xref: /linux-6.15/include/linux/skbuff.h (revision 75f25bd3)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list. Since
126  * GRO uses frags we allocate at least 16 regardless of page size.
127  */
128 #if (65536/PAGE_SIZE + 2) < 16
129 #define MAX_SKB_FRAGS 16UL
130 #else
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132 #endif
133 
134 typedef struct skb_frag_struct skb_frag_t;
135 
136 struct skb_frag_struct {
137 	struct page *page;
138 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
139 	__u32 page_offset;
140 	__u32 size;
141 #else
142 	__u16 page_offset;
143 	__u16 size;
144 #endif
145 };
146 
147 #define HAVE_HW_TIME_STAMP
148 
149 /**
150  * struct skb_shared_hwtstamps - hardware time stamps
151  * @hwtstamp:	hardware time stamp transformed into duration
152  *		since arbitrary point in time
153  * @syststamp:	hwtstamp transformed to system time base
154  *
155  * Software time stamps generated by ktime_get_real() are stored in
156  * skb->tstamp. The relation between the different kinds of time
157  * stamps is as follows:
158  *
159  * syststamp and tstamp can be compared against each other in
160  * arbitrary combinations.  The accuracy of a
161  * syststamp/tstamp/"syststamp from other device" comparison is
162  * limited by the accuracy of the transformation into system time
163  * base. This depends on the device driver and its underlying
164  * hardware.
165  *
166  * hwtstamps can only be compared against other hwtstamps from
167  * the same device.
168  *
169  * This structure is attached to packets as part of the
170  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
171  */
172 struct skb_shared_hwtstamps {
173 	ktime_t	hwtstamp;
174 	ktime_t	syststamp;
175 };
176 
177 /* Definitions for tx_flags in struct skb_shared_info */
178 enum {
179 	/* generate hardware time stamp */
180 	SKBTX_HW_TSTAMP = 1 << 0,
181 
182 	/* generate software time stamp */
183 	SKBTX_SW_TSTAMP = 1 << 1,
184 
185 	/* device driver is going to provide hardware time stamp */
186 	SKBTX_IN_PROGRESS = 1 << 2,
187 
188 	/* ensure the originating sk reference is available on driver level */
189 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
190 
191 	/* device driver supports TX zero-copy buffers */
192 	SKBTX_DEV_ZEROCOPY = 1 << 4,
193 };
194 
195 /*
196  * The callback notifies userspace to release buffers when skb DMA is done in
197  * lower device, the skb last reference should be 0 when calling this.
198  * The desc is used to track userspace buffer index.
199  */
200 struct ubuf_info {
201 	void (*callback)(void *);
202 	void *arg;
203 	unsigned long desc;
204 };
205 
206 /* This data is invariant across clones and lives at
207  * the end of the header data, ie. at skb->end.
208  */
209 struct skb_shared_info {
210 	unsigned short	nr_frags;
211 	unsigned short	gso_size;
212 	/* Warning: this field is not always filled in (UFO)! */
213 	unsigned short	gso_segs;
214 	unsigned short  gso_type;
215 	__be32          ip6_frag_id;
216 	__u8		tx_flags;
217 	struct sk_buff	*frag_list;
218 	struct skb_shared_hwtstamps hwtstamps;
219 
220 	/*
221 	 * Warning : all fields before dataref are cleared in __alloc_skb()
222 	 */
223 	atomic_t	dataref;
224 
225 	/* Intermediate layers must ensure that destructor_arg
226 	 * remains valid until skb destructor */
227 	void *		destructor_arg;
228 
229 	/* must be last field, see pskb_expand_head() */
230 	skb_frag_t	frags[MAX_SKB_FRAGS];
231 };
232 
233 /* We divide dataref into two halves.  The higher 16 bits hold references
234  * to the payload part of skb->data.  The lower 16 bits hold references to
235  * the entire skb->data.  A clone of a headerless skb holds the length of
236  * the header in skb->hdr_len.
237  *
238  * All users must obey the rule that the skb->data reference count must be
239  * greater than or equal to the payload reference count.
240  *
241  * Holding a reference to the payload part means that the user does not
242  * care about modifications to the header part of skb->data.
243  */
244 #define SKB_DATAREF_SHIFT 16
245 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
246 
247 
248 enum {
249 	SKB_FCLONE_UNAVAILABLE,
250 	SKB_FCLONE_ORIG,
251 	SKB_FCLONE_CLONE,
252 };
253 
254 enum {
255 	SKB_GSO_TCPV4 = 1 << 0,
256 	SKB_GSO_UDP = 1 << 1,
257 
258 	/* This indicates the skb is from an untrusted source. */
259 	SKB_GSO_DODGY = 1 << 2,
260 
261 	/* This indicates the tcp segment has CWR set. */
262 	SKB_GSO_TCP_ECN = 1 << 3,
263 
264 	SKB_GSO_TCPV6 = 1 << 4,
265 
266 	SKB_GSO_FCOE = 1 << 5,
267 };
268 
269 #if BITS_PER_LONG > 32
270 #define NET_SKBUFF_DATA_USES_OFFSET 1
271 #endif
272 
273 #ifdef NET_SKBUFF_DATA_USES_OFFSET
274 typedef unsigned int sk_buff_data_t;
275 #else
276 typedef unsigned char *sk_buff_data_t;
277 #endif
278 
279 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
280     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
281 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
282 #endif
283 
284 /**
285  *	struct sk_buff - socket buffer
286  *	@next: Next buffer in list
287  *	@prev: Previous buffer in list
288  *	@tstamp: Time we arrived
289  *	@sk: Socket we are owned by
290  *	@dev: Device we arrived on/are leaving by
291  *	@cb: Control buffer. Free for use by every layer. Put private vars here
292  *	@_skb_refdst: destination entry (with norefcount bit)
293  *	@sp: the security path, used for xfrm
294  *	@len: Length of actual data
295  *	@data_len: Data length
296  *	@mac_len: Length of link layer header
297  *	@hdr_len: writable header length of cloned skb
298  *	@csum: Checksum (must include start/offset pair)
299  *	@csum_start: Offset from skb->head where checksumming should start
300  *	@csum_offset: Offset from csum_start where checksum should be stored
301  *	@priority: Packet queueing priority
302  *	@local_df: allow local fragmentation
303  *	@cloned: Head may be cloned (check refcnt to be sure)
304  *	@ip_summed: Driver fed us an IP checksum
305  *	@nohdr: Payload reference only, must not modify header
306  *	@nfctinfo: Relationship of this skb to the connection
307  *	@pkt_type: Packet class
308  *	@fclone: skbuff clone status
309  *	@ipvs_property: skbuff is owned by ipvs
310  *	@peeked: this packet has been seen already, so stats have been
311  *		done for it, don't do them again
312  *	@nf_trace: netfilter packet trace flag
313  *	@protocol: Packet protocol from driver
314  *	@destructor: Destruct function
315  *	@nfct: Associated connection, if any
316  *	@nfct_reasm: netfilter conntrack re-assembly pointer
317  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
318  *	@skb_iif: ifindex of device we arrived on
319  *	@tc_index: Traffic control index
320  *	@tc_verd: traffic control verdict
321  *	@rxhash: the packet hash computed on receive
322  *	@queue_mapping: Queue mapping for multiqueue devices
323  *	@ndisc_nodetype: router type (from link layer)
324  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
325  *	@dma_cookie: a cookie to one of several possible DMA operations
326  *		done by skb DMA functions
327  *	@secmark: security marking
328  *	@mark: Generic packet mark
329  *	@dropcount: total number of sk_receive_queue overflows
330  *	@vlan_tci: vlan tag control information
331  *	@transport_header: Transport layer header
332  *	@network_header: Network layer header
333  *	@mac_header: Link layer header
334  *	@tail: Tail pointer
335  *	@end: End pointer
336  *	@head: Head of buffer
337  *	@data: Data head pointer
338  *	@truesize: Buffer size
339  *	@users: User count - see {datagram,tcp}.c
340  */
341 
342 struct sk_buff {
343 	/* These two members must be first. */
344 	struct sk_buff		*next;
345 	struct sk_buff		*prev;
346 
347 	ktime_t			tstamp;
348 
349 	struct sock		*sk;
350 	struct net_device	*dev;
351 
352 	/*
353 	 * This is the control buffer. It is free to use for every
354 	 * layer. Please put your private variables there. If you
355 	 * want to keep them across layers you have to do a skb_clone()
356 	 * first. This is owned by whoever has the skb queued ATM.
357 	 */
358 	char			cb[48] __aligned(8);
359 
360 	unsigned long		_skb_refdst;
361 #ifdef CONFIG_XFRM
362 	struct	sec_path	*sp;
363 #endif
364 	unsigned int		len,
365 				data_len;
366 	__u16			mac_len,
367 				hdr_len;
368 	union {
369 		__wsum		csum;
370 		struct {
371 			__u16	csum_start;
372 			__u16	csum_offset;
373 		};
374 	};
375 	__u32			priority;
376 	kmemcheck_bitfield_begin(flags1);
377 	__u8			local_df:1,
378 				cloned:1,
379 				ip_summed:2,
380 				nohdr:1,
381 				nfctinfo:3;
382 	__u8			pkt_type:3,
383 				fclone:2,
384 				ipvs_property:1,
385 				peeked:1,
386 				nf_trace:1;
387 	kmemcheck_bitfield_end(flags1);
388 	__be16			protocol;
389 
390 	void			(*destructor)(struct sk_buff *skb);
391 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
392 	struct nf_conntrack	*nfct;
393 #endif
394 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
395 	struct sk_buff		*nfct_reasm;
396 #endif
397 #ifdef CONFIG_BRIDGE_NETFILTER
398 	struct nf_bridge_info	*nf_bridge;
399 #endif
400 
401 	int			skb_iif;
402 #ifdef CONFIG_NET_SCHED
403 	__u16			tc_index;	/* traffic control index */
404 #ifdef CONFIG_NET_CLS_ACT
405 	__u16			tc_verd;	/* traffic control verdict */
406 #endif
407 #endif
408 
409 	__u32			rxhash;
410 
411 	__u16			queue_mapping;
412 	kmemcheck_bitfield_begin(flags2);
413 #ifdef CONFIG_IPV6_NDISC_NODETYPE
414 	__u8			ndisc_nodetype:2;
415 #endif
416 	__u8			ooo_okay:1;
417 	kmemcheck_bitfield_end(flags2);
418 
419 	/* 0/13 bit hole */
420 
421 #ifdef CONFIG_NET_DMA
422 	dma_cookie_t		dma_cookie;
423 #endif
424 #ifdef CONFIG_NETWORK_SECMARK
425 	__u32			secmark;
426 #endif
427 	union {
428 		__u32		mark;
429 		__u32		dropcount;
430 	};
431 
432 	__u16			vlan_tci;
433 
434 	sk_buff_data_t		transport_header;
435 	sk_buff_data_t		network_header;
436 	sk_buff_data_t		mac_header;
437 	/* These elements must be at the end, see alloc_skb() for details.  */
438 	sk_buff_data_t		tail;
439 	sk_buff_data_t		end;
440 	unsigned char		*head,
441 				*data;
442 	unsigned int		truesize;
443 	atomic_t		users;
444 };
445 
446 #ifdef __KERNEL__
447 /*
448  *	Handling routines are only of interest to the kernel
449  */
450 #include <linux/slab.h>
451 
452 #include <asm/system.h>
453 
454 /*
455  * skb might have a dst pointer attached, refcounted or not.
456  * _skb_refdst low order bit is set if refcount was _not_ taken
457  */
458 #define SKB_DST_NOREF	1UL
459 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
460 
461 /**
462  * skb_dst - returns skb dst_entry
463  * @skb: buffer
464  *
465  * Returns skb dst_entry, regardless of reference taken or not.
466  */
467 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
468 {
469 	/* If refdst was not refcounted, check we still are in a
470 	 * rcu_read_lock section
471 	 */
472 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
473 		!rcu_read_lock_held() &&
474 		!rcu_read_lock_bh_held());
475 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
476 }
477 
478 /**
479  * skb_dst_set - sets skb dst
480  * @skb: buffer
481  * @dst: dst entry
482  *
483  * Sets skb dst, assuming a reference was taken on dst and should
484  * be released by skb_dst_drop()
485  */
486 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
487 {
488 	skb->_skb_refdst = (unsigned long)dst;
489 }
490 
491 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
492 
493 /**
494  * skb_dst_is_noref - Test if skb dst isn't refcounted
495  * @skb: buffer
496  */
497 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
498 {
499 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
500 }
501 
502 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
503 {
504 	return (struct rtable *)skb_dst(skb);
505 }
506 
507 extern void kfree_skb(struct sk_buff *skb);
508 extern void consume_skb(struct sk_buff *skb);
509 extern void	       __kfree_skb(struct sk_buff *skb);
510 extern struct sk_buff *__alloc_skb(unsigned int size,
511 				   gfp_t priority, int fclone, int node);
512 static inline struct sk_buff *alloc_skb(unsigned int size,
513 					gfp_t priority)
514 {
515 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
516 }
517 
518 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
519 					       gfp_t priority)
520 {
521 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
522 }
523 
524 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
525 
526 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
527 extern struct sk_buff *skb_clone(struct sk_buff *skb,
528 				 gfp_t priority);
529 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
530 				gfp_t priority);
531 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
532 				 gfp_t gfp_mask);
533 extern int	       pskb_expand_head(struct sk_buff *skb,
534 					int nhead, int ntail,
535 					gfp_t gfp_mask);
536 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
537 					    unsigned int headroom);
538 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
539 				       int newheadroom, int newtailroom,
540 				       gfp_t priority);
541 extern int	       skb_to_sgvec(struct sk_buff *skb,
542 				    struct scatterlist *sg, int offset,
543 				    int len);
544 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
545 				    struct sk_buff **trailer);
546 extern int	       skb_pad(struct sk_buff *skb, int pad);
547 #define dev_kfree_skb(a)	consume_skb(a)
548 
549 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
550 			int getfrag(void *from, char *to, int offset,
551 			int len,int odd, struct sk_buff *skb),
552 			void *from, int length);
553 
554 struct skb_seq_state {
555 	__u32		lower_offset;
556 	__u32		upper_offset;
557 	__u32		frag_idx;
558 	__u32		stepped_offset;
559 	struct sk_buff	*root_skb;
560 	struct sk_buff	*cur_skb;
561 	__u8		*frag_data;
562 };
563 
564 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
565 					   unsigned int from, unsigned int to,
566 					   struct skb_seq_state *st);
567 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
568 				   struct skb_seq_state *st);
569 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
570 
571 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
572 				    unsigned int to, struct ts_config *config,
573 				    struct ts_state *state);
574 
575 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
576 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
577 {
578 	if (!skb->rxhash)
579 		skb->rxhash = __skb_get_rxhash(skb);
580 
581 	return skb->rxhash;
582 }
583 
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
586 {
587 	return skb->head + skb->end;
588 }
589 #else
590 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
591 {
592 	return skb->end;
593 }
594 #endif
595 
596 /* Internal */
597 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
598 
599 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
600 {
601 	return &skb_shinfo(skb)->hwtstamps;
602 }
603 
604 /**
605  *	skb_queue_empty - check if a queue is empty
606  *	@list: queue head
607  *
608  *	Returns true if the queue is empty, false otherwise.
609  */
610 static inline int skb_queue_empty(const struct sk_buff_head *list)
611 {
612 	return list->next == (struct sk_buff *)list;
613 }
614 
615 /**
616  *	skb_queue_is_last - check if skb is the last entry in the queue
617  *	@list: queue head
618  *	@skb: buffer
619  *
620  *	Returns true if @skb is the last buffer on the list.
621  */
622 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
623 				     const struct sk_buff *skb)
624 {
625 	return skb->next == (struct sk_buff *)list;
626 }
627 
628 /**
629  *	skb_queue_is_first - check if skb is the first entry in the queue
630  *	@list: queue head
631  *	@skb: buffer
632  *
633  *	Returns true if @skb is the first buffer on the list.
634  */
635 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
636 				      const struct sk_buff *skb)
637 {
638 	return skb->prev == (struct sk_buff *)list;
639 }
640 
641 /**
642  *	skb_queue_next - return the next packet in the queue
643  *	@list: queue head
644  *	@skb: current buffer
645  *
646  *	Return the next packet in @list after @skb.  It is only valid to
647  *	call this if skb_queue_is_last() evaluates to false.
648  */
649 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
650 					     const struct sk_buff *skb)
651 {
652 	/* This BUG_ON may seem severe, but if we just return then we
653 	 * are going to dereference garbage.
654 	 */
655 	BUG_ON(skb_queue_is_last(list, skb));
656 	return skb->next;
657 }
658 
659 /**
660  *	skb_queue_prev - return the prev packet in the queue
661  *	@list: queue head
662  *	@skb: current buffer
663  *
664  *	Return the prev packet in @list before @skb.  It is only valid to
665  *	call this if skb_queue_is_first() evaluates to false.
666  */
667 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
668 					     const struct sk_buff *skb)
669 {
670 	/* This BUG_ON may seem severe, but if we just return then we
671 	 * are going to dereference garbage.
672 	 */
673 	BUG_ON(skb_queue_is_first(list, skb));
674 	return skb->prev;
675 }
676 
677 /**
678  *	skb_get - reference buffer
679  *	@skb: buffer to reference
680  *
681  *	Makes another reference to a socket buffer and returns a pointer
682  *	to the buffer.
683  */
684 static inline struct sk_buff *skb_get(struct sk_buff *skb)
685 {
686 	atomic_inc(&skb->users);
687 	return skb;
688 }
689 
690 /*
691  * If users == 1, we are the only owner and are can avoid redundant
692  * atomic change.
693  */
694 
695 /**
696  *	skb_cloned - is the buffer a clone
697  *	@skb: buffer to check
698  *
699  *	Returns true if the buffer was generated with skb_clone() and is
700  *	one of multiple shared copies of the buffer. Cloned buffers are
701  *	shared data so must not be written to under normal circumstances.
702  */
703 static inline int skb_cloned(const struct sk_buff *skb)
704 {
705 	return skb->cloned &&
706 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
707 }
708 
709 /**
710  *	skb_header_cloned - is the header a clone
711  *	@skb: buffer to check
712  *
713  *	Returns true if modifying the header part of the buffer requires
714  *	the data to be copied.
715  */
716 static inline int skb_header_cloned(const struct sk_buff *skb)
717 {
718 	int dataref;
719 
720 	if (!skb->cloned)
721 		return 0;
722 
723 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
724 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
725 	return dataref != 1;
726 }
727 
728 /**
729  *	skb_header_release - release reference to header
730  *	@skb: buffer to operate on
731  *
732  *	Drop a reference to the header part of the buffer.  This is done
733  *	by acquiring a payload reference.  You must not read from the header
734  *	part of skb->data after this.
735  */
736 static inline void skb_header_release(struct sk_buff *skb)
737 {
738 	BUG_ON(skb->nohdr);
739 	skb->nohdr = 1;
740 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
741 }
742 
743 /**
744  *	skb_shared - is the buffer shared
745  *	@skb: buffer to check
746  *
747  *	Returns true if more than one person has a reference to this
748  *	buffer.
749  */
750 static inline int skb_shared(const struct sk_buff *skb)
751 {
752 	return atomic_read(&skb->users) != 1;
753 }
754 
755 /**
756  *	skb_share_check - check if buffer is shared and if so clone it
757  *	@skb: buffer to check
758  *	@pri: priority for memory allocation
759  *
760  *	If the buffer is shared the buffer is cloned and the old copy
761  *	drops a reference. A new clone with a single reference is returned.
762  *	If the buffer is not shared the original buffer is returned. When
763  *	being called from interrupt status or with spinlocks held pri must
764  *	be GFP_ATOMIC.
765  *
766  *	NULL is returned on a memory allocation failure.
767  */
768 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
769 					      gfp_t pri)
770 {
771 	might_sleep_if(pri & __GFP_WAIT);
772 	if (skb_shared(skb)) {
773 		struct sk_buff *nskb = skb_clone(skb, pri);
774 		kfree_skb(skb);
775 		skb = nskb;
776 	}
777 	return skb;
778 }
779 
780 /*
781  *	Copy shared buffers into a new sk_buff. We effectively do COW on
782  *	packets to handle cases where we have a local reader and forward
783  *	and a couple of other messy ones. The normal one is tcpdumping
784  *	a packet thats being forwarded.
785  */
786 
787 /**
788  *	skb_unshare - make a copy of a shared buffer
789  *	@skb: buffer to check
790  *	@pri: priority for memory allocation
791  *
792  *	If the socket buffer is a clone then this function creates a new
793  *	copy of the data, drops a reference count on the old copy and returns
794  *	the new copy with the reference count at 1. If the buffer is not a clone
795  *	the original buffer is returned. When called with a spinlock held or
796  *	from interrupt state @pri must be %GFP_ATOMIC
797  *
798  *	%NULL is returned on a memory allocation failure.
799  */
800 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
801 					  gfp_t pri)
802 {
803 	might_sleep_if(pri & __GFP_WAIT);
804 	if (skb_cloned(skb)) {
805 		struct sk_buff *nskb = skb_copy(skb, pri);
806 		kfree_skb(skb);	/* Free our shared copy */
807 		skb = nskb;
808 	}
809 	return skb;
810 }
811 
812 /**
813  *	skb_peek - peek at the head of an &sk_buff_head
814  *	@list_: list to peek at
815  *
816  *	Peek an &sk_buff. Unlike most other operations you _MUST_
817  *	be careful with this one. A peek leaves the buffer on the
818  *	list and someone else may run off with it. You must hold
819  *	the appropriate locks or have a private queue to do this.
820  *
821  *	Returns %NULL for an empty list or a pointer to the head element.
822  *	The reference count is not incremented and the reference is therefore
823  *	volatile. Use with caution.
824  */
825 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
826 {
827 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
828 	if (list == (struct sk_buff *)list_)
829 		list = NULL;
830 	return list;
831 }
832 
833 /**
834  *	skb_peek_tail - peek at the tail of an &sk_buff_head
835  *	@list_: list to peek at
836  *
837  *	Peek an &sk_buff. Unlike most other operations you _MUST_
838  *	be careful with this one. A peek leaves the buffer on the
839  *	list and someone else may run off with it. You must hold
840  *	the appropriate locks or have a private queue to do this.
841  *
842  *	Returns %NULL for an empty list or a pointer to the tail element.
843  *	The reference count is not incremented and the reference is therefore
844  *	volatile. Use with caution.
845  */
846 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
847 {
848 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
849 	if (list == (struct sk_buff *)list_)
850 		list = NULL;
851 	return list;
852 }
853 
854 /**
855  *	skb_queue_len	- get queue length
856  *	@list_: list to measure
857  *
858  *	Return the length of an &sk_buff queue.
859  */
860 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
861 {
862 	return list_->qlen;
863 }
864 
865 /**
866  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
867  *	@list: queue to initialize
868  *
869  *	This initializes only the list and queue length aspects of
870  *	an sk_buff_head object.  This allows to initialize the list
871  *	aspects of an sk_buff_head without reinitializing things like
872  *	the spinlock.  It can also be used for on-stack sk_buff_head
873  *	objects where the spinlock is known to not be used.
874  */
875 static inline void __skb_queue_head_init(struct sk_buff_head *list)
876 {
877 	list->prev = list->next = (struct sk_buff *)list;
878 	list->qlen = 0;
879 }
880 
881 /*
882  * This function creates a split out lock class for each invocation;
883  * this is needed for now since a whole lot of users of the skb-queue
884  * infrastructure in drivers have different locking usage (in hardirq)
885  * than the networking core (in softirq only). In the long run either the
886  * network layer or drivers should need annotation to consolidate the
887  * main types of usage into 3 classes.
888  */
889 static inline void skb_queue_head_init(struct sk_buff_head *list)
890 {
891 	spin_lock_init(&list->lock);
892 	__skb_queue_head_init(list);
893 }
894 
895 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
896 		struct lock_class_key *class)
897 {
898 	skb_queue_head_init(list);
899 	lockdep_set_class(&list->lock, class);
900 }
901 
902 /*
903  *	Insert an sk_buff on a list.
904  *
905  *	The "__skb_xxxx()" functions are the non-atomic ones that
906  *	can only be called with interrupts disabled.
907  */
908 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
909 static inline void __skb_insert(struct sk_buff *newsk,
910 				struct sk_buff *prev, struct sk_buff *next,
911 				struct sk_buff_head *list)
912 {
913 	newsk->next = next;
914 	newsk->prev = prev;
915 	next->prev  = prev->next = newsk;
916 	list->qlen++;
917 }
918 
919 static inline void __skb_queue_splice(const struct sk_buff_head *list,
920 				      struct sk_buff *prev,
921 				      struct sk_buff *next)
922 {
923 	struct sk_buff *first = list->next;
924 	struct sk_buff *last = list->prev;
925 
926 	first->prev = prev;
927 	prev->next = first;
928 
929 	last->next = next;
930 	next->prev = last;
931 }
932 
933 /**
934  *	skb_queue_splice - join two skb lists, this is designed for stacks
935  *	@list: the new list to add
936  *	@head: the place to add it in the first list
937  */
938 static inline void skb_queue_splice(const struct sk_buff_head *list,
939 				    struct sk_buff_head *head)
940 {
941 	if (!skb_queue_empty(list)) {
942 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
943 		head->qlen += list->qlen;
944 	}
945 }
946 
947 /**
948  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
949  *	@list: the new list to add
950  *	@head: the place to add it in the first list
951  *
952  *	The list at @list is reinitialised
953  */
954 static inline void skb_queue_splice_init(struct sk_buff_head *list,
955 					 struct sk_buff_head *head)
956 {
957 	if (!skb_queue_empty(list)) {
958 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
959 		head->qlen += list->qlen;
960 		__skb_queue_head_init(list);
961 	}
962 }
963 
964 /**
965  *	skb_queue_splice_tail - join two skb lists, each list being a queue
966  *	@list: the new list to add
967  *	@head: the place to add it in the first list
968  */
969 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
970 					 struct sk_buff_head *head)
971 {
972 	if (!skb_queue_empty(list)) {
973 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
974 		head->qlen += list->qlen;
975 	}
976 }
977 
978 /**
979  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
980  *	@list: the new list to add
981  *	@head: the place to add it in the first list
982  *
983  *	Each of the lists is a queue.
984  *	The list at @list is reinitialised
985  */
986 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
987 					      struct sk_buff_head *head)
988 {
989 	if (!skb_queue_empty(list)) {
990 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
991 		head->qlen += list->qlen;
992 		__skb_queue_head_init(list);
993 	}
994 }
995 
996 /**
997  *	__skb_queue_after - queue a buffer at the list head
998  *	@list: list to use
999  *	@prev: place after this buffer
1000  *	@newsk: buffer to queue
1001  *
1002  *	Queue a buffer int the middle of a list. This function takes no locks
1003  *	and you must therefore hold required locks before calling it.
1004  *
1005  *	A buffer cannot be placed on two lists at the same time.
1006  */
1007 static inline void __skb_queue_after(struct sk_buff_head *list,
1008 				     struct sk_buff *prev,
1009 				     struct sk_buff *newsk)
1010 {
1011 	__skb_insert(newsk, prev, prev->next, list);
1012 }
1013 
1014 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1015 		       struct sk_buff_head *list);
1016 
1017 static inline void __skb_queue_before(struct sk_buff_head *list,
1018 				      struct sk_buff *next,
1019 				      struct sk_buff *newsk)
1020 {
1021 	__skb_insert(newsk, next->prev, next, list);
1022 }
1023 
1024 /**
1025  *	__skb_queue_head - queue a buffer at the list head
1026  *	@list: list to use
1027  *	@newsk: buffer to queue
1028  *
1029  *	Queue a buffer at the start of a list. This function takes no locks
1030  *	and you must therefore hold required locks before calling it.
1031  *
1032  *	A buffer cannot be placed on two lists at the same time.
1033  */
1034 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1035 static inline void __skb_queue_head(struct sk_buff_head *list,
1036 				    struct sk_buff *newsk)
1037 {
1038 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1039 }
1040 
1041 /**
1042  *	__skb_queue_tail - queue a buffer at the list tail
1043  *	@list: list to use
1044  *	@newsk: buffer to queue
1045  *
1046  *	Queue a buffer at the end of a list. This function takes no locks
1047  *	and you must therefore hold required locks before calling it.
1048  *
1049  *	A buffer cannot be placed on two lists at the same time.
1050  */
1051 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1052 static inline void __skb_queue_tail(struct sk_buff_head *list,
1053 				   struct sk_buff *newsk)
1054 {
1055 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1056 }
1057 
1058 /*
1059  * remove sk_buff from list. _Must_ be called atomically, and with
1060  * the list known..
1061  */
1062 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1063 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1064 {
1065 	struct sk_buff *next, *prev;
1066 
1067 	list->qlen--;
1068 	next	   = skb->next;
1069 	prev	   = skb->prev;
1070 	skb->next  = skb->prev = NULL;
1071 	next->prev = prev;
1072 	prev->next = next;
1073 }
1074 
1075 /**
1076  *	__skb_dequeue - remove from the head of the queue
1077  *	@list: list to dequeue from
1078  *
1079  *	Remove the head of the list. This function does not take any locks
1080  *	so must be used with appropriate locks held only. The head item is
1081  *	returned or %NULL if the list is empty.
1082  */
1083 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1084 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1085 {
1086 	struct sk_buff *skb = skb_peek(list);
1087 	if (skb)
1088 		__skb_unlink(skb, list);
1089 	return skb;
1090 }
1091 
1092 /**
1093  *	__skb_dequeue_tail - remove from the tail of the queue
1094  *	@list: list to dequeue from
1095  *
1096  *	Remove the tail of the list. This function does not take any locks
1097  *	so must be used with appropriate locks held only. The tail item is
1098  *	returned or %NULL if the list is empty.
1099  */
1100 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1101 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1102 {
1103 	struct sk_buff *skb = skb_peek_tail(list);
1104 	if (skb)
1105 		__skb_unlink(skb, list);
1106 	return skb;
1107 }
1108 
1109 
1110 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1111 {
1112 	return skb->data_len;
1113 }
1114 
1115 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1116 {
1117 	return skb->len - skb->data_len;
1118 }
1119 
1120 static inline int skb_pagelen(const struct sk_buff *skb)
1121 {
1122 	int i, len = 0;
1123 
1124 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1125 		len += skb_shinfo(skb)->frags[i].size;
1126 	return len + skb_headlen(skb);
1127 }
1128 
1129 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1130 				      struct page *page, int off, int size)
1131 {
1132 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133 
1134 	frag->page		  = page;
1135 	frag->page_offset	  = off;
1136 	frag->size		  = size;
1137 	skb_shinfo(skb)->nr_frags = i + 1;
1138 }
1139 
1140 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1141 			    int off, int size);
1142 
1143 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1144 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1145 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1146 
1147 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1148 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1149 {
1150 	return skb->head + skb->tail;
1151 }
1152 
1153 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1154 {
1155 	skb->tail = skb->data - skb->head;
1156 }
1157 
1158 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1159 {
1160 	skb_reset_tail_pointer(skb);
1161 	skb->tail += offset;
1162 }
1163 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1164 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1165 {
1166 	return skb->tail;
1167 }
1168 
1169 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1170 {
1171 	skb->tail = skb->data;
1172 }
1173 
1174 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1175 {
1176 	skb->tail = skb->data + offset;
1177 }
1178 
1179 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1180 
1181 /*
1182  *	Add data to an sk_buff
1183  */
1184 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1185 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1186 {
1187 	unsigned char *tmp = skb_tail_pointer(skb);
1188 	SKB_LINEAR_ASSERT(skb);
1189 	skb->tail += len;
1190 	skb->len  += len;
1191 	return tmp;
1192 }
1193 
1194 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1195 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1196 {
1197 	skb->data -= len;
1198 	skb->len  += len;
1199 	return skb->data;
1200 }
1201 
1202 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1203 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1204 {
1205 	skb->len -= len;
1206 	BUG_ON(skb->len < skb->data_len);
1207 	return skb->data += len;
1208 }
1209 
1210 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1211 {
1212 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1213 }
1214 
1215 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1216 
1217 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1218 {
1219 	if (len > skb_headlen(skb) &&
1220 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1221 		return NULL;
1222 	skb->len -= len;
1223 	return skb->data += len;
1224 }
1225 
1226 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1227 {
1228 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1229 }
1230 
1231 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1232 {
1233 	if (likely(len <= skb_headlen(skb)))
1234 		return 1;
1235 	if (unlikely(len > skb->len))
1236 		return 0;
1237 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1238 }
1239 
1240 /**
1241  *	skb_headroom - bytes at buffer head
1242  *	@skb: buffer to check
1243  *
1244  *	Return the number of bytes of free space at the head of an &sk_buff.
1245  */
1246 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1247 {
1248 	return skb->data - skb->head;
1249 }
1250 
1251 /**
1252  *	skb_tailroom - bytes at buffer end
1253  *	@skb: buffer to check
1254  *
1255  *	Return the number of bytes of free space at the tail of an sk_buff
1256  */
1257 static inline int skb_tailroom(const struct sk_buff *skb)
1258 {
1259 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1260 }
1261 
1262 /**
1263  *	skb_reserve - adjust headroom
1264  *	@skb: buffer to alter
1265  *	@len: bytes to move
1266  *
1267  *	Increase the headroom of an empty &sk_buff by reducing the tail
1268  *	room. This is only allowed for an empty buffer.
1269  */
1270 static inline void skb_reserve(struct sk_buff *skb, int len)
1271 {
1272 	skb->data += len;
1273 	skb->tail += len;
1274 }
1275 
1276 static inline void skb_reset_mac_len(struct sk_buff *skb)
1277 {
1278 	skb->mac_len = skb->network_header - skb->mac_header;
1279 }
1280 
1281 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1282 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1283 {
1284 	return skb->head + skb->transport_header;
1285 }
1286 
1287 static inline void skb_reset_transport_header(struct sk_buff *skb)
1288 {
1289 	skb->transport_header = skb->data - skb->head;
1290 }
1291 
1292 static inline void skb_set_transport_header(struct sk_buff *skb,
1293 					    const int offset)
1294 {
1295 	skb_reset_transport_header(skb);
1296 	skb->transport_header += offset;
1297 }
1298 
1299 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1300 {
1301 	return skb->head + skb->network_header;
1302 }
1303 
1304 static inline void skb_reset_network_header(struct sk_buff *skb)
1305 {
1306 	skb->network_header = skb->data - skb->head;
1307 }
1308 
1309 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1310 {
1311 	skb_reset_network_header(skb);
1312 	skb->network_header += offset;
1313 }
1314 
1315 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1316 {
1317 	return skb->head + skb->mac_header;
1318 }
1319 
1320 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1321 {
1322 	return skb->mac_header != ~0U;
1323 }
1324 
1325 static inline void skb_reset_mac_header(struct sk_buff *skb)
1326 {
1327 	skb->mac_header = skb->data - skb->head;
1328 }
1329 
1330 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1331 {
1332 	skb_reset_mac_header(skb);
1333 	skb->mac_header += offset;
1334 }
1335 
1336 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1337 
1338 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1339 {
1340 	return skb->transport_header;
1341 }
1342 
1343 static inline void skb_reset_transport_header(struct sk_buff *skb)
1344 {
1345 	skb->transport_header = skb->data;
1346 }
1347 
1348 static inline void skb_set_transport_header(struct sk_buff *skb,
1349 					    const int offset)
1350 {
1351 	skb->transport_header = skb->data + offset;
1352 }
1353 
1354 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1355 {
1356 	return skb->network_header;
1357 }
1358 
1359 static inline void skb_reset_network_header(struct sk_buff *skb)
1360 {
1361 	skb->network_header = skb->data;
1362 }
1363 
1364 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1365 {
1366 	skb->network_header = skb->data + offset;
1367 }
1368 
1369 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1370 {
1371 	return skb->mac_header;
1372 }
1373 
1374 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1375 {
1376 	return skb->mac_header != NULL;
1377 }
1378 
1379 static inline void skb_reset_mac_header(struct sk_buff *skb)
1380 {
1381 	skb->mac_header = skb->data;
1382 }
1383 
1384 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1385 {
1386 	skb->mac_header = skb->data + offset;
1387 }
1388 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1389 
1390 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1391 {
1392 	return skb->csum_start - skb_headroom(skb);
1393 }
1394 
1395 static inline int skb_transport_offset(const struct sk_buff *skb)
1396 {
1397 	return skb_transport_header(skb) - skb->data;
1398 }
1399 
1400 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1401 {
1402 	return skb->transport_header - skb->network_header;
1403 }
1404 
1405 static inline int skb_network_offset(const struct sk_buff *skb)
1406 {
1407 	return skb_network_header(skb) - skb->data;
1408 }
1409 
1410 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1411 {
1412 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1413 }
1414 
1415 /*
1416  * CPUs often take a performance hit when accessing unaligned memory
1417  * locations. The actual performance hit varies, it can be small if the
1418  * hardware handles it or large if we have to take an exception and fix it
1419  * in software.
1420  *
1421  * Since an ethernet header is 14 bytes network drivers often end up with
1422  * the IP header at an unaligned offset. The IP header can be aligned by
1423  * shifting the start of the packet by 2 bytes. Drivers should do this
1424  * with:
1425  *
1426  * skb_reserve(skb, NET_IP_ALIGN);
1427  *
1428  * The downside to this alignment of the IP header is that the DMA is now
1429  * unaligned. On some architectures the cost of an unaligned DMA is high
1430  * and this cost outweighs the gains made by aligning the IP header.
1431  *
1432  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1433  * to be overridden.
1434  */
1435 #ifndef NET_IP_ALIGN
1436 #define NET_IP_ALIGN	2
1437 #endif
1438 
1439 /*
1440  * The networking layer reserves some headroom in skb data (via
1441  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1442  * the header has to grow. In the default case, if the header has to grow
1443  * 32 bytes or less we avoid the reallocation.
1444  *
1445  * Unfortunately this headroom changes the DMA alignment of the resulting
1446  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1447  * on some architectures. An architecture can override this value,
1448  * perhaps setting it to a cacheline in size (since that will maintain
1449  * cacheline alignment of the DMA). It must be a power of 2.
1450  *
1451  * Various parts of the networking layer expect at least 32 bytes of
1452  * headroom, you should not reduce this.
1453  *
1454  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1455  * to reduce average number of cache lines per packet.
1456  * get_rps_cpus() for example only access one 64 bytes aligned block :
1457  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1458  */
1459 #ifndef NET_SKB_PAD
1460 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1461 #endif
1462 
1463 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1464 
1465 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1466 {
1467 	if (unlikely(skb_is_nonlinear(skb))) {
1468 		WARN_ON(1);
1469 		return;
1470 	}
1471 	skb->len = len;
1472 	skb_set_tail_pointer(skb, len);
1473 }
1474 
1475 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1476 
1477 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1478 {
1479 	if (skb->data_len)
1480 		return ___pskb_trim(skb, len);
1481 	__skb_trim(skb, len);
1482 	return 0;
1483 }
1484 
1485 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1486 {
1487 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1488 }
1489 
1490 /**
1491  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1492  *	@skb: buffer to alter
1493  *	@len: new length
1494  *
1495  *	This is identical to pskb_trim except that the caller knows that
1496  *	the skb is not cloned so we should never get an error due to out-
1497  *	of-memory.
1498  */
1499 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1500 {
1501 	int err = pskb_trim(skb, len);
1502 	BUG_ON(err);
1503 }
1504 
1505 /**
1506  *	skb_orphan - orphan a buffer
1507  *	@skb: buffer to orphan
1508  *
1509  *	If a buffer currently has an owner then we call the owner's
1510  *	destructor function and make the @skb unowned. The buffer continues
1511  *	to exist but is no longer charged to its former owner.
1512  */
1513 static inline void skb_orphan(struct sk_buff *skb)
1514 {
1515 	if (skb->destructor)
1516 		skb->destructor(skb);
1517 	skb->destructor = NULL;
1518 	skb->sk		= NULL;
1519 }
1520 
1521 /**
1522  *	__skb_queue_purge - empty a list
1523  *	@list: list to empty
1524  *
1525  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1526  *	the list and one reference dropped. This function does not take the
1527  *	list lock and the caller must hold the relevant locks to use it.
1528  */
1529 extern void skb_queue_purge(struct sk_buff_head *list);
1530 static inline void __skb_queue_purge(struct sk_buff_head *list)
1531 {
1532 	struct sk_buff *skb;
1533 	while ((skb = __skb_dequeue(list)) != NULL)
1534 		kfree_skb(skb);
1535 }
1536 
1537 /**
1538  *	__dev_alloc_skb - allocate an skbuff for receiving
1539  *	@length: length to allocate
1540  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1541  *
1542  *	Allocate a new &sk_buff and assign it a usage count of one. The
1543  *	buffer has unspecified headroom built in. Users should allocate
1544  *	the headroom they think they need without accounting for the
1545  *	built in space. The built in space is used for optimisations.
1546  *
1547  *	%NULL is returned if there is no free memory.
1548  */
1549 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1550 					      gfp_t gfp_mask)
1551 {
1552 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1553 	if (likely(skb))
1554 		skb_reserve(skb, NET_SKB_PAD);
1555 	return skb;
1556 }
1557 
1558 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1559 
1560 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1561 		unsigned int length, gfp_t gfp_mask);
1562 
1563 /**
1564  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1565  *	@dev: network device to receive on
1566  *	@length: length to allocate
1567  *
1568  *	Allocate a new &sk_buff and assign it a usage count of one. The
1569  *	buffer has unspecified headroom built in. Users should allocate
1570  *	the headroom they think they need without accounting for the
1571  *	built in space. The built in space is used for optimisations.
1572  *
1573  *	%NULL is returned if there is no free memory. Although this function
1574  *	allocates memory it can be called from an interrupt.
1575  */
1576 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1577 		unsigned int length)
1578 {
1579 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1580 }
1581 
1582 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1583 		unsigned int length, gfp_t gfp)
1584 {
1585 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1586 
1587 	if (NET_IP_ALIGN && skb)
1588 		skb_reserve(skb, NET_IP_ALIGN);
1589 	return skb;
1590 }
1591 
1592 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1593 		unsigned int length)
1594 {
1595 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1596 }
1597 
1598 /**
1599  *	__netdev_alloc_page - allocate a page for ps-rx on a specific device
1600  *	@dev: network device to receive on
1601  *	@gfp_mask: alloc_pages_node mask
1602  *
1603  * 	Allocate a new page. dev currently unused.
1604  *
1605  * 	%NULL is returned if there is no free memory.
1606  */
1607 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1608 {
1609 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1610 }
1611 
1612 /**
1613  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1614  *	@dev: network device to receive on
1615  *
1616  * 	Allocate a new page. dev currently unused.
1617  *
1618  * 	%NULL is returned if there is no free memory.
1619  */
1620 static inline struct page *netdev_alloc_page(struct net_device *dev)
1621 {
1622 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1623 }
1624 
1625 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1626 {
1627 	__free_page(page);
1628 }
1629 
1630 /**
1631  *	skb_clone_writable - is the header of a clone writable
1632  *	@skb: buffer to check
1633  *	@len: length up to which to write
1634  *
1635  *	Returns true if modifying the header part of the cloned buffer
1636  *	does not requires the data to be copied.
1637  */
1638 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1639 {
1640 	return !skb_header_cloned(skb) &&
1641 	       skb_headroom(skb) + len <= skb->hdr_len;
1642 }
1643 
1644 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1645 			    int cloned)
1646 {
1647 	int delta = 0;
1648 
1649 	if (headroom < NET_SKB_PAD)
1650 		headroom = NET_SKB_PAD;
1651 	if (headroom > skb_headroom(skb))
1652 		delta = headroom - skb_headroom(skb);
1653 
1654 	if (delta || cloned)
1655 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1656 					GFP_ATOMIC);
1657 	return 0;
1658 }
1659 
1660 /**
1661  *	skb_cow - copy header of skb when it is required
1662  *	@skb: buffer to cow
1663  *	@headroom: needed headroom
1664  *
1665  *	If the skb passed lacks sufficient headroom or its data part
1666  *	is shared, data is reallocated. If reallocation fails, an error
1667  *	is returned and original skb is not changed.
1668  *
1669  *	The result is skb with writable area skb->head...skb->tail
1670  *	and at least @headroom of space at head.
1671  */
1672 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1673 {
1674 	return __skb_cow(skb, headroom, skb_cloned(skb));
1675 }
1676 
1677 /**
1678  *	skb_cow_head - skb_cow but only making the head writable
1679  *	@skb: buffer to cow
1680  *	@headroom: needed headroom
1681  *
1682  *	This function is identical to skb_cow except that we replace the
1683  *	skb_cloned check by skb_header_cloned.  It should be used when
1684  *	you only need to push on some header and do not need to modify
1685  *	the data.
1686  */
1687 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1688 {
1689 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1690 }
1691 
1692 /**
1693  *	skb_padto	- pad an skbuff up to a minimal size
1694  *	@skb: buffer to pad
1695  *	@len: minimal length
1696  *
1697  *	Pads up a buffer to ensure the trailing bytes exist and are
1698  *	blanked. If the buffer already contains sufficient data it
1699  *	is untouched. Otherwise it is extended. Returns zero on
1700  *	success. The skb is freed on error.
1701  */
1702 
1703 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1704 {
1705 	unsigned int size = skb->len;
1706 	if (likely(size >= len))
1707 		return 0;
1708 	return skb_pad(skb, len - size);
1709 }
1710 
1711 static inline int skb_add_data(struct sk_buff *skb,
1712 			       char __user *from, int copy)
1713 {
1714 	const int off = skb->len;
1715 
1716 	if (skb->ip_summed == CHECKSUM_NONE) {
1717 		int err = 0;
1718 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1719 							    copy, 0, &err);
1720 		if (!err) {
1721 			skb->csum = csum_block_add(skb->csum, csum, off);
1722 			return 0;
1723 		}
1724 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1725 		return 0;
1726 
1727 	__skb_trim(skb, off);
1728 	return -EFAULT;
1729 }
1730 
1731 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1732 				   struct page *page, int off)
1733 {
1734 	if (i) {
1735 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1736 
1737 		return page == frag->page &&
1738 		       off == frag->page_offset + frag->size;
1739 	}
1740 	return 0;
1741 }
1742 
1743 static inline int __skb_linearize(struct sk_buff *skb)
1744 {
1745 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1746 }
1747 
1748 /**
1749  *	skb_linearize - convert paged skb to linear one
1750  *	@skb: buffer to linarize
1751  *
1752  *	If there is no free memory -ENOMEM is returned, otherwise zero
1753  *	is returned and the old skb data released.
1754  */
1755 static inline int skb_linearize(struct sk_buff *skb)
1756 {
1757 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1758 }
1759 
1760 /**
1761  *	skb_linearize_cow - make sure skb is linear and writable
1762  *	@skb: buffer to process
1763  *
1764  *	If there is no free memory -ENOMEM is returned, otherwise zero
1765  *	is returned and the old skb data released.
1766  */
1767 static inline int skb_linearize_cow(struct sk_buff *skb)
1768 {
1769 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1770 	       __skb_linearize(skb) : 0;
1771 }
1772 
1773 /**
1774  *	skb_postpull_rcsum - update checksum for received skb after pull
1775  *	@skb: buffer to update
1776  *	@start: start of data before pull
1777  *	@len: length of data pulled
1778  *
1779  *	After doing a pull on a received packet, you need to call this to
1780  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1781  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1782  */
1783 
1784 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1785 				      const void *start, unsigned int len)
1786 {
1787 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1788 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1789 }
1790 
1791 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1792 
1793 /**
1794  *	pskb_trim_rcsum - trim received skb and update checksum
1795  *	@skb: buffer to trim
1796  *	@len: new length
1797  *
1798  *	This is exactly the same as pskb_trim except that it ensures the
1799  *	checksum of received packets are still valid after the operation.
1800  */
1801 
1802 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1803 {
1804 	if (likely(len >= skb->len))
1805 		return 0;
1806 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1807 		skb->ip_summed = CHECKSUM_NONE;
1808 	return __pskb_trim(skb, len);
1809 }
1810 
1811 #define skb_queue_walk(queue, skb) \
1812 		for (skb = (queue)->next;					\
1813 		     skb != (struct sk_buff *)(queue);				\
1814 		     skb = skb->next)
1815 
1816 #define skb_queue_walk_safe(queue, skb, tmp)					\
1817 		for (skb = (queue)->next, tmp = skb->next;			\
1818 		     skb != (struct sk_buff *)(queue);				\
1819 		     skb = tmp, tmp = skb->next)
1820 
1821 #define skb_queue_walk_from(queue, skb)						\
1822 		for (; skb != (struct sk_buff *)(queue);			\
1823 		     skb = skb->next)
1824 
1825 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1826 		for (tmp = skb->next;						\
1827 		     skb != (struct sk_buff *)(queue);				\
1828 		     skb = tmp, tmp = skb->next)
1829 
1830 #define skb_queue_reverse_walk(queue, skb) \
1831 		for (skb = (queue)->prev;					\
1832 		     skb != (struct sk_buff *)(queue);				\
1833 		     skb = skb->prev)
1834 
1835 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
1836 		for (skb = (queue)->prev, tmp = skb->prev;			\
1837 		     skb != (struct sk_buff *)(queue);				\
1838 		     skb = tmp, tmp = skb->prev)
1839 
1840 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
1841 		for (tmp = skb->prev;						\
1842 		     skb != (struct sk_buff *)(queue);				\
1843 		     skb = tmp, tmp = skb->prev)
1844 
1845 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1846 {
1847 	return skb_shinfo(skb)->frag_list != NULL;
1848 }
1849 
1850 static inline void skb_frag_list_init(struct sk_buff *skb)
1851 {
1852 	skb_shinfo(skb)->frag_list = NULL;
1853 }
1854 
1855 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1856 {
1857 	frag->next = skb_shinfo(skb)->frag_list;
1858 	skb_shinfo(skb)->frag_list = frag;
1859 }
1860 
1861 #define skb_walk_frags(skb, iter)	\
1862 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1863 
1864 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1865 					   int *peeked, int *err);
1866 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1867 					 int noblock, int *err);
1868 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1869 				     struct poll_table_struct *wait);
1870 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1871 					       int offset, struct iovec *to,
1872 					       int size);
1873 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1874 							int hlen,
1875 							struct iovec *iov);
1876 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1877 						    int offset,
1878 						    const struct iovec *from,
1879 						    int from_offset,
1880 						    int len);
1881 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1882 						     int offset,
1883 						     const struct iovec *to,
1884 						     int to_offset,
1885 						     int size);
1886 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1887 extern void	       skb_free_datagram_locked(struct sock *sk,
1888 						struct sk_buff *skb);
1889 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1890 					 unsigned int flags);
1891 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1892 				    int len, __wsum csum);
1893 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1894 				     void *to, int len);
1895 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1896 				      const void *from, int len);
1897 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1898 					      int offset, u8 *to, int len,
1899 					      __wsum csum);
1900 extern int             skb_splice_bits(struct sk_buff *skb,
1901 						unsigned int offset,
1902 						struct pipe_inode_info *pipe,
1903 						unsigned int len,
1904 						unsigned int flags);
1905 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1906 extern void	       skb_split(struct sk_buff *skb,
1907 				 struct sk_buff *skb1, const u32 len);
1908 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1909 				 int shiftlen);
1910 
1911 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1912 
1913 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1914 				       int len, void *buffer)
1915 {
1916 	int hlen = skb_headlen(skb);
1917 
1918 	if (hlen - offset >= len)
1919 		return skb->data + offset;
1920 
1921 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1922 		return NULL;
1923 
1924 	return buffer;
1925 }
1926 
1927 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1928 					     void *to,
1929 					     const unsigned int len)
1930 {
1931 	memcpy(to, skb->data, len);
1932 }
1933 
1934 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1935 						    const int offset, void *to,
1936 						    const unsigned int len)
1937 {
1938 	memcpy(to, skb->data + offset, len);
1939 }
1940 
1941 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1942 					   const void *from,
1943 					   const unsigned int len)
1944 {
1945 	memcpy(skb->data, from, len);
1946 }
1947 
1948 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1949 						  const int offset,
1950 						  const void *from,
1951 						  const unsigned int len)
1952 {
1953 	memcpy(skb->data + offset, from, len);
1954 }
1955 
1956 extern void skb_init(void);
1957 
1958 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1959 {
1960 	return skb->tstamp;
1961 }
1962 
1963 /**
1964  *	skb_get_timestamp - get timestamp from a skb
1965  *	@skb: skb to get stamp from
1966  *	@stamp: pointer to struct timeval to store stamp in
1967  *
1968  *	Timestamps are stored in the skb as offsets to a base timestamp.
1969  *	This function converts the offset back to a struct timeval and stores
1970  *	it in stamp.
1971  */
1972 static inline void skb_get_timestamp(const struct sk_buff *skb,
1973 				     struct timeval *stamp)
1974 {
1975 	*stamp = ktime_to_timeval(skb->tstamp);
1976 }
1977 
1978 static inline void skb_get_timestampns(const struct sk_buff *skb,
1979 				       struct timespec *stamp)
1980 {
1981 	*stamp = ktime_to_timespec(skb->tstamp);
1982 }
1983 
1984 static inline void __net_timestamp(struct sk_buff *skb)
1985 {
1986 	skb->tstamp = ktime_get_real();
1987 }
1988 
1989 static inline ktime_t net_timedelta(ktime_t t)
1990 {
1991 	return ktime_sub(ktime_get_real(), t);
1992 }
1993 
1994 static inline ktime_t net_invalid_timestamp(void)
1995 {
1996 	return ktime_set(0, 0);
1997 }
1998 
1999 extern void skb_timestamping_init(void);
2000 
2001 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2002 
2003 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2004 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2005 
2006 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2007 
2008 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2009 {
2010 }
2011 
2012 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2013 {
2014 	return false;
2015 }
2016 
2017 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2018 
2019 /**
2020  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2021  *
2022  * @skb: clone of the the original outgoing packet
2023  * @hwtstamps: hardware time stamps
2024  *
2025  */
2026 void skb_complete_tx_timestamp(struct sk_buff *skb,
2027 			       struct skb_shared_hwtstamps *hwtstamps);
2028 
2029 /**
2030  * skb_tstamp_tx - queue clone of skb with send time stamps
2031  * @orig_skb:	the original outgoing packet
2032  * @hwtstamps:	hardware time stamps, may be NULL if not available
2033  *
2034  * If the skb has a socket associated, then this function clones the
2035  * skb (thus sharing the actual data and optional structures), stores
2036  * the optional hardware time stamping information (if non NULL) or
2037  * generates a software time stamp (otherwise), then queues the clone
2038  * to the error queue of the socket.  Errors are silently ignored.
2039  */
2040 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2041 			struct skb_shared_hwtstamps *hwtstamps);
2042 
2043 static inline void sw_tx_timestamp(struct sk_buff *skb)
2044 {
2045 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2046 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2047 		skb_tstamp_tx(skb, NULL);
2048 }
2049 
2050 /**
2051  * skb_tx_timestamp() - Driver hook for transmit timestamping
2052  *
2053  * Ethernet MAC Drivers should call this function in their hard_xmit()
2054  * function immediately before giving the sk_buff to the MAC hardware.
2055  *
2056  * @skb: A socket buffer.
2057  */
2058 static inline void skb_tx_timestamp(struct sk_buff *skb)
2059 {
2060 	skb_clone_tx_timestamp(skb);
2061 	sw_tx_timestamp(skb);
2062 }
2063 
2064 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2065 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2066 
2067 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2068 {
2069 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2070 }
2071 
2072 /**
2073  *	skb_checksum_complete - Calculate checksum of an entire packet
2074  *	@skb: packet to process
2075  *
2076  *	This function calculates the checksum over the entire packet plus
2077  *	the value of skb->csum.  The latter can be used to supply the
2078  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2079  *	checksum.
2080  *
2081  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2082  *	this function can be used to verify that checksum on received
2083  *	packets.  In that case the function should return zero if the
2084  *	checksum is correct.  In particular, this function will return zero
2085  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2086  *	hardware has already verified the correctness of the checksum.
2087  */
2088 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2089 {
2090 	return skb_csum_unnecessary(skb) ?
2091 	       0 : __skb_checksum_complete(skb);
2092 }
2093 
2094 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2095 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2096 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2097 {
2098 	if (nfct && atomic_dec_and_test(&nfct->use))
2099 		nf_conntrack_destroy(nfct);
2100 }
2101 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2102 {
2103 	if (nfct)
2104 		atomic_inc(&nfct->use);
2105 }
2106 #endif
2107 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2108 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2109 {
2110 	if (skb)
2111 		atomic_inc(&skb->users);
2112 }
2113 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2114 {
2115 	if (skb)
2116 		kfree_skb(skb);
2117 }
2118 #endif
2119 #ifdef CONFIG_BRIDGE_NETFILTER
2120 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2121 {
2122 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2123 		kfree(nf_bridge);
2124 }
2125 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2126 {
2127 	if (nf_bridge)
2128 		atomic_inc(&nf_bridge->use);
2129 }
2130 #endif /* CONFIG_BRIDGE_NETFILTER */
2131 static inline void nf_reset(struct sk_buff *skb)
2132 {
2133 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2134 	nf_conntrack_put(skb->nfct);
2135 	skb->nfct = NULL;
2136 #endif
2137 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2138 	nf_conntrack_put_reasm(skb->nfct_reasm);
2139 	skb->nfct_reasm = NULL;
2140 #endif
2141 #ifdef CONFIG_BRIDGE_NETFILTER
2142 	nf_bridge_put(skb->nf_bridge);
2143 	skb->nf_bridge = NULL;
2144 #endif
2145 }
2146 
2147 /* Note: This doesn't put any conntrack and bridge info in dst. */
2148 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2149 {
2150 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2151 	dst->nfct = src->nfct;
2152 	nf_conntrack_get(src->nfct);
2153 	dst->nfctinfo = src->nfctinfo;
2154 #endif
2155 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2156 	dst->nfct_reasm = src->nfct_reasm;
2157 	nf_conntrack_get_reasm(src->nfct_reasm);
2158 #endif
2159 #ifdef CONFIG_BRIDGE_NETFILTER
2160 	dst->nf_bridge  = src->nf_bridge;
2161 	nf_bridge_get(src->nf_bridge);
2162 #endif
2163 }
2164 
2165 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2166 {
2167 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2168 	nf_conntrack_put(dst->nfct);
2169 #endif
2170 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2171 	nf_conntrack_put_reasm(dst->nfct_reasm);
2172 #endif
2173 #ifdef CONFIG_BRIDGE_NETFILTER
2174 	nf_bridge_put(dst->nf_bridge);
2175 #endif
2176 	__nf_copy(dst, src);
2177 }
2178 
2179 #ifdef CONFIG_NETWORK_SECMARK
2180 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2181 {
2182 	to->secmark = from->secmark;
2183 }
2184 
2185 static inline void skb_init_secmark(struct sk_buff *skb)
2186 {
2187 	skb->secmark = 0;
2188 }
2189 #else
2190 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2191 { }
2192 
2193 static inline void skb_init_secmark(struct sk_buff *skb)
2194 { }
2195 #endif
2196 
2197 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2198 {
2199 	skb->queue_mapping = queue_mapping;
2200 }
2201 
2202 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2203 {
2204 	return skb->queue_mapping;
2205 }
2206 
2207 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2208 {
2209 	to->queue_mapping = from->queue_mapping;
2210 }
2211 
2212 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2213 {
2214 	skb->queue_mapping = rx_queue + 1;
2215 }
2216 
2217 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2218 {
2219 	return skb->queue_mapping - 1;
2220 }
2221 
2222 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2223 {
2224 	return skb->queue_mapping != 0;
2225 }
2226 
2227 extern u16 __skb_tx_hash(const struct net_device *dev,
2228 			 const struct sk_buff *skb,
2229 			 unsigned int num_tx_queues);
2230 
2231 #ifdef CONFIG_XFRM
2232 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2233 {
2234 	return skb->sp;
2235 }
2236 #else
2237 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2238 {
2239 	return NULL;
2240 }
2241 #endif
2242 
2243 static inline int skb_is_gso(const struct sk_buff *skb)
2244 {
2245 	return skb_shinfo(skb)->gso_size;
2246 }
2247 
2248 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2249 {
2250 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2251 }
2252 
2253 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2254 
2255 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2256 {
2257 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2258 	 * wanted then gso_type will be set. */
2259 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2260 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2261 	    unlikely(shinfo->gso_type == 0)) {
2262 		__skb_warn_lro_forwarding(skb);
2263 		return true;
2264 	}
2265 	return false;
2266 }
2267 
2268 static inline void skb_forward_csum(struct sk_buff *skb)
2269 {
2270 	/* Unfortunately we don't support this one.  Any brave souls? */
2271 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2272 		skb->ip_summed = CHECKSUM_NONE;
2273 }
2274 
2275 /**
2276  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2277  * @skb: skb to check
2278  *
2279  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2280  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2281  * use this helper, to document places where we make this assertion.
2282  */
2283 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2284 {
2285 #ifdef DEBUG
2286 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2287 #endif
2288 }
2289 
2290 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2291 
2292 #endif	/* __KERNEL__ */
2293 #endif	/* _LINUX_SKBUFF_H */
2294