xref: /linux-6.15/include/linux/skbuff.h (revision 779b96d2)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/netdev_features.h>
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
49 
50 /* return minimum truesize of one skb containing X bytes of data */
51 #define SKB_TRUESIZE(X) ((X) +						\
52 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
53 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
54 
55 /* A. Checksumming of received packets by device.
56  *
57  *	NONE: device failed to checksum this packet.
58  *		skb->csum is undefined.
59  *
60  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
61  *		skb->csum is undefined.
62  *	      It is bad option, but, unfortunately, many of vendors do this.
63  *	      Apparently with secret goal to sell you new device, when you
64  *	      will add new protocol to your host. F.e. IPv6. 8)
65  *
66  *	COMPLETE: the most generic way. Device supplied checksum of _all_
67  *	    the packet as seen by netif_rx in skb->csum.
68  *	    NOTE: Even if device supports only some protocols, but
69  *	    is able to produce some skb->csum, it MUST use COMPLETE,
70  *	    not UNNECESSARY.
71  *
72  *	PARTIAL: identical to the case for output below.  This may occur
73  *	    on a packet received directly from another Linux OS, e.g.,
74  *	    a virtualised Linux kernel on the same host.  The packet can
75  *	    be treated in the same way as UNNECESSARY except that on
76  *	    output (i.e., forwarding) the checksum must be filled in
77  *	    by the OS or the hardware.
78  *
79  * B. Checksumming on output.
80  *
81  *	NONE: skb is checksummed by protocol or csum is not required.
82  *
83  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
84  *	from skb->csum_start to the end and to record the checksum
85  *	at skb->csum_start + skb->csum_offset.
86  *
87  *	Device must show its capabilities in dev->features, set
88  *	at device setup time.
89  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
90  *			  everything.
91  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92  *			  TCP/UDP over IPv4. Sigh. Vendors like this
93  *			  way by an unknown reason. Though, see comment above
94  *			  about CHECKSUM_UNNECESSARY. 8)
95  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
96  *
97  *	Any questions? No questions, good. 		--ANK
98  */
99 
100 struct net_device;
101 struct scatterlist;
102 struct pipe_inode_info;
103 
104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
105 struct nf_conntrack {
106 	atomic_t use;
107 };
108 #endif
109 
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info {
112 	atomic_t use;
113 	struct net_device *physindev;
114 	struct net_device *physoutdev;
115 	unsigned int mask;
116 	unsigned long data[32 / sizeof(unsigned long)];
117 };
118 #endif
119 
120 struct sk_buff_head {
121 	/* These two members must be first. */
122 	struct sk_buff	*next;
123 	struct sk_buff	*prev;
124 
125 	__u32		qlen;
126 	spinlock_t	lock;
127 };
128 
129 struct sk_buff;
130 
131 /* To allow 64K frame to be packed as single skb without frag_list we
132  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
133  * buffers which do not start on a page boundary.
134  *
135  * Since GRO uses frags we allocate at least 16 regardless of page
136  * size.
137  */
138 #if (65536/PAGE_SIZE + 1) < 16
139 #define MAX_SKB_FRAGS 16UL
140 #else
141 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
142 #endif
143 
144 typedef struct skb_frag_struct skb_frag_t;
145 
146 struct skb_frag_struct {
147 	struct {
148 		struct page *p;
149 	} page;
150 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
151 	__u32 page_offset;
152 	__u32 size;
153 #else
154 	__u16 page_offset;
155 	__u16 size;
156 #endif
157 };
158 
159 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
160 {
161 	return frag->size;
162 }
163 
164 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
165 {
166 	frag->size = size;
167 }
168 
169 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
170 {
171 	frag->size += delta;
172 }
173 
174 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
175 {
176 	frag->size -= delta;
177 }
178 
179 #define HAVE_HW_TIME_STAMP
180 
181 /**
182  * struct skb_shared_hwtstamps - hardware time stamps
183  * @hwtstamp:	hardware time stamp transformed into duration
184  *		since arbitrary point in time
185  * @syststamp:	hwtstamp transformed to system time base
186  *
187  * Software time stamps generated by ktime_get_real() are stored in
188  * skb->tstamp. The relation between the different kinds of time
189  * stamps is as follows:
190  *
191  * syststamp and tstamp can be compared against each other in
192  * arbitrary combinations.  The accuracy of a
193  * syststamp/tstamp/"syststamp from other device" comparison is
194  * limited by the accuracy of the transformation into system time
195  * base. This depends on the device driver and its underlying
196  * hardware.
197  *
198  * hwtstamps can only be compared against other hwtstamps from
199  * the same device.
200  *
201  * This structure is attached to packets as part of the
202  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
203  */
204 struct skb_shared_hwtstamps {
205 	ktime_t	hwtstamp;
206 	ktime_t	syststamp;
207 };
208 
209 /* Definitions for tx_flags in struct skb_shared_info */
210 enum {
211 	/* generate hardware time stamp */
212 	SKBTX_HW_TSTAMP = 1 << 0,
213 
214 	/* generate software time stamp */
215 	SKBTX_SW_TSTAMP = 1 << 1,
216 
217 	/* device driver is going to provide hardware time stamp */
218 	SKBTX_IN_PROGRESS = 1 << 2,
219 
220 	/* ensure the originating sk reference is available on driver level */
221 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
222 
223 	/* device driver supports TX zero-copy buffers */
224 	SKBTX_DEV_ZEROCOPY = 1 << 4,
225 
226 	/* generate wifi status information (where possible) */
227 	SKBTX_WIFI_STATUS = 1 << 5,
228 };
229 
230 /*
231  * The callback notifies userspace to release buffers when skb DMA is done in
232  * lower device, the skb last reference should be 0 when calling this.
233  * The desc is used to track userspace buffer index.
234  */
235 struct ubuf_info {
236 	void (*callback)(void *);
237 	void *arg;
238 	unsigned long desc;
239 };
240 
241 /* This data is invariant across clones and lives at
242  * the end of the header data, ie. at skb->end.
243  */
244 struct skb_shared_info {
245 	unsigned char	nr_frags;
246 	__u8		tx_flags;
247 	unsigned short	gso_size;
248 	/* Warning: this field is not always filled in (UFO)! */
249 	unsigned short	gso_segs;
250 	unsigned short  gso_type;
251 	struct sk_buff	*frag_list;
252 	struct skb_shared_hwtstamps hwtstamps;
253 	__be32          ip6_frag_id;
254 
255 	/*
256 	 * Warning : all fields before dataref are cleared in __alloc_skb()
257 	 */
258 	atomic_t	dataref;
259 
260 	/* Intermediate layers must ensure that destructor_arg
261 	 * remains valid until skb destructor */
262 	void *		destructor_arg;
263 
264 	/* must be last field, see pskb_expand_head() */
265 	skb_frag_t	frags[MAX_SKB_FRAGS];
266 };
267 
268 /* We divide dataref into two halves.  The higher 16 bits hold references
269  * to the payload part of skb->data.  The lower 16 bits hold references to
270  * the entire skb->data.  A clone of a headerless skb holds the length of
271  * the header in skb->hdr_len.
272  *
273  * All users must obey the rule that the skb->data reference count must be
274  * greater than or equal to the payload reference count.
275  *
276  * Holding a reference to the payload part means that the user does not
277  * care about modifications to the header part of skb->data.
278  */
279 #define SKB_DATAREF_SHIFT 16
280 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
281 
282 
283 enum {
284 	SKB_FCLONE_UNAVAILABLE,
285 	SKB_FCLONE_ORIG,
286 	SKB_FCLONE_CLONE,
287 };
288 
289 enum {
290 	SKB_GSO_TCPV4 = 1 << 0,
291 	SKB_GSO_UDP = 1 << 1,
292 
293 	/* This indicates the skb is from an untrusted source. */
294 	SKB_GSO_DODGY = 1 << 2,
295 
296 	/* This indicates the tcp segment has CWR set. */
297 	SKB_GSO_TCP_ECN = 1 << 3,
298 
299 	SKB_GSO_TCPV6 = 1 << 4,
300 
301 	SKB_GSO_FCOE = 1 << 5,
302 };
303 
304 #if BITS_PER_LONG > 32
305 #define NET_SKBUFF_DATA_USES_OFFSET 1
306 #endif
307 
308 #ifdef NET_SKBUFF_DATA_USES_OFFSET
309 typedef unsigned int sk_buff_data_t;
310 #else
311 typedef unsigned char *sk_buff_data_t;
312 #endif
313 
314 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
315     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
316 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
317 #endif
318 
319 /**
320  *	struct sk_buff - socket buffer
321  *	@next: Next buffer in list
322  *	@prev: Previous buffer in list
323  *	@tstamp: Time we arrived
324  *	@sk: Socket we are owned by
325  *	@dev: Device we arrived on/are leaving by
326  *	@cb: Control buffer. Free for use by every layer. Put private vars here
327  *	@_skb_refdst: destination entry (with norefcount bit)
328  *	@sp: the security path, used for xfrm
329  *	@len: Length of actual data
330  *	@data_len: Data length
331  *	@mac_len: Length of link layer header
332  *	@hdr_len: writable header length of cloned skb
333  *	@csum: Checksum (must include start/offset pair)
334  *	@csum_start: Offset from skb->head where checksumming should start
335  *	@csum_offset: Offset from csum_start where checksum should be stored
336  *	@priority: Packet queueing priority
337  *	@local_df: allow local fragmentation
338  *	@cloned: Head may be cloned (check refcnt to be sure)
339  *	@ip_summed: Driver fed us an IP checksum
340  *	@nohdr: Payload reference only, must not modify header
341  *	@nfctinfo: Relationship of this skb to the connection
342  *	@pkt_type: Packet class
343  *	@fclone: skbuff clone status
344  *	@ipvs_property: skbuff is owned by ipvs
345  *	@peeked: this packet has been seen already, so stats have been
346  *		done for it, don't do them again
347  *	@nf_trace: netfilter packet trace flag
348  *	@protocol: Packet protocol from driver
349  *	@destructor: Destruct function
350  *	@nfct: Associated connection, if any
351  *	@nfct_reasm: netfilter conntrack re-assembly pointer
352  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
353  *	@skb_iif: ifindex of device we arrived on
354  *	@tc_index: Traffic control index
355  *	@tc_verd: traffic control verdict
356  *	@rxhash: the packet hash computed on receive
357  *	@queue_mapping: Queue mapping for multiqueue devices
358  *	@ndisc_nodetype: router type (from link layer)
359  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
360  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
361  *		ports.
362  *	@wifi_acked_valid: wifi_acked was set
363  *	@wifi_acked: whether frame was acked on wifi or not
364  *	@dma_cookie: a cookie to one of several possible DMA operations
365  *		done by skb DMA functions
366  *	@secmark: security marking
367  *	@mark: Generic packet mark
368  *	@dropcount: total number of sk_receive_queue overflows
369  *	@vlan_tci: vlan tag control information
370  *	@transport_header: Transport layer header
371  *	@network_header: Network layer header
372  *	@mac_header: Link layer header
373  *	@tail: Tail pointer
374  *	@end: End pointer
375  *	@head: Head of buffer
376  *	@data: Data head pointer
377  *	@truesize: Buffer size
378  *	@users: User count - see {datagram,tcp}.c
379  */
380 
381 struct sk_buff {
382 	/* These two members must be first. */
383 	struct sk_buff		*next;
384 	struct sk_buff		*prev;
385 
386 	ktime_t			tstamp;
387 
388 	struct sock		*sk;
389 	struct net_device	*dev;
390 
391 	/*
392 	 * This is the control buffer. It is free to use for every
393 	 * layer. Please put your private variables there. If you
394 	 * want to keep them across layers you have to do a skb_clone()
395 	 * first. This is owned by whoever has the skb queued ATM.
396 	 */
397 	char			cb[48] __aligned(8);
398 
399 	unsigned long		_skb_refdst;
400 #ifdef CONFIG_XFRM
401 	struct	sec_path	*sp;
402 #endif
403 	unsigned int		len,
404 				data_len;
405 	__u16			mac_len,
406 				hdr_len;
407 	union {
408 		__wsum		csum;
409 		struct {
410 			__u16	csum_start;
411 			__u16	csum_offset;
412 		};
413 	};
414 	__u32			priority;
415 	kmemcheck_bitfield_begin(flags1);
416 	__u8			local_df:1,
417 				cloned:1,
418 				ip_summed:2,
419 				nohdr:1,
420 				nfctinfo:3;
421 	__u8			pkt_type:3,
422 				fclone:2,
423 				ipvs_property:1,
424 				peeked:1,
425 				nf_trace:1;
426 	kmemcheck_bitfield_end(flags1);
427 	__be16			protocol;
428 
429 	void			(*destructor)(struct sk_buff *skb);
430 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
431 	struct nf_conntrack	*nfct;
432 #endif
433 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
434 	struct sk_buff		*nfct_reasm;
435 #endif
436 #ifdef CONFIG_BRIDGE_NETFILTER
437 	struct nf_bridge_info	*nf_bridge;
438 #endif
439 
440 	int			skb_iif;
441 #ifdef CONFIG_NET_SCHED
442 	__u16			tc_index;	/* traffic control index */
443 #ifdef CONFIG_NET_CLS_ACT
444 	__u16			tc_verd;	/* traffic control verdict */
445 #endif
446 #endif
447 
448 	__u32			rxhash;
449 
450 	__u16			queue_mapping;
451 	kmemcheck_bitfield_begin(flags2);
452 #ifdef CONFIG_IPV6_NDISC_NODETYPE
453 	__u8			ndisc_nodetype:2;
454 #endif
455 	__u8			ooo_okay:1;
456 	__u8			l4_rxhash:1;
457 	__u8			wifi_acked_valid:1;
458 	__u8			wifi_acked:1;
459 	/* 10/12 bit hole (depending on ndisc_nodetype presence) */
460 	kmemcheck_bitfield_end(flags2);
461 
462 #ifdef CONFIG_NET_DMA
463 	dma_cookie_t		dma_cookie;
464 #endif
465 #ifdef CONFIG_NETWORK_SECMARK
466 	__u32			secmark;
467 #endif
468 	union {
469 		__u32		mark;
470 		__u32		dropcount;
471 	};
472 
473 	__u16			vlan_tci;
474 
475 	sk_buff_data_t		transport_header;
476 	sk_buff_data_t		network_header;
477 	sk_buff_data_t		mac_header;
478 	/* These elements must be at the end, see alloc_skb() for details.  */
479 	sk_buff_data_t		tail;
480 	sk_buff_data_t		end;
481 	unsigned char		*head,
482 				*data;
483 	unsigned int		truesize;
484 	atomic_t		users;
485 };
486 
487 #ifdef __KERNEL__
488 /*
489  *	Handling routines are only of interest to the kernel
490  */
491 #include <linux/slab.h>
492 
493 #include <asm/system.h>
494 
495 /*
496  * skb might have a dst pointer attached, refcounted or not.
497  * _skb_refdst low order bit is set if refcount was _not_ taken
498  */
499 #define SKB_DST_NOREF	1UL
500 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
501 
502 /**
503  * skb_dst - returns skb dst_entry
504  * @skb: buffer
505  *
506  * Returns skb dst_entry, regardless of reference taken or not.
507  */
508 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
509 {
510 	/* If refdst was not refcounted, check we still are in a
511 	 * rcu_read_lock section
512 	 */
513 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
514 		!rcu_read_lock_held() &&
515 		!rcu_read_lock_bh_held());
516 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
517 }
518 
519 /**
520  * skb_dst_set - sets skb dst
521  * @skb: buffer
522  * @dst: dst entry
523  *
524  * Sets skb dst, assuming a reference was taken on dst and should
525  * be released by skb_dst_drop()
526  */
527 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
528 {
529 	skb->_skb_refdst = (unsigned long)dst;
530 }
531 
532 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
533 
534 /**
535  * skb_dst_is_noref - Test if skb dst isn't refcounted
536  * @skb: buffer
537  */
538 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
539 {
540 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
541 }
542 
543 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
544 {
545 	return (struct rtable *)skb_dst(skb);
546 }
547 
548 extern void kfree_skb(struct sk_buff *skb);
549 extern void consume_skb(struct sk_buff *skb);
550 extern void	       __kfree_skb(struct sk_buff *skb);
551 extern struct sk_buff *__alloc_skb(unsigned int size,
552 				   gfp_t priority, int fclone, int node);
553 extern struct sk_buff *build_skb(void *data);
554 static inline struct sk_buff *alloc_skb(unsigned int size,
555 					gfp_t priority)
556 {
557 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
558 }
559 
560 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
561 					       gfp_t priority)
562 {
563 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
564 }
565 
566 extern void skb_recycle(struct sk_buff *skb);
567 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
568 
569 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
570 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
571 extern struct sk_buff *skb_clone(struct sk_buff *skb,
572 				 gfp_t priority);
573 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
574 				gfp_t priority);
575 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
576 				 int headroom, gfp_t gfp_mask);
577 
578 extern int	       pskb_expand_head(struct sk_buff *skb,
579 					int nhead, int ntail,
580 					gfp_t gfp_mask);
581 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
582 					    unsigned int headroom);
583 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
584 				       int newheadroom, int newtailroom,
585 				       gfp_t priority);
586 extern int	       skb_to_sgvec(struct sk_buff *skb,
587 				    struct scatterlist *sg, int offset,
588 				    int len);
589 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
590 				    struct sk_buff **trailer);
591 extern int	       skb_pad(struct sk_buff *skb, int pad);
592 #define dev_kfree_skb(a)	consume_skb(a)
593 
594 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
595 			int getfrag(void *from, char *to, int offset,
596 			int len,int odd, struct sk_buff *skb),
597 			void *from, int length);
598 
599 struct skb_seq_state {
600 	__u32		lower_offset;
601 	__u32		upper_offset;
602 	__u32		frag_idx;
603 	__u32		stepped_offset;
604 	struct sk_buff	*root_skb;
605 	struct sk_buff	*cur_skb;
606 	__u8		*frag_data;
607 };
608 
609 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
610 					   unsigned int from, unsigned int to,
611 					   struct skb_seq_state *st);
612 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
613 				   struct skb_seq_state *st);
614 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
615 
616 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
617 				    unsigned int to, struct ts_config *config,
618 				    struct ts_state *state);
619 
620 extern void __skb_get_rxhash(struct sk_buff *skb);
621 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
622 {
623 	if (!skb->rxhash)
624 		__skb_get_rxhash(skb);
625 
626 	return skb->rxhash;
627 }
628 
629 #ifdef NET_SKBUFF_DATA_USES_OFFSET
630 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
631 {
632 	return skb->head + skb->end;
633 }
634 #else
635 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
636 {
637 	return skb->end;
638 }
639 #endif
640 
641 /* Internal */
642 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
643 
644 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
645 {
646 	return &skb_shinfo(skb)->hwtstamps;
647 }
648 
649 /**
650  *	skb_queue_empty - check if a queue is empty
651  *	@list: queue head
652  *
653  *	Returns true if the queue is empty, false otherwise.
654  */
655 static inline int skb_queue_empty(const struct sk_buff_head *list)
656 {
657 	return list->next == (struct sk_buff *)list;
658 }
659 
660 /**
661  *	skb_queue_is_last - check if skb is the last entry in the queue
662  *	@list: queue head
663  *	@skb: buffer
664  *
665  *	Returns true if @skb is the last buffer on the list.
666  */
667 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
668 				     const struct sk_buff *skb)
669 {
670 	return skb->next == (struct sk_buff *)list;
671 }
672 
673 /**
674  *	skb_queue_is_first - check if skb is the first entry in the queue
675  *	@list: queue head
676  *	@skb: buffer
677  *
678  *	Returns true if @skb is the first buffer on the list.
679  */
680 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
681 				      const struct sk_buff *skb)
682 {
683 	return skb->prev == (struct sk_buff *)list;
684 }
685 
686 /**
687  *	skb_queue_next - return the next packet in the queue
688  *	@list: queue head
689  *	@skb: current buffer
690  *
691  *	Return the next packet in @list after @skb.  It is only valid to
692  *	call this if skb_queue_is_last() evaluates to false.
693  */
694 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
695 					     const struct sk_buff *skb)
696 {
697 	/* This BUG_ON may seem severe, but if we just return then we
698 	 * are going to dereference garbage.
699 	 */
700 	BUG_ON(skb_queue_is_last(list, skb));
701 	return skb->next;
702 }
703 
704 /**
705  *	skb_queue_prev - return the prev packet in the queue
706  *	@list: queue head
707  *	@skb: current buffer
708  *
709  *	Return the prev packet in @list before @skb.  It is only valid to
710  *	call this if skb_queue_is_first() evaluates to false.
711  */
712 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
713 					     const struct sk_buff *skb)
714 {
715 	/* This BUG_ON may seem severe, but if we just return then we
716 	 * are going to dereference garbage.
717 	 */
718 	BUG_ON(skb_queue_is_first(list, skb));
719 	return skb->prev;
720 }
721 
722 /**
723  *	skb_get - reference buffer
724  *	@skb: buffer to reference
725  *
726  *	Makes another reference to a socket buffer and returns a pointer
727  *	to the buffer.
728  */
729 static inline struct sk_buff *skb_get(struct sk_buff *skb)
730 {
731 	atomic_inc(&skb->users);
732 	return skb;
733 }
734 
735 /*
736  * If users == 1, we are the only owner and are can avoid redundant
737  * atomic change.
738  */
739 
740 /**
741  *	skb_cloned - is the buffer a clone
742  *	@skb: buffer to check
743  *
744  *	Returns true if the buffer was generated with skb_clone() and is
745  *	one of multiple shared copies of the buffer. Cloned buffers are
746  *	shared data so must not be written to under normal circumstances.
747  */
748 static inline int skb_cloned(const struct sk_buff *skb)
749 {
750 	return skb->cloned &&
751 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
752 }
753 
754 /**
755  *	skb_header_cloned - is the header a clone
756  *	@skb: buffer to check
757  *
758  *	Returns true if modifying the header part of the buffer requires
759  *	the data to be copied.
760  */
761 static inline int skb_header_cloned(const struct sk_buff *skb)
762 {
763 	int dataref;
764 
765 	if (!skb->cloned)
766 		return 0;
767 
768 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
769 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
770 	return dataref != 1;
771 }
772 
773 /**
774  *	skb_header_release - release reference to header
775  *	@skb: buffer to operate on
776  *
777  *	Drop a reference to the header part of the buffer.  This is done
778  *	by acquiring a payload reference.  You must not read from the header
779  *	part of skb->data after this.
780  */
781 static inline void skb_header_release(struct sk_buff *skb)
782 {
783 	BUG_ON(skb->nohdr);
784 	skb->nohdr = 1;
785 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
786 }
787 
788 /**
789  *	skb_shared - is the buffer shared
790  *	@skb: buffer to check
791  *
792  *	Returns true if more than one person has a reference to this
793  *	buffer.
794  */
795 static inline int skb_shared(const struct sk_buff *skb)
796 {
797 	return atomic_read(&skb->users) != 1;
798 }
799 
800 /**
801  *	skb_share_check - check if buffer is shared and if so clone it
802  *	@skb: buffer to check
803  *	@pri: priority for memory allocation
804  *
805  *	If the buffer is shared the buffer is cloned and the old copy
806  *	drops a reference. A new clone with a single reference is returned.
807  *	If the buffer is not shared the original buffer is returned. When
808  *	being called from interrupt status or with spinlocks held pri must
809  *	be GFP_ATOMIC.
810  *
811  *	NULL is returned on a memory allocation failure.
812  */
813 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
814 					      gfp_t pri)
815 {
816 	might_sleep_if(pri & __GFP_WAIT);
817 	if (skb_shared(skb)) {
818 		struct sk_buff *nskb = skb_clone(skb, pri);
819 		kfree_skb(skb);
820 		skb = nskb;
821 	}
822 	return skb;
823 }
824 
825 /*
826  *	Copy shared buffers into a new sk_buff. We effectively do COW on
827  *	packets to handle cases where we have a local reader and forward
828  *	and a couple of other messy ones. The normal one is tcpdumping
829  *	a packet thats being forwarded.
830  */
831 
832 /**
833  *	skb_unshare - make a copy of a shared buffer
834  *	@skb: buffer to check
835  *	@pri: priority for memory allocation
836  *
837  *	If the socket buffer is a clone then this function creates a new
838  *	copy of the data, drops a reference count on the old copy and returns
839  *	the new copy with the reference count at 1. If the buffer is not a clone
840  *	the original buffer is returned. When called with a spinlock held or
841  *	from interrupt state @pri must be %GFP_ATOMIC
842  *
843  *	%NULL is returned on a memory allocation failure.
844  */
845 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
846 					  gfp_t pri)
847 {
848 	might_sleep_if(pri & __GFP_WAIT);
849 	if (skb_cloned(skb)) {
850 		struct sk_buff *nskb = skb_copy(skb, pri);
851 		kfree_skb(skb);	/* Free our shared copy */
852 		skb = nskb;
853 	}
854 	return skb;
855 }
856 
857 /**
858  *	skb_peek - peek at the head of an &sk_buff_head
859  *	@list_: list to peek at
860  *
861  *	Peek an &sk_buff. Unlike most other operations you _MUST_
862  *	be careful with this one. A peek leaves the buffer on the
863  *	list and someone else may run off with it. You must hold
864  *	the appropriate locks or have a private queue to do this.
865  *
866  *	Returns %NULL for an empty list or a pointer to the head element.
867  *	The reference count is not incremented and the reference is therefore
868  *	volatile. Use with caution.
869  */
870 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
871 {
872 	struct sk_buff *list = ((const struct sk_buff *)list_)->next;
873 	if (list == (struct sk_buff *)list_)
874 		list = NULL;
875 	return list;
876 }
877 
878 /**
879  *	skb_peek_tail - peek at the tail of an &sk_buff_head
880  *	@list_: list to peek at
881  *
882  *	Peek an &sk_buff. Unlike most other operations you _MUST_
883  *	be careful with this one. A peek leaves the buffer on the
884  *	list and someone else may run off with it. You must hold
885  *	the appropriate locks or have a private queue to do this.
886  *
887  *	Returns %NULL for an empty list or a pointer to the tail element.
888  *	The reference count is not incremented and the reference is therefore
889  *	volatile. Use with caution.
890  */
891 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
892 {
893 	struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
894 	if (list == (struct sk_buff *)list_)
895 		list = NULL;
896 	return list;
897 }
898 
899 /**
900  *	skb_queue_len	- get queue length
901  *	@list_: list to measure
902  *
903  *	Return the length of an &sk_buff queue.
904  */
905 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
906 {
907 	return list_->qlen;
908 }
909 
910 /**
911  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
912  *	@list: queue to initialize
913  *
914  *	This initializes only the list and queue length aspects of
915  *	an sk_buff_head object.  This allows to initialize the list
916  *	aspects of an sk_buff_head without reinitializing things like
917  *	the spinlock.  It can also be used for on-stack sk_buff_head
918  *	objects where the spinlock is known to not be used.
919  */
920 static inline void __skb_queue_head_init(struct sk_buff_head *list)
921 {
922 	list->prev = list->next = (struct sk_buff *)list;
923 	list->qlen = 0;
924 }
925 
926 /*
927  * This function creates a split out lock class for each invocation;
928  * this is needed for now since a whole lot of users of the skb-queue
929  * infrastructure in drivers have different locking usage (in hardirq)
930  * than the networking core (in softirq only). In the long run either the
931  * network layer or drivers should need annotation to consolidate the
932  * main types of usage into 3 classes.
933  */
934 static inline void skb_queue_head_init(struct sk_buff_head *list)
935 {
936 	spin_lock_init(&list->lock);
937 	__skb_queue_head_init(list);
938 }
939 
940 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
941 		struct lock_class_key *class)
942 {
943 	skb_queue_head_init(list);
944 	lockdep_set_class(&list->lock, class);
945 }
946 
947 /*
948  *	Insert an sk_buff on a list.
949  *
950  *	The "__skb_xxxx()" functions are the non-atomic ones that
951  *	can only be called with interrupts disabled.
952  */
953 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
954 static inline void __skb_insert(struct sk_buff *newsk,
955 				struct sk_buff *prev, struct sk_buff *next,
956 				struct sk_buff_head *list)
957 {
958 	newsk->next = next;
959 	newsk->prev = prev;
960 	next->prev  = prev->next = newsk;
961 	list->qlen++;
962 }
963 
964 static inline void __skb_queue_splice(const struct sk_buff_head *list,
965 				      struct sk_buff *prev,
966 				      struct sk_buff *next)
967 {
968 	struct sk_buff *first = list->next;
969 	struct sk_buff *last = list->prev;
970 
971 	first->prev = prev;
972 	prev->next = first;
973 
974 	last->next = next;
975 	next->prev = last;
976 }
977 
978 /**
979  *	skb_queue_splice - join two skb lists, this is designed for stacks
980  *	@list: the new list to add
981  *	@head: the place to add it in the first list
982  */
983 static inline void skb_queue_splice(const struct sk_buff_head *list,
984 				    struct sk_buff_head *head)
985 {
986 	if (!skb_queue_empty(list)) {
987 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
988 		head->qlen += list->qlen;
989 	}
990 }
991 
992 /**
993  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
994  *	@list: the new list to add
995  *	@head: the place to add it in the first list
996  *
997  *	The list at @list is reinitialised
998  */
999 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1000 					 struct sk_buff_head *head)
1001 {
1002 	if (!skb_queue_empty(list)) {
1003 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1004 		head->qlen += list->qlen;
1005 		__skb_queue_head_init(list);
1006 	}
1007 }
1008 
1009 /**
1010  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1011  *	@list: the new list to add
1012  *	@head: the place to add it in the first list
1013  */
1014 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1015 					 struct sk_buff_head *head)
1016 {
1017 	if (!skb_queue_empty(list)) {
1018 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1019 		head->qlen += list->qlen;
1020 	}
1021 }
1022 
1023 /**
1024  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1025  *	@list: the new list to add
1026  *	@head: the place to add it in the first list
1027  *
1028  *	Each of the lists is a queue.
1029  *	The list at @list is reinitialised
1030  */
1031 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1032 					      struct sk_buff_head *head)
1033 {
1034 	if (!skb_queue_empty(list)) {
1035 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1036 		head->qlen += list->qlen;
1037 		__skb_queue_head_init(list);
1038 	}
1039 }
1040 
1041 /**
1042  *	__skb_queue_after - queue a buffer at the list head
1043  *	@list: list to use
1044  *	@prev: place after this buffer
1045  *	@newsk: buffer to queue
1046  *
1047  *	Queue a buffer int the middle of a list. This function takes no locks
1048  *	and you must therefore hold required locks before calling it.
1049  *
1050  *	A buffer cannot be placed on two lists at the same time.
1051  */
1052 static inline void __skb_queue_after(struct sk_buff_head *list,
1053 				     struct sk_buff *prev,
1054 				     struct sk_buff *newsk)
1055 {
1056 	__skb_insert(newsk, prev, prev->next, list);
1057 }
1058 
1059 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1060 		       struct sk_buff_head *list);
1061 
1062 static inline void __skb_queue_before(struct sk_buff_head *list,
1063 				      struct sk_buff *next,
1064 				      struct sk_buff *newsk)
1065 {
1066 	__skb_insert(newsk, next->prev, next, list);
1067 }
1068 
1069 /**
1070  *	__skb_queue_head - queue a buffer at the list head
1071  *	@list: list to use
1072  *	@newsk: buffer to queue
1073  *
1074  *	Queue a buffer at the start of a list. This function takes no locks
1075  *	and you must therefore hold required locks before calling it.
1076  *
1077  *	A buffer cannot be placed on two lists at the same time.
1078  */
1079 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1080 static inline void __skb_queue_head(struct sk_buff_head *list,
1081 				    struct sk_buff *newsk)
1082 {
1083 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1084 }
1085 
1086 /**
1087  *	__skb_queue_tail - queue a buffer at the list tail
1088  *	@list: list to use
1089  *	@newsk: buffer to queue
1090  *
1091  *	Queue a buffer at the end of a list. This function takes no locks
1092  *	and you must therefore hold required locks before calling it.
1093  *
1094  *	A buffer cannot be placed on two lists at the same time.
1095  */
1096 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1097 static inline void __skb_queue_tail(struct sk_buff_head *list,
1098 				   struct sk_buff *newsk)
1099 {
1100 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1101 }
1102 
1103 /*
1104  * remove sk_buff from list. _Must_ be called atomically, and with
1105  * the list known..
1106  */
1107 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1108 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1109 {
1110 	struct sk_buff *next, *prev;
1111 
1112 	list->qlen--;
1113 	next	   = skb->next;
1114 	prev	   = skb->prev;
1115 	skb->next  = skb->prev = NULL;
1116 	next->prev = prev;
1117 	prev->next = next;
1118 }
1119 
1120 /**
1121  *	__skb_dequeue - remove from the head of the queue
1122  *	@list: list to dequeue from
1123  *
1124  *	Remove the head of the list. This function does not take any locks
1125  *	so must be used with appropriate locks held only. The head item is
1126  *	returned or %NULL if the list is empty.
1127  */
1128 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1129 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1130 {
1131 	struct sk_buff *skb = skb_peek(list);
1132 	if (skb)
1133 		__skb_unlink(skb, list);
1134 	return skb;
1135 }
1136 
1137 /**
1138  *	__skb_dequeue_tail - remove from the tail of the queue
1139  *	@list: list to dequeue from
1140  *
1141  *	Remove the tail of the list. This function does not take any locks
1142  *	so must be used with appropriate locks held only. The tail item is
1143  *	returned or %NULL if the list is empty.
1144  */
1145 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1146 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1147 {
1148 	struct sk_buff *skb = skb_peek_tail(list);
1149 	if (skb)
1150 		__skb_unlink(skb, list);
1151 	return skb;
1152 }
1153 
1154 
1155 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1156 {
1157 	return skb->data_len;
1158 }
1159 
1160 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1161 {
1162 	return skb->len - skb->data_len;
1163 }
1164 
1165 static inline int skb_pagelen(const struct sk_buff *skb)
1166 {
1167 	int i, len = 0;
1168 
1169 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1170 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1171 	return len + skb_headlen(skb);
1172 }
1173 
1174 /**
1175  * __skb_fill_page_desc - initialise a paged fragment in an skb
1176  * @skb: buffer containing fragment to be initialised
1177  * @i: paged fragment index to initialise
1178  * @page: the page to use for this fragment
1179  * @off: the offset to the data with @page
1180  * @size: the length of the data
1181  *
1182  * Initialises the @i'th fragment of @skb to point to &size bytes at
1183  * offset @off within @page.
1184  *
1185  * Does not take any additional reference on the fragment.
1186  */
1187 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1188 					struct page *page, int off, int size)
1189 {
1190 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1191 
1192 	frag->page.p		  = page;
1193 	frag->page_offset	  = off;
1194 	skb_frag_size_set(frag, size);
1195 }
1196 
1197 /**
1198  * skb_fill_page_desc - initialise a paged fragment in an skb
1199  * @skb: buffer containing fragment to be initialised
1200  * @i: paged fragment index to initialise
1201  * @page: the page to use for this fragment
1202  * @off: the offset to the data with @page
1203  * @size: the length of the data
1204  *
1205  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1206  * @skb to point to &size bytes at offset @off within @page. In
1207  * addition updates @skb such that @i is the last fragment.
1208  *
1209  * Does not take any additional reference on the fragment.
1210  */
1211 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1212 				      struct page *page, int off, int size)
1213 {
1214 	__skb_fill_page_desc(skb, i, page, off, size);
1215 	skb_shinfo(skb)->nr_frags = i + 1;
1216 }
1217 
1218 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1219 			    int off, int size);
1220 
1221 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1222 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1223 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1224 
1225 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1226 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1227 {
1228 	return skb->head + skb->tail;
1229 }
1230 
1231 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1232 {
1233 	skb->tail = skb->data - skb->head;
1234 }
1235 
1236 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1237 {
1238 	skb_reset_tail_pointer(skb);
1239 	skb->tail += offset;
1240 }
1241 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1242 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1243 {
1244 	return skb->tail;
1245 }
1246 
1247 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1248 {
1249 	skb->tail = skb->data;
1250 }
1251 
1252 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1253 {
1254 	skb->tail = skb->data + offset;
1255 }
1256 
1257 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1258 
1259 /*
1260  *	Add data to an sk_buff
1261  */
1262 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1263 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1264 {
1265 	unsigned char *tmp = skb_tail_pointer(skb);
1266 	SKB_LINEAR_ASSERT(skb);
1267 	skb->tail += len;
1268 	skb->len  += len;
1269 	return tmp;
1270 }
1271 
1272 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1273 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1274 {
1275 	skb->data -= len;
1276 	skb->len  += len;
1277 	return skb->data;
1278 }
1279 
1280 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1281 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1282 {
1283 	skb->len -= len;
1284 	BUG_ON(skb->len < skb->data_len);
1285 	return skb->data += len;
1286 }
1287 
1288 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1289 {
1290 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1291 }
1292 
1293 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1294 
1295 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1296 {
1297 	if (len > skb_headlen(skb) &&
1298 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1299 		return NULL;
1300 	skb->len -= len;
1301 	return skb->data += len;
1302 }
1303 
1304 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1305 {
1306 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1307 }
1308 
1309 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1310 {
1311 	if (likely(len <= skb_headlen(skb)))
1312 		return 1;
1313 	if (unlikely(len > skb->len))
1314 		return 0;
1315 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1316 }
1317 
1318 /**
1319  *	skb_headroom - bytes at buffer head
1320  *	@skb: buffer to check
1321  *
1322  *	Return the number of bytes of free space at the head of an &sk_buff.
1323  */
1324 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1325 {
1326 	return skb->data - skb->head;
1327 }
1328 
1329 /**
1330  *	skb_tailroom - bytes at buffer end
1331  *	@skb: buffer to check
1332  *
1333  *	Return the number of bytes of free space at the tail of an sk_buff
1334  */
1335 static inline int skb_tailroom(const struct sk_buff *skb)
1336 {
1337 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1338 }
1339 
1340 /**
1341  *	skb_reserve - adjust headroom
1342  *	@skb: buffer to alter
1343  *	@len: bytes to move
1344  *
1345  *	Increase the headroom of an empty &sk_buff by reducing the tail
1346  *	room. This is only allowed for an empty buffer.
1347  */
1348 static inline void skb_reserve(struct sk_buff *skb, int len)
1349 {
1350 	skb->data += len;
1351 	skb->tail += len;
1352 }
1353 
1354 static inline void skb_reset_mac_len(struct sk_buff *skb)
1355 {
1356 	skb->mac_len = skb->network_header - skb->mac_header;
1357 }
1358 
1359 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1360 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1361 {
1362 	return skb->head + skb->transport_header;
1363 }
1364 
1365 static inline void skb_reset_transport_header(struct sk_buff *skb)
1366 {
1367 	skb->transport_header = skb->data - skb->head;
1368 }
1369 
1370 static inline void skb_set_transport_header(struct sk_buff *skb,
1371 					    const int offset)
1372 {
1373 	skb_reset_transport_header(skb);
1374 	skb->transport_header += offset;
1375 }
1376 
1377 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1378 {
1379 	return skb->head + skb->network_header;
1380 }
1381 
1382 static inline void skb_reset_network_header(struct sk_buff *skb)
1383 {
1384 	skb->network_header = skb->data - skb->head;
1385 }
1386 
1387 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1388 {
1389 	skb_reset_network_header(skb);
1390 	skb->network_header += offset;
1391 }
1392 
1393 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1394 {
1395 	return skb->head + skb->mac_header;
1396 }
1397 
1398 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1399 {
1400 	return skb->mac_header != ~0U;
1401 }
1402 
1403 static inline void skb_reset_mac_header(struct sk_buff *skb)
1404 {
1405 	skb->mac_header = skb->data - skb->head;
1406 }
1407 
1408 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1409 {
1410 	skb_reset_mac_header(skb);
1411 	skb->mac_header += offset;
1412 }
1413 
1414 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1415 
1416 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1417 {
1418 	return skb->transport_header;
1419 }
1420 
1421 static inline void skb_reset_transport_header(struct sk_buff *skb)
1422 {
1423 	skb->transport_header = skb->data;
1424 }
1425 
1426 static inline void skb_set_transport_header(struct sk_buff *skb,
1427 					    const int offset)
1428 {
1429 	skb->transport_header = skb->data + offset;
1430 }
1431 
1432 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1433 {
1434 	return skb->network_header;
1435 }
1436 
1437 static inline void skb_reset_network_header(struct sk_buff *skb)
1438 {
1439 	skb->network_header = skb->data;
1440 }
1441 
1442 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1443 {
1444 	skb->network_header = skb->data + offset;
1445 }
1446 
1447 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1448 {
1449 	return skb->mac_header;
1450 }
1451 
1452 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1453 {
1454 	return skb->mac_header != NULL;
1455 }
1456 
1457 static inline void skb_reset_mac_header(struct sk_buff *skb)
1458 {
1459 	skb->mac_header = skb->data;
1460 }
1461 
1462 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1463 {
1464 	skb->mac_header = skb->data + offset;
1465 }
1466 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1467 
1468 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1469 {
1470 	return skb->csum_start - skb_headroom(skb);
1471 }
1472 
1473 static inline int skb_transport_offset(const struct sk_buff *skb)
1474 {
1475 	return skb_transport_header(skb) - skb->data;
1476 }
1477 
1478 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1479 {
1480 	return skb->transport_header - skb->network_header;
1481 }
1482 
1483 static inline int skb_network_offset(const struct sk_buff *skb)
1484 {
1485 	return skb_network_header(skb) - skb->data;
1486 }
1487 
1488 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1489 {
1490 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1491 }
1492 
1493 /*
1494  * CPUs often take a performance hit when accessing unaligned memory
1495  * locations. The actual performance hit varies, it can be small if the
1496  * hardware handles it or large if we have to take an exception and fix it
1497  * in software.
1498  *
1499  * Since an ethernet header is 14 bytes network drivers often end up with
1500  * the IP header at an unaligned offset. The IP header can be aligned by
1501  * shifting the start of the packet by 2 bytes. Drivers should do this
1502  * with:
1503  *
1504  * skb_reserve(skb, NET_IP_ALIGN);
1505  *
1506  * The downside to this alignment of the IP header is that the DMA is now
1507  * unaligned. On some architectures the cost of an unaligned DMA is high
1508  * and this cost outweighs the gains made by aligning the IP header.
1509  *
1510  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1511  * to be overridden.
1512  */
1513 #ifndef NET_IP_ALIGN
1514 #define NET_IP_ALIGN	2
1515 #endif
1516 
1517 /*
1518  * The networking layer reserves some headroom in skb data (via
1519  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1520  * the header has to grow. In the default case, if the header has to grow
1521  * 32 bytes or less we avoid the reallocation.
1522  *
1523  * Unfortunately this headroom changes the DMA alignment of the resulting
1524  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1525  * on some architectures. An architecture can override this value,
1526  * perhaps setting it to a cacheline in size (since that will maintain
1527  * cacheline alignment of the DMA). It must be a power of 2.
1528  *
1529  * Various parts of the networking layer expect at least 32 bytes of
1530  * headroom, you should not reduce this.
1531  *
1532  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1533  * to reduce average number of cache lines per packet.
1534  * get_rps_cpus() for example only access one 64 bytes aligned block :
1535  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1536  */
1537 #ifndef NET_SKB_PAD
1538 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1539 #endif
1540 
1541 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1542 
1543 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1544 {
1545 	if (unlikely(skb_is_nonlinear(skb))) {
1546 		WARN_ON(1);
1547 		return;
1548 	}
1549 	skb->len = len;
1550 	skb_set_tail_pointer(skb, len);
1551 }
1552 
1553 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1554 
1555 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1556 {
1557 	if (skb->data_len)
1558 		return ___pskb_trim(skb, len);
1559 	__skb_trim(skb, len);
1560 	return 0;
1561 }
1562 
1563 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1564 {
1565 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1566 }
1567 
1568 /**
1569  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1570  *	@skb: buffer to alter
1571  *	@len: new length
1572  *
1573  *	This is identical to pskb_trim except that the caller knows that
1574  *	the skb is not cloned so we should never get an error due to out-
1575  *	of-memory.
1576  */
1577 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1578 {
1579 	int err = pskb_trim(skb, len);
1580 	BUG_ON(err);
1581 }
1582 
1583 /**
1584  *	skb_orphan - orphan a buffer
1585  *	@skb: buffer to orphan
1586  *
1587  *	If a buffer currently has an owner then we call the owner's
1588  *	destructor function and make the @skb unowned. The buffer continues
1589  *	to exist but is no longer charged to its former owner.
1590  */
1591 static inline void skb_orphan(struct sk_buff *skb)
1592 {
1593 	if (skb->destructor)
1594 		skb->destructor(skb);
1595 	skb->destructor = NULL;
1596 	skb->sk		= NULL;
1597 }
1598 
1599 /**
1600  *	__skb_queue_purge - empty a list
1601  *	@list: list to empty
1602  *
1603  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1604  *	the list and one reference dropped. This function does not take the
1605  *	list lock and the caller must hold the relevant locks to use it.
1606  */
1607 extern void skb_queue_purge(struct sk_buff_head *list);
1608 static inline void __skb_queue_purge(struct sk_buff_head *list)
1609 {
1610 	struct sk_buff *skb;
1611 	while ((skb = __skb_dequeue(list)) != NULL)
1612 		kfree_skb(skb);
1613 }
1614 
1615 /**
1616  *	__dev_alloc_skb - allocate an skbuff for receiving
1617  *	@length: length to allocate
1618  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1619  *
1620  *	Allocate a new &sk_buff and assign it a usage count of one. The
1621  *	buffer has unspecified headroom built in. Users should allocate
1622  *	the headroom they think they need without accounting for the
1623  *	built in space. The built in space is used for optimisations.
1624  *
1625  *	%NULL is returned if there is no free memory.
1626  */
1627 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1628 					      gfp_t gfp_mask)
1629 {
1630 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1631 	if (likely(skb))
1632 		skb_reserve(skb, NET_SKB_PAD);
1633 	return skb;
1634 }
1635 
1636 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1637 
1638 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1639 		unsigned int length, gfp_t gfp_mask);
1640 
1641 /**
1642  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1643  *	@dev: network device to receive on
1644  *	@length: length to allocate
1645  *
1646  *	Allocate a new &sk_buff and assign it a usage count of one. The
1647  *	buffer has unspecified headroom built in. Users should allocate
1648  *	the headroom they think they need without accounting for the
1649  *	built in space. The built in space is used for optimisations.
1650  *
1651  *	%NULL is returned if there is no free memory. Although this function
1652  *	allocates memory it can be called from an interrupt.
1653  */
1654 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1655 		unsigned int length)
1656 {
1657 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1658 }
1659 
1660 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1661 		unsigned int length, gfp_t gfp)
1662 {
1663 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1664 
1665 	if (NET_IP_ALIGN && skb)
1666 		skb_reserve(skb, NET_IP_ALIGN);
1667 	return skb;
1668 }
1669 
1670 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1671 		unsigned int length)
1672 {
1673 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1674 }
1675 
1676 /**
1677  * skb_frag_page - retrieve the page refered to by a paged fragment
1678  * @frag: the paged fragment
1679  *
1680  * Returns the &struct page associated with @frag.
1681  */
1682 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1683 {
1684 	return frag->page.p;
1685 }
1686 
1687 /**
1688  * __skb_frag_ref - take an addition reference on a paged fragment.
1689  * @frag: the paged fragment
1690  *
1691  * Takes an additional reference on the paged fragment @frag.
1692  */
1693 static inline void __skb_frag_ref(skb_frag_t *frag)
1694 {
1695 	get_page(skb_frag_page(frag));
1696 }
1697 
1698 /**
1699  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1700  * @skb: the buffer
1701  * @f: the fragment offset.
1702  *
1703  * Takes an additional reference on the @f'th paged fragment of @skb.
1704  */
1705 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1706 {
1707 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1708 }
1709 
1710 /**
1711  * __skb_frag_unref - release a reference on a paged fragment.
1712  * @frag: the paged fragment
1713  *
1714  * Releases a reference on the paged fragment @frag.
1715  */
1716 static inline void __skb_frag_unref(skb_frag_t *frag)
1717 {
1718 	put_page(skb_frag_page(frag));
1719 }
1720 
1721 /**
1722  * skb_frag_unref - release a reference on a paged fragment of an skb.
1723  * @skb: the buffer
1724  * @f: the fragment offset
1725  *
1726  * Releases a reference on the @f'th paged fragment of @skb.
1727  */
1728 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1729 {
1730 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1731 }
1732 
1733 /**
1734  * skb_frag_address - gets the address of the data contained in a paged fragment
1735  * @frag: the paged fragment buffer
1736  *
1737  * Returns the address of the data within @frag. The page must already
1738  * be mapped.
1739  */
1740 static inline void *skb_frag_address(const skb_frag_t *frag)
1741 {
1742 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1743 }
1744 
1745 /**
1746  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1747  * @frag: the paged fragment buffer
1748  *
1749  * Returns the address of the data within @frag. Checks that the page
1750  * is mapped and returns %NULL otherwise.
1751  */
1752 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1753 {
1754 	void *ptr = page_address(skb_frag_page(frag));
1755 	if (unlikely(!ptr))
1756 		return NULL;
1757 
1758 	return ptr + frag->page_offset;
1759 }
1760 
1761 /**
1762  * __skb_frag_set_page - sets the page contained in a paged fragment
1763  * @frag: the paged fragment
1764  * @page: the page to set
1765  *
1766  * Sets the fragment @frag to contain @page.
1767  */
1768 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1769 {
1770 	frag->page.p = page;
1771 }
1772 
1773 /**
1774  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1775  * @skb: the buffer
1776  * @f: the fragment offset
1777  * @page: the page to set
1778  *
1779  * Sets the @f'th fragment of @skb to contain @page.
1780  */
1781 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1782 				     struct page *page)
1783 {
1784 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1785 }
1786 
1787 /**
1788  * skb_frag_dma_map - maps a paged fragment via the DMA API
1789  * @dev: the device to map the fragment to
1790  * @frag: the paged fragment to map
1791  * @offset: the offset within the fragment (starting at the
1792  *          fragment's own offset)
1793  * @size: the number of bytes to map
1794  * @dir: the direction of the mapping (%PCI_DMA_*)
1795  *
1796  * Maps the page associated with @frag to @device.
1797  */
1798 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1799 					  const skb_frag_t *frag,
1800 					  size_t offset, size_t size,
1801 					  enum dma_data_direction dir)
1802 {
1803 	return dma_map_page(dev, skb_frag_page(frag),
1804 			    frag->page_offset + offset, size, dir);
1805 }
1806 
1807 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1808 					gfp_t gfp_mask)
1809 {
1810 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1811 }
1812 
1813 /**
1814  *	skb_clone_writable - is the header of a clone writable
1815  *	@skb: buffer to check
1816  *	@len: length up to which to write
1817  *
1818  *	Returns true if modifying the header part of the cloned buffer
1819  *	does not requires the data to be copied.
1820  */
1821 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1822 {
1823 	return !skb_header_cloned(skb) &&
1824 	       skb_headroom(skb) + len <= skb->hdr_len;
1825 }
1826 
1827 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1828 			    int cloned)
1829 {
1830 	int delta = 0;
1831 
1832 	if (headroom < NET_SKB_PAD)
1833 		headroom = NET_SKB_PAD;
1834 	if (headroom > skb_headroom(skb))
1835 		delta = headroom - skb_headroom(skb);
1836 
1837 	if (delta || cloned)
1838 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1839 					GFP_ATOMIC);
1840 	return 0;
1841 }
1842 
1843 /**
1844  *	skb_cow - copy header of skb when it is required
1845  *	@skb: buffer to cow
1846  *	@headroom: needed headroom
1847  *
1848  *	If the skb passed lacks sufficient headroom or its data part
1849  *	is shared, data is reallocated. If reallocation fails, an error
1850  *	is returned and original skb is not changed.
1851  *
1852  *	The result is skb with writable area skb->head...skb->tail
1853  *	and at least @headroom of space at head.
1854  */
1855 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1856 {
1857 	return __skb_cow(skb, headroom, skb_cloned(skb));
1858 }
1859 
1860 /**
1861  *	skb_cow_head - skb_cow but only making the head writable
1862  *	@skb: buffer to cow
1863  *	@headroom: needed headroom
1864  *
1865  *	This function is identical to skb_cow except that we replace the
1866  *	skb_cloned check by skb_header_cloned.  It should be used when
1867  *	you only need to push on some header and do not need to modify
1868  *	the data.
1869  */
1870 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1871 {
1872 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1873 }
1874 
1875 /**
1876  *	skb_padto	- pad an skbuff up to a minimal size
1877  *	@skb: buffer to pad
1878  *	@len: minimal length
1879  *
1880  *	Pads up a buffer to ensure the trailing bytes exist and are
1881  *	blanked. If the buffer already contains sufficient data it
1882  *	is untouched. Otherwise it is extended. Returns zero on
1883  *	success. The skb is freed on error.
1884  */
1885 
1886 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1887 {
1888 	unsigned int size = skb->len;
1889 	if (likely(size >= len))
1890 		return 0;
1891 	return skb_pad(skb, len - size);
1892 }
1893 
1894 static inline int skb_add_data(struct sk_buff *skb,
1895 			       char __user *from, int copy)
1896 {
1897 	const int off = skb->len;
1898 
1899 	if (skb->ip_summed == CHECKSUM_NONE) {
1900 		int err = 0;
1901 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1902 							    copy, 0, &err);
1903 		if (!err) {
1904 			skb->csum = csum_block_add(skb->csum, csum, off);
1905 			return 0;
1906 		}
1907 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1908 		return 0;
1909 
1910 	__skb_trim(skb, off);
1911 	return -EFAULT;
1912 }
1913 
1914 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1915 				   const struct page *page, int off)
1916 {
1917 	if (i) {
1918 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1919 
1920 		return page == skb_frag_page(frag) &&
1921 		       off == frag->page_offset + skb_frag_size(frag);
1922 	}
1923 	return 0;
1924 }
1925 
1926 static inline int __skb_linearize(struct sk_buff *skb)
1927 {
1928 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1929 }
1930 
1931 /**
1932  *	skb_linearize - convert paged skb to linear one
1933  *	@skb: buffer to linarize
1934  *
1935  *	If there is no free memory -ENOMEM is returned, otherwise zero
1936  *	is returned and the old skb data released.
1937  */
1938 static inline int skb_linearize(struct sk_buff *skb)
1939 {
1940 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1941 }
1942 
1943 /**
1944  *	skb_linearize_cow - make sure skb is linear and writable
1945  *	@skb: buffer to process
1946  *
1947  *	If there is no free memory -ENOMEM is returned, otherwise zero
1948  *	is returned and the old skb data released.
1949  */
1950 static inline int skb_linearize_cow(struct sk_buff *skb)
1951 {
1952 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1953 	       __skb_linearize(skb) : 0;
1954 }
1955 
1956 /**
1957  *	skb_postpull_rcsum - update checksum for received skb after pull
1958  *	@skb: buffer to update
1959  *	@start: start of data before pull
1960  *	@len: length of data pulled
1961  *
1962  *	After doing a pull on a received packet, you need to call this to
1963  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1964  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1965  */
1966 
1967 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1968 				      const void *start, unsigned int len)
1969 {
1970 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1971 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1972 }
1973 
1974 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1975 
1976 /**
1977  *	pskb_trim_rcsum - trim received skb and update checksum
1978  *	@skb: buffer to trim
1979  *	@len: new length
1980  *
1981  *	This is exactly the same as pskb_trim except that it ensures the
1982  *	checksum of received packets are still valid after the operation.
1983  */
1984 
1985 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1986 {
1987 	if (likely(len >= skb->len))
1988 		return 0;
1989 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1990 		skb->ip_summed = CHECKSUM_NONE;
1991 	return __pskb_trim(skb, len);
1992 }
1993 
1994 #define skb_queue_walk(queue, skb) \
1995 		for (skb = (queue)->next;					\
1996 		     skb != (struct sk_buff *)(queue);				\
1997 		     skb = skb->next)
1998 
1999 #define skb_queue_walk_safe(queue, skb, tmp)					\
2000 		for (skb = (queue)->next, tmp = skb->next;			\
2001 		     skb != (struct sk_buff *)(queue);				\
2002 		     skb = tmp, tmp = skb->next)
2003 
2004 #define skb_queue_walk_from(queue, skb)						\
2005 		for (; skb != (struct sk_buff *)(queue);			\
2006 		     skb = skb->next)
2007 
2008 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2009 		for (tmp = skb->next;						\
2010 		     skb != (struct sk_buff *)(queue);				\
2011 		     skb = tmp, tmp = skb->next)
2012 
2013 #define skb_queue_reverse_walk(queue, skb) \
2014 		for (skb = (queue)->prev;					\
2015 		     skb != (struct sk_buff *)(queue);				\
2016 		     skb = skb->prev)
2017 
2018 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2019 		for (skb = (queue)->prev, tmp = skb->prev;			\
2020 		     skb != (struct sk_buff *)(queue);				\
2021 		     skb = tmp, tmp = skb->prev)
2022 
2023 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2024 		for (tmp = skb->prev;						\
2025 		     skb != (struct sk_buff *)(queue);				\
2026 		     skb = tmp, tmp = skb->prev)
2027 
2028 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2029 {
2030 	return skb_shinfo(skb)->frag_list != NULL;
2031 }
2032 
2033 static inline void skb_frag_list_init(struct sk_buff *skb)
2034 {
2035 	skb_shinfo(skb)->frag_list = NULL;
2036 }
2037 
2038 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2039 {
2040 	frag->next = skb_shinfo(skb)->frag_list;
2041 	skb_shinfo(skb)->frag_list = frag;
2042 }
2043 
2044 #define skb_walk_frags(skb, iter)	\
2045 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2046 
2047 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2048 					   int *peeked, int *err);
2049 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2050 					 int noblock, int *err);
2051 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2052 				     struct poll_table_struct *wait);
2053 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2054 					       int offset, struct iovec *to,
2055 					       int size);
2056 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2057 							int hlen,
2058 							struct iovec *iov);
2059 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2060 						    int offset,
2061 						    const struct iovec *from,
2062 						    int from_offset,
2063 						    int len);
2064 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2065 						     int offset,
2066 						     const struct iovec *to,
2067 						     int to_offset,
2068 						     int size);
2069 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2070 extern void	       skb_free_datagram_locked(struct sock *sk,
2071 						struct sk_buff *skb);
2072 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2073 					 unsigned int flags);
2074 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2075 				    int len, __wsum csum);
2076 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2077 				     void *to, int len);
2078 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2079 				      const void *from, int len);
2080 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2081 					      int offset, u8 *to, int len,
2082 					      __wsum csum);
2083 extern int             skb_splice_bits(struct sk_buff *skb,
2084 						unsigned int offset,
2085 						struct pipe_inode_info *pipe,
2086 						unsigned int len,
2087 						unsigned int flags);
2088 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2089 extern void	       skb_split(struct sk_buff *skb,
2090 				 struct sk_buff *skb1, const u32 len);
2091 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2092 				 int shiftlen);
2093 
2094 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2095 				   netdev_features_t features);
2096 
2097 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2098 				       int len, void *buffer)
2099 {
2100 	int hlen = skb_headlen(skb);
2101 
2102 	if (hlen - offset >= len)
2103 		return skb->data + offset;
2104 
2105 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2106 		return NULL;
2107 
2108 	return buffer;
2109 }
2110 
2111 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2112 					     void *to,
2113 					     const unsigned int len)
2114 {
2115 	memcpy(to, skb->data, len);
2116 }
2117 
2118 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2119 						    const int offset, void *to,
2120 						    const unsigned int len)
2121 {
2122 	memcpy(to, skb->data + offset, len);
2123 }
2124 
2125 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2126 					   const void *from,
2127 					   const unsigned int len)
2128 {
2129 	memcpy(skb->data, from, len);
2130 }
2131 
2132 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2133 						  const int offset,
2134 						  const void *from,
2135 						  const unsigned int len)
2136 {
2137 	memcpy(skb->data + offset, from, len);
2138 }
2139 
2140 extern void skb_init(void);
2141 
2142 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2143 {
2144 	return skb->tstamp;
2145 }
2146 
2147 /**
2148  *	skb_get_timestamp - get timestamp from a skb
2149  *	@skb: skb to get stamp from
2150  *	@stamp: pointer to struct timeval to store stamp in
2151  *
2152  *	Timestamps are stored in the skb as offsets to a base timestamp.
2153  *	This function converts the offset back to a struct timeval and stores
2154  *	it in stamp.
2155  */
2156 static inline void skb_get_timestamp(const struct sk_buff *skb,
2157 				     struct timeval *stamp)
2158 {
2159 	*stamp = ktime_to_timeval(skb->tstamp);
2160 }
2161 
2162 static inline void skb_get_timestampns(const struct sk_buff *skb,
2163 				       struct timespec *stamp)
2164 {
2165 	*stamp = ktime_to_timespec(skb->tstamp);
2166 }
2167 
2168 static inline void __net_timestamp(struct sk_buff *skb)
2169 {
2170 	skb->tstamp = ktime_get_real();
2171 }
2172 
2173 static inline ktime_t net_timedelta(ktime_t t)
2174 {
2175 	return ktime_sub(ktime_get_real(), t);
2176 }
2177 
2178 static inline ktime_t net_invalid_timestamp(void)
2179 {
2180 	return ktime_set(0, 0);
2181 }
2182 
2183 extern void skb_timestamping_init(void);
2184 
2185 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2186 
2187 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2188 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2189 
2190 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2191 
2192 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2193 {
2194 }
2195 
2196 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2197 {
2198 	return false;
2199 }
2200 
2201 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2202 
2203 /**
2204  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2205  *
2206  * PHY drivers may accept clones of transmitted packets for
2207  * timestamping via their phy_driver.txtstamp method. These drivers
2208  * must call this function to return the skb back to the stack, with
2209  * or without a timestamp.
2210  *
2211  * @skb: clone of the the original outgoing packet
2212  * @hwtstamps: hardware time stamps, may be NULL if not available
2213  *
2214  */
2215 void skb_complete_tx_timestamp(struct sk_buff *skb,
2216 			       struct skb_shared_hwtstamps *hwtstamps);
2217 
2218 /**
2219  * skb_tstamp_tx - queue clone of skb with send time stamps
2220  * @orig_skb:	the original outgoing packet
2221  * @hwtstamps:	hardware time stamps, may be NULL if not available
2222  *
2223  * If the skb has a socket associated, then this function clones the
2224  * skb (thus sharing the actual data and optional structures), stores
2225  * the optional hardware time stamping information (if non NULL) or
2226  * generates a software time stamp (otherwise), then queues the clone
2227  * to the error queue of the socket.  Errors are silently ignored.
2228  */
2229 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2230 			struct skb_shared_hwtstamps *hwtstamps);
2231 
2232 static inline void sw_tx_timestamp(struct sk_buff *skb)
2233 {
2234 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2235 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2236 		skb_tstamp_tx(skb, NULL);
2237 }
2238 
2239 /**
2240  * skb_tx_timestamp() - Driver hook for transmit timestamping
2241  *
2242  * Ethernet MAC Drivers should call this function in their hard_xmit()
2243  * function immediately before giving the sk_buff to the MAC hardware.
2244  *
2245  * @skb: A socket buffer.
2246  */
2247 static inline void skb_tx_timestamp(struct sk_buff *skb)
2248 {
2249 	skb_clone_tx_timestamp(skb);
2250 	sw_tx_timestamp(skb);
2251 }
2252 
2253 /**
2254  * skb_complete_wifi_ack - deliver skb with wifi status
2255  *
2256  * @skb: the original outgoing packet
2257  * @acked: ack status
2258  *
2259  */
2260 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2261 
2262 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2263 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2264 
2265 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2266 {
2267 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2268 }
2269 
2270 /**
2271  *	skb_checksum_complete - Calculate checksum of an entire packet
2272  *	@skb: packet to process
2273  *
2274  *	This function calculates the checksum over the entire packet plus
2275  *	the value of skb->csum.  The latter can be used to supply the
2276  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2277  *	checksum.
2278  *
2279  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2280  *	this function can be used to verify that checksum on received
2281  *	packets.  In that case the function should return zero if the
2282  *	checksum is correct.  In particular, this function will return zero
2283  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2284  *	hardware has already verified the correctness of the checksum.
2285  */
2286 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2287 {
2288 	return skb_csum_unnecessary(skb) ?
2289 	       0 : __skb_checksum_complete(skb);
2290 }
2291 
2292 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2293 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2294 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2295 {
2296 	if (nfct && atomic_dec_and_test(&nfct->use))
2297 		nf_conntrack_destroy(nfct);
2298 }
2299 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2300 {
2301 	if (nfct)
2302 		atomic_inc(&nfct->use);
2303 }
2304 #endif
2305 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2306 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2307 {
2308 	if (skb)
2309 		atomic_inc(&skb->users);
2310 }
2311 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2312 {
2313 	if (skb)
2314 		kfree_skb(skb);
2315 }
2316 #endif
2317 #ifdef CONFIG_BRIDGE_NETFILTER
2318 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2319 {
2320 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2321 		kfree(nf_bridge);
2322 }
2323 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2324 {
2325 	if (nf_bridge)
2326 		atomic_inc(&nf_bridge->use);
2327 }
2328 #endif /* CONFIG_BRIDGE_NETFILTER */
2329 static inline void nf_reset(struct sk_buff *skb)
2330 {
2331 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2332 	nf_conntrack_put(skb->nfct);
2333 	skb->nfct = NULL;
2334 #endif
2335 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2336 	nf_conntrack_put_reasm(skb->nfct_reasm);
2337 	skb->nfct_reasm = NULL;
2338 #endif
2339 #ifdef CONFIG_BRIDGE_NETFILTER
2340 	nf_bridge_put(skb->nf_bridge);
2341 	skb->nf_bridge = NULL;
2342 #endif
2343 }
2344 
2345 /* Note: This doesn't put any conntrack and bridge info in dst. */
2346 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2347 {
2348 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2349 	dst->nfct = src->nfct;
2350 	nf_conntrack_get(src->nfct);
2351 	dst->nfctinfo = src->nfctinfo;
2352 #endif
2353 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2354 	dst->nfct_reasm = src->nfct_reasm;
2355 	nf_conntrack_get_reasm(src->nfct_reasm);
2356 #endif
2357 #ifdef CONFIG_BRIDGE_NETFILTER
2358 	dst->nf_bridge  = src->nf_bridge;
2359 	nf_bridge_get(src->nf_bridge);
2360 #endif
2361 }
2362 
2363 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2364 {
2365 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2366 	nf_conntrack_put(dst->nfct);
2367 #endif
2368 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2369 	nf_conntrack_put_reasm(dst->nfct_reasm);
2370 #endif
2371 #ifdef CONFIG_BRIDGE_NETFILTER
2372 	nf_bridge_put(dst->nf_bridge);
2373 #endif
2374 	__nf_copy(dst, src);
2375 }
2376 
2377 #ifdef CONFIG_NETWORK_SECMARK
2378 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2379 {
2380 	to->secmark = from->secmark;
2381 }
2382 
2383 static inline void skb_init_secmark(struct sk_buff *skb)
2384 {
2385 	skb->secmark = 0;
2386 }
2387 #else
2388 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2389 { }
2390 
2391 static inline void skb_init_secmark(struct sk_buff *skb)
2392 { }
2393 #endif
2394 
2395 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2396 {
2397 	skb->queue_mapping = queue_mapping;
2398 }
2399 
2400 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2401 {
2402 	return skb->queue_mapping;
2403 }
2404 
2405 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2406 {
2407 	to->queue_mapping = from->queue_mapping;
2408 }
2409 
2410 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2411 {
2412 	skb->queue_mapping = rx_queue + 1;
2413 }
2414 
2415 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2416 {
2417 	return skb->queue_mapping - 1;
2418 }
2419 
2420 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2421 {
2422 	return skb->queue_mapping != 0;
2423 }
2424 
2425 extern u16 __skb_tx_hash(const struct net_device *dev,
2426 			 const struct sk_buff *skb,
2427 			 unsigned int num_tx_queues);
2428 
2429 #ifdef CONFIG_XFRM
2430 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2431 {
2432 	return skb->sp;
2433 }
2434 #else
2435 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2436 {
2437 	return NULL;
2438 }
2439 #endif
2440 
2441 static inline int skb_is_gso(const struct sk_buff *skb)
2442 {
2443 	return skb_shinfo(skb)->gso_size;
2444 }
2445 
2446 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2447 {
2448 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2449 }
2450 
2451 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2452 
2453 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2454 {
2455 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2456 	 * wanted then gso_type will be set. */
2457 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2458 
2459 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2460 	    unlikely(shinfo->gso_type == 0)) {
2461 		__skb_warn_lro_forwarding(skb);
2462 		return true;
2463 	}
2464 	return false;
2465 }
2466 
2467 static inline void skb_forward_csum(struct sk_buff *skb)
2468 {
2469 	/* Unfortunately we don't support this one.  Any brave souls? */
2470 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2471 		skb->ip_summed = CHECKSUM_NONE;
2472 }
2473 
2474 /**
2475  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2476  * @skb: skb to check
2477  *
2478  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2479  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2480  * use this helper, to document places where we make this assertion.
2481  */
2482 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2483 {
2484 #ifdef DEBUG
2485 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2486 #endif
2487 }
2488 
2489 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2490 
2491 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2492 {
2493 	if (irqs_disabled())
2494 		return false;
2495 
2496 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2497 		return false;
2498 
2499 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2500 		return false;
2501 
2502 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2503 	if (skb_end_pointer(skb) - skb->head < skb_size)
2504 		return false;
2505 
2506 	if (skb_shared(skb) || skb_cloned(skb))
2507 		return false;
2508 
2509 	return true;
2510 }
2511 #endif	/* __KERNEL__ */
2512 #endif	/* _LINUX_SKBUFF_H */
2513