
1561  *	This function is identical to skb_cow except that we replace the
1562  *	skb_cloned check by skb_header_cloned.  It should be used when
1563  *	you only need to push on some header and do not need to modify
1564  *	the data.
1565  */
1566 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1567 {
1568 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1569 }
1570 
1571 /**
1572  *	skb_padto	- pad an skbuff up to a minimal size
1573  *	@skb: buffer to pad
1574  *	@len: minimal length
1575  *
1576  *	Pads up a buffer to ensure the trailing bytes exist and are
1577  *	blanked. If the buffer already contains sufficient data it
1578  *	is untouched. Otherwise it is extended. Returns zero on
1579  *	success. The skb is freed on error.
1580  */
1581 
1582 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1583 {
1584 	unsigned int size = skb->len;
1585 	if (likely(size >= len))
1586 		return 0;
1587 	return skb_pad(skb, len - size);
1588 }
1589 
1590 static inline int skb_add_data(struct sk_buff *skb,
1591 			       char __user *from, int copy)
1592 {
1593 	const int off = skb->len;
1594 
1595 	if (skb->ip_summed == CHECKSUM_NONE) {
1596 		int err = 0;
1597 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1598 							    copy, 0, &err);
1599 		if (!err) {
1600 			skb->csum = csum_block_add(skb->csum, csum, off);
1601 			return 0;
1602 		}
1603 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1604 		return 0;
1605 
1606 	__skb_trim(skb, off);
1607 	return -EFAULT;
1608 }
1609 
1610 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1611 				   struct page *page, int off)
1612 {
1613 	if (i) {
1614 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1615 
1616 		return page == frag->page &&
1617 		       off == frag->page_offset + frag->size;
1618 	}
1619 	return 0;
1620 }
1621 
1622 static inline int __skb_linearize(struct sk_buff *skb)
1623 {
1624 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1625 }
1626 
1627 /**
1628  *	skb_linearize - convert paged skb to linear one
1629  *	@skb: buffer to linarize
1630  *
1631  *	If there is no free memory -ENOMEM is returned, otherwise zero
1632  *	is returned and the old skb data released.
1633  */
1634 static inline int skb_linearize(struct sk_buff *skb)
1635 {
1636 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1637 }
1638 
1639 /**
1640  *	skb_linearize_cow - make sure skb is linear and writable
1641  *	@skb: buffer to process
1642  *
1643  *	If there is no free memory -ENOMEM is returned, otherwise zero
1644  *	is returned and the old skb data released.
1645  */
1646 static inline int skb_linearize_cow(struct sk_buff *skb)
1647 {
1648 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1649 	       __skb_linearize(skb) : 0;
1650 }
1651 
1652 /**
1653  *	skb_postpull_rcsum - update checksum for received skb after pull
1654  *	@skb: buffer to update
1655  *	@start: start of data before pull
1656  *	@len: length of data pulled
1657  *
1658  *	After doing a pull on a received packet, you need to call this to
1659  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1660  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1661  */
1662 
1663 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1664 				      const void *start, unsigned int len)
1665 {
1666 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1667 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1668 }
1669 
1670 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1671 
1672 /**
1673  *	pskb_trim_rcsum - trim received skb and update checksum
1674  *	@skb: buffer to trim
1675  *	@len: new length
1676  *
1677  *	This is exactly the same as pskb_trim except that it ensures the
1678  *	checksum of received packets are still valid after the operation.
1679  */
1680 
1681 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1682 {
1683 	if (likely(len >= skb->len))
1684 		return 0;
1685 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1686 		skb->ip_summed = CHECKSUM_NONE;
1687 	return __pskb_trim(skb, len);
1688 }
1689 
1690 #define skb_queue_walk(queue, skb) \
1691 		for (skb = (queue)->next;					\
1692 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1693 		     skb = skb->next)
1694 
1695 #define skb_queue_walk_safe(queue, skb, tmp)					\
1696 		for (skb = (queue)->next, tmp = skb->next;			\
1697 		     skb != (struct sk_buff *)(queue);				\
1698 		     skb = tmp, tmp = skb->next)
1699 
1700 #define skb_queue_walk_from(queue, skb)						\
1701 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1702 		     skb = skb->next)
1703 
1704 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1705 		for (tmp = skb->next;						\
1706 		     skb != (struct sk_buff *)(queue);				\
1707 		     skb = tmp, tmp = skb->next)
1708 
1709 #define skb_queue_reverse_walk(queue, skb) \
1710 		for (skb = (queue)->prev;					\
1711 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1712 		     skb = skb->prev)
1713 
1714 
1715 static inline bool skb_has_frags(const struct sk_buff *skb)
1716 {
1717 	return skb_shinfo(skb)->frag_list != NULL;
1718 }
1719 
1720 static inline void skb_frag_list_init(struct sk_buff *skb)
1721 {
1722 	skb_shinfo(skb)->frag_list = NULL;
1723 }
1724 
1725 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1726 {
1727 	frag->next = skb_shinfo(skb)->frag_list;
1728 	skb_shinfo(skb)->frag_list = frag;
1729 }
1730 
1731 #define skb_walk_frags(skb, iter)	\
1732 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1733 
1734 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1735 					   int *peeked, int *err);
1736 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1737 					 int noblock, int *err);
1738 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1739 				     struct poll_table_struct *wait);
1740 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1741 					       int offset, struct iovec *to,
1742 					       int size);
1743 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1744 							int hlen,
1745 							struct iovec *iov);
1746 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1747 						    int offset,
1748 						    const struct iovec *from,
1749 						    int from_offset,
1750 						    int len);
1751 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1752 						     int offset,
1753 						     const struct iovec *to,
1754 						     int to_offset,
1755 						     int size);
1756 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1757 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1758 					 unsigned int flags);
1759 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1760 				    int len, __wsum csum);
1761 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1762 				     void *to, int len);
1763 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1764 				      const void *from, int len);
1765 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1766 					      int offset, u8 *to, int len,
1767 					      __wsum csum);
1768 extern int             skb_splice_bits(struct sk_buff *skb,
1769 						unsigned int offset,
1770 						struct pipe_inode_info *pipe,
1771 						unsigned int len,
1772 						unsigned int flags);
1773 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1774 extern void	       skb_split(struct sk_buff *skb,
1775 				 struct sk_buff *skb1, const u32 len);
1776 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1777 				 int shiftlen);
1778 
1779 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1780 
1781 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1782 				       int len, void *buffer)
1783 {
1784 	int hlen = skb_headlen(skb);
1785 
1786 	if (hlen - offset >= len)
1787 		return skb->data + offset;
1788 
1789 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1790 		return NULL;
1791 
1792 	return buffer;
1793 }
1794 
1795 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1796 					     void *to,
1797 					     const unsigned int len)
1798 {
1799 	memcpy(to, skb->data, len);
1800 }
1801 
1802 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1803 						    const int offset, void *to,
1804 						    const unsigned int len)
1805 {
1806 	memcpy(to, skb->data + offset, len);
1807 }
1808 
1809 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1810 					   const void *from,
1811 					   const unsigned int len)
1812 {
1813 	memcpy(skb->data, from, len);
1814 }
1815 
1816 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1817 						  const int offset,
1818 						  const void *from,
1819 						  const unsigned int len)
1820 {
1821 	memcpy(skb->data + offset, from, len);
1822 }
1823 
1824 extern void skb_init(void);
1825 
1826 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1827 {
1828 	return skb->tstamp;
1829 }
1830 
1831 /**
1832  *	skb_get_timestamp - get timestamp from a skb
1833  *	@skb: skb to get stamp from
1834  *	@stamp: pointer to struct timeval to store stamp in
1835  *
1836  *	Timestamps are stored in the skb as offsets to a base timestamp.
1837  *	This function converts the offset back to a struct timeval and stores
1838  *	it in stamp.
1839  */
1840 static inline void skb_get_timestamp(const struct sk_buff *skb,
1841 				     struct timeval *stamp)
1842 {
1843 	*stamp = ktime_to_timeval(skb->tstamp);
1844 }
1845 
1846 static inline void skb_get_timestampns(const struct sk_buff *skb,
1847 				       struct timespec *stamp)
1848 {
1849 	*stamp = ktime_to_timespec(skb->tstamp);
1850 }
1851 
1852 static inline void __net_timestamp(struct sk_buff *skb)
1853 {
1854 	skb->tstamp = ktime_get_real();
1855 }
1856 
1857 static inline ktime_t net_timedelta(ktime_t t)
1858 {
1859 	return ktime_sub(ktime_get_real(), t);
1860 }
1861 
1862 static inline ktime_t net_invalid_timestamp(void)
1863 {
1864 	return ktime_set(0, 0);
1865 }
1866 
1867 /**
1868  * skb_tstamp_tx - queue clone of skb with send time stamps
1869  * @orig_skb:	the original outgoing packet
1870  * @hwtstamps:	hardware time stamps, may be NULL if not available
1871  *
1872  * If the skb has a socket associated, then this function clones the
1873  * skb (thus sharing the actual data and optional structures), stores
1874  * the optional hardware time stamping information (if non NULL) or
1875  * generates a software time stamp (otherwise), then queues the clone
1876  * to the error queue of the socket.  Errors are silently ignored.
1877  */
1878 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1879 			struct skb_shared_hwtstamps *hwtstamps);
1880 
1881 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1882 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1883 
1884 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1885 {
1886 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1887 }
1888 
1889 /**
1890  *	skb_checksum_complete - Calculate checksum of an entire packet
1891  *	@skb: packet to process
1892  *
1893  *	This function calculates the checksum over the entire packet plus
1894  *	the value of skb->csum.  The latter can be used to supply the
1895  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1896  *	checksum.
1897  *
1898  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1899  *	this function can be used to verify that checksum on received
1900  *	packets.  In that case the function should return zero if the
1901  *	checksum is correct.  In particular, this function will return zero
1902  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1903  *	hardware has already verified the correctness of the checksum.
1904  */
1905 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1906 {
1907 	return skb_csum_unnecessary(skb) ?
1908 	       0 : __skb_checksum_complete(skb);
1909 }
1910 
1911 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1912 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1913 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1914 {
1915 	if (nfct && atomic_dec_and_test(&nfct->use))
1916 		nf_conntrack_destroy(nfct);
1917 }
1918 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1919 {
1920 	if (nfct)
1921 		atomic_inc(&nfct->use);
1922 }
1923 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1924 {
1925 	if (skb)
1926 		atomic_inc(&skb->users);
1927 }
1928 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1929 {
1930 	if (skb)
1931 		kfree_skb(skb);
1932 }
1933 #endif
1934 #ifdef CONFIG_BRIDGE_NETFILTER
1935 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1936 {
1937 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1938 		kfree(nf_bridge);
1939 }
1940 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1941 {
1942 	if (nf_bridge)
1943 		atomic_inc(&nf_bridge->use);
1944 }
1945 #endif /* CONFIG_BRIDGE_NETFILTER */
1946 static inline void nf_reset(struct sk_buff *skb)
1947 {
1948 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1949 	nf_conntrack_put(skb->nfct);
1950 	skb->nfct = NULL;
1951 	nf_conntrack_put_reasm(skb->nfct_reasm);
1952 	skb->nfct_reasm = NULL;
1953 #endif
1954 #ifdef CONFIG_BRIDGE_NETFILTER
1955 	nf_bridge_put(skb->nf_bridge);
1956 	skb->nf_bridge = NULL;
1957 #endif
1958 }
1959 
1960 /* Note: This doesn't put any conntrack and bridge info in dst. */
1961 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1962 {
1963 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1964 	dst->nfct = src->nfct;
1965 	nf_conntrack_get(src->nfct);
1966 	dst->nfctinfo = src->nfctinfo;
1967 	dst->nfct_reasm = src->nfct_reasm;
1968 	nf_conntrack_get_reasm(src->nfct_reasm);
1969 #endif
1970 #ifdef CONFIG_BRIDGE_NETFILTER
1971 	dst->nf_bridge  = src->nf_bridge;
1972 	nf_bridge_get(src->nf_bridge);
1973 #endif
1974 }
1975 
1976 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1977 {
1978 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1979 	nf_conntrack_put(dst->nfct);
1980 	nf_conntrack_put_reasm(dst->nfct_reasm);
1981 #endif
1982 #ifdef CONFIG_BRIDGE_NETFILTER
1983 	nf_bridge_put(dst->nf_bridge);
1984 #endif
1985 	__nf_copy(dst, src);
1986 }
1987 
1988 #ifdef CONFIG_NETWORK_SECMARK
1989 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1990 {
1991 	to->secmark = from->secmark;
1992 }
1993 
1994 static inline void skb_init_secmark(struct sk_buff *skb)
1995 {
1996 	skb->secmark = 0;
1997 }
1998 #else
1999 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2000 { }
2001 
2002 static inline void skb_init_secmark(struct sk_buff *skb)
2003 { }
2004 #endif
2005 
2006 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2007 {
2008 	skb->queue_mapping = queue_mapping;
2009 }
2010 
2011 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2012 {
2013 	return skb->queue_mapping;
2014 }
2015 
2016 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2017 {
2018 	to->queue_mapping = from->queue_mapping;
2019 }
2020 
2021 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2022 {
2023 	skb->queue_mapping = rx_queue + 1;
2024 }
2025 
2026 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2027 {
2028 	return skb->queue_mapping - 1;
2029 }
2030 
2031 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2032 {
2033 	return (skb->queue_mapping != 0);
2034 }
2035 
2036 extern u16 skb_tx_hash(const struct net_device *dev,
2037 		       const struct sk_buff *skb);
2038 
2039 #ifdef CONFIG_XFRM
2040 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2041 {
2042 	return skb->sp;
2043 }
2044 #else
2045 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2046 {
2047 	return NULL;
2048 }
2049 #endif
2050 
2051 static inline int skb_is_gso(const struct sk_buff *skb)
2052 {
2053 	return skb_shinfo(skb)->gso_size;
2054 }
2055 
2056 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2057 {
2058 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2059 }
2060 
2061 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2062 
2063 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2064 {
2065 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2066 	 * wanted then gso_type will be set. */
2067 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2068 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2069 		__skb_warn_lro_forwarding(skb);
2070 		return true;
2071 	}
2072 	return false;
2073 }
2074 
2075 static inline void skb_forward_csum(struct sk_buff *skb)
2076 {
2077 	/* Unfortunately we don't support this one.  Any brave souls? */
2078 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2079 		skb->ip_summed = CHECKSUM_NONE;
2080 }
2081 
2082 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2083 #endif	/* __KERNEL__ */
2084 #endif	/* _LINUX_SKBUFF_H */
2085