xref: /linux-6.15/include/linux/skbuff.h (revision 7fb2e072)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
348 #define HAVE_HW_TIME_STAMP
349 
350 /**
351  * struct skb_shared_hwtstamps - hardware time stamps
352  * @hwtstamp:	hardware time stamp transformed into duration
353  *		since arbitrary point in time
354  *
355  * Software time stamps generated by ktime_get_real() are stored in
356  * skb->tstamp.
357  *
358  * hwtstamps can only be compared against other hwtstamps from
359  * the same device.
360  *
361  * This structure is attached to packets as part of the
362  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
363  */
364 struct skb_shared_hwtstamps {
365 	ktime_t	hwtstamp;
366 };
367 
368 /* Definitions for tx_flags in struct skb_shared_info */
369 enum {
370 	/* generate hardware time stamp */
371 	SKBTX_HW_TSTAMP = 1 << 0,
372 
373 	/* generate software time stamp when queueing packet to NIC */
374 	SKBTX_SW_TSTAMP = 1 << 1,
375 
376 	/* device driver is going to provide hardware time stamp */
377 	SKBTX_IN_PROGRESS = 1 << 2,
378 
379 	/* device driver supports TX zero-copy buffers */
380 	SKBTX_DEV_ZEROCOPY = 1 << 3,
381 
382 	/* generate wifi status information (where possible) */
383 	SKBTX_WIFI_STATUS = 1 << 4,
384 
385 	/* This indicates at least one fragment might be overwritten
386 	 * (as in vmsplice(), sendfile() ...)
387 	 * If we need to compute a TX checksum, we'll need to copy
388 	 * all frags to avoid possible bad checksum
389 	 */
390 	SKBTX_SHARED_FRAG = 1 << 5,
391 
392 	/* generate software time stamp when entering packet scheduling */
393 	SKBTX_SCHED_TSTAMP = 1 << 6,
394 };
395 
396 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
397 				 SKBTX_SCHED_TSTAMP)
398 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
399 
400 /*
401  * The callback notifies userspace to release buffers when skb DMA is done in
402  * lower device, the skb last reference should be 0 when calling this.
403  * The zerocopy_success argument is true if zero copy transmit occurred,
404  * false on data copy or out of memory error caused by data copy attempt.
405  * The ctx field is used to track device context.
406  * The desc field is used to track userspace buffer index.
407  */
408 struct ubuf_info {
409 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
410 	void *ctx;
411 	unsigned long desc;
412 };
413 
414 /* This data is invariant across clones and lives at
415  * the end of the header data, ie. at skb->end.
416  */
417 struct skb_shared_info {
418 	unsigned short	_unused;
419 	unsigned char	nr_frags;
420 	__u8		tx_flags;
421 	unsigned short	gso_size;
422 	/* Warning: this field is not always filled in (UFO)! */
423 	unsigned short	gso_segs;
424 	struct sk_buff	*frag_list;
425 	struct skb_shared_hwtstamps hwtstamps;
426 	unsigned int	gso_type;
427 	u32		tskey;
428 	__be32          ip6_frag_id;
429 
430 	/*
431 	 * Warning : all fields before dataref are cleared in __alloc_skb()
432 	 */
433 	atomic_t	dataref;
434 
435 	/* Intermediate layers must ensure that destructor_arg
436 	 * remains valid until skb destructor */
437 	void *		destructor_arg;
438 
439 	/* must be last field, see pskb_expand_head() */
440 	skb_frag_t	frags[MAX_SKB_FRAGS];
441 };
442 
443 /* We divide dataref into two halves.  The higher 16 bits hold references
444  * to the payload part of skb->data.  The lower 16 bits hold references to
445  * the entire skb->data.  A clone of a headerless skb holds the length of
446  * the header in skb->hdr_len.
447  *
448  * All users must obey the rule that the skb->data reference count must be
449  * greater than or equal to the payload reference count.
450  *
451  * Holding a reference to the payload part means that the user does not
452  * care about modifications to the header part of skb->data.
453  */
454 #define SKB_DATAREF_SHIFT 16
455 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
456 
457 
458 enum {
459 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
460 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
461 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
462 };
463 
464 enum {
465 	SKB_GSO_TCPV4 = 1 << 0,
466 	SKB_GSO_UDP = 1 << 1,
467 
468 	/* This indicates the skb is from an untrusted source. */
469 	SKB_GSO_DODGY = 1 << 2,
470 
471 	/* This indicates the tcp segment has CWR set. */
472 	SKB_GSO_TCP_ECN = 1 << 3,
473 
474 	SKB_GSO_TCP_FIXEDID = 1 << 4,
475 
476 	SKB_GSO_TCPV6 = 1 << 5,
477 
478 	SKB_GSO_FCOE = 1 << 6,
479 
480 	SKB_GSO_GRE = 1 << 7,
481 
482 	SKB_GSO_GRE_CSUM = 1 << 8,
483 
484 	SKB_GSO_IPXIP4 = 1 << 9,
485 
486 	SKB_GSO_IPXIP6 = 1 << 10,
487 
488 	SKB_GSO_UDP_TUNNEL = 1 << 11,
489 
490 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
491 
492 	SKB_GSO_PARTIAL = 1 << 13,
493 
494 	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
495 
496 	SKB_GSO_SCTP = 1 << 15,
497 
498 	SKB_GSO_ESP = 1 << 16,
499 };
500 
501 #if BITS_PER_LONG > 32
502 #define NET_SKBUFF_DATA_USES_OFFSET 1
503 #endif
504 
505 #ifdef NET_SKBUFF_DATA_USES_OFFSET
506 typedef unsigned int sk_buff_data_t;
507 #else
508 typedef unsigned char *sk_buff_data_t;
509 #endif
510 
511 /**
512  *	struct sk_buff - socket buffer
513  *	@next: Next buffer in list
514  *	@prev: Previous buffer in list
515  *	@tstamp: Time we arrived/left
516  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
517  *	@sk: Socket we are owned by
518  *	@dev: Device we arrived on/are leaving by
519  *	@cb: Control buffer. Free for use by every layer. Put private vars here
520  *	@_skb_refdst: destination entry (with norefcount bit)
521  *	@sp: the security path, used for xfrm
522  *	@len: Length of actual data
523  *	@data_len: Data length
524  *	@mac_len: Length of link layer header
525  *	@hdr_len: writable header length of cloned skb
526  *	@csum: Checksum (must include start/offset pair)
527  *	@csum_start: Offset from skb->head where checksumming should start
528  *	@csum_offset: Offset from csum_start where checksum should be stored
529  *	@priority: Packet queueing priority
530  *	@ignore_df: allow local fragmentation
531  *	@cloned: Head may be cloned (check refcnt to be sure)
532  *	@ip_summed: Driver fed us an IP checksum
533  *	@nohdr: Payload reference only, must not modify header
534  *	@pkt_type: Packet class
535  *	@fclone: skbuff clone status
536  *	@ipvs_property: skbuff is owned by ipvs
537  *	@tc_skip_classify: do not classify packet. set by IFB device
538  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
539  *	@tc_redirected: packet was redirected by a tc action
540  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
541  *	@peeked: this packet has been seen already, so stats have been
542  *		done for it, don't do them again
543  *	@nf_trace: netfilter packet trace flag
544  *	@protocol: Packet protocol from driver
545  *	@destructor: Destruct function
546  *	@_nfct: Associated connection, if any (with nfctinfo bits)
547  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
548  *	@skb_iif: ifindex of device we arrived on
549  *	@tc_index: Traffic control index
550  *	@hash: the packet hash
551  *	@queue_mapping: Queue mapping for multiqueue devices
552  *	@xmit_more: More SKBs are pending for this queue
553  *	@ndisc_nodetype: router type (from link layer)
554  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
555  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
556  *		ports.
557  *	@sw_hash: indicates hash was computed in software stack
558  *	@wifi_acked_valid: wifi_acked was set
559  *	@wifi_acked: whether frame was acked on wifi or not
560  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
561  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
562  *	@dst_pending_confirm: need to confirm neighbour
563   *	@napi_id: id of the NAPI struct this skb came from
564  *	@secmark: security marking
565  *	@mark: Generic packet mark
566  *	@vlan_proto: vlan encapsulation protocol
567  *	@vlan_tci: vlan tag control information
568  *	@inner_protocol: Protocol (encapsulation)
569  *	@inner_transport_header: Inner transport layer header (encapsulation)
570  *	@inner_network_header: Network layer header (encapsulation)
571  *	@inner_mac_header: Link layer header (encapsulation)
572  *	@transport_header: Transport layer header
573  *	@network_header: Network layer header
574  *	@mac_header: Link layer header
575  *	@tail: Tail pointer
576  *	@end: End pointer
577  *	@head: Head of buffer
578  *	@data: Data head pointer
579  *	@truesize: Buffer size
580  *	@users: User count - see {datagram,tcp}.c
581  */
582 
583 struct sk_buff {
584 	union {
585 		struct {
586 			/* These two members must be first. */
587 			struct sk_buff		*next;
588 			struct sk_buff		*prev;
589 
590 			union {
591 				ktime_t		tstamp;
592 				u64		skb_mstamp;
593 			};
594 		};
595 		struct rb_node	rbnode; /* used in netem & tcp stack */
596 	};
597 	struct sock		*sk;
598 
599 	union {
600 		struct net_device	*dev;
601 		/* Some protocols might use this space to store information,
602 		 * while device pointer would be NULL.
603 		 * UDP receive path is one user.
604 		 */
605 		unsigned long		dev_scratch;
606 	};
607 	/*
608 	 * This is the control buffer. It is free to use for every
609 	 * layer. Please put your private variables there. If you
610 	 * want to keep them across layers you have to do a skb_clone()
611 	 * first. This is owned by whoever has the skb queued ATM.
612 	 */
613 	char			cb[48] __aligned(8);
614 
615 	unsigned long		_skb_refdst;
616 	void			(*destructor)(struct sk_buff *skb);
617 #ifdef CONFIG_XFRM
618 	struct	sec_path	*sp;
619 #endif
620 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
621 	unsigned long		 _nfct;
622 #endif
623 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
624 	struct nf_bridge_info	*nf_bridge;
625 #endif
626 	unsigned int		len,
627 				data_len;
628 	__u16			mac_len,
629 				hdr_len;
630 
631 	/* Following fields are _not_ copied in __copy_skb_header()
632 	 * Note that queue_mapping is here mostly to fill a hole.
633 	 */
634 	kmemcheck_bitfield_begin(flags1);
635 	__u16			queue_mapping;
636 
637 /* if you move cloned around you also must adapt those constants */
638 #ifdef __BIG_ENDIAN_BITFIELD
639 #define CLONED_MASK	(1 << 7)
640 #else
641 #define CLONED_MASK	1
642 #endif
643 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
644 
645 	__u8			__cloned_offset[0];
646 	__u8			cloned:1,
647 				nohdr:1,
648 				fclone:2,
649 				peeked:1,
650 				head_frag:1,
651 				xmit_more:1,
652 				__unused:1; /* one bit hole */
653 	kmemcheck_bitfield_end(flags1);
654 
655 	/* fields enclosed in headers_start/headers_end are copied
656 	 * using a single memcpy() in __copy_skb_header()
657 	 */
658 	/* private: */
659 	__u32			headers_start[0];
660 	/* public: */
661 
662 /* if you move pkt_type around you also must adapt those constants */
663 #ifdef __BIG_ENDIAN_BITFIELD
664 #define PKT_TYPE_MAX	(7 << 5)
665 #else
666 #define PKT_TYPE_MAX	7
667 #endif
668 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
669 
670 	__u8			__pkt_type_offset[0];
671 	__u8			pkt_type:3;
672 	__u8			pfmemalloc:1;
673 	__u8			ignore_df:1;
674 
675 	__u8			nf_trace:1;
676 	__u8			ip_summed:2;
677 	__u8			ooo_okay:1;
678 	__u8			l4_hash:1;
679 	__u8			sw_hash:1;
680 	__u8			wifi_acked_valid:1;
681 	__u8			wifi_acked:1;
682 
683 	__u8			no_fcs:1;
684 	/* Indicates the inner headers are valid in the skbuff. */
685 	__u8			encapsulation:1;
686 	__u8			encap_hdr_csum:1;
687 	__u8			csum_valid:1;
688 	__u8			csum_complete_sw:1;
689 	__u8			csum_level:2;
690 	__u8			csum_not_inet:1;
691 
692 	__u8			dst_pending_confirm:1;
693 #ifdef CONFIG_IPV6_NDISC_NODETYPE
694 	__u8			ndisc_nodetype:2;
695 #endif
696 	__u8			ipvs_property:1;
697 	__u8			inner_protocol_type:1;
698 	__u8			remcsum_offload:1;
699 #ifdef CONFIG_NET_SWITCHDEV
700 	__u8			offload_fwd_mark:1;
701 #endif
702 #ifdef CONFIG_NET_CLS_ACT
703 	__u8			tc_skip_classify:1;
704 	__u8			tc_at_ingress:1;
705 	__u8			tc_redirected:1;
706 	__u8			tc_from_ingress:1;
707 #endif
708 
709 #ifdef CONFIG_NET_SCHED
710 	__u16			tc_index;	/* traffic control index */
711 #endif
712 
713 	union {
714 		__wsum		csum;
715 		struct {
716 			__u16	csum_start;
717 			__u16	csum_offset;
718 		};
719 	};
720 	__u32			priority;
721 	int			skb_iif;
722 	__u32			hash;
723 	__be16			vlan_proto;
724 	__u16			vlan_tci;
725 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
726 	union {
727 		unsigned int	napi_id;
728 		unsigned int	sender_cpu;
729 	};
730 #endif
731 #ifdef CONFIG_NETWORK_SECMARK
732 	__u32		secmark;
733 #endif
734 
735 	union {
736 		__u32		mark;
737 		__u32		reserved_tailroom;
738 	};
739 
740 	union {
741 		__be16		inner_protocol;
742 		__u8		inner_ipproto;
743 	};
744 
745 	__u16			inner_transport_header;
746 	__u16			inner_network_header;
747 	__u16			inner_mac_header;
748 
749 	__be16			protocol;
750 	__u16			transport_header;
751 	__u16			network_header;
752 	__u16			mac_header;
753 
754 	/* private: */
755 	__u32			headers_end[0];
756 	/* public: */
757 
758 	/* These elements must be at the end, see alloc_skb() for details.  */
759 	sk_buff_data_t		tail;
760 	sk_buff_data_t		end;
761 	unsigned char		*head,
762 				*data;
763 	unsigned int		truesize;
764 	refcount_t		users;
765 };
766 
767 #ifdef __KERNEL__
768 /*
769  *	Handling routines are only of interest to the kernel
770  */
771 #include <linux/slab.h>
772 
773 
774 #define SKB_ALLOC_FCLONE	0x01
775 #define SKB_ALLOC_RX		0x02
776 #define SKB_ALLOC_NAPI		0x04
777 
778 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
779 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
780 {
781 	return unlikely(skb->pfmemalloc);
782 }
783 
784 /*
785  * skb might have a dst pointer attached, refcounted or not.
786  * _skb_refdst low order bit is set if refcount was _not_ taken
787  */
788 #define SKB_DST_NOREF	1UL
789 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
790 
791 #define SKB_NFCT_PTRMASK	~(7UL)
792 /**
793  * skb_dst - returns skb dst_entry
794  * @skb: buffer
795  *
796  * Returns skb dst_entry, regardless of reference taken or not.
797  */
798 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
799 {
800 	/* If refdst was not refcounted, check we still are in a
801 	 * rcu_read_lock section
802 	 */
803 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
804 		!rcu_read_lock_held() &&
805 		!rcu_read_lock_bh_held());
806 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
807 }
808 
809 /**
810  * skb_dst_set - sets skb dst
811  * @skb: buffer
812  * @dst: dst entry
813  *
814  * Sets skb dst, assuming a reference was taken on dst and should
815  * be released by skb_dst_drop()
816  */
817 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
818 {
819 	skb->_skb_refdst = (unsigned long)dst;
820 }
821 
822 /**
823  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
824  * @skb: buffer
825  * @dst: dst entry
826  *
827  * Sets skb dst, assuming a reference was not taken on dst.
828  * If dst entry is cached, we do not take reference and dst_release
829  * will be avoided by refdst_drop. If dst entry is not cached, we take
830  * reference, so that last dst_release can destroy the dst immediately.
831  */
832 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
833 {
834 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
835 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
836 }
837 
838 /**
839  * skb_dst_is_noref - Test if skb dst isn't refcounted
840  * @skb: buffer
841  */
842 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
843 {
844 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
845 }
846 
847 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
848 {
849 	return (struct rtable *)skb_dst(skb);
850 }
851 
852 /* For mangling skb->pkt_type from user space side from applications
853  * such as nft, tc, etc, we only allow a conservative subset of
854  * possible pkt_types to be set.
855 */
856 static inline bool skb_pkt_type_ok(u32 ptype)
857 {
858 	return ptype <= PACKET_OTHERHOST;
859 }
860 
861 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
862 {
863 #ifdef CONFIG_NET_RX_BUSY_POLL
864 	return skb->napi_id;
865 #else
866 	return 0;
867 #endif
868 }
869 
870 /* decrement the reference count and return true if we can free the skb */
871 static inline bool skb_unref(struct sk_buff *skb)
872 {
873 	if (unlikely(!skb))
874 		return false;
875 	if (likely(refcount_read(&skb->users) == 1))
876 		smp_rmb();
877 	else if (likely(!refcount_dec_and_test(&skb->users)))
878 		return false;
879 
880 	return true;
881 }
882 
883 void skb_release_head_state(struct sk_buff *skb);
884 void kfree_skb(struct sk_buff *skb);
885 void kfree_skb_list(struct sk_buff *segs);
886 void skb_tx_error(struct sk_buff *skb);
887 void consume_skb(struct sk_buff *skb);
888 void consume_stateless_skb(struct sk_buff *skb);
889 void  __kfree_skb(struct sk_buff *skb);
890 extern struct kmem_cache *skbuff_head_cache;
891 
892 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
893 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
894 		      bool *fragstolen, int *delta_truesize);
895 
896 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
897 			    int node);
898 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
899 struct sk_buff *build_skb(void *data, unsigned int frag_size);
900 static inline struct sk_buff *alloc_skb(unsigned int size,
901 					gfp_t priority)
902 {
903 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
904 }
905 
906 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
907 				     unsigned long data_len,
908 				     int max_page_order,
909 				     int *errcode,
910 				     gfp_t gfp_mask);
911 
912 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
913 struct sk_buff_fclones {
914 	struct sk_buff	skb1;
915 
916 	struct sk_buff	skb2;
917 
918 	refcount_t	fclone_ref;
919 };
920 
921 /**
922  *	skb_fclone_busy - check if fclone is busy
923  *	@sk: socket
924  *	@skb: buffer
925  *
926  * Returns true if skb is a fast clone, and its clone is not freed.
927  * Some drivers call skb_orphan() in their ndo_start_xmit(),
928  * so we also check that this didnt happen.
929  */
930 static inline bool skb_fclone_busy(const struct sock *sk,
931 				   const struct sk_buff *skb)
932 {
933 	const struct sk_buff_fclones *fclones;
934 
935 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
936 
937 	return skb->fclone == SKB_FCLONE_ORIG &&
938 	       refcount_read(&fclones->fclone_ref) > 1 &&
939 	       fclones->skb2.sk == sk;
940 }
941 
942 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
943 					       gfp_t priority)
944 {
945 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
946 }
947 
948 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
949 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
950 {
951 	return __alloc_skb_head(priority, -1);
952 }
953 
954 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
955 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
956 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
957 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
958 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
959 				   gfp_t gfp_mask, bool fclone);
960 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
961 					  gfp_t gfp_mask)
962 {
963 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
964 }
965 
966 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
967 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
968 				     unsigned int headroom);
969 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
970 				int newtailroom, gfp_t priority);
971 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
972 				     int offset, int len);
973 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
974 			      int offset, int len);
975 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
976 int skb_pad(struct sk_buff *skb, int pad);
977 #define dev_kfree_skb(a)	consume_skb(a)
978 
979 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
980 			    int getfrag(void *from, char *to, int offset,
981 					int len, int odd, struct sk_buff *skb),
982 			    void *from, int length);
983 
984 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
985 			 int offset, size_t size);
986 
987 struct skb_seq_state {
988 	__u32		lower_offset;
989 	__u32		upper_offset;
990 	__u32		frag_idx;
991 	__u32		stepped_offset;
992 	struct sk_buff	*root_skb;
993 	struct sk_buff	*cur_skb;
994 	__u8		*frag_data;
995 };
996 
997 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
998 			  unsigned int to, struct skb_seq_state *st);
999 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1000 			  struct skb_seq_state *st);
1001 void skb_abort_seq_read(struct skb_seq_state *st);
1002 
1003 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1004 			   unsigned int to, struct ts_config *config);
1005 
1006 /*
1007  * Packet hash types specify the type of hash in skb_set_hash.
1008  *
1009  * Hash types refer to the protocol layer addresses which are used to
1010  * construct a packet's hash. The hashes are used to differentiate or identify
1011  * flows of the protocol layer for the hash type. Hash types are either
1012  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1013  *
1014  * Properties of hashes:
1015  *
1016  * 1) Two packets in different flows have different hash values
1017  * 2) Two packets in the same flow should have the same hash value
1018  *
1019  * A hash at a higher layer is considered to be more specific. A driver should
1020  * set the most specific hash possible.
1021  *
1022  * A driver cannot indicate a more specific hash than the layer at which a hash
1023  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1024  *
1025  * A driver may indicate a hash level which is less specific than the
1026  * actual layer the hash was computed on. For instance, a hash computed
1027  * at L4 may be considered an L3 hash. This should only be done if the
1028  * driver can't unambiguously determine that the HW computed the hash at
1029  * the higher layer. Note that the "should" in the second property above
1030  * permits this.
1031  */
1032 enum pkt_hash_types {
1033 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1034 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1035 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1036 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1037 };
1038 
1039 static inline void skb_clear_hash(struct sk_buff *skb)
1040 {
1041 	skb->hash = 0;
1042 	skb->sw_hash = 0;
1043 	skb->l4_hash = 0;
1044 }
1045 
1046 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1047 {
1048 	if (!skb->l4_hash)
1049 		skb_clear_hash(skb);
1050 }
1051 
1052 static inline void
1053 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1054 {
1055 	skb->l4_hash = is_l4;
1056 	skb->sw_hash = is_sw;
1057 	skb->hash = hash;
1058 }
1059 
1060 static inline void
1061 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1062 {
1063 	/* Used by drivers to set hash from HW */
1064 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1065 }
1066 
1067 static inline void
1068 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1069 {
1070 	__skb_set_hash(skb, hash, true, is_l4);
1071 }
1072 
1073 void __skb_get_hash(struct sk_buff *skb);
1074 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1075 u32 skb_get_poff(const struct sk_buff *skb);
1076 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1077 		   const struct flow_keys *keys, int hlen);
1078 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1079 			    void *data, int hlen_proto);
1080 
1081 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1082 					int thoff, u8 ip_proto)
1083 {
1084 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1085 }
1086 
1087 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1088 			     const struct flow_dissector_key *key,
1089 			     unsigned int key_count);
1090 
1091 bool __skb_flow_dissect(const struct sk_buff *skb,
1092 			struct flow_dissector *flow_dissector,
1093 			void *target_container,
1094 			void *data, __be16 proto, int nhoff, int hlen,
1095 			unsigned int flags);
1096 
1097 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1098 				    struct flow_dissector *flow_dissector,
1099 				    void *target_container, unsigned int flags)
1100 {
1101 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1102 				  NULL, 0, 0, 0, flags);
1103 }
1104 
1105 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1106 					      struct flow_keys *flow,
1107 					      unsigned int flags)
1108 {
1109 	memset(flow, 0, sizeof(*flow));
1110 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1111 				  NULL, 0, 0, 0, flags);
1112 }
1113 
1114 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1115 						  void *data, __be16 proto,
1116 						  int nhoff, int hlen,
1117 						  unsigned int flags)
1118 {
1119 	memset(flow, 0, sizeof(*flow));
1120 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1121 				  data, proto, nhoff, hlen, flags);
1122 }
1123 
1124 static inline __u32 skb_get_hash(struct sk_buff *skb)
1125 {
1126 	if (!skb->l4_hash && !skb->sw_hash)
1127 		__skb_get_hash(skb);
1128 
1129 	return skb->hash;
1130 }
1131 
1132 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1133 
1134 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1135 {
1136 	if (!skb->l4_hash && !skb->sw_hash) {
1137 		struct flow_keys keys;
1138 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1139 
1140 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1141 	}
1142 
1143 	return skb->hash;
1144 }
1145 
1146 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1147 
1148 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1149 {
1150 	if (!skb->l4_hash && !skb->sw_hash) {
1151 		struct flow_keys keys;
1152 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1153 
1154 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1155 	}
1156 
1157 	return skb->hash;
1158 }
1159 
1160 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1161 
1162 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1163 {
1164 	return skb->hash;
1165 }
1166 
1167 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1168 {
1169 	to->hash = from->hash;
1170 	to->sw_hash = from->sw_hash;
1171 	to->l4_hash = from->l4_hash;
1172 };
1173 
1174 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1175 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1176 {
1177 	return skb->head + skb->end;
1178 }
1179 
1180 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1181 {
1182 	return skb->end;
1183 }
1184 #else
1185 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1186 {
1187 	return skb->end;
1188 }
1189 
1190 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1191 {
1192 	return skb->end - skb->head;
1193 }
1194 #endif
1195 
1196 /* Internal */
1197 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1198 
1199 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1200 {
1201 	return &skb_shinfo(skb)->hwtstamps;
1202 }
1203 
1204 /**
1205  *	skb_queue_empty - check if a queue is empty
1206  *	@list: queue head
1207  *
1208  *	Returns true if the queue is empty, false otherwise.
1209  */
1210 static inline int skb_queue_empty(const struct sk_buff_head *list)
1211 {
1212 	return list->next == (const struct sk_buff *) list;
1213 }
1214 
1215 /**
1216  *	skb_queue_is_last - check if skb is the last entry in the queue
1217  *	@list: queue head
1218  *	@skb: buffer
1219  *
1220  *	Returns true if @skb is the last buffer on the list.
1221  */
1222 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1223 				     const struct sk_buff *skb)
1224 {
1225 	return skb->next == (const struct sk_buff *) list;
1226 }
1227 
1228 /**
1229  *	skb_queue_is_first - check if skb is the first entry in the queue
1230  *	@list: queue head
1231  *	@skb: buffer
1232  *
1233  *	Returns true if @skb is the first buffer on the list.
1234  */
1235 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1236 				      const struct sk_buff *skb)
1237 {
1238 	return skb->prev == (const struct sk_buff *) list;
1239 }
1240 
1241 /**
1242  *	skb_queue_next - return the next packet in the queue
1243  *	@list: queue head
1244  *	@skb: current buffer
1245  *
1246  *	Return the next packet in @list after @skb.  It is only valid to
1247  *	call this if skb_queue_is_last() evaluates to false.
1248  */
1249 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1250 					     const struct sk_buff *skb)
1251 {
1252 	/* This BUG_ON may seem severe, but if we just return then we
1253 	 * are going to dereference garbage.
1254 	 */
1255 	BUG_ON(skb_queue_is_last(list, skb));
1256 	return skb->next;
1257 }
1258 
1259 /**
1260  *	skb_queue_prev - return the prev packet in the queue
1261  *	@list: queue head
1262  *	@skb: current buffer
1263  *
1264  *	Return the prev packet in @list before @skb.  It is only valid to
1265  *	call this if skb_queue_is_first() evaluates to false.
1266  */
1267 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1268 					     const struct sk_buff *skb)
1269 {
1270 	/* This BUG_ON may seem severe, but if we just return then we
1271 	 * are going to dereference garbage.
1272 	 */
1273 	BUG_ON(skb_queue_is_first(list, skb));
1274 	return skb->prev;
1275 }
1276 
1277 /**
1278  *	skb_get - reference buffer
1279  *	@skb: buffer to reference
1280  *
1281  *	Makes another reference to a socket buffer and returns a pointer
1282  *	to the buffer.
1283  */
1284 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1285 {
1286 	refcount_inc(&skb->users);
1287 	return skb;
1288 }
1289 
1290 /*
1291  * If users == 1, we are the only owner and are can avoid redundant
1292  * atomic change.
1293  */
1294 
1295 /**
1296  *	skb_cloned - is the buffer a clone
1297  *	@skb: buffer to check
1298  *
1299  *	Returns true if the buffer was generated with skb_clone() and is
1300  *	one of multiple shared copies of the buffer. Cloned buffers are
1301  *	shared data so must not be written to under normal circumstances.
1302  */
1303 static inline int skb_cloned(const struct sk_buff *skb)
1304 {
1305 	return skb->cloned &&
1306 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1307 }
1308 
1309 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1310 {
1311 	might_sleep_if(gfpflags_allow_blocking(pri));
1312 
1313 	if (skb_cloned(skb))
1314 		return pskb_expand_head(skb, 0, 0, pri);
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  *	skb_header_cloned - is the header a clone
1321  *	@skb: buffer to check
1322  *
1323  *	Returns true if modifying the header part of the buffer requires
1324  *	the data to be copied.
1325  */
1326 static inline int skb_header_cloned(const struct sk_buff *skb)
1327 {
1328 	int dataref;
1329 
1330 	if (!skb->cloned)
1331 		return 0;
1332 
1333 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1334 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1335 	return dataref != 1;
1336 }
1337 
1338 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1339 {
1340 	might_sleep_if(gfpflags_allow_blocking(pri));
1341 
1342 	if (skb_header_cloned(skb))
1343 		return pskb_expand_head(skb, 0, 0, pri);
1344 
1345 	return 0;
1346 }
1347 
1348 /**
1349  *	skb_header_release - release reference to header
1350  *	@skb: buffer to operate on
1351  *
1352  *	Drop a reference to the header part of the buffer.  This is done
1353  *	by acquiring a payload reference.  You must not read from the header
1354  *	part of skb->data after this.
1355  *	Note : Check if you can use __skb_header_release() instead.
1356  */
1357 static inline void skb_header_release(struct sk_buff *skb)
1358 {
1359 	BUG_ON(skb->nohdr);
1360 	skb->nohdr = 1;
1361 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1362 }
1363 
1364 /**
1365  *	__skb_header_release - release reference to header
1366  *	@skb: buffer to operate on
1367  *
1368  *	Variant of skb_header_release() assuming skb is private to caller.
1369  *	We can avoid one atomic operation.
1370  */
1371 static inline void __skb_header_release(struct sk_buff *skb)
1372 {
1373 	skb->nohdr = 1;
1374 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1375 }
1376 
1377 
1378 /**
1379  *	skb_shared - is the buffer shared
1380  *	@skb: buffer to check
1381  *
1382  *	Returns true if more than one person has a reference to this
1383  *	buffer.
1384  */
1385 static inline int skb_shared(const struct sk_buff *skb)
1386 {
1387 	return refcount_read(&skb->users) != 1;
1388 }
1389 
1390 /**
1391  *	skb_share_check - check if buffer is shared and if so clone it
1392  *	@skb: buffer to check
1393  *	@pri: priority for memory allocation
1394  *
1395  *	If the buffer is shared the buffer is cloned and the old copy
1396  *	drops a reference. A new clone with a single reference is returned.
1397  *	If the buffer is not shared the original buffer is returned. When
1398  *	being called from interrupt status or with spinlocks held pri must
1399  *	be GFP_ATOMIC.
1400  *
1401  *	NULL is returned on a memory allocation failure.
1402  */
1403 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1404 {
1405 	might_sleep_if(gfpflags_allow_blocking(pri));
1406 	if (skb_shared(skb)) {
1407 		struct sk_buff *nskb = skb_clone(skb, pri);
1408 
1409 		if (likely(nskb))
1410 			consume_skb(skb);
1411 		else
1412 			kfree_skb(skb);
1413 		skb = nskb;
1414 	}
1415 	return skb;
1416 }
1417 
1418 /*
1419  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1420  *	packets to handle cases where we have a local reader and forward
1421  *	and a couple of other messy ones. The normal one is tcpdumping
1422  *	a packet thats being forwarded.
1423  */
1424 
1425 /**
1426  *	skb_unshare - make a copy of a shared buffer
1427  *	@skb: buffer to check
1428  *	@pri: priority for memory allocation
1429  *
1430  *	If the socket buffer is a clone then this function creates a new
1431  *	copy of the data, drops a reference count on the old copy and returns
1432  *	the new copy with the reference count at 1. If the buffer is not a clone
1433  *	the original buffer is returned. When called with a spinlock held or
1434  *	from interrupt state @pri must be %GFP_ATOMIC
1435  *
1436  *	%NULL is returned on a memory allocation failure.
1437  */
1438 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1439 					  gfp_t pri)
1440 {
1441 	might_sleep_if(gfpflags_allow_blocking(pri));
1442 	if (skb_cloned(skb)) {
1443 		struct sk_buff *nskb = skb_copy(skb, pri);
1444 
1445 		/* Free our shared copy */
1446 		if (likely(nskb))
1447 			consume_skb(skb);
1448 		else
1449 			kfree_skb(skb);
1450 		skb = nskb;
1451 	}
1452 	return skb;
1453 }
1454 
1455 /**
1456  *	skb_peek - peek at the head of an &sk_buff_head
1457  *	@list_: list to peek at
1458  *
1459  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1460  *	be careful with this one. A peek leaves the buffer on the
1461  *	list and someone else may run off with it. You must hold
1462  *	the appropriate locks or have a private queue to do this.
1463  *
1464  *	Returns %NULL for an empty list or a pointer to the head element.
1465  *	The reference count is not incremented and the reference is therefore
1466  *	volatile. Use with caution.
1467  */
1468 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1469 {
1470 	struct sk_buff *skb = list_->next;
1471 
1472 	if (skb == (struct sk_buff *)list_)
1473 		skb = NULL;
1474 	return skb;
1475 }
1476 
1477 /**
1478  *	skb_peek_next - peek skb following the given one from a queue
1479  *	@skb: skb to start from
1480  *	@list_: list to peek at
1481  *
1482  *	Returns %NULL when the end of the list is met or a pointer to the
1483  *	next element. The reference count is not incremented and the
1484  *	reference is therefore volatile. Use with caution.
1485  */
1486 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1487 		const struct sk_buff_head *list_)
1488 {
1489 	struct sk_buff *next = skb->next;
1490 
1491 	if (next == (struct sk_buff *)list_)
1492 		next = NULL;
1493 	return next;
1494 }
1495 
1496 /**
1497  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1498  *	@list_: list to peek at
1499  *
1500  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1501  *	be careful with this one. A peek leaves the buffer on the
1502  *	list and someone else may run off with it. You must hold
1503  *	the appropriate locks or have a private queue to do this.
1504  *
1505  *	Returns %NULL for an empty list or a pointer to the tail element.
1506  *	The reference count is not incremented and the reference is therefore
1507  *	volatile. Use with caution.
1508  */
1509 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1510 {
1511 	struct sk_buff *skb = list_->prev;
1512 
1513 	if (skb == (struct sk_buff *)list_)
1514 		skb = NULL;
1515 	return skb;
1516 
1517 }
1518 
1519 /**
1520  *	skb_queue_len	- get queue length
1521  *	@list_: list to measure
1522  *
1523  *	Return the length of an &sk_buff queue.
1524  */
1525 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1526 {
1527 	return list_->qlen;
1528 }
1529 
1530 /**
1531  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1532  *	@list: queue to initialize
1533  *
1534  *	This initializes only the list and queue length aspects of
1535  *	an sk_buff_head object.  This allows to initialize the list
1536  *	aspects of an sk_buff_head without reinitializing things like
1537  *	the spinlock.  It can also be used for on-stack sk_buff_head
1538  *	objects where the spinlock is known to not be used.
1539  */
1540 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1541 {
1542 	list->prev = list->next = (struct sk_buff *)list;
1543 	list->qlen = 0;
1544 }
1545 
1546 /*
1547  * This function creates a split out lock class for each invocation;
1548  * this is needed for now since a whole lot of users of the skb-queue
1549  * infrastructure in drivers have different locking usage (in hardirq)
1550  * than the networking core (in softirq only). In the long run either the
1551  * network layer or drivers should need annotation to consolidate the
1552  * main types of usage into 3 classes.
1553  */
1554 static inline void skb_queue_head_init(struct sk_buff_head *list)
1555 {
1556 	spin_lock_init(&list->lock);
1557 	__skb_queue_head_init(list);
1558 }
1559 
1560 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1561 		struct lock_class_key *class)
1562 {
1563 	skb_queue_head_init(list);
1564 	lockdep_set_class(&list->lock, class);
1565 }
1566 
1567 /*
1568  *	Insert an sk_buff on a list.
1569  *
1570  *	The "__skb_xxxx()" functions are the non-atomic ones that
1571  *	can only be called with interrupts disabled.
1572  */
1573 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1574 		struct sk_buff_head *list);
1575 static inline void __skb_insert(struct sk_buff *newsk,
1576 				struct sk_buff *prev, struct sk_buff *next,
1577 				struct sk_buff_head *list)
1578 {
1579 	newsk->next = next;
1580 	newsk->prev = prev;
1581 	next->prev  = prev->next = newsk;
1582 	list->qlen++;
1583 }
1584 
1585 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1586 				      struct sk_buff *prev,
1587 				      struct sk_buff *next)
1588 {
1589 	struct sk_buff *first = list->next;
1590 	struct sk_buff *last = list->prev;
1591 
1592 	first->prev = prev;
1593 	prev->next = first;
1594 
1595 	last->next = next;
1596 	next->prev = last;
1597 }
1598 
1599 /**
1600  *	skb_queue_splice - join two skb lists, this is designed for stacks
1601  *	@list: the new list to add
1602  *	@head: the place to add it in the first list
1603  */
1604 static inline void skb_queue_splice(const struct sk_buff_head *list,
1605 				    struct sk_buff_head *head)
1606 {
1607 	if (!skb_queue_empty(list)) {
1608 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1609 		head->qlen += list->qlen;
1610 	}
1611 }
1612 
1613 /**
1614  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1615  *	@list: the new list to add
1616  *	@head: the place to add it in the first list
1617  *
1618  *	The list at @list is reinitialised
1619  */
1620 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1621 					 struct sk_buff_head *head)
1622 {
1623 	if (!skb_queue_empty(list)) {
1624 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1625 		head->qlen += list->qlen;
1626 		__skb_queue_head_init(list);
1627 	}
1628 }
1629 
1630 /**
1631  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1632  *	@list: the new list to add
1633  *	@head: the place to add it in the first list
1634  */
1635 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1636 					 struct sk_buff_head *head)
1637 {
1638 	if (!skb_queue_empty(list)) {
1639 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1640 		head->qlen += list->qlen;
1641 	}
1642 }
1643 
1644 /**
1645  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1646  *	@list: the new list to add
1647  *	@head: the place to add it in the first list
1648  *
1649  *	Each of the lists is a queue.
1650  *	The list at @list is reinitialised
1651  */
1652 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1653 					      struct sk_buff_head *head)
1654 {
1655 	if (!skb_queue_empty(list)) {
1656 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1657 		head->qlen += list->qlen;
1658 		__skb_queue_head_init(list);
1659 	}
1660 }
1661 
1662 /**
1663  *	__skb_queue_after - queue a buffer at the list head
1664  *	@list: list to use
1665  *	@prev: place after this buffer
1666  *	@newsk: buffer to queue
1667  *
1668  *	Queue a buffer int the middle of a list. This function takes no locks
1669  *	and you must therefore hold required locks before calling it.
1670  *
1671  *	A buffer cannot be placed on two lists at the same time.
1672  */
1673 static inline void __skb_queue_after(struct sk_buff_head *list,
1674 				     struct sk_buff *prev,
1675 				     struct sk_buff *newsk)
1676 {
1677 	__skb_insert(newsk, prev, prev->next, list);
1678 }
1679 
1680 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1681 		struct sk_buff_head *list);
1682 
1683 static inline void __skb_queue_before(struct sk_buff_head *list,
1684 				      struct sk_buff *next,
1685 				      struct sk_buff *newsk)
1686 {
1687 	__skb_insert(newsk, next->prev, next, list);
1688 }
1689 
1690 /**
1691  *	__skb_queue_head - queue a buffer at the list head
1692  *	@list: list to use
1693  *	@newsk: buffer to queue
1694  *
1695  *	Queue a buffer at the start of a list. This function takes no locks
1696  *	and you must therefore hold required locks before calling it.
1697  *
1698  *	A buffer cannot be placed on two lists at the same time.
1699  */
1700 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1701 static inline void __skb_queue_head(struct sk_buff_head *list,
1702 				    struct sk_buff *newsk)
1703 {
1704 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1705 }
1706 
1707 /**
1708  *	__skb_queue_tail - queue a buffer at the list tail
1709  *	@list: list to use
1710  *	@newsk: buffer to queue
1711  *
1712  *	Queue a buffer at the end of a list. This function takes no locks
1713  *	and you must therefore hold required locks before calling it.
1714  *
1715  *	A buffer cannot be placed on two lists at the same time.
1716  */
1717 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1718 static inline void __skb_queue_tail(struct sk_buff_head *list,
1719 				   struct sk_buff *newsk)
1720 {
1721 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1722 }
1723 
1724 /*
1725  * remove sk_buff from list. _Must_ be called atomically, and with
1726  * the list known..
1727  */
1728 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1729 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1730 {
1731 	struct sk_buff *next, *prev;
1732 
1733 	list->qlen--;
1734 	next	   = skb->next;
1735 	prev	   = skb->prev;
1736 	skb->next  = skb->prev = NULL;
1737 	next->prev = prev;
1738 	prev->next = next;
1739 }
1740 
1741 /**
1742  *	__skb_dequeue - remove from the head of the queue
1743  *	@list: list to dequeue from
1744  *
1745  *	Remove the head of the list. This function does not take any locks
1746  *	so must be used with appropriate locks held only. The head item is
1747  *	returned or %NULL if the list is empty.
1748  */
1749 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1750 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1751 {
1752 	struct sk_buff *skb = skb_peek(list);
1753 	if (skb)
1754 		__skb_unlink(skb, list);
1755 	return skb;
1756 }
1757 
1758 /**
1759  *	__skb_dequeue_tail - remove from the tail of the queue
1760  *	@list: list to dequeue from
1761  *
1762  *	Remove the tail of the list. This function does not take any locks
1763  *	so must be used with appropriate locks held only. The tail item is
1764  *	returned or %NULL if the list is empty.
1765  */
1766 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1767 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1768 {
1769 	struct sk_buff *skb = skb_peek_tail(list);
1770 	if (skb)
1771 		__skb_unlink(skb, list);
1772 	return skb;
1773 }
1774 
1775 
1776 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1777 {
1778 	return skb->data_len;
1779 }
1780 
1781 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1782 {
1783 	return skb->len - skb->data_len;
1784 }
1785 
1786 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1787 {
1788 	unsigned int i, len = 0;
1789 
1790 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1791 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1792 	return len + skb_headlen(skb);
1793 }
1794 
1795 /**
1796  * __skb_fill_page_desc - initialise a paged fragment in an skb
1797  * @skb: buffer containing fragment to be initialised
1798  * @i: paged fragment index to initialise
1799  * @page: the page to use for this fragment
1800  * @off: the offset to the data with @page
1801  * @size: the length of the data
1802  *
1803  * Initialises the @i'th fragment of @skb to point to &size bytes at
1804  * offset @off within @page.
1805  *
1806  * Does not take any additional reference on the fragment.
1807  */
1808 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1809 					struct page *page, int off, int size)
1810 {
1811 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1812 
1813 	/*
1814 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1815 	 * that not all callers have unique ownership of the page but rely
1816 	 * on page_is_pfmemalloc doing the right thing(tm).
1817 	 */
1818 	frag->page.p		  = page;
1819 	frag->page_offset	  = off;
1820 	skb_frag_size_set(frag, size);
1821 
1822 	page = compound_head(page);
1823 	if (page_is_pfmemalloc(page))
1824 		skb->pfmemalloc	= true;
1825 }
1826 
1827 /**
1828  * skb_fill_page_desc - initialise a paged fragment in an skb
1829  * @skb: buffer containing fragment to be initialised
1830  * @i: paged fragment index to initialise
1831  * @page: the page to use for this fragment
1832  * @off: the offset to the data with @page
1833  * @size: the length of the data
1834  *
1835  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1836  * @skb to point to @size bytes at offset @off within @page. In
1837  * addition updates @skb such that @i is the last fragment.
1838  *
1839  * Does not take any additional reference on the fragment.
1840  */
1841 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1842 				      struct page *page, int off, int size)
1843 {
1844 	__skb_fill_page_desc(skb, i, page, off, size);
1845 	skb_shinfo(skb)->nr_frags = i + 1;
1846 }
1847 
1848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1849 		     int size, unsigned int truesize);
1850 
1851 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1852 			  unsigned int truesize);
1853 
1854 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1855 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1856 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1857 
1858 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1859 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1860 {
1861 	return skb->head + skb->tail;
1862 }
1863 
1864 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1865 {
1866 	skb->tail = skb->data - skb->head;
1867 }
1868 
1869 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1870 {
1871 	skb_reset_tail_pointer(skb);
1872 	skb->tail += offset;
1873 }
1874 
1875 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1876 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1877 {
1878 	return skb->tail;
1879 }
1880 
1881 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1882 {
1883 	skb->tail = skb->data;
1884 }
1885 
1886 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1887 {
1888 	skb->tail = skb->data + offset;
1889 }
1890 
1891 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1892 
1893 /*
1894  *	Add data to an sk_buff
1895  */
1896 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1897 void *skb_put(struct sk_buff *skb, unsigned int len);
1898 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1899 {
1900 	void *tmp = skb_tail_pointer(skb);
1901 	SKB_LINEAR_ASSERT(skb);
1902 	skb->tail += len;
1903 	skb->len  += len;
1904 	return tmp;
1905 }
1906 
1907 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
1908 {
1909 	void *tmp = __skb_put(skb, len);
1910 
1911 	memset(tmp, 0, len);
1912 	return tmp;
1913 }
1914 
1915 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
1916 				   unsigned int len)
1917 {
1918 	void *tmp = __skb_put(skb, len);
1919 
1920 	memcpy(tmp, data, len);
1921 	return tmp;
1922 }
1923 
1924 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
1925 {
1926 	*(u8 *)__skb_put(skb, 1) = val;
1927 }
1928 
1929 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
1930 {
1931 	void *tmp = skb_put(skb, len);
1932 
1933 	memset(tmp, 0, len);
1934 
1935 	return tmp;
1936 }
1937 
1938 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
1939 				 unsigned int len)
1940 {
1941 	void *tmp = skb_put(skb, len);
1942 
1943 	memcpy(tmp, data, len);
1944 
1945 	return tmp;
1946 }
1947 
1948 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
1949 {
1950 	*(u8 *)skb_put(skb, 1) = val;
1951 }
1952 
1953 void *skb_push(struct sk_buff *skb, unsigned int len);
1954 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1955 {
1956 	skb->data -= len;
1957 	skb->len  += len;
1958 	return skb->data;
1959 }
1960 
1961 void *skb_pull(struct sk_buff *skb, unsigned int len);
1962 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1963 {
1964 	skb->len -= len;
1965 	BUG_ON(skb->len < skb->data_len);
1966 	return skb->data += len;
1967 }
1968 
1969 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1970 {
1971 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1972 }
1973 
1974 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1975 
1976 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1977 {
1978 	if (len > skb_headlen(skb) &&
1979 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1980 		return NULL;
1981 	skb->len -= len;
1982 	return skb->data += len;
1983 }
1984 
1985 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1986 {
1987 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1988 }
1989 
1990 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1991 {
1992 	if (likely(len <= skb_headlen(skb)))
1993 		return 1;
1994 	if (unlikely(len > skb->len))
1995 		return 0;
1996 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1997 }
1998 
1999 void skb_condense(struct sk_buff *skb);
2000 
2001 /**
2002  *	skb_headroom - bytes at buffer head
2003  *	@skb: buffer to check
2004  *
2005  *	Return the number of bytes of free space at the head of an &sk_buff.
2006  */
2007 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2008 {
2009 	return skb->data - skb->head;
2010 }
2011 
2012 /**
2013  *	skb_tailroom - bytes at buffer end
2014  *	@skb: buffer to check
2015  *
2016  *	Return the number of bytes of free space at the tail of an sk_buff
2017  */
2018 static inline int skb_tailroom(const struct sk_buff *skb)
2019 {
2020 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2021 }
2022 
2023 /**
2024  *	skb_availroom - bytes at buffer end
2025  *	@skb: buffer to check
2026  *
2027  *	Return the number of bytes of free space at the tail of an sk_buff
2028  *	allocated by sk_stream_alloc()
2029  */
2030 static inline int skb_availroom(const struct sk_buff *skb)
2031 {
2032 	if (skb_is_nonlinear(skb))
2033 		return 0;
2034 
2035 	return skb->end - skb->tail - skb->reserved_tailroom;
2036 }
2037 
2038 /**
2039  *	skb_reserve - adjust headroom
2040  *	@skb: buffer to alter
2041  *	@len: bytes to move
2042  *
2043  *	Increase the headroom of an empty &sk_buff by reducing the tail
2044  *	room. This is only allowed for an empty buffer.
2045  */
2046 static inline void skb_reserve(struct sk_buff *skb, int len)
2047 {
2048 	skb->data += len;
2049 	skb->tail += len;
2050 }
2051 
2052 /**
2053  *	skb_tailroom_reserve - adjust reserved_tailroom
2054  *	@skb: buffer to alter
2055  *	@mtu: maximum amount of headlen permitted
2056  *	@needed_tailroom: minimum amount of reserved_tailroom
2057  *
2058  *	Set reserved_tailroom so that headlen can be as large as possible but
2059  *	not larger than mtu and tailroom cannot be smaller than
2060  *	needed_tailroom.
2061  *	The required headroom should already have been reserved before using
2062  *	this function.
2063  */
2064 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2065 					unsigned int needed_tailroom)
2066 {
2067 	SKB_LINEAR_ASSERT(skb);
2068 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2069 		/* use at most mtu */
2070 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2071 	else
2072 		/* use up to all available space */
2073 		skb->reserved_tailroom = needed_tailroom;
2074 }
2075 
2076 #define ENCAP_TYPE_ETHER	0
2077 #define ENCAP_TYPE_IPPROTO	1
2078 
2079 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2080 					  __be16 protocol)
2081 {
2082 	skb->inner_protocol = protocol;
2083 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2084 }
2085 
2086 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2087 					 __u8 ipproto)
2088 {
2089 	skb->inner_ipproto = ipproto;
2090 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2091 }
2092 
2093 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2094 {
2095 	skb->inner_mac_header = skb->mac_header;
2096 	skb->inner_network_header = skb->network_header;
2097 	skb->inner_transport_header = skb->transport_header;
2098 }
2099 
2100 static inline void skb_reset_mac_len(struct sk_buff *skb)
2101 {
2102 	skb->mac_len = skb->network_header - skb->mac_header;
2103 }
2104 
2105 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2106 							*skb)
2107 {
2108 	return skb->head + skb->inner_transport_header;
2109 }
2110 
2111 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2112 {
2113 	return skb_inner_transport_header(skb) - skb->data;
2114 }
2115 
2116 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2117 {
2118 	skb->inner_transport_header = skb->data - skb->head;
2119 }
2120 
2121 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2122 						   const int offset)
2123 {
2124 	skb_reset_inner_transport_header(skb);
2125 	skb->inner_transport_header += offset;
2126 }
2127 
2128 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2129 {
2130 	return skb->head + skb->inner_network_header;
2131 }
2132 
2133 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2134 {
2135 	skb->inner_network_header = skb->data - skb->head;
2136 }
2137 
2138 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2139 						const int offset)
2140 {
2141 	skb_reset_inner_network_header(skb);
2142 	skb->inner_network_header += offset;
2143 }
2144 
2145 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2146 {
2147 	return skb->head + skb->inner_mac_header;
2148 }
2149 
2150 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2151 {
2152 	skb->inner_mac_header = skb->data - skb->head;
2153 }
2154 
2155 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2156 					    const int offset)
2157 {
2158 	skb_reset_inner_mac_header(skb);
2159 	skb->inner_mac_header += offset;
2160 }
2161 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2162 {
2163 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2164 }
2165 
2166 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2167 {
2168 	return skb->head + skb->transport_header;
2169 }
2170 
2171 static inline void skb_reset_transport_header(struct sk_buff *skb)
2172 {
2173 	skb->transport_header = skb->data - skb->head;
2174 }
2175 
2176 static inline void skb_set_transport_header(struct sk_buff *skb,
2177 					    const int offset)
2178 {
2179 	skb_reset_transport_header(skb);
2180 	skb->transport_header += offset;
2181 }
2182 
2183 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2184 {
2185 	return skb->head + skb->network_header;
2186 }
2187 
2188 static inline void skb_reset_network_header(struct sk_buff *skb)
2189 {
2190 	skb->network_header = skb->data - skb->head;
2191 }
2192 
2193 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2194 {
2195 	skb_reset_network_header(skb);
2196 	skb->network_header += offset;
2197 }
2198 
2199 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2200 {
2201 	return skb->head + skb->mac_header;
2202 }
2203 
2204 static inline int skb_mac_offset(const struct sk_buff *skb)
2205 {
2206 	return skb_mac_header(skb) - skb->data;
2207 }
2208 
2209 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2210 {
2211 	return skb->network_header - skb->mac_header;
2212 }
2213 
2214 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2215 {
2216 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2217 }
2218 
2219 static inline void skb_reset_mac_header(struct sk_buff *skb)
2220 {
2221 	skb->mac_header = skb->data - skb->head;
2222 }
2223 
2224 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2225 {
2226 	skb_reset_mac_header(skb);
2227 	skb->mac_header += offset;
2228 }
2229 
2230 static inline void skb_pop_mac_header(struct sk_buff *skb)
2231 {
2232 	skb->mac_header = skb->network_header;
2233 }
2234 
2235 static inline void skb_probe_transport_header(struct sk_buff *skb,
2236 					      const int offset_hint)
2237 {
2238 	struct flow_keys keys;
2239 
2240 	if (skb_transport_header_was_set(skb))
2241 		return;
2242 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2243 		skb_set_transport_header(skb, keys.control.thoff);
2244 	else
2245 		skb_set_transport_header(skb, offset_hint);
2246 }
2247 
2248 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2249 {
2250 	if (skb_mac_header_was_set(skb)) {
2251 		const unsigned char *old_mac = skb_mac_header(skb);
2252 
2253 		skb_set_mac_header(skb, -skb->mac_len);
2254 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2255 	}
2256 }
2257 
2258 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2259 {
2260 	return skb->csum_start - skb_headroom(skb);
2261 }
2262 
2263 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2264 {
2265 	return skb->head + skb->csum_start;
2266 }
2267 
2268 static inline int skb_transport_offset(const struct sk_buff *skb)
2269 {
2270 	return skb_transport_header(skb) - skb->data;
2271 }
2272 
2273 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2274 {
2275 	return skb->transport_header - skb->network_header;
2276 }
2277 
2278 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2279 {
2280 	return skb->inner_transport_header - skb->inner_network_header;
2281 }
2282 
2283 static inline int skb_network_offset(const struct sk_buff *skb)
2284 {
2285 	return skb_network_header(skb) - skb->data;
2286 }
2287 
2288 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2289 {
2290 	return skb_inner_network_header(skb) - skb->data;
2291 }
2292 
2293 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2294 {
2295 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2296 }
2297 
2298 /*
2299  * CPUs often take a performance hit when accessing unaligned memory
2300  * locations. The actual performance hit varies, it can be small if the
2301  * hardware handles it or large if we have to take an exception and fix it
2302  * in software.
2303  *
2304  * Since an ethernet header is 14 bytes network drivers often end up with
2305  * the IP header at an unaligned offset. The IP header can be aligned by
2306  * shifting the start of the packet by 2 bytes. Drivers should do this
2307  * with:
2308  *
2309  * skb_reserve(skb, NET_IP_ALIGN);
2310  *
2311  * The downside to this alignment of the IP header is that the DMA is now
2312  * unaligned. On some architectures the cost of an unaligned DMA is high
2313  * and this cost outweighs the gains made by aligning the IP header.
2314  *
2315  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2316  * to be overridden.
2317  */
2318 #ifndef NET_IP_ALIGN
2319 #define NET_IP_ALIGN	2
2320 #endif
2321 
2322 /*
2323  * The networking layer reserves some headroom in skb data (via
2324  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2325  * the header has to grow. In the default case, if the header has to grow
2326  * 32 bytes or less we avoid the reallocation.
2327  *
2328  * Unfortunately this headroom changes the DMA alignment of the resulting
2329  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2330  * on some architectures. An architecture can override this value,
2331  * perhaps setting it to a cacheline in size (since that will maintain
2332  * cacheline alignment of the DMA). It must be a power of 2.
2333  *
2334  * Various parts of the networking layer expect at least 32 bytes of
2335  * headroom, you should not reduce this.
2336  *
2337  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2338  * to reduce average number of cache lines per packet.
2339  * get_rps_cpus() for example only access one 64 bytes aligned block :
2340  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2341  */
2342 #ifndef NET_SKB_PAD
2343 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2344 #endif
2345 
2346 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2347 
2348 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2349 {
2350 	if (unlikely(skb_is_nonlinear(skb))) {
2351 		WARN_ON(1);
2352 		return;
2353 	}
2354 	skb->len = len;
2355 	skb_set_tail_pointer(skb, len);
2356 }
2357 
2358 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2359 {
2360 	__skb_set_length(skb, len);
2361 }
2362 
2363 void skb_trim(struct sk_buff *skb, unsigned int len);
2364 
2365 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2366 {
2367 	if (skb->data_len)
2368 		return ___pskb_trim(skb, len);
2369 	__skb_trim(skb, len);
2370 	return 0;
2371 }
2372 
2373 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2374 {
2375 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2376 }
2377 
2378 /**
2379  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2380  *	@skb: buffer to alter
2381  *	@len: new length
2382  *
2383  *	This is identical to pskb_trim except that the caller knows that
2384  *	the skb is not cloned so we should never get an error due to out-
2385  *	of-memory.
2386  */
2387 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2388 {
2389 	int err = pskb_trim(skb, len);
2390 	BUG_ON(err);
2391 }
2392 
2393 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2394 {
2395 	unsigned int diff = len - skb->len;
2396 
2397 	if (skb_tailroom(skb) < diff) {
2398 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2399 					   GFP_ATOMIC);
2400 		if (ret)
2401 			return ret;
2402 	}
2403 	__skb_set_length(skb, len);
2404 	return 0;
2405 }
2406 
2407 /**
2408  *	skb_orphan - orphan a buffer
2409  *	@skb: buffer to orphan
2410  *
2411  *	If a buffer currently has an owner then we call the owner's
2412  *	destructor function and make the @skb unowned. The buffer continues
2413  *	to exist but is no longer charged to its former owner.
2414  */
2415 static inline void skb_orphan(struct sk_buff *skb)
2416 {
2417 	if (skb->destructor) {
2418 		skb->destructor(skb);
2419 		skb->destructor = NULL;
2420 		skb->sk		= NULL;
2421 	} else {
2422 		BUG_ON(skb->sk);
2423 	}
2424 }
2425 
2426 /**
2427  *	skb_orphan_frags - orphan the frags contained in a buffer
2428  *	@skb: buffer to orphan frags from
2429  *	@gfp_mask: allocation mask for replacement pages
2430  *
2431  *	For each frag in the SKB which needs a destructor (i.e. has an
2432  *	owner) create a copy of that frag and release the original
2433  *	page by calling the destructor.
2434  */
2435 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2436 {
2437 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2438 		return 0;
2439 	return skb_copy_ubufs(skb, gfp_mask);
2440 }
2441 
2442 /**
2443  *	__skb_queue_purge - empty a list
2444  *	@list: list to empty
2445  *
2446  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2447  *	the list and one reference dropped. This function does not take the
2448  *	list lock and the caller must hold the relevant locks to use it.
2449  */
2450 void skb_queue_purge(struct sk_buff_head *list);
2451 static inline void __skb_queue_purge(struct sk_buff_head *list)
2452 {
2453 	struct sk_buff *skb;
2454 	while ((skb = __skb_dequeue(list)) != NULL)
2455 		kfree_skb(skb);
2456 }
2457 
2458 void skb_rbtree_purge(struct rb_root *root);
2459 
2460 void *netdev_alloc_frag(unsigned int fragsz);
2461 
2462 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2463 				   gfp_t gfp_mask);
2464 
2465 /**
2466  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2467  *	@dev: network device to receive on
2468  *	@length: length to allocate
2469  *
2470  *	Allocate a new &sk_buff and assign it a usage count of one. The
2471  *	buffer has unspecified headroom built in. Users should allocate
2472  *	the headroom they think they need without accounting for the
2473  *	built in space. The built in space is used for optimisations.
2474  *
2475  *	%NULL is returned if there is no free memory. Although this function
2476  *	allocates memory it can be called from an interrupt.
2477  */
2478 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2479 					       unsigned int length)
2480 {
2481 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2482 }
2483 
2484 /* legacy helper around __netdev_alloc_skb() */
2485 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2486 					      gfp_t gfp_mask)
2487 {
2488 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2489 }
2490 
2491 /* legacy helper around netdev_alloc_skb() */
2492 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2493 {
2494 	return netdev_alloc_skb(NULL, length);
2495 }
2496 
2497 
2498 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2499 		unsigned int length, gfp_t gfp)
2500 {
2501 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2502 
2503 	if (NET_IP_ALIGN && skb)
2504 		skb_reserve(skb, NET_IP_ALIGN);
2505 	return skb;
2506 }
2507 
2508 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2509 		unsigned int length)
2510 {
2511 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2512 }
2513 
2514 static inline void skb_free_frag(void *addr)
2515 {
2516 	page_frag_free(addr);
2517 }
2518 
2519 void *napi_alloc_frag(unsigned int fragsz);
2520 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2521 				 unsigned int length, gfp_t gfp_mask);
2522 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2523 					     unsigned int length)
2524 {
2525 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2526 }
2527 void napi_consume_skb(struct sk_buff *skb, int budget);
2528 
2529 void __kfree_skb_flush(void);
2530 void __kfree_skb_defer(struct sk_buff *skb);
2531 
2532 /**
2533  * __dev_alloc_pages - allocate page for network Rx
2534  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2535  * @order: size of the allocation
2536  *
2537  * Allocate a new page.
2538  *
2539  * %NULL is returned if there is no free memory.
2540 */
2541 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2542 					     unsigned int order)
2543 {
2544 	/* This piece of code contains several assumptions.
2545 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2546 	 * 2.  The expectation is the user wants a compound page.
2547 	 * 3.  If requesting a order 0 page it will not be compound
2548 	 *     due to the check to see if order has a value in prep_new_page
2549 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2550 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2551 	 */
2552 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2553 
2554 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2555 }
2556 
2557 static inline struct page *dev_alloc_pages(unsigned int order)
2558 {
2559 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2560 }
2561 
2562 /**
2563  * __dev_alloc_page - allocate a page for network Rx
2564  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2565  *
2566  * Allocate a new page.
2567  *
2568  * %NULL is returned if there is no free memory.
2569  */
2570 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2571 {
2572 	return __dev_alloc_pages(gfp_mask, 0);
2573 }
2574 
2575 static inline struct page *dev_alloc_page(void)
2576 {
2577 	return dev_alloc_pages(0);
2578 }
2579 
2580 /**
2581  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2582  *	@page: The page that was allocated from skb_alloc_page
2583  *	@skb: The skb that may need pfmemalloc set
2584  */
2585 static inline void skb_propagate_pfmemalloc(struct page *page,
2586 					     struct sk_buff *skb)
2587 {
2588 	if (page_is_pfmemalloc(page))
2589 		skb->pfmemalloc = true;
2590 }
2591 
2592 /**
2593  * skb_frag_page - retrieve the page referred to by a paged fragment
2594  * @frag: the paged fragment
2595  *
2596  * Returns the &struct page associated with @frag.
2597  */
2598 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2599 {
2600 	return frag->page.p;
2601 }
2602 
2603 /**
2604  * __skb_frag_ref - take an addition reference on a paged fragment.
2605  * @frag: the paged fragment
2606  *
2607  * Takes an additional reference on the paged fragment @frag.
2608  */
2609 static inline void __skb_frag_ref(skb_frag_t *frag)
2610 {
2611 	get_page(skb_frag_page(frag));
2612 }
2613 
2614 /**
2615  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2616  * @skb: the buffer
2617  * @f: the fragment offset.
2618  *
2619  * Takes an additional reference on the @f'th paged fragment of @skb.
2620  */
2621 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2622 {
2623 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2624 }
2625 
2626 /**
2627  * __skb_frag_unref - release a reference on a paged fragment.
2628  * @frag: the paged fragment
2629  *
2630  * Releases a reference on the paged fragment @frag.
2631  */
2632 static inline void __skb_frag_unref(skb_frag_t *frag)
2633 {
2634 	put_page(skb_frag_page(frag));
2635 }
2636 
2637 /**
2638  * skb_frag_unref - release a reference on a paged fragment of an skb.
2639  * @skb: the buffer
2640  * @f: the fragment offset
2641  *
2642  * Releases a reference on the @f'th paged fragment of @skb.
2643  */
2644 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2645 {
2646 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2647 }
2648 
2649 /**
2650  * skb_frag_address - gets the address of the data contained in a paged fragment
2651  * @frag: the paged fragment buffer
2652  *
2653  * Returns the address of the data within @frag. The page must already
2654  * be mapped.
2655  */
2656 static inline void *skb_frag_address(const skb_frag_t *frag)
2657 {
2658 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2659 }
2660 
2661 /**
2662  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2663  * @frag: the paged fragment buffer
2664  *
2665  * Returns the address of the data within @frag. Checks that the page
2666  * is mapped and returns %NULL otherwise.
2667  */
2668 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2669 {
2670 	void *ptr = page_address(skb_frag_page(frag));
2671 	if (unlikely(!ptr))
2672 		return NULL;
2673 
2674 	return ptr + frag->page_offset;
2675 }
2676 
2677 /**
2678  * __skb_frag_set_page - sets the page contained in a paged fragment
2679  * @frag: the paged fragment
2680  * @page: the page to set
2681  *
2682  * Sets the fragment @frag to contain @page.
2683  */
2684 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2685 {
2686 	frag->page.p = page;
2687 }
2688 
2689 /**
2690  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2691  * @skb: the buffer
2692  * @f: the fragment offset
2693  * @page: the page to set
2694  *
2695  * Sets the @f'th fragment of @skb to contain @page.
2696  */
2697 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2698 				     struct page *page)
2699 {
2700 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2701 }
2702 
2703 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2704 
2705 /**
2706  * skb_frag_dma_map - maps a paged fragment via the DMA API
2707  * @dev: the device to map the fragment to
2708  * @frag: the paged fragment to map
2709  * @offset: the offset within the fragment (starting at the
2710  *          fragment's own offset)
2711  * @size: the number of bytes to map
2712  * @dir: the direction of the mapping (``PCI_DMA_*``)
2713  *
2714  * Maps the page associated with @frag to @device.
2715  */
2716 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2717 					  const skb_frag_t *frag,
2718 					  size_t offset, size_t size,
2719 					  enum dma_data_direction dir)
2720 {
2721 	return dma_map_page(dev, skb_frag_page(frag),
2722 			    frag->page_offset + offset, size, dir);
2723 }
2724 
2725 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2726 					gfp_t gfp_mask)
2727 {
2728 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2729 }
2730 
2731 
2732 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2733 						  gfp_t gfp_mask)
2734 {
2735 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2736 }
2737 
2738 
2739 /**
2740  *	skb_clone_writable - is the header of a clone writable
2741  *	@skb: buffer to check
2742  *	@len: length up to which to write
2743  *
2744  *	Returns true if modifying the header part of the cloned buffer
2745  *	does not requires the data to be copied.
2746  */
2747 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2748 {
2749 	return !skb_header_cloned(skb) &&
2750 	       skb_headroom(skb) + len <= skb->hdr_len;
2751 }
2752 
2753 static inline int skb_try_make_writable(struct sk_buff *skb,
2754 					unsigned int write_len)
2755 {
2756 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2757 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2758 }
2759 
2760 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2761 			    int cloned)
2762 {
2763 	int delta = 0;
2764 
2765 	if (headroom > skb_headroom(skb))
2766 		delta = headroom - skb_headroom(skb);
2767 
2768 	if (delta || cloned)
2769 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2770 					GFP_ATOMIC);
2771 	return 0;
2772 }
2773 
2774 /**
2775  *	skb_cow - copy header of skb when it is required
2776  *	@skb: buffer to cow
2777  *	@headroom: needed headroom
2778  *
2779  *	If the skb passed lacks sufficient headroom or its data part
2780  *	is shared, data is reallocated. If reallocation fails, an error
2781  *	is returned and original skb is not changed.
2782  *
2783  *	The result is skb with writable area skb->head...skb->tail
2784  *	and at least @headroom of space at head.
2785  */
2786 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2787 {
2788 	return __skb_cow(skb, headroom, skb_cloned(skb));
2789 }
2790 
2791 /**
2792  *	skb_cow_head - skb_cow but only making the head writable
2793  *	@skb: buffer to cow
2794  *	@headroom: needed headroom
2795  *
2796  *	This function is identical to skb_cow except that we replace the
2797  *	skb_cloned check by skb_header_cloned.  It should be used when
2798  *	you only need to push on some header and do not need to modify
2799  *	the data.
2800  */
2801 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2802 {
2803 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2804 }
2805 
2806 /**
2807  *	skb_padto	- pad an skbuff up to a minimal size
2808  *	@skb: buffer to pad
2809  *	@len: minimal length
2810  *
2811  *	Pads up a buffer to ensure the trailing bytes exist and are
2812  *	blanked. If the buffer already contains sufficient data it
2813  *	is untouched. Otherwise it is extended. Returns zero on
2814  *	success. The skb is freed on error.
2815  */
2816 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2817 {
2818 	unsigned int size = skb->len;
2819 	if (likely(size >= len))
2820 		return 0;
2821 	return skb_pad(skb, len - size);
2822 }
2823 
2824 /**
2825  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2826  *	@skb: buffer to pad
2827  *	@len: minimal length
2828  *
2829  *	Pads up a buffer to ensure the trailing bytes exist and are
2830  *	blanked. If the buffer already contains sufficient data it
2831  *	is untouched. Otherwise it is extended. Returns zero on
2832  *	success. The skb is freed on error.
2833  */
2834 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2835 {
2836 	unsigned int size = skb->len;
2837 
2838 	if (unlikely(size < len)) {
2839 		len -= size;
2840 		if (skb_pad(skb, len))
2841 			return -ENOMEM;
2842 		__skb_put(skb, len);
2843 	}
2844 	return 0;
2845 }
2846 
2847 static inline int skb_add_data(struct sk_buff *skb,
2848 			       struct iov_iter *from, int copy)
2849 {
2850 	const int off = skb->len;
2851 
2852 	if (skb->ip_summed == CHECKSUM_NONE) {
2853 		__wsum csum = 0;
2854 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2855 					         &csum, from)) {
2856 			skb->csum = csum_block_add(skb->csum, csum, off);
2857 			return 0;
2858 		}
2859 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2860 		return 0;
2861 
2862 	__skb_trim(skb, off);
2863 	return -EFAULT;
2864 }
2865 
2866 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2867 				    const struct page *page, int off)
2868 {
2869 	if (i) {
2870 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2871 
2872 		return page == skb_frag_page(frag) &&
2873 		       off == frag->page_offset + skb_frag_size(frag);
2874 	}
2875 	return false;
2876 }
2877 
2878 static inline int __skb_linearize(struct sk_buff *skb)
2879 {
2880 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2881 }
2882 
2883 /**
2884  *	skb_linearize - convert paged skb to linear one
2885  *	@skb: buffer to linarize
2886  *
2887  *	If there is no free memory -ENOMEM is returned, otherwise zero
2888  *	is returned and the old skb data released.
2889  */
2890 static inline int skb_linearize(struct sk_buff *skb)
2891 {
2892 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2893 }
2894 
2895 /**
2896  * skb_has_shared_frag - can any frag be overwritten
2897  * @skb: buffer to test
2898  *
2899  * Return true if the skb has at least one frag that might be modified
2900  * by an external entity (as in vmsplice()/sendfile())
2901  */
2902 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2903 {
2904 	return skb_is_nonlinear(skb) &&
2905 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2906 }
2907 
2908 /**
2909  *	skb_linearize_cow - make sure skb is linear and writable
2910  *	@skb: buffer to process
2911  *
2912  *	If there is no free memory -ENOMEM is returned, otherwise zero
2913  *	is returned and the old skb data released.
2914  */
2915 static inline int skb_linearize_cow(struct sk_buff *skb)
2916 {
2917 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2918 	       __skb_linearize(skb) : 0;
2919 }
2920 
2921 static __always_inline void
2922 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2923 		     unsigned int off)
2924 {
2925 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2926 		skb->csum = csum_block_sub(skb->csum,
2927 					   csum_partial(start, len, 0), off);
2928 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2929 		 skb_checksum_start_offset(skb) < 0)
2930 		skb->ip_summed = CHECKSUM_NONE;
2931 }
2932 
2933 /**
2934  *	skb_postpull_rcsum - update checksum for received skb after pull
2935  *	@skb: buffer to update
2936  *	@start: start of data before pull
2937  *	@len: length of data pulled
2938  *
2939  *	After doing a pull on a received packet, you need to call this to
2940  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2941  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2942  */
2943 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2944 				      const void *start, unsigned int len)
2945 {
2946 	__skb_postpull_rcsum(skb, start, len, 0);
2947 }
2948 
2949 static __always_inline void
2950 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2951 		     unsigned int off)
2952 {
2953 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2954 		skb->csum = csum_block_add(skb->csum,
2955 					   csum_partial(start, len, 0), off);
2956 }
2957 
2958 /**
2959  *	skb_postpush_rcsum - update checksum for received skb after push
2960  *	@skb: buffer to update
2961  *	@start: start of data after push
2962  *	@len: length of data pushed
2963  *
2964  *	After doing a push on a received packet, you need to call this to
2965  *	update the CHECKSUM_COMPLETE checksum.
2966  */
2967 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2968 				      const void *start, unsigned int len)
2969 {
2970 	__skb_postpush_rcsum(skb, start, len, 0);
2971 }
2972 
2973 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2974 
2975 /**
2976  *	skb_push_rcsum - push skb and update receive checksum
2977  *	@skb: buffer to update
2978  *	@len: length of data pulled
2979  *
2980  *	This function performs an skb_push on the packet and updates
2981  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2982  *	receive path processing instead of skb_push unless you know
2983  *	that the checksum difference is zero (e.g., a valid IP header)
2984  *	or you are setting ip_summed to CHECKSUM_NONE.
2985  */
2986 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
2987 {
2988 	skb_push(skb, len);
2989 	skb_postpush_rcsum(skb, skb->data, len);
2990 	return skb->data;
2991 }
2992 
2993 /**
2994  *	pskb_trim_rcsum - trim received skb and update checksum
2995  *	@skb: buffer to trim
2996  *	@len: new length
2997  *
2998  *	This is exactly the same as pskb_trim except that it ensures the
2999  *	checksum of received packets are still valid after the operation.
3000  */
3001 
3002 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3003 {
3004 	if (likely(len >= skb->len))
3005 		return 0;
3006 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3007 		skb->ip_summed = CHECKSUM_NONE;
3008 	return __pskb_trim(skb, len);
3009 }
3010 
3011 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3012 {
3013 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3014 		skb->ip_summed = CHECKSUM_NONE;
3015 	__skb_trim(skb, len);
3016 	return 0;
3017 }
3018 
3019 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3020 {
3021 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3022 		skb->ip_summed = CHECKSUM_NONE;
3023 	return __skb_grow(skb, len);
3024 }
3025 
3026 #define skb_queue_walk(queue, skb) \
3027 		for (skb = (queue)->next;					\
3028 		     skb != (struct sk_buff *)(queue);				\
3029 		     skb = skb->next)
3030 
3031 #define skb_queue_walk_safe(queue, skb, tmp)					\
3032 		for (skb = (queue)->next, tmp = skb->next;			\
3033 		     skb != (struct sk_buff *)(queue);				\
3034 		     skb = tmp, tmp = skb->next)
3035 
3036 #define skb_queue_walk_from(queue, skb)						\
3037 		for (; skb != (struct sk_buff *)(queue);			\
3038 		     skb = skb->next)
3039 
3040 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3041 		for (tmp = skb->next;						\
3042 		     skb != (struct sk_buff *)(queue);				\
3043 		     skb = tmp, tmp = skb->next)
3044 
3045 #define skb_queue_reverse_walk(queue, skb) \
3046 		for (skb = (queue)->prev;					\
3047 		     skb != (struct sk_buff *)(queue);				\
3048 		     skb = skb->prev)
3049 
3050 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3051 		for (skb = (queue)->prev, tmp = skb->prev;			\
3052 		     skb != (struct sk_buff *)(queue);				\
3053 		     skb = tmp, tmp = skb->prev)
3054 
3055 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3056 		for (tmp = skb->prev;						\
3057 		     skb != (struct sk_buff *)(queue);				\
3058 		     skb = tmp, tmp = skb->prev)
3059 
3060 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3061 {
3062 	return skb_shinfo(skb)->frag_list != NULL;
3063 }
3064 
3065 static inline void skb_frag_list_init(struct sk_buff *skb)
3066 {
3067 	skb_shinfo(skb)->frag_list = NULL;
3068 }
3069 
3070 #define skb_walk_frags(skb, iter)	\
3071 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3072 
3073 
3074 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3075 				const struct sk_buff *skb);
3076 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3077 					  struct sk_buff_head *queue,
3078 					  unsigned int flags,
3079 					  void (*destructor)(struct sock *sk,
3080 							   struct sk_buff *skb),
3081 					  int *peeked, int *off, int *err,
3082 					  struct sk_buff **last);
3083 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3084 					void (*destructor)(struct sock *sk,
3085 							   struct sk_buff *skb),
3086 					int *peeked, int *off, int *err,
3087 					struct sk_buff **last);
3088 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3089 				    void (*destructor)(struct sock *sk,
3090 						       struct sk_buff *skb),
3091 				    int *peeked, int *off, int *err);
3092 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3093 				  int *err);
3094 unsigned int datagram_poll(struct file *file, struct socket *sock,
3095 			   struct poll_table_struct *wait);
3096 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3097 			   struct iov_iter *to, int size);
3098 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3099 					struct msghdr *msg, int size)
3100 {
3101 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3102 }
3103 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3104 				   struct msghdr *msg);
3105 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3106 				 struct iov_iter *from, int len);
3107 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3108 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3109 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3110 static inline void skb_free_datagram_locked(struct sock *sk,
3111 					    struct sk_buff *skb)
3112 {
3113 	__skb_free_datagram_locked(sk, skb, 0);
3114 }
3115 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3116 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3117 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3118 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3119 			      int len, __wsum csum);
3120 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3121 		    struct pipe_inode_info *pipe, unsigned int len,
3122 		    unsigned int flags);
3123 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3124 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3125 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3126 		 int len, int hlen);
3127 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3128 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3129 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3130 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3131 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3132 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3133 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3134 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3135 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3136 int skb_vlan_pop(struct sk_buff *skb);
3137 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3138 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3139 			     gfp_t gfp);
3140 
3141 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3142 {
3143 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3144 }
3145 
3146 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3147 {
3148 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3149 }
3150 
3151 struct skb_checksum_ops {
3152 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3153 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3154 };
3155 
3156 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3157 
3158 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3159 		      __wsum csum, const struct skb_checksum_ops *ops);
3160 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3161 		    __wsum csum);
3162 
3163 static inline void * __must_check
3164 __skb_header_pointer(const struct sk_buff *skb, int offset,
3165 		     int len, void *data, int hlen, void *buffer)
3166 {
3167 	if (hlen - offset >= len)
3168 		return data + offset;
3169 
3170 	if (!skb ||
3171 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3172 		return NULL;
3173 
3174 	return buffer;
3175 }
3176 
3177 static inline void * __must_check
3178 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3179 {
3180 	return __skb_header_pointer(skb, offset, len, skb->data,
3181 				    skb_headlen(skb), buffer);
3182 }
3183 
3184 /**
3185  *	skb_needs_linearize - check if we need to linearize a given skb
3186  *			      depending on the given device features.
3187  *	@skb: socket buffer to check
3188  *	@features: net device features
3189  *
3190  *	Returns true if either:
3191  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3192  *	2. skb is fragmented and the device does not support SG.
3193  */
3194 static inline bool skb_needs_linearize(struct sk_buff *skb,
3195 				       netdev_features_t features)
3196 {
3197 	return skb_is_nonlinear(skb) &&
3198 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3199 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3200 }
3201 
3202 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3203 					     void *to,
3204 					     const unsigned int len)
3205 {
3206 	memcpy(to, skb->data, len);
3207 }
3208 
3209 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3210 						    const int offset, void *to,
3211 						    const unsigned int len)
3212 {
3213 	memcpy(to, skb->data + offset, len);
3214 }
3215 
3216 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3217 					   const void *from,
3218 					   const unsigned int len)
3219 {
3220 	memcpy(skb->data, from, len);
3221 }
3222 
3223 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3224 						  const int offset,
3225 						  const void *from,
3226 						  const unsigned int len)
3227 {
3228 	memcpy(skb->data + offset, from, len);
3229 }
3230 
3231 void skb_init(void);
3232 
3233 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3234 {
3235 	return skb->tstamp;
3236 }
3237 
3238 /**
3239  *	skb_get_timestamp - get timestamp from a skb
3240  *	@skb: skb to get stamp from
3241  *	@stamp: pointer to struct timeval to store stamp in
3242  *
3243  *	Timestamps are stored in the skb as offsets to a base timestamp.
3244  *	This function converts the offset back to a struct timeval and stores
3245  *	it in stamp.
3246  */
3247 static inline void skb_get_timestamp(const struct sk_buff *skb,
3248 				     struct timeval *stamp)
3249 {
3250 	*stamp = ktime_to_timeval(skb->tstamp);
3251 }
3252 
3253 static inline void skb_get_timestampns(const struct sk_buff *skb,
3254 				       struct timespec *stamp)
3255 {
3256 	*stamp = ktime_to_timespec(skb->tstamp);
3257 }
3258 
3259 static inline void __net_timestamp(struct sk_buff *skb)
3260 {
3261 	skb->tstamp = ktime_get_real();
3262 }
3263 
3264 static inline ktime_t net_timedelta(ktime_t t)
3265 {
3266 	return ktime_sub(ktime_get_real(), t);
3267 }
3268 
3269 static inline ktime_t net_invalid_timestamp(void)
3270 {
3271 	return 0;
3272 }
3273 
3274 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3275 
3276 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3277 
3278 void skb_clone_tx_timestamp(struct sk_buff *skb);
3279 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3280 
3281 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3282 
3283 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3284 {
3285 }
3286 
3287 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3288 {
3289 	return false;
3290 }
3291 
3292 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3293 
3294 /**
3295  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3296  *
3297  * PHY drivers may accept clones of transmitted packets for
3298  * timestamping via their phy_driver.txtstamp method. These drivers
3299  * must call this function to return the skb back to the stack with a
3300  * timestamp.
3301  *
3302  * @skb: clone of the the original outgoing packet
3303  * @hwtstamps: hardware time stamps
3304  *
3305  */
3306 void skb_complete_tx_timestamp(struct sk_buff *skb,
3307 			       struct skb_shared_hwtstamps *hwtstamps);
3308 
3309 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3310 		     struct skb_shared_hwtstamps *hwtstamps,
3311 		     struct sock *sk, int tstype);
3312 
3313 /**
3314  * skb_tstamp_tx - queue clone of skb with send time stamps
3315  * @orig_skb:	the original outgoing packet
3316  * @hwtstamps:	hardware time stamps, may be NULL if not available
3317  *
3318  * If the skb has a socket associated, then this function clones the
3319  * skb (thus sharing the actual data and optional structures), stores
3320  * the optional hardware time stamping information (if non NULL) or
3321  * generates a software time stamp (otherwise), then queues the clone
3322  * to the error queue of the socket.  Errors are silently ignored.
3323  */
3324 void skb_tstamp_tx(struct sk_buff *orig_skb,
3325 		   struct skb_shared_hwtstamps *hwtstamps);
3326 
3327 /**
3328  * skb_tx_timestamp() - Driver hook for transmit timestamping
3329  *
3330  * Ethernet MAC Drivers should call this function in their hard_xmit()
3331  * function immediately before giving the sk_buff to the MAC hardware.
3332  *
3333  * Specifically, one should make absolutely sure that this function is
3334  * called before TX completion of this packet can trigger.  Otherwise
3335  * the packet could potentially already be freed.
3336  *
3337  * @skb: A socket buffer.
3338  */
3339 static inline void skb_tx_timestamp(struct sk_buff *skb)
3340 {
3341 	skb_clone_tx_timestamp(skb);
3342 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3343 		skb_tstamp_tx(skb, NULL);
3344 }
3345 
3346 /**
3347  * skb_complete_wifi_ack - deliver skb with wifi status
3348  *
3349  * @skb: the original outgoing packet
3350  * @acked: ack status
3351  *
3352  */
3353 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3354 
3355 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3356 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3357 
3358 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3359 {
3360 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3361 		skb->csum_valid ||
3362 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3363 		 skb_checksum_start_offset(skb) >= 0));
3364 }
3365 
3366 /**
3367  *	skb_checksum_complete - Calculate checksum of an entire packet
3368  *	@skb: packet to process
3369  *
3370  *	This function calculates the checksum over the entire packet plus
3371  *	the value of skb->csum.  The latter can be used to supply the
3372  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3373  *	checksum.
3374  *
3375  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3376  *	this function can be used to verify that checksum on received
3377  *	packets.  In that case the function should return zero if the
3378  *	checksum is correct.  In particular, this function will return zero
3379  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3380  *	hardware has already verified the correctness of the checksum.
3381  */
3382 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3383 {
3384 	return skb_csum_unnecessary(skb) ?
3385 	       0 : __skb_checksum_complete(skb);
3386 }
3387 
3388 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3389 {
3390 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3391 		if (skb->csum_level == 0)
3392 			skb->ip_summed = CHECKSUM_NONE;
3393 		else
3394 			skb->csum_level--;
3395 	}
3396 }
3397 
3398 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3399 {
3400 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3401 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3402 			skb->csum_level++;
3403 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3404 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3405 		skb->csum_level = 0;
3406 	}
3407 }
3408 
3409 /* Check if we need to perform checksum complete validation.
3410  *
3411  * Returns true if checksum complete is needed, false otherwise
3412  * (either checksum is unnecessary or zero checksum is allowed).
3413  */
3414 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3415 						  bool zero_okay,
3416 						  __sum16 check)
3417 {
3418 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3419 		skb->csum_valid = 1;
3420 		__skb_decr_checksum_unnecessary(skb);
3421 		return false;
3422 	}
3423 
3424 	return true;
3425 }
3426 
3427 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3428  * in checksum_init.
3429  */
3430 #define CHECKSUM_BREAK 76
3431 
3432 /* Unset checksum-complete
3433  *
3434  * Unset checksum complete can be done when packet is being modified
3435  * (uncompressed for instance) and checksum-complete value is
3436  * invalidated.
3437  */
3438 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3439 {
3440 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3441 		skb->ip_summed = CHECKSUM_NONE;
3442 }
3443 
3444 /* Validate (init) checksum based on checksum complete.
3445  *
3446  * Return values:
3447  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3448  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3449  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3450  *   non-zero: value of invalid checksum
3451  *
3452  */
3453 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3454 						       bool complete,
3455 						       __wsum psum)
3456 {
3457 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3458 		if (!csum_fold(csum_add(psum, skb->csum))) {
3459 			skb->csum_valid = 1;
3460 			return 0;
3461 		}
3462 	}
3463 
3464 	skb->csum = psum;
3465 
3466 	if (complete || skb->len <= CHECKSUM_BREAK) {
3467 		__sum16 csum;
3468 
3469 		csum = __skb_checksum_complete(skb);
3470 		skb->csum_valid = !csum;
3471 		return csum;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3478 {
3479 	return 0;
3480 }
3481 
3482 /* Perform checksum validate (init). Note that this is a macro since we only
3483  * want to calculate the pseudo header which is an input function if necessary.
3484  * First we try to validate without any computation (checksum unnecessary) and
3485  * then calculate based on checksum complete calling the function to compute
3486  * pseudo header.
3487  *
3488  * Return values:
3489  *   0: checksum is validated or try to in skb_checksum_complete
3490  *   non-zero: value of invalid checksum
3491  */
3492 #define __skb_checksum_validate(skb, proto, complete,			\
3493 				zero_okay, check, compute_pseudo)	\
3494 ({									\
3495 	__sum16 __ret = 0;						\
3496 	skb->csum_valid = 0;						\
3497 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3498 		__ret = __skb_checksum_validate_complete(skb,		\
3499 				complete, compute_pseudo(skb, proto));	\
3500 	__ret;								\
3501 })
3502 
3503 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3504 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3505 
3506 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3507 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3508 
3509 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3510 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3511 
3512 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3513 					 compute_pseudo)		\
3514 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3515 
3516 #define skb_checksum_simple_validate(skb)				\
3517 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3518 
3519 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3520 {
3521 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3522 }
3523 
3524 static inline void __skb_checksum_convert(struct sk_buff *skb,
3525 					  __sum16 check, __wsum pseudo)
3526 {
3527 	skb->csum = ~pseudo;
3528 	skb->ip_summed = CHECKSUM_COMPLETE;
3529 }
3530 
3531 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3532 do {									\
3533 	if (__skb_checksum_convert_check(skb))				\
3534 		__skb_checksum_convert(skb, check,			\
3535 				       compute_pseudo(skb, proto));	\
3536 } while (0)
3537 
3538 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3539 					      u16 start, u16 offset)
3540 {
3541 	skb->ip_summed = CHECKSUM_PARTIAL;
3542 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3543 	skb->csum_offset = offset - start;
3544 }
3545 
3546 /* Update skbuf and packet to reflect the remote checksum offload operation.
3547  * When called, ptr indicates the starting point for skb->csum when
3548  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3549  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3550  */
3551 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3552 				       int start, int offset, bool nopartial)
3553 {
3554 	__wsum delta;
3555 
3556 	if (!nopartial) {
3557 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3558 		return;
3559 	}
3560 
3561 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3562 		__skb_checksum_complete(skb);
3563 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3564 	}
3565 
3566 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3567 
3568 	/* Adjust skb->csum since we changed the packet */
3569 	skb->csum = csum_add(skb->csum, delta);
3570 }
3571 
3572 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3573 {
3574 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3575 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3576 #else
3577 	return NULL;
3578 #endif
3579 }
3580 
3581 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3582 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3583 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3584 {
3585 	if (nfct && atomic_dec_and_test(&nfct->use))
3586 		nf_conntrack_destroy(nfct);
3587 }
3588 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3589 {
3590 	if (nfct)
3591 		atomic_inc(&nfct->use);
3592 }
3593 #endif
3594 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3595 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3596 {
3597 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3598 		kfree(nf_bridge);
3599 }
3600 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3601 {
3602 	if (nf_bridge)
3603 		refcount_inc(&nf_bridge->use);
3604 }
3605 #endif /* CONFIG_BRIDGE_NETFILTER */
3606 static inline void nf_reset(struct sk_buff *skb)
3607 {
3608 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3609 	nf_conntrack_put(skb_nfct(skb));
3610 	skb->_nfct = 0;
3611 #endif
3612 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3613 	nf_bridge_put(skb->nf_bridge);
3614 	skb->nf_bridge = NULL;
3615 #endif
3616 }
3617 
3618 static inline void nf_reset_trace(struct sk_buff *skb)
3619 {
3620 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3621 	skb->nf_trace = 0;
3622 #endif
3623 }
3624 
3625 /* Note: This doesn't put any conntrack and bridge info in dst. */
3626 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3627 			     bool copy)
3628 {
3629 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3630 	dst->_nfct = src->_nfct;
3631 	nf_conntrack_get(skb_nfct(src));
3632 #endif
3633 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3634 	dst->nf_bridge  = src->nf_bridge;
3635 	nf_bridge_get(src->nf_bridge);
3636 #endif
3637 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3638 	if (copy)
3639 		dst->nf_trace = src->nf_trace;
3640 #endif
3641 }
3642 
3643 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3644 {
3645 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3646 	nf_conntrack_put(skb_nfct(dst));
3647 #endif
3648 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3649 	nf_bridge_put(dst->nf_bridge);
3650 #endif
3651 	__nf_copy(dst, src, true);
3652 }
3653 
3654 #ifdef CONFIG_NETWORK_SECMARK
3655 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3656 {
3657 	to->secmark = from->secmark;
3658 }
3659 
3660 static inline void skb_init_secmark(struct sk_buff *skb)
3661 {
3662 	skb->secmark = 0;
3663 }
3664 #else
3665 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3666 { }
3667 
3668 static inline void skb_init_secmark(struct sk_buff *skb)
3669 { }
3670 #endif
3671 
3672 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3673 {
3674 	return !skb->destructor &&
3675 #if IS_ENABLED(CONFIG_XFRM)
3676 		!skb->sp &&
3677 #endif
3678 		!skb_nfct(skb) &&
3679 		!skb->_skb_refdst &&
3680 		!skb_has_frag_list(skb);
3681 }
3682 
3683 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3684 {
3685 	skb->queue_mapping = queue_mapping;
3686 }
3687 
3688 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3689 {
3690 	return skb->queue_mapping;
3691 }
3692 
3693 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3694 {
3695 	to->queue_mapping = from->queue_mapping;
3696 }
3697 
3698 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3699 {
3700 	skb->queue_mapping = rx_queue + 1;
3701 }
3702 
3703 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3704 {
3705 	return skb->queue_mapping - 1;
3706 }
3707 
3708 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3709 {
3710 	return skb->queue_mapping != 0;
3711 }
3712 
3713 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3714 {
3715 	skb->dst_pending_confirm = val;
3716 }
3717 
3718 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3719 {
3720 	return skb->dst_pending_confirm != 0;
3721 }
3722 
3723 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3724 {
3725 #ifdef CONFIG_XFRM
3726 	return skb->sp;
3727 #else
3728 	return NULL;
3729 #endif
3730 }
3731 
3732 /* Keeps track of mac header offset relative to skb->head.
3733  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3734  * For non-tunnel skb it points to skb_mac_header() and for
3735  * tunnel skb it points to outer mac header.
3736  * Keeps track of level of encapsulation of network headers.
3737  */
3738 struct skb_gso_cb {
3739 	union {
3740 		int	mac_offset;
3741 		int	data_offset;
3742 	};
3743 	int	encap_level;
3744 	__wsum	csum;
3745 	__u16	csum_start;
3746 };
3747 #define SKB_SGO_CB_OFFSET	32
3748 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3749 
3750 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3751 {
3752 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3753 		SKB_GSO_CB(inner_skb)->mac_offset;
3754 }
3755 
3756 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3757 {
3758 	int new_headroom, headroom;
3759 	int ret;
3760 
3761 	headroom = skb_headroom(skb);
3762 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3763 	if (ret)
3764 		return ret;
3765 
3766 	new_headroom = skb_headroom(skb);
3767 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3768 	return 0;
3769 }
3770 
3771 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3772 {
3773 	/* Do not update partial checksums if remote checksum is enabled. */
3774 	if (skb->remcsum_offload)
3775 		return;
3776 
3777 	SKB_GSO_CB(skb)->csum = res;
3778 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3779 }
3780 
3781 /* Compute the checksum for a gso segment. First compute the checksum value
3782  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3783  * then add in skb->csum (checksum from csum_start to end of packet).
3784  * skb->csum and csum_start are then updated to reflect the checksum of the
3785  * resultant packet starting from the transport header-- the resultant checksum
3786  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3787  * header.
3788  */
3789 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3790 {
3791 	unsigned char *csum_start = skb_transport_header(skb);
3792 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3793 	__wsum partial = SKB_GSO_CB(skb)->csum;
3794 
3795 	SKB_GSO_CB(skb)->csum = res;
3796 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3797 
3798 	return csum_fold(csum_partial(csum_start, plen, partial));
3799 }
3800 
3801 static inline bool skb_is_gso(const struct sk_buff *skb)
3802 {
3803 	return skb_shinfo(skb)->gso_size;
3804 }
3805 
3806 /* Note: Should be called only if skb_is_gso(skb) is true */
3807 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3808 {
3809 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3810 }
3811 
3812 static inline void skb_gso_reset(struct sk_buff *skb)
3813 {
3814 	skb_shinfo(skb)->gso_size = 0;
3815 	skb_shinfo(skb)->gso_segs = 0;
3816 	skb_shinfo(skb)->gso_type = 0;
3817 }
3818 
3819 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3820 
3821 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3822 {
3823 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3824 	 * wanted then gso_type will be set. */
3825 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3826 
3827 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3828 	    unlikely(shinfo->gso_type == 0)) {
3829 		__skb_warn_lro_forwarding(skb);
3830 		return true;
3831 	}
3832 	return false;
3833 }
3834 
3835 static inline void skb_forward_csum(struct sk_buff *skb)
3836 {
3837 	/* Unfortunately we don't support this one.  Any brave souls? */
3838 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3839 		skb->ip_summed = CHECKSUM_NONE;
3840 }
3841 
3842 /**
3843  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3844  * @skb: skb to check
3845  *
3846  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3847  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3848  * use this helper, to document places where we make this assertion.
3849  */
3850 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3851 {
3852 #ifdef DEBUG
3853 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3854 #endif
3855 }
3856 
3857 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3858 
3859 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3860 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3861 				     unsigned int transport_len,
3862 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3863 
3864 /**
3865  * skb_head_is_locked - Determine if the skb->head is locked down
3866  * @skb: skb to check
3867  *
3868  * The head on skbs build around a head frag can be removed if they are
3869  * not cloned.  This function returns true if the skb head is locked down
3870  * due to either being allocated via kmalloc, or by being a clone with
3871  * multiple references to the head.
3872  */
3873 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3874 {
3875 	return !skb->head_frag || skb_cloned(skb);
3876 }
3877 
3878 /**
3879  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3880  *
3881  * @skb: GSO skb
3882  *
3883  * skb_gso_network_seglen is used to determine the real size of the
3884  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3885  *
3886  * The MAC/L2 header is not accounted for.
3887  */
3888 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3889 {
3890 	unsigned int hdr_len = skb_transport_header(skb) -
3891 			       skb_network_header(skb);
3892 	return hdr_len + skb_gso_transport_seglen(skb);
3893 }
3894 
3895 /* Local Checksum Offload.
3896  * Compute outer checksum based on the assumption that the
3897  * inner checksum will be offloaded later.
3898  * See Documentation/networking/checksum-offloads.txt for
3899  * explanation of how this works.
3900  * Fill in outer checksum adjustment (e.g. with sum of outer
3901  * pseudo-header) before calling.
3902  * Also ensure that inner checksum is in linear data area.
3903  */
3904 static inline __wsum lco_csum(struct sk_buff *skb)
3905 {
3906 	unsigned char *csum_start = skb_checksum_start(skb);
3907 	unsigned char *l4_hdr = skb_transport_header(skb);
3908 	__wsum partial;
3909 
3910 	/* Start with complement of inner checksum adjustment */
3911 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3912 						    skb->csum_offset));
3913 
3914 	/* Add in checksum of our headers (incl. outer checksum
3915 	 * adjustment filled in by caller) and return result.
3916 	 */
3917 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3918 }
3919 
3920 #endif	/* __KERNEL__ */
3921 #endif	/* _LINUX_SKBUFF_H */
3922