xref: /linux-6.15/include/linux/skbuff.h (revision 776cfebb)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <net/checksum.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 #define SLAB_SKB 		/* Slabified skbuffs 	   */
35 
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_HW 1
38 #define CHECKSUM_UNNECESSARY 2
39 
40 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
41 				 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
43 				  sizeof(struct skb_shared_info)) & \
44 				  ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	HW: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use HW,
63  *	    not UNNECESSARY.
64  *
65  * B. Checksumming on output.
66  *
67  *	NONE: skb is checksummed by protocol or csum is not required.
68  *
69  *	HW: device is required to csum packet as seen by hard_start_xmit
70  *	from skb->h.raw to the end and to record the checksum
71  *	at skb->h.raw+skb->csum.
72  *
73  *	Device must show its capabilities in dev->features, set
74  *	at device setup time.
75  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
76  *			  everything.
77  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
78  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79  *			  TCP/UDP over IPv4. Sigh. Vendors like this
80  *			  way by an unknown reason. Though, see comment above
81  *			  about CHECKSUM_UNNECESSARY. 8)
82  *
83  *	Any questions? No questions, good. 		--ANK
84  */
85 
86 struct net_device;
87 
88 #ifdef CONFIG_NETFILTER
89 struct nf_conntrack {
90 	atomic_t use;
91 	void (*destroy)(struct nf_conntrack *);
92 };
93 
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
96 	atomic_t use;
97 	struct net_device *physindev;
98 	struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 	struct net_device *netoutdev;
101 #endif
102 	unsigned int mask;
103 	unsigned long data[32 / sizeof(unsigned long)];
104 };
105 #endif
106 
107 #endif
108 
109 struct sk_buff_head {
110 	/* These two members must be first. */
111 	struct sk_buff	*next;
112 	struct sk_buff	*prev;
113 
114 	__u32		qlen;
115 	spinlock_t	lock;
116 };
117 
118 struct sk_buff;
119 
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122 
123 typedef struct skb_frag_struct skb_frag_t;
124 
125 struct skb_frag_struct {
126 	struct page *page;
127 	__u16 page_offset;
128 	__u16 size;
129 };
130 
131 /* This data is invariant across clones and lives at
132  * the end of the header data, ie. at skb->end.
133  */
134 struct skb_shared_info {
135 	atomic_t	dataref;
136 	unsigned int	nr_frags;
137 	unsigned short	tso_size;
138 	unsigned short	tso_segs;
139 	struct sk_buff	*frag_list;
140 	skb_frag_t	frags[MAX_SKB_FRAGS];
141 };
142 
143 /* We divide dataref into two halves.  The higher 16 bits hold references
144  * to the payload part of skb->data.  The lower 16 bits hold references to
145  * the entire skb->data.  It is up to the users of the skb to agree on
146  * where the payload starts.
147  *
148  * All users must obey the rule that the skb->data reference count must be
149  * greater than or equal to the payload reference count.
150  *
151  * Holding a reference to the payload part means that the user does not
152  * care about modifications to the header part of skb->data.
153  */
154 #define SKB_DATAREF_SHIFT 16
155 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
156 
157 /**
158  *	struct sk_buff - socket buffer
159  *	@next: Next buffer in list
160  *	@prev: Previous buffer in list
161  *	@list: List we are on
162  *	@sk: Socket we are owned by
163  *	@stamp: Time we arrived
164  *	@dev: Device we arrived on/are leaving by
165  *	@input_dev: Device we arrived on
166  *      @real_dev: The real device we are using
167  *	@h: Transport layer header
168  *	@nh: Network layer header
169  *	@mac: Link layer header
170  *	@dst: destination entry
171  *	@sp: the security path, used for xfrm
172  *	@cb: Control buffer. Free for use by every layer. Put private vars here
173  *	@len: Length of actual data
174  *	@data_len: Data length
175  *	@mac_len: Length of link layer header
176  *	@csum: Checksum
177  *	@local_df: allow local fragmentation
178  *	@cloned: Head may be cloned (check refcnt to be sure)
179  *	@nohdr: Payload reference only, must not modify header
180  *	@pkt_type: Packet class
181  *	@ip_summed: Driver fed us an IP checksum
182  *	@priority: Packet queueing priority
183  *	@users: User count - see {datagram,tcp}.c
184  *	@protocol: Packet protocol from driver
185  *	@security: Security level of packet
186  *	@truesize: Buffer size
187  *	@head: Head of buffer
188  *	@data: Data head pointer
189  *	@tail: Tail pointer
190  *	@end: End pointer
191  *	@destructor: Destruct function
192  *	@nfmark: Can be used for communication between hooks
193  *	@nfcache: Cache info
194  *	@nfct: Associated connection, if any
195  *	@nfctinfo: Relationship of this skb to the connection
196  *	@nf_debug: Netfilter debugging
197  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
198  *      @private: Data which is private to the HIPPI implementation
199  *	@tc_index: Traffic control index
200  *	@tc_verd: traffic control verdict
201  *	@tc_classid: traffic control classid
202  */
203 
204 struct sk_buff {
205 	/* These two members must be first. */
206 	struct sk_buff		*next;
207 	struct sk_buff		*prev;
208 
209 	struct sk_buff_head	*list;
210 	struct sock		*sk;
211 	struct timeval		stamp;
212 	struct net_device	*dev;
213 	struct net_device	*input_dev;
214 	struct net_device	*real_dev;
215 
216 	union {
217 		struct tcphdr	*th;
218 		struct udphdr	*uh;
219 		struct icmphdr	*icmph;
220 		struct igmphdr	*igmph;
221 		struct iphdr	*ipiph;
222 		struct ipv6hdr	*ipv6h;
223 		unsigned char	*raw;
224 	} h;
225 
226 	union {
227 		struct iphdr	*iph;
228 		struct ipv6hdr	*ipv6h;
229 		struct arphdr	*arph;
230 		unsigned char	*raw;
231 	} nh;
232 
233 	union {
234 	  	unsigned char 	*raw;
235 	} mac;
236 
237 	struct  dst_entry	*dst;
238 	struct	sec_path	*sp;
239 
240 	/*
241 	 * This is the control buffer. It is free to use for every
242 	 * layer. Please put your private variables there. If you
243 	 * want to keep them across layers you have to do a skb_clone()
244 	 * first. This is owned by whoever has the skb queued ATM.
245 	 */
246 	char			cb[40];
247 
248 	unsigned int		len,
249 				data_len,
250 				mac_len,
251 				csum;
252 	unsigned char		local_df,
253 				cloned:1,
254 				nohdr:1,
255 				pkt_type,
256 				ip_summed;
257 	__u32			priority;
258 	unsigned short		protocol,
259 				security;
260 
261 	void			(*destructor)(struct sk_buff *skb);
262 #ifdef CONFIG_NETFILTER
263         unsigned long		nfmark;
264 	__u32			nfcache;
265 	__u32			nfctinfo;
266 	struct nf_conntrack	*nfct;
267 #ifdef CONFIG_NETFILTER_DEBUG
268         unsigned int		nf_debug;
269 #endif
270 #ifdef CONFIG_BRIDGE_NETFILTER
271 	struct nf_bridge_info	*nf_bridge;
272 #endif
273 #endif /* CONFIG_NETFILTER */
274 #if defined(CONFIG_HIPPI)
275 	union {
276 		__u32		ifield;
277 	} private;
278 #endif
279 #ifdef CONFIG_NET_SCHED
280        __u32			tc_index;        /* traffic control index */
281 #ifdef CONFIG_NET_CLS_ACT
282 	__u32           tc_verd;               /* traffic control verdict */
283 	__u32           tc_classid;            /* traffic control classid */
284 #endif
285 
286 #endif
287 
288 
289 	/* These elements must be at the end, see alloc_skb() for details.  */
290 	unsigned int		truesize;
291 	atomic_t		users;
292 	unsigned char		*head,
293 				*data,
294 				*tail,
295 				*end;
296 };
297 
298 #ifdef __KERNEL__
299 /*
300  *	Handling routines are only of interest to the kernel
301  */
302 #include <linux/slab.h>
303 
304 #include <asm/system.h>
305 
306 extern void	       __kfree_skb(struct sk_buff *skb);
307 extern struct sk_buff *alloc_skb(unsigned int size, int priority);
308 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
309 					    unsigned int size, int priority);
310 extern void	       kfree_skbmem(struct sk_buff *skb);
311 extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority);
312 extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority);
313 extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask);
314 extern int	       pskb_expand_head(struct sk_buff *skb,
315 					int nhead, int ntail, int gfp_mask);
316 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
317 					    unsigned int headroom);
318 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
319 				       int newheadroom, int newtailroom,
320 				       int priority);
321 extern struct sk_buff *		skb_pad(struct sk_buff *skb, int pad);
322 #define dev_kfree_skb(a)	kfree_skb(a)
323 extern void	      skb_over_panic(struct sk_buff *skb, int len,
324 				     void *here);
325 extern void	      skb_under_panic(struct sk_buff *skb, int len,
326 				      void *here);
327 
328 /* Internal */
329 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
330 
331 /**
332  *	skb_queue_empty - check if a queue is empty
333  *	@list: queue head
334  *
335  *	Returns true if the queue is empty, false otherwise.
336  */
337 static inline int skb_queue_empty(const struct sk_buff_head *list)
338 {
339 	return list->next == (struct sk_buff *)list;
340 }
341 
342 /**
343  *	skb_get - reference buffer
344  *	@skb: buffer to reference
345  *
346  *	Makes another reference to a socket buffer and returns a pointer
347  *	to the buffer.
348  */
349 static inline struct sk_buff *skb_get(struct sk_buff *skb)
350 {
351 	atomic_inc(&skb->users);
352 	return skb;
353 }
354 
355 /*
356  * If users == 1, we are the only owner and are can avoid redundant
357  * atomic change.
358  */
359 
360 /**
361  *	kfree_skb - free an sk_buff
362  *	@skb: buffer to free
363  *
364  *	Drop a reference to the buffer and free it if the usage count has
365  *	hit zero.
366  */
367 static inline void kfree_skb(struct sk_buff *skb)
368 {
369 	if (likely(atomic_read(&skb->users) == 1))
370 		smp_rmb();
371 	else if (likely(!atomic_dec_and_test(&skb->users)))
372 		return;
373 	__kfree_skb(skb);
374 }
375 
376 /**
377  *	skb_cloned - is the buffer a clone
378  *	@skb: buffer to check
379  *
380  *	Returns true if the buffer was generated with skb_clone() and is
381  *	one of multiple shared copies of the buffer. Cloned buffers are
382  *	shared data so must not be written to under normal circumstances.
383  */
384 static inline int skb_cloned(const struct sk_buff *skb)
385 {
386 	return skb->cloned &&
387 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
388 }
389 
390 /**
391  *	skb_header_cloned - is the header a clone
392  *	@skb: buffer to check
393  *
394  *	Returns true if modifying the header part of the buffer requires
395  *	the data to be copied.
396  */
397 static inline int skb_header_cloned(const struct sk_buff *skb)
398 {
399 	int dataref;
400 
401 	if (!skb->cloned)
402 		return 0;
403 
404 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
405 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
406 	return dataref != 1;
407 }
408 
409 /**
410  *	skb_header_release - release reference to header
411  *	@skb: buffer to operate on
412  *
413  *	Drop a reference to the header part of the buffer.  This is done
414  *	by acquiring a payload reference.  You must not read from the header
415  *	part of skb->data after this.
416  */
417 static inline void skb_header_release(struct sk_buff *skb)
418 {
419 	BUG_ON(skb->nohdr);
420 	skb->nohdr = 1;
421 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
422 }
423 
424 /**
425  *	skb_shared - is the buffer shared
426  *	@skb: buffer to check
427  *
428  *	Returns true if more than one person has a reference to this
429  *	buffer.
430  */
431 static inline int skb_shared(const struct sk_buff *skb)
432 {
433 	return atomic_read(&skb->users) != 1;
434 }
435 
436 /**
437  *	skb_share_check - check if buffer is shared and if so clone it
438  *	@skb: buffer to check
439  *	@pri: priority for memory allocation
440  *
441  *	If the buffer is shared the buffer is cloned and the old copy
442  *	drops a reference. A new clone with a single reference is returned.
443  *	If the buffer is not shared the original buffer is returned. When
444  *	being called from interrupt status or with spinlocks held pri must
445  *	be GFP_ATOMIC.
446  *
447  *	NULL is returned on a memory allocation failure.
448  */
449 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
450 {
451 	might_sleep_if(pri & __GFP_WAIT);
452 	if (skb_shared(skb)) {
453 		struct sk_buff *nskb = skb_clone(skb, pri);
454 		kfree_skb(skb);
455 		skb = nskb;
456 	}
457 	return skb;
458 }
459 
460 /*
461  *	Copy shared buffers into a new sk_buff. We effectively do COW on
462  *	packets to handle cases where we have a local reader and forward
463  *	and a couple of other messy ones. The normal one is tcpdumping
464  *	a packet thats being forwarded.
465  */
466 
467 /**
468  *	skb_unshare - make a copy of a shared buffer
469  *	@skb: buffer to check
470  *	@pri: priority for memory allocation
471  *
472  *	If the socket buffer is a clone then this function creates a new
473  *	copy of the data, drops a reference count on the old copy and returns
474  *	the new copy with the reference count at 1. If the buffer is not a clone
475  *	the original buffer is returned. When called with a spinlock held or
476  *	from interrupt state @pri must be %GFP_ATOMIC
477  *
478  *	%NULL is returned on a memory allocation failure.
479  */
480 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
481 {
482 	might_sleep_if(pri & __GFP_WAIT);
483 	if (skb_cloned(skb)) {
484 		struct sk_buff *nskb = skb_copy(skb, pri);
485 		kfree_skb(skb);	/* Free our shared copy */
486 		skb = nskb;
487 	}
488 	return skb;
489 }
490 
491 /**
492  *	skb_peek
493  *	@list_: list to peek at
494  *
495  *	Peek an &sk_buff. Unlike most other operations you _MUST_
496  *	be careful with this one. A peek leaves the buffer on the
497  *	list and someone else may run off with it. You must hold
498  *	the appropriate locks or have a private queue to do this.
499  *
500  *	Returns %NULL for an empty list or a pointer to the head element.
501  *	The reference count is not incremented and the reference is therefore
502  *	volatile. Use with caution.
503  */
504 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
505 {
506 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
507 	if (list == (struct sk_buff *)list_)
508 		list = NULL;
509 	return list;
510 }
511 
512 /**
513  *	skb_peek_tail
514  *	@list_: list to peek at
515  *
516  *	Peek an &sk_buff. Unlike most other operations you _MUST_
517  *	be careful with this one. A peek leaves the buffer on the
518  *	list and someone else may run off with it. You must hold
519  *	the appropriate locks or have a private queue to do this.
520  *
521  *	Returns %NULL for an empty list or a pointer to the tail element.
522  *	The reference count is not incremented and the reference is therefore
523  *	volatile. Use with caution.
524  */
525 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
526 {
527 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
528 	if (list == (struct sk_buff *)list_)
529 		list = NULL;
530 	return list;
531 }
532 
533 /**
534  *	skb_queue_len	- get queue length
535  *	@list_: list to measure
536  *
537  *	Return the length of an &sk_buff queue.
538  */
539 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
540 {
541 	return list_->qlen;
542 }
543 
544 static inline void skb_queue_head_init(struct sk_buff_head *list)
545 {
546 	spin_lock_init(&list->lock);
547 	list->prev = list->next = (struct sk_buff *)list;
548 	list->qlen = 0;
549 }
550 
551 /*
552  *	Insert an sk_buff at the start of a list.
553  *
554  *	The "__skb_xxxx()" functions are the non-atomic ones that
555  *	can only be called with interrupts disabled.
556  */
557 
558 /**
559  *	__skb_queue_head - queue a buffer at the list head
560  *	@list: list to use
561  *	@newsk: buffer to queue
562  *
563  *	Queue a buffer at the start of a list. This function takes no locks
564  *	and you must therefore hold required locks before calling it.
565  *
566  *	A buffer cannot be placed on two lists at the same time.
567  */
568 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
569 static inline void __skb_queue_head(struct sk_buff_head *list,
570 				    struct sk_buff *newsk)
571 {
572 	struct sk_buff *prev, *next;
573 
574 	newsk->list = list;
575 	list->qlen++;
576 	prev = (struct sk_buff *)list;
577 	next = prev->next;
578 	newsk->next = next;
579 	newsk->prev = prev;
580 	next->prev  = prev->next = newsk;
581 }
582 
583 /**
584  *	__skb_queue_tail - queue a buffer at the list tail
585  *	@list: list to use
586  *	@newsk: buffer to queue
587  *
588  *	Queue a buffer at the end of a list. This function takes no locks
589  *	and you must therefore hold required locks before calling it.
590  *
591  *	A buffer cannot be placed on two lists at the same time.
592  */
593 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
594 static inline void __skb_queue_tail(struct sk_buff_head *list,
595 				   struct sk_buff *newsk)
596 {
597 	struct sk_buff *prev, *next;
598 
599 	newsk->list = list;
600 	list->qlen++;
601 	next = (struct sk_buff *)list;
602 	prev = next->prev;
603 	newsk->next = next;
604 	newsk->prev = prev;
605 	next->prev  = prev->next = newsk;
606 }
607 
608 
609 /**
610  *	__skb_dequeue - remove from the head of the queue
611  *	@list: list to dequeue from
612  *
613  *	Remove the head of the list. This function does not take any locks
614  *	so must be used with appropriate locks held only. The head item is
615  *	returned or %NULL if the list is empty.
616  */
617 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
618 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
619 {
620 	struct sk_buff *next, *prev, *result;
621 
622 	prev = (struct sk_buff *) list;
623 	next = prev->next;
624 	result = NULL;
625 	if (next != prev) {
626 		result	     = next;
627 		next	     = next->next;
628 		list->qlen--;
629 		next->prev   = prev;
630 		prev->next   = next;
631 		result->next = result->prev = NULL;
632 		result->list = NULL;
633 	}
634 	return result;
635 }
636 
637 
638 /*
639  *	Insert a packet on a list.
640  */
641 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk);
642 static inline void __skb_insert(struct sk_buff *newsk,
643 				struct sk_buff *prev, struct sk_buff *next,
644 				struct sk_buff_head *list)
645 {
646 	newsk->next = next;
647 	newsk->prev = prev;
648 	next->prev  = prev->next = newsk;
649 	newsk->list = list;
650 	list->qlen++;
651 }
652 
653 /*
654  *	Place a packet after a given packet in a list.
655  */
656 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk);
657 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
658 {
659 	__skb_insert(newsk, old, old->next, old->list);
660 }
661 
662 /*
663  * remove sk_buff from list. _Must_ be called atomically, and with
664  * the list known..
665  */
666 extern void	   skb_unlink(struct sk_buff *skb);
667 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
668 {
669 	struct sk_buff *next, *prev;
670 
671 	list->qlen--;
672 	next	   = skb->next;
673 	prev	   = skb->prev;
674 	skb->next  = skb->prev = NULL;
675 	skb->list  = NULL;
676 	next->prev = prev;
677 	prev->next = next;
678 }
679 
680 
681 /* XXX: more streamlined implementation */
682 
683 /**
684  *	__skb_dequeue_tail - remove from the tail of the queue
685  *	@list: list to dequeue from
686  *
687  *	Remove the tail of the list. This function does not take any locks
688  *	so must be used with appropriate locks held only. The tail item is
689  *	returned or %NULL if the list is empty.
690  */
691 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
692 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
693 {
694 	struct sk_buff *skb = skb_peek_tail(list);
695 	if (skb)
696 		__skb_unlink(skb, list);
697 	return skb;
698 }
699 
700 
701 static inline int skb_is_nonlinear(const struct sk_buff *skb)
702 {
703 	return skb->data_len;
704 }
705 
706 static inline unsigned int skb_headlen(const struct sk_buff *skb)
707 {
708 	return skb->len - skb->data_len;
709 }
710 
711 static inline int skb_pagelen(const struct sk_buff *skb)
712 {
713 	int i, len = 0;
714 
715 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
716 		len += skb_shinfo(skb)->frags[i].size;
717 	return len + skb_headlen(skb);
718 }
719 
720 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
721 				      struct page *page, int off, int size)
722 {
723 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
724 
725 	frag->page		  = page;
726 	frag->page_offset	  = off;
727 	frag->size		  = size;
728 	skb_shinfo(skb)->nr_frags = i + 1;
729 }
730 
731 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
732 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
733 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
734 
735 /*
736  *	Add data to an sk_buff
737  */
738 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
739 {
740 	unsigned char *tmp = skb->tail;
741 	SKB_LINEAR_ASSERT(skb);
742 	skb->tail += len;
743 	skb->len  += len;
744 	return tmp;
745 }
746 
747 /**
748  *	skb_put - add data to a buffer
749  *	@skb: buffer to use
750  *	@len: amount of data to add
751  *
752  *	This function extends the used data area of the buffer. If this would
753  *	exceed the total buffer size the kernel will panic. A pointer to the
754  *	first byte of the extra data is returned.
755  */
756 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
757 {
758 	unsigned char *tmp = skb->tail;
759 	SKB_LINEAR_ASSERT(skb);
760 	skb->tail += len;
761 	skb->len  += len;
762 	if (unlikely(skb->tail>skb->end))
763 		skb_over_panic(skb, len, current_text_addr());
764 	return tmp;
765 }
766 
767 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
768 {
769 	skb->data -= len;
770 	skb->len  += len;
771 	return skb->data;
772 }
773 
774 /**
775  *	skb_push - add data to the start of a buffer
776  *	@skb: buffer to use
777  *	@len: amount of data to add
778  *
779  *	This function extends the used data area of the buffer at the buffer
780  *	start. If this would exceed the total buffer headroom the kernel will
781  *	panic. A pointer to the first byte of the extra data is returned.
782  */
783 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
784 {
785 	skb->data -= len;
786 	skb->len  += len;
787 	if (unlikely(skb->data<skb->head))
788 		skb_under_panic(skb, len, current_text_addr());
789 	return skb->data;
790 }
791 
792 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
793 {
794 	skb->len -= len;
795 	BUG_ON(skb->len < skb->data_len);
796 	return skb->data += len;
797 }
798 
799 /**
800  *	skb_pull - remove data from the start of a buffer
801  *	@skb: buffer to use
802  *	@len: amount of data to remove
803  *
804  *	This function removes data from the start of a buffer, returning
805  *	the memory to the headroom. A pointer to the next data in the buffer
806  *	is returned. Once the data has been pulled future pushes will overwrite
807  *	the old data.
808  */
809 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
810 {
811 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
812 }
813 
814 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
815 
816 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
817 {
818 	if (len > skb_headlen(skb) &&
819 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
820 		return NULL;
821 	skb->len -= len;
822 	return skb->data += len;
823 }
824 
825 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
826 {
827 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
828 }
829 
830 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
831 {
832 	if (likely(len <= skb_headlen(skb)))
833 		return 1;
834 	if (unlikely(len > skb->len))
835 		return 0;
836 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
837 }
838 
839 /**
840  *	skb_headroom - bytes at buffer head
841  *	@skb: buffer to check
842  *
843  *	Return the number of bytes of free space at the head of an &sk_buff.
844  */
845 static inline int skb_headroom(const struct sk_buff *skb)
846 {
847 	return skb->data - skb->head;
848 }
849 
850 /**
851  *	skb_tailroom - bytes at buffer end
852  *	@skb: buffer to check
853  *
854  *	Return the number of bytes of free space at the tail of an sk_buff
855  */
856 static inline int skb_tailroom(const struct sk_buff *skb)
857 {
858 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
859 }
860 
861 /**
862  *	skb_reserve - adjust headroom
863  *	@skb: buffer to alter
864  *	@len: bytes to move
865  *
866  *	Increase the headroom of an empty &sk_buff by reducing the tail
867  *	room. This is only allowed for an empty buffer.
868  */
869 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
870 {
871 	skb->data += len;
872 	skb->tail += len;
873 }
874 
875 /*
876  * CPUs often take a performance hit when accessing unaligned memory
877  * locations. The actual performance hit varies, it can be small if the
878  * hardware handles it or large if we have to take an exception and fix it
879  * in software.
880  *
881  * Since an ethernet header is 14 bytes network drivers often end up with
882  * the IP header at an unaligned offset. The IP header can be aligned by
883  * shifting the start of the packet by 2 bytes. Drivers should do this
884  * with:
885  *
886  * skb_reserve(NET_IP_ALIGN);
887  *
888  * The downside to this alignment of the IP header is that the DMA is now
889  * unaligned. On some architectures the cost of an unaligned DMA is high
890  * and this cost outweighs the gains made by aligning the IP header.
891  *
892  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
893  * to be overridden.
894  */
895 #ifndef NET_IP_ALIGN
896 #define NET_IP_ALIGN	2
897 #endif
898 
899 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
900 
901 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
902 {
903 	if (!skb->data_len) {
904 		skb->len  = len;
905 		skb->tail = skb->data + len;
906 	} else
907 		___pskb_trim(skb, len, 0);
908 }
909 
910 /**
911  *	skb_trim - remove end from a buffer
912  *	@skb: buffer to alter
913  *	@len: new length
914  *
915  *	Cut the length of a buffer down by removing data from the tail. If
916  *	the buffer is already under the length specified it is not modified.
917  */
918 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
919 {
920 	if (skb->len > len)
921 		__skb_trim(skb, len);
922 }
923 
924 
925 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
926 {
927 	if (!skb->data_len) {
928 		skb->len  = len;
929 		skb->tail = skb->data+len;
930 		return 0;
931 	}
932 	return ___pskb_trim(skb, len, 1);
933 }
934 
935 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
936 {
937 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
938 }
939 
940 /**
941  *	skb_orphan - orphan a buffer
942  *	@skb: buffer to orphan
943  *
944  *	If a buffer currently has an owner then we call the owner's
945  *	destructor function and make the @skb unowned. The buffer continues
946  *	to exist but is no longer charged to its former owner.
947  */
948 static inline void skb_orphan(struct sk_buff *skb)
949 {
950 	if (skb->destructor)
951 		skb->destructor(skb);
952 	skb->destructor = NULL;
953 	skb->sk		= NULL;
954 }
955 
956 /**
957  *	__skb_queue_purge - empty a list
958  *	@list: list to empty
959  *
960  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
961  *	the list and one reference dropped. This function does not take the
962  *	list lock and the caller must hold the relevant locks to use it.
963  */
964 extern void skb_queue_purge(struct sk_buff_head *list);
965 static inline void __skb_queue_purge(struct sk_buff_head *list)
966 {
967 	struct sk_buff *skb;
968 	while ((skb = __skb_dequeue(list)) != NULL)
969 		kfree_skb(skb);
970 }
971 
972 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
973 /**
974  *	__dev_alloc_skb - allocate an skbuff for sending
975  *	@length: length to allocate
976  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
977  *
978  *	Allocate a new &sk_buff and assign it a usage count of one. The
979  *	buffer has unspecified headroom built in. Users should allocate
980  *	the headroom they think they need without accounting for the
981  *	built in space. The built in space is used for optimisations.
982  *
983  *	%NULL is returned in there is no free memory.
984  */
985 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
986 					      int gfp_mask)
987 {
988 	struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
989 	if (likely(skb))
990 		skb_reserve(skb, 16);
991 	return skb;
992 }
993 #else
994 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
995 #endif
996 
997 /**
998  *	dev_alloc_skb - allocate an skbuff for sending
999  *	@length: length to allocate
1000  *
1001  *	Allocate a new &sk_buff and assign it a usage count of one. The
1002  *	buffer has unspecified headroom built in. Users should allocate
1003  *	the headroom they think they need without accounting for the
1004  *	built in space. The built in space is used for optimisations.
1005  *
1006  *	%NULL is returned in there is no free memory. Although this function
1007  *	allocates memory it can be called from an interrupt.
1008  */
1009 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1010 {
1011 	return __dev_alloc_skb(length, GFP_ATOMIC);
1012 }
1013 
1014 /**
1015  *	skb_cow - copy header of skb when it is required
1016  *	@skb: buffer to cow
1017  *	@headroom: needed headroom
1018  *
1019  *	If the skb passed lacks sufficient headroom or its data part
1020  *	is shared, data is reallocated. If reallocation fails, an error
1021  *	is returned and original skb is not changed.
1022  *
1023  *	The result is skb with writable area skb->head...skb->tail
1024  *	and at least @headroom of space at head.
1025  */
1026 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1027 {
1028 	int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1029 
1030 	if (delta < 0)
1031 		delta = 0;
1032 
1033 	if (delta || skb_cloned(skb))
1034 		return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1035 	return 0;
1036 }
1037 
1038 /**
1039  *	skb_padto	- pad an skbuff up to a minimal size
1040  *	@skb: buffer to pad
1041  *	@len: minimal length
1042  *
1043  *	Pads up a buffer to ensure the trailing bytes exist and are
1044  *	blanked. If the buffer already contains sufficient data it
1045  *	is untouched. Returns the buffer, which may be a replacement
1046  *	for the original, or NULL for out of memory - in which case
1047  *	the original buffer is still freed.
1048  */
1049 
1050 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1051 {
1052 	unsigned int size = skb->len;
1053 	if (likely(size >= len))
1054 		return skb;
1055 	return skb_pad(skb, len-size);
1056 }
1057 
1058 static inline int skb_add_data(struct sk_buff *skb,
1059 			       char __user *from, int copy)
1060 {
1061 	const int off = skb->len;
1062 
1063 	if (skb->ip_summed == CHECKSUM_NONE) {
1064 		int err = 0;
1065 		unsigned int csum = csum_and_copy_from_user(from,
1066 							    skb_put(skb, copy),
1067 							    copy, 0, &err);
1068 		if (!err) {
1069 			skb->csum = csum_block_add(skb->csum, csum, off);
1070 			return 0;
1071 		}
1072 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1073 		return 0;
1074 
1075 	__skb_trim(skb, off);
1076 	return -EFAULT;
1077 }
1078 
1079 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1080 				   struct page *page, int off)
1081 {
1082 	if (i) {
1083 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1084 
1085 		return page == frag->page &&
1086 		       off == frag->page_offset + frag->size;
1087 	}
1088 	return 0;
1089 }
1090 
1091 /**
1092  *	skb_linearize - convert paged skb to linear one
1093  *	@skb: buffer to linarize
1094  *	@gfp: allocation mode
1095  *
1096  *	If there is no free memory -ENOMEM is returned, otherwise zero
1097  *	is returned and the old skb data released.
1098  */
1099 extern int __skb_linearize(struct sk_buff *skb, int gfp);
1100 static inline int skb_linearize(struct sk_buff *skb, int gfp)
1101 {
1102 	return __skb_linearize(skb, gfp);
1103 }
1104 
1105 /**
1106  *	skb_postpull_rcsum - update checksum for received skb after pull
1107  *	@skb: buffer to update
1108  *	@start: start of data before pull
1109  *	@len: length of data pulled
1110  *
1111  *	After doing a pull on a received packet, you need to call this to
1112  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1113  *	so that it can be recomputed from scratch.
1114  */
1115 
1116 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1117 					 const void *start, int len)
1118 {
1119 	if (skb->ip_summed == CHECKSUM_HW)
1120 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1121 }
1122 
1123 /**
1124  *	pskb_trim_rcsum - trim received skb and update checksum
1125  *	@skb: buffer to trim
1126  *	@len: new length
1127  *
1128  *	This is exactly the same as pskb_trim except that it ensures the
1129  *	checksum of received packets are still valid after the operation.
1130  */
1131 
1132 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1133 {
1134 	if (len >= skb->len)
1135 		return 0;
1136 	if (skb->ip_summed == CHECKSUM_HW)
1137 		skb->ip_summed = CHECKSUM_NONE;
1138 	return __pskb_trim(skb, len);
1139 }
1140 
1141 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1142 {
1143 #ifdef CONFIG_HIGHMEM
1144 	BUG_ON(in_irq());
1145 
1146 	local_bh_disable();
1147 #endif
1148 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1149 }
1150 
1151 static inline void kunmap_skb_frag(void *vaddr)
1152 {
1153 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1154 #ifdef CONFIG_HIGHMEM
1155 	local_bh_enable();
1156 #endif
1157 }
1158 
1159 #define skb_queue_walk(queue, skb) \
1160 		for (skb = (queue)->next;					\
1161 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1162 		     skb = skb->next)
1163 
1164 
1165 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1166 					 int noblock, int *err);
1167 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1168 				     struct poll_table_struct *wait);
1169 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1170 					       int offset, struct iovec *to,
1171 					       int size);
1172 extern int	       skb_copy_and_csum_datagram_iovec(const
1173 							struct sk_buff *skb,
1174 							int hlen,
1175 							struct iovec *iov);
1176 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1177 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1178 				    int len, unsigned int csum);
1179 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1180 				     void *to, int len);
1181 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1182 				      void *from, int len);
1183 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1184 					      int offset, u8 *to, int len,
1185 					      unsigned int csum);
1186 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1187 extern void	       skb_split(struct sk_buff *skb,
1188 				 struct sk_buff *skb1, const u32 len);
1189 
1190 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1191 				       int len, void *buffer)
1192 {
1193 	int hlen = skb_headlen(skb);
1194 
1195 	if (offset + len <= hlen)
1196 		return skb->data + offset;
1197 
1198 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1199 		return NULL;
1200 
1201 	return buffer;
1202 }
1203 
1204 extern void skb_init(void);
1205 extern void skb_add_mtu(int mtu);
1206 
1207 #ifdef CONFIG_NETFILTER
1208 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1209 {
1210 	if (nfct && atomic_dec_and_test(&nfct->use))
1211 		nfct->destroy(nfct);
1212 }
1213 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1214 {
1215 	if (nfct)
1216 		atomic_inc(&nfct->use);
1217 }
1218 static inline void nf_reset(struct sk_buff *skb)
1219 {
1220 	nf_conntrack_put(skb->nfct);
1221 	skb->nfct = NULL;
1222 #ifdef CONFIG_NETFILTER_DEBUG
1223 	skb->nf_debug = 0;
1224 #endif
1225 }
1226 static inline void nf_reset_debug(struct sk_buff *skb)
1227 {
1228 #ifdef CONFIG_NETFILTER_DEBUG
1229 	skb->nf_debug = 0;
1230 #endif
1231 }
1232 
1233 #ifdef CONFIG_BRIDGE_NETFILTER
1234 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1235 {
1236 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1237 		kfree(nf_bridge);
1238 }
1239 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1240 {
1241 	if (nf_bridge)
1242 		atomic_inc(&nf_bridge->use);
1243 }
1244 #endif /* CONFIG_BRIDGE_NETFILTER */
1245 #else /* CONFIG_NETFILTER */
1246 static inline void nf_reset(struct sk_buff *skb) {}
1247 #endif /* CONFIG_NETFILTER */
1248 
1249 #endif	/* __KERNEL__ */
1250 #endif	/* _LINUX_SKBUFF_H */
1251