xref: /linux-6.15/include/linux/skbuff.h (revision 77d1c8eb)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
133 	__u32 page_offset;
134 	__u32 size;
135 #else
136 	__u16 page_offset;
137 	__u16 size;
138 #endif
139 };
140 
141 #define HAVE_HW_TIME_STAMP
142 
143 /**
144  * struct skb_shared_hwtstamps - hardware time stamps
145  * @hwtstamp:	hardware time stamp transformed into duration
146  *		since arbitrary point in time
147  * @syststamp:	hwtstamp transformed to system time base
148  *
149  * Software time stamps generated by ktime_get_real() are stored in
150  * skb->tstamp. The relation between the different kinds of time
151  * stamps is as follows:
152  *
153  * syststamp and tstamp can be compared against each other in
154  * arbitrary combinations.  The accuracy of a
155  * syststamp/tstamp/"syststamp from other device" comparison is
156  * limited by the accuracy of the transformation into system time
157  * base. This depends on the device driver and its underlying
158  * hardware.
159  *
160  * hwtstamps can only be compared against other hwtstamps from
161  * the same device.
162  *
163  * This structure is attached to packets as part of the
164  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
165  */
166 struct skb_shared_hwtstamps {
167 	ktime_t	hwtstamp;
168 	ktime_t	syststamp;
169 };
170 
171 /* Definitions for tx_flags in struct skb_shared_info */
172 enum {
173 	/* generate hardware time stamp */
174 	SKBTX_HW_TSTAMP = 1 << 0,
175 
176 	/* generate software time stamp */
177 	SKBTX_SW_TSTAMP = 1 << 1,
178 
179 	/* device driver is going to provide hardware time stamp */
180 	SKBTX_IN_PROGRESS = 1 << 2,
181 
182 	/* ensure the originating sk reference is available on driver level */
183 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	unsigned short	nr_frags;
191 	unsigned short	gso_size;
192 	/* Warning: this field is not always filled in (UFO)! */
193 	unsigned short	gso_segs;
194 	unsigned short  gso_type;
195 	__be32          ip6_frag_id;
196 	__u8		tx_flags;
197 	struct sk_buff	*frag_list;
198 	struct skb_shared_hwtstamps hwtstamps;
199 
200 	/*
201 	 * Warning : all fields before dataref are cleared in __alloc_skb()
202 	 */
203 	atomic_t	dataref;
204 
205 	/* Intermediate layers must ensure that destructor_arg
206 	 * remains valid until skb destructor */
207 	void *		destructor_arg;
208 	/* must be last field, see pskb_expand_head() */
209 	skb_frag_t	frags[MAX_SKB_FRAGS];
210 };
211 
212 /* We divide dataref into two halves.  The higher 16 bits hold references
213  * to the payload part of skb->data.  The lower 16 bits hold references to
214  * the entire skb->data.  A clone of a headerless skb holds the length of
215  * the header in skb->hdr_len.
216  *
217  * All users must obey the rule that the skb->data reference count must be
218  * greater than or equal to the payload reference count.
219  *
220  * Holding a reference to the payload part means that the user does not
221  * care about modifications to the header part of skb->data.
222  */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225 
226 
227 enum {
228 	SKB_FCLONE_UNAVAILABLE,
229 	SKB_FCLONE_ORIG,
230 	SKB_FCLONE_CLONE,
231 };
232 
233 enum {
234 	SKB_GSO_TCPV4 = 1 << 0,
235 	SKB_GSO_UDP = 1 << 1,
236 
237 	/* This indicates the skb is from an untrusted source. */
238 	SKB_GSO_DODGY = 1 << 2,
239 
240 	/* This indicates the tcp segment has CWR set. */
241 	SKB_GSO_TCP_ECN = 1 << 3,
242 
243 	SKB_GSO_TCPV6 = 1 << 4,
244 
245 	SKB_GSO_FCOE = 1 << 5,
246 };
247 
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251 
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257 
258 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
259     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
260 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
261 #endif
262 
263 /**
264  *	struct sk_buff - socket buffer
265  *	@next: Next buffer in list
266  *	@prev: Previous buffer in list
267  *	@sk: Socket we are owned by
268  *	@tstamp: Time we arrived
269  *	@dev: Device we arrived on/are leaving by
270  *	@transport_header: Transport layer header
271  *	@network_header: Network layer header
272  *	@mac_header: Link layer header
273  *	@_skb_refdst: destination entry (with norefcount bit)
274  *	@sp: the security path, used for xfrm
275  *	@cb: Control buffer. Free for use by every layer. Put private vars here
276  *	@len: Length of actual data
277  *	@data_len: Data length
278  *	@mac_len: Length of link layer header
279  *	@hdr_len: writable header length of cloned skb
280  *	@csum: Checksum (must include start/offset pair)
281  *	@csum_start: Offset from skb->head where checksumming should start
282  *	@csum_offset: Offset from csum_start where checksum should be stored
283  *	@local_df: allow local fragmentation
284  *	@cloned: Head may be cloned (check refcnt to be sure)
285  *	@nohdr: Payload reference only, must not modify header
286  *	@pkt_type: Packet class
287  *	@fclone: skbuff clone status
288  *	@ip_summed: Driver fed us an IP checksum
289  *	@priority: Packet queueing priority
290  *	@users: User count - see {datagram,tcp}.c
291  *	@protocol: Packet protocol from driver
292  *	@truesize: Buffer size
293  *	@head: Head of buffer
294  *	@data: Data head pointer
295  *	@tail: Tail pointer
296  *	@end: End pointer
297  *	@destructor: Destruct function
298  *	@mark: Generic packet mark
299  *	@nfct: Associated connection, if any
300  *	@ipvs_property: skbuff is owned by ipvs
301  *	@peeked: this packet has been seen already, so stats have been
302  *		done for it, don't do them again
303  *	@nf_trace: netfilter packet trace flag
304  *	@nfctinfo: Relationship of this skb to the connection
305  *	@nfct_reasm: netfilter conntrack re-assembly pointer
306  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
307  *	@skb_iif: ifindex of device we arrived on
308  *	@rxhash: the packet hash computed on receive
309  *	@queue_mapping: Queue mapping for multiqueue devices
310  *	@tc_index: Traffic control index
311  *	@tc_verd: traffic control verdict
312  *	@ndisc_nodetype: router type (from link layer)
313  *	@dma_cookie: a cookie to one of several possible DMA operations
314  *		done by skb DMA functions
315  *	@secmark: security marking
316  *	@vlan_tci: vlan tag control information
317  */
318 
319 struct sk_buff {
320 	/* These two members must be first. */
321 	struct sk_buff		*next;
322 	struct sk_buff		*prev;
323 
324 	ktime_t			tstamp;
325 
326 	struct sock		*sk;
327 	struct net_device	*dev;
328 
329 	/*
330 	 * This is the control buffer. It is free to use for every
331 	 * layer. Please put your private variables there. If you
332 	 * want to keep them across layers you have to do a skb_clone()
333 	 * first. This is owned by whoever has the skb queued ATM.
334 	 */
335 	char			cb[48] __aligned(8);
336 
337 	unsigned long		_skb_refdst;
338 #ifdef CONFIG_XFRM
339 	struct	sec_path	*sp;
340 #endif
341 	unsigned int		len,
342 				data_len;
343 	__u16			mac_len,
344 				hdr_len;
345 	union {
346 		__wsum		csum;
347 		struct {
348 			__u16	csum_start;
349 			__u16	csum_offset;
350 		};
351 	};
352 	__u32			priority;
353 	kmemcheck_bitfield_begin(flags1);
354 	__u8			local_df:1,
355 				cloned:1,
356 				ip_summed:2,
357 				nohdr:1,
358 				nfctinfo:3;
359 	__u8			pkt_type:3,
360 				fclone:2,
361 				ipvs_property:1,
362 				peeked:1,
363 				nf_trace:1;
364 	kmemcheck_bitfield_end(flags1);
365 	__be16			protocol;
366 
367 	void			(*destructor)(struct sk_buff *skb);
368 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
369 	struct nf_conntrack	*nfct;
370 #endif
371 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
372 	struct sk_buff		*nfct_reasm;
373 #endif
374 #ifdef CONFIG_BRIDGE_NETFILTER
375 	struct nf_bridge_info	*nf_bridge;
376 #endif
377 
378 	int			skb_iif;
379 #ifdef CONFIG_NET_SCHED
380 	__u16			tc_index;	/* traffic control index */
381 #ifdef CONFIG_NET_CLS_ACT
382 	__u16			tc_verd;	/* traffic control verdict */
383 #endif
384 #endif
385 
386 	__u32			rxhash;
387 
388 	kmemcheck_bitfield_begin(flags2);
389 	__u16			queue_mapping:16;
390 #ifdef CONFIG_IPV6_NDISC_NODETYPE
391 	__u8			ndisc_nodetype:2;
392 #endif
393 	__u8			ooo_okay:1;
394 	kmemcheck_bitfield_end(flags2);
395 
396 	/* 0/13 bit hole */
397 
398 #ifdef CONFIG_NET_DMA
399 	dma_cookie_t		dma_cookie;
400 #endif
401 #ifdef CONFIG_NETWORK_SECMARK
402 	__u32			secmark;
403 #endif
404 	union {
405 		__u32		mark;
406 		__u32		dropcount;
407 	};
408 
409 	__u16			vlan_tci;
410 
411 	sk_buff_data_t		transport_header;
412 	sk_buff_data_t		network_header;
413 	sk_buff_data_t		mac_header;
414 	/* These elements must be at the end, see alloc_skb() for details.  */
415 	sk_buff_data_t		tail;
416 	sk_buff_data_t		end;
417 	unsigned char		*head,
418 				*data;
419 	unsigned int		truesize;
420 	atomic_t		users;
421 };
422 
423 #ifdef __KERNEL__
424 /*
425  *	Handling routines are only of interest to the kernel
426  */
427 #include <linux/slab.h>
428 
429 #include <asm/system.h>
430 
431 /*
432  * skb might have a dst pointer attached, refcounted or not.
433  * _skb_refdst low order bit is set if refcount was _not_ taken
434  */
435 #define SKB_DST_NOREF	1UL
436 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
437 
438 /**
439  * skb_dst - returns skb dst_entry
440  * @skb: buffer
441  *
442  * Returns skb dst_entry, regardless of reference taken or not.
443  */
444 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
445 {
446 	/* If refdst was not refcounted, check we still are in a
447 	 * rcu_read_lock section
448 	 */
449 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
450 		!rcu_read_lock_held() &&
451 		!rcu_read_lock_bh_held());
452 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
453 }
454 
455 /**
456  * skb_dst_set - sets skb dst
457  * @skb: buffer
458  * @dst: dst entry
459  *
460  * Sets skb dst, assuming a reference was taken on dst and should
461  * be released by skb_dst_drop()
462  */
463 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
464 {
465 	skb->_skb_refdst = (unsigned long)dst;
466 }
467 
468 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
469 
470 /**
471  * skb_dst_is_noref - Test if skb dst isnt refcounted
472  * @skb: buffer
473  */
474 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
475 {
476 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
477 }
478 
479 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
480 {
481 	return (struct rtable *)skb_dst(skb);
482 }
483 
484 extern void kfree_skb(struct sk_buff *skb);
485 extern void consume_skb(struct sk_buff *skb);
486 extern void	       __kfree_skb(struct sk_buff *skb);
487 extern struct sk_buff *__alloc_skb(unsigned int size,
488 				   gfp_t priority, int fclone, int node);
489 static inline struct sk_buff *alloc_skb(unsigned int size,
490 					gfp_t priority)
491 {
492 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
493 }
494 
495 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
496 					       gfp_t priority)
497 {
498 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
499 }
500 
501 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
502 
503 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
504 extern struct sk_buff *skb_clone(struct sk_buff *skb,
505 				 gfp_t priority);
506 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
507 				gfp_t priority);
508 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
509 				 gfp_t gfp_mask);
510 extern int	       pskb_expand_head(struct sk_buff *skb,
511 					int nhead, int ntail,
512 					gfp_t gfp_mask);
513 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
514 					    unsigned int headroom);
515 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
516 				       int newheadroom, int newtailroom,
517 				       gfp_t priority);
518 extern int	       skb_to_sgvec(struct sk_buff *skb,
519 				    struct scatterlist *sg, int offset,
520 				    int len);
521 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
522 				    struct sk_buff **trailer);
523 extern int	       skb_pad(struct sk_buff *skb, int pad);
524 #define dev_kfree_skb(a)	consume_skb(a)
525 
526 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
527 			int getfrag(void *from, char *to, int offset,
528 			int len,int odd, struct sk_buff *skb),
529 			void *from, int length);
530 
531 struct skb_seq_state {
532 	__u32		lower_offset;
533 	__u32		upper_offset;
534 	__u32		frag_idx;
535 	__u32		stepped_offset;
536 	struct sk_buff	*root_skb;
537 	struct sk_buff	*cur_skb;
538 	__u8		*frag_data;
539 };
540 
541 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
542 					   unsigned int from, unsigned int to,
543 					   struct skb_seq_state *st);
544 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
545 				   struct skb_seq_state *st);
546 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
547 
548 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
549 				    unsigned int to, struct ts_config *config,
550 				    struct ts_state *state);
551 
552 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
553 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
554 {
555 	if (!skb->rxhash)
556 		skb->rxhash = __skb_get_rxhash(skb);
557 
558 	return skb->rxhash;
559 }
560 
561 #ifdef NET_SKBUFF_DATA_USES_OFFSET
562 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
563 {
564 	return skb->head + skb->end;
565 }
566 #else
567 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
568 {
569 	return skb->end;
570 }
571 #endif
572 
573 /* Internal */
574 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
575 
576 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
577 {
578 	return &skb_shinfo(skb)->hwtstamps;
579 }
580 
581 /**
582  *	skb_queue_empty - check if a queue is empty
583  *	@list: queue head
584  *
585  *	Returns true if the queue is empty, false otherwise.
586  */
587 static inline int skb_queue_empty(const struct sk_buff_head *list)
588 {
589 	return list->next == (struct sk_buff *)list;
590 }
591 
592 /**
593  *	skb_queue_is_last - check if skb is the last entry in the queue
594  *	@list: queue head
595  *	@skb: buffer
596  *
597  *	Returns true if @skb is the last buffer on the list.
598  */
599 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
600 				     const struct sk_buff *skb)
601 {
602 	return skb->next == (struct sk_buff *)list;
603 }
604 
605 /**
606  *	skb_queue_is_first - check if skb is the first entry in the queue
607  *	@list: queue head
608  *	@skb: buffer
609  *
610  *	Returns true if @skb is the first buffer on the list.
611  */
612 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
613 				      const struct sk_buff *skb)
614 {
615 	return skb->prev == (struct sk_buff *)list;
616 }
617 
618 /**
619  *	skb_queue_next - return the next packet in the queue
620  *	@list: queue head
621  *	@skb: current buffer
622  *
623  *	Return the next packet in @list after @skb.  It is only valid to
624  *	call this if skb_queue_is_last() evaluates to false.
625  */
626 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
627 					     const struct sk_buff *skb)
628 {
629 	/* This BUG_ON may seem severe, but if we just return then we
630 	 * are going to dereference garbage.
631 	 */
632 	BUG_ON(skb_queue_is_last(list, skb));
633 	return skb->next;
634 }
635 
636 /**
637  *	skb_queue_prev - return the prev packet in the queue
638  *	@list: queue head
639  *	@skb: current buffer
640  *
641  *	Return the prev packet in @list before @skb.  It is only valid to
642  *	call this if skb_queue_is_first() evaluates to false.
643  */
644 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
645 					     const struct sk_buff *skb)
646 {
647 	/* This BUG_ON may seem severe, but if we just return then we
648 	 * are going to dereference garbage.
649 	 */
650 	BUG_ON(skb_queue_is_first(list, skb));
651 	return skb->prev;
652 }
653 
654 /**
655  *	skb_get - reference buffer
656  *	@skb: buffer to reference
657  *
658  *	Makes another reference to a socket buffer and returns a pointer
659  *	to the buffer.
660  */
661 static inline struct sk_buff *skb_get(struct sk_buff *skb)
662 {
663 	atomic_inc(&skb->users);
664 	return skb;
665 }
666 
667 /*
668  * If users == 1, we are the only owner and are can avoid redundant
669  * atomic change.
670  */
671 
672 /**
673  *	skb_cloned - is the buffer a clone
674  *	@skb: buffer to check
675  *
676  *	Returns true if the buffer was generated with skb_clone() and is
677  *	one of multiple shared copies of the buffer. Cloned buffers are
678  *	shared data so must not be written to under normal circumstances.
679  */
680 static inline int skb_cloned(const struct sk_buff *skb)
681 {
682 	return skb->cloned &&
683 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
684 }
685 
686 /**
687  *	skb_header_cloned - is the header a clone
688  *	@skb: buffer to check
689  *
690  *	Returns true if modifying the header part of the buffer requires
691  *	the data to be copied.
692  */
693 static inline int skb_header_cloned(const struct sk_buff *skb)
694 {
695 	int dataref;
696 
697 	if (!skb->cloned)
698 		return 0;
699 
700 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
701 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
702 	return dataref != 1;
703 }
704 
705 /**
706  *	skb_header_release - release reference to header
707  *	@skb: buffer to operate on
708  *
709  *	Drop a reference to the header part of the buffer.  This is done
710  *	by acquiring a payload reference.  You must not read from the header
711  *	part of skb->data after this.
712  */
713 static inline void skb_header_release(struct sk_buff *skb)
714 {
715 	BUG_ON(skb->nohdr);
716 	skb->nohdr = 1;
717 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
718 }
719 
720 /**
721  *	skb_shared - is the buffer shared
722  *	@skb: buffer to check
723  *
724  *	Returns true if more than one person has a reference to this
725  *	buffer.
726  */
727 static inline int skb_shared(const struct sk_buff *skb)
728 {
729 	return atomic_read(&skb->users) != 1;
730 }
731 
732 /**
733  *	skb_share_check - check if buffer is shared and if so clone it
734  *	@skb: buffer to check
735  *	@pri: priority for memory allocation
736  *
737  *	If the buffer is shared the buffer is cloned and the old copy
738  *	drops a reference. A new clone with a single reference is returned.
739  *	If the buffer is not shared the original buffer is returned. When
740  *	being called from interrupt status or with spinlocks held pri must
741  *	be GFP_ATOMIC.
742  *
743  *	NULL is returned on a memory allocation failure.
744  */
745 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
746 					      gfp_t pri)
747 {
748 	might_sleep_if(pri & __GFP_WAIT);
749 	if (skb_shared(skb)) {
750 		struct sk_buff *nskb = skb_clone(skb, pri);
751 		kfree_skb(skb);
752 		skb = nskb;
753 	}
754 	return skb;
755 }
756 
757 /*
758  *	Copy shared buffers into a new sk_buff. We effectively do COW on
759  *	packets to handle cases where we have a local reader and forward
760  *	and a couple of other messy ones. The normal one is tcpdumping
761  *	a packet thats being forwarded.
762  */
763 
764 /**
765  *	skb_unshare - make a copy of a shared buffer
766  *	@skb: buffer to check
767  *	@pri: priority for memory allocation
768  *
769  *	If the socket buffer is a clone then this function creates a new
770  *	copy of the data, drops a reference count on the old copy and returns
771  *	the new copy with the reference count at 1. If the buffer is not a clone
772  *	the original buffer is returned. When called with a spinlock held or
773  *	from interrupt state @pri must be %GFP_ATOMIC
774  *
775  *	%NULL is returned on a memory allocation failure.
776  */
777 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
778 					  gfp_t pri)
779 {
780 	might_sleep_if(pri & __GFP_WAIT);
781 	if (skb_cloned(skb)) {
782 		struct sk_buff *nskb = skb_copy(skb, pri);
783 		kfree_skb(skb);	/* Free our shared copy */
784 		skb = nskb;
785 	}
786 	return skb;
787 }
788 
789 /**
790  *	skb_peek - peek at the head of an &sk_buff_head
791  *	@list_: list to peek at
792  *
793  *	Peek an &sk_buff. Unlike most other operations you _MUST_
794  *	be careful with this one. A peek leaves the buffer on the
795  *	list and someone else may run off with it. You must hold
796  *	the appropriate locks or have a private queue to do this.
797  *
798  *	Returns %NULL for an empty list or a pointer to the head element.
799  *	The reference count is not incremented and the reference is therefore
800  *	volatile. Use with caution.
801  */
802 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
803 {
804 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
805 	if (list == (struct sk_buff *)list_)
806 		list = NULL;
807 	return list;
808 }
809 
810 /**
811  *	skb_peek_tail - peek at the tail of an &sk_buff_head
812  *	@list_: list to peek at
813  *
814  *	Peek an &sk_buff. Unlike most other operations you _MUST_
815  *	be careful with this one. A peek leaves the buffer on the
816  *	list and someone else may run off with it. You must hold
817  *	the appropriate locks or have a private queue to do this.
818  *
819  *	Returns %NULL for an empty list or a pointer to the tail element.
820  *	The reference count is not incremented and the reference is therefore
821  *	volatile. Use with caution.
822  */
823 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
824 {
825 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
826 	if (list == (struct sk_buff *)list_)
827 		list = NULL;
828 	return list;
829 }
830 
831 /**
832  *	skb_queue_len	- get queue length
833  *	@list_: list to measure
834  *
835  *	Return the length of an &sk_buff queue.
836  */
837 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
838 {
839 	return list_->qlen;
840 }
841 
842 /**
843  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
844  *	@list: queue to initialize
845  *
846  *	This initializes only the list and queue length aspects of
847  *	an sk_buff_head object.  This allows to initialize the list
848  *	aspects of an sk_buff_head without reinitializing things like
849  *	the spinlock.  It can also be used for on-stack sk_buff_head
850  *	objects where the spinlock is known to not be used.
851  */
852 static inline void __skb_queue_head_init(struct sk_buff_head *list)
853 {
854 	list->prev = list->next = (struct sk_buff *)list;
855 	list->qlen = 0;
856 }
857 
858 /*
859  * This function creates a split out lock class for each invocation;
860  * this is needed for now since a whole lot of users of the skb-queue
861  * infrastructure in drivers have different locking usage (in hardirq)
862  * than the networking core (in softirq only). In the long run either the
863  * network layer or drivers should need annotation to consolidate the
864  * main types of usage into 3 classes.
865  */
866 static inline void skb_queue_head_init(struct sk_buff_head *list)
867 {
868 	spin_lock_init(&list->lock);
869 	__skb_queue_head_init(list);
870 }
871 
872 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
873 		struct lock_class_key *class)
874 {
875 	skb_queue_head_init(list);
876 	lockdep_set_class(&list->lock, class);
877 }
878 
879 /*
880  *	Insert an sk_buff on a list.
881  *
882  *	The "__skb_xxxx()" functions are the non-atomic ones that
883  *	can only be called with interrupts disabled.
884  */
885 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
886 static inline void __skb_insert(struct sk_buff *newsk,
887 				struct sk_buff *prev, struct sk_buff *next,
888 				struct sk_buff_head *list)
889 {
890 	newsk->next = next;
891 	newsk->prev = prev;
892 	next->prev  = prev->next = newsk;
893 	list->qlen++;
894 }
895 
896 static inline void __skb_queue_splice(const struct sk_buff_head *list,
897 				      struct sk_buff *prev,
898 				      struct sk_buff *next)
899 {
900 	struct sk_buff *first = list->next;
901 	struct sk_buff *last = list->prev;
902 
903 	first->prev = prev;
904 	prev->next = first;
905 
906 	last->next = next;
907 	next->prev = last;
908 }
909 
910 /**
911  *	skb_queue_splice - join two skb lists, this is designed for stacks
912  *	@list: the new list to add
913  *	@head: the place to add it in the first list
914  */
915 static inline void skb_queue_splice(const struct sk_buff_head *list,
916 				    struct sk_buff_head *head)
917 {
918 	if (!skb_queue_empty(list)) {
919 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
920 		head->qlen += list->qlen;
921 	}
922 }
923 
924 /**
925  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
926  *	@list: the new list to add
927  *	@head: the place to add it in the first list
928  *
929  *	The list at @list is reinitialised
930  */
931 static inline void skb_queue_splice_init(struct sk_buff_head *list,
932 					 struct sk_buff_head *head)
933 {
934 	if (!skb_queue_empty(list)) {
935 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
936 		head->qlen += list->qlen;
937 		__skb_queue_head_init(list);
938 	}
939 }
940 
941 /**
942  *	skb_queue_splice_tail - join two skb lists, each list being a queue
943  *	@list: the new list to add
944  *	@head: the place to add it in the first list
945  */
946 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
947 					 struct sk_buff_head *head)
948 {
949 	if (!skb_queue_empty(list)) {
950 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
951 		head->qlen += list->qlen;
952 	}
953 }
954 
955 /**
956  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
957  *	@list: the new list to add
958  *	@head: the place to add it in the first list
959  *
960  *	Each of the lists is a queue.
961  *	The list at @list is reinitialised
962  */
963 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
964 					      struct sk_buff_head *head)
965 {
966 	if (!skb_queue_empty(list)) {
967 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
968 		head->qlen += list->qlen;
969 		__skb_queue_head_init(list);
970 	}
971 }
972 
973 /**
974  *	__skb_queue_after - queue a buffer at the list head
975  *	@list: list to use
976  *	@prev: place after this buffer
977  *	@newsk: buffer to queue
978  *
979  *	Queue a buffer int the middle of a list. This function takes no locks
980  *	and you must therefore hold required locks before calling it.
981  *
982  *	A buffer cannot be placed on two lists at the same time.
983  */
984 static inline void __skb_queue_after(struct sk_buff_head *list,
985 				     struct sk_buff *prev,
986 				     struct sk_buff *newsk)
987 {
988 	__skb_insert(newsk, prev, prev->next, list);
989 }
990 
991 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
992 		       struct sk_buff_head *list);
993 
994 static inline void __skb_queue_before(struct sk_buff_head *list,
995 				      struct sk_buff *next,
996 				      struct sk_buff *newsk)
997 {
998 	__skb_insert(newsk, next->prev, next, list);
999 }
1000 
1001 /**
1002  *	__skb_queue_head - queue a buffer at the list head
1003  *	@list: list to use
1004  *	@newsk: buffer to queue
1005  *
1006  *	Queue a buffer at the start of a list. This function takes no locks
1007  *	and you must therefore hold required locks before calling it.
1008  *
1009  *	A buffer cannot be placed on two lists at the same time.
1010  */
1011 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1012 static inline void __skb_queue_head(struct sk_buff_head *list,
1013 				    struct sk_buff *newsk)
1014 {
1015 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1016 }
1017 
1018 /**
1019  *	__skb_queue_tail - queue a buffer at the list tail
1020  *	@list: list to use
1021  *	@newsk: buffer to queue
1022  *
1023  *	Queue a buffer at the end of a list. This function takes no locks
1024  *	and you must therefore hold required locks before calling it.
1025  *
1026  *	A buffer cannot be placed on two lists at the same time.
1027  */
1028 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1029 static inline void __skb_queue_tail(struct sk_buff_head *list,
1030 				   struct sk_buff *newsk)
1031 {
1032 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1033 }
1034 
1035 /*
1036  * remove sk_buff from list. _Must_ be called atomically, and with
1037  * the list known..
1038  */
1039 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1040 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1041 {
1042 	struct sk_buff *next, *prev;
1043 
1044 	list->qlen--;
1045 	next	   = skb->next;
1046 	prev	   = skb->prev;
1047 	skb->next  = skb->prev = NULL;
1048 	next->prev = prev;
1049 	prev->next = next;
1050 }
1051 
1052 /**
1053  *	__skb_dequeue - remove from the head of the queue
1054  *	@list: list to dequeue from
1055  *
1056  *	Remove the head of the list. This function does not take any locks
1057  *	so must be used with appropriate locks held only. The head item is
1058  *	returned or %NULL if the list is empty.
1059  */
1060 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1061 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1062 {
1063 	struct sk_buff *skb = skb_peek(list);
1064 	if (skb)
1065 		__skb_unlink(skb, list);
1066 	return skb;
1067 }
1068 
1069 /**
1070  *	__skb_dequeue_tail - remove from the tail of the queue
1071  *	@list: list to dequeue from
1072  *
1073  *	Remove the tail of the list. This function does not take any locks
1074  *	so must be used with appropriate locks held only. The tail item is
1075  *	returned or %NULL if the list is empty.
1076  */
1077 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1078 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1079 {
1080 	struct sk_buff *skb = skb_peek_tail(list);
1081 	if (skb)
1082 		__skb_unlink(skb, list);
1083 	return skb;
1084 }
1085 
1086 
1087 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1088 {
1089 	return skb->data_len;
1090 }
1091 
1092 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1093 {
1094 	return skb->len - skb->data_len;
1095 }
1096 
1097 static inline int skb_pagelen(const struct sk_buff *skb)
1098 {
1099 	int i, len = 0;
1100 
1101 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1102 		len += skb_shinfo(skb)->frags[i].size;
1103 	return len + skb_headlen(skb);
1104 }
1105 
1106 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1107 				      struct page *page, int off, int size)
1108 {
1109 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1110 
1111 	frag->page		  = page;
1112 	frag->page_offset	  = off;
1113 	frag->size		  = size;
1114 	skb_shinfo(skb)->nr_frags = i + 1;
1115 }
1116 
1117 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1118 			    int off, int size);
1119 
1120 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1121 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1122 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1123 
1124 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1125 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1126 {
1127 	return skb->head + skb->tail;
1128 }
1129 
1130 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1131 {
1132 	skb->tail = skb->data - skb->head;
1133 }
1134 
1135 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1136 {
1137 	skb_reset_tail_pointer(skb);
1138 	skb->tail += offset;
1139 }
1140 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1141 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1142 {
1143 	return skb->tail;
1144 }
1145 
1146 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1147 {
1148 	skb->tail = skb->data;
1149 }
1150 
1151 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1152 {
1153 	skb->tail = skb->data + offset;
1154 }
1155 
1156 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1157 
1158 /*
1159  *	Add data to an sk_buff
1160  */
1161 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1162 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1163 {
1164 	unsigned char *tmp = skb_tail_pointer(skb);
1165 	SKB_LINEAR_ASSERT(skb);
1166 	skb->tail += len;
1167 	skb->len  += len;
1168 	return tmp;
1169 }
1170 
1171 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1172 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1173 {
1174 	skb->data -= len;
1175 	skb->len  += len;
1176 	return skb->data;
1177 }
1178 
1179 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1180 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1181 {
1182 	skb->len -= len;
1183 	BUG_ON(skb->len < skb->data_len);
1184 	return skb->data += len;
1185 }
1186 
1187 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1188 {
1189 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1190 }
1191 
1192 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1193 
1194 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1195 {
1196 	if (len > skb_headlen(skb) &&
1197 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1198 		return NULL;
1199 	skb->len -= len;
1200 	return skb->data += len;
1201 }
1202 
1203 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1204 {
1205 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1206 }
1207 
1208 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1209 {
1210 	if (likely(len <= skb_headlen(skb)))
1211 		return 1;
1212 	if (unlikely(len > skb->len))
1213 		return 0;
1214 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1215 }
1216 
1217 /**
1218  *	skb_headroom - bytes at buffer head
1219  *	@skb: buffer to check
1220  *
1221  *	Return the number of bytes of free space at the head of an &sk_buff.
1222  */
1223 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1224 {
1225 	return skb->data - skb->head;
1226 }
1227 
1228 /**
1229  *	skb_tailroom - bytes at buffer end
1230  *	@skb: buffer to check
1231  *
1232  *	Return the number of bytes of free space at the tail of an sk_buff
1233  */
1234 static inline int skb_tailroom(const struct sk_buff *skb)
1235 {
1236 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1237 }
1238 
1239 /**
1240  *	skb_reserve - adjust headroom
1241  *	@skb: buffer to alter
1242  *	@len: bytes to move
1243  *
1244  *	Increase the headroom of an empty &sk_buff by reducing the tail
1245  *	room. This is only allowed for an empty buffer.
1246  */
1247 static inline void skb_reserve(struct sk_buff *skb, int len)
1248 {
1249 	skb->data += len;
1250 	skb->tail += len;
1251 }
1252 
1253 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1254 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1255 {
1256 	return skb->head + skb->transport_header;
1257 }
1258 
1259 static inline void skb_reset_transport_header(struct sk_buff *skb)
1260 {
1261 	skb->transport_header = skb->data - skb->head;
1262 }
1263 
1264 static inline void skb_set_transport_header(struct sk_buff *skb,
1265 					    const int offset)
1266 {
1267 	skb_reset_transport_header(skb);
1268 	skb->transport_header += offset;
1269 }
1270 
1271 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1272 {
1273 	return skb->head + skb->network_header;
1274 }
1275 
1276 static inline void skb_reset_network_header(struct sk_buff *skb)
1277 {
1278 	skb->network_header = skb->data - skb->head;
1279 }
1280 
1281 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1282 {
1283 	skb_reset_network_header(skb);
1284 	skb->network_header += offset;
1285 }
1286 
1287 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1288 {
1289 	return skb->head + skb->mac_header;
1290 }
1291 
1292 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1293 {
1294 	return skb->mac_header != ~0U;
1295 }
1296 
1297 static inline void skb_reset_mac_header(struct sk_buff *skb)
1298 {
1299 	skb->mac_header = skb->data - skb->head;
1300 }
1301 
1302 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1303 {
1304 	skb_reset_mac_header(skb);
1305 	skb->mac_header += offset;
1306 }
1307 
1308 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1309 
1310 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1311 {
1312 	return skb->transport_header;
1313 }
1314 
1315 static inline void skb_reset_transport_header(struct sk_buff *skb)
1316 {
1317 	skb->transport_header = skb->data;
1318 }
1319 
1320 static inline void skb_set_transport_header(struct sk_buff *skb,
1321 					    const int offset)
1322 {
1323 	skb->transport_header = skb->data + offset;
1324 }
1325 
1326 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1327 {
1328 	return skb->network_header;
1329 }
1330 
1331 static inline void skb_reset_network_header(struct sk_buff *skb)
1332 {
1333 	skb->network_header = skb->data;
1334 }
1335 
1336 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1337 {
1338 	skb->network_header = skb->data + offset;
1339 }
1340 
1341 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1342 {
1343 	return skb->mac_header;
1344 }
1345 
1346 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1347 {
1348 	return skb->mac_header != NULL;
1349 }
1350 
1351 static inline void skb_reset_mac_header(struct sk_buff *skb)
1352 {
1353 	skb->mac_header = skb->data;
1354 }
1355 
1356 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1357 {
1358 	skb->mac_header = skb->data + offset;
1359 }
1360 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1361 
1362 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1363 {
1364 	return skb->csum_start - skb_headroom(skb);
1365 }
1366 
1367 static inline int skb_transport_offset(const struct sk_buff *skb)
1368 {
1369 	return skb_transport_header(skb) - skb->data;
1370 }
1371 
1372 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1373 {
1374 	return skb->transport_header - skb->network_header;
1375 }
1376 
1377 static inline int skb_network_offset(const struct sk_buff *skb)
1378 {
1379 	return skb_network_header(skb) - skb->data;
1380 }
1381 
1382 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1383 {
1384 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1385 }
1386 
1387 /*
1388  * CPUs often take a performance hit when accessing unaligned memory
1389  * locations. The actual performance hit varies, it can be small if the
1390  * hardware handles it or large if we have to take an exception and fix it
1391  * in software.
1392  *
1393  * Since an ethernet header is 14 bytes network drivers often end up with
1394  * the IP header at an unaligned offset. The IP header can be aligned by
1395  * shifting the start of the packet by 2 bytes. Drivers should do this
1396  * with:
1397  *
1398  * skb_reserve(skb, NET_IP_ALIGN);
1399  *
1400  * The downside to this alignment of the IP header is that the DMA is now
1401  * unaligned. On some architectures the cost of an unaligned DMA is high
1402  * and this cost outweighs the gains made by aligning the IP header.
1403  *
1404  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1405  * to be overridden.
1406  */
1407 #ifndef NET_IP_ALIGN
1408 #define NET_IP_ALIGN	2
1409 #endif
1410 
1411 /*
1412  * The networking layer reserves some headroom in skb data (via
1413  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1414  * the header has to grow. In the default case, if the header has to grow
1415  * 32 bytes or less we avoid the reallocation.
1416  *
1417  * Unfortunately this headroom changes the DMA alignment of the resulting
1418  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1419  * on some architectures. An architecture can override this value,
1420  * perhaps setting it to a cacheline in size (since that will maintain
1421  * cacheline alignment of the DMA). It must be a power of 2.
1422  *
1423  * Various parts of the networking layer expect at least 32 bytes of
1424  * headroom, you should not reduce this.
1425  *
1426  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1427  * to reduce average number of cache lines per packet.
1428  * get_rps_cpus() for example only access one 64 bytes aligned block :
1429  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1430  */
1431 #ifndef NET_SKB_PAD
1432 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1433 #endif
1434 
1435 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1436 
1437 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1438 {
1439 	if (unlikely(skb->data_len)) {
1440 		WARN_ON(1);
1441 		return;
1442 	}
1443 	skb->len = len;
1444 	skb_set_tail_pointer(skb, len);
1445 }
1446 
1447 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1448 
1449 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1450 {
1451 	if (skb->data_len)
1452 		return ___pskb_trim(skb, len);
1453 	__skb_trim(skb, len);
1454 	return 0;
1455 }
1456 
1457 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1458 {
1459 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1460 }
1461 
1462 /**
1463  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1464  *	@skb: buffer to alter
1465  *	@len: new length
1466  *
1467  *	This is identical to pskb_trim except that the caller knows that
1468  *	the skb is not cloned so we should never get an error due to out-
1469  *	of-memory.
1470  */
1471 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1472 {
1473 	int err = pskb_trim(skb, len);
1474 	BUG_ON(err);
1475 }
1476 
1477 /**
1478  *	skb_orphan - orphan a buffer
1479  *	@skb: buffer to orphan
1480  *
1481  *	If a buffer currently has an owner then we call the owner's
1482  *	destructor function and make the @skb unowned. The buffer continues
1483  *	to exist but is no longer charged to its former owner.
1484  */
1485 static inline void skb_orphan(struct sk_buff *skb)
1486 {
1487 	if (skb->destructor)
1488 		skb->destructor(skb);
1489 	skb->destructor = NULL;
1490 	skb->sk		= NULL;
1491 }
1492 
1493 /**
1494  *	__skb_queue_purge - empty a list
1495  *	@list: list to empty
1496  *
1497  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1498  *	the list and one reference dropped. This function does not take the
1499  *	list lock and the caller must hold the relevant locks to use it.
1500  */
1501 extern void skb_queue_purge(struct sk_buff_head *list);
1502 static inline void __skb_queue_purge(struct sk_buff_head *list)
1503 {
1504 	struct sk_buff *skb;
1505 	while ((skb = __skb_dequeue(list)) != NULL)
1506 		kfree_skb(skb);
1507 }
1508 
1509 /**
1510  *	__dev_alloc_skb - allocate an skbuff for receiving
1511  *	@length: length to allocate
1512  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1513  *
1514  *	Allocate a new &sk_buff and assign it a usage count of one. The
1515  *	buffer has unspecified headroom built in. Users should allocate
1516  *	the headroom they think they need without accounting for the
1517  *	built in space. The built in space is used for optimisations.
1518  *
1519  *	%NULL is returned if there is no free memory.
1520  */
1521 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1522 					      gfp_t gfp_mask)
1523 {
1524 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1525 	if (likely(skb))
1526 		skb_reserve(skb, NET_SKB_PAD);
1527 	return skb;
1528 }
1529 
1530 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1531 
1532 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1533 		unsigned int length, gfp_t gfp_mask);
1534 
1535 /**
1536  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1537  *	@dev: network device to receive on
1538  *	@length: length to allocate
1539  *
1540  *	Allocate a new &sk_buff and assign it a usage count of one. The
1541  *	buffer has unspecified headroom built in. Users should allocate
1542  *	the headroom they think they need without accounting for the
1543  *	built in space. The built in space is used for optimisations.
1544  *
1545  *	%NULL is returned if there is no free memory. Although this function
1546  *	allocates memory it can be called from an interrupt.
1547  */
1548 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1549 		unsigned int length)
1550 {
1551 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1552 }
1553 
1554 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1555 		unsigned int length)
1556 {
1557 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1558 
1559 	if (NET_IP_ALIGN && skb)
1560 		skb_reserve(skb, NET_IP_ALIGN);
1561 	return skb;
1562 }
1563 
1564 /**
1565  *	__netdev_alloc_page - allocate a page for ps-rx on a specific device
1566  *	@dev: network device to receive on
1567  *	@gfp_mask: alloc_pages_node mask
1568  *
1569  * 	Allocate a new page. dev currently unused.
1570  *
1571  * 	%NULL is returned if there is no free memory.
1572  */
1573 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1574 {
1575 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1576 }
1577 
1578 /**
1579  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1580  *	@dev: network device to receive on
1581  *
1582  * 	Allocate a new page. dev currently unused.
1583  *
1584  * 	%NULL is returned if there is no free memory.
1585  */
1586 static inline struct page *netdev_alloc_page(struct net_device *dev)
1587 {
1588 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1589 }
1590 
1591 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1592 {
1593 	__free_page(page);
1594 }
1595 
1596 /**
1597  *	skb_clone_writable - is the header of a clone writable
1598  *	@skb: buffer to check
1599  *	@len: length up to which to write
1600  *
1601  *	Returns true if modifying the header part of the cloned buffer
1602  *	does not requires the data to be copied.
1603  */
1604 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1605 {
1606 	return !skb_header_cloned(skb) &&
1607 	       skb_headroom(skb) + len <= skb->hdr_len;
1608 }
1609 
1610 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1611 			    int cloned)
1612 {
1613 	int delta = 0;
1614 
1615 	if (headroom < NET_SKB_PAD)
1616 		headroom = NET_SKB_PAD;
1617 	if (headroom > skb_headroom(skb))
1618 		delta = headroom - skb_headroom(skb);
1619 
1620 	if (delta || cloned)
1621 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1622 					GFP_ATOMIC);
1623 	return 0;
1624 }
1625 
1626 /**
1627  *	skb_cow - copy header of skb when it is required
1628  *	@skb: buffer to cow
1629  *	@headroom: needed headroom
1630  *
1631  *	If the skb passed lacks sufficient headroom or its data part
1632  *	is shared, data is reallocated. If reallocation fails, an error
1633  *	is returned and original skb is not changed.
1634  *
1635  *	The result is skb with writable area skb->head...skb->tail
1636  *	and at least @headroom of space at head.
1637  */
1638 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1639 {
1640 	return __skb_cow(skb, headroom, skb_cloned(skb));
1641 }
1642 
1643 /**
1644  *	skb_cow_head - skb_cow but only making the head writable
1645  *	@skb: buffer to cow
1646  *	@headroom: needed headroom
1647  *
1648  *	This function is identical to skb_cow except that we replace the
1649  *	skb_cloned check by skb_header_cloned.  It should be used when
1650  *	you only need to push on some header and do not need to modify
1651  *	the data.
1652  */
1653 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1654 {
1655 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1656 }
1657 
1658 /**
1659  *	skb_padto	- pad an skbuff up to a minimal size
1660  *	@skb: buffer to pad
1661  *	@len: minimal length
1662  *
1663  *	Pads up a buffer to ensure the trailing bytes exist and are
1664  *	blanked. If the buffer already contains sufficient data it
1665  *	is untouched. Otherwise it is extended. Returns zero on
1666  *	success. The skb is freed on error.
1667  */
1668 
1669 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1670 {
1671 	unsigned int size = skb->len;
1672 	if (likely(size >= len))
1673 		return 0;
1674 	return skb_pad(skb, len - size);
1675 }
1676 
1677 static inline int skb_add_data(struct sk_buff *skb,
1678 			       char __user *from, int copy)
1679 {
1680 	const int off = skb->len;
1681 
1682 	if (skb->ip_summed == CHECKSUM_NONE) {
1683 		int err = 0;
1684 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1685 							    copy, 0, &err);
1686 		if (!err) {
1687 			skb->csum = csum_block_add(skb->csum, csum, off);
1688 			return 0;
1689 		}
1690 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1691 		return 0;
1692 
1693 	__skb_trim(skb, off);
1694 	return -EFAULT;
1695 }
1696 
1697 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1698 				   struct page *page, int off)
1699 {
1700 	if (i) {
1701 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1702 
1703 		return page == frag->page &&
1704 		       off == frag->page_offset + frag->size;
1705 	}
1706 	return 0;
1707 }
1708 
1709 static inline int __skb_linearize(struct sk_buff *skb)
1710 {
1711 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1712 }
1713 
1714 /**
1715  *	skb_linearize - convert paged skb to linear one
1716  *	@skb: buffer to linarize
1717  *
1718  *	If there is no free memory -ENOMEM is returned, otherwise zero
1719  *	is returned and the old skb data released.
1720  */
1721 static inline int skb_linearize(struct sk_buff *skb)
1722 {
1723 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1724 }
1725 
1726 /**
1727  *	skb_linearize_cow - make sure skb is linear and writable
1728  *	@skb: buffer to process
1729  *
1730  *	If there is no free memory -ENOMEM is returned, otherwise zero
1731  *	is returned and the old skb data released.
1732  */
1733 static inline int skb_linearize_cow(struct sk_buff *skb)
1734 {
1735 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1736 	       __skb_linearize(skb) : 0;
1737 }
1738 
1739 /**
1740  *	skb_postpull_rcsum - update checksum for received skb after pull
1741  *	@skb: buffer to update
1742  *	@start: start of data before pull
1743  *	@len: length of data pulled
1744  *
1745  *	After doing a pull on a received packet, you need to call this to
1746  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1747  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1748  */
1749 
1750 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1751 				      const void *start, unsigned int len)
1752 {
1753 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1754 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1755 }
1756 
1757 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1758 
1759 /**
1760  *	pskb_trim_rcsum - trim received skb and update checksum
1761  *	@skb: buffer to trim
1762  *	@len: new length
1763  *
1764  *	This is exactly the same as pskb_trim except that it ensures the
1765  *	checksum of received packets are still valid after the operation.
1766  */
1767 
1768 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1769 {
1770 	if (likely(len >= skb->len))
1771 		return 0;
1772 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1773 		skb->ip_summed = CHECKSUM_NONE;
1774 	return __pskb_trim(skb, len);
1775 }
1776 
1777 #define skb_queue_walk(queue, skb) \
1778 		for (skb = (queue)->next;					\
1779 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1780 		     skb = skb->next)
1781 
1782 #define skb_queue_walk_safe(queue, skb, tmp)					\
1783 		for (skb = (queue)->next, tmp = skb->next;			\
1784 		     skb != (struct sk_buff *)(queue);				\
1785 		     skb = tmp, tmp = skb->next)
1786 
1787 #define skb_queue_walk_from(queue, skb)						\
1788 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1789 		     skb = skb->next)
1790 
1791 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1792 		for (tmp = skb->next;						\
1793 		     skb != (struct sk_buff *)(queue);				\
1794 		     skb = tmp, tmp = skb->next)
1795 
1796 #define skb_queue_reverse_walk(queue, skb) \
1797 		for (skb = (queue)->prev;					\
1798 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1799 		     skb = skb->prev)
1800 
1801 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
1802 		for (skb = (queue)->prev, tmp = skb->prev;			\
1803 		     skb != (struct sk_buff *)(queue);				\
1804 		     skb = tmp, tmp = skb->prev)
1805 
1806 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
1807 		for (tmp = skb->prev;						\
1808 		     skb != (struct sk_buff *)(queue);				\
1809 		     skb = tmp, tmp = skb->prev)
1810 
1811 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1812 {
1813 	return skb_shinfo(skb)->frag_list != NULL;
1814 }
1815 
1816 static inline void skb_frag_list_init(struct sk_buff *skb)
1817 {
1818 	skb_shinfo(skb)->frag_list = NULL;
1819 }
1820 
1821 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1822 {
1823 	frag->next = skb_shinfo(skb)->frag_list;
1824 	skb_shinfo(skb)->frag_list = frag;
1825 }
1826 
1827 #define skb_walk_frags(skb, iter)	\
1828 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1829 
1830 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1831 					   int *peeked, int *err);
1832 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1833 					 int noblock, int *err);
1834 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1835 				     struct poll_table_struct *wait);
1836 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1837 					       int offset, struct iovec *to,
1838 					       int size);
1839 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1840 							int hlen,
1841 							struct iovec *iov);
1842 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1843 						    int offset,
1844 						    const struct iovec *from,
1845 						    int from_offset,
1846 						    int len);
1847 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1848 						     int offset,
1849 						     const struct iovec *to,
1850 						     int to_offset,
1851 						     int size);
1852 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1853 extern void	       skb_free_datagram_locked(struct sock *sk,
1854 						struct sk_buff *skb);
1855 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1856 					 unsigned int flags);
1857 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1858 				    int len, __wsum csum);
1859 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1860 				     void *to, int len);
1861 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1862 				      const void *from, int len);
1863 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1864 					      int offset, u8 *to, int len,
1865 					      __wsum csum);
1866 extern int             skb_splice_bits(struct sk_buff *skb,
1867 						unsigned int offset,
1868 						struct pipe_inode_info *pipe,
1869 						unsigned int len,
1870 						unsigned int flags);
1871 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1872 extern void	       skb_split(struct sk_buff *skb,
1873 				 struct sk_buff *skb1, const u32 len);
1874 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1875 				 int shiftlen);
1876 
1877 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1878 
1879 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1880 				       int len, void *buffer)
1881 {
1882 	int hlen = skb_headlen(skb);
1883 
1884 	if (hlen - offset >= len)
1885 		return skb->data + offset;
1886 
1887 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1888 		return NULL;
1889 
1890 	return buffer;
1891 }
1892 
1893 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1894 					     void *to,
1895 					     const unsigned int len)
1896 {
1897 	memcpy(to, skb->data, len);
1898 }
1899 
1900 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1901 						    const int offset, void *to,
1902 						    const unsigned int len)
1903 {
1904 	memcpy(to, skb->data + offset, len);
1905 }
1906 
1907 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1908 					   const void *from,
1909 					   const unsigned int len)
1910 {
1911 	memcpy(skb->data, from, len);
1912 }
1913 
1914 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1915 						  const int offset,
1916 						  const void *from,
1917 						  const unsigned int len)
1918 {
1919 	memcpy(skb->data + offset, from, len);
1920 }
1921 
1922 extern void skb_init(void);
1923 
1924 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1925 {
1926 	return skb->tstamp;
1927 }
1928 
1929 /**
1930  *	skb_get_timestamp - get timestamp from a skb
1931  *	@skb: skb to get stamp from
1932  *	@stamp: pointer to struct timeval to store stamp in
1933  *
1934  *	Timestamps are stored in the skb as offsets to a base timestamp.
1935  *	This function converts the offset back to a struct timeval and stores
1936  *	it in stamp.
1937  */
1938 static inline void skb_get_timestamp(const struct sk_buff *skb,
1939 				     struct timeval *stamp)
1940 {
1941 	*stamp = ktime_to_timeval(skb->tstamp);
1942 }
1943 
1944 static inline void skb_get_timestampns(const struct sk_buff *skb,
1945 				       struct timespec *stamp)
1946 {
1947 	*stamp = ktime_to_timespec(skb->tstamp);
1948 }
1949 
1950 static inline void __net_timestamp(struct sk_buff *skb)
1951 {
1952 	skb->tstamp = ktime_get_real();
1953 }
1954 
1955 static inline ktime_t net_timedelta(ktime_t t)
1956 {
1957 	return ktime_sub(ktime_get_real(), t);
1958 }
1959 
1960 static inline ktime_t net_invalid_timestamp(void)
1961 {
1962 	return ktime_set(0, 0);
1963 }
1964 
1965 extern void skb_timestamping_init(void);
1966 
1967 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1968 
1969 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1970 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1971 
1972 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1973 
1974 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1975 {
1976 }
1977 
1978 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1979 {
1980 	return false;
1981 }
1982 
1983 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1984 
1985 /**
1986  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1987  *
1988  * @skb: clone of the the original outgoing packet
1989  * @hwtstamps: hardware time stamps
1990  *
1991  */
1992 void skb_complete_tx_timestamp(struct sk_buff *skb,
1993 			       struct skb_shared_hwtstamps *hwtstamps);
1994 
1995 /**
1996  * skb_tstamp_tx - queue clone of skb with send time stamps
1997  * @orig_skb:	the original outgoing packet
1998  * @hwtstamps:	hardware time stamps, may be NULL if not available
1999  *
2000  * If the skb has a socket associated, then this function clones the
2001  * skb (thus sharing the actual data and optional structures), stores
2002  * the optional hardware time stamping information (if non NULL) or
2003  * generates a software time stamp (otherwise), then queues the clone
2004  * to the error queue of the socket.  Errors are silently ignored.
2005  */
2006 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2007 			struct skb_shared_hwtstamps *hwtstamps);
2008 
2009 static inline void sw_tx_timestamp(struct sk_buff *skb)
2010 {
2011 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2012 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2013 		skb_tstamp_tx(skb, NULL);
2014 }
2015 
2016 /**
2017  * skb_tx_timestamp() - Driver hook for transmit timestamping
2018  *
2019  * Ethernet MAC Drivers should call this function in their hard_xmit()
2020  * function as soon as possible after giving the sk_buff to the MAC
2021  * hardware, but before freeing the sk_buff.
2022  *
2023  * @skb: A socket buffer.
2024  */
2025 static inline void skb_tx_timestamp(struct sk_buff *skb)
2026 {
2027 	skb_clone_tx_timestamp(skb);
2028 	sw_tx_timestamp(skb);
2029 }
2030 
2031 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2032 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2033 
2034 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2035 {
2036 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2037 }
2038 
2039 /**
2040  *	skb_checksum_complete - Calculate checksum of an entire packet
2041  *	@skb: packet to process
2042  *
2043  *	This function calculates the checksum over the entire packet plus
2044  *	the value of skb->csum.  The latter can be used to supply the
2045  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2046  *	checksum.
2047  *
2048  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2049  *	this function can be used to verify that checksum on received
2050  *	packets.  In that case the function should return zero if the
2051  *	checksum is correct.  In particular, this function will return zero
2052  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2053  *	hardware has already verified the correctness of the checksum.
2054  */
2055 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2056 {
2057 	return skb_csum_unnecessary(skb) ?
2058 	       0 : __skb_checksum_complete(skb);
2059 }
2060 
2061 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2062 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2063 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2064 {
2065 	if (nfct && atomic_dec_and_test(&nfct->use))
2066 		nf_conntrack_destroy(nfct);
2067 }
2068 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2069 {
2070 	if (nfct)
2071 		atomic_inc(&nfct->use);
2072 }
2073 #endif
2074 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2075 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2076 {
2077 	if (skb)
2078 		atomic_inc(&skb->users);
2079 }
2080 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2081 {
2082 	if (skb)
2083 		kfree_skb(skb);
2084 }
2085 #endif
2086 #ifdef CONFIG_BRIDGE_NETFILTER
2087 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2088 {
2089 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2090 		kfree(nf_bridge);
2091 }
2092 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2093 {
2094 	if (nf_bridge)
2095 		atomic_inc(&nf_bridge->use);
2096 }
2097 #endif /* CONFIG_BRIDGE_NETFILTER */
2098 static inline void nf_reset(struct sk_buff *skb)
2099 {
2100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2101 	nf_conntrack_put(skb->nfct);
2102 	skb->nfct = NULL;
2103 #endif
2104 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2105 	nf_conntrack_put_reasm(skb->nfct_reasm);
2106 	skb->nfct_reasm = NULL;
2107 #endif
2108 #ifdef CONFIG_BRIDGE_NETFILTER
2109 	nf_bridge_put(skb->nf_bridge);
2110 	skb->nf_bridge = NULL;
2111 #endif
2112 }
2113 
2114 /* Note: This doesn't put any conntrack and bridge info in dst. */
2115 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2116 {
2117 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2118 	dst->nfct = src->nfct;
2119 	nf_conntrack_get(src->nfct);
2120 	dst->nfctinfo = src->nfctinfo;
2121 #endif
2122 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2123 	dst->nfct_reasm = src->nfct_reasm;
2124 	nf_conntrack_get_reasm(src->nfct_reasm);
2125 #endif
2126 #ifdef CONFIG_BRIDGE_NETFILTER
2127 	dst->nf_bridge  = src->nf_bridge;
2128 	nf_bridge_get(src->nf_bridge);
2129 #endif
2130 }
2131 
2132 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2133 {
2134 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2135 	nf_conntrack_put(dst->nfct);
2136 #endif
2137 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2138 	nf_conntrack_put_reasm(dst->nfct_reasm);
2139 #endif
2140 #ifdef CONFIG_BRIDGE_NETFILTER
2141 	nf_bridge_put(dst->nf_bridge);
2142 #endif
2143 	__nf_copy(dst, src);
2144 }
2145 
2146 #ifdef CONFIG_NETWORK_SECMARK
2147 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2148 {
2149 	to->secmark = from->secmark;
2150 }
2151 
2152 static inline void skb_init_secmark(struct sk_buff *skb)
2153 {
2154 	skb->secmark = 0;
2155 }
2156 #else
2157 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2158 { }
2159 
2160 static inline void skb_init_secmark(struct sk_buff *skb)
2161 { }
2162 #endif
2163 
2164 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2165 {
2166 	skb->queue_mapping = queue_mapping;
2167 }
2168 
2169 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2170 {
2171 	return skb->queue_mapping;
2172 }
2173 
2174 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2175 {
2176 	to->queue_mapping = from->queue_mapping;
2177 }
2178 
2179 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2180 {
2181 	skb->queue_mapping = rx_queue + 1;
2182 }
2183 
2184 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2185 {
2186 	return skb->queue_mapping - 1;
2187 }
2188 
2189 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2190 {
2191 	return skb->queue_mapping != 0;
2192 }
2193 
2194 extern u16 __skb_tx_hash(const struct net_device *dev,
2195 			 const struct sk_buff *skb,
2196 			 unsigned int num_tx_queues);
2197 
2198 #ifdef CONFIG_XFRM
2199 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2200 {
2201 	return skb->sp;
2202 }
2203 #else
2204 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2205 {
2206 	return NULL;
2207 }
2208 #endif
2209 
2210 static inline int skb_is_gso(const struct sk_buff *skb)
2211 {
2212 	return skb_shinfo(skb)->gso_size;
2213 }
2214 
2215 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2216 {
2217 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2218 }
2219 
2220 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2221 
2222 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2223 {
2224 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2225 	 * wanted then gso_type will be set. */
2226 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2227 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2228 	    unlikely(shinfo->gso_type == 0)) {
2229 		__skb_warn_lro_forwarding(skb);
2230 		return true;
2231 	}
2232 	return false;
2233 }
2234 
2235 static inline void skb_forward_csum(struct sk_buff *skb)
2236 {
2237 	/* Unfortunately we don't support this one.  Any brave souls? */
2238 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2239 		skb->ip_summed = CHECKSUM_NONE;
2240 }
2241 
2242 /**
2243  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2244  * @skb: skb to check
2245  *
2246  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2247  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2248  * use this helper, to document places where we make this assertion.
2249  */
2250 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2251 {
2252 #ifdef DEBUG
2253 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2254 #endif
2255 }
2256 
2257 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2258 #endif	/* __KERNEL__ */
2259 #endif	/* _LINUX_SKBUFF_H */
2260