1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list */ 126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128 typedef struct skb_frag_struct skb_frag_t; 129 130 struct skb_frag_struct { 131 struct page *page; 132 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 133 __u32 page_offset; 134 __u32 size; 135 #else 136 __u16 page_offset; 137 __u16 size; 138 #endif 139 }; 140 141 #define HAVE_HW_TIME_STAMP 142 143 /** 144 * struct skb_shared_hwtstamps - hardware time stamps 145 * @hwtstamp: hardware time stamp transformed into duration 146 * since arbitrary point in time 147 * @syststamp: hwtstamp transformed to system time base 148 * 149 * Software time stamps generated by ktime_get_real() are stored in 150 * skb->tstamp. The relation between the different kinds of time 151 * stamps is as follows: 152 * 153 * syststamp and tstamp can be compared against each other in 154 * arbitrary combinations. The accuracy of a 155 * syststamp/tstamp/"syststamp from other device" comparison is 156 * limited by the accuracy of the transformation into system time 157 * base. This depends on the device driver and its underlying 158 * hardware. 159 * 160 * hwtstamps can only be compared against other hwtstamps from 161 * the same device. 162 * 163 * This structure is attached to packets as part of the 164 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 165 */ 166 struct skb_shared_hwtstamps { 167 ktime_t hwtstamp; 168 ktime_t syststamp; 169 }; 170 171 /* Definitions for tx_flags in struct skb_shared_info */ 172 enum { 173 /* generate hardware time stamp */ 174 SKBTX_HW_TSTAMP = 1 << 0, 175 176 /* generate software time stamp */ 177 SKBTX_SW_TSTAMP = 1 << 1, 178 179 /* device driver is going to provide hardware time stamp */ 180 SKBTX_IN_PROGRESS = 1 << 2, 181 182 /* ensure the originating sk reference is available on driver level */ 183 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 184 }; 185 186 /* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189 struct skb_shared_info { 190 unsigned short nr_frags; 191 unsigned short gso_size; 192 /* Warning: this field is not always filled in (UFO)! */ 193 unsigned short gso_segs; 194 unsigned short gso_type; 195 __be32 ip6_frag_id; 196 __u8 tx_flags; 197 struct sk_buff *frag_list; 198 struct skb_shared_hwtstamps hwtstamps; 199 200 /* 201 * Warning : all fields before dataref are cleared in __alloc_skb() 202 */ 203 atomic_t dataref; 204 205 /* Intermediate layers must ensure that destructor_arg 206 * remains valid until skb destructor */ 207 void * destructor_arg; 208 /* must be last field, see pskb_expand_head() */ 209 skb_frag_t frags[MAX_SKB_FRAGS]; 210 }; 211 212 /* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223 #define SKB_DATAREF_SHIFT 16 224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227 enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231 }; 232 233 enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246 }; 247 248 #if BITS_PER_LONG > 32 249 #define NET_SKBUFF_DATA_USES_OFFSET 1 250 #endif 251 252 #ifdef NET_SKBUFF_DATA_USES_OFFSET 253 typedef unsigned int sk_buff_data_t; 254 #else 255 typedef unsigned char *sk_buff_data_t; 256 #endif 257 258 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 259 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 260 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 261 #endif 262 263 /** 264 * struct sk_buff - socket buffer 265 * @next: Next buffer in list 266 * @prev: Previous buffer in list 267 * @sk: Socket we are owned by 268 * @tstamp: Time we arrived 269 * @dev: Device we arrived on/are leaving by 270 * @transport_header: Transport layer header 271 * @network_header: Network layer header 272 * @mac_header: Link layer header 273 * @_skb_refdst: destination entry (with norefcount bit) 274 * @sp: the security path, used for xfrm 275 * @cb: Control buffer. Free for use by every layer. Put private vars here 276 * @len: Length of actual data 277 * @data_len: Data length 278 * @mac_len: Length of link layer header 279 * @hdr_len: writable header length of cloned skb 280 * @csum: Checksum (must include start/offset pair) 281 * @csum_start: Offset from skb->head where checksumming should start 282 * @csum_offset: Offset from csum_start where checksum should be stored 283 * @local_df: allow local fragmentation 284 * @cloned: Head may be cloned (check refcnt to be sure) 285 * @nohdr: Payload reference only, must not modify header 286 * @pkt_type: Packet class 287 * @fclone: skbuff clone status 288 * @ip_summed: Driver fed us an IP checksum 289 * @priority: Packet queueing priority 290 * @users: User count - see {datagram,tcp}.c 291 * @protocol: Packet protocol from driver 292 * @truesize: Buffer size 293 * @head: Head of buffer 294 * @data: Data head pointer 295 * @tail: Tail pointer 296 * @end: End pointer 297 * @destructor: Destruct function 298 * @mark: Generic packet mark 299 * @nfct: Associated connection, if any 300 * @ipvs_property: skbuff is owned by ipvs 301 * @peeked: this packet has been seen already, so stats have been 302 * done for it, don't do them again 303 * @nf_trace: netfilter packet trace flag 304 * @nfctinfo: Relationship of this skb to the connection 305 * @nfct_reasm: netfilter conntrack re-assembly pointer 306 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 307 * @skb_iif: ifindex of device we arrived on 308 * @rxhash: the packet hash computed on receive 309 * @queue_mapping: Queue mapping for multiqueue devices 310 * @tc_index: Traffic control index 311 * @tc_verd: traffic control verdict 312 * @ndisc_nodetype: router type (from link layer) 313 * @dma_cookie: a cookie to one of several possible DMA operations 314 * done by skb DMA functions 315 * @secmark: security marking 316 * @vlan_tci: vlan tag control information 317 */ 318 319 struct sk_buff { 320 /* These two members must be first. */ 321 struct sk_buff *next; 322 struct sk_buff *prev; 323 324 ktime_t tstamp; 325 326 struct sock *sk; 327 struct net_device *dev; 328 329 /* 330 * This is the control buffer. It is free to use for every 331 * layer. Please put your private variables there. If you 332 * want to keep them across layers you have to do a skb_clone() 333 * first. This is owned by whoever has the skb queued ATM. 334 */ 335 char cb[48] __aligned(8); 336 337 unsigned long _skb_refdst; 338 #ifdef CONFIG_XFRM 339 struct sec_path *sp; 340 #endif 341 unsigned int len, 342 data_len; 343 __u16 mac_len, 344 hdr_len; 345 union { 346 __wsum csum; 347 struct { 348 __u16 csum_start; 349 __u16 csum_offset; 350 }; 351 }; 352 __u32 priority; 353 kmemcheck_bitfield_begin(flags1); 354 __u8 local_df:1, 355 cloned:1, 356 ip_summed:2, 357 nohdr:1, 358 nfctinfo:3; 359 __u8 pkt_type:3, 360 fclone:2, 361 ipvs_property:1, 362 peeked:1, 363 nf_trace:1; 364 kmemcheck_bitfield_end(flags1); 365 __be16 protocol; 366 367 void (*destructor)(struct sk_buff *skb); 368 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 369 struct nf_conntrack *nfct; 370 #endif 371 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 372 struct sk_buff *nfct_reasm; 373 #endif 374 #ifdef CONFIG_BRIDGE_NETFILTER 375 struct nf_bridge_info *nf_bridge; 376 #endif 377 378 int skb_iif; 379 #ifdef CONFIG_NET_SCHED 380 __u16 tc_index; /* traffic control index */ 381 #ifdef CONFIG_NET_CLS_ACT 382 __u16 tc_verd; /* traffic control verdict */ 383 #endif 384 #endif 385 386 __u32 rxhash; 387 388 kmemcheck_bitfield_begin(flags2); 389 __u16 queue_mapping:16; 390 #ifdef CONFIG_IPV6_NDISC_NODETYPE 391 __u8 ndisc_nodetype:2; 392 #endif 393 __u8 ooo_okay:1; 394 kmemcheck_bitfield_end(flags2); 395 396 /* 0/13 bit hole */ 397 398 #ifdef CONFIG_NET_DMA 399 dma_cookie_t dma_cookie; 400 #endif 401 #ifdef CONFIG_NETWORK_SECMARK 402 __u32 secmark; 403 #endif 404 union { 405 __u32 mark; 406 __u32 dropcount; 407 }; 408 409 __u16 vlan_tci; 410 411 sk_buff_data_t transport_header; 412 sk_buff_data_t network_header; 413 sk_buff_data_t mac_header; 414 /* These elements must be at the end, see alloc_skb() for details. */ 415 sk_buff_data_t tail; 416 sk_buff_data_t end; 417 unsigned char *head, 418 *data; 419 unsigned int truesize; 420 atomic_t users; 421 }; 422 423 #ifdef __KERNEL__ 424 /* 425 * Handling routines are only of interest to the kernel 426 */ 427 #include <linux/slab.h> 428 429 #include <asm/system.h> 430 431 /* 432 * skb might have a dst pointer attached, refcounted or not. 433 * _skb_refdst low order bit is set if refcount was _not_ taken 434 */ 435 #define SKB_DST_NOREF 1UL 436 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 437 438 /** 439 * skb_dst - returns skb dst_entry 440 * @skb: buffer 441 * 442 * Returns skb dst_entry, regardless of reference taken or not. 443 */ 444 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 445 { 446 /* If refdst was not refcounted, check we still are in a 447 * rcu_read_lock section 448 */ 449 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 450 !rcu_read_lock_held() && 451 !rcu_read_lock_bh_held()); 452 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 453 } 454 455 /** 456 * skb_dst_set - sets skb dst 457 * @skb: buffer 458 * @dst: dst entry 459 * 460 * Sets skb dst, assuming a reference was taken on dst and should 461 * be released by skb_dst_drop() 462 */ 463 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 464 { 465 skb->_skb_refdst = (unsigned long)dst; 466 } 467 468 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 469 470 /** 471 * skb_dst_is_noref - Test if skb dst isnt refcounted 472 * @skb: buffer 473 */ 474 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 475 { 476 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 477 } 478 479 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 480 { 481 return (struct rtable *)skb_dst(skb); 482 } 483 484 extern void kfree_skb(struct sk_buff *skb); 485 extern void consume_skb(struct sk_buff *skb); 486 extern void __kfree_skb(struct sk_buff *skb); 487 extern struct sk_buff *__alloc_skb(unsigned int size, 488 gfp_t priority, int fclone, int node); 489 static inline struct sk_buff *alloc_skb(unsigned int size, 490 gfp_t priority) 491 { 492 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 493 } 494 495 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 496 gfp_t priority) 497 { 498 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 499 } 500 501 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 502 503 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 504 extern struct sk_buff *skb_clone(struct sk_buff *skb, 505 gfp_t priority); 506 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 507 gfp_t priority); 508 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 509 gfp_t gfp_mask); 510 extern int pskb_expand_head(struct sk_buff *skb, 511 int nhead, int ntail, 512 gfp_t gfp_mask); 513 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 514 unsigned int headroom); 515 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 516 int newheadroom, int newtailroom, 517 gfp_t priority); 518 extern int skb_to_sgvec(struct sk_buff *skb, 519 struct scatterlist *sg, int offset, 520 int len); 521 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 522 struct sk_buff **trailer); 523 extern int skb_pad(struct sk_buff *skb, int pad); 524 #define dev_kfree_skb(a) consume_skb(a) 525 526 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 527 int getfrag(void *from, char *to, int offset, 528 int len,int odd, struct sk_buff *skb), 529 void *from, int length); 530 531 struct skb_seq_state { 532 __u32 lower_offset; 533 __u32 upper_offset; 534 __u32 frag_idx; 535 __u32 stepped_offset; 536 struct sk_buff *root_skb; 537 struct sk_buff *cur_skb; 538 __u8 *frag_data; 539 }; 540 541 extern void skb_prepare_seq_read(struct sk_buff *skb, 542 unsigned int from, unsigned int to, 543 struct skb_seq_state *st); 544 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 545 struct skb_seq_state *st); 546 extern void skb_abort_seq_read(struct skb_seq_state *st); 547 548 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 549 unsigned int to, struct ts_config *config, 550 struct ts_state *state); 551 552 extern __u32 __skb_get_rxhash(struct sk_buff *skb); 553 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 554 { 555 if (!skb->rxhash) 556 skb->rxhash = __skb_get_rxhash(skb); 557 558 return skb->rxhash; 559 } 560 561 #ifdef NET_SKBUFF_DATA_USES_OFFSET 562 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 563 { 564 return skb->head + skb->end; 565 } 566 #else 567 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 568 { 569 return skb->end; 570 } 571 #endif 572 573 /* Internal */ 574 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 575 576 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 577 { 578 return &skb_shinfo(skb)->hwtstamps; 579 } 580 581 /** 582 * skb_queue_empty - check if a queue is empty 583 * @list: queue head 584 * 585 * Returns true if the queue is empty, false otherwise. 586 */ 587 static inline int skb_queue_empty(const struct sk_buff_head *list) 588 { 589 return list->next == (struct sk_buff *)list; 590 } 591 592 /** 593 * skb_queue_is_last - check if skb is the last entry in the queue 594 * @list: queue head 595 * @skb: buffer 596 * 597 * Returns true if @skb is the last buffer on the list. 598 */ 599 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 600 const struct sk_buff *skb) 601 { 602 return skb->next == (struct sk_buff *)list; 603 } 604 605 /** 606 * skb_queue_is_first - check if skb is the first entry in the queue 607 * @list: queue head 608 * @skb: buffer 609 * 610 * Returns true if @skb is the first buffer on the list. 611 */ 612 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 613 const struct sk_buff *skb) 614 { 615 return skb->prev == (struct sk_buff *)list; 616 } 617 618 /** 619 * skb_queue_next - return the next packet in the queue 620 * @list: queue head 621 * @skb: current buffer 622 * 623 * Return the next packet in @list after @skb. It is only valid to 624 * call this if skb_queue_is_last() evaluates to false. 625 */ 626 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 627 const struct sk_buff *skb) 628 { 629 /* This BUG_ON may seem severe, but if we just return then we 630 * are going to dereference garbage. 631 */ 632 BUG_ON(skb_queue_is_last(list, skb)); 633 return skb->next; 634 } 635 636 /** 637 * skb_queue_prev - return the prev packet in the queue 638 * @list: queue head 639 * @skb: current buffer 640 * 641 * Return the prev packet in @list before @skb. It is only valid to 642 * call this if skb_queue_is_first() evaluates to false. 643 */ 644 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 645 const struct sk_buff *skb) 646 { 647 /* This BUG_ON may seem severe, but if we just return then we 648 * are going to dereference garbage. 649 */ 650 BUG_ON(skb_queue_is_first(list, skb)); 651 return skb->prev; 652 } 653 654 /** 655 * skb_get - reference buffer 656 * @skb: buffer to reference 657 * 658 * Makes another reference to a socket buffer and returns a pointer 659 * to the buffer. 660 */ 661 static inline struct sk_buff *skb_get(struct sk_buff *skb) 662 { 663 atomic_inc(&skb->users); 664 return skb; 665 } 666 667 /* 668 * If users == 1, we are the only owner and are can avoid redundant 669 * atomic change. 670 */ 671 672 /** 673 * skb_cloned - is the buffer a clone 674 * @skb: buffer to check 675 * 676 * Returns true if the buffer was generated with skb_clone() and is 677 * one of multiple shared copies of the buffer. Cloned buffers are 678 * shared data so must not be written to under normal circumstances. 679 */ 680 static inline int skb_cloned(const struct sk_buff *skb) 681 { 682 return skb->cloned && 683 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 684 } 685 686 /** 687 * skb_header_cloned - is the header a clone 688 * @skb: buffer to check 689 * 690 * Returns true if modifying the header part of the buffer requires 691 * the data to be copied. 692 */ 693 static inline int skb_header_cloned(const struct sk_buff *skb) 694 { 695 int dataref; 696 697 if (!skb->cloned) 698 return 0; 699 700 dataref = atomic_read(&skb_shinfo(skb)->dataref); 701 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 702 return dataref != 1; 703 } 704 705 /** 706 * skb_header_release - release reference to header 707 * @skb: buffer to operate on 708 * 709 * Drop a reference to the header part of the buffer. This is done 710 * by acquiring a payload reference. You must not read from the header 711 * part of skb->data after this. 712 */ 713 static inline void skb_header_release(struct sk_buff *skb) 714 { 715 BUG_ON(skb->nohdr); 716 skb->nohdr = 1; 717 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 718 } 719 720 /** 721 * skb_shared - is the buffer shared 722 * @skb: buffer to check 723 * 724 * Returns true if more than one person has a reference to this 725 * buffer. 726 */ 727 static inline int skb_shared(const struct sk_buff *skb) 728 { 729 return atomic_read(&skb->users) != 1; 730 } 731 732 /** 733 * skb_share_check - check if buffer is shared and if so clone it 734 * @skb: buffer to check 735 * @pri: priority for memory allocation 736 * 737 * If the buffer is shared the buffer is cloned and the old copy 738 * drops a reference. A new clone with a single reference is returned. 739 * If the buffer is not shared the original buffer is returned. When 740 * being called from interrupt status or with spinlocks held pri must 741 * be GFP_ATOMIC. 742 * 743 * NULL is returned on a memory allocation failure. 744 */ 745 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 746 gfp_t pri) 747 { 748 might_sleep_if(pri & __GFP_WAIT); 749 if (skb_shared(skb)) { 750 struct sk_buff *nskb = skb_clone(skb, pri); 751 kfree_skb(skb); 752 skb = nskb; 753 } 754 return skb; 755 } 756 757 /* 758 * Copy shared buffers into a new sk_buff. We effectively do COW on 759 * packets to handle cases where we have a local reader and forward 760 * and a couple of other messy ones. The normal one is tcpdumping 761 * a packet thats being forwarded. 762 */ 763 764 /** 765 * skb_unshare - make a copy of a shared buffer 766 * @skb: buffer to check 767 * @pri: priority for memory allocation 768 * 769 * If the socket buffer is a clone then this function creates a new 770 * copy of the data, drops a reference count on the old copy and returns 771 * the new copy with the reference count at 1. If the buffer is not a clone 772 * the original buffer is returned. When called with a spinlock held or 773 * from interrupt state @pri must be %GFP_ATOMIC 774 * 775 * %NULL is returned on a memory allocation failure. 776 */ 777 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 778 gfp_t pri) 779 { 780 might_sleep_if(pri & __GFP_WAIT); 781 if (skb_cloned(skb)) { 782 struct sk_buff *nskb = skb_copy(skb, pri); 783 kfree_skb(skb); /* Free our shared copy */ 784 skb = nskb; 785 } 786 return skb; 787 } 788 789 /** 790 * skb_peek - peek at the head of an &sk_buff_head 791 * @list_: list to peek at 792 * 793 * Peek an &sk_buff. Unlike most other operations you _MUST_ 794 * be careful with this one. A peek leaves the buffer on the 795 * list and someone else may run off with it. You must hold 796 * the appropriate locks or have a private queue to do this. 797 * 798 * Returns %NULL for an empty list or a pointer to the head element. 799 * The reference count is not incremented and the reference is therefore 800 * volatile. Use with caution. 801 */ 802 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 803 { 804 struct sk_buff *list = ((struct sk_buff *)list_)->next; 805 if (list == (struct sk_buff *)list_) 806 list = NULL; 807 return list; 808 } 809 810 /** 811 * skb_peek_tail - peek at the tail of an &sk_buff_head 812 * @list_: list to peek at 813 * 814 * Peek an &sk_buff. Unlike most other operations you _MUST_ 815 * be careful with this one. A peek leaves the buffer on the 816 * list and someone else may run off with it. You must hold 817 * the appropriate locks or have a private queue to do this. 818 * 819 * Returns %NULL for an empty list or a pointer to the tail element. 820 * The reference count is not incremented and the reference is therefore 821 * volatile. Use with caution. 822 */ 823 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 824 { 825 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 826 if (list == (struct sk_buff *)list_) 827 list = NULL; 828 return list; 829 } 830 831 /** 832 * skb_queue_len - get queue length 833 * @list_: list to measure 834 * 835 * Return the length of an &sk_buff queue. 836 */ 837 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 838 { 839 return list_->qlen; 840 } 841 842 /** 843 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 844 * @list: queue to initialize 845 * 846 * This initializes only the list and queue length aspects of 847 * an sk_buff_head object. This allows to initialize the list 848 * aspects of an sk_buff_head without reinitializing things like 849 * the spinlock. It can also be used for on-stack sk_buff_head 850 * objects where the spinlock is known to not be used. 851 */ 852 static inline void __skb_queue_head_init(struct sk_buff_head *list) 853 { 854 list->prev = list->next = (struct sk_buff *)list; 855 list->qlen = 0; 856 } 857 858 /* 859 * This function creates a split out lock class for each invocation; 860 * this is needed for now since a whole lot of users of the skb-queue 861 * infrastructure in drivers have different locking usage (in hardirq) 862 * than the networking core (in softirq only). In the long run either the 863 * network layer or drivers should need annotation to consolidate the 864 * main types of usage into 3 classes. 865 */ 866 static inline void skb_queue_head_init(struct sk_buff_head *list) 867 { 868 spin_lock_init(&list->lock); 869 __skb_queue_head_init(list); 870 } 871 872 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 873 struct lock_class_key *class) 874 { 875 skb_queue_head_init(list); 876 lockdep_set_class(&list->lock, class); 877 } 878 879 /* 880 * Insert an sk_buff on a list. 881 * 882 * The "__skb_xxxx()" functions are the non-atomic ones that 883 * can only be called with interrupts disabled. 884 */ 885 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 886 static inline void __skb_insert(struct sk_buff *newsk, 887 struct sk_buff *prev, struct sk_buff *next, 888 struct sk_buff_head *list) 889 { 890 newsk->next = next; 891 newsk->prev = prev; 892 next->prev = prev->next = newsk; 893 list->qlen++; 894 } 895 896 static inline void __skb_queue_splice(const struct sk_buff_head *list, 897 struct sk_buff *prev, 898 struct sk_buff *next) 899 { 900 struct sk_buff *first = list->next; 901 struct sk_buff *last = list->prev; 902 903 first->prev = prev; 904 prev->next = first; 905 906 last->next = next; 907 next->prev = last; 908 } 909 910 /** 911 * skb_queue_splice - join two skb lists, this is designed for stacks 912 * @list: the new list to add 913 * @head: the place to add it in the first list 914 */ 915 static inline void skb_queue_splice(const struct sk_buff_head *list, 916 struct sk_buff_head *head) 917 { 918 if (!skb_queue_empty(list)) { 919 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 920 head->qlen += list->qlen; 921 } 922 } 923 924 /** 925 * skb_queue_splice - join two skb lists and reinitialise the emptied list 926 * @list: the new list to add 927 * @head: the place to add it in the first list 928 * 929 * The list at @list is reinitialised 930 */ 931 static inline void skb_queue_splice_init(struct sk_buff_head *list, 932 struct sk_buff_head *head) 933 { 934 if (!skb_queue_empty(list)) { 935 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 936 head->qlen += list->qlen; 937 __skb_queue_head_init(list); 938 } 939 } 940 941 /** 942 * skb_queue_splice_tail - join two skb lists, each list being a queue 943 * @list: the new list to add 944 * @head: the place to add it in the first list 945 */ 946 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 947 struct sk_buff_head *head) 948 { 949 if (!skb_queue_empty(list)) { 950 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 951 head->qlen += list->qlen; 952 } 953 } 954 955 /** 956 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 957 * @list: the new list to add 958 * @head: the place to add it in the first list 959 * 960 * Each of the lists is a queue. 961 * The list at @list is reinitialised 962 */ 963 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 964 struct sk_buff_head *head) 965 { 966 if (!skb_queue_empty(list)) { 967 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 968 head->qlen += list->qlen; 969 __skb_queue_head_init(list); 970 } 971 } 972 973 /** 974 * __skb_queue_after - queue a buffer at the list head 975 * @list: list to use 976 * @prev: place after this buffer 977 * @newsk: buffer to queue 978 * 979 * Queue a buffer int the middle of a list. This function takes no locks 980 * and you must therefore hold required locks before calling it. 981 * 982 * A buffer cannot be placed on two lists at the same time. 983 */ 984 static inline void __skb_queue_after(struct sk_buff_head *list, 985 struct sk_buff *prev, 986 struct sk_buff *newsk) 987 { 988 __skb_insert(newsk, prev, prev->next, list); 989 } 990 991 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 992 struct sk_buff_head *list); 993 994 static inline void __skb_queue_before(struct sk_buff_head *list, 995 struct sk_buff *next, 996 struct sk_buff *newsk) 997 { 998 __skb_insert(newsk, next->prev, next, list); 999 } 1000 1001 /** 1002 * __skb_queue_head - queue a buffer at the list head 1003 * @list: list to use 1004 * @newsk: buffer to queue 1005 * 1006 * Queue a buffer at the start of a list. This function takes no locks 1007 * and you must therefore hold required locks before calling it. 1008 * 1009 * A buffer cannot be placed on two lists at the same time. 1010 */ 1011 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1012 static inline void __skb_queue_head(struct sk_buff_head *list, 1013 struct sk_buff *newsk) 1014 { 1015 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1016 } 1017 1018 /** 1019 * __skb_queue_tail - queue a buffer at the list tail 1020 * @list: list to use 1021 * @newsk: buffer to queue 1022 * 1023 * Queue a buffer at the end of a list. This function takes no locks 1024 * and you must therefore hold required locks before calling it. 1025 * 1026 * A buffer cannot be placed on two lists at the same time. 1027 */ 1028 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1029 static inline void __skb_queue_tail(struct sk_buff_head *list, 1030 struct sk_buff *newsk) 1031 { 1032 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1033 } 1034 1035 /* 1036 * remove sk_buff from list. _Must_ be called atomically, and with 1037 * the list known.. 1038 */ 1039 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1040 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1041 { 1042 struct sk_buff *next, *prev; 1043 1044 list->qlen--; 1045 next = skb->next; 1046 prev = skb->prev; 1047 skb->next = skb->prev = NULL; 1048 next->prev = prev; 1049 prev->next = next; 1050 } 1051 1052 /** 1053 * __skb_dequeue - remove from the head of the queue 1054 * @list: list to dequeue from 1055 * 1056 * Remove the head of the list. This function does not take any locks 1057 * so must be used with appropriate locks held only. The head item is 1058 * returned or %NULL if the list is empty. 1059 */ 1060 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1061 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1062 { 1063 struct sk_buff *skb = skb_peek(list); 1064 if (skb) 1065 __skb_unlink(skb, list); 1066 return skb; 1067 } 1068 1069 /** 1070 * __skb_dequeue_tail - remove from the tail of the queue 1071 * @list: list to dequeue from 1072 * 1073 * Remove the tail of the list. This function does not take any locks 1074 * so must be used with appropriate locks held only. The tail item is 1075 * returned or %NULL if the list is empty. 1076 */ 1077 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1078 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1079 { 1080 struct sk_buff *skb = skb_peek_tail(list); 1081 if (skb) 1082 __skb_unlink(skb, list); 1083 return skb; 1084 } 1085 1086 1087 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1088 { 1089 return skb->data_len; 1090 } 1091 1092 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1093 { 1094 return skb->len - skb->data_len; 1095 } 1096 1097 static inline int skb_pagelen(const struct sk_buff *skb) 1098 { 1099 int i, len = 0; 1100 1101 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1102 len += skb_shinfo(skb)->frags[i].size; 1103 return len + skb_headlen(skb); 1104 } 1105 1106 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1107 struct page *page, int off, int size) 1108 { 1109 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1110 1111 frag->page = page; 1112 frag->page_offset = off; 1113 frag->size = size; 1114 skb_shinfo(skb)->nr_frags = i + 1; 1115 } 1116 1117 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1118 int off, int size); 1119 1120 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1121 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1122 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1123 1124 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1125 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1126 { 1127 return skb->head + skb->tail; 1128 } 1129 1130 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1131 { 1132 skb->tail = skb->data - skb->head; 1133 } 1134 1135 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1136 { 1137 skb_reset_tail_pointer(skb); 1138 skb->tail += offset; 1139 } 1140 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1141 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1142 { 1143 return skb->tail; 1144 } 1145 1146 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1147 { 1148 skb->tail = skb->data; 1149 } 1150 1151 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1152 { 1153 skb->tail = skb->data + offset; 1154 } 1155 1156 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1157 1158 /* 1159 * Add data to an sk_buff 1160 */ 1161 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1162 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1163 { 1164 unsigned char *tmp = skb_tail_pointer(skb); 1165 SKB_LINEAR_ASSERT(skb); 1166 skb->tail += len; 1167 skb->len += len; 1168 return tmp; 1169 } 1170 1171 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1172 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1173 { 1174 skb->data -= len; 1175 skb->len += len; 1176 return skb->data; 1177 } 1178 1179 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1180 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1181 { 1182 skb->len -= len; 1183 BUG_ON(skb->len < skb->data_len); 1184 return skb->data += len; 1185 } 1186 1187 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1188 { 1189 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1190 } 1191 1192 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1193 1194 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1195 { 1196 if (len > skb_headlen(skb) && 1197 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1198 return NULL; 1199 skb->len -= len; 1200 return skb->data += len; 1201 } 1202 1203 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1204 { 1205 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1206 } 1207 1208 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1209 { 1210 if (likely(len <= skb_headlen(skb))) 1211 return 1; 1212 if (unlikely(len > skb->len)) 1213 return 0; 1214 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1215 } 1216 1217 /** 1218 * skb_headroom - bytes at buffer head 1219 * @skb: buffer to check 1220 * 1221 * Return the number of bytes of free space at the head of an &sk_buff. 1222 */ 1223 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1224 { 1225 return skb->data - skb->head; 1226 } 1227 1228 /** 1229 * skb_tailroom - bytes at buffer end 1230 * @skb: buffer to check 1231 * 1232 * Return the number of bytes of free space at the tail of an sk_buff 1233 */ 1234 static inline int skb_tailroom(const struct sk_buff *skb) 1235 { 1236 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1237 } 1238 1239 /** 1240 * skb_reserve - adjust headroom 1241 * @skb: buffer to alter 1242 * @len: bytes to move 1243 * 1244 * Increase the headroom of an empty &sk_buff by reducing the tail 1245 * room. This is only allowed for an empty buffer. 1246 */ 1247 static inline void skb_reserve(struct sk_buff *skb, int len) 1248 { 1249 skb->data += len; 1250 skb->tail += len; 1251 } 1252 1253 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1254 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1255 { 1256 return skb->head + skb->transport_header; 1257 } 1258 1259 static inline void skb_reset_transport_header(struct sk_buff *skb) 1260 { 1261 skb->transport_header = skb->data - skb->head; 1262 } 1263 1264 static inline void skb_set_transport_header(struct sk_buff *skb, 1265 const int offset) 1266 { 1267 skb_reset_transport_header(skb); 1268 skb->transport_header += offset; 1269 } 1270 1271 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1272 { 1273 return skb->head + skb->network_header; 1274 } 1275 1276 static inline void skb_reset_network_header(struct sk_buff *skb) 1277 { 1278 skb->network_header = skb->data - skb->head; 1279 } 1280 1281 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1282 { 1283 skb_reset_network_header(skb); 1284 skb->network_header += offset; 1285 } 1286 1287 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1288 { 1289 return skb->head + skb->mac_header; 1290 } 1291 1292 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1293 { 1294 return skb->mac_header != ~0U; 1295 } 1296 1297 static inline void skb_reset_mac_header(struct sk_buff *skb) 1298 { 1299 skb->mac_header = skb->data - skb->head; 1300 } 1301 1302 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1303 { 1304 skb_reset_mac_header(skb); 1305 skb->mac_header += offset; 1306 } 1307 1308 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1309 1310 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1311 { 1312 return skb->transport_header; 1313 } 1314 1315 static inline void skb_reset_transport_header(struct sk_buff *skb) 1316 { 1317 skb->transport_header = skb->data; 1318 } 1319 1320 static inline void skb_set_transport_header(struct sk_buff *skb, 1321 const int offset) 1322 { 1323 skb->transport_header = skb->data + offset; 1324 } 1325 1326 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1327 { 1328 return skb->network_header; 1329 } 1330 1331 static inline void skb_reset_network_header(struct sk_buff *skb) 1332 { 1333 skb->network_header = skb->data; 1334 } 1335 1336 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1337 { 1338 skb->network_header = skb->data + offset; 1339 } 1340 1341 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1342 { 1343 return skb->mac_header; 1344 } 1345 1346 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1347 { 1348 return skb->mac_header != NULL; 1349 } 1350 1351 static inline void skb_reset_mac_header(struct sk_buff *skb) 1352 { 1353 skb->mac_header = skb->data; 1354 } 1355 1356 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1357 { 1358 skb->mac_header = skb->data + offset; 1359 } 1360 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1361 1362 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1363 { 1364 return skb->csum_start - skb_headroom(skb); 1365 } 1366 1367 static inline int skb_transport_offset(const struct sk_buff *skb) 1368 { 1369 return skb_transport_header(skb) - skb->data; 1370 } 1371 1372 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1373 { 1374 return skb->transport_header - skb->network_header; 1375 } 1376 1377 static inline int skb_network_offset(const struct sk_buff *skb) 1378 { 1379 return skb_network_header(skb) - skb->data; 1380 } 1381 1382 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1383 { 1384 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1385 } 1386 1387 /* 1388 * CPUs often take a performance hit when accessing unaligned memory 1389 * locations. The actual performance hit varies, it can be small if the 1390 * hardware handles it or large if we have to take an exception and fix it 1391 * in software. 1392 * 1393 * Since an ethernet header is 14 bytes network drivers often end up with 1394 * the IP header at an unaligned offset. The IP header can be aligned by 1395 * shifting the start of the packet by 2 bytes. Drivers should do this 1396 * with: 1397 * 1398 * skb_reserve(skb, NET_IP_ALIGN); 1399 * 1400 * The downside to this alignment of the IP header is that the DMA is now 1401 * unaligned. On some architectures the cost of an unaligned DMA is high 1402 * and this cost outweighs the gains made by aligning the IP header. 1403 * 1404 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1405 * to be overridden. 1406 */ 1407 #ifndef NET_IP_ALIGN 1408 #define NET_IP_ALIGN 2 1409 #endif 1410 1411 /* 1412 * The networking layer reserves some headroom in skb data (via 1413 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1414 * the header has to grow. In the default case, if the header has to grow 1415 * 32 bytes or less we avoid the reallocation. 1416 * 1417 * Unfortunately this headroom changes the DMA alignment of the resulting 1418 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1419 * on some architectures. An architecture can override this value, 1420 * perhaps setting it to a cacheline in size (since that will maintain 1421 * cacheline alignment of the DMA). It must be a power of 2. 1422 * 1423 * Various parts of the networking layer expect at least 32 bytes of 1424 * headroom, you should not reduce this. 1425 * 1426 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1427 * to reduce average number of cache lines per packet. 1428 * get_rps_cpus() for example only access one 64 bytes aligned block : 1429 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1430 */ 1431 #ifndef NET_SKB_PAD 1432 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1433 #endif 1434 1435 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1436 1437 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1438 { 1439 if (unlikely(skb->data_len)) { 1440 WARN_ON(1); 1441 return; 1442 } 1443 skb->len = len; 1444 skb_set_tail_pointer(skb, len); 1445 } 1446 1447 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1448 1449 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1450 { 1451 if (skb->data_len) 1452 return ___pskb_trim(skb, len); 1453 __skb_trim(skb, len); 1454 return 0; 1455 } 1456 1457 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1458 { 1459 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1460 } 1461 1462 /** 1463 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1464 * @skb: buffer to alter 1465 * @len: new length 1466 * 1467 * This is identical to pskb_trim except that the caller knows that 1468 * the skb is not cloned so we should never get an error due to out- 1469 * of-memory. 1470 */ 1471 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1472 { 1473 int err = pskb_trim(skb, len); 1474 BUG_ON(err); 1475 } 1476 1477 /** 1478 * skb_orphan - orphan a buffer 1479 * @skb: buffer to orphan 1480 * 1481 * If a buffer currently has an owner then we call the owner's 1482 * destructor function and make the @skb unowned. The buffer continues 1483 * to exist but is no longer charged to its former owner. 1484 */ 1485 static inline void skb_orphan(struct sk_buff *skb) 1486 { 1487 if (skb->destructor) 1488 skb->destructor(skb); 1489 skb->destructor = NULL; 1490 skb->sk = NULL; 1491 } 1492 1493 /** 1494 * __skb_queue_purge - empty a list 1495 * @list: list to empty 1496 * 1497 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1498 * the list and one reference dropped. This function does not take the 1499 * list lock and the caller must hold the relevant locks to use it. 1500 */ 1501 extern void skb_queue_purge(struct sk_buff_head *list); 1502 static inline void __skb_queue_purge(struct sk_buff_head *list) 1503 { 1504 struct sk_buff *skb; 1505 while ((skb = __skb_dequeue(list)) != NULL) 1506 kfree_skb(skb); 1507 } 1508 1509 /** 1510 * __dev_alloc_skb - allocate an skbuff for receiving 1511 * @length: length to allocate 1512 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1513 * 1514 * Allocate a new &sk_buff and assign it a usage count of one. The 1515 * buffer has unspecified headroom built in. Users should allocate 1516 * the headroom they think they need without accounting for the 1517 * built in space. The built in space is used for optimisations. 1518 * 1519 * %NULL is returned if there is no free memory. 1520 */ 1521 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1522 gfp_t gfp_mask) 1523 { 1524 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1525 if (likely(skb)) 1526 skb_reserve(skb, NET_SKB_PAD); 1527 return skb; 1528 } 1529 1530 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1531 1532 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1533 unsigned int length, gfp_t gfp_mask); 1534 1535 /** 1536 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1537 * @dev: network device to receive on 1538 * @length: length to allocate 1539 * 1540 * Allocate a new &sk_buff and assign it a usage count of one. The 1541 * buffer has unspecified headroom built in. Users should allocate 1542 * the headroom they think they need without accounting for the 1543 * built in space. The built in space is used for optimisations. 1544 * 1545 * %NULL is returned if there is no free memory. Although this function 1546 * allocates memory it can be called from an interrupt. 1547 */ 1548 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1549 unsigned int length) 1550 { 1551 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1552 } 1553 1554 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1555 unsigned int length) 1556 { 1557 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1558 1559 if (NET_IP_ALIGN && skb) 1560 skb_reserve(skb, NET_IP_ALIGN); 1561 return skb; 1562 } 1563 1564 /** 1565 * __netdev_alloc_page - allocate a page for ps-rx on a specific device 1566 * @dev: network device to receive on 1567 * @gfp_mask: alloc_pages_node mask 1568 * 1569 * Allocate a new page. dev currently unused. 1570 * 1571 * %NULL is returned if there is no free memory. 1572 */ 1573 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 1574 { 1575 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); 1576 } 1577 1578 /** 1579 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1580 * @dev: network device to receive on 1581 * 1582 * Allocate a new page. dev currently unused. 1583 * 1584 * %NULL is returned if there is no free memory. 1585 */ 1586 static inline struct page *netdev_alloc_page(struct net_device *dev) 1587 { 1588 return __netdev_alloc_page(dev, GFP_ATOMIC); 1589 } 1590 1591 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1592 { 1593 __free_page(page); 1594 } 1595 1596 /** 1597 * skb_clone_writable - is the header of a clone writable 1598 * @skb: buffer to check 1599 * @len: length up to which to write 1600 * 1601 * Returns true if modifying the header part of the cloned buffer 1602 * does not requires the data to be copied. 1603 */ 1604 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1605 { 1606 return !skb_header_cloned(skb) && 1607 skb_headroom(skb) + len <= skb->hdr_len; 1608 } 1609 1610 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1611 int cloned) 1612 { 1613 int delta = 0; 1614 1615 if (headroom < NET_SKB_PAD) 1616 headroom = NET_SKB_PAD; 1617 if (headroom > skb_headroom(skb)) 1618 delta = headroom - skb_headroom(skb); 1619 1620 if (delta || cloned) 1621 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1622 GFP_ATOMIC); 1623 return 0; 1624 } 1625 1626 /** 1627 * skb_cow - copy header of skb when it is required 1628 * @skb: buffer to cow 1629 * @headroom: needed headroom 1630 * 1631 * If the skb passed lacks sufficient headroom or its data part 1632 * is shared, data is reallocated. If reallocation fails, an error 1633 * is returned and original skb is not changed. 1634 * 1635 * The result is skb with writable area skb->head...skb->tail 1636 * and at least @headroom of space at head. 1637 */ 1638 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1639 { 1640 return __skb_cow(skb, headroom, skb_cloned(skb)); 1641 } 1642 1643 /** 1644 * skb_cow_head - skb_cow but only making the head writable 1645 * @skb: buffer to cow 1646 * @headroom: needed headroom 1647 * 1648 * This function is identical to skb_cow except that we replace the 1649 * skb_cloned check by skb_header_cloned. It should be used when 1650 * you only need to push on some header and do not need to modify 1651 * the data. 1652 */ 1653 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1654 { 1655 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1656 } 1657 1658 /** 1659 * skb_padto - pad an skbuff up to a minimal size 1660 * @skb: buffer to pad 1661 * @len: minimal length 1662 * 1663 * Pads up a buffer to ensure the trailing bytes exist and are 1664 * blanked. If the buffer already contains sufficient data it 1665 * is untouched. Otherwise it is extended. Returns zero on 1666 * success. The skb is freed on error. 1667 */ 1668 1669 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1670 { 1671 unsigned int size = skb->len; 1672 if (likely(size >= len)) 1673 return 0; 1674 return skb_pad(skb, len - size); 1675 } 1676 1677 static inline int skb_add_data(struct sk_buff *skb, 1678 char __user *from, int copy) 1679 { 1680 const int off = skb->len; 1681 1682 if (skb->ip_summed == CHECKSUM_NONE) { 1683 int err = 0; 1684 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1685 copy, 0, &err); 1686 if (!err) { 1687 skb->csum = csum_block_add(skb->csum, csum, off); 1688 return 0; 1689 } 1690 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1691 return 0; 1692 1693 __skb_trim(skb, off); 1694 return -EFAULT; 1695 } 1696 1697 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1698 struct page *page, int off) 1699 { 1700 if (i) { 1701 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1702 1703 return page == frag->page && 1704 off == frag->page_offset + frag->size; 1705 } 1706 return 0; 1707 } 1708 1709 static inline int __skb_linearize(struct sk_buff *skb) 1710 { 1711 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1712 } 1713 1714 /** 1715 * skb_linearize - convert paged skb to linear one 1716 * @skb: buffer to linarize 1717 * 1718 * If there is no free memory -ENOMEM is returned, otherwise zero 1719 * is returned and the old skb data released. 1720 */ 1721 static inline int skb_linearize(struct sk_buff *skb) 1722 { 1723 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1724 } 1725 1726 /** 1727 * skb_linearize_cow - make sure skb is linear and writable 1728 * @skb: buffer to process 1729 * 1730 * If there is no free memory -ENOMEM is returned, otherwise zero 1731 * is returned and the old skb data released. 1732 */ 1733 static inline int skb_linearize_cow(struct sk_buff *skb) 1734 { 1735 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1736 __skb_linearize(skb) : 0; 1737 } 1738 1739 /** 1740 * skb_postpull_rcsum - update checksum for received skb after pull 1741 * @skb: buffer to update 1742 * @start: start of data before pull 1743 * @len: length of data pulled 1744 * 1745 * After doing a pull on a received packet, you need to call this to 1746 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1747 * CHECKSUM_NONE so that it can be recomputed from scratch. 1748 */ 1749 1750 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1751 const void *start, unsigned int len) 1752 { 1753 if (skb->ip_summed == CHECKSUM_COMPLETE) 1754 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1755 } 1756 1757 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1758 1759 /** 1760 * pskb_trim_rcsum - trim received skb and update checksum 1761 * @skb: buffer to trim 1762 * @len: new length 1763 * 1764 * This is exactly the same as pskb_trim except that it ensures the 1765 * checksum of received packets are still valid after the operation. 1766 */ 1767 1768 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1769 { 1770 if (likely(len >= skb->len)) 1771 return 0; 1772 if (skb->ip_summed == CHECKSUM_COMPLETE) 1773 skb->ip_summed = CHECKSUM_NONE; 1774 return __pskb_trim(skb, len); 1775 } 1776 1777 #define skb_queue_walk(queue, skb) \ 1778 for (skb = (queue)->next; \ 1779 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1780 skb = skb->next) 1781 1782 #define skb_queue_walk_safe(queue, skb, tmp) \ 1783 for (skb = (queue)->next, tmp = skb->next; \ 1784 skb != (struct sk_buff *)(queue); \ 1785 skb = tmp, tmp = skb->next) 1786 1787 #define skb_queue_walk_from(queue, skb) \ 1788 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1789 skb = skb->next) 1790 1791 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1792 for (tmp = skb->next; \ 1793 skb != (struct sk_buff *)(queue); \ 1794 skb = tmp, tmp = skb->next) 1795 1796 #define skb_queue_reverse_walk(queue, skb) \ 1797 for (skb = (queue)->prev; \ 1798 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1799 skb = skb->prev) 1800 1801 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 1802 for (skb = (queue)->prev, tmp = skb->prev; \ 1803 skb != (struct sk_buff *)(queue); \ 1804 skb = tmp, tmp = skb->prev) 1805 1806 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 1807 for (tmp = skb->prev; \ 1808 skb != (struct sk_buff *)(queue); \ 1809 skb = tmp, tmp = skb->prev) 1810 1811 static inline bool skb_has_frag_list(const struct sk_buff *skb) 1812 { 1813 return skb_shinfo(skb)->frag_list != NULL; 1814 } 1815 1816 static inline void skb_frag_list_init(struct sk_buff *skb) 1817 { 1818 skb_shinfo(skb)->frag_list = NULL; 1819 } 1820 1821 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1822 { 1823 frag->next = skb_shinfo(skb)->frag_list; 1824 skb_shinfo(skb)->frag_list = frag; 1825 } 1826 1827 #define skb_walk_frags(skb, iter) \ 1828 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1829 1830 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1831 int *peeked, int *err); 1832 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1833 int noblock, int *err); 1834 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1835 struct poll_table_struct *wait); 1836 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1837 int offset, struct iovec *to, 1838 int size); 1839 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1840 int hlen, 1841 struct iovec *iov); 1842 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1843 int offset, 1844 const struct iovec *from, 1845 int from_offset, 1846 int len); 1847 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1848 int offset, 1849 const struct iovec *to, 1850 int to_offset, 1851 int size); 1852 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1853 extern void skb_free_datagram_locked(struct sock *sk, 1854 struct sk_buff *skb); 1855 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1856 unsigned int flags); 1857 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1858 int len, __wsum csum); 1859 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1860 void *to, int len); 1861 extern int skb_store_bits(struct sk_buff *skb, int offset, 1862 const void *from, int len); 1863 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1864 int offset, u8 *to, int len, 1865 __wsum csum); 1866 extern int skb_splice_bits(struct sk_buff *skb, 1867 unsigned int offset, 1868 struct pipe_inode_info *pipe, 1869 unsigned int len, 1870 unsigned int flags); 1871 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1872 extern void skb_split(struct sk_buff *skb, 1873 struct sk_buff *skb1, const u32 len); 1874 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1875 int shiftlen); 1876 1877 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features); 1878 1879 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1880 int len, void *buffer) 1881 { 1882 int hlen = skb_headlen(skb); 1883 1884 if (hlen - offset >= len) 1885 return skb->data + offset; 1886 1887 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1888 return NULL; 1889 1890 return buffer; 1891 } 1892 1893 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1894 void *to, 1895 const unsigned int len) 1896 { 1897 memcpy(to, skb->data, len); 1898 } 1899 1900 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1901 const int offset, void *to, 1902 const unsigned int len) 1903 { 1904 memcpy(to, skb->data + offset, len); 1905 } 1906 1907 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1908 const void *from, 1909 const unsigned int len) 1910 { 1911 memcpy(skb->data, from, len); 1912 } 1913 1914 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1915 const int offset, 1916 const void *from, 1917 const unsigned int len) 1918 { 1919 memcpy(skb->data + offset, from, len); 1920 } 1921 1922 extern void skb_init(void); 1923 1924 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1925 { 1926 return skb->tstamp; 1927 } 1928 1929 /** 1930 * skb_get_timestamp - get timestamp from a skb 1931 * @skb: skb to get stamp from 1932 * @stamp: pointer to struct timeval to store stamp in 1933 * 1934 * Timestamps are stored in the skb as offsets to a base timestamp. 1935 * This function converts the offset back to a struct timeval and stores 1936 * it in stamp. 1937 */ 1938 static inline void skb_get_timestamp(const struct sk_buff *skb, 1939 struct timeval *stamp) 1940 { 1941 *stamp = ktime_to_timeval(skb->tstamp); 1942 } 1943 1944 static inline void skb_get_timestampns(const struct sk_buff *skb, 1945 struct timespec *stamp) 1946 { 1947 *stamp = ktime_to_timespec(skb->tstamp); 1948 } 1949 1950 static inline void __net_timestamp(struct sk_buff *skb) 1951 { 1952 skb->tstamp = ktime_get_real(); 1953 } 1954 1955 static inline ktime_t net_timedelta(ktime_t t) 1956 { 1957 return ktime_sub(ktime_get_real(), t); 1958 } 1959 1960 static inline ktime_t net_invalid_timestamp(void) 1961 { 1962 return ktime_set(0, 0); 1963 } 1964 1965 extern void skb_timestamping_init(void); 1966 1967 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 1968 1969 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 1970 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 1971 1972 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 1973 1974 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 1975 { 1976 } 1977 1978 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 1979 { 1980 return false; 1981 } 1982 1983 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 1984 1985 /** 1986 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 1987 * 1988 * @skb: clone of the the original outgoing packet 1989 * @hwtstamps: hardware time stamps 1990 * 1991 */ 1992 void skb_complete_tx_timestamp(struct sk_buff *skb, 1993 struct skb_shared_hwtstamps *hwtstamps); 1994 1995 /** 1996 * skb_tstamp_tx - queue clone of skb with send time stamps 1997 * @orig_skb: the original outgoing packet 1998 * @hwtstamps: hardware time stamps, may be NULL if not available 1999 * 2000 * If the skb has a socket associated, then this function clones the 2001 * skb (thus sharing the actual data and optional structures), stores 2002 * the optional hardware time stamping information (if non NULL) or 2003 * generates a software time stamp (otherwise), then queues the clone 2004 * to the error queue of the socket. Errors are silently ignored. 2005 */ 2006 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2007 struct skb_shared_hwtstamps *hwtstamps); 2008 2009 static inline void sw_tx_timestamp(struct sk_buff *skb) 2010 { 2011 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2012 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2013 skb_tstamp_tx(skb, NULL); 2014 } 2015 2016 /** 2017 * skb_tx_timestamp() - Driver hook for transmit timestamping 2018 * 2019 * Ethernet MAC Drivers should call this function in their hard_xmit() 2020 * function as soon as possible after giving the sk_buff to the MAC 2021 * hardware, but before freeing the sk_buff. 2022 * 2023 * @skb: A socket buffer. 2024 */ 2025 static inline void skb_tx_timestamp(struct sk_buff *skb) 2026 { 2027 skb_clone_tx_timestamp(skb); 2028 sw_tx_timestamp(skb); 2029 } 2030 2031 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2032 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2033 2034 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2035 { 2036 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2037 } 2038 2039 /** 2040 * skb_checksum_complete - Calculate checksum of an entire packet 2041 * @skb: packet to process 2042 * 2043 * This function calculates the checksum over the entire packet plus 2044 * the value of skb->csum. The latter can be used to supply the 2045 * checksum of a pseudo header as used by TCP/UDP. It returns the 2046 * checksum. 2047 * 2048 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2049 * this function can be used to verify that checksum on received 2050 * packets. In that case the function should return zero if the 2051 * checksum is correct. In particular, this function will return zero 2052 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2053 * hardware has already verified the correctness of the checksum. 2054 */ 2055 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2056 { 2057 return skb_csum_unnecessary(skb) ? 2058 0 : __skb_checksum_complete(skb); 2059 } 2060 2061 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2062 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2063 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2064 { 2065 if (nfct && atomic_dec_and_test(&nfct->use)) 2066 nf_conntrack_destroy(nfct); 2067 } 2068 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2069 { 2070 if (nfct) 2071 atomic_inc(&nfct->use); 2072 } 2073 #endif 2074 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2075 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2076 { 2077 if (skb) 2078 atomic_inc(&skb->users); 2079 } 2080 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2081 { 2082 if (skb) 2083 kfree_skb(skb); 2084 } 2085 #endif 2086 #ifdef CONFIG_BRIDGE_NETFILTER 2087 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2088 { 2089 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2090 kfree(nf_bridge); 2091 } 2092 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2093 { 2094 if (nf_bridge) 2095 atomic_inc(&nf_bridge->use); 2096 } 2097 #endif /* CONFIG_BRIDGE_NETFILTER */ 2098 static inline void nf_reset(struct sk_buff *skb) 2099 { 2100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2101 nf_conntrack_put(skb->nfct); 2102 skb->nfct = NULL; 2103 #endif 2104 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2105 nf_conntrack_put_reasm(skb->nfct_reasm); 2106 skb->nfct_reasm = NULL; 2107 #endif 2108 #ifdef CONFIG_BRIDGE_NETFILTER 2109 nf_bridge_put(skb->nf_bridge); 2110 skb->nf_bridge = NULL; 2111 #endif 2112 } 2113 2114 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2115 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2116 { 2117 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2118 dst->nfct = src->nfct; 2119 nf_conntrack_get(src->nfct); 2120 dst->nfctinfo = src->nfctinfo; 2121 #endif 2122 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2123 dst->nfct_reasm = src->nfct_reasm; 2124 nf_conntrack_get_reasm(src->nfct_reasm); 2125 #endif 2126 #ifdef CONFIG_BRIDGE_NETFILTER 2127 dst->nf_bridge = src->nf_bridge; 2128 nf_bridge_get(src->nf_bridge); 2129 #endif 2130 } 2131 2132 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2133 { 2134 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2135 nf_conntrack_put(dst->nfct); 2136 #endif 2137 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2138 nf_conntrack_put_reasm(dst->nfct_reasm); 2139 #endif 2140 #ifdef CONFIG_BRIDGE_NETFILTER 2141 nf_bridge_put(dst->nf_bridge); 2142 #endif 2143 __nf_copy(dst, src); 2144 } 2145 2146 #ifdef CONFIG_NETWORK_SECMARK 2147 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2148 { 2149 to->secmark = from->secmark; 2150 } 2151 2152 static inline void skb_init_secmark(struct sk_buff *skb) 2153 { 2154 skb->secmark = 0; 2155 } 2156 #else 2157 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2158 { } 2159 2160 static inline void skb_init_secmark(struct sk_buff *skb) 2161 { } 2162 #endif 2163 2164 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2165 { 2166 skb->queue_mapping = queue_mapping; 2167 } 2168 2169 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2170 { 2171 return skb->queue_mapping; 2172 } 2173 2174 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2175 { 2176 to->queue_mapping = from->queue_mapping; 2177 } 2178 2179 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2180 { 2181 skb->queue_mapping = rx_queue + 1; 2182 } 2183 2184 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2185 { 2186 return skb->queue_mapping - 1; 2187 } 2188 2189 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2190 { 2191 return skb->queue_mapping != 0; 2192 } 2193 2194 extern u16 __skb_tx_hash(const struct net_device *dev, 2195 const struct sk_buff *skb, 2196 unsigned int num_tx_queues); 2197 2198 #ifdef CONFIG_XFRM 2199 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2200 { 2201 return skb->sp; 2202 } 2203 #else 2204 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2205 { 2206 return NULL; 2207 } 2208 #endif 2209 2210 static inline int skb_is_gso(const struct sk_buff *skb) 2211 { 2212 return skb_shinfo(skb)->gso_size; 2213 } 2214 2215 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2216 { 2217 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2218 } 2219 2220 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2221 2222 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2223 { 2224 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2225 * wanted then gso_type will be set. */ 2226 struct skb_shared_info *shinfo = skb_shinfo(skb); 2227 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2228 unlikely(shinfo->gso_type == 0)) { 2229 __skb_warn_lro_forwarding(skb); 2230 return true; 2231 } 2232 return false; 2233 } 2234 2235 static inline void skb_forward_csum(struct sk_buff *skb) 2236 { 2237 /* Unfortunately we don't support this one. Any brave souls? */ 2238 if (skb->ip_summed == CHECKSUM_COMPLETE) 2239 skb->ip_summed = CHECKSUM_NONE; 2240 } 2241 2242 /** 2243 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2244 * @skb: skb to check 2245 * 2246 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2247 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2248 * use this helper, to document places where we make this assertion. 2249 */ 2250 static inline void skb_checksum_none_assert(struct sk_buff *skb) 2251 { 2252 #ifdef DEBUG 2253 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2254 #endif 2255 } 2256 2257 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2258 #endif /* __KERNEL__ */ 2259 #endif /* _LINUX_SKBUFF_H */ 2260