1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 248 struct nf_conntrack { 249 atomic_t use; 250 }; 251 #endif 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 refcount_t use; 256 enum { 257 BRNF_PROTO_UNCHANGED, 258 BRNF_PROTO_8021Q, 259 BRNF_PROTO_PPPOE 260 } orig_proto:8; 261 u8 pkt_otherhost:1; 262 u8 in_prerouting:1; 263 u8 bridged_dnat:1; 264 __u16 frag_max_size; 265 struct net_device *physindev; 266 267 /* always valid & non-NULL from FORWARD on, for physdev match */ 268 struct net_device *physoutdev; 269 union { 270 /* prerouting: detect dnat in orig/reply direction */ 271 __be32 ipv4_daddr; 272 struct in6_addr ipv6_daddr; 273 274 /* after prerouting + nat detected: store original source 275 * mac since neigh resolution overwrites it, only used while 276 * skb is out in neigh layer. 277 */ 278 char neigh_header[8]; 279 }; 280 }; 281 #endif 282 283 struct sk_buff_head { 284 /* These two members must be first. */ 285 struct sk_buff *next; 286 struct sk_buff *prev; 287 288 __u32 qlen; 289 spinlock_t lock; 290 }; 291 292 struct sk_buff; 293 294 /* To allow 64K frame to be packed as single skb without frag_list we 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 296 * buffers which do not start on a page boundary. 297 * 298 * Since GRO uses frags we allocate at least 16 regardless of page 299 * size. 300 */ 301 #if (65536/PAGE_SIZE + 1) < 16 302 #define MAX_SKB_FRAGS 16UL 303 #else 304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 305 #endif 306 extern int sysctl_max_skb_frags; 307 308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 309 * segment using its current segmentation instead. 310 */ 311 #define GSO_BY_FRAGS 0xFFFF 312 313 typedef struct skb_frag_struct skb_frag_t; 314 315 struct skb_frag_struct { 316 struct { 317 struct page *p; 318 } page; 319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 320 __u32 page_offset; 321 __u32 size; 322 #else 323 __u16 page_offset; 324 __u16 size; 325 #endif 326 }; 327 328 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 329 { 330 return frag->size; 331 } 332 333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 334 { 335 frag->size = size; 336 } 337 338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 339 { 340 frag->size += delta; 341 } 342 343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 344 { 345 frag->size -= delta; 346 } 347 348 #define HAVE_HW_TIME_STAMP 349 350 /** 351 * struct skb_shared_hwtstamps - hardware time stamps 352 * @hwtstamp: hardware time stamp transformed into duration 353 * since arbitrary point in time 354 * 355 * Software time stamps generated by ktime_get_real() are stored in 356 * skb->tstamp. 357 * 358 * hwtstamps can only be compared against other hwtstamps from 359 * the same device. 360 * 361 * This structure is attached to packets as part of the 362 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 363 */ 364 struct skb_shared_hwtstamps { 365 ktime_t hwtstamp; 366 }; 367 368 /* Definitions for tx_flags in struct skb_shared_info */ 369 enum { 370 /* generate hardware time stamp */ 371 SKBTX_HW_TSTAMP = 1 << 0, 372 373 /* generate software time stamp when queueing packet to NIC */ 374 SKBTX_SW_TSTAMP = 1 << 1, 375 376 /* device driver is going to provide hardware time stamp */ 377 SKBTX_IN_PROGRESS = 1 << 2, 378 379 /* device driver supports TX zero-copy buffers */ 380 SKBTX_DEV_ZEROCOPY = 1 << 3, 381 382 /* generate wifi status information (where possible) */ 383 SKBTX_WIFI_STATUS = 1 << 4, 384 385 /* This indicates at least one fragment might be overwritten 386 * (as in vmsplice(), sendfile() ...) 387 * If we need to compute a TX checksum, we'll need to copy 388 * all frags to avoid possible bad checksum 389 */ 390 SKBTX_SHARED_FRAG = 1 << 5, 391 392 /* generate software time stamp when entering packet scheduling */ 393 SKBTX_SCHED_TSTAMP = 1 << 6, 394 }; 395 396 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 397 SKBTX_SCHED_TSTAMP) 398 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 399 400 /* 401 * The callback notifies userspace to release buffers when skb DMA is done in 402 * lower device, the skb last reference should be 0 when calling this. 403 * The zerocopy_success argument is true if zero copy transmit occurred, 404 * false on data copy or out of memory error caused by data copy attempt. 405 * The ctx field is used to track device context. 406 * The desc field is used to track userspace buffer index. 407 */ 408 struct ubuf_info { 409 void (*callback)(struct ubuf_info *, bool zerocopy_success); 410 void *ctx; 411 unsigned long desc; 412 }; 413 414 /* This data is invariant across clones and lives at 415 * the end of the header data, ie. at skb->end. 416 */ 417 struct skb_shared_info { 418 unsigned short _unused; 419 unsigned char nr_frags; 420 __u8 tx_flags; 421 unsigned short gso_size; 422 /* Warning: this field is not always filled in (UFO)! */ 423 unsigned short gso_segs; 424 struct sk_buff *frag_list; 425 struct skb_shared_hwtstamps hwtstamps; 426 unsigned int gso_type; 427 u32 tskey; 428 __be32 ip6_frag_id; 429 430 /* 431 * Warning : all fields before dataref are cleared in __alloc_skb() 432 */ 433 atomic_t dataref; 434 435 /* Intermediate layers must ensure that destructor_arg 436 * remains valid until skb destructor */ 437 void * destructor_arg; 438 439 /* must be last field, see pskb_expand_head() */ 440 skb_frag_t frags[MAX_SKB_FRAGS]; 441 }; 442 443 /* We divide dataref into two halves. The higher 16 bits hold references 444 * to the payload part of skb->data. The lower 16 bits hold references to 445 * the entire skb->data. A clone of a headerless skb holds the length of 446 * the header in skb->hdr_len. 447 * 448 * All users must obey the rule that the skb->data reference count must be 449 * greater than or equal to the payload reference count. 450 * 451 * Holding a reference to the payload part means that the user does not 452 * care about modifications to the header part of skb->data. 453 */ 454 #define SKB_DATAREF_SHIFT 16 455 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 456 457 458 enum { 459 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 460 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 461 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 462 }; 463 464 enum { 465 SKB_GSO_TCPV4 = 1 << 0, 466 SKB_GSO_UDP = 1 << 1, 467 468 /* This indicates the skb is from an untrusted source. */ 469 SKB_GSO_DODGY = 1 << 2, 470 471 /* This indicates the tcp segment has CWR set. */ 472 SKB_GSO_TCP_ECN = 1 << 3, 473 474 SKB_GSO_TCP_FIXEDID = 1 << 4, 475 476 SKB_GSO_TCPV6 = 1 << 5, 477 478 SKB_GSO_FCOE = 1 << 6, 479 480 SKB_GSO_GRE = 1 << 7, 481 482 SKB_GSO_GRE_CSUM = 1 << 8, 483 484 SKB_GSO_IPXIP4 = 1 << 9, 485 486 SKB_GSO_IPXIP6 = 1 << 10, 487 488 SKB_GSO_UDP_TUNNEL = 1 << 11, 489 490 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12, 491 492 SKB_GSO_PARTIAL = 1 << 13, 493 494 SKB_GSO_TUNNEL_REMCSUM = 1 << 14, 495 496 SKB_GSO_SCTP = 1 << 15, 497 498 SKB_GSO_ESP = 1 << 16, 499 }; 500 501 #if BITS_PER_LONG > 32 502 #define NET_SKBUFF_DATA_USES_OFFSET 1 503 #endif 504 505 #ifdef NET_SKBUFF_DATA_USES_OFFSET 506 typedef unsigned int sk_buff_data_t; 507 #else 508 typedef unsigned char *sk_buff_data_t; 509 #endif 510 511 /** 512 * struct sk_buff - socket buffer 513 * @next: Next buffer in list 514 * @prev: Previous buffer in list 515 * @tstamp: Time we arrived/left 516 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 517 * @sk: Socket we are owned by 518 * @dev: Device we arrived on/are leaving by 519 * @cb: Control buffer. Free for use by every layer. Put private vars here 520 * @_skb_refdst: destination entry (with norefcount bit) 521 * @sp: the security path, used for xfrm 522 * @len: Length of actual data 523 * @data_len: Data length 524 * @mac_len: Length of link layer header 525 * @hdr_len: writable header length of cloned skb 526 * @csum: Checksum (must include start/offset pair) 527 * @csum_start: Offset from skb->head where checksumming should start 528 * @csum_offset: Offset from csum_start where checksum should be stored 529 * @priority: Packet queueing priority 530 * @ignore_df: allow local fragmentation 531 * @cloned: Head may be cloned (check refcnt to be sure) 532 * @ip_summed: Driver fed us an IP checksum 533 * @nohdr: Payload reference only, must not modify header 534 * @pkt_type: Packet class 535 * @fclone: skbuff clone status 536 * @ipvs_property: skbuff is owned by ipvs 537 * @tc_skip_classify: do not classify packet. set by IFB device 538 * @tc_at_ingress: used within tc_classify to distinguish in/egress 539 * @tc_redirected: packet was redirected by a tc action 540 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 541 * @peeked: this packet has been seen already, so stats have been 542 * done for it, don't do them again 543 * @nf_trace: netfilter packet trace flag 544 * @protocol: Packet protocol from driver 545 * @destructor: Destruct function 546 * @_nfct: Associated connection, if any (with nfctinfo bits) 547 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 548 * @skb_iif: ifindex of device we arrived on 549 * @tc_index: Traffic control index 550 * @hash: the packet hash 551 * @queue_mapping: Queue mapping for multiqueue devices 552 * @xmit_more: More SKBs are pending for this queue 553 * @ndisc_nodetype: router type (from link layer) 554 * @ooo_okay: allow the mapping of a socket to a queue to be changed 555 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 556 * ports. 557 * @sw_hash: indicates hash was computed in software stack 558 * @wifi_acked_valid: wifi_acked was set 559 * @wifi_acked: whether frame was acked on wifi or not 560 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 561 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 562 * @dst_pending_confirm: need to confirm neighbour 563 * @napi_id: id of the NAPI struct this skb came from 564 * @secmark: security marking 565 * @mark: Generic packet mark 566 * @vlan_proto: vlan encapsulation protocol 567 * @vlan_tci: vlan tag control information 568 * @inner_protocol: Protocol (encapsulation) 569 * @inner_transport_header: Inner transport layer header (encapsulation) 570 * @inner_network_header: Network layer header (encapsulation) 571 * @inner_mac_header: Link layer header (encapsulation) 572 * @transport_header: Transport layer header 573 * @network_header: Network layer header 574 * @mac_header: Link layer header 575 * @tail: Tail pointer 576 * @end: End pointer 577 * @head: Head of buffer 578 * @data: Data head pointer 579 * @truesize: Buffer size 580 * @users: User count - see {datagram,tcp}.c 581 */ 582 583 struct sk_buff { 584 union { 585 struct { 586 /* These two members must be first. */ 587 struct sk_buff *next; 588 struct sk_buff *prev; 589 590 union { 591 ktime_t tstamp; 592 u64 skb_mstamp; 593 }; 594 }; 595 struct rb_node rbnode; /* used in netem & tcp stack */ 596 }; 597 struct sock *sk; 598 599 union { 600 struct net_device *dev; 601 /* Some protocols might use this space to store information, 602 * while device pointer would be NULL. 603 * UDP receive path is one user. 604 */ 605 unsigned long dev_scratch; 606 }; 607 /* 608 * This is the control buffer. It is free to use for every 609 * layer. Please put your private variables there. If you 610 * want to keep them across layers you have to do a skb_clone() 611 * first. This is owned by whoever has the skb queued ATM. 612 */ 613 char cb[48] __aligned(8); 614 615 unsigned long _skb_refdst; 616 void (*destructor)(struct sk_buff *skb); 617 #ifdef CONFIG_XFRM 618 struct sec_path *sp; 619 #endif 620 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 621 unsigned long _nfct; 622 #endif 623 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 624 struct nf_bridge_info *nf_bridge; 625 #endif 626 unsigned int len, 627 data_len; 628 __u16 mac_len, 629 hdr_len; 630 631 /* Following fields are _not_ copied in __copy_skb_header() 632 * Note that queue_mapping is here mostly to fill a hole. 633 */ 634 kmemcheck_bitfield_begin(flags1); 635 __u16 queue_mapping; 636 637 /* if you move cloned around you also must adapt those constants */ 638 #ifdef __BIG_ENDIAN_BITFIELD 639 #define CLONED_MASK (1 << 7) 640 #else 641 #define CLONED_MASK 1 642 #endif 643 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 644 645 __u8 __cloned_offset[0]; 646 __u8 cloned:1, 647 nohdr:1, 648 fclone:2, 649 peeked:1, 650 head_frag:1, 651 xmit_more:1, 652 __unused:1; /* one bit hole */ 653 kmemcheck_bitfield_end(flags1); 654 655 /* fields enclosed in headers_start/headers_end are copied 656 * using a single memcpy() in __copy_skb_header() 657 */ 658 /* private: */ 659 __u32 headers_start[0]; 660 /* public: */ 661 662 /* if you move pkt_type around you also must adapt those constants */ 663 #ifdef __BIG_ENDIAN_BITFIELD 664 #define PKT_TYPE_MAX (7 << 5) 665 #else 666 #define PKT_TYPE_MAX 7 667 #endif 668 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 669 670 __u8 __pkt_type_offset[0]; 671 __u8 pkt_type:3; 672 __u8 pfmemalloc:1; 673 __u8 ignore_df:1; 674 675 __u8 nf_trace:1; 676 __u8 ip_summed:2; 677 __u8 ooo_okay:1; 678 __u8 l4_hash:1; 679 __u8 sw_hash:1; 680 __u8 wifi_acked_valid:1; 681 __u8 wifi_acked:1; 682 683 __u8 no_fcs:1; 684 /* Indicates the inner headers are valid in the skbuff. */ 685 __u8 encapsulation:1; 686 __u8 encap_hdr_csum:1; 687 __u8 csum_valid:1; 688 __u8 csum_complete_sw:1; 689 __u8 csum_level:2; 690 __u8 csum_not_inet:1; 691 692 __u8 dst_pending_confirm:1; 693 #ifdef CONFIG_IPV6_NDISC_NODETYPE 694 __u8 ndisc_nodetype:2; 695 #endif 696 __u8 ipvs_property:1; 697 __u8 inner_protocol_type:1; 698 __u8 remcsum_offload:1; 699 #ifdef CONFIG_NET_SWITCHDEV 700 __u8 offload_fwd_mark:1; 701 #endif 702 #ifdef CONFIG_NET_CLS_ACT 703 __u8 tc_skip_classify:1; 704 __u8 tc_at_ingress:1; 705 __u8 tc_redirected:1; 706 __u8 tc_from_ingress:1; 707 #endif 708 709 #ifdef CONFIG_NET_SCHED 710 __u16 tc_index; /* traffic control index */ 711 #endif 712 713 union { 714 __wsum csum; 715 struct { 716 __u16 csum_start; 717 __u16 csum_offset; 718 }; 719 }; 720 __u32 priority; 721 int skb_iif; 722 __u32 hash; 723 __be16 vlan_proto; 724 __u16 vlan_tci; 725 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 726 union { 727 unsigned int napi_id; 728 unsigned int sender_cpu; 729 }; 730 #endif 731 #ifdef CONFIG_NETWORK_SECMARK 732 __u32 secmark; 733 #endif 734 735 union { 736 __u32 mark; 737 __u32 reserved_tailroom; 738 }; 739 740 union { 741 __be16 inner_protocol; 742 __u8 inner_ipproto; 743 }; 744 745 __u16 inner_transport_header; 746 __u16 inner_network_header; 747 __u16 inner_mac_header; 748 749 __be16 protocol; 750 __u16 transport_header; 751 __u16 network_header; 752 __u16 mac_header; 753 754 /* private: */ 755 __u32 headers_end[0]; 756 /* public: */ 757 758 /* These elements must be at the end, see alloc_skb() for details. */ 759 sk_buff_data_t tail; 760 sk_buff_data_t end; 761 unsigned char *head, 762 *data; 763 unsigned int truesize; 764 refcount_t users; 765 }; 766 767 #ifdef __KERNEL__ 768 /* 769 * Handling routines are only of interest to the kernel 770 */ 771 #include <linux/slab.h> 772 773 774 #define SKB_ALLOC_FCLONE 0x01 775 #define SKB_ALLOC_RX 0x02 776 #define SKB_ALLOC_NAPI 0x04 777 778 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 779 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 780 { 781 return unlikely(skb->pfmemalloc); 782 } 783 784 /* 785 * skb might have a dst pointer attached, refcounted or not. 786 * _skb_refdst low order bit is set if refcount was _not_ taken 787 */ 788 #define SKB_DST_NOREF 1UL 789 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 790 791 #define SKB_NFCT_PTRMASK ~(7UL) 792 /** 793 * skb_dst - returns skb dst_entry 794 * @skb: buffer 795 * 796 * Returns skb dst_entry, regardless of reference taken or not. 797 */ 798 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 799 { 800 /* If refdst was not refcounted, check we still are in a 801 * rcu_read_lock section 802 */ 803 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 804 !rcu_read_lock_held() && 805 !rcu_read_lock_bh_held()); 806 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 807 } 808 809 /** 810 * skb_dst_set - sets skb dst 811 * @skb: buffer 812 * @dst: dst entry 813 * 814 * Sets skb dst, assuming a reference was taken on dst and should 815 * be released by skb_dst_drop() 816 */ 817 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 818 { 819 skb->_skb_refdst = (unsigned long)dst; 820 } 821 822 /** 823 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 824 * @skb: buffer 825 * @dst: dst entry 826 * 827 * Sets skb dst, assuming a reference was not taken on dst. 828 * If dst entry is cached, we do not take reference and dst_release 829 * will be avoided by refdst_drop. If dst entry is not cached, we take 830 * reference, so that last dst_release can destroy the dst immediately. 831 */ 832 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 833 { 834 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 835 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 836 } 837 838 /** 839 * skb_dst_is_noref - Test if skb dst isn't refcounted 840 * @skb: buffer 841 */ 842 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 843 { 844 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 845 } 846 847 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 848 { 849 return (struct rtable *)skb_dst(skb); 850 } 851 852 /* For mangling skb->pkt_type from user space side from applications 853 * such as nft, tc, etc, we only allow a conservative subset of 854 * possible pkt_types to be set. 855 */ 856 static inline bool skb_pkt_type_ok(u32 ptype) 857 { 858 return ptype <= PACKET_OTHERHOST; 859 } 860 861 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 862 { 863 #ifdef CONFIG_NET_RX_BUSY_POLL 864 return skb->napi_id; 865 #else 866 return 0; 867 #endif 868 } 869 870 /* decrement the reference count and return true if we can free the skb */ 871 static inline bool skb_unref(struct sk_buff *skb) 872 { 873 if (unlikely(!skb)) 874 return false; 875 if (likely(refcount_read(&skb->users) == 1)) 876 smp_rmb(); 877 else if (likely(!refcount_dec_and_test(&skb->users))) 878 return false; 879 880 return true; 881 } 882 883 void skb_release_head_state(struct sk_buff *skb); 884 void kfree_skb(struct sk_buff *skb); 885 void kfree_skb_list(struct sk_buff *segs); 886 void skb_tx_error(struct sk_buff *skb); 887 void consume_skb(struct sk_buff *skb); 888 void consume_stateless_skb(struct sk_buff *skb); 889 void __kfree_skb(struct sk_buff *skb); 890 extern struct kmem_cache *skbuff_head_cache; 891 892 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 893 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 894 bool *fragstolen, int *delta_truesize); 895 896 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 897 int node); 898 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 899 struct sk_buff *build_skb(void *data, unsigned int frag_size); 900 static inline struct sk_buff *alloc_skb(unsigned int size, 901 gfp_t priority) 902 { 903 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 904 } 905 906 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 907 unsigned long data_len, 908 int max_page_order, 909 int *errcode, 910 gfp_t gfp_mask); 911 912 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 913 struct sk_buff_fclones { 914 struct sk_buff skb1; 915 916 struct sk_buff skb2; 917 918 refcount_t fclone_ref; 919 }; 920 921 /** 922 * skb_fclone_busy - check if fclone is busy 923 * @sk: socket 924 * @skb: buffer 925 * 926 * Returns true if skb is a fast clone, and its clone is not freed. 927 * Some drivers call skb_orphan() in their ndo_start_xmit(), 928 * so we also check that this didnt happen. 929 */ 930 static inline bool skb_fclone_busy(const struct sock *sk, 931 const struct sk_buff *skb) 932 { 933 const struct sk_buff_fclones *fclones; 934 935 fclones = container_of(skb, struct sk_buff_fclones, skb1); 936 937 return skb->fclone == SKB_FCLONE_ORIG && 938 refcount_read(&fclones->fclone_ref) > 1 && 939 fclones->skb2.sk == sk; 940 } 941 942 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 943 gfp_t priority) 944 { 945 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 946 } 947 948 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 949 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 950 { 951 return __alloc_skb_head(priority, -1); 952 } 953 954 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 955 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 956 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 957 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 958 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 959 gfp_t gfp_mask, bool fclone); 960 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 961 gfp_t gfp_mask) 962 { 963 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 964 } 965 966 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 967 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 968 unsigned int headroom); 969 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 970 int newtailroom, gfp_t priority); 971 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 972 int offset, int len); 973 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 974 int offset, int len); 975 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 976 int skb_pad(struct sk_buff *skb, int pad); 977 #define dev_kfree_skb(a) consume_skb(a) 978 979 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 980 int getfrag(void *from, char *to, int offset, 981 int len, int odd, struct sk_buff *skb), 982 void *from, int length); 983 984 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 985 int offset, size_t size); 986 987 struct skb_seq_state { 988 __u32 lower_offset; 989 __u32 upper_offset; 990 __u32 frag_idx; 991 __u32 stepped_offset; 992 struct sk_buff *root_skb; 993 struct sk_buff *cur_skb; 994 __u8 *frag_data; 995 }; 996 997 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 998 unsigned int to, struct skb_seq_state *st); 999 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1000 struct skb_seq_state *st); 1001 void skb_abort_seq_read(struct skb_seq_state *st); 1002 1003 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1004 unsigned int to, struct ts_config *config); 1005 1006 /* 1007 * Packet hash types specify the type of hash in skb_set_hash. 1008 * 1009 * Hash types refer to the protocol layer addresses which are used to 1010 * construct a packet's hash. The hashes are used to differentiate or identify 1011 * flows of the protocol layer for the hash type. Hash types are either 1012 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1013 * 1014 * Properties of hashes: 1015 * 1016 * 1) Two packets in different flows have different hash values 1017 * 2) Two packets in the same flow should have the same hash value 1018 * 1019 * A hash at a higher layer is considered to be more specific. A driver should 1020 * set the most specific hash possible. 1021 * 1022 * A driver cannot indicate a more specific hash than the layer at which a hash 1023 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1024 * 1025 * A driver may indicate a hash level which is less specific than the 1026 * actual layer the hash was computed on. For instance, a hash computed 1027 * at L4 may be considered an L3 hash. This should only be done if the 1028 * driver can't unambiguously determine that the HW computed the hash at 1029 * the higher layer. Note that the "should" in the second property above 1030 * permits this. 1031 */ 1032 enum pkt_hash_types { 1033 PKT_HASH_TYPE_NONE, /* Undefined type */ 1034 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1035 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1036 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1037 }; 1038 1039 static inline void skb_clear_hash(struct sk_buff *skb) 1040 { 1041 skb->hash = 0; 1042 skb->sw_hash = 0; 1043 skb->l4_hash = 0; 1044 } 1045 1046 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1047 { 1048 if (!skb->l4_hash) 1049 skb_clear_hash(skb); 1050 } 1051 1052 static inline void 1053 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1054 { 1055 skb->l4_hash = is_l4; 1056 skb->sw_hash = is_sw; 1057 skb->hash = hash; 1058 } 1059 1060 static inline void 1061 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1062 { 1063 /* Used by drivers to set hash from HW */ 1064 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1065 } 1066 1067 static inline void 1068 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1069 { 1070 __skb_set_hash(skb, hash, true, is_l4); 1071 } 1072 1073 void __skb_get_hash(struct sk_buff *skb); 1074 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1075 u32 skb_get_poff(const struct sk_buff *skb); 1076 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1077 const struct flow_keys *keys, int hlen); 1078 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1079 void *data, int hlen_proto); 1080 1081 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1082 int thoff, u8 ip_proto) 1083 { 1084 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1085 } 1086 1087 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1088 const struct flow_dissector_key *key, 1089 unsigned int key_count); 1090 1091 bool __skb_flow_dissect(const struct sk_buff *skb, 1092 struct flow_dissector *flow_dissector, 1093 void *target_container, 1094 void *data, __be16 proto, int nhoff, int hlen, 1095 unsigned int flags); 1096 1097 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1098 struct flow_dissector *flow_dissector, 1099 void *target_container, unsigned int flags) 1100 { 1101 return __skb_flow_dissect(skb, flow_dissector, target_container, 1102 NULL, 0, 0, 0, flags); 1103 } 1104 1105 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1106 struct flow_keys *flow, 1107 unsigned int flags) 1108 { 1109 memset(flow, 0, sizeof(*flow)); 1110 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1111 NULL, 0, 0, 0, flags); 1112 } 1113 1114 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1115 void *data, __be16 proto, 1116 int nhoff, int hlen, 1117 unsigned int flags) 1118 { 1119 memset(flow, 0, sizeof(*flow)); 1120 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1121 data, proto, nhoff, hlen, flags); 1122 } 1123 1124 static inline __u32 skb_get_hash(struct sk_buff *skb) 1125 { 1126 if (!skb->l4_hash && !skb->sw_hash) 1127 __skb_get_hash(skb); 1128 1129 return skb->hash; 1130 } 1131 1132 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1133 1134 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1135 { 1136 if (!skb->l4_hash && !skb->sw_hash) { 1137 struct flow_keys keys; 1138 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1139 1140 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1141 } 1142 1143 return skb->hash; 1144 } 1145 1146 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1147 1148 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1149 { 1150 if (!skb->l4_hash && !skb->sw_hash) { 1151 struct flow_keys keys; 1152 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1153 1154 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1155 } 1156 1157 return skb->hash; 1158 } 1159 1160 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1161 1162 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1163 { 1164 return skb->hash; 1165 } 1166 1167 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1168 { 1169 to->hash = from->hash; 1170 to->sw_hash = from->sw_hash; 1171 to->l4_hash = from->l4_hash; 1172 }; 1173 1174 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1175 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1176 { 1177 return skb->head + skb->end; 1178 } 1179 1180 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1181 { 1182 return skb->end; 1183 } 1184 #else 1185 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1186 { 1187 return skb->end; 1188 } 1189 1190 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1191 { 1192 return skb->end - skb->head; 1193 } 1194 #endif 1195 1196 /* Internal */ 1197 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1198 1199 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1200 { 1201 return &skb_shinfo(skb)->hwtstamps; 1202 } 1203 1204 /** 1205 * skb_queue_empty - check if a queue is empty 1206 * @list: queue head 1207 * 1208 * Returns true if the queue is empty, false otherwise. 1209 */ 1210 static inline int skb_queue_empty(const struct sk_buff_head *list) 1211 { 1212 return list->next == (const struct sk_buff *) list; 1213 } 1214 1215 /** 1216 * skb_queue_is_last - check if skb is the last entry in the queue 1217 * @list: queue head 1218 * @skb: buffer 1219 * 1220 * Returns true if @skb is the last buffer on the list. 1221 */ 1222 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1223 const struct sk_buff *skb) 1224 { 1225 return skb->next == (const struct sk_buff *) list; 1226 } 1227 1228 /** 1229 * skb_queue_is_first - check if skb is the first entry in the queue 1230 * @list: queue head 1231 * @skb: buffer 1232 * 1233 * Returns true if @skb is the first buffer on the list. 1234 */ 1235 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1236 const struct sk_buff *skb) 1237 { 1238 return skb->prev == (const struct sk_buff *) list; 1239 } 1240 1241 /** 1242 * skb_queue_next - return the next packet in the queue 1243 * @list: queue head 1244 * @skb: current buffer 1245 * 1246 * Return the next packet in @list after @skb. It is only valid to 1247 * call this if skb_queue_is_last() evaluates to false. 1248 */ 1249 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1250 const struct sk_buff *skb) 1251 { 1252 /* This BUG_ON may seem severe, but if we just return then we 1253 * are going to dereference garbage. 1254 */ 1255 BUG_ON(skb_queue_is_last(list, skb)); 1256 return skb->next; 1257 } 1258 1259 /** 1260 * skb_queue_prev - return the prev packet in the queue 1261 * @list: queue head 1262 * @skb: current buffer 1263 * 1264 * Return the prev packet in @list before @skb. It is only valid to 1265 * call this if skb_queue_is_first() evaluates to false. 1266 */ 1267 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1268 const struct sk_buff *skb) 1269 { 1270 /* This BUG_ON may seem severe, but if we just return then we 1271 * are going to dereference garbage. 1272 */ 1273 BUG_ON(skb_queue_is_first(list, skb)); 1274 return skb->prev; 1275 } 1276 1277 /** 1278 * skb_get - reference buffer 1279 * @skb: buffer to reference 1280 * 1281 * Makes another reference to a socket buffer and returns a pointer 1282 * to the buffer. 1283 */ 1284 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1285 { 1286 refcount_inc(&skb->users); 1287 return skb; 1288 } 1289 1290 /* 1291 * If users == 1, we are the only owner and are can avoid redundant 1292 * atomic change. 1293 */ 1294 1295 /** 1296 * skb_cloned - is the buffer a clone 1297 * @skb: buffer to check 1298 * 1299 * Returns true if the buffer was generated with skb_clone() and is 1300 * one of multiple shared copies of the buffer. Cloned buffers are 1301 * shared data so must not be written to under normal circumstances. 1302 */ 1303 static inline int skb_cloned(const struct sk_buff *skb) 1304 { 1305 return skb->cloned && 1306 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1307 } 1308 1309 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1310 { 1311 might_sleep_if(gfpflags_allow_blocking(pri)); 1312 1313 if (skb_cloned(skb)) 1314 return pskb_expand_head(skb, 0, 0, pri); 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * skb_header_cloned - is the header a clone 1321 * @skb: buffer to check 1322 * 1323 * Returns true if modifying the header part of the buffer requires 1324 * the data to be copied. 1325 */ 1326 static inline int skb_header_cloned(const struct sk_buff *skb) 1327 { 1328 int dataref; 1329 1330 if (!skb->cloned) 1331 return 0; 1332 1333 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1334 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1335 return dataref != 1; 1336 } 1337 1338 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1339 { 1340 might_sleep_if(gfpflags_allow_blocking(pri)); 1341 1342 if (skb_header_cloned(skb)) 1343 return pskb_expand_head(skb, 0, 0, pri); 1344 1345 return 0; 1346 } 1347 1348 /** 1349 * skb_header_release - release reference to header 1350 * @skb: buffer to operate on 1351 * 1352 * Drop a reference to the header part of the buffer. This is done 1353 * by acquiring a payload reference. You must not read from the header 1354 * part of skb->data after this. 1355 * Note : Check if you can use __skb_header_release() instead. 1356 */ 1357 static inline void skb_header_release(struct sk_buff *skb) 1358 { 1359 BUG_ON(skb->nohdr); 1360 skb->nohdr = 1; 1361 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1362 } 1363 1364 /** 1365 * __skb_header_release - release reference to header 1366 * @skb: buffer to operate on 1367 * 1368 * Variant of skb_header_release() assuming skb is private to caller. 1369 * We can avoid one atomic operation. 1370 */ 1371 static inline void __skb_header_release(struct sk_buff *skb) 1372 { 1373 skb->nohdr = 1; 1374 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1375 } 1376 1377 1378 /** 1379 * skb_shared - is the buffer shared 1380 * @skb: buffer to check 1381 * 1382 * Returns true if more than one person has a reference to this 1383 * buffer. 1384 */ 1385 static inline int skb_shared(const struct sk_buff *skb) 1386 { 1387 return refcount_read(&skb->users) != 1; 1388 } 1389 1390 /** 1391 * skb_share_check - check if buffer is shared and if so clone it 1392 * @skb: buffer to check 1393 * @pri: priority for memory allocation 1394 * 1395 * If the buffer is shared the buffer is cloned and the old copy 1396 * drops a reference. A new clone with a single reference is returned. 1397 * If the buffer is not shared the original buffer is returned. When 1398 * being called from interrupt status or with spinlocks held pri must 1399 * be GFP_ATOMIC. 1400 * 1401 * NULL is returned on a memory allocation failure. 1402 */ 1403 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1404 { 1405 might_sleep_if(gfpflags_allow_blocking(pri)); 1406 if (skb_shared(skb)) { 1407 struct sk_buff *nskb = skb_clone(skb, pri); 1408 1409 if (likely(nskb)) 1410 consume_skb(skb); 1411 else 1412 kfree_skb(skb); 1413 skb = nskb; 1414 } 1415 return skb; 1416 } 1417 1418 /* 1419 * Copy shared buffers into a new sk_buff. We effectively do COW on 1420 * packets to handle cases where we have a local reader and forward 1421 * and a couple of other messy ones. The normal one is tcpdumping 1422 * a packet thats being forwarded. 1423 */ 1424 1425 /** 1426 * skb_unshare - make a copy of a shared buffer 1427 * @skb: buffer to check 1428 * @pri: priority for memory allocation 1429 * 1430 * If the socket buffer is a clone then this function creates a new 1431 * copy of the data, drops a reference count on the old copy and returns 1432 * the new copy with the reference count at 1. If the buffer is not a clone 1433 * the original buffer is returned. When called with a spinlock held or 1434 * from interrupt state @pri must be %GFP_ATOMIC 1435 * 1436 * %NULL is returned on a memory allocation failure. 1437 */ 1438 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1439 gfp_t pri) 1440 { 1441 might_sleep_if(gfpflags_allow_blocking(pri)); 1442 if (skb_cloned(skb)) { 1443 struct sk_buff *nskb = skb_copy(skb, pri); 1444 1445 /* Free our shared copy */ 1446 if (likely(nskb)) 1447 consume_skb(skb); 1448 else 1449 kfree_skb(skb); 1450 skb = nskb; 1451 } 1452 return skb; 1453 } 1454 1455 /** 1456 * skb_peek - peek at the head of an &sk_buff_head 1457 * @list_: list to peek at 1458 * 1459 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1460 * be careful with this one. A peek leaves the buffer on the 1461 * list and someone else may run off with it. You must hold 1462 * the appropriate locks or have a private queue to do this. 1463 * 1464 * Returns %NULL for an empty list or a pointer to the head element. 1465 * The reference count is not incremented and the reference is therefore 1466 * volatile. Use with caution. 1467 */ 1468 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1469 { 1470 struct sk_buff *skb = list_->next; 1471 1472 if (skb == (struct sk_buff *)list_) 1473 skb = NULL; 1474 return skb; 1475 } 1476 1477 /** 1478 * skb_peek_next - peek skb following the given one from a queue 1479 * @skb: skb to start from 1480 * @list_: list to peek at 1481 * 1482 * Returns %NULL when the end of the list is met or a pointer to the 1483 * next element. The reference count is not incremented and the 1484 * reference is therefore volatile. Use with caution. 1485 */ 1486 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1487 const struct sk_buff_head *list_) 1488 { 1489 struct sk_buff *next = skb->next; 1490 1491 if (next == (struct sk_buff *)list_) 1492 next = NULL; 1493 return next; 1494 } 1495 1496 /** 1497 * skb_peek_tail - peek at the tail of an &sk_buff_head 1498 * @list_: list to peek at 1499 * 1500 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1501 * be careful with this one. A peek leaves the buffer on the 1502 * list and someone else may run off with it. You must hold 1503 * the appropriate locks or have a private queue to do this. 1504 * 1505 * Returns %NULL for an empty list or a pointer to the tail element. 1506 * The reference count is not incremented and the reference is therefore 1507 * volatile. Use with caution. 1508 */ 1509 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1510 { 1511 struct sk_buff *skb = list_->prev; 1512 1513 if (skb == (struct sk_buff *)list_) 1514 skb = NULL; 1515 return skb; 1516 1517 } 1518 1519 /** 1520 * skb_queue_len - get queue length 1521 * @list_: list to measure 1522 * 1523 * Return the length of an &sk_buff queue. 1524 */ 1525 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1526 { 1527 return list_->qlen; 1528 } 1529 1530 /** 1531 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1532 * @list: queue to initialize 1533 * 1534 * This initializes only the list and queue length aspects of 1535 * an sk_buff_head object. This allows to initialize the list 1536 * aspects of an sk_buff_head without reinitializing things like 1537 * the spinlock. It can also be used for on-stack sk_buff_head 1538 * objects where the spinlock is known to not be used. 1539 */ 1540 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1541 { 1542 list->prev = list->next = (struct sk_buff *)list; 1543 list->qlen = 0; 1544 } 1545 1546 /* 1547 * This function creates a split out lock class for each invocation; 1548 * this is needed for now since a whole lot of users of the skb-queue 1549 * infrastructure in drivers have different locking usage (in hardirq) 1550 * than the networking core (in softirq only). In the long run either the 1551 * network layer or drivers should need annotation to consolidate the 1552 * main types of usage into 3 classes. 1553 */ 1554 static inline void skb_queue_head_init(struct sk_buff_head *list) 1555 { 1556 spin_lock_init(&list->lock); 1557 __skb_queue_head_init(list); 1558 } 1559 1560 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1561 struct lock_class_key *class) 1562 { 1563 skb_queue_head_init(list); 1564 lockdep_set_class(&list->lock, class); 1565 } 1566 1567 /* 1568 * Insert an sk_buff on a list. 1569 * 1570 * The "__skb_xxxx()" functions are the non-atomic ones that 1571 * can only be called with interrupts disabled. 1572 */ 1573 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1574 struct sk_buff_head *list); 1575 static inline void __skb_insert(struct sk_buff *newsk, 1576 struct sk_buff *prev, struct sk_buff *next, 1577 struct sk_buff_head *list) 1578 { 1579 newsk->next = next; 1580 newsk->prev = prev; 1581 next->prev = prev->next = newsk; 1582 list->qlen++; 1583 } 1584 1585 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1586 struct sk_buff *prev, 1587 struct sk_buff *next) 1588 { 1589 struct sk_buff *first = list->next; 1590 struct sk_buff *last = list->prev; 1591 1592 first->prev = prev; 1593 prev->next = first; 1594 1595 last->next = next; 1596 next->prev = last; 1597 } 1598 1599 /** 1600 * skb_queue_splice - join two skb lists, this is designed for stacks 1601 * @list: the new list to add 1602 * @head: the place to add it in the first list 1603 */ 1604 static inline void skb_queue_splice(const struct sk_buff_head *list, 1605 struct sk_buff_head *head) 1606 { 1607 if (!skb_queue_empty(list)) { 1608 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1609 head->qlen += list->qlen; 1610 } 1611 } 1612 1613 /** 1614 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1615 * @list: the new list to add 1616 * @head: the place to add it in the first list 1617 * 1618 * The list at @list is reinitialised 1619 */ 1620 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1621 struct sk_buff_head *head) 1622 { 1623 if (!skb_queue_empty(list)) { 1624 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1625 head->qlen += list->qlen; 1626 __skb_queue_head_init(list); 1627 } 1628 } 1629 1630 /** 1631 * skb_queue_splice_tail - join two skb lists, each list being a queue 1632 * @list: the new list to add 1633 * @head: the place to add it in the first list 1634 */ 1635 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1636 struct sk_buff_head *head) 1637 { 1638 if (!skb_queue_empty(list)) { 1639 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1640 head->qlen += list->qlen; 1641 } 1642 } 1643 1644 /** 1645 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1646 * @list: the new list to add 1647 * @head: the place to add it in the first list 1648 * 1649 * Each of the lists is a queue. 1650 * The list at @list is reinitialised 1651 */ 1652 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1653 struct sk_buff_head *head) 1654 { 1655 if (!skb_queue_empty(list)) { 1656 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1657 head->qlen += list->qlen; 1658 __skb_queue_head_init(list); 1659 } 1660 } 1661 1662 /** 1663 * __skb_queue_after - queue a buffer at the list head 1664 * @list: list to use 1665 * @prev: place after this buffer 1666 * @newsk: buffer to queue 1667 * 1668 * Queue a buffer int the middle of a list. This function takes no locks 1669 * and you must therefore hold required locks before calling it. 1670 * 1671 * A buffer cannot be placed on two lists at the same time. 1672 */ 1673 static inline void __skb_queue_after(struct sk_buff_head *list, 1674 struct sk_buff *prev, 1675 struct sk_buff *newsk) 1676 { 1677 __skb_insert(newsk, prev, prev->next, list); 1678 } 1679 1680 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1681 struct sk_buff_head *list); 1682 1683 static inline void __skb_queue_before(struct sk_buff_head *list, 1684 struct sk_buff *next, 1685 struct sk_buff *newsk) 1686 { 1687 __skb_insert(newsk, next->prev, next, list); 1688 } 1689 1690 /** 1691 * __skb_queue_head - queue a buffer at the list head 1692 * @list: list to use 1693 * @newsk: buffer to queue 1694 * 1695 * Queue a buffer at the start of a list. This function takes no locks 1696 * and you must therefore hold required locks before calling it. 1697 * 1698 * A buffer cannot be placed on two lists at the same time. 1699 */ 1700 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1701 static inline void __skb_queue_head(struct sk_buff_head *list, 1702 struct sk_buff *newsk) 1703 { 1704 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1705 } 1706 1707 /** 1708 * __skb_queue_tail - queue a buffer at the list tail 1709 * @list: list to use 1710 * @newsk: buffer to queue 1711 * 1712 * Queue a buffer at the end of a list. This function takes no locks 1713 * and you must therefore hold required locks before calling it. 1714 * 1715 * A buffer cannot be placed on two lists at the same time. 1716 */ 1717 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1718 static inline void __skb_queue_tail(struct sk_buff_head *list, 1719 struct sk_buff *newsk) 1720 { 1721 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1722 } 1723 1724 /* 1725 * remove sk_buff from list. _Must_ be called atomically, and with 1726 * the list known.. 1727 */ 1728 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1729 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1730 { 1731 struct sk_buff *next, *prev; 1732 1733 list->qlen--; 1734 next = skb->next; 1735 prev = skb->prev; 1736 skb->next = skb->prev = NULL; 1737 next->prev = prev; 1738 prev->next = next; 1739 } 1740 1741 /** 1742 * __skb_dequeue - remove from the head of the queue 1743 * @list: list to dequeue from 1744 * 1745 * Remove the head of the list. This function does not take any locks 1746 * so must be used with appropriate locks held only. The head item is 1747 * returned or %NULL if the list is empty. 1748 */ 1749 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1750 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1751 { 1752 struct sk_buff *skb = skb_peek(list); 1753 if (skb) 1754 __skb_unlink(skb, list); 1755 return skb; 1756 } 1757 1758 /** 1759 * __skb_dequeue_tail - remove from the tail of the queue 1760 * @list: list to dequeue from 1761 * 1762 * Remove the tail of the list. This function does not take any locks 1763 * so must be used with appropriate locks held only. The tail item is 1764 * returned or %NULL if the list is empty. 1765 */ 1766 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1767 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1768 { 1769 struct sk_buff *skb = skb_peek_tail(list); 1770 if (skb) 1771 __skb_unlink(skb, list); 1772 return skb; 1773 } 1774 1775 1776 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1777 { 1778 return skb->data_len; 1779 } 1780 1781 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1782 { 1783 return skb->len - skb->data_len; 1784 } 1785 1786 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1787 { 1788 unsigned int i, len = 0; 1789 1790 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1791 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1792 return len + skb_headlen(skb); 1793 } 1794 1795 /** 1796 * __skb_fill_page_desc - initialise a paged fragment in an skb 1797 * @skb: buffer containing fragment to be initialised 1798 * @i: paged fragment index to initialise 1799 * @page: the page to use for this fragment 1800 * @off: the offset to the data with @page 1801 * @size: the length of the data 1802 * 1803 * Initialises the @i'th fragment of @skb to point to &size bytes at 1804 * offset @off within @page. 1805 * 1806 * Does not take any additional reference on the fragment. 1807 */ 1808 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1809 struct page *page, int off, int size) 1810 { 1811 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1812 1813 /* 1814 * Propagate page pfmemalloc to the skb if we can. The problem is 1815 * that not all callers have unique ownership of the page but rely 1816 * on page_is_pfmemalloc doing the right thing(tm). 1817 */ 1818 frag->page.p = page; 1819 frag->page_offset = off; 1820 skb_frag_size_set(frag, size); 1821 1822 page = compound_head(page); 1823 if (page_is_pfmemalloc(page)) 1824 skb->pfmemalloc = true; 1825 } 1826 1827 /** 1828 * skb_fill_page_desc - initialise a paged fragment in an skb 1829 * @skb: buffer containing fragment to be initialised 1830 * @i: paged fragment index to initialise 1831 * @page: the page to use for this fragment 1832 * @off: the offset to the data with @page 1833 * @size: the length of the data 1834 * 1835 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1836 * @skb to point to @size bytes at offset @off within @page. In 1837 * addition updates @skb such that @i is the last fragment. 1838 * 1839 * Does not take any additional reference on the fragment. 1840 */ 1841 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1842 struct page *page, int off, int size) 1843 { 1844 __skb_fill_page_desc(skb, i, page, off, size); 1845 skb_shinfo(skb)->nr_frags = i + 1; 1846 } 1847 1848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1849 int size, unsigned int truesize); 1850 1851 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1852 unsigned int truesize); 1853 1854 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1855 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1856 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1857 1858 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1859 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1860 { 1861 return skb->head + skb->tail; 1862 } 1863 1864 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1865 { 1866 skb->tail = skb->data - skb->head; 1867 } 1868 1869 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1870 { 1871 skb_reset_tail_pointer(skb); 1872 skb->tail += offset; 1873 } 1874 1875 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1876 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1877 { 1878 return skb->tail; 1879 } 1880 1881 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1882 { 1883 skb->tail = skb->data; 1884 } 1885 1886 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1887 { 1888 skb->tail = skb->data + offset; 1889 } 1890 1891 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1892 1893 /* 1894 * Add data to an sk_buff 1895 */ 1896 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1897 void *skb_put(struct sk_buff *skb, unsigned int len); 1898 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 1899 { 1900 void *tmp = skb_tail_pointer(skb); 1901 SKB_LINEAR_ASSERT(skb); 1902 skb->tail += len; 1903 skb->len += len; 1904 return tmp; 1905 } 1906 1907 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 1908 { 1909 void *tmp = __skb_put(skb, len); 1910 1911 memset(tmp, 0, len); 1912 return tmp; 1913 } 1914 1915 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 1916 unsigned int len) 1917 { 1918 void *tmp = __skb_put(skb, len); 1919 1920 memcpy(tmp, data, len); 1921 return tmp; 1922 } 1923 1924 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 1925 { 1926 *(u8 *)__skb_put(skb, 1) = val; 1927 } 1928 1929 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 1930 { 1931 void *tmp = skb_put(skb, len); 1932 1933 memset(tmp, 0, len); 1934 1935 return tmp; 1936 } 1937 1938 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 1939 unsigned int len) 1940 { 1941 void *tmp = skb_put(skb, len); 1942 1943 memcpy(tmp, data, len); 1944 1945 return tmp; 1946 } 1947 1948 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 1949 { 1950 *(u8 *)skb_put(skb, 1) = val; 1951 } 1952 1953 void *skb_push(struct sk_buff *skb, unsigned int len); 1954 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 1955 { 1956 skb->data -= len; 1957 skb->len += len; 1958 return skb->data; 1959 } 1960 1961 void *skb_pull(struct sk_buff *skb, unsigned int len); 1962 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 1963 { 1964 skb->len -= len; 1965 BUG_ON(skb->len < skb->data_len); 1966 return skb->data += len; 1967 } 1968 1969 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1970 { 1971 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1972 } 1973 1974 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 1975 1976 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 1977 { 1978 if (len > skb_headlen(skb) && 1979 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1980 return NULL; 1981 skb->len -= len; 1982 return skb->data += len; 1983 } 1984 1985 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 1986 { 1987 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1988 } 1989 1990 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1991 { 1992 if (likely(len <= skb_headlen(skb))) 1993 return 1; 1994 if (unlikely(len > skb->len)) 1995 return 0; 1996 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1997 } 1998 1999 void skb_condense(struct sk_buff *skb); 2000 2001 /** 2002 * skb_headroom - bytes at buffer head 2003 * @skb: buffer to check 2004 * 2005 * Return the number of bytes of free space at the head of an &sk_buff. 2006 */ 2007 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2008 { 2009 return skb->data - skb->head; 2010 } 2011 2012 /** 2013 * skb_tailroom - bytes at buffer end 2014 * @skb: buffer to check 2015 * 2016 * Return the number of bytes of free space at the tail of an sk_buff 2017 */ 2018 static inline int skb_tailroom(const struct sk_buff *skb) 2019 { 2020 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2021 } 2022 2023 /** 2024 * skb_availroom - bytes at buffer end 2025 * @skb: buffer to check 2026 * 2027 * Return the number of bytes of free space at the tail of an sk_buff 2028 * allocated by sk_stream_alloc() 2029 */ 2030 static inline int skb_availroom(const struct sk_buff *skb) 2031 { 2032 if (skb_is_nonlinear(skb)) 2033 return 0; 2034 2035 return skb->end - skb->tail - skb->reserved_tailroom; 2036 } 2037 2038 /** 2039 * skb_reserve - adjust headroom 2040 * @skb: buffer to alter 2041 * @len: bytes to move 2042 * 2043 * Increase the headroom of an empty &sk_buff by reducing the tail 2044 * room. This is only allowed for an empty buffer. 2045 */ 2046 static inline void skb_reserve(struct sk_buff *skb, int len) 2047 { 2048 skb->data += len; 2049 skb->tail += len; 2050 } 2051 2052 /** 2053 * skb_tailroom_reserve - adjust reserved_tailroom 2054 * @skb: buffer to alter 2055 * @mtu: maximum amount of headlen permitted 2056 * @needed_tailroom: minimum amount of reserved_tailroom 2057 * 2058 * Set reserved_tailroom so that headlen can be as large as possible but 2059 * not larger than mtu and tailroom cannot be smaller than 2060 * needed_tailroom. 2061 * The required headroom should already have been reserved before using 2062 * this function. 2063 */ 2064 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2065 unsigned int needed_tailroom) 2066 { 2067 SKB_LINEAR_ASSERT(skb); 2068 if (mtu < skb_tailroom(skb) - needed_tailroom) 2069 /* use at most mtu */ 2070 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2071 else 2072 /* use up to all available space */ 2073 skb->reserved_tailroom = needed_tailroom; 2074 } 2075 2076 #define ENCAP_TYPE_ETHER 0 2077 #define ENCAP_TYPE_IPPROTO 1 2078 2079 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2080 __be16 protocol) 2081 { 2082 skb->inner_protocol = protocol; 2083 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2084 } 2085 2086 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2087 __u8 ipproto) 2088 { 2089 skb->inner_ipproto = ipproto; 2090 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2091 } 2092 2093 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2094 { 2095 skb->inner_mac_header = skb->mac_header; 2096 skb->inner_network_header = skb->network_header; 2097 skb->inner_transport_header = skb->transport_header; 2098 } 2099 2100 static inline void skb_reset_mac_len(struct sk_buff *skb) 2101 { 2102 skb->mac_len = skb->network_header - skb->mac_header; 2103 } 2104 2105 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2106 *skb) 2107 { 2108 return skb->head + skb->inner_transport_header; 2109 } 2110 2111 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2112 { 2113 return skb_inner_transport_header(skb) - skb->data; 2114 } 2115 2116 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2117 { 2118 skb->inner_transport_header = skb->data - skb->head; 2119 } 2120 2121 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2122 const int offset) 2123 { 2124 skb_reset_inner_transport_header(skb); 2125 skb->inner_transport_header += offset; 2126 } 2127 2128 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2129 { 2130 return skb->head + skb->inner_network_header; 2131 } 2132 2133 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2134 { 2135 skb->inner_network_header = skb->data - skb->head; 2136 } 2137 2138 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2139 const int offset) 2140 { 2141 skb_reset_inner_network_header(skb); 2142 skb->inner_network_header += offset; 2143 } 2144 2145 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2146 { 2147 return skb->head + skb->inner_mac_header; 2148 } 2149 2150 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2151 { 2152 skb->inner_mac_header = skb->data - skb->head; 2153 } 2154 2155 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2156 const int offset) 2157 { 2158 skb_reset_inner_mac_header(skb); 2159 skb->inner_mac_header += offset; 2160 } 2161 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2162 { 2163 return skb->transport_header != (typeof(skb->transport_header))~0U; 2164 } 2165 2166 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2167 { 2168 return skb->head + skb->transport_header; 2169 } 2170 2171 static inline void skb_reset_transport_header(struct sk_buff *skb) 2172 { 2173 skb->transport_header = skb->data - skb->head; 2174 } 2175 2176 static inline void skb_set_transport_header(struct sk_buff *skb, 2177 const int offset) 2178 { 2179 skb_reset_transport_header(skb); 2180 skb->transport_header += offset; 2181 } 2182 2183 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2184 { 2185 return skb->head + skb->network_header; 2186 } 2187 2188 static inline void skb_reset_network_header(struct sk_buff *skb) 2189 { 2190 skb->network_header = skb->data - skb->head; 2191 } 2192 2193 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2194 { 2195 skb_reset_network_header(skb); 2196 skb->network_header += offset; 2197 } 2198 2199 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2200 { 2201 return skb->head + skb->mac_header; 2202 } 2203 2204 static inline int skb_mac_offset(const struct sk_buff *skb) 2205 { 2206 return skb_mac_header(skb) - skb->data; 2207 } 2208 2209 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2210 { 2211 return skb->network_header - skb->mac_header; 2212 } 2213 2214 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2215 { 2216 return skb->mac_header != (typeof(skb->mac_header))~0U; 2217 } 2218 2219 static inline void skb_reset_mac_header(struct sk_buff *skb) 2220 { 2221 skb->mac_header = skb->data - skb->head; 2222 } 2223 2224 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2225 { 2226 skb_reset_mac_header(skb); 2227 skb->mac_header += offset; 2228 } 2229 2230 static inline void skb_pop_mac_header(struct sk_buff *skb) 2231 { 2232 skb->mac_header = skb->network_header; 2233 } 2234 2235 static inline void skb_probe_transport_header(struct sk_buff *skb, 2236 const int offset_hint) 2237 { 2238 struct flow_keys keys; 2239 2240 if (skb_transport_header_was_set(skb)) 2241 return; 2242 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2243 skb_set_transport_header(skb, keys.control.thoff); 2244 else 2245 skb_set_transport_header(skb, offset_hint); 2246 } 2247 2248 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2249 { 2250 if (skb_mac_header_was_set(skb)) { 2251 const unsigned char *old_mac = skb_mac_header(skb); 2252 2253 skb_set_mac_header(skb, -skb->mac_len); 2254 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2255 } 2256 } 2257 2258 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2259 { 2260 return skb->csum_start - skb_headroom(skb); 2261 } 2262 2263 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2264 { 2265 return skb->head + skb->csum_start; 2266 } 2267 2268 static inline int skb_transport_offset(const struct sk_buff *skb) 2269 { 2270 return skb_transport_header(skb) - skb->data; 2271 } 2272 2273 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2274 { 2275 return skb->transport_header - skb->network_header; 2276 } 2277 2278 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2279 { 2280 return skb->inner_transport_header - skb->inner_network_header; 2281 } 2282 2283 static inline int skb_network_offset(const struct sk_buff *skb) 2284 { 2285 return skb_network_header(skb) - skb->data; 2286 } 2287 2288 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2289 { 2290 return skb_inner_network_header(skb) - skb->data; 2291 } 2292 2293 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2294 { 2295 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2296 } 2297 2298 /* 2299 * CPUs often take a performance hit when accessing unaligned memory 2300 * locations. The actual performance hit varies, it can be small if the 2301 * hardware handles it or large if we have to take an exception and fix it 2302 * in software. 2303 * 2304 * Since an ethernet header is 14 bytes network drivers often end up with 2305 * the IP header at an unaligned offset. The IP header can be aligned by 2306 * shifting the start of the packet by 2 bytes. Drivers should do this 2307 * with: 2308 * 2309 * skb_reserve(skb, NET_IP_ALIGN); 2310 * 2311 * The downside to this alignment of the IP header is that the DMA is now 2312 * unaligned. On some architectures the cost of an unaligned DMA is high 2313 * and this cost outweighs the gains made by aligning the IP header. 2314 * 2315 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2316 * to be overridden. 2317 */ 2318 #ifndef NET_IP_ALIGN 2319 #define NET_IP_ALIGN 2 2320 #endif 2321 2322 /* 2323 * The networking layer reserves some headroom in skb data (via 2324 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2325 * the header has to grow. In the default case, if the header has to grow 2326 * 32 bytes or less we avoid the reallocation. 2327 * 2328 * Unfortunately this headroom changes the DMA alignment of the resulting 2329 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2330 * on some architectures. An architecture can override this value, 2331 * perhaps setting it to a cacheline in size (since that will maintain 2332 * cacheline alignment of the DMA). It must be a power of 2. 2333 * 2334 * Various parts of the networking layer expect at least 32 bytes of 2335 * headroom, you should not reduce this. 2336 * 2337 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2338 * to reduce average number of cache lines per packet. 2339 * get_rps_cpus() for example only access one 64 bytes aligned block : 2340 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2341 */ 2342 #ifndef NET_SKB_PAD 2343 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2344 #endif 2345 2346 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2347 2348 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2349 { 2350 if (unlikely(skb_is_nonlinear(skb))) { 2351 WARN_ON(1); 2352 return; 2353 } 2354 skb->len = len; 2355 skb_set_tail_pointer(skb, len); 2356 } 2357 2358 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2359 { 2360 __skb_set_length(skb, len); 2361 } 2362 2363 void skb_trim(struct sk_buff *skb, unsigned int len); 2364 2365 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2366 { 2367 if (skb->data_len) 2368 return ___pskb_trim(skb, len); 2369 __skb_trim(skb, len); 2370 return 0; 2371 } 2372 2373 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2374 { 2375 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2376 } 2377 2378 /** 2379 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2380 * @skb: buffer to alter 2381 * @len: new length 2382 * 2383 * This is identical to pskb_trim except that the caller knows that 2384 * the skb is not cloned so we should never get an error due to out- 2385 * of-memory. 2386 */ 2387 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2388 { 2389 int err = pskb_trim(skb, len); 2390 BUG_ON(err); 2391 } 2392 2393 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2394 { 2395 unsigned int diff = len - skb->len; 2396 2397 if (skb_tailroom(skb) < diff) { 2398 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2399 GFP_ATOMIC); 2400 if (ret) 2401 return ret; 2402 } 2403 __skb_set_length(skb, len); 2404 return 0; 2405 } 2406 2407 /** 2408 * skb_orphan - orphan a buffer 2409 * @skb: buffer to orphan 2410 * 2411 * If a buffer currently has an owner then we call the owner's 2412 * destructor function and make the @skb unowned. The buffer continues 2413 * to exist but is no longer charged to its former owner. 2414 */ 2415 static inline void skb_orphan(struct sk_buff *skb) 2416 { 2417 if (skb->destructor) { 2418 skb->destructor(skb); 2419 skb->destructor = NULL; 2420 skb->sk = NULL; 2421 } else { 2422 BUG_ON(skb->sk); 2423 } 2424 } 2425 2426 /** 2427 * skb_orphan_frags - orphan the frags contained in a buffer 2428 * @skb: buffer to orphan frags from 2429 * @gfp_mask: allocation mask for replacement pages 2430 * 2431 * For each frag in the SKB which needs a destructor (i.e. has an 2432 * owner) create a copy of that frag and release the original 2433 * page by calling the destructor. 2434 */ 2435 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2436 { 2437 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2438 return 0; 2439 return skb_copy_ubufs(skb, gfp_mask); 2440 } 2441 2442 /** 2443 * __skb_queue_purge - empty a list 2444 * @list: list to empty 2445 * 2446 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2447 * the list and one reference dropped. This function does not take the 2448 * list lock and the caller must hold the relevant locks to use it. 2449 */ 2450 void skb_queue_purge(struct sk_buff_head *list); 2451 static inline void __skb_queue_purge(struct sk_buff_head *list) 2452 { 2453 struct sk_buff *skb; 2454 while ((skb = __skb_dequeue(list)) != NULL) 2455 kfree_skb(skb); 2456 } 2457 2458 void skb_rbtree_purge(struct rb_root *root); 2459 2460 void *netdev_alloc_frag(unsigned int fragsz); 2461 2462 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2463 gfp_t gfp_mask); 2464 2465 /** 2466 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2467 * @dev: network device to receive on 2468 * @length: length to allocate 2469 * 2470 * Allocate a new &sk_buff and assign it a usage count of one. The 2471 * buffer has unspecified headroom built in. Users should allocate 2472 * the headroom they think they need without accounting for the 2473 * built in space. The built in space is used for optimisations. 2474 * 2475 * %NULL is returned if there is no free memory. Although this function 2476 * allocates memory it can be called from an interrupt. 2477 */ 2478 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2479 unsigned int length) 2480 { 2481 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2482 } 2483 2484 /* legacy helper around __netdev_alloc_skb() */ 2485 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2486 gfp_t gfp_mask) 2487 { 2488 return __netdev_alloc_skb(NULL, length, gfp_mask); 2489 } 2490 2491 /* legacy helper around netdev_alloc_skb() */ 2492 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2493 { 2494 return netdev_alloc_skb(NULL, length); 2495 } 2496 2497 2498 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2499 unsigned int length, gfp_t gfp) 2500 { 2501 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2502 2503 if (NET_IP_ALIGN && skb) 2504 skb_reserve(skb, NET_IP_ALIGN); 2505 return skb; 2506 } 2507 2508 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2509 unsigned int length) 2510 { 2511 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2512 } 2513 2514 static inline void skb_free_frag(void *addr) 2515 { 2516 page_frag_free(addr); 2517 } 2518 2519 void *napi_alloc_frag(unsigned int fragsz); 2520 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2521 unsigned int length, gfp_t gfp_mask); 2522 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2523 unsigned int length) 2524 { 2525 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2526 } 2527 void napi_consume_skb(struct sk_buff *skb, int budget); 2528 2529 void __kfree_skb_flush(void); 2530 void __kfree_skb_defer(struct sk_buff *skb); 2531 2532 /** 2533 * __dev_alloc_pages - allocate page for network Rx 2534 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2535 * @order: size of the allocation 2536 * 2537 * Allocate a new page. 2538 * 2539 * %NULL is returned if there is no free memory. 2540 */ 2541 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2542 unsigned int order) 2543 { 2544 /* This piece of code contains several assumptions. 2545 * 1. This is for device Rx, therefor a cold page is preferred. 2546 * 2. The expectation is the user wants a compound page. 2547 * 3. If requesting a order 0 page it will not be compound 2548 * due to the check to see if order has a value in prep_new_page 2549 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2550 * code in gfp_to_alloc_flags that should be enforcing this. 2551 */ 2552 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2553 2554 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2555 } 2556 2557 static inline struct page *dev_alloc_pages(unsigned int order) 2558 { 2559 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2560 } 2561 2562 /** 2563 * __dev_alloc_page - allocate a page for network Rx 2564 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2565 * 2566 * Allocate a new page. 2567 * 2568 * %NULL is returned if there is no free memory. 2569 */ 2570 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2571 { 2572 return __dev_alloc_pages(gfp_mask, 0); 2573 } 2574 2575 static inline struct page *dev_alloc_page(void) 2576 { 2577 return dev_alloc_pages(0); 2578 } 2579 2580 /** 2581 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2582 * @page: The page that was allocated from skb_alloc_page 2583 * @skb: The skb that may need pfmemalloc set 2584 */ 2585 static inline void skb_propagate_pfmemalloc(struct page *page, 2586 struct sk_buff *skb) 2587 { 2588 if (page_is_pfmemalloc(page)) 2589 skb->pfmemalloc = true; 2590 } 2591 2592 /** 2593 * skb_frag_page - retrieve the page referred to by a paged fragment 2594 * @frag: the paged fragment 2595 * 2596 * Returns the &struct page associated with @frag. 2597 */ 2598 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2599 { 2600 return frag->page.p; 2601 } 2602 2603 /** 2604 * __skb_frag_ref - take an addition reference on a paged fragment. 2605 * @frag: the paged fragment 2606 * 2607 * Takes an additional reference on the paged fragment @frag. 2608 */ 2609 static inline void __skb_frag_ref(skb_frag_t *frag) 2610 { 2611 get_page(skb_frag_page(frag)); 2612 } 2613 2614 /** 2615 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2616 * @skb: the buffer 2617 * @f: the fragment offset. 2618 * 2619 * Takes an additional reference on the @f'th paged fragment of @skb. 2620 */ 2621 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2622 { 2623 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2624 } 2625 2626 /** 2627 * __skb_frag_unref - release a reference on a paged fragment. 2628 * @frag: the paged fragment 2629 * 2630 * Releases a reference on the paged fragment @frag. 2631 */ 2632 static inline void __skb_frag_unref(skb_frag_t *frag) 2633 { 2634 put_page(skb_frag_page(frag)); 2635 } 2636 2637 /** 2638 * skb_frag_unref - release a reference on a paged fragment of an skb. 2639 * @skb: the buffer 2640 * @f: the fragment offset 2641 * 2642 * Releases a reference on the @f'th paged fragment of @skb. 2643 */ 2644 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2645 { 2646 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2647 } 2648 2649 /** 2650 * skb_frag_address - gets the address of the data contained in a paged fragment 2651 * @frag: the paged fragment buffer 2652 * 2653 * Returns the address of the data within @frag. The page must already 2654 * be mapped. 2655 */ 2656 static inline void *skb_frag_address(const skb_frag_t *frag) 2657 { 2658 return page_address(skb_frag_page(frag)) + frag->page_offset; 2659 } 2660 2661 /** 2662 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2663 * @frag: the paged fragment buffer 2664 * 2665 * Returns the address of the data within @frag. Checks that the page 2666 * is mapped and returns %NULL otherwise. 2667 */ 2668 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2669 { 2670 void *ptr = page_address(skb_frag_page(frag)); 2671 if (unlikely(!ptr)) 2672 return NULL; 2673 2674 return ptr + frag->page_offset; 2675 } 2676 2677 /** 2678 * __skb_frag_set_page - sets the page contained in a paged fragment 2679 * @frag: the paged fragment 2680 * @page: the page to set 2681 * 2682 * Sets the fragment @frag to contain @page. 2683 */ 2684 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2685 { 2686 frag->page.p = page; 2687 } 2688 2689 /** 2690 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2691 * @skb: the buffer 2692 * @f: the fragment offset 2693 * @page: the page to set 2694 * 2695 * Sets the @f'th fragment of @skb to contain @page. 2696 */ 2697 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2698 struct page *page) 2699 { 2700 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2701 } 2702 2703 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2704 2705 /** 2706 * skb_frag_dma_map - maps a paged fragment via the DMA API 2707 * @dev: the device to map the fragment to 2708 * @frag: the paged fragment to map 2709 * @offset: the offset within the fragment (starting at the 2710 * fragment's own offset) 2711 * @size: the number of bytes to map 2712 * @dir: the direction of the mapping (``PCI_DMA_*``) 2713 * 2714 * Maps the page associated with @frag to @device. 2715 */ 2716 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2717 const skb_frag_t *frag, 2718 size_t offset, size_t size, 2719 enum dma_data_direction dir) 2720 { 2721 return dma_map_page(dev, skb_frag_page(frag), 2722 frag->page_offset + offset, size, dir); 2723 } 2724 2725 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2726 gfp_t gfp_mask) 2727 { 2728 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2729 } 2730 2731 2732 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2733 gfp_t gfp_mask) 2734 { 2735 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2736 } 2737 2738 2739 /** 2740 * skb_clone_writable - is the header of a clone writable 2741 * @skb: buffer to check 2742 * @len: length up to which to write 2743 * 2744 * Returns true if modifying the header part of the cloned buffer 2745 * does not requires the data to be copied. 2746 */ 2747 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2748 { 2749 return !skb_header_cloned(skb) && 2750 skb_headroom(skb) + len <= skb->hdr_len; 2751 } 2752 2753 static inline int skb_try_make_writable(struct sk_buff *skb, 2754 unsigned int write_len) 2755 { 2756 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2757 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2758 } 2759 2760 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2761 int cloned) 2762 { 2763 int delta = 0; 2764 2765 if (headroom > skb_headroom(skb)) 2766 delta = headroom - skb_headroom(skb); 2767 2768 if (delta || cloned) 2769 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2770 GFP_ATOMIC); 2771 return 0; 2772 } 2773 2774 /** 2775 * skb_cow - copy header of skb when it is required 2776 * @skb: buffer to cow 2777 * @headroom: needed headroom 2778 * 2779 * If the skb passed lacks sufficient headroom or its data part 2780 * is shared, data is reallocated. If reallocation fails, an error 2781 * is returned and original skb is not changed. 2782 * 2783 * The result is skb with writable area skb->head...skb->tail 2784 * and at least @headroom of space at head. 2785 */ 2786 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2787 { 2788 return __skb_cow(skb, headroom, skb_cloned(skb)); 2789 } 2790 2791 /** 2792 * skb_cow_head - skb_cow but only making the head writable 2793 * @skb: buffer to cow 2794 * @headroom: needed headroom 2795 * 2796 * This function is identical to skb_cow except that we replace the 2797 * skb_cloned check by skb_header_cloned. It should be used when 2798 * you only need to push on some header and do not need to modify 2799 * the data. 2800 */ 2801 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2802 { 2803 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2804 } 2805 2806 /** 2807 * skb_padto - pad an skbuff up to a minimal size 2808 * @skb: buffer to pad 2809 * @len: minimal length 2810 * 2811 * Pads up a buffer to ensure the trailing bytes exist and are 2812 * blanked. If the buffer already contains sufficient data it 2813 * is untouched. Otherwise it is extended. Returns zero on 2814 * success. The skb is freed on error. 2815 */ 2816 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2817 { 2818 unsigned int size = skb->len; 2819 if (likely(size >= len)) 2820 return 0; 2821 return skb_pad(skb, len - size); 2822 } 2823 2824 /** 2825 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2826 * @skb: buffer to pad 2827 * @len: minimal length 2828 * 2829 * Pads up a buffer to ensure the trailing bytes exist and are 2830 * blanked. If the buffer already contains sufficient data it 2831 * is untouched. Otherwise it is extended. Returns zero on 2832 * success. The skb is freed on error. 2833 */ 2834 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2835 { 2836 unsigned int size = skb->len; 2837 2838 if (unlikely(size < len)) { 2839 len -= size; 2840 if (skb_pad(skb, len)) 2841 return -ENOMEM; 2842 __skb_put(skb, len); 2843 } 2844 return 0; 2845 } 2846 2847 static inline int skb_add_data(struct sk_buff *skb, 2848 struct iov_iter *from, int copy) 2849 { 2850 const int off = skb->len; 2851 2852 if (skb->ip_summed == CHECKSUM_NONE) { 2853 __wsum csum = 0; 2854 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 2855 &csum, from)) { 2856 skb->csum = csum_block_add(skb->csum, csum, off); 2857 return 0; 2858 } 2859 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 2860 return 0; 2861 2862 __skb_trim(skb, off); 2863 return -EFAULT; 2864 } 2865 2866 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2867 const struct page *page, int off) 2868 { 2869 if (i) { 2870 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2871 2872 return page == skb_frag_page(frag) && 2873 off == frag->page_offset + skb_frag_size(frag); 2874 } 2875 return false; 2876 } 2877 2878 static inline int __skb_linearize(struct sk_buff *skb) 2879 { 2880 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2881 } 2882 2883 /** 2884 * skb_linearize - convert paged skb to linear one 2885 * @skb: buffer to linarize 2886 * 2887 * If there is no free memory -ENOMEM is returned, otherwise zero 2888 * is returned and the old skb data released. 2889 */ 2890 static inline int skb_linearize(struct sk_buff *skb) 2891 { 2892 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2893 } 2894 2895 /** 2896 * skb_has_shared_frag - can any frag be overwritten 2897 * @skb: buffer to test 2898 * 2899 * Return true if the skb has at least one frag that might be modified 2900 * by an external entity (as in vmsplice()/sendfile()) 2901 */ 2902 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2903 { 2904 return skb_is_nonlinear(skb) && 2905 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2906 } 2907 2908 /** 2909 * skb_linearize_cow - make sure skb is linear and writable 2910 * @skb: buffer to process 2911 * 2912 * If there is no free memory -ENOMEM is returned, otherwise zero 2913 * is returned and the old skb data released. 2914 */ 2915 static inline int skb_linearize_cow(struct sk_buff *skb) 2916 { 2917 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2918 __skb_linearize(skb) : 0; 2919 } 2920 2921 static __always_inline void 2922 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2923 unsigned int off) 2924 { 2925 if (skb->ip_summed == CHECKSUM_COMPLETE) 2926 skb->csum = csum_block_sub(skb->csum, 2927 csum_partial(start, len, 0), off); 2928 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2929 skb_checksum_start_offset(skb) < 0) 2930 skb->ip_summed = CHECKSUM_NONE; 2931 } 2932 2933 /** 2934 * skb_postpull_rcsum - update checksum for received skb after pull 2935 * @skb: buffer to update 2936 * @start: start of data before pull 2937 * @len: length of data pulled 2938 * 2939 * After doing a pull on a received packet, you need to call this to 2940 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2941 * CHECKSUM_NONE so that it can be recomputed from scratch. 2942 */ 2943 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2944 const void *start, unsigned int len) 2945 { 2946 __skb_postpull_rcsum(skb, start, len, 0); 2947 } 2948 2949 static __always_inline void 2950 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2951 unsigned int off) 2952 { 2953 if (skb->ip_summed == CHECKSUM_COMPLETE) 2954 skb->csum = csum_block_add(skb->csum, 2955 csum_partial(start, len, 0), off); 2956 } 2957 2958 /** 2959 * skb_postpush_rcsum - update checksum for received skb after push 2960 * @skb: buffer to update 2961 * @start: start of data after push 2962 * @len: length of data pushed 2963 * 2964 * After doing a push on a received packet, you need to call this to 2965 * update the CHECKSUM_COMPLETE checksum. 2966 */ 2967 static inline void skb_postpush_rcsum(struct sk_buff *skb, 2968 const void *start, unsigned int len) 2969 { 2970 __skb_postpush_rcsum(skb, start, len, 0); 2971 } 2972 2973 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2974 2975 /** 2976 * skb_push_rcsum - push skb and update receive checksum 2977 * @skb: buffer to update 2978 * @len: length of data pulled 2979 * 2980 * This function performs an skb_push on the packet and updates 2981 * the CHECKSUM_COMPLETE checksum. It should be used on 2982 * receive path processing instead of skb_push unless you know 2983 * that the checksum difference is zero (e.g., a valid IP header) 2984 * or you are setting ip_summed to CHECKSUM_NONE. 2985 */ 2986 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 2987 { 2988 skb_push(skb, len); 2989 skb_postpush_rcsum(skb, skb->data, len); 2990 return skb->data; 2991 } 2992 2993 /** 2994 * pskb_trim_rcsum - trim received skb and update checksum 2995 * @skb: buffer to trim 2996 * @len: new length 2997 * 2998 * This is exactly the same as pskb_trim except that it ensures the 2999 * checksum of received packets are still valid after the operation. 3000 */ 3001 3002 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3003 { 3004 if (likely(len >= skb->len)) 3005 return 0; 3006 if (skb->ip_summed == CHECKSUM_COMPLETE) 3007 skb->ip_summed = CHECKSUM_NONE; 3008 return __pskb_trim(skb, len); 3009 } 3010 3011 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3012 { 3013 if (skb->ip_summed == CHECKSUM_COMPLETE) 3014 skb->ip_summed = CHECKSUM_NONE; 3015 __skb_trim(skb, len); 3016 return 0; 3017 } 3018 3019 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3020 { 3021 if (skb->ip_summed == CHECKSUM_COMPLETE) 3022 skb->ip_summed = CHECKSUM_NONE; 3023 return __skb_grow(skb, len); 3024 } 3025 3026 #define skb_queue_walk(queue, skb) \ 3027 for (skb = (queue)->next; \ 3028 skb != (struct sk_buff *)(queue); \ 3029 skb = skb->next) 3030 3031 #define skb_queue_walk_safe(queue, skb, tmp) \ 3032 for (skb = (queue)->next, tmp = skb->next; \ 3033 skb != (struct sk_buff *)(queue); \ 3034 skb = tmp, tmp = skb->next) 3035 3036 #define skb_queue_walk_from(queue, skb) \ 3037 for (; skb != (struct sk_buff *)(queue); \ 3038 skb = skb->next) 3039 3040 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3041 for (tmp = skb->next; \ 3042 skb != (struct sk_buff *)(queue); \ 3043 skb = tmp, tmp = skb->next) 3044 3045 #define skb_queue_reverse_walk(queue, skb) \ 3046 for (skb = (queue)->prev; \ 3047 skb != (struct sk_buff *)(queue); \ 3048 skb = skb->prev) 3049 3050 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3051 for (skb = (queue)->prev, tmp = skb->prev; \ 3052 skb != (struct sk_buff *)(queue); \ 3053 skb = tmp, tmp = skb->prev) 3054 3055 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3056 for (tmp = skb->prev; \ 3057 skb != (struct sk_buff *)(queue); \ 3058 skb = tmp, tmp = skb->prev) 3059 3060 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3061 { 3062 return skb_shinfo(skb)->frag_list != NULL; 3063 } 3064 3065 static inline void skb_frag_list_init(struct sk_buff *skb) 3066 { 3067 skb_shinfo(skb)->frag_list = NULL; 3068 } 3069 3070 #define skb_walk_frags(skb, iter) \ 3071 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3072 3073 3074 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3075 const struct sk_buff *skb); 3076 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3077 struct sk_buff_head *queue, 3078 unsigned int flags, 3079 void (*destructor)(struct sock *sk, 3080 struct sk_buff *skb), 3081 int *peeked, int *off, int *err, 3082 struct sk_buff **last); 3083 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3084 void (*destructor)(struct sock *sk, 3085 struct sk_buff *skb), 3086 int *peeked, int *off, int *err, 3087 struct sk_buff **last); 3088 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3089 void (*destructor)(struct sock *sk, 3090 struct sk_buff *skb), 3091 int *peeked, int *off, int *err); 3092 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3093 int *err); 3094 unsigned int datagram_poll(struct file *file, struct socket *sock, 3095 struct poll_table_struct *wait); 3096 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3097 struct iov_iter *to, int size); 3098 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3099 struct msghdr *msg, int size) 3100 { 3101 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3102 } 3103 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3104 struct msghdr *msg); 3105 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3106 struct iov_iter *from, int len); 3107 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3108 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3109 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3110 static inline void skb_free_datagram_locked(struct sock *sk, 3111 struct sk_buff *skb) 3112 { 3113 __skb_free_datagram_locked(sk, skb, 0); 3114 } 3115 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3116 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3117 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3118 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3119 int len, __wsum csum); 3120 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3121 struct pipe_inode_info *pipe, unsigned int len, 3122 unsigned int flags); 3123 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3124 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3125 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3126 int len, int hlen); 3127 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3128 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3129 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3130 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3131 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3132 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3133 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3134 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3135 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3136 int skb_vlan_pop(struct sk_buff *skb); 3137 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3138 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3139 gfp_t gfp); 3140 3141 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3142 { 3143 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3144 } 3145 3146 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3147 { 3148 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3149 } 3150 3151 struct skb_checksum_ops { 3152 __wsum (*update)(const void *mem, int len, __wsum wsum); 3153 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3154 }; 3155 3156 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3157 3158 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3159 __wsum csum, const struct skb_checksum_ops *ops); 3160 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3161 __wsum csum); 3162 3163 static inline void * __must_check 3164 __skb_header_pointer(const struct sk_buff *skb, int offset, 3165 int len, void *data, int hlen, void *buffer) 3166 { 3167 if (hlen - offset >= len) 3168 return data + offset; 3169 3170 if (!skb || 3171 skb_copy_bits(skb, offset, buffer, len) < 0) 3172 return NULL; 3173 3174 return buffer; 3175 } 3176 3177 static inline void * __must_check 3178 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3179 { 3180 return __skb_header_pointer(skb, offset, len, skb->data, 3181 skb_headlen(skb), buffer); 3182 } 3183 3184 /** 3185 * skb_needs_linearize - check if we need to linearize a given skb 3186 * depending on the given device features. 3187 * @skb: socket buffer to check 3188 * @features: net device features 3189 * 3190 * Returns true if either: 3191 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3192 * 2. skb is fragmented and the device does not support SG. 3193 */ 3194 static inline bool skb_needs_linearize(struct sk_buff *skb, 3195 netdev_features_t features) 3196 { 3197 return skb_is_nonlinear(skb) && 3198 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3199 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3200 } 3201 3202 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3203 void *to, 3204 const unsigned int len) 3205 { 3206 memcpy(to, skb->data, len); 3207 } 3208 3209 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3210 const int offset, void *to, 3211 const unsigned int len) 3212 { 3213 memcpy(to, skb->data + offset, len); 3214 } 3215 3216 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3217 const void *from, 3218 const unsigned int len) 3219 { 3220 memcpy(skb->data, from, len); 3221 } 3222 3223 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3224 const int offset, 3225 const void *from, 3226 const unsigned int len) 3227 { 3228 memcpy(skb->data + offset, from, len); 3229 } 3230 3231 void skb_init(void); 3232 3233 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3234 { 3235 return skb->tstamp; 3236 } 3237 3238 /** 3239 * skb_get_timestamp - get timestamp from a skb 3240 * @skb: skb to get stamp from 3241 * @stamp: pointer to struct timeval to store stamp in 3242 * 3243 * Timestamps are stored in the skb as offsets to a base timestamp. 3244 * This function converts the offset back to a struct timeval and stores 3245 * it in stamp. 3246 */ 3247 static inline void skb_get_timestamp(const struct sk_buff *skb, 3248 struct timeval *stamp) 3249 { 3250 *stamp = ktime_to_timeval(skb->tstamp); 3251 } 3252 3253 static inline void skb_get_timestampns(const struct sk_buff *skb, 3254 struct timespec *stamp) 3255 { 3256 *stamp = ktime_to_timespec(skb->tstamp); 3257 } 3258 3259 static inline void __net_timestamp(struct sk_buff *skb) 3260 { 3261 skb->tstamp = ktime_get_real(); 3262 } 3263 3264 static inline ktime_t net_timedelta(ktime_t t) 3265 { 3266 return ktime_sub(ktime_get_real(), t); 3267 } 3268 3269 static inline ktime_t net_invalid_timestamp(void) 3270 { 3271 return 0; 3272 } 3273 3274 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3275 3276 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3277 3278 void skb_clone_tx_timestamp(struct sk_buff *skb); 3279 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3280 3281 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3282 3283 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3284 { 3285 } 3286 3287 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3288 { 3289 return false; 3290 } 3291 3292 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3293 3294 /** 3295 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3296 * 3297 * PHY drivers may accept clones of transmitted packets for 3298 * timestamping via their phy_driver.txtstamp method. These drivers 3299 * must call this function to return the skb back to the stack with a 3300 * timestamp. 3301 * 3302 * @skb: clone of the the original outgoing packet 3303 * @hwtstamps: hardware time stamps 3304 * 3305 */ 3306 void skb_complete_tx_timestamp(struct sk_buff *skb, 3307 struct skb_shared_hwtstamps *hwtstamps); 3308 3309 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3310 struct skb_shared_hwtstamps *hwtstamps, 3311 struct sock *sk, int tstype); 3312 3313 /** 3314 * skb_tstamp_tx - queue clone of skb with send time stamps 3315 * @orig_skb: the original outgoing packet 3316 * @hwtstamps: hardware time stamps, may be NULL if not available 3317 * 3318 * If the skb has a socket associated, then this function clones the 3319 * skb (thus sharing the actual data and optional structures), stores 3320 * the optional hardware time stamping information (if non NULL) or 3321 * generates a software time stamp (otherwise), then queues the clone 3322 * to the error queue of the socket. Errors are silently ignored. 3323 */ 3324 void skb_tstamp_tx(struct sk_buff *orig_skb, 3325 struct skb_shared_hwtstamps *hwtstamps); 3326 3327 /** 3328 * skb_tx_timestamp() - Driver hook for transmit timestamping 3329 * 3330 * Ethernet MAC Drivers should call this function in their hard_xmit() 3331 * function immediately before giving the sk_buff to the MAC hardware. 3332 * 3333 * Specifically, one should make absolutely sure that this function is 3334 * called before TX completion of this packet can trigger. Otherwise 3335 * the packet could potentially already be freed. 3336 * 3337 * @skb: A socket buffer. 3338 */ 3339 static inline void skb_tx_timestamp(struct sk_buff *skb) 3340 { 3341 skb_clone_tx_timestamp(skb); 3342 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3343 skb_tstamp_tx(skb, NULL); 3344 } 3345 3346 /** 3347 * skb_complete_wifi_ack - deliver skb with wifi status 3348 * 3349 * @skb: the original outgoing packet 3350 * @acked: ack status 3351 * 3352 */ 3353 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3354 3355 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3356 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3357 3358 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3359 { 3360 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3361 skb->csum_valid || 3362 (skb->ip_summed == CHECKSUM_PARTIAL && 3363 skb_checksum_start_offset(skb) >= 0)); 3364 } 3365 3366 /** 3367 * skb_checksum_complete - Calculate checksum of an entire packet 3368 * @skb: packet to process 3369 * 3370 * This function calculates the checksum over the entire packet plus 3371 * the value of skb->csum. The latter can be used to supply the 3372 * checksum of a pseudo header as used by TCP/UDP. It returns the 3373 * checksum. 3374 * 3375 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3376 * this function can be used to verify that checksum on received 3377 * packets. In that case the function should return zero if the 3378 * checksum is correct. In particular, this function will return zero 3379 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3380 * hardware has already verified the correctness of the checksum. 3381 */ 3382 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3383 { 3384 return skb_csum_unnecessary(skb) ? 3385 0 : __skb_checksum_complete(skb); 3386 } 3387 3388 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3389 { 3390 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3391 if (skb->csum_level == 0) 3392 skb->ip_summed = CHECKSUM_NONE; 3393 else 3394 skb->csum_level--; 3395 } 3396 } 3397 3398 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3399 { 3400 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3401 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3402 skb->csum_level++; 3403 } else if (skb->ip_summed == CHECKSUM_NONE) { 3404 skb->ip_summed = CHECKSUM_UNNECESSARY; 3405 skb->csum_level = 0; 3406 } 3407 } 3408 3409 /* Check if we need to perform checksum complete validation. 3410 * 3411 * Returns true if checksum complete is needed, false otherwise 3412 * (either checksum is unnecessary or zero checksum is allowed). 3413 */ 3414 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3415 bool zero_okay, 3416 __sum16 check) 3417 { 3418 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3419 skb->csum_valid = 1; 3420 __skb_decr_checksum_unnecessary(skb); 3421 return false; 3422 } 3423 3424 return true; 3425 } 3426 3427 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3428 * in checksum_init. 3429 */ 3430 #define CHECKSUM_BREAK 76 3431 3432 /* Unset checksum-complete 3433 * 3434 * Unset checksum complete can be done when packet is being modified 3435 * (uncompressed for instance) and checksum-complete value is 3436 * invalidated. 3437 */ 3438 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3439 { 3440 if (skb->ip_summed == CHECKSUM_COMPLETE) 3441 skb->ip_summed = CHECKSUM_NONE; 3442 } 3443 3444 /* Validate (init) checksum based on checksum complete. 3445 * 3446 * Return values: 3447 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3448 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3449 * checksum is stored in skb->csum for use in __skb_checksum_complete 3450 * non-zero: value of invalid checksum 3451 * 3452 */ 3453 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3454 bool complete, 3455 __wsum psum) 3456 { 3457 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3458 if (!csum_fold(csum_add(psum, skb->csum))) { 3459 skb->csum_valid = 1; 3460 return 0; 3461 } 3462 } 3463 3464 skb->csum = psum; 3465 3466 if (complete || skb->len <= CHECKSUM_BREAK) { 3467 __sum16 csum; 3468 3469 csum = __skb_checksum_complete(skb); 3470 skb->csum_valid = !csum; 3471 return csum; 3472 } 3473 3474 return 0; 3475 } 3476 3477 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3478 { 3479 return 0; 3480 } 3481 3482 /* Perform checksum validate (init). Note that this is a macro since we only 3483 * want to calculate the pseudo header which is an input function if necessary. 3484 * First we try to validate without any computation (checksum unnecessary) and 3485 * then calculate based on checksum complete calling the function to compute 3486 * pseudo header. 3487 * 3488 * Return values: 3489 * 0: checksum is validated or try to in skb_checksum_complete 3490 * non-zero: value of invalid checksum 3491 */ 3492 #define __skb_checksum_validate(skb, proto, complete, \ 3493 zero_okay, check, compute_pseudo) \ 3494 ({ \ 3495 __sum16 __ret = 0; \ 3496 skb->csum_valid = 0; \ 3497 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3498 __ret = __skb_checksum_validate_complete(skb, \ 3499 complete, compute_pseudo(skb, proto)); \ 3500 __ret; \ 3501 }) 3502 3503 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3504 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3505 3506 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3507 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3508 3509 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3510 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3511 3512 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3513 compute_pseudo) \ 3514 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3515 3516 #define skb_checksum_simple_validate(skb) \ 3517 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3518 3519 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3520 { 3521 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3522 } 3523 3524 static inline void __skb_checksum_convert(struct sk_buff *skb, 3525 __sum16 check, __wsum pseudo) 3526 { 3527 skb->csum = ~pseudo; 3528 skb->ip_summed = CHECKSUM_COMPLETE; 3529 } 3530 3531 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3532 do { \ 3533 if (__skb_checksum_convert_check(skb)) \ 3534 __skb_checksum_convert(skb, check, \ 3535 compute_pseudo(skb, proto)); \ 3536 } while (0) 3537 3538 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3539 u16 start, u16 offset) 3540 { 3541 skb->ip_summed = CHECKSUM_PARTIAL; 3542 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3543 skb->csum_offset = offset - start; 3544 } 3545 3546 /* Update skbuf and packet to reflect the remote checksum offload operation. 3547 * When called, ptr indicates the starting point for skb->csum when 3548 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3549 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3550 */ 3551 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3552 int start, int offset, bool nopartial) 3553 { 3554 __wsum delta; 3555 3556 if (!nopartial) { 3557 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3558 return; 3559 } 3560 3561 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3562 __skb_checksum_complete(skb); 3563 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3564 } 3565 3566 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3567 3568 /* Adjust skb->csum since we changed the packet */ 3569 skb->csum = csum_add(skb->csum, delta); 3570 } 3571 3572 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3573 { 3574 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3575 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3576 #else 3577 return NULL; 3578 #endif 3579 } 3580 3581 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3582 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3583 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3584 { 3585 if (nfct && atomic_dec_and_test(&nfct->use)) 3586 nf_conntrack_destroy(nfct); 3587 } 3588 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3589 { 3590 if (nfct) 3591 atomic_inc(&nfct->use); 3592 } 3593 #endif 3594 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3595 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3596 { 3597 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3598 kfree(nf_bridge); 3599 } 3600 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3601 { 3602 if (nf_bridge) 3603 refcount_inc(&nf_bridge->use); 3604 } 3605 #endif /* CONFIG_BRIDGE_NETFILTER */ 3606 static inline void nf_reset(struct sk_buff *skb) 3607 { 3608 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3609 nf_conntrack_put(skb_nfct(skb)); 3610 skb->_nfct = 0; 3611 #endif 3612 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3613 nf_bridge_put(skb->nf_bridge); 3614 skb->nf_bridge = NULL; 3615 #endif 3616 } 3617 3618 static inline void nf_reset_trace(struct sk_buff *skb) 3619 { 3620 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3621 skb->nf_trace = 0; 3622 #endif 3623 } 3624 3625 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3626 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3627 bool copy) 3628 { 3629 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3630 dst->_nfct = src->_nfct; 3631 nf_conntrack_get(skb_nfct(src)); 3632 #endif 3633 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3634 dst->nf_bridge = src->nf_bridge; 3635 nf_bridge_get(src->nf_bridge); 3636 #endif 3637 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3638 if (copy) 3639 dst->nf_trace = src->nf_trace; 3640 #endif 3641 } 3642 3643 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3644 { 3645 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3646 nf_conntrack_put(skb_nfct(dst)); 3647 #endif 3648 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3649 nf_bridge_put(dst->nf_bridge); 3650 #endif 3651 __nf_copy(dst, src, true); 3652 } 3653 3654 #ifdef CONFIG_NETWORK_SECMARK 3655 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3656 { 3657 to->secmark = from->secmark; 3658 } 3659 3660 static inline void skb_init_secmark(struct sk_buff *skb) 3661 { 3662 skb->secmark = 0; 3663 } 3664 #else 3665 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3666 { } 3667 3668 static inline void skb_init_secmark(struct sk_buff *skb) 3669 { } 3670 #endif 3671 3672 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3673 { 3674 return !skb->destructor && 3675 #if IS_ENABLED(CONFIG_XFRM) 3676 !skb->sp && 3677 #endif 3678 !skb_nfct(skb) && 3679 !skb->_skb_refdst && 3680 !skb_has_frag_list(skb); 3681 } 3682 3683 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3684 { 3685 skb->queue_mapping = queue_mapping; 3686 } 3687 3688 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3689 { 3690 return skb->queue_mapping; 3691 } 3692 3693 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3694 { 3695 to->queue_mapping = from->queue_mapping; 3696 } 3697 3698 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3699 { 3700 skb->queue_mapping = rx_queue + 1; 3701 } 3702 3703 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3704 { 3705 return skb->queue_mapping - 1; 3706 } 3707 3708 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3709 { 3710 return skb->queue_mapping != 0; 3711 } 3712 3713 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 3714 { 3715 skb->dst_pending_confirm = val; 3716 } 3717 3718 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 3719 { 3720 return skb->dst_pending_confirm != 0; 3721 } 3722 3723 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3724 { 3725 #ifdef CONFIG_XFRM 3726 return skb->sp; 3727 #else 3728 return NULL; 3729 #endif 3730 } 3731 3732 /* Keeps track of mac header offset relative to skb->head. 3733 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3734 * For non-tunnel skb it points to skb_mac_header() and for 3735 * tunnel skb it points to outer mac header. 3736 * Keeps track of level of encapsulation of network headers. 3737 */ 3738 struct skb_gso_cb { 3739 union { 3740 int mac_offset; 3741 int data_offset; 3742 }; 3743 int encap_level; 3744 __wsum csum; 3745 __u16 csum_start; 3746 }; 3747 #define SKB_SGO_CB_OFFSET 32 3748 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3749 3750 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3751 { 3752 return (skb_mac_header(inner_skb) - inner_skb->head) - 3753 SKB_GSO_CB(inner_skb)->mac_offset; 3754 } 3755 3756 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3757 { 3758 int new_headroom, headroom; 3759 int ret; 3760 3761 headroom = skb_headroom(skb); 3762 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3763 if (ret) 3764 return ret; 3765 3766 new_headroom = skb_headroom(skb); 3767 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3768 return 0; 3769 } 3770 3771 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3772 { 3773 /* Do not update partial checksums if remote checksum is enabled. */ 3774 if (skb->remcsum_offload) 3775 return; 3776 3777 SKB_GSO_CB(skb)->csum = res; 3778 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3779 } 3780 3781 /* Compute the checksum for a gso segment. First compute the checksum value 3782 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3783 * then add in skb->csum (checksum from csum_start to end of packet). 3784 * skb->csum and csum_start are then updated to reflect the checksum of the 3785 * resultant packet starting from the transport header-- the resultant checksum 3786 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3787 * header. 3788 */ 3789 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3790 { 3791 unsigned char *csum_start = skb_transport_header(skb); 3792 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3793 __wsum partial = SKB_GSO_CB(skb)->csum; 3794 3795 SKB_GSO_CB(skb)->csum = res; 3796 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3797 3798 return csum_fold(csum_partial(csum_start, plen, partial)); 3799 } 3800 3801 static inline bool skb_is_gso(const struct sk_buff *skb) 3802 { 3803 return skb_shinfo(skb)->gso_size; 3804 } 3805 3806 /* Note: Should be called only if skb_is_gso(skb) is true */ 3807 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3808 { 3809 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3810 } 3811 3812 static inline void skb_gso_reset(struct sk_buff *skb) 3813 { 3814 skb_shinfo(skb)->gso_size = 0; 3815 skb_shinfo(skb)->gso_segs = 0; 3816 skb_shinfo(skb)->gso_type = 0; 3817 } 3818 3819 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3820 3821 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3822 { 3823 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3824 * wanted then gso_type will be set. */ 3825 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3826 3827 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3828 unlikely(shinfo->gso_type == 0)) { 3829 __skb_warn_lro_forwarding(skb); 3830 return true; 3831 } 3832 return false; 3833 } 3834 3835 static inline void skb_forward_csum(struct sk_buff *skb) 3836 { 3837 /* Unfortunately we don't support this one. Any brave souls? */ 3838 if (skb->ip_summed == CHECKSUM_COMPLETE) 3839 skb->ip_summed = CHECKSUM_NONE; 3840 } 3841 3842 /** 3843 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3844 * @skb: skb to check 3845 * 3846 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3847 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3848 * use this helper, to document places where we make this assertion. 3849 */ 3850 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3851 { 3852 #ifdef DEBUG 3853 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3854 #endif 3855 } 3856 3857 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3858 3859 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3860 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3861 unsigned int transport_len, 3862 __sum16(*skb_chkf)(struct sk_buff *skb)); 3863 3864 /** 3865 * skb_head_is_locked - Determine if the skb->head is locked down 3866 * @skb: skb to check 3867 * 3868 * The head on skbs build around a head frag can be removed if they are 3869 * not cloned. This function returns true if the skb head is locked down 3870 * due to either being allocated via kmalloc, or by being a clone with 3871 * multiple references to the head. 3872 */ 3873 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3874 { 3875 return !skb->head_frag || skb_cloned(skb); 3876 } 3877 3878 /** 3879 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3880 * 3881 * @skb: GSO skb 3882 * 3883 * skb_gso_network_seglen is used to determine the real size of the 3884 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3885 * 3886 * The MAC/L2 header is not accounted for. 3887 */ 3888 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3889 { 3890 unsigned int hdr_len = skb_transport_header(skb) - 3891 skb_network_header(skb); 3892 return hdr_len + skb_gso_transport_seglen(skb); 3893 } 3894 3895 /* Local Checksum Offload. 3896 * Compute outer checksum based on the assumption that the 3897 * inner checksum will be offloaded later. 3898 * See Documentation/networking/checksum-offloads.txt for 3899 * explanation of how this works. 3900 * Fill in outer checksum adjustment (e.g. with sum of outer 3901 * pseudo-header) before calling. 3902 * Also ensure that inner checksum is in linear data area. 3903 */ 3904 static inline __wsum lco_csum(struct sk_buff *skb) 3905 { 3906 unsigned char *csum_start = skb_checksum_start(skb); 3907 unsigned char *l4_hdr = skb_transport_header(skb); 3908 __wsum partial; 3909 3910 /* Start with complement of inner checksum adjustment */ 3911 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3912 skb->csum_offset)); 3913 3914 /* Add in checksum of our headers (incl. outer checksum 3915 * adjustment filled in by caller) and return result. 3916 */ 3917 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3918 } 3919 3920 #endif /* __KERNEL__ */ 3921 #endif /* _LINUX_SKBUFF_H */ 3922