xref: /linux-6.15/include/linux/skbuff.h (revision 73dfe93e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47 
48 /**
49  * DOC: skb checksums
50  *
51  * The interface for checksum offload between the stack and networking drivers
52  * is as follows...
53  *
54  * IP checksum related features
55  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56  *
57  * Drivers advertise checksum offload capabilities in the features of a device.
58  * From the stack's point of view these are capabilities offered by the driver.
59  * A driver typically only advertises features that it is capable of offloading
60  * to its device.
61  *
62  * .. flat-table:: Checksum related device features
63  *   :widths: 1 10
64  *
65  *   * - %NETIF_F_HW_CSUM
66  *     - The driver (or its device) is able to compute one
67  *	 IP (one's complement) checksum for any combination
68  *	 of protocols or protocol layering. The checksum is
69  *	 computed and set in a packet per the CHECKSUM_PARTIAL
70  *	 interface (see below).
71  *
72  *   * - %NETIF_F_IP_CSUM
73  *     - Driver (device) is only able to checksum plain
74  *	 TCP or UDP packets over IPv4. These are specifically
75  *	 unencapsulated packets of the form IPv4|TCP or
76  *	 IPv4|UDP where the Protocol field in the IPv4 header
77  *	 is TCP or UDP. The IPv4 header may contain IP options.
78  *	 This feature cannot be set in features for a device
79  *	 with NETIF_F_HW_CSUM also set. This feature is being
80  *	 DEPRECATED (see below).
81  *
82  *   * - %NETIF_F_IPV6_CSUM
83  *     - Driver (device) is only able to checksum plain
84  *	 TCP or UDP packets over IPv6. These are specifically
85  *	 unencapsulated packets of the form IPv6|TCP or
86  *	 IPv6|UDP where the Next Header field in the IPv6
87  *	 header is either TCP or UDP. IPv6 extension headers
88  *	 are not supported with this feature. This feature
89  *	 cannot be set in features for a device with
90  *	 NETIF_F_HW_CSUM also set. This feature is being
91  *	 DEPRECATED (see below).
92  *
93  *   * - %NETIF_F_RXCSUM
94  *     - Driver (device) performs receive checksum offload.
95  *	 This flag is only used to disable the RX checksum
96  *	 feature for a device. The stack will accept receive
97  *	 checksum indication in packets received on a device
98  *	 regardless of whether NETIF_F_RXCSUM is set.
99  *
100  * Checksumming of received packets by device
101  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102  *
103  * Indication of checksum verification is set in &sk_buff.ip_summed.
104  * Possible values are:
105  *
106  * - %CHECKSUM_NONE
107  *
108  *   Device did not checksum this packet e.g. due to lack of capabilities.
109  *   The packet contains full (though not verified) checksum in packet but
110  *   not in skb->csum. Thus, skb->csum is undefined in this case.
111  *
112  * - %CHECKSUM_UNNECESSARY
113  *
114  *   The hardware you're dealing with doesn't calculate the full checksum
115  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
118  *   though. A driver or device must never modify the checksum field in the
119  *   packet even if checksum is verified.
120  *
121  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
122  *
123  *     - TCP: IPv6 and IPv4.
124  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
126  *       may perform further validation in this case.
127  *     - GRE: only if the checksum is present in the header.
128  *     - SCTP: indicates the CRC in SCTP header has been validated.
129  *     - FCOE: indicates the CRC in FC frame has been validated.
130  *
131  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
132  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134  *   and a device is able to verify the checksums for UDP (possibly zero),
135  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136  *   two. If the device were only able to verify the UDP checksum and not
137  *   GRE, either because it doesn't support GRE checksum or because GRE
138  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139  *   not considered in this case).
140  *
141  * - %CHECKSUM_COMPLETE
142  *
143  *   This is the most generic way. The device supplied checksum of the _whole_
144  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145  *   hardware doesn't need to parse L3/L4 headers to implement this.
146  *
147  *   Notes:
148  *
149  *   - Even if device supports only some protocols, but is able to produce
150  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
152  *
153  * - %CHECKSUM_PARTIAL
154  *
155  *   A checksum is set up to be offloaded to a device as described in the
156  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
157  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
158  *   on the same host, or it may be set in the input path in GRO or remote
159  *   checksum offload. For the purposes of checksum verification, the checksum
160  *   referred to by skb->csum_start + skb->csum_offset and any preceding
161  *   checksums in the packet are considered verified. Any checksums in the
162  *   packet that are after the checksum being offloaded are not considered to
163  *   be verified.
164  *
165  * Checksumming on transmit for non-GSO
166  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167  *
168  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
169  * Values are:
170  *
171  * - %CHECKSUM_PARTIAL
172  *
173  *   The driver is required to checksum the packet as seen by hard_start_xmit()
174  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
175  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
176  *   A driver may verify that the
177  *   csum_start and csum_offset values are valid values given the length and
178  *   offset of the packet, but it should not attempt to validate that the
179  *   checksum refers to a legitimate transport layer checksum -- it is the
180  *   purview of the stack to validate that csum_start and csum_offset are set
181  *   correctly.
182  *
183  *   When the stack requests checksum offload for a packet, the driver MUST
184  *   ensure that the checksum is set correctly. A driver can either offload the
185  *   checksum calculation to the device, or call skb_checksum_help (in the case
186  *   that the device does not support offload for a particular checksum).
187  *
188  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190  *   checksum offload capability.
191  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192  *   on network device checksumming capabilities: if a packet does not match
193  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194  *   &sk_buff.csum_not_inet, see :ref:`crc`)
195  *   is called to resolve the checksum.
196  *
197  * - %CHECKSUM_NONE
198  *
199  *   The skb was already checksummed by the protocol, or a checksum is not
200  *   required.
201  *
202  * - %CHECKSUM_UNNECESSARY
203  *
204  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
205  *   output.
206  *
207  * - %CHECKSUM_COMPLETE
208  *
209  *   Not used in checksum output. If a driver observes a packet with this value
210  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
211  *
212  * .. _crc:
213  *
214  * Non-IP checksum (CRC) offloads
215  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
216  *
217  * .. flat-table::
218  *   :widths: 1 10
219  *
220  *   * - %NETIF_F_SCTP_CRC
221  *     - This feature indicates that a device is capable of
222  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
223  *	 will set csum_start and csum_offset accordingly, set ip_summed to
224  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
227  *	 must verify which offload is configured for a packet by testing the
228  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
230  *
231  *   * - %NETIF_F_FCOE_CRC
232  *     - This feature indicates that a device is capable of offloading the FCOE
233  *	 CRC in a packet. To perform this offload the stack will set ip_summed
234  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235  *	 accordingly. Note that there is no indication in the skbuff that the
236  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237  *	 both IP checksum offload and FCOE CRC offload must verify which offload
238  *	 is configured for a packet, presumably by inspecting packet headers.
239  *
240  * Checksumming on output with GSO
241  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
242  *
243  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246  * part of the GSO operation is implied. If a checksum is being offloaded
247  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248  * csum_offset are set to refer to the outermost checksum being offloaded
249  * (two offloaded checksums are possible with UDP encapsulation).
250  */
251 
252 /* Don't change this without changing skb_csum_unnecessary! */
253 #define CHECKSUM_NONE		0
254 #define CHECKSUM_UNNECESSARY	1
255 #define CHECKSUM_COMPLETE	2
256 #define CHECKSUM_PARTIAL	3
257 
258 /* Maximum value in skb->csum_level */
259 #define SKB_MAX_CSUM_LEVEL	3
260 
261 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
262 #define SKB_WITH_OVERHEAD(X)	\
263 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 #define SKB_MAX_ORDER(X, ORDER) \
265 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
267 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
268 
269 /* return minimum truesize of one skb containing X bytes of data */
270 #define SKB_TRUESIZE(X) ((X) +						\
271 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
272 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273 
274 struct ahash_request;
275 struct net_device;
276 struct scatterlist;
277 struct pipe_inode_info;
278 struct iov_iter;
279 struct napi_struct;
280 struct bpf_prog;
281 union bpf_attr;
282 struct skb_ext;
283 
284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285 struct nf_bridge_info {
286 	enum {
287 		BRNF_PROTO_UNCHANGED,
288 		BRNF_PROTO_8021Q,
289 		BRNF_PROTO_PPPOE
290 	} orig_proto:8;
291 	u8			pkt_otherhost:1;
292 	u8			in_prerouting:1;
293 	u8			bridged_dnat:1;
294 	__u16			frag_max_size;
295 	struct net_device	*physindev;
296 
297 	/* always valid & non-NULL from FORWARD on, for physdev match */
298 	struct net_device	*physoutdev;
299 	union {
300 		/* prerouting: detect dnat in orig/reply direction */
301 		__be32          ipv4_daddr;
302 		struct in6_addr ipv6_daddr;
303 
304 		/* after prerouting + nat detected: store original source
305 		 * mac since neigh resolution overwrites it, only used while
306 		 * skb is out in neigh layer.
307 		 */
308 		char neigh_header[8];
309 	};
310 };
311 #endif
312 
313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314 /* Chain in tc_skb_ext will be used to share the tc chain with
315  * ovs recirc_id. It will be set to the current chain by tc
316  * and read by ovs to recirc_id.
317  */
318 struct tc_skb_ext {
319 	__u32 chain;
320 	__u16 mru;
321 	__u16 zone;
322 	u8 post_ct:1;
323 	u8 post_ct_snat:1;
324 	u8 post_ct_dnat:1;
325 };
326 #endif
327 
328 struct sk_buff_head {
329 	/* These two members must be first to match sk_buff. */
330 	struct_group_tagged(sk_buff_list, list,
331 		struct sk_buff	*next;
332 		struct sk_buff	*prev;
333 	);
334 
335 	__u32		qlen;
336 	spinlock_t	lock;
337 };
338 
339 struct sk_buff;
340 
341 /* To allow 64K frame to be packed as single skb without frag_list we
342  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343  * buffers which do not start on a page boundary.
344  *
345  * Since GRO uses frags we allocate at least 16 regardless of page
346  * size.
347  */
348 #if (65536/PAGE_SIZE + 1) < 16
349 #define MAX_SKB_FRAGS 16UL
350 #else
351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
352 #endif
353 extern int sysctl_max_skb_frags;
354 
355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356  * segment using its current segmentation instead.
357  */
358 #define GSO_BY_FRAGS	0xFFFF
359 
360 typedef struct bio_vec skb_frag_t;
361 
362 /**
363  * skb_frag_size() - Returns the size of a skb fragment
364  * @frag: skb fragment
365  */
366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
367 {
368 	return frag->bv_len;
369 }
370 
371 /**
372  * skb_frag_size_set() - Sets the size of a skb fragment
373  * @frag: skb fragment
374  * @size: size of fragment
375  */
376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
377 {
378 	frag->bv_len = size;
379 }
380 
381 /**
382  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383  * @frag: skb fragment
384  * @delta: value to add
385  */
386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
387 {
388 	frag->bv_len += delta;
389 }
390 
391 /**
392  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393  * @frag: skb fragment
394  * @delta: value to subtract
395  */
396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
397 {
398 	frag->bv_len -= delta;
399 }
400 
401 /**
402  * skb_frag_must_loop - Test if %p is a high memory page
403  * @p: fragment's page
404  */
405 static inline bool skb_frag_must_loop(struct page *p)
406 {
407 #if defined(CONFIG_HIGHMEM)
408 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
409 		return true;
410 #endif
411 	return false;
412 }
413 
414 /**
415  *	skb_frag_foreach_page - loop over pages in a fragment
416  *
417  *	@f:		skb frag to operate on
418  *	@f_off:		offset from start of f->bv_page
419  *	@f_len:		length from f_off to loop over
420  *	@p:		(temp var) current page
421  *	@p_off:		(temp var) offset from start of current page,
422  *	                           non-zero only on first page.
423  *	@p_len:		(temp var) length in current page,
424  *				   < PAGE_SIZE only on first and last page.
425  *	@copied:	(temp var) length so far, excluding current p_len.
426  *
427  *	A fragment can hold a compound page, in which case per-page
428  *	operations, notably kmap_atomic, must be called for each
429  *	regular page.
430  */
431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
432 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
433 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
434 	     p_len = skb_frag_must_loop(p) ?				\
435 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
436 	     copied = 0;						\
437 	     copied < f_len;						\
438 	     copied += p_len, p++, p_off = 0,				\
439 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
440 
441 #define HAVE_HW_TIME_STAMP
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 
513 	SKBFL_DONT_ORPHAN = BIT(3),
514 
515 	/* page references are managed by the ubuf_info, so it's safe to
516 	 * use frags only up until ubuf_info is released
517 	 */
518 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520 
521 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524 
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534 	void (*callback)(struct sk_buff *, struct ubuf_info *,
535 			 bool zerocopy_success);
536 	union {
537 		struct {
538 			unsigned long desc;
539 			void *ctx;
540 		};
541 		struct {
542 			u32 id;
543 			u16 len;
544 			u16 zerocopy:1;
545 			u32 bytelen;
546 		};
547 	};
548 	refcount_t refcnt;
549 	u8 flags;
550 
551 	struct mmpin {
552 		struct user_struct *user;
553 		unsigned int num_pg;
554 	} mmp;
555 };
556 
557 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
558 
559 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
560 void mm_unaccount_pinned_pages(struct mmpin *mmp);
561 
562 /* This data is invariant across clones and lives at
563  * the end of the header data, ie. at skb->end.
564  */
565 struct skb_shared_info {
566 	__u8		flags;
567 	__u8		meta_len;
568 	__u8		nr_frags;
569 	__u8		tx_flags;
570 	unsigned short	gso_size;
571 	/* Warning: this field is not always filled in (UFO)! */
572 	unsigned short	gso_segs;
573 	struct sk_buff	*frag_list;
574 	struct skb_shared_hwtstamps hwtstamps;
575 	unsigned int	gso_type;
576 	u32		tskey;
577 
578 	/*
579 	 * Warning : all fields before dataref are cleared in __alloc_skb()
580 	 */
581 	atomic_t	dataref;
582 	unsigned int	xdp_frags_size;
583 
584 	/* Intermediate layers must ensure that destructor_arg
585 	 * remains valid until skb destructor */
586 	void *		destructor_arg;
587 
588 	/* must be last field, see pskb_expand_head() */
589 	skb_frag_t	frags[MAX_SKB_FRAGS];
590 };
591 
592 /**
593  * DOC: dataref and headerless skbs
594  *
595  * Transport layers send out clones of payload skbs they hold for
596  * retransmissions. To allow lower layers of the stack to prepend their headers
597  * we split &skb_shared_info.dataref into two halves.
598  * The lower 16 bits count the overall number of references.
599  * The higher 16 bits indicate how many of the references are payload-only.
600  * skb_header_cloned() checks if skb is allowed to add / write the headers.
601  *
602  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
603  * (via __skb_header_release()). Any clone created from marked skb will get
604  * &sk_buff.hdr_len populated with the available headroom.
605  * If there's the only clone in existence it's able to modify the headroom
606  * at will. The sequence of calls inside the transport layer is::
607  *
608  *  <alloc skb>
609  *  skb_reserve()
610  *  __skb_header_release()
611  *  skb_clone()
612  *  // send the clone down the stack
613  *
614  * This is not a very generic construct and it depends on the transport layers
615  * doing the right thing. In practice there's usually only one payload-only skb.
616  * Having multiple payload-only skbs with different lengths of hdr_len is not
617  * possible. The payload-only skbs should never leave their owner.
618  */
619 #define SKB_DATAREF_SHIFT 16
620 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
621 
622 
623 enum {
624 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
625 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
626 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
627 };
628 
629 enum {
630 	SKB_GSO_TCPV4 = 1 << 0,
631 
632 	/* This indicates the skb is from an untrusted source. */
633 	SKB_GSO_DODGY = 1 << 1,
634 
635 	/* This indicates the tcp segment has CWR set. */
636 	SKB_GSO_TCP_ECN = 1 << 2,
637 
638 	SKB_GSO_TCP_FIXEDID = 1 << 3,
639 
640 	SKB_GSO_TCPV6 = 1 << 4,
641 
642 	SKB_GSO_FCOE = 1 << 5,
643 
644 	SKB_GSO_GRE = 1 << 6,
645 
646 	SKB_GSO_GRE_CSUM = 1 << 7,
647 
648 	SKB_GSO_IPXIP4 = 1 << 8,
649 
650 	SKB_GSO_IPXIP6 = 1 << 9,
651 
652 	SKB_GSO_UDP_TUNNEL = 1 << 10,
653 
654 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
655 
656 	SKB_GSO_PARTIAL = 1 << 12,
657 
658 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
659 
660 	SKB_GSO_SCTP = 1 << 14,
661 
662 	SKB_GSO_ESP = 1 << 15,
663 
664 	SKB_GSO_UDP = 1 << 16,
665 
666 	SKB_GSO_UDP_L4 = 1 << 17,
667 
668 	SKB_GSO_FRAGLIST = 1 << 18,
669 };
670 
671 #if BITS_PER_LONG > 32
672 #define NET_SKBUFF_DATA_USES_OFFSET 1
673 #endif
674 
675 #ifdef NET_SKBUFF_DATA_USES_OFFSET
676 typedef unsigned int sk_buff_data_t;
677 #else
678 typedef unsigned char *sk_buff_data_t;
679 #endif
680 
681 /**
682  * DOC: Basic sk_buff geometry
683  *
684  * struct sk_buff itself is a metadata structure and does not hold any packet
685  * data. All the data is held in associated buffers.
686  *
687  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
688  * into two parts:
689  *
690  *  - data buffer, containing headers and sometimes payload;
691  *    this is the part of the skb operated on by the common helpers
692  *    such as skb_put() or skb_pull();
693  *  - shared info (struct skb_shared_info) which holds an array of pointers
694  *    to read-only data in the (page, offset, length) format.
695  *
696  * Optionally &skb_shared_info.frag_list may point to another skb.
697  *
698  * Basic diagram may look like this::
699  *
700  *                                  ---------------
701  *                                 | sk_buff       |
702  *                                  ---------------
703  *     ,---------------------------  + head
704  *    /          ,-----------------  + data
705  *   /          /      ,-----------  + tail
706  *  |          |      |            , + end
707  *  |          |      |           |
708  *  v          v      v           v
709  *   -----------------------------------------------
710  *  | headroom | data |  tailroom | skb_shared_info |
711  *   -----------------------------------------------
712  *                                 + [page frag]
713  *                                 + [page frag]
714  *                                 + [page frag]
715  *                                 + [page frag]       ---------
716  *                                 + frag_list    --> | sk_buff |
717  *                                                     ---------
718  *
719  */
720 
721 /**
722  *	struct sk_buff - socket buffer
723  *	@next: Next buffer in list
724  *	@prev: Previous buffer in list
725  *	@tstamp: Time we arrived/left
726  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
727  *		for retransmit timer
728  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
729  *	@list: queue head
730  *	@ll_node: anchor in an llist (eg socket defer_list)
731  *	@sk: Socket we are owned by
732  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
733  *		fragmentation management
734  *	@dev: Device we arrived on/are leaving by
735  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
736  *	@cb: Control buffer. Free for use by every layer. Put private vars here
737  *	@_skb_refdst: destination entry (with norefcount bit)
738  *	@sp: the security path, used for xfrm
739  *	@len: Length of actual data
740  *	@data_len: Data length
741  *	@mac_len: Length of link layer header
742  *	@hdr_len: writable header length of cloned skb
743  *	@csum: Checksum (must include start/offset pair)
744  *	@csum_start: Offset from skb->head where checksumming should start
745  *	@csum_offset: Offset from csum_start where checksum should be stored
746  *	@priority: Packet queueing priority
747  *	@ignore_df: allow local fragmentation
748  *	@cloned: Head may be cloned (check refcnt to be sure)
749  *	@ip_summed: Driver fed us an IP checksum
750  *	@nohdr: Payload reference only, must not modify header
751  *	@pkt_type: Packet class
752  *	@fclone: skbuff clone status
753  *	@ipvs_property: skbuff is owned by ipvs
754  *	@inner_protocol_type: whether the inner protocol is
755  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
756  *	@remcsum_offload: remote checksum offload is enabled
757  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
758  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
759  *	@tc_skip_classify: do not classify packet. set by IFB device
760  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
761  *	@redirected: packet was redirected by packet classifier
762  *	@from_ingress: packet was redirected from the ingress path
763  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
764  *	@peeked: this packet has been seen already, so stats have been
765  *		done for it, don't do them again
766  *	@nf_trace: netfilter packet trace flag
767  *	@protocol: Packet protocol from driver
768  *	@destructor: Destruct function
769  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
770  *	@_sk_redir: socket redirection information for skmsg
771  *	@_nfct: Associated connection, if any (with nfctinfo bits)
772  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
773  *	@skb_iif: ifindex of device we arrived on
774  *	@tc_index: Traffic control index
775  *	@hash: the packet hash
776  *	@queue_mapping: Queue mapping for multiqueue devices
777  *	@head_frag: skb was allocated from page fragments,
778  *		not allocated by kmalloc() or vmalloc().
779  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
780  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
781  *		page_pool support on driver)
782  *	@active_extensions: active extensions (skb_ext_id types)
783  *	@ndisc_nodetype: router type (from link layer)
784  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
785  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
786  *		ports.
787  *	@sw_hash: indicates hash was computed in software stack
788  *	@wifi_acked_valid: wifi_acked was set
789  *	@wifi_acked: whether frame was acked on wifi or not
790  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
791  *	@encapsulation: indicates the inner headers in the skbuff are valid
792  *	@encap_hdr_csum: software checksum is needed
793  *	@csum_valid: checksum is already valid
794  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
795  *	@csum_complete_sw: checksum was completed by software
796  *	@csum_level: indicates the number of consecutive checksums found in
797  *		the packet minus one that have been verified as
798  *		CHECKSUM_UNNECESSARY (max 3)
799  *	@dst_pending_confirm: need to confirm neighbour
800  *	@decrypted: Decrypted SKB
801  *	@slow_gro: state present at GRO time, slower prepare step required
802  *	@mono_delivery_time: When set, skb->tstamp has the
803  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
804  *		skb->tstamp has the (rcv) timestamp at ingress and
805  *		delivery_time at egress.
806  *	@napi_id: id of the NAPI struct this skb came from
807  *	@sender_cpu: (aka @napi_id) source CPU in XPS
808  *	@alloc_cpu: CPU which did the skb allocation.
809  *	@secmark: security marking
810  *	@mark: Generic packet mark
811  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
812  *		at the tail of an sk_buff
813  *	@vlan_present: VLAN tag is present
814  *	@vlan_proto: vlan encapsulation protocol
815  *	@vlan_tci: vlan tag control information
816  *	@inner_protocol: Protocol (encapsulation)
817  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
818  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
819  *	@inner_transport_header: Inner transport layer header (encapsulation)
820  *	@inner_network_header: Network layer header (encapsulation)
821  *	@inner_mac_header: Link layer header (encapsulation)
822  *	@transport_header: Transport layer header
823  *	@network_header: Network layer header
824  *	@mac_header: Link layer header
825  *	@kcov_handle: KCOV remote handle for remote coverage collection
826  *	@tail: Tail pointer
827  *	@end: End pointer
828  *	@head: Head of buffer
829  *	@data: Data head pointer
830  *	@truesize: Buffer size
831  *	@users: User count - see {datagram,tcp}.c
832  *	@extensions: allocated extensions, valid if active_extensions is nonzero
833  */
834 
835 struct sk_buff {
836 	union {
837 		struct {
838 			/* These two members must be first to match sk_buff_head. */
839 			struct sk_buff		*next;
840 			struct sk_buff		*prev;
841 
842 			union {
843 				struct net_device	*dev;
844 				/* Some protocols might use this space to store information,
845 				 * while device pointer would be NULL.
846 				 * UDP receive path is one user.
847 				 */
848 				unsigned long		dev_scratch;
849 			};
850 		};
851 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
852 		struct list_head	list;
853 		struct llist_node	ll_node;
854 	};
855 
856 	union {
857 		struct sock		*sk;
858 		int			ip_defrag_offset;
859 	};
860 
861 	union {
862 		ktime_t		tstamp;
863 		u64		skb_mstamp_ns; /* earliest departure time */
864 	};
865 	/*
866 	 * This is the control buffer. It is free to use for every
867 	 * layer. Please put your private variables there. If you
868 	 * want to keep them across layers you have to do a skb_clone()
869 	 * first. This is owned by whoever has the skb queued ATM.
870 	 */
871 	char			cb[48] __aligned(8);
872 
873 	union {
874 		struct {
875 			unsigned long	_skb_refdst;
876 			void		(*destructor)(struct sk_buff *skb);
877 		};
878 		struct list_head	tcp_tsorted_anchor;
879 #ifdef CONFIG_NET_SOCK_MSG
880 		unsigned long		_sk_redir;
881 #endif
882 	};
883 
884 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
885 	unsigned long		 _nfct;
886 #endif
887 	unsigned int		len,
888 				data_len;
889 	__u16			mac_len,
890 				hdr_len;
891 
892 	/* Following fields are _not_ copied in __copy_skb_header()
893 	 * Note that queue_mapping is here mostly to fill a hole.
894 	 */
895 	__u16			queue_mapping;
896 
897 /* if you move cloned around you also must adapt those constants */
898 #ifdef __BIG_ENDIAN_BITFIELD
899 #define CLONED_MASK	(1 << 7)
900 #else
901 #define CLONED_MASK	1
902 #endif
903 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
904 
905 	/* private: */
906 	__u8			__cloned_offset[0];
907 	/* public: */
908 	__u8			cloned:1,
909 				nohdr:1,
910 				fclone:2,
911 				peeked:1,
912 				head_frag:1,
913 				pfmemalloc:1,
914 				pp_recycle:1; /* page_pool recycle indicator */
915 #ifdef CONFIG_SKB_EXTENSIONS
916 	__u8			active_extensions;
917 #endif
918 
919 	/* Fields enclosed in headers group are copied
920 	 * using a single memcpy() in __copy_skb_header()
921 	 */
922 	struct_group(headers,
923 
924 	/* private: */
925 	__u8			__pkt_type_offset[0];
926 	/* public: */
927 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
928 	__u8			ignore_df:1;
929 	__u8			nf_trace:1;
930 	__u8			ip_summed:2;
931 	__u8			ooo_okay:1;
932 
933 	__u8			l4_hash:1;
934 	__u8			sw_hash:1;
935 	__u8			wifi_acked_valid:1;
936 	__u8			wifi_acked:1;
937 	__u8			no_fcs:1;
938 	/* Indicates the inner headers are valid in the skbuff. */
939 	__u8			encapsulation:1;
940 	__u8			encap_hdr_csum:1;
941 	__u8			csum_valid:1;
942 
943 	/* private: */
944 	__u8			__pkt_vlan_present_offset[0];
945 	/* public: */
946 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
947 	__u8			csum_complete_sw:1;
948 	__u8			csum_level:2;
949 	__u8			dst_pending_confirm:1;
950 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
951 #ifdef CONFIG_NET_CLS_ACT
952 	__u8			tc_skip_classify:1;
953 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
954 #endif
955 #ifdef CONFIG_IPV6_NDISC_NODETYPE
956 	__u8			ndisc_nodetype:2;
957 #endif
958 
959 	__u8			ipvs_property:1;
960 	__u8			inner_protocol_type:1;
961 	__u8			remcsum_offload:1;
962 #ifdef CONFIG_NET_SWITCHDEV
963 	__u8			offload_fwd_mark:1;
964 	__u8			offload_l3_fwd_mark:1;
965 #endif
966 	__u8			redirected:1;
967 #ifdef CONFIG_NET_REDIRECT
968 	__u8			from_ingress:1;
969 #endif
970 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
971 	__u8			nf_skip_egress:1;
972 #endif
973 #ifdef CONFIG_TLS_DEVICE
974 	__u8			decrypted:1;
975 #endif
976 	__u8			slow_gro:1;
977 	__u8			csum_not_inet:1;
978 
979 #ifdef CONFIG_NET_SCHED
980 	__u16			tc_index;	/* traffic control index */
981 #endif
982 
983 	union {
984 		__wsum		csum;
985 		struct {
986 			__u16	csum_start;
987 			__u16	csum_offset;
988 		};
989 	};
990 	__u32			priority;
991 	int			skb_iif;
992 	__u32			hash;
993 	__be16			vlan_proto;
994 	__u16			vlan_tci;
995 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
996 	union {
997 		unsigned int	napi_id;
998 		unsigned int	sender_cpu;
999 	};
1000 #endif
1001 	u16			alloc_cpu;
1002 #ifdef CONFIG_NETWORK_SECMARK
1003 	__u32		secmark;
1004 #endif
1005 
1006 	union {
1007 		__u32		mark;
1008 		__u32		reserved_tailroom;
1009 	};
1010 
1011 	union {
1012 		__be16		inner_protocol;
1013 		__u8		inner_ipproto;
1014 	};
1015 
1016 	__u16			inner_transport_header;
1017 	__u16			inner_network_header;
1018 	__u16			inner_mac_header;
1019 
1020 	__be16			protocol;
1021 	__u16			transport_header;
1022 	__u16			network_header;
1023 	__u16			mac_header;
1024 
1025 #ifdef CONFIG_KCOV
1026 	u64			kcov_handle;
1027 #endif
1028 
1029 	); /* end headers group */
1030 
1031 	/* These elements must be at the end, see alloc_skb() for details.  */
1032 	sk_buff_data_t		tail;
1033 	sk_buff_data_t		end;
1034 	unsigned char		*head,
1035 				*data;
1036 	unsigned int		truesize;
1037 	refcount_t		users;
1038 
1039 #ifdef CONFIG_SKB_EXTENSIONS
1040 	/* only useable after checking ->active_extensions != 0 */
1041 	struct skb_ext		*extensions;
1042 #endif
1043 };
1044 
1045 /* if you move pkt_type around you also must adapt those constants */
1046 #ifdef __BIG_ENDIAN_BITFIELD
1047 #define PKT_TYPE_MAX	(7 << 5)
1048 #else
1049 #define PKT_TYPE_MAX	7
1050 #endif
1051 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1052 
1053 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1054  * around, you also must adapt these constants.
1055  */
1056 #ifdef __BIG_ENDIAN_BITFIELD
1057 #define PKT_VLAN_PRESENT_BIT	7
1058 #define TC_AT_INGRESS_MASK		(1 << 0)
1059 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1060 #else
1061 #define PKT_VLAN_PRESENT_BIT	0
1062 #define TC_AT_INGRESS_MASK		(1 << 7)
1063 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1064 #endif
1065 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1066 
1067 #ifdef __KERNEL__
1068 /*
1069  *	Handling routines are only of interest to the kernel
1070  */
1071 
1072 #define SKB_ALLOC_FCLONE	0x01
1073 #define SKB_ALLOC_RX		0x02
1074 #define SKB_ALLOC_NAPI		0x04
1075 
1076 /**
1077  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1078  * @skb: buffer
1079  */
1080 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1081 {
1082 	return unlikely(skb->pfmemalloc);
1083 }
1084 
1085 /*
1086  * skb might have a dst pointer attached, refcounted or not.
1087  * _skb_refdst low order bit is set if refcount was _not_ taken
1088  */
1089 #define SKB_DST_NOREF	1UL
1090 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1091 
1092 /**
1093  * skb_dst - returns skb dst_entry
1094  * @skb: buffer
1095  *
1096  * Returns skb dst_entry, regardless of reference taken or not.
1097  */
1098 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1099 {
1100 	/* If refdst was not refcounted, check we still are in a
1101 	 * rcu_read_lock section
1102 	 */
1103 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1104 		!rcu_read_lock_held() &&
1105 		!rcu_read_lock_bh_held());
1106 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1107 }
1108 
1109 /**
1110  * skb_dst_set - sets skb dst
1111  * @skb: buffer
1112  * @dst: dst entry
1113  *
1114  * Sets skb dst, assuming a reference was taken on dst and should
1115  * be released by skb_dst_drop()
1116  */
1117 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1118 {
1119 	skb->slow_gro |= !!dst;
1120 	skb->_skb_refdst = (unsigned long)dst;
1121 }
1122 
1123 /**
1124  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1125  * @skb: buffer
1126  * @dst: dst entry
1127  *
1128  * Sets skb dst, assuming a reference was not taken on dst.
1129  * If dst entry is cached, we do not take reference and dst_release
1130  * will be avoided by refdst_drop. If dst entry is not cached, we take
1131  * reference, so that last dst_release can destroy the dst immediately.
1132  */
1133 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1134 {
1135 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1136 	skb->slow_gro |= !!dst;
1137 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1138 }
1139 
1140 /**
1141  * skb_dst_is_noref - Test if skb dst isn't refcounted
1142  * @skb: buffer
1143  */
1144 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1145 {
1146 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1147 }
1148 
1149 /**
1150  * skb_rtable - Returns the skb &rtable
1151  * @skb: buffer
1152  */
1153 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1154 {
1155 	return (struct rtable *)skb_dst(skb);
1156 }
1157 
1158 /* For mangling skb->pkt_type from user space side from applications
1159  * such as nft, tc, etc, we only allow a conservative subset of
1160  * possible pkt_types to be set.
1161 */
1162 static inline bool skb_pkt_type_ok(u32 ptype)
1163 {
1164 	return ptype <= PACKET_OTHERHOST;
1165 }
1166 
1167 /**
1168  * skb_napi_id - Returns the skb's NAPI id
1169  * @skb: buffer
1170  */
1171 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1172 {
1173 #ifdef CONFIG_NET_RX_BUSY_POLL
1174 	return skb->napi_id;
1175 #else
1176 	return 0;
1177 #endif
1178 }
1179 
1180 /**
1181  * skb_unref - decrement the skb's reference count
1182  * @skb: buffer
1183  *
1184  * Returns true if we can free the skb.
1185  */
1186 static inline bool skb_unref(struct sk_buff *skb)
1187 {
1188 	if (unlikely(!skb))
1189 		return false;
1190 	if (likely(refcount_read(&skb->users) == 1))
1191 		smp_rmb();
1192 	else if (likely(!refcount_dec_and_test(&skb->users)))
1193 		return false;
1194 
1195 	return true;
1196 }
1197 
1198 void __fix_address
1199 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1200 
1201 /**
1202  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1203  *	@skb: buffer to free
1204  */
1205 static inline void kfree_skb(struct sk_buff *skb)
1206 {
1207 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1208 }
1209 
1210 void skb_release_head_state(struct sk_buff *skb);
1211 void kfree_skb_list_reason(struct sk_buff *segs,
1212 			   enum skb_drop_reason reason);
1213 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1214 void skb_tx_error(struct sk_buff *skb);
1215 
1216 static inline void kfree_skb_list(struct sk_buff *segs)
1217 {
1218 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1219 }
1220 
1221 #ifdef CONFIG_TRACEPOINTS
1222 void consume_skb(struct sk_buff *skb);
1223 #else
1224 static inline void consume_skb(struct sk_buff *skb)
1225 {
1226 	return kfree_skb(skb);
1227 }
1228 #endif
1229 
1230 void __consume_stateless_skb(struct sk_buff *skb);
1231 void  __kfree_skb(struct sk_buff *skb);
1232 extern struct kmem_cache *skbuff_head_cache;
1233 
1234 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1235 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1236 		      bool *fragstolen, int *delta_truesize);
1237 
1238 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1239 			    int node);
1240 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1241 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1242 struct sk_buff *build_skb_around(struct sk_buff *skb,
1243 				 void *data, unsigned int frag_size);
1244 void skb_attempt_defer_free(struct sk_buff *skb);
1245 
1246 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1247 
1248 /**
1249  * alloc_skb - allocate a network buffer
1250  * @size: size to allocate
1251  * @priority: allocation mask
1252  *
1253  * This function is a convenient wrapper around __alloc_skb().
1254  */
1255 static inline struct sk_buff *alloc_skb(unsigned int size,
1256 					gfp_t priority)
1257 {
1258 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1259 }
1260 
1261 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1262 				     unsigned long data_len,
1263 				     int max_page_order,
1264 				     int *errcode,
1265 				     gfp_t gfp_mask);
1266 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1267 
1268 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1269 struct sk_buff_fclones {
1270 	struct sk_buff	skb1;
1271 
1272 	struct sk_buff	skb2;
1273 
1274 	refcount_t	fclone_ref;
1275 };
1276 
1277 /**
1278  *	skb_fclone_busy - check if fclone is busy
1279  *	@sk: socket
1280  *	@skb: buffer
1281  *
1282  * Returns true if skb is a fast clone, and its clone is not freed.
1283  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1284  * so we also check that this didnt happen.
1285  */
1286 static inline bool skb_fclone_busy(const struct sock *sk,
1287 				   const struct sk_buff *skb)
1288 {
1289 	const struct sk_buff_fclones *fclones;
1290 
1291 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1292 
1293 	return skb->fclone == SKB_FCLONE_ORIG &&
1294 	       refcount_read(&fclones->fclone_ref) > 1 &&
1295 	       READ_ONCE(fclones->skb2.sk) == sk;
1296 }
1297 
1298 /**
1299  * alloc_skb_fclone - allocate a network buffer from fclone cache
1300  * @size: size to allocate
1301  * @priority: allocation mask
1302  *
1303  * This function is a convenient wrapper around __alloc_skb().
1304  */
1305 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1306 					       gfp_t priority)
1307 {
1308 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1309 }
1310 
1311 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1312 void skb_headers_offset_update(struct sk_buff *skb, int off);
1313 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1314 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1315 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1316 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1317 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1318 				   gfp_t gfp_mask, bool fclone);
1319 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1320 					  gfp_t gfp_mask)
1321 {
1322 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1323 }
1324 
1325 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1326 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1327 				     unsigned int headroom);
1328 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1329 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1330 				int newtailroom, gfp_t priority);
1331 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1332 				     int offset, int len);
1333 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1334 			      int offset, int len);
1335 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1336 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1337 
1338 /**
1339  *	skb_pad			-	zero pad the tail of an skb
1340  *	@skb: buffer to pad
1341  *	@pad: space to pad
1342  *
1343  *	Ensure that a buffer is followed by a padding area that is zero
1344  *	filled. Used by network drivers which may DMA or transfer data
1345  *	beyond the buffer end onto the wire.
1346  *
1347  *	May return error in out of memory cases. The skb is freed on error.
1348  */
1349 static inline int skb_pad(struct sk_buff *skb, int pad)
1350 {
1351 	return __skb_pad(skb, pad, true);
1352 }
1353 #define dev_kfree_skb(a)	consume_skb(a)
1354 
1355 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1356 			 int offset, size_t size);
1357 
1358 struct skb_seq_state {
1359 	__u32		lower_offset;
1360 	__u32		upper_offset;
1361 	__u32		frag_idx;
1362 	__u32		stepped_offset;
1363 	struct sk_buff	*root_skb;
1364 	struct sk_buff	*cur_skb;
1365 	__u8		*frag_data;
1366 	__u32		frag_off;
1367 };
1368 
1369 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1370 			  unsigned int to, struct skb_seq_state *st);
1371 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1372 			  struct skb_seq_state *st);
1373 void skb_abort_seq_read(struct skb_seq_state *st);
1374 
1375 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1376 			   unsigned int to, struct ts_config *config);
1377 
1378 /*
1379  * Packet hash types specify the type of hash in skb_set_hash.
1380  *
1381  * Hash types refer to the protocol layer addresses which are used to
1382  * construct a packet's hash. The hashes are used to differentiate or identify
1383  * flows of the protocol layer for the hash type. Hash types are either
1384  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1385  *
1386  * Properties of hashes:
1387  *
1388  * 1) Two packets in different flows have different hash values
1389  * 2) Two packets in the same flow should have the same hash value
1390  *
1391  * A hash at a higher layer is considered to be more specific. A driver should
1392  * set the most specific hash possible.
1393  *
1394  * A driver cannot indicate a more specific hash than the layer at which a hash
1395  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1396  *
1397  * A driver may indicate a hash level which is less specific than the
1398  * actual layer the hash was computed on. For instance, a hash computed
1399  * at L4 may be considered an L3 hash. This should only be done if the
1400  * driver can't unambiguously determine that the HW computed the hash at
1401  * the higher layer. Note that the "should" in the second property above
1402  * permits this.
1403  */
1404 enum pkt_hash_types {
1405 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1406 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1407 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1408 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1409 };
1410 
1411 static inline void skb_clear_hash(struct sk_buff *skb)
1412 {
1413 	skb->hash = 0;
1414 	skb->sw_hash = 0;
1415 	skb->l4_hash = 0;
1416 }
1417 
1418 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1419 {
1420 	if (!skb->l4_hash)
1421 		skb_clear_hash(skb);
1422 }
1423 
1424 static inline void
1425 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1426 {
1427 	skb->l4_hash = is_l4;
1428 	skb->sw_hash = is_sw;
1429 	skb->hash = hash;
1430 }
1431 
1432 static inline void
1433 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1434 {
1435 	/* Used by drivers to set hash from HW */
1436 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1437 }
1438 
1439 static inline void
1440 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1441 {
1442 	__skb_set_hash(skb, hash, true, is_l4);
1443 }
1444 
1445 void __skb_get_hash(struct sk_buff *skb);
1446 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1447 u32 skb_get_poff(const struct sk_buff *skb);
1448 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1449 		   const struct flow_keys_basic *keys, int hlen);
1450 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1451 			    const void *data, int hlen_proto);
1452 
1453 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1454 					int thoff, u8 ip_proto)
1455 {
1456 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1457 }
1458 
1459 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1460 			     const struct flow_dissector_key *key,
1461 			     unsigned int key_count);
1462 
1463 struct bpf_flow_dissector;
1464 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1465 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1466 
1467 bool __skb_flow_dissect(const struct net *net,
1468 			const struct sk_buff *skb,
1469 			struct flow_dissector *flow_dissector,
1470 			void *target_container, const void *data,
1471 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1472 
1473 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1474 				    struct flow_dissector *flow_dissector,
1475 				    void *target_container, unsigned int flags)
1476 {
1477 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1478 				  target_container, NULL, 0, 0, 0, flags);
1479 }
1480 
1481 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1482 					      struct flow_keys *flow,
1483 					      unsigned int flags)
1484 {
1485 	memset(flow, 0, sizeof(*flow));
1486 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1487 				  flow, NULL, 0, 0, 0, flags);
1488 }
1489 
1490 static inline bool
1491 skb_flow_dissect_flow_keys_basic(const struct net *net,
1492 				 const struct sk_buff *skb,
1493 				 struct flow_keys_basic *flow,
1494 				 const void *data, __be16 proto,
1495 				 int nhoff, int hlen, unsigned int flags)
1496 {
1497 	memset(flow, 0, sizeof(*flow));
1498 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1499 				  data, proto, nhoff, hlen, flags);
1500 }
1501 
1502 void skb_flow_dissect_meta(const struct sk_buff *skb,
1503 			   struct flow_dissector *flow_dissector,
1504 			   void *target_container);
1505 
1506 /* Gets a skb connection tracking info, ctinfo map should be a
1507  * map of mapsize to translate enum ip_conntrack_info states
1508  * to user states.
1509  */
1510 void
1511 skb_flow_dissect_ct(const struct sk_buff *skb,
1512 		    struct flow_dissector *flow_dissector,
1513 		    void *target_container,
1514 		    u16 *ctinfo_map, size_t mapsize,
1515 		    bool post_ct, u16 zone);
1516 void
1517 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1518 			     struct flow_dissector *flow_dissector,
1519 			     void *target_container);
1520 
1521 void skb_flow_dissect_hash(const struct sk_buff *skb,
1522 			   struct flow_dissector *flow_dissector,
1523 			   void *target_container);
1524 
1525 static inline __u32 skb_get_hash(struct sk_buff *skb)
1526 {
1527 	if (!skb->l4_hash && !skb->sw_hash)
1528 		__skb_get_hash(skb);
1529 
1530 	return skb->hash;
1531 }
1532 
1533 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1534 {
1535 	if (!skb->l4_hash && !skb->sw_hash) {
1536 		struct flow_keys keys;
1537 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1538 
1539 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1540 	}
1541 
1542 	return skb->hash;
1543 }
1544 
1545 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1546 			   const siphash_key_t *perturb);
1547 
1548 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1549 {
1550 	return skb->hash;
1551 }
1552 
1553 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1554 {
1555 	to->hash = from->hash;
1556 	to->sw_hash = from->sw_hash;
1557 	to->l4_hash = from->l4_hash;
1558 };
1559 
1560 static inline void skb_copy_decrypted(struct sk_buff *to,
1561 				      const struct sk_buff *from)
1562 {
1563 #ifdef CONFIG_TLS_DEVICE
1564 	to->decrypted = from->decrypted;
1565 #endif
1566 }
1567 
1568 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1569 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1570 {
1571 	return skb->head + skb->end;
1572 }
1573 
1574 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1575 {
1576 	return skb->end;
1577 }
1578 
1579 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1580 {
1581 	skb->end = offset;
1582 }
1583 #else
1584 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1585 {
1586 	return skb->end;
1587 }
1588 
1589 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1590 {
1591 	return skb->end - skb->head;
1592 }
1593 
1594 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1595 {
1596 	skb->end = skb->head + offset;
1597 }
1598 #endif
1599 
1600 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1601 				       struct ubuf_info *uarg);
1602 
1603 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1604 
1605 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1606 			   bool success);
1607 
1608 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1609 			    struct sk_buff *skb, struct iov_iter *from,
1610 			    size_t length);
1611 
1612 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1613 					  struct msghdr *msg, int len)
1614 {
1615 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1616 }
1617 
1618 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1619 			     struct msghdr *msg, int len,
1620 			     struct ubuf_info *uarg);
1621 
1622 /* Internal */
1623 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1624 
1625 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1626 {
1627 	return &skb_shinfo(skb)->hwtstamps;
1628 }
1629 
1630 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1631 {
1632 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1633 
1634 	return is_zcopy ? skb_uarg(skb) : NULL;
1635 }
1636 
1637 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1638 {
1639 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1640 }
1641 
1642 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1643 {
1644 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1645 }
1646 
1647 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1648 				       const struct sk_buff *skb2)
1649 {
1650 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1651 }
1652 
1653 static inline void net_zcopy_get(struct ubuf_info *uarg)
1654 {
1655 	refcount_inc(&uarg->refcnt);
1656 }
1657 
1658 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1659 {
1660 	skb_shinfo(skb)->destructor_arg = uarg;
1661 	skb_shinfo(skb)->flags |= uarg->flags;
1662 }
1663 
1664 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1665 				 bool *have_ref)
1666 {
1667 	if (skb && uarg && !skb_zcopy(skb)) {
1668 		if (unlikely(have_ref && *have_ref))
1669 			*have_ref = false;
1670 		else
1671 			net_zcopy_get(uarg);
1672 		skb_zcopy_init(skb, uarg);
1673 	}
1674 }
1675 
1676 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1677 {
1678 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1679 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1680 }
1681 
1682 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1683 {
1684 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1685 }
1686 
1687 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1688 {
1689 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1690 }
1691 
1692 static inline void net_zcopy_put(struct ubuf_info *uarg)
1693 {
1694 	if (uarg)
1695 		uarg->callback(NULL, uarg, true);
1696 }
1697 
1698 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1699 {
1700 	if (uarg) {
1701 		if (uarg->callback == msg_zerocopy_callback)
1702 			msg_zerocopy_put_abort(uarg, have_uref);
1703 		else if (have_uref)
1704 			net_zcopy_put(uarg);
1705 	}
1706 }
1707 
1708 /* Release a reference on a zerocopy structure */
1709 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1710 {
1711 	struct ubuf_info *uarg = skb_zcopy(skb);
1712 
1713 	if (uarg) {
1714 		if (!skb_zcopy_is_nouarg(skb))
1715 			uarg->callback(skb, uarg, zerocopy_success);
1716 
1717 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1718 	}
1719 }
1720 
1721 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1722 
1723 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1724 {
1725 	if (unlikely(skb_zcopy_managed(skb)))
1726 		__skb_zcopy_downgrade_managed(skb);
1727 }
1728 
1729 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1730 {
1731 	skb->next = NULL;
1732 }
1733 
1734 /* Iterate through singly-linked GSO fragments of an skb. */
1735 #define skb_list_walk_safe(first, skb, next_skb)                               \
1736 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1737 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1738 
1739 static inline void skb_list_del_init(struct sk_buff *skb)
1740 {
1741 	__list_del_entry(&skb->list);
1742 	skb_mark_not_on_list(skb);
1743 }
1744 
1745 /**
1746  *	skb_queue_empty - check if a queue is empty
1747  *	@list: queue head
1748  *
1749  *	Returns true if the queue is empty, false otherwise.
1750  */
1751 static inline int skb_queue_empty(const struct sk_buff_head *list)
1752 {
1753 	return list->next == (const struct sk_buff *) list;
1754 }
1755 
1756 /**
1757  *	skb_queue_empty_lockless - check if a queue is empty
1758  *	@list: queue head
1759  *
1760  *	Returns true if the queue is empty, false otherwise.
1761  *	This variant can be used in lockless contexts.
1762  */
1763 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1764 {
1765 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1766 }
1767 
1768 
1769 /**
1770  *	skb_queue_is_last - check if skb is the last entry in the queue
1771  *	@list: queue head
1772  *	@skb: buffer
1773  *
1774  *	Returns true if @skb is the last buffer on the list.
1775  */
1776 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1777 				     const struct sk_buff *skb)
1778 {
1779 	return skb->next == (const struct sk_buff *) list;
1780 }
1781 
1782 /**
1783  *	skb_queue_is_first - check if skb is the first entry in the queue
1784  *	@list: queue head
1785  *	@skb: buffer
1786  *
1787  *	Returns true if @skb is the first buffer on the list.
1788  */
1789 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1790 				      const struct sk_buff *skb)
1791 {
1792 	return skb->prev == (const struct sk_buff *) list;
1793 }
1794 
1795 /**
1796  *	skb_queue_next - return the next packet in the queue
1797  *	@list: queue head
1798  *	@skb: current buffer
1799  *
1800  *	Return the next packet in @list after @skb.  It is only valid to
1801  *	call this if skb_queue_is_last() evaluates to false.
1802  */
1803 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1804 					     const struct sk_buff *skb)
1805 {
1806 	/* This BUG_ON may seem severe, but if we just return then we
1807 	 * are going to dereference garbage.
1808 	 */
1809 	BUG_ON(skb_queue_is_last(list, skb));
1810 	return skb->next;
1811 }
1812 
1813 /**
1814  *	skb_queue_prev - return the prev packet in the queue
1815  *	@list: queue head
1816  *	@skb: current buffer
1817  *
1818  *	Return the prev packet in @list before @skb.  It is only valid to
1819  *	call this if skb_queue_is_first() evaluates to false.
1820  */
1821 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1822 					     const struct sk_buff *skb)
1823 {
1824 	/* This BUG_ON may seem severe, but if we just return then we
1825 	 * are going to dereference garbage.
1826 	 */
1827 	BUG_ON(skb_queue_is_first(list, skb));
1828 	return skb->prev;
1829 }
1830 
1831 /**
1832  *	skb_get - reference buffer
1833  *	@skb: buffer to reference
1834  *
1835  *	Makes another reference to a socket buffer and returns a pointer
1836  *	to the buffer.
1837  */
1838 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1839 {
1840 	refcount_inc(&skb->users);
1841 	return skb;
1842 }
1843 
1844 /*
1845  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1846  */
1847 
1848 /**
1849  *	skb_cloned - is the buffer a clone
1850  *	@skb: buffer to check
1851  *
1852  *	Returns true if the buffer was generated with skb_clone() and is
1853  *	one of multiple shared copies of the buffer. Cloned buffers are
1854  *	shared data so must not be written to under normal circumstances.
1855  */
1856 static inline int skb_cloned(const struct sk_buff *skb)
1857 {
1858 	return skb->cloned &&
1859 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1860 }
1861 
1862 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1863 {
1864 	might_sleep_if(gfpflags_allow_blocking(pri));
1865 
1866 	if (skb_cloned(skb))
1867 		return pskb_expand_head(skb, 0, 0, pri);
1868 
1869 	return 0;
1870 }
1871 
1872 /* This variant of skb_unclone() makes sure skb->truesize
1873  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1874  *
1875  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1876  * when various debugging features are in place.
1877  */
1878 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1879 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1880 {
1881 	might_sleep_if(gfpflags_allow_blocking(pri));
1882 
1883 	if (skb_cloned(skb))
1884 		return __skb_unclone_keeptruesize(skb, pri);
1885 	return 0;
1886 }
1887 
1888 /**
1889  *	skb_header_cloned - is the header a clone
1890  *	@skb: buffer to check
1891  *
1892  *	Returns true if modifying the header part of the buffer requires
1893  *	the data to be copied.
1894  */
1895 static inline int skb_header_cloned(const struct sk_buff *skb)
1896 {
1897 	int dataref;
1898 
1899 	if (!skb->cloned)
1900 		return 0;
1901 
1902 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1903 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1904 	return dataref != 1;
1905 }
1906 
1907 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1908 {
1909 	might_sleep_if(gfpflags_allow_blocking(pri));
1910 
1911 	if (skb_header_cloned(skb))
1912 		return pskb_expand_head(skb, 0, 0, pri);
1913 
1914 	return 0;
1915 }
1916 
1917 /**
1918  * __skb_header_release() - allow clones to use the headroom
1919  * @skb: buffer to operate on
1920  *
1921  * See "DOC: dataref and headerless skbs".
1922  */
1923 static inline void __skb_header_release(struct sk_buff *skb)
1924 {
1925 	skb->nohdr = 1;
1926 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1927 }
1928 
1929 
1930 /**
1931  *	skb_shared - is the buffer shared
1932  *	@skb: buffer to check
1933  *
1934  *	Returns true if more than one person has a reference to this
1935  *	buffer.
1936  */
1937 static inline int skb_shared(const struct sk_buff *skb)
1938 {
1939 	return refcount_read(&skb->users) != 1;
1940 }
1941 
1942 /**
1943  *	skb_share_check - check if buffer is shared and if so clone it
1944  *	@skb: buffer to check
1945  *	@pri: priority for memory allocation
1946  *
1947  *	If the buffer is shared the buffer is cloned and the old copy
1948  *	drops a reference. A new clone with a single reference is returned.
1949  *	If the buffer is not shared the original buffer is returned. When
1950  *	being called from interrupt status or with spinlocks held pri must
1951  *	be GFP_ATOMIC.
1952  *
1953  *	NULL is returned on a memory allocation failure.
1954  */
1955 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1956 {
1957 	might_sleep_if(gfpflags_allow_blocking(pri));
1958 	if (skb_shared(skb)) {
1959 		struct sk_buff *nskb = skb_clone(skb, pri);
1960 
1961 		if (likely(nskb))
1962 			consume_skb(skb);
1963 		else
1964 			kfree_skb(skb);
1965 		skb = nskb;
1966 	}
1967 	return skb;
1968 }
1969 
1970 /*
1971  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1972  *	packets to handle cases where we have a local reader and forward
1973  *	and a couple of other messy ones. The normal one is tcpdumping
1974  *	a packet thats being forwarded.
1975  */
1976 
1977 /**
1978  *	skb_unshare - make a copy of a shared buffer
1979  *	@skb: buffer to check
1980  *	@pri: priority for memory allocation
1981  *
1982  *	If the socket buffer is a clone then this function creates a new
1983  *	copy of the data, drops a reference count on the old copy and returns
1984  *	the new copy with the reference count at 1. If the buffer is not a clone
1985  *	the original buffer is returned. When called with a spinlock held or
1986  *	from interrupt state @pri must be %GFP_ATOMIC
1987  *
1988  *	%NULL is returned on a memory allocation failure.
1989  */
1990 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1991 					  gfp_t pri)
1992 {
1993 	might_sleep_if(gfpflags_allow_blocking(pri));
1994 	if (skb_cloned(skb)) {
1995 		struct sk_buff *nskb = skb_copy(skb, pri);
1996 
1997 		/* Free our shared copy */
1998 		if (likely(nskb))
1999 			consume_skb(skb);
2000 		else
2001 			kfree_skb(skb);
2002 		skb = nskb;
2003 	}
2004 	return skb;
2005 }
2006 
2007 /**
2008  *	skb_peek - peek at the head of an &sk_buff_head
2009  *	@list_: list to peek at
2010  *
2011  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2012  *	be careful with this one. A peek leaves the buffer on the
2013  *	list and someone else may run off with it. You must hold
2014  *	the appropriate locks or have a private queue to do this.
2015  *
2016  *	Returns %NULL for an empty list or a pointer to the head element.
2017  *	The reference count is not incremented and the reference is therefore
2018  *	volatile. Use with caution.
2019  */
2020 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2021 {
2022 	struct sk_buff *skb = list_->next;
2023 
2024 	if (skb == (struct sk_buff *)list_)
2025 		skb = NULL;
2026 	return skb;
2027 }
2028 
2029 /**
2030  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2031  *	@list_: list to peek at
2032  *
2033  *	Like skb_peek(), but the caller knows that the list is not empty.
2034  */
2035 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2036 {
2037 	return list_->next;
2038 }
2039 
2040 /**
2041  *	skb_peek_next - peek skb following the given one from a queue
2042  *	@skb: skb to start from
2043  *	@list_: list to peek at
2044  *
2045  *	Returns %NULL when the end of the list is met or a pointer to the
2046  *	next element. The reference count is not incremented and the
2047  *	reference is therefore volatile. Use with caution.
2048  */
2049 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2050 		const struct sk_buff_head *list_)
2051 {
2052 	struct sk_buff *next = skb->next;
2053 
2054 	if (next == (struct sk_buff *)list_)
2055 		next = NULL;
2056 	return next;
2057 }
2058 
2059 /**
2060  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2061  *	@list_: list to peek at
2062  *
2063  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2064  *	be careful with this one. A peek leaves the buffer on the
2065  *	list and someone else may run off with it. You must hold
2066  *	the appropriate locks or have a private queue to do this.
2067  *
2068  *	Returns %NULL for an empty list or a pointer to the tail element.
2069  *	The reference count is not incremented and the reference is therefore
2070  *	volatile. Use with caution.
2071  */
2072 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2073 {
2074 	struct sk_buff *skb = READ_ONCE(list_->prev);
2075 
2076 	if (skb == (struct sk_buff *)list_)
2077 		skb = NULL;
2078 	return skb;
2079 
2080 }
2081 
2082 /**
2083  *	skb_queue_len	- get queue length
2084  *	@list_: list to measure
2085  *
2086  *	Return the length of an &sk_buff queue.
2087  */
2088 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2089 {
2090 	return list_->qlen;
2091 }
2092 
2093 /**
2094  *	skb_queue_len_lockless	- get queue length
2095  *	@list_: list to measure
2096  *
2097  *	Return the length of an &sk_buff queue.
2098  *	This variant can be used in lockless contexts.
2099  */
2100 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2101 {
2102 	return READ_ONCE(list_->qlen);
2103 }
2104 
2105 /**
2106  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2107  *	@list: queue to initialize
2108  *
2109  *	This initializes only the list and queue length aspects of
2110  *	an sk_buff_head object.  This allows to initialize the list
2111  *	aspects of an sk_buff_head without reinitializing things like
2112  *	the spinlock.  It can also be used for on-stack sk_buff_head
2113  *	objects where the spinlock is known to not be used.
2114  */
2115 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2116 {
2117 	list->prev = list->next = (struct sk_buff *)list;
2118 	list->qlen = 0;
2119 }
2120 
2121 /*
2122  * This function creates a split out lock class for each invocation;
2123  * this is needed for now since a whole lot of users of the skb-queue
2124  * infrastructure in drivers have different locking usage (in hardirq)
2125  * than the networking core (in softirq only). In the long run either the
2126  * network layer or drivers should need annotation to consolidate the
2127  * main types of usage into 3 classes.
2128  */
2129 static inline void skb_queue_head_init(struct sk_buff_head *list)
2130 {
2131 	spin_lock_init(&list->lock);
2132 	__skb_queue_head_init(list);
2133 }
2134 
2135 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2136 		struct lock_class_key *class)
2137 {
2138 	skb_queue_head_init(list);
2139 	lockdep_set_class(&list->lock, class);
2140 }
2141 
2142 /*
2143  *	Insert an sk_buff on a list.
2144  *
2145  *	The "__skb_xxxx()" functions are the non-atomic ones that
2146  *	can only be called with interrupts disabled.
2147  */
2148 static inline void __skb_insert(struct sk_buff *newsk,
2149 				struct sk_buff *prev, struct sk_buff *next,
2150 				struct sk_buff_head *list)
2151 {
2152 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2153 	 * for the opposite READ_ONCE()
2154 	 */
2155 	WRITE_ONCE(newsk->next, next);
2156 	WRITE_ONCE(newsk->prev, prev);
2157 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2158 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2159 	WRITE_ONCE(list->qlen, list->qlen + 1);
2160 }
2161 
2162 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2163 				      struct sk_buff *prev,
2164 				      struct sk_buff *next)
2165 {
2166 	struct sk_buff *first = list->next;
2167 	struct sk_buff *last = list->prev;
2168 
2169 	WRITE_ONCE(first->prev, prev);
2170 	WRITE_ONCE(prev->next, first);
2171 
2172 	WRITE_ONCE(last->next, next);
2173 	WRITE_ONCE(next->prev, last);
2174 }
2175 
2176 /**
2177  *	skb_queue_splice - join two skb lists, this is designed for stacks
2178  *	@list: the new list to add
2179  *	@head: the place to add it in the first list
2180  */
2181 static inline void skb_queue_splice(const struct sk_buff_head *list,
2182 				    struct sk_buff_head *head)
2183 {
2184 	if (!skb_queue_empty(list)) {
2185 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2186 		head->qlen += list->qlen;
2187 	}
2188 }
2189 
2190 /**
2191  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2192  *	@list: the new list to add
2193  *	@head: the place to add it in the first list
2194  *
2195  *	The list at @list is reinitialised
2196  */
2197 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2198 					 struct sk_buff_head *head)
2199 {
2200 	if (!skb_queue_empty(list)) {
2201 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2202 		head->qlen += list->qlen;
2203 		__skb_queue_head_init(list);
2204 	}
2205 }
2206 
2207 /**
2208  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2209  *	@list: the new list to add
2210  *	@head: the place to add it in the first list
2211  */
2212 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2213 					 struct sk_buff_head *head)
2214 {
2215 	if (!skb_queue_empty(list)) {
2216 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2217 		head->qlen += list->qlen;
2218 	}
2219 }
2220 
2221 /**
2222  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2223  *	@list: the new list to add
2224  *	@head: the place to add it in the first list
2225  *
2226  *	Each of the lists is a queue.
2227  *	The list at @list is reinitialised
2228  */
2229 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2230 					      struct sk_buff_head *head)
2231 {
2232 	if (!skb_queue_empty(list)) {
2233 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2234 		head->qlen += list->qlen;
2235 		__skb_queue_head_init(list);
2236 	}
2237 }
2238 
2239 /**
2240  *	__skb_queue_after - queue a buffer at the list head
2241  *	@list: list to use
2242  *	@prev: place after this buffer
2243  *	@newsk: buffer to queue
2244  *
2245  *	Queue a buffer int the middle of a list. This function takes no locks
2246  *	and you must therefore hold required locks before calling it.
2247  *
2248  *	A buffer cannot be placed on two lists at the same time.
2249  */
2250 static inline void __skb_queue_after(struct sk_buff_head *list,
2251 				     struct sk_buff *prev,
2252 				     struct sk_buff *newsk)
2253 {
2254 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2255 }
2256 
2257 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2258 		struct sk_buff_head *list);
2259 
2260 static inline void __skb_queue_before(struct sk_buff_head *list,
2261 				      struct sk_buff *next,
2262 				      struct sk_buff *newsk)
2263 {
2264 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2265 }
2266 
2267 /**
2268  *	__skb_queue_head - queue a buffer at the list head
2269  *	@list: list to use
2270  *	@newsk: buffer to queue
2271  *
2272  *	Queue a buffer at the start of a list. This function takes no locks
2273  *	and you must therefore hold required locks before calling it.
2274  *
2275  *	A buffer cannot be placed on two lists at the same time.
2276  */
2277 static inline void __skb_queue_head(struct sk_buff_head *list,
2278 				    struct sk_buff *newsk)
2279 {
2280 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2281 }
2282 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2283 
2284 /**
2285  *	__skb_queue_tail - queue a buffer at the list tail
2286  *	@list: list to use
2287  *	@newsk: buffer to queue
2288  *
2289  *	Queue a buffer at the end of a list. This function takes no locks
2290  *	and you must therefore hold required locks before calling it.
2291  *
2292  *	A buffer cannot be placed on two lists at the same time.
2293  */
2294 static inline void __skb_queue_tail(struct sk_buff_head *list,
2295 				   struct sk_buff *newsk)
2296 {
2297 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2298 }
2299 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2300 
2301 /*
2302  * remove sk_buff from list. _Must_ be called atomically, and with
2303  * the list known..
2304  */
2305 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2306 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2307 {
2308 	struct sk_buff *next, *prev;
2309 
2310 	WRITE_ONCE(list->qlen, list->qlen - 1);
2311 	next	   = skb->next;
2312 	prev	   = skb->prev;
2313 	skb->next  = skb->prev = NULL;
2314 	WRITE_ONCE(next->prev, prev);
2315 	WRITE_ONCE(prev->next, next);
2316 }
2317 
2318 /**
2319  *	__skb_dequeue - remove from the head of the queue
2320  *	@list: list to dequeue from
2321  *
2322  *	Remove the head of the list. This function does not take any locks
2323  *	so must be used with appropriate locks held only. The head item is
2324  *	returned or %NULL if the list is empty.
2325  */
2326 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2327 {
2328 	struct sk_buff *skb = skb_peek(list);
2329 	if (skb)
2330 		__skb_unlink(skb, list);
2331 	return skb;
2332 }
2333 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2334 
2335 /**
2336  *	__skb_dequeue_tail - remove from the tail of the queue
2337  *	@list: list to dequeue from
2338  *
2339  *	Remove the tail of the list. This function does not take any locks
2340  *	so must be used with appropriate locks held only. The tail item is
2341  *	returned or %NULL if the list is empty.
2342  */
2343 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2344 {
2345 	struct sk_buff *skb = skb_peek_tail(list);
2346 	if (skb)
2347 		__skb_unlink(skb, list);
2348 	return skb;
2349 }
2350 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2351 
2352 
2353 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2354 {
2355 	return skb->data_len;
2356 }
2357 
2358 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2359 {
2360 	return skb->len - skb->data_len;
2361 }
2362 
2363 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2364 {
2365 	unsigned int i, len = 0;
2366 
2367 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2368 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2369 	return len;
2370 }
2371 
2372 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2373 {
2374 	return skb_headlen(skb) + __skb_pagelen(skb);
2375 }
2376 
2377 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2378 					      int i, struct page *page,
2379 					      int off, int size)
2380 {
2381 	skb_frag_t *frag = &shinfo->frags[i];
2382 
2383 	/*
2384 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2385 	 * that not all callers have unique ownership of the page but rely
2386 	 * on page_is_pfmemalloc doing the right thing(tm).
2387 	 */
2388 	frag->bv_page		  = page;
2389 	frag->bv_offset		  = off;
2390 	skb_frag_size_set(frag, size);
2391 }
2392 
2393 /**
2394  * skb_len_add - adds a number to len fields of skb
2395  * @skb: buffer to add len to
2396  * @delta: number of bytes to add
2397  */
2398 static inline void skb_len_add(struct sk_buff *skb, int delta)
2399 {
2400 	skb->len += delta;
2401 	skb->data_len += delta;
2402 	skb->truesize += delta;
2403 }
2404 
2405 /**
2406  * __skb_fill_page_desc - initialise a paged fragment in an skb
2407  * @skb: buffer containing fragment to be initialised
2408  * @i: paged fragment index to initialise
2409  * @page: the page to use for this fragment
2410  * @off: the offset to the data with @page
2411  * @size: the length of the data
2412  *
2413  * Initialises the @i'th fragment of @skb to point to &size bytes at
2414  * offset @off within @page.
2415  *
2416  * Does not take any additional reference on the fragment.
2417  */
2418 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2419 					struct page *page, int off, int size)
2420 {
2421 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2422 	page = compound_head(page);
2423 	if (page_is_pfmemalloc(page))
2424 		skb->pfmemalloc	= true;
2425 }
2426 
2427 /**
2428  * skb_fill_page_desc - initialise a paged fragment in an skb
2429  * @skb: buffer containing fragment to be initialised
2430  * @i: paged fragment index to initialise
2431  * @page: the page to use for this fragment
2432  * @off: the offset to the data with @page
2433  * @size: the length of the data
2434  *
2435  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2436  * @skb to point to @size bytes at offset @off within @page. In
2437  * addition updates @skb such that @i is the last fragment.
2438  *
2439  * Does not take any additional reference on the fragment.
2440  */
2441 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2442 				      struct page *page, int off, int size)
2443 {
2444 	__skb_fill_page_desc(skb, i, page, off, size);
2445 	skb_shinfo(skb)->nr_frags = i + 1;
2446 }
2447 
2448 /**
2449  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2450  * @skb: buffer containing fragment to be initialised
2451  * @i: paged fragment index to initialise
2452  * @page: the page to use for this fragment
2453  * @off: the offset to the data with @page
2454  * @size: the length of the data
2455  *
2456  * Variant of skb_fill_page_desc() which does not deal with
2457  * pfmemalloc, if page is not owned by us.
2458  */
2459 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2460 					    struct page *page, int off,
2461 					    int size)
2462 {
2463 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2464 
2465 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2466 	shinfo->nr_frags = i + 1;
2467 }
2468 
2469 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2470 		     int size, unsigned int truesize);
2471 
2472 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2473 			  unsigned int truesize);
2474 
2475 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2476 
2477 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2478 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2479 {
2480 	return skb->head + skb->tail;
2481 }
2482 
2483 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2484 {
2485 	skb->tail = skb->data - skb->head;
2486 }
2487 
2488 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2489 {
2490 	skb_reset_tail_pointer(skb);
2491 	skb->tail += offset;
2492 }
2493 
2494 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2495 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2496 {
2497 	return skb->tail;
2498 }
2499 
2500 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2501 {
2502 	skb->tail = skb->data;
2503 }
2504 
2505 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2506 {
2507 	skb->tail = skb->data + offset;
2508 }
2509 
2510 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2511 
2512 static inline void skb_assert_len(struct sk_buff *skb)
2513 {
2514 #ifdef CONFIG_DEBUG_NET
2515 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2516 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2517 #endif /* CONFIG_DEBUG_NET */
2518 }
2519 
2520 /*
2521  *	Add data to an sk_buff
2522  */
2523 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2524 void *skb_put(struct sk_buff *skb, unsigned int len);
2525 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2526 {
2527 	void *tmp = skb_tail_pointer(skb);
2528 	SKB_LINEAR_ASSERT(skb);
2529 	skb->tail += len;
2530 	skb->len  += len;
2531 	return tmp;
2532 }
2533 
2534 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2535 {
2536 	void *tmp = __skb_put(skb, len);
2537 
2538 	memset(tmp, 0, len);
2539 	return tmp;
2540 }
2541 
2542 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2543 				   unsigned int len)
2544 {
2545 	void *tmp = __skb_put(skb, len);
2546 
2547 	memcpy(tmp, data, len);
2548 	return tmp;
2549 }
2550 
2551 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2552 {
2553 	*(u8 *)__skb_put(skb, 1) = val;
2554 }
2555 
2556 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2557 {
2558 	void *tmp = skb_put(skb, len);
2559 
2560 	memset(tmp, 0, len);
2561 
2562 	return tmp;
2563 }
2564 
2565 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2566 				 unsigned int len)
2567 {
2568 	void *tmp = skb_put(skb, len);
2569 
2570 	memcpy(tmp, data, len);
2571 
2572 	return tmp;
2573 }
2574 
2575 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2576 {
2577 	*(u8 *)skb_put(skb, 1) = val;
2578 }
2579 
2580 void *skb_push(struct sk_buff *skb, unsigned int len);
2581 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2582 {
2583 	skb->data -= len;
2584 	skb->len  += len;
2585 	return skb->data;
2586 }
2587 
2588 void *skb_pull(struct sk_buff *skb, unsigned int len);
2589 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2590 {
2591 	skb->len -= len;
2592 	if (unlikely(skb->len < skb->data_len)) {
2593 #if defined(CONFIG_DEBUG_NET)
2594 		skb->len += len;
2595 		pr_err("__skb_pull(len=%u)\n", len);
2596 		skb_dump(KERN_ERR, skb, false);
2597 #endif
2598 		BUG();
2599 	}
2600 	return skb->data += len;
2601 }
2602 
2603 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2604 {
2605 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2606 }
2607 
2608 void *skb_pull_data(struct sk_buff *skb, size_t len);
2609 
2610 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2611 
2612 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2613 {
2614 	if (len > skb_headlen(skb) &&
2615 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2616 		return NULL;
2617 	skb->len -= len;
2618 	return skb->data += len;
2619 }
2620 
2621 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2622 {
2623 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2624 }
2625 
2626 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2627 {
2628 	if (likely(len <= skb_headlen(skb)))
2629 		return true;
2630 	if (unlikely(len > skb->len))
2631 		return false;
2632 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2633 }
2634 
2635 void skb_condense(struct sk_buff *skb);
2636 
2637 /**
2638  *	skb_headroom - bytes at buffer head
2639  *	@skb: buffer to check
2640  *
2641  *	Return the number of bytes of free space at the head of an &sk_buff.
2642  */
2643 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2644 {
2645 	return skb->data - skb->head;
2646 }
2647 
2648 /**
2649  *	skb_tailroom - bytes at buffer end
2650  *	@skb: buffer to check
2651  *
2652  *	Return the number of bytes of free space at the tail of an sk_buff
2653  */
2654 static inline int skb_tailroom(const struct sk_buff *skb)
2655 {
2656 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2657 }
2658 
2659 /**
2660  *	skb_availroom - bytes at buffer end
2661  *	@skb: buffer to check
2662  *
2663  *	Return the number of bytes of free space at the tail of an sk_buff
2664  *	allocated by sk_stream_alloc()
2665  */
2666 static inline int skb_availroom(const struct sk_buff *skb)
2667 {
2668 	if (skb_is_nonlinear(skb))
2669 		return 0;
2670 
2671 	return skb->end - skb->tail - skb->reserved_tailroom;
2672 }
2673 
2674 /**
2675  *	skb_reserve - adjust headroom
2676  *	@skb: buffer to alter
2677  *	@len: bytes to move
2678  *
2679  *	Increase the headroom of an empty &sk_buff by reducing the tail
2680  *	room. This is only allowed for an empty buffer.
2681  */
2682 static inline void skb_reserve(struct sk_buff *skb, int len)
2683 {
2684 	skb->data += len;
2685 	skb->tail += len;
2686 }
2687 
2688 /**
2689  *	skb_tailroom_reserve - adjust reserved_tailroom
2690  *	@skb: buffer to alter
2691  *	@mtu: maximum amount of headlen permitted
2692  *	@needed_tailroom: minimum amount of reserved_tailroom
2693  *
2694  *	Set reserved_tailroom so that headlen can be as large as possible but
2695  *	not larger than mtu and tailroom cannot be smaller than
2696  *	needed_tailroom.
2697  *	The required headroom should already have been reserved before using
2698  *	this function.
2699  */
2700 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2701 					unsigned int needed_tailroom)
2702 {
2703 	SKB_LINEAR_ASSERT(skb);
2704 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2705 		/* use at most mtu */
2706 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2707 	else
2708 		/* use up to all available space */
2709 		skb->reserved_tailroom = needed_tailroom;
2710 }
2711 
2712 #define ENCAP_TYPE_ETHER	0
2713 #define ENCAP_TYPE_IPPROTO	1
2714 
2715 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2716 					  __be16 protocol)
2717 {
2718 	skb->inner_protocol = protocol;
2719 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2720 }
2721 
2722 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2723 					 __u8 ipproto)
2724 {
2725 	skb->inner_ipproto = ipproto;
2726 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2727 }
2728 
2729 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2730 {
2731 	skb->inner_mac_header = skb->mac_header;
2732 	skb->inner_network_header = skb->network_header;
2733 	skb->inner_transport_header = skb->transport_header;
2734 }
2735 
2736 static inline void skb_reset_mac_len(struct sk_buff *skb)
2737 {
2738 	skb->mac_len = skb->network_header - skb->mac_header;
2739 }
2740 
2741 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2742 							*skb)
2743 {
2744 	return skb->head + skb->inner_transport_header;
2745 }
2746 
2747 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2748 {
2749 	return skb_inner_transport_header(skb) - skb->data;
2750 }
2751 
2752 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2753 {
2754 	skb->inner_transport_header = skb->data - skb->head;
2755 }
2756 
2757 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2758 						   const int offset)
2759 {
2760 	skb_reset_inner_transport_header(skb);
2761 	skb->inner_transport_header += offset;
2762 }
2763 
2764 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2765 {
2766 	return skb->head + skb->inner_network_header;
2767 }
2768 
2769 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2770 {
2771 	skb->inner_network_header = skb->data - skb->head;
2772 }
2773 
2774 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2775 						const int offset)
2776 {
2777 	skb_reset_inner_network_header(skb);
2778 	skb->inner_network_header += offset;
2779 }
2780 
2781 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2782 {
2783 	return skb->head + skb->inner_mac_header;
2784 }
2785 
2786 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2787 {
2788 	skb->inner_mac_header = skb->data - skb->head;
2789 }
2790 
2791 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2792 					    const int offset)
2793 {
2794 	skb_reset_inner_mac_header(skb);
2795 	skb->inner_mac_header += offset;
2796 }
2797 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2798 {
2799 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2800 }
2801 
2802 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2803 {
2804 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2805 	return skb->head + skb->transport_header;
2806 }
2807 
2808 static inline void skb_reset_transport_header(struct sk_buff *skb)
2809 {
2810 	skb->transport_header = skb->data - skb->head;
2811 }
2812 
2813 static inline void skb_set_transport_header(struct sk_buff *skb,
2814 					    const int offset)
2815 {
2816 	skb_reset_transport_header(skb);
2817 	skb->transport_header += offset;
2818 }
2819 
2820 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2821 {
2822 	return skb->head + skb->network_header;
2823 }
2824 
2825 static inline void skb_reset_network_header(struct sk_buff *skb)
2826 {
2827 	skb->network_header = skb->data - skb->head;
2828 }
2829 
2830 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2831 {
2832 	skb_reset_network_header(skb);
2833 	skb->network_header += offset;
2834 }
2835 
2836 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2837 {
2838 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2839 }
2840 
2841 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2842 {
2843 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2844 	return skb->head + skb->mac_header;
2845 }
2846 
2847 static inline int skb_mac_offset(const struct sk_buff *skb)
2848 {
2849 	return skb_mac_header(skb) - skb->data;
2850 }
2851 
2852 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2853 {
2854 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2855 	return skb->network_header - skb->mac_header;
2856 }
2857 
2858 static inline void skb_unset_mac_header(struct sk_buff *skb)
2859 {
2860 	skb->mac_header = (typeof(skb->mac_header))~0U;
2861 }
2862 
2863 static inline void skb_reset_mac_header(struct sk_buff *skb)
2864 {
2865 	skb->mac_header = skb->data - skb->head;
2866 }
2867 
2868 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2869 {
2870 	skb_reset_mac_header(skb);
2871 	skb->mac_header += offset;
2872 }
2873 
2874 static inline void skb_pop_mac_header(struct sk_buff *skb)
2875 {
2876 	skb->mac_header = skb->network_header;
2877 }
2878 
2879 static inline void skb_probe_transport_header(struct sk_buff *skb)
2880 {
2881 	struct flow_keys_basic keys;
2882 
2883 	if (skb_transport_header_was_set(skb))
2884 		return;
2885 
2886 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2887 					     NULL, 0, 0, 0, 0))
2888 		skb_set_transport_header(skb, keys.control.thoff);
2889 }
2890 
2891 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2892 {
2893 	if (skb_mac_header_was_set(skb)) {
2894 		const unsigned char *old_mac = skb_mac_header(skb);
2895 
2896 		skb_set_mac_header(skb, -skb->mac_len);
2897 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2898 	}
2899 }
2900 
2901 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2902 {
2903 	return skb->csum_start - skb_headroom(skb);
2904 }
2905 
2906 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2907 {
2908 	return skb->head + skb->csum_start;
2909 }
2910 
2911 static inline int skb_transport_offset(const struct sk_buff *skb)
2912 {
2913 	return skb_transport_header(skb) - skb->data;
2914 }
2915 
2916 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2917 {
2918 	return skb->transport_header - skb->network_header;
2919 }
2920 
2921 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2922 {
2923 	return skb->inner_transport_header - skb->inner_network_header;
2924 }
2925 
2926 static inline int skb_network_offset(const struct sk_buff *skb)
2927 {
2928 	return skb_network_header(skb) - skb->data;
2929 }
2930 
2931 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2932 {
2933 	return skb_inner_network_header(skb) - skb->data;
2934 }
2935 
2936 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2937 {
2938 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2939 }
2940 
2941 /*
2942  * CPUs often take a performance hit when accessing unaligned memory
2943  * locations. The actual performance hit varies, it can be small if the
2944  * hardware handles it or large if we have to take an exception and fix it
2945  * in software.
2946  *
2947  * Since an ethernet header is 14 bytes network drivers often end up with
2948  * the IP header at an unaligned offset. The IP header can be aligned by
2949  * shifting the start of the packet by 2 bytes. Drivers should do this
2950  * with:
2951  *
2952  * skb_reserve(skb, NET_IP_ALIGN);
2953  *
2954  * The downside to this alignment of the IP header is that the DMA is now
2955  * unaligned. On some architectures the cost of an unaligned DMA is high
2956  * and this cost outweighs the gains made by aligning the IP header.
2957  *
2958  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2959  * to be overridden.
2960  */
2961 #ifndef NET_IP_ALIGN
2962 #define NET_IP_ALIGN	2
2963 #endif
2964 
2965 /*
2966  * The networking layer reserves some headroom in skb data (via
2967  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2968  * the header has to grow. In the default case, if the header has to grow
2969  * 32 bytes or less we avoid the reallocation.
2970  *
2971  * Unfortunately this headroom changes the DMA alignment of the resulting
2972  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2973  * on some architectures. An architecture can override this value,
2974  * perhaps setting it to a cacheline in size (since that will maintain
2975  * cacheline alignment of the DMA). It must be a power of 2.
2976  *
2977  * Various parts of the networking layer expect at least 32 bytes of
2978  * headroom, you should not reduce this.
2979  *
2980  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2981  * to reduce average number of cache lines per packet.
2982  * get_rps_cpu() for example only access one 64 bytes aligned block :
2983  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2984  */
2985 #ifndef NET_SKB_PAD
2986 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2987 #endif
2988 
2989 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2990 
2991 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2992 {
2993 	if (WARN_ON(skb_is_nonlinear(skb)))
2994 		return;
2995 	skb->len = len;
2996 	skb_set_tail_pointer(skb, len);
2997 }
2998 
2999 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3000 {
3001 	__skb_set_length(skb, len);
3002 }
3003 
3004 void skb_trim(struct sk_buff *skb, unsigned int len);
3005 
3006 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3007 {
3008 	if (skb->data_len)
3009 		return ___pskb_trim(skb, len);
3010 	__skb_trim(skb, len);
3011 	return 0;
3012 }
3013 
3014 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3015 {
3016 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3017 }
3018 
3019 /**
3020  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3021  *	@skb: buffer to alter
3022  *	@len: new length
3023  *
3024  *	This is identical to pskb_trim except that the caller knows that
3025  *	the skb is not cloned so we should never get an error due to out-
3026  *	of-memory.
3027  */
3028 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3029 {
3030 	int err = pskb_trim(skb, len);
3031 	BUG_ON(err);
3032 }
3033 
3034 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3035 {
3036 	unsigned int diff = len - skb->len;
3037 
3038 	if (skb_tailroom(skb) < diff) {
3039 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3040 					   GFP_ATOMIC);
3041 		if (ret)
3042 			return ret;
3043 	}
3044 	__skb_set_length(skb, len);
3045 	return 0;
3046 }
3047 
3048 /**
3049  *	skb_orphan - orphan a buffer
3050  *	@skb: buffer to orphan
3051  *
3052  *	If a buffer currently has an owner then we call the owner's
3053  *	destructor function and make the @skb unowned. The buffer continues
3054  *	to exist but is no longer charged to its former owner.
3055  */
3056 static inline void skb_orphan(struct sk_buff *skb)
3057 {
3058 	if (skb->destructor) {
3059 		skb->destructor(skb);
3060 		skb->destructor = NULL;
3061 		skb->sk		= NULL;
3062 	} else {
3063 		BUG_ON(skb->sk);
3064 	}
3065 }
3066 
3067 /**
3068  *	skb_orphan_frags - orphan the frags contained in a buffer
3069  *	@skb: buffer to orphan frags from
3070  *	@gfp_mask: allocation mask for replacement pages
3071  *
3072  *	For each frag in the SKB which needs a destructor (i.e. has an
3073  *	owner) create a copy of that frag and release the original
3074  *	page by calling the destructor.
3075  */
3076 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3077 {
3078 	if (likely(!skb_zcopy(skb)))
3079 		return 0;
3080 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3081 		return 0;
3082 	return skb_copy_ubufs(skb, gfp_mask);
3083 }
3084 
3085 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3086 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3087 {
3088 	if (likely(!skb_zcopy(skb)))
3089 		return 0;
3090 	return skb_copy_ubufs(skb, gfp_mask);
3091 }
3092 
3093 /**
3094  *	__skb_queue_purge - empty a list
3095  *	@list: list to empty
3096  *
3097  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3098  *	the list and one reference dropped. This function does not take the
3099  *	list lock and the caller must hold the relevant locks to use it.
3100  */
3101 static inline void __skb_queue_purge(struct sk_buff_head *list)
3102 {
3103 	struct sk_buff *skb;
3104 	while ((skb = __skb_dequeue(list)) != NULL)
3105 		kfree_skb(skb);
3106 }
3107 void skb_queue_purge(struct sk_buff_head *list);
3108 
3109 unsigned int skb_rbtree_purge(struct rb_root *root);
3110 
3111 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3112 
3113 /**
3114  * netdev_alloc_frag - allocate a page fragment
3115  * @fragsz: fragment size
3116  *
3117  * Allocates a frag from a page for receive buffer.
3118  * Uses GFP_ATOMIC allocations.
3119  */
3120 static inline void *netdev_alloc_frag(unsigned int fragsz)
3121 {
3122 	return __netdev_alloc_frag_align(fragsz, ~0u);
3123 }
3124 
3125 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3126 					    unsigned int align)
3127 {
3128 	WARN_ON_ONCE(!is_power_of_2(align));
3129 	return __netdev_alloc_frag_align(fragsz, -align);
3130 }
3131 
3132 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3133 				   gfp_t gfp_mask);
3134 
3135 /**
3136  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3137  *	@dev: network device to receive on
3138  *	@length: length to allocate
3139  *
3140  *	Allocate a new &sk_buff and assign it a usage count of one. The
3141  *	buffer has unspecified headroom built in. Users should allocate
3142  *	the headroom they think they need without accounting for the
3143  *	built in space. The built in space is used for optimisations.
3144  *
3145  *	%NULL is returned if there is no free memory. Although this function
3146  *	allocates memory it can be called from an interrupt.
3147  */
3148 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3149 					       unsigned int length)
3150 {
3151 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3152 }
3153 
3154 /* legacy helper around __netdev_alloc_skb() */
3155 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3156 					      gfp_t gfp_mask)
3157 {
3158 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3159 }
3160 
3161 /* legacy helper around netdev_alloc_skb() */
3162 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3163 {
3164 	return netdev_alloc_skb(NULL, length);
3165 }
3166 
3167 
3168 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3169 		unsigned int length, gfp_t gfp)
3170 {
3171 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3172 
3173 	if (NET_IP_ALIGN && skb)
3174 		skb_reserve(skb, NET_IP_ALIGN);
3175 	return skb;
3176 }
3177 
3178 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3179 		unsigned int length)
3180 {
3181 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3182 }
3183 
3184 static inline void skb_free_frag(void *addr)
3185 {
3186 	page_frag_free(addr);
3187 }
3188 
3189 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3190 
3191 static inline void *napi_alloc_frag(unsigned int fragsz)
3192 {
3193 	return __napi_alloc_frag_align(fragsz, ~0u);
3194 }
3195 
3196 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3197 					  unsigned int align)
3198 {
3199 	WARN_ON_ONCE(!is_power_of_2(align));
3200 	return __napi_alloc_frag_align(fragsz, -align);
3201 }
3202 
3203 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3204 				 unsigned int length, gfp_t gfp_mask);
3205 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3206 					     unsigned int length)
3207 {
3208 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3209 }
3210 void napi_consume_skb(struct sk_buff *skb, int budget);
3211 
3212 void napi_skb_free_stolen_head(struct sk_buff *skb);
3213 void __kfree_skb_defer(struct sk_buff *skb);
3214 
3215 /**
3216  * __dev_alloc_pages - allocate page for network Rx
3217  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3218  * @order: size of the allocation
3219  *
3220  * Allocate a new page.
3221  *
3222  * %NULL is returned if there is no free memory.
3223 */
3224 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3225 					     unsigned int order)
3226 {
3227 	/* This piece of code contains several assumptions.
3228 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3229 	 * 2.  The expectation is the user wants a compound page.
3230 	 * 3.  If requesting a order 0 page it will not be compound
3231 	 *     due to the check to see if order has a value in prep_new_page
3232 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3233 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3234 	 */
3235 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3236 
3237 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3238 }
3239 
3240 static inline struct page *dev_alloc_pages(unsigned int order)
3241 {
3242 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3243 }
3244 
3245 /**
3246  * __dev_alloc_page - allocate a page for network Rx
3247  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3248  *
3249  * Allocate a new page.
3250  *
3251  * %NULL is returned if there is no free memory.
3252  */
3253 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3254 {
3255 	return __dev_alloc_pages(gfp_mask, 0);
3256 }
3257 
3258 static inline struct page *dev_alloc_page(void)
3259 {
3260 	return dev_alloc_pages(0);
3261 }
3262 
3263 /**
3264  * dev_page_is_reusable - check whether a page can be reused for network Rx
3265  * @page: the page to test
3266  *
3267  * A page shouldn't be considered for reusing/recycling if it was allocated
3268  * under memory pressure or at a distant memory node.
3269  *
3270  * Returns false if this page should be returned to page allocator, true
3271  * otherwise.
3272  */
3273 static inline bool dev_page_is_reusable(const struct page *page)
3274 {
3275 	return likely(page_to_nid(page) == numa_mem_id() &&
3276 		      !page_is_pfmemalloc(page));
3277 }
3278 
3279 /**
3280  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3281  *	@page: The page that was allocated from skb_alloc_page
3282  *	@skb: The skb that may need pfmemalloc set
3283  */
3284 static inline void skb_propagate_pfmemalloc(const struct page *page,
3285 					    struct sk_buff *skb)
3286 {
3287 	if (page_is_pfmemalloc(page))
3288 		skb->pfmemalloc = true;
3289 }
3290 
3291 /**
3292  * skb_frag_off() - Returns the offset of a skb fragment
3293  * @frag: the paged fragment
3294  */
3295 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3296 {
3297 	return frag->bv_offset;
3298 }
3299 
3300 /**
3301  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3302  * @frag: skb fragment
3303  * @delta: value to add
3304  */
3305 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3306 {
3307 	frag->bv_offset += delta;
3308 }
3309 
3310 /**
3311  * skb_frag_off_set() - Sets the offset of a skb fragment
3312  * @frag: skb fragment
3313  * @offset: offset of fragment
3314  */
3315 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3316 {
3317 	frag->bv_offset = offset;
3318 }
3319 
3320 /**
3321  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3322  * @fragto: skb fragment where offset is set
3323  * @fragfrom: skb fragment offset is copied from
3324  */
3325 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3326 				     const skb_frag_t *fragfrom)
3327 {
3328 	fragto->bv_offset = fragfrom->bv_offset;
3329 }
3330 
3331 /**
3332  * skb_frag_page - retrieve the page referred to by a paged fragment
3333  * @frag: the paged fragment
3334  *
3335  * Returns the &struct page associated with @frag.
3336  */
3337 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3338 {
3339 	return frag->bv_page;
3340 }
3341 
3342 /**
3343  * __skb_frag_ref - take an addition reference on a paged fragment.
3344  * @frag: the paged fragment
3345  *
3346  * Takes an additional reference on the paged fragment @frag.
3347  */
3348 static inline void __skb_frag_ref(skb_frag_t *frag)
3349 {
3350 	get_page(skb_frag_page(frag));
3351 }
3352 
3353 /**
3354  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3355  * @skb: the buffer
3356  * @f: the fragment offset.
3357  *
3358  * Takes an additional reference on the @f'th paged fragment of @skb.
3359  */
3360 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3361 {
3362 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3363 }
3364 
3365 /**
3366  * __skb_frag_unref - release a reference on a paged fragment.
3367  * @frag: the paged fragment
3368  * @recycle: recycle the page if allocated via page_pool
3369  *
3370  * Releases a reference on the paged fragment @frag
3371  * or recycles the page via the page_pool API.
3372  */
3373 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3374 {
3375 	struct page *page = skb_frag_page(frag);
3376 
3377 #ifdef CONFIG_PAGE_POOL
3378 	if (recycle && page_pool_return_skb_page(page))
3379 		return;
3380 #endif
3381 	put_page(page);
3382 }
3383 
3384 /**
3385  * skb_frag_unref - release a reference on a paged fragment of an skb.
3386  * @skb: the buffer
3387  * @f: the fragment offset
3388  *
3389  * Releases a reference on the @f'th paged fragment of @skb.
3390  */
3391 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3392 {
3393 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3394 
3395 	if (!skb_zcopy_managed(skb))
3396 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3397 }
3398 
3399 /**
3400  * skb_frag_address - gets the address of the data contained in a paged fragment
3401  * @frag: the paged fragment buffer
3402  *
3403  * Returns the address of the data within @frag. The page must already
3404  * be mapped.
3405  */
3406 static inline void *skb_frag_address(const skb_frag_t *frag)
3407 {
3408 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3409 }
3410 
3411 /**
3412  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3413  * @frag: the paged fragment buffer
3414  *
3415  * Returns the address of the data within @frag. Checks that the page
3416  * is mapped and returns %NULL otherwise.
3417  */
3418 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3419 {
3420 	void *ptr = page_address(skb_frag_page(frag));
3421 	if (unlikely(!ptr))
3422 		return NULL;
3423 
3424 	return ptr + skb_frag_off(frag);
3425 }
3426 
3427 /**
3428  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3429  * @fragto: skb fragment where page is set
3430  * @fragfrom: skb fragment page is copied from
3431  */
3432 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3433 				      const skb_frag_t *fragfrom)
3434 {
3435 	fragto->bv_page = fragfrom->bv_page;
3436 }
3437 
3438 /**
3439  * __skb_frag_set_page - sets the page contained in a paged fragment
3440  * @frag: the paged fragment
3441  * @page: the page to set
3442  *
3443  * Sets the fragment @frag to contain @page.
3444  */
3445 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3446 {
3447 	frag->bv_page = page;
3448 }
3449 
3450 /**
3451  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3452  * @skb: the buffer
3453  * @f: the fragment offset
3454  * @page: the page to set
3455  *
3456  * Sets the @f'th fragment of @skb to contain @page.
3457  */
3458 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3459 				     struct page *page)
3460 {
3461 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3462 }
3463 
3464 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3465 
3466 /**
3467  * skb_frag_dma_map - maps a paged fragment via the DMA API
3468  * @dev: the device to map the fragment to
3469  * @frag: the paged fragment to map
3470  * @offset: the offset within the fragment (starting at the
3471  *          fragment's own offset)
3472  * @size: the number of bytes to map
3473  * @dir: the direction of the mapping (``PCI_DMA_*``)
3474  *
3475  * Maps the page associated with @frag to @device.
3476  */
3477 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3478 					  const skb_frag_t *frag,
3479 					  size_t offset, size_t size,
3480 					  enum dma_data_direction dir)
3481 {
3482 	return dma_map_page(dev, skb_frag_page(frag),
3483 			    skb_frag_off(frag) + offset, size, dir);
3484 }
3485 
3486 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3487 					gfp_t gfp_mask)
3488 {
3489 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3490 }
3491 
3492 
3493 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3494 						  gfp_t gfp_mask)
3495 {
3496 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3497 }
3498 
3499 
3500 /**
3501  *	skb_clone_writable - is the header of a clone writable
3502  *	@skb: buffer to check
3503  *	@len: length up to which to write
3504  *
3505  *	Returns true if modifying the header part of the cloned buffer
3506  *	does not requires the data to be copied.
3507  */
3508 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3509 {
3510 	return !skb_header_cloned(skb) &&
3511 	       skb_headroom(skb) + len <= skb->hdr_len;
3512 }
3513 
3514 static inline int skb_try_make_writable(struct sk_buff *skb,
3515 					unsigned int write_len)
3516 {
3517 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3518 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3519 }
3520 
3521 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3522 			    int cloned)
3523 {
3524 	int delta = 0;
3525 
3526 	if (headroom > skb_headroom(skb))
3527 		delta = headroom - skb_headroom(skb);
3528 
3529 	if (delta || cloned)
3530 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3531 					GFP_ATOMIC);
3532 	return 0;
3533 }
3534 
3535 /**
3536  *	skb_cow - copy header of skb when it is required
3537  *	@skb: buffer to cow
3538  *	@headroom: needed headroom
3539  *
3540  *	If the skb passed lacks sufficient headroom or its data part
3541  *	is shared, data is reallocated. If reallocation fails, an error
3542  *	is returned and original skb is not changed.
3543  *
3544  *	The result is skb with writable area skb->head...skb->tail
3545  *	and at least @headroom of space at head.
3546  */
3547 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3548 {
3549 	return __skb_cow(skb, headroom, skb_cloned(skb));
3550 }
3551 
3552 /**
3553  *	skb_cow_head - skb_cow but only making the head writable
3554  *	@skb: buffer to cow
3555  *	@headroom: needed headroom
3556  *
3557  *	This function is identical to skb_cow except that we replace the
3558  *	skb_cloned check by skb_header_cloned.  It should be used when
3559  *	you only need to push on some header and do not need to modify
3560  *	the data.
3561  */
3562 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3563 {
3564 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3565 }
3566 
3567 /**
3568  *	skb_padto	- pad an skbuff up to a minimal size
3569  *	@skb: buffer to pad
3570  *	@len: minimal length
3571  *
3572  *	Pads up a buffer to ensure the trailing bytes exist and are
3573  *	blanked. If the buffer already contains sufficient data it
3574  *	is untouched. Otherwise it is extended. Returns zero on
3575  *	success. The skb is freed on error.
3576  */
3577 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3578 {
3579 	unsigned int size = skb->len;
3580 	if (likely(size >= len))
3581 		return 0;
3582 	return skb_pad(skb, len - size);
3583 }
3584 
3585 /**
3586  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3587  *	@skb: buffer to pad
3588  *	@len: minimal length
3589  *	@free_on_error: free buffer on error
3590  *
3591  *	Pads up a buffer to ensure the trailing bytes exist and are
3592  *	blanked. If the buffer already contains sufficient data it
3593  *	is untouched. Otherwise it is extended. Returns zero on
3594  *	success. The skb is freed on error if @free_on_error is true.
3595  */
3596 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3597 					       unsigned int len,
3598 					       bool free_on_error)
3599 {
3600 	unsigned int size = skb->len;
3601 
3602 	if (unlikely(size < len)) {
3603 		len -= size;
3604 		if (__skb_pad(skb, len, free_on_error))
3605 			return -ENOMEM;
3606 		__skb_put(skb, len);
3607 	}
3608 	return 0;
3609 }
3610 
3611 /**
3612  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3613  *	@skb: buffer to pad
3614  *	@len: minimal length
3615  *
3616  *	Pads up a buffer to ensure the trailing bytes exist and are
3617  *	blanked. If the buffer already contains sufficient data it
3618  *	is untouched. Otherwise it is extended. Returns zero on
3619  *	success. The skb is freed on error.
3620  */
3621 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3622 {
3623 	return __skb_put_padto(skb, len, true);
3624 }
3625 
3626 static inline int skb_add_data(struct sk_buff *skb,
3627 			       struct iov_iter *from, int copy)
3628 {
3629 	const int off = skb->len;
3630 
3631 	if (skb->ip_summed == CHECKSUM_NONE) {
3632 		__wsum csum = 0;
3633 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3634 					         &csum, from)) {
3635 			skb->csum = csum_block_add(skb->csum, csum, off);
3636 			return 0;
3637 		}
3638 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3639 		return 0;
3640 
3641 	__skb_trim(skb, off);
3642 	return -EFAULT;
3643 }
3644 
3645 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3646 				    const struct page *page, int off)
3647 {
3648 	if (skb_zcopy(skb))
3649 		return false;
3650 	if (i) {
3651 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3652 
3653 		return page == skb_frag_page(frag) &&
3654 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3655 	}
3656 	return false;
3657 }
3658 
3659 static inline int __skb_linearize(struct sk_buff *skb)
3660 {
3661 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3662 }
3663 
3664 /**
3665  *	skb_linearize - convert paged skb to linear one
3666  *	@skb: buffer to linarize
3667  *
3668  *	If there is no free memory -ENOMEM is returned, otherwise zero
3669  *	is returned and the old skb data released.
3670  */
3671 static inline int skb_linearize(struct sk_buff *skb)
3672 {
3673 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3674 }
3675 
3676 /**
3677  * skb_has_shared_frag - can any frag be overwritten
3678  * @skb: buffer to test
3679  *
3680  * Return true if the skb has at least one frag that might be modified
3681  * by an external entity (as in vmsplice()/sendfile())
3682  */
3683 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3684 {
3685 	return skb_is_nonlinear(skb) &&
3686 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3687 }
3688 
3689 /**
3690  *	skb_linearize_cow - make sure skb is linear and writable
3691  *	@skb: buffer to process
3692  *
3693  *	If there is no free memory -ENOMEM is returned, otherwise zero
3694  *	is returned and the old skb data released.
3695  */
3696 static inline int skb_linearize_cow(struct sk_buff *skb)
3697 {
3698 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3699 	       __skb_linearize(skb) : 0;
3700 }
3701 
3702 static __always_inline void
3703 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3704 		     unsigned int off)
3705 {
3706 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3707 		skb->csum = csum_block_sub(skb->csum,
3708 					   csum_partial(start, len, 0), off);
3709 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3710 		 skb_checksum_start_offset(skb) < 0)
3711 		skb->ip_summed = CHECKSUM_NONE;
3712 }
3713 
3714 /**
3715  *	skb_postpull_rcsum - update checksum for received skb after pull
3716  *	@skb: buffer to update
3717  *	@start: start of data before pull
3718  *	@len: length of data pulled
3719  *
3720  *	After doing a pull on a received packet, you need to call this to
3721  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3722  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3723  */
3724 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3725 				      const void *start, unsigned int len)
3726 {
3727 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3728 		skb->csum = wsum_negate(csum_partial(start, len,
3729 						     wsum_negate(skb->csum)));
3730 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3731 		 skb_checksum_start_offset(skb) < 0)
3732 		skb->ip_summed = CHECKSUM_NONE;
3733 }
3734 
3735 static __always_inline void
3736 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3737 		     unsigned int off)
3738 {
3739 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3740 		skb->csum = csum_block_add(skb->csum,
3741 					   csum_partial(start, len, 0), off);
3742 }
3743 
3744 /**
3745  *	skb_postpush_rcsum - update checksum for received skb after push
3746  *	@skb: buffer to update
3747  *	@start: start of data after push
3748  *	@len: length of data pushed
3749  *
3750  *	After doing a push on a received packet, you need to call this to
3751  *	update the CHECKSUM_COMPLETE checksum.
3752  */
3753 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3754 				      const void *start, unsigned int len)
3755 {
3756 	__skb_postpush_rcsum(skb, start, len, 0);
3757 }
3758 
3759 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3760 
3761 /**
3762  *	skb_push_rcsum - push skb and update receive checksum
3763  *	@skb: buffer to update
3764  *	@len: length of data pulled
3765  *
3766  *	This function performs an skb_push on the packet and updates
3767  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3768  *	receive path processing instead of skb_push unless you know
3769  *	that the checksum difference is zero (e.g., a valid IP header)
3770  *	or you are setting ip_summed to CHECKSUM_NONE.
3771  */
3772 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3773 {
3774 	skb_push(skb, len);
3775 	skb_postpush_rcsum(skb, skb->data, len);
3776 	return skb->data;
3777 }
3778 
3779 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3780 /**
3781  *	pskb_trim_rcsum - trim received skb and update checksum
3782  *	@skb: buffer to trim
3783  *	@len: new length
3784  *
3785  *	This is exactly the same as pskb_trim except that it ensures the
3786  *	checksum of received packets are still valid after the operation.
3787  *	It can change skb pointers.
3788  */
3789 
3790 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3791 {
3792 	if (likely(len >= skb->len))
3793 		return 0;
3794 	return pskb_trim_rcsum_slow(skb, len);
3795 }
3796 
3797 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3798 {
3799 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3800 		skb->ip_summed = CHECKSUM_NONE;
3801 	__skb_trim(skb, len);
3802 	return 0;
3803 }
3804 
3805 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3806 {
3807 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3808 		skb->ip_summed = CHECKSUM_NONE;
3809 	return __skb_grow(skb, len);
3810 }
3811 
3812 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3813 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3814 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3815 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3816 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3817 
3818 #define skb_queue_walk(queue, skb) \
3819 		for (skb = (queue)->next;					\
3820 		     skb != (struct sk_buff *)(queue);				\
3821 		     skb = skb->next)
3822 
3823 #define skb_queue_walk_safe(queue, skb, tmp)					\
3824 		for (skb = (queue)->next, tmp = skb->next;			\
3825 		     skb != (struct sk_buff *)(queue);				\
3826 		     skb = tmp, tmp = skb->next)
3827 
3828 #define skb_queue_walk_from(queue, skb)						\
3829 		for (; skb != (struct sk_buff *)(queue);			\
3830 		     skb = skb->next)
3831 
3832 #define skb_rbtree_walk(skb, root)						\
3833 		for (skb = skb_rb_first(root); skb != NULL;			\
3834 		     skb = skb_rb_next(skb))
3835 
3836 #define skb_rbtree_walk_from(skb)						\
3837 		for (; skb != NULL;						\
3838 		     skb = skb_rb_next(skb))
3839 
3840 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3841 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3842 		     skb = tmp)
3843 
3844 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3845 		for (tmp = skb->next;						\
3846 		     skb != (struct sk_buff *)(queue);				\
3847 		     skb = tmp, tmp = skb->next)
3848 
3849 #define skb_queue_reverse_walk(queue, skb) \
3850 		for (skb = (queue)->prev;					\
3851 		     skb != (struct sk_buff *)(queue);				\
3852 		     skb = skb->prev)
3853 
3854 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3855 		for (skb = (queue)->prev, tmp = skb->prev;			\
3856 		     skb != (struct sk_buff *)(queue);				\
3857 		     skb = tmp, tmp = skb->prev)
3858 
3859 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3860 		for (tmp = skb->prev;						\
3861 		     skb != (struct sk_buff *)(queue);				\
3862 		     skb = tmp, tmp = skb->prev)
3863 
3864 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3865 {
3866 	return skb_shinfo(skb)->frag_list != NULL;
3867 }
3868 
3869 static inline void skb_frag_list_init(struct sk_buff *skb)
3870 {
3871 	skb_shinfo(skb)->frag_list = NULL;
3872 }
3873 
3874 #define skb_walk_frags(skb, iter)	\
3875 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3876 
3877 
3878 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3879 				int *err, long *timeo_p,
3880 				const struct sk_buff *skb);
3881 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3882 					  struct sk_buff_head *queue,
3883 					  unsigned int flags,
3884 					  int *off, int *err,
3885 					  struct sk_buff **last);
3886 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3887 					struct sk_buff_head *queue,
3888 					unsigned int flags, int *off, int *err,
3889 					struct sk_buff **last);
3890 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3891 				    struct sk_buff_head *sk_queue,
3892 				    unsigned int flags, int *off, int *err);
3893 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3894 __poll_t datagram_poll(struct file *file, struct socket *sock,
3895 			   struct poll_table_struct *wait);
3896 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3897 			   struct iov_iter *to, int size);
3898 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3899 					struct msghdr *msg, int size)
3900 {
3901 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3902 }
3903 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3904 				   struct msghdr *msg);
3905 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3906 			   struct iov_iter *to, int len,
3907 			   struct ahash_request *hash);
3908 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3909 				 struct iov_iter *from, int len);
3910 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3911 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3912 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3913 static inline void skb_free_datagram_locked(struct sock *sk,
3914 					    struct sk_buff *skb)
3915 {
3916 	__skb_free_datagram_locked(sk, skb, 0);
3917 }
3918 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3919 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3920 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3921 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3922 			      int len);
3923 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3924 		    struct pipe_inode_info *pipe, unsigned int len,
3925 		    unsigned int flags);
3926 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3927 			 int len);
3928 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3929 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3930 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3931 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3932 		 int len, int hlen);
3933 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3934 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3935 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3936 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3937 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3938 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3939 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3940 				 unsigned int offset);
3941 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3942 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3943 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3944 int skb_vlan_pop(struct sk_buff *skb);
3945 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3946 int skb_eth_pop(struct sk_buff *skb);
3947 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3948 		 const unsigned char *src);
3949 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3950 		  int mac_len, bool ethernet);
3951 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3952 		 bool ethernet);
3953 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3954 int skb_mpls_dec_ttl(struct sk_buff *skb);
3955 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3956 			     gfp_t gfp);
3957 
3958 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3959 {
3960 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3961 }
3962 
3963 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3964 {
3965 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3966 }
3967 
3968 struct skb_checksum_ops {
3969 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3970 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3971 };
3972 
3973 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3974 
3975 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3976 		      __wsum csum, const struct skb_checksum_ops *ops);
3977 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3978 		    __wsum csum);
3979 
3980 static inline void * __must_check
3981 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3982 		     const void *data, int hlen, void *buffer)
3983 {
3984 	if (likely(hlen - offset >= len))
3985 		return (void *)data + offset;
3986 
3987 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3988 		return NULL;
3989 
3990 	return buffer;
3991 }
3992 
3993 static inline void * __must_check
3994 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3995 {
3996 	return __skb_header_pointer(skb, offset, len, skb->data,
3997 				    skb_headlen(skb), buffer);
3998 }
3999 
4000 /**
4001  *	skb_needs_linearize - check if we need to linearize a given skb
4002  *			      depending on the given device features.
4003  *	@skb: socket buffer to check
4004  *	@features: net device features
4005  *
4006  *	Returns true if either:
4007  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4008  *	2. skb is fragmented and the device does not support SG.
4009  */
4010 static inline bool skb_needs_linearize(struct sk_buff *skb,
4011 				       netdev_features_t features)
4012 {
4013 	return skb_is_nonlinear(skb) &&
4014 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4015 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4016 }
4017 
4018 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4019 					     void *to,
4020 					     const unsigned int len)
4021 {
4022 	memcpy(to, skb->data, len);
4023 }
4024 
4025 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4026 						    const int offset, void *to,
4027 						    const unsigned int len)
4028 {
4029 	memcpy(to, skb->data + offset, len);
4030 }
4031 
4032 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4033 					   const void *from,
4034 					   const unsigned int len)
4035 {
4036 	memcpy(skb->data, from, len);
4037 }
4038 
4039 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4040 						  const int offset,
4041 						  const void *from,
4042 						  const unsigned int len)
4043 {
4044 	memcpy(skb->data + offset, from, len);
4045 }
4046 
4047 void skb_init(void);
4048 
4049 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4050 {
4051 	return skb->tstamp;
4052 }
4053 
4054 /**
4055  *	skb_get_timestamp - get timestamp from a skb
4056  *	@skb: skb to get stamp from
4057  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4058  *
4059  *	Timestamps are stored in the skb as offsets to a base timestamp.
4060  *	This function converts the offset back to a struct timeval and stores
4061  *	it in stamp.
4062  */
4063 static inline void skb_get_timestamp(const struct sk_buff *skb,
4064 				     struct __kernel_old_timeval *stamp)
4065 {
4066 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4067 }
4068 
4069 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4070 					 struct __kernel_sock_timeval *stamp)
4071 {
4072 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4073 
4074 	stamp->tv_sec = ts.tv_sec;
4075 	stamp->tv_usec = ts.tv_nsec / 1000;
4076 }
4077 
4078 static inline void skb_get_timestampns(const struct sk_buff *skb,
4079 				       struct __kernel_old_timespec *stamp)
4080 {
4081 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4082 
4083 	stamp->tv_sec = ts.tv_sec;
4084 	stamp->tv_nsec = ts.tv_nsec;
4085 }
4086 
4087 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4088 					   struct __kernel_timespec *stamp)
4089 {
4090 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4091 
4092 	stamp->tv_sec = ts.tv_sec;
4093 	stamp->tv_nsec = ts.tv_nsec;
4094 }
4095 
4096 static inline void __net_timestamp(struct sk_buff *skb)
4097 {
4098 	skb->tstamp = ktime_get_real();
4099 	skb->mono_delivery_time = 0;
4100 }
4101 
4102 static inline ktime_t net_timedelta(ktime_t t)
4103 {
4104 	return ktime_sub(ktime_get_real(), t);
4105 }
4106 
4107 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4108 					 bool mono)
4109 {
4110 	skb->tstamp = kt;
4111 	skb->mono_delivery_time = kt && mono;
4112 }
4113 
4114 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4115 
4116 /* It is used in the ingress path to clear the delivery_time.
4117  * If needed, set the skb->tstamp to the (rcv) timestamp.
4118  */
4119 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4120 {
4121 	if (skb->mono_delivery_time) {
4122 		skb->mono_delivery_time = 0;
4123 		if (static_branch_unlikely(&netstamp_needed_key))
4124 			skb->tstamp = ktime_get_real();
4125 		else
4126 			skb->tstamp = 0;
4127 	}
4128 }
4129 
4130 static inline void skb_clear_tstamp(struct sk_buff *skb)
4131 {
4132 	if (skb->mono_delivery_time)
4133 		return;
4134 
4135 	skb->tstamp = 0;
4136 }
4137 
4138 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4139 {
4140 	if (skb->mono_delivery_time)
4141 		return 0;
4142 
4143 	return skb->tstamp;
4144 }
4145 
4146 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4147 {
4148 	if (!skb->mono_delivery_time && skb->tstamp)
4149 		return skb->tstamp;
4150 
4151 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4152 		return ktime_get_real();
4153 
4154 	return 0;
4155 }
4156 
4157 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4158 {
4159 	return skb_shinfo(skb)->meta_len;
4160 }
4161 
4162 static inline void *skb_metadata_end(const struct sk_buff *skb)
4163 {
4164 	return skb_mac_header(skb);
4165 }
4166 
4167 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4168 					  const struct sk_buff *skb_b,
4169 					  u8 meta_len)
4170 {
4171 	const void *a = skb_metadata_end(skb_a);
4172 	const void *b = skb_metadata_end(skb_b);
4173 	/* Using more efficient varaiant than plain call to memcmp(). */
4174 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4175 	u64 diffs = 0;
4176 
4177 	switch (meta_len) {
4178 #define __it(x, op) (x -= sizeof(u##op))
4179 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4180 	case 32: diffs |= __it_diff(a, b, 64);
4181 		fallthrough;
4182 	case 24: diffs |= __it_diff(a, b, 64);
4183 		fallthrough;
4184 	case 16: diffs |= __it_diff(a, b, 64);
4185 		fallthrough;
4186 	case  8: diffs |= __it_diff(a, b, 64);
4187 		break;
4188 	case 28: diffs |= __it_diff(a, b, 64);
4189 		fallthrough;
4190 	case 20: diffs |= __it_diff(a, b, 64);
4191 		fallthrough;
4192 	case 12: diffs |= __it_diff(a, b, 64);
4193 		fallthrough;
4194 	case  4: diffs |= __it_diff(a, b, 32);
4195 		break;
4196 	}
4197 	return diffs;
4198 #else
4199 	return memcmp(a - meta_len, b - meta_len, meta_len);
4200 #endif
4201 }
4202 
4203 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4204 					const struct sk_buff *skb_b)
4205 {
4206 	u8 len_a = skb_metadata_len(skb_a);
4207 	u8 len_b = skb_metadata_len(skb_b);
4208 
4209 	if (!(len_a | len_b))
4210 		return false;
4211 
4212 	return len_a != len_b ?
4213 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4214 }
4215 
4216 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4217 {
4218 	skb_shinfo(skb)->meta_len = meta_len;
4219 }
4220 
4221 static inline void skb_metadata_clear(struct sk_buff *skb)
4222 {
4223 	skb_metadata_set(skb, 0);
4224 }
4225 
4226 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4227 
4228 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4229 
4230 void skb_clone_tx_timestamp(struct sk_buff *skb);
4231 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4232 
4233 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4234 
4235 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4236 {
4237 }
4238 
4239 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4240 {
4241 	return false;
4242 }
4243 
4244 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4245 
4246 /**
4247  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4248  *
4249  * PHY drivers may accept clones of transmitted packets for
4250  * timestamping via their phy_driver.txtstamp method. These drivers
4251  * must call this function to return the skb back to the stack with a
4252  * timestamp.
4253  *
4254  * @skb: clone of the original outgoing packet
4255  * @hwtstamps: hardware time stamps
4256  *
4257  */
4258 void skb_complete_tx_timestamp(struct sk_buff *skb,
4259 			       struct skb_shared_hwtstamps *hwtstamps);
4260 
4261 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4262 		     struct skb_shared_hwtstamps *hwtstamps,
4263 		     struct sock *sk, int tstype);
4264 
4265 /**
4266  * skb_tstamp_tx - queue clone of skb with send time stamps
4267  * @orig_skb:	the original outgoing packet
4268  * @hwtstamps:	hardware time stamps, may be NULL if not available
4269  *
4270  * If the skb has a socket associated, then this function clones the
4271  * skb (thus sharing the actual data and optional structures), stores
4272  * the optional hardware time stamping information (if non NULL) or
4273  * generates a software time stamp (otherwise), then queues the clone
4274  * to the error queue of the socket.  Errors are silently ignored.
4275  */
4276 void skb_tstamp_tx(struct sk_buff *orig_skb,
4277 		   struct skb_shared_hwtstamps *hwtstamps);
4278 
4279 /**
4280  * skb_tx_timestamp() - Driver hook for transmit timestamping
4281  *
4282  * Ethernet MAC Drivers should call this function in their hard_xmit()
4283  * function immediately before giving the sk_buff to the MAC hardware.
4284  *
4285  * Specifically, one should make absolutely sure that this function is
4286  * called before TX completion of this packet can trigger.  Otherwise
4287  * the packet could potentially already be freed.
4288  *
4289  * @skb: A socket buffer.
4290  */
4291 static inline void skb_tx_timestamp(struct sk_buff *skb)
4292 {
4293 	skb_clone_tx_timestamp(skb);
4294 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4295 		skb_tstamp_tx(skb, NULL);
4296 }
4297 
4298 /**
4299  * skb_complete_wifi_ack - deliver skb with wifi status
4300  *
4301  * @skb: the original outgoing packet
4302  * @acked: ack status
4303  *
4304  */
4305 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4306 
4307 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4308 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4309 
4310 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4311 {
4312 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4313 		skb->csum_valid ||
4314 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4315 		 skb_checksum_start_offset(skb) >= 0));
4316 }
4317 
4318 /**
4319  *	skb_checksum_complete - Calculate checksum of an entire packet
4320  *	@skb: packet to process
4321  *
4322  *	This function calculates the checksum over the entire packet plus
4323  *	the value of skb->csum.  The latter can be used to supply the
4324  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4325  *	checksum.
4326  *
4327  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4328  *	this function can be used to verify that checksum on received
4329  *	packets.  In that case the function should return zero if the
4330  *	checksum is correct.  In particular, this function will return zero
4331  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4332  *	hardware has already verified the correctness of the checksum.
4333  */
4334 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4335 {
4336 	return skb_csum_unnecessary(skb) ?
4337 	       0 : __skb_checksum_complete(skb);
4338 }
4339 
4340 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4341 {
4342 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4343 		if (skb->csum_level == 0)
4344 			skb->ip_summed = CHECKSUM_NONE;
4345 		else
4346 			skb->csum_level--;
4347 	}
4348 }
4349 
4350 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4351 {
4352 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4353 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4354 			skb->csum_level++;
4355 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4356 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4357 		skb->csum_level = 0;
4358 	}
4359 }
4360 
4361 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4362 {
4363 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4364 		skb->ip_summed = CHECKSUM_NONE;
4365 		skb->csum_level = 0;
4366 	}
4367 }
4368 
4369 /* Check if we need to perform checksum complete validation.
4370  *
4371  * Returns true if checksum complete is needed, false otherwise
4372  * (either checksum is unnecessary or zero checksum is allowed).
4373  */
4374 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4375 						  bool zero_okay,
4376 						  __sum16 check)
4377 {
4378 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4379 		skb->csum_valid = 1;
4380 		__skb_decr_checksum_unnecessary(skb);
4381 		return false;
4382 	}
4383 
4384 	return true;
4385 }
4386 
4387 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4388  * in checksum_init.
4389  */
4390 #define CHECKSUM_BREAK 76
4391 
4392 /* Unset checksum-complete
4393  *
4394  * Unset checksum complete can be done when packet is being modified
4395  * (uncompressed for instance) and checksum-complete value is
4396  * invalidated.
4397  */
4398 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4399 {
4400 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4401 		skb->ip_summed = CHECKSUM_NONE;
4402 }
4403 
4404 /* Validate (init) checksum based on checksum complete.
4405  *
4406  * Return values:
4407  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4408  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4409  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4410  *   non-zero: value of invalid checksum
4411  *
4412  */
4413 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4414 						       bool complete,
4415 						       __wsum psum)
4416 {
4417 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4418 		if (!csum_fold(csum_add(psum, skb->csum))) {
4419 			skb->csum_valid = 1;
4420 			return 0;
4421 		}
4422 	}
4423 
4424 	skb->csum = psum;
4425 
4426 	if (complete || skb->len <= CHECKSUM_BREAK) {
4427 		__sum16 csum;
4428 
4429 		csum = __skb_checksum_complete(skb);
4430 		skb->csum_valid = !csum;
4431 		return csum;
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4438 {
4439 	return 0;
4440 }
4441 
4442 /* Perform checksum validate (init). Note that this is a macro since we only
4443  * want to calculate the pseudo header which is an input function if necessary.
4444  * First we try to validate without any computation (checksum unnecessary) and
4445  * then calculate based on checksum complete calling the function to compute
4446  * pseudo header.
4447  *
4448  * Return values:
4449  *   0: checksum is validated or try to in skb_checksum_complete
4450  *   non-zero: value of invalid checksum
4451  */
4452 #define __skb_checksum_validate(skb, proto, complete,			\
4453 				zero_okay, check, compute_pseudo)	\
4454 ({									\
4455 	__sum16 __ret = 0;						\
4456 	skb->csum_valid = 0;						\
4457 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4458 		__ret = __skb_checksum_validate_complete(skb,		\
4459 				complete, compute_pseudo(skb, proto));	\
4460 	__ret;								\
4461 })
4462 
4463 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4464 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4465 
4466 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4467 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4468 
4469 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4470 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4471 
4472 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4473 					 compute_pseudo)		\
4474 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4475 
4476 #define skb_checksum_simple_validate(skb)				\
4477 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4478 
4479 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4480 {
4481 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4482 }
4483 
4484 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4485 {
4486 	skb->csum = ~pseudo;
4487 	skb->ip_summed = CHECKSUM_COMPLETE;
4488 }
4489 
4490 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4491 do {									\
4492 	if (__skb_checksum_convert_check(skb))				\
4493 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4494 } while (0)
4495 
4496 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4497 					      u16 start, u16 offset)
4498 {
4499 	skb->ip_summed = CHECKSUM_PARTIAL;
4500 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4501 	skb->csum_offset = offset - start;
4502 }
4503 
4504 /* Update skbuf and packet to reflect the remote checksum offload operation.
4505  * When called, ptr indicates the starting point for skb->csum when
4506  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4507  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4508  */
4509 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4510 				       int start, int offset, bool nopartial)
4511 {
4512 	__wsum delta;
4513 
4514 	if (!nopartial) {
4515 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4516 		return;
4517 	}
4518 
4519 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4520 		__skb_checksum_complete(skb);
4521 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4522 	}
4523 
4524 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4525 
4526 	/* Adjust skb->csum since we changed the packet */
4527 	skb->csum = csum_add(skb->csum, delta);
4528 }
4529 
4530 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4531 {
4532 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4533 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4534 #else
4535 	return NULL;
4536 #endif
4537 }
4538 
4539 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4540 {
4541 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4542 	return skb->_nfct;
4543 #else
4544 	return 0UL;
4545 #endif
4546 }
4547 
4548 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4549 {
4550 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4551 	skb->slow_gro |= !!nfct;
4552 	skb->_nfct = nfct;
4553 #endif
4554 }
4555 
4556 #ifdef CONFIG_SKB_EXTENSIONS
4557 enum skb_ext_id {
4558 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4559 	SKB_EXT_BRIDGE_NF,
4560 #endif
4561 #ifdef CONFIG_XFRM
4562 	SKB_EXT_SEC_PATH,
4563 #endif
4564 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4565 	TC_SKB_EXT,
4566 #endif
4567 #if IS_ENABLED(CONFIG_MPTCP)
4568 	SKB_EXT_MPTCP,
4569 #endif
4570 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4571 	SKB_EXT_MCTP,
4572 #endif
4573 	SKB_EXT_NUM, /* must be last */
4574 };
4575 
4576 /**
4577  *	struct skb_ext - sk_buff extensions
4578  *	@refcnt: 1 on allocation, deallocated on 0
4579  *	@offset: offset to add to @data to obtain extension address
4580  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4581  *	@data: start of extension data, variable sized
4582  *
4583  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4584  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4585  */
4586 struct skb_ext {
4587 	refcount_t refcnt;
4588 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4589 	u8 chunks;		/* same */
4590 	char data[] __aligned(8);
4591 };
4592 
4593 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4594 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4595 		    struct skb_ext *ext);
4596 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4597 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4598 void __skb_ext_put(struct skb_ext *ext);
4599 
4600 static inline void skb_ext_put(struct sk_buff *skb)
4601 {
4602 	if (skb->active_extensions)
4603 		__skb_ext_put(skb->extensions);
4604 }
4605 
4606 static inline void __skb_ext_copy(struct sk_buff *dst,
4607 				  const struct sk_buff *src)
4608 {
4609 	dst->active_extensions = src->active_extensions;
4610 
4611 	if (src->active_extensions) {
4612 		struct skb_ext *ext = src->extensions;
4613 
4614 		refcount_inc(&ext->refcnt);
4615 		dst->extensions = ext;
4616 	}
4617 }
4618 
4619 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4620 {
4621 	skb_ext_put(dst);
4622 	__skb_ext_copy(dst, src);
4623 }
4624 
4625 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4626 {
4627 	return !!ext->offset[i];
4628 }
4629 
4630 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4631 {
4632 	return skb->active_extensions & (1 << id);
4633 }
4634 
4635 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4636 {
4637 	if (skb_ext_exist(skb, id))
4638 		__skb_ext_del(skb, id);
4639 }
4640 
4641 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4642 {
4643 	if (skb_ext_exist(skb, id)) {
4644 		struct skb_ext *ext = skb->extensions;
4645 
4646 		return (void *)ext + (ext->offset[id] << 3);
4647 	}
4648 
4649 	return NULL;
4650 }
4651 
4652 static inline void skb_ext_reset(struct sk_buff *skb)
4653 {
4654 	if (unlikely(skb->active_extensions)) {
4655 		__skb_ext_put(skb->extensions);
4656 		skb->active_extensions = 0;
4657 	}
4658 }
4659 
4660 static inline bool skb_has_extensions(struct sk_buff *skb)
4661 {
4662 	return unlikely(skb->active_extensions);
4663 }
4664 #else
4665 static inline void skb_ext_put(struct sk_buff *skb) {}
4666 static inline void skb_ext_reset(struct sk_buff *skb) {}
4667 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4668 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4669 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4670 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4671 #endif /* CONFIG_SKB_EXTENSIONS */
4672 
4673 static inline void nf_reset_ct(struct sk_buff *skb)
4674 {
4675 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4676 	nf_conntrack_put(skb_nfct(skb));
4677 	skb->_nfct = 0;
4678 #endif
4679 }
4680 
4681 static inline void nf_reset_trace(struct sk_buff *skb)
4682 {
4683 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4684 	skb->nf_trace = 0;
4685 #endif
4686 }
4687 
4688 static inline void ipvs_reset(struct sk_buff *skb)
4689 {
4690 #if IS_ENABLED(CONFIG_IP_VS)
4691 	skb->ipvs_property = 0;
4692 #endif
4693 }
4694 
4695 /* Note: This doesn't put any conntrack info in dst. */
4696 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4697 			     bool copy)
4698 {
4699 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4700 	dst->_nfct = src->_nfct;
4701 	nf_conntrack_get(skb_nfct(src));
4702 #endif
4703 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4704 	if (copy)
4705 		dst->nf_trace = src->nf_trace;
4706 #endif
4707 }
4708 
4709 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4710 {
4711 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4712 	nf_conntrack_put(skb_nfct(dst));
4713 #endif
4714 	dst->slow_gro = src->slow_gro;
4715 	__nf_copy(dst, src, true);
4716 }
4717 
4718 #ifdef CONFIG_NETWORK_SECMARK
4719 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4720 {
4721 	to->secmark = from->secmark;
4722 }
4723 
4724 static inline void skb_init_secmark(struct sk_buff *skb)
4725 {
4726 	skb->secmark = 0;
4727 }
4728 #else
4729 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4730 { }
4731 
4732 static inline void skb_init_secmark(struct sk_buff *skb)
4733 { }
4734 #endif
4735 
4736 static inline int secpath_exists(const struct sk_buff *skb)
4737 {
4738 #ifdef CONFIG_XFRM
4739 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4740 #else
4741 	return 0;
4742 #endif
4743 }
4744 
4745 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4746 {
4747 	return !skb->destructor &&
4748 		!secpath_exists(skb) &&
4749 		!skb_nfct(skb) &&
4750 		!skb->_skb_refdst &&
4751 		!skb_has_frag_list(skb);
4752 }
4753 
4754 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4755 {
4756 	skb->queue_mapping = queue_mapping;
4757 }
4758 
4759 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4760 {
4761 	return skb->queue_mapping;
4762 }
4763 
4764 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4765 {
4766 	to->queue_mapping = from->queue_mapping;
4767 }
4768 
4769 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4770 {
4771 	skb->queue_mapping = rx_queue + 1;
4772 }
4773 
4774 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4775 {
4776 	return skb->queue_mapping - 1;
4777 }
4778 
4779 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4780 {
4781 	return skb->queue_mapping != 0;
4782 }
4783 
4784 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4785 {
4786 	skb->dst_pending_confirm = val;
4787 }
4788 
4789 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4790 {
4791 	return skb->dst_pending_confirm != 0;
4792 }
4793 
4794 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4795 {
4796 #ifdef CONFIG_XFRM
4797 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4798 #else
4799 	return NULL;
4800 #endif
4801 }
4802 
4803 /* Keeps track of mac header offset relative to skb->head.
4804  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4805  * For non-tunnel skb it points to skb_mac_header() and for
4806  * tunnel skb it points to outer mac header.
4807  * Keeps track of level of encapsulation of network headers.
4808  */
4809 struct skb_gso_cb {
4810 	union {
4811 		int	mac_offset;
4812 		int	data_offset;
4813 	};
4814 	int	encap_level;
4815 	__wsum	csum;
4816 	__u16	csum_start;
4817 };
4818 #define SKB_GSO_CB_OFFSET	32
4819 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4820 
4821 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4822 {
4823 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4824 		SKB_GSO_CB(inner_skb)->mac_offset;
4825 }
4826 
4827 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4828 {
4829 	int new_headroom, headroom;
4830 	int ret;
4831 
4832 	headroom = skb_headroom(skb);
4833 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4834 	if (ret)
4835 		return ret;
4836 
4837 	new_headroom = skb_headroom(skb);
4838 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4839 	return 0;
4840 }
4841 
4842 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4843 {
4844 	/* Do not update partial checksums if remote checksum is enabled. */
4845 	if (skb->remcsum_offload)
4846 		return;
4847 
4848 	SKB_GSO_CB(skb)->csum = res;
4849 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4850 }
4851 
4852 /* Compute the checksum for a gso segment. First compute the checksum value
4853  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4854  * then add in skb->csum (checksum from csum_start to end of packet).
4855  * skb->csum and csum_start are then updated to reflect the checksum of the
4856  * resultant packet starting from the transport header-- the resultant checksum
4857  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4858  * header.
4859  */
4860 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4861 {
4862 	unsigned char *csum_start = skb_transport_header(skb);
4863 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4864 	__wsum partial = SKB_GSO_CB(skb)->csum;
4865 
4866 	SKB_GSO_CB(skb)->csum = res;
4867 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4868 
4869 	return csum_fold(csum_partial(csum_start, plen, partial));
4870 }
4871 
4872 static inline bool skb_is_gso(const struct sk_buff *skb)
4873 {
4874 	return skb_shinfo(skb)->gso_size;
4875 }
4876 
4877 /* Note: Should be called only if skb_is_gso(skb) is true */
4878 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4879 {
4880 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4881 }
4882 
4883 /* Note: Should be called only if skb_is_gso(skb) is true */
4884 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4885 {
4886 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4887 }
4888 
4889 /* Note: Should be called only if skb_is_gso(skb) is true */
4890 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4891 {
4892 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4893 }
4894 
4895 static inline void skb_gso_reset(struct sk_buff *skb)
4896 {
4897 	skb_shinfo(skb)->gso_size = 0;
4898 	skb_shinfo(skb)->gso_segs = 0;
4899 	skb_shinfo(skb)->gso_type = 0;
4900 }
4901 
4902 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4903 					 u16 increment)
4904 {
4905 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4906 		return;
4907 	shinfo->gso_size += increment;
4908 }
4909 
4910 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4911 					 u16 decrement)
4912 {
4913 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4914 		return;
4915 	shinfo->gso_size -= decrement;
4916 }
4917 
4918 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4919 
4920 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4921 {
4922 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4923 	 * wanted then gso_type will be set. */
4924 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4925 
4926 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4927 	    unlikely(shinfo->gso_type == 0)) {
4928 		__skb_warn_lro_forwarding(skb);
4929 		return true;
4930 	}
4931 	return false;
4932 }
4933 
4934 static inline void skb_forward_csum(struct sk_buff *skb)
4935 {
4936 	/* Unfortunately we don't support this one.  Any brave souls? */
4937 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4938 		skb->ip_summed = CHECKSUM_NONE;
4939 }
4940 
4941 /**
4942  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4943  * @skb: skb to check
4944  *
4945  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4946  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4947  * use this helper, to document places where we make this assertion.
4948  */
4949 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4950 {
4951 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4952 }
4953 
4954 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4955 
4956 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4957 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4958 				     unsigned int transport_len,
4959 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4960 
4961 /**
4962  * skb_head_is_locked - Determine if the skb->head is locked down
4963  * @skb: skb to check
4964  *
4965  * The head on skbs build around a head frag can be removed if they are
4966  * not cloned.  This function returns true if the skb head is locked down
4967  * due to either being allocated via kmalloc, or by being a clone with
4968  * multiple references to the head.
4969  */
4970 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4971 {
4972 	return !skb->head_frag || skb_cloned(skb);
4973 }
4974 
4975 /* Local Checksum Offload.
4976  * Compute outer checksum based on the assumption that the
4977  * inner checksum will be offloaded later.
4978  * See Documentation/networking/checksum-offloads.rst for
4979  * explanation of how this works.
4980  * Fill in outer checksum adjustment (e.g. with sum of outer
4981  * pseudo-header) before calling.
4982  * Also ensure that inner checksum is in linear data area.
4983  */
4984 static inline __wsum lco_csum(struct sk_buff *skb)
4985 {
4986 	unsigned char *csum_start = skb_checksum_start(skb);
4987 	unsigned char *l4_hdr = skb_transport_header(skb);
4988 	__wsum partial;
4989 
4990 	/* Start with complement of inner checksum adjustment */
4991 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4992 						    skb->csum_offset));
4993 
4994 	/* Add in checksum of our headers (incl. outer checksum
4995 	 * adjustment filled in by caller) and return result.
4996 	 */
4997 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4998 }
4999 
5000 static inline bool skb_is_redirected(const struct sk_buff *skb)
5001 {
5002 	return skb->redirected;
5003 }
5004 
5005 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5006 {
5007 	skb->redirected = 1;
5008 #ifdef CONFIG_NET_REDIRECT
5009 	skb->from_ingress = from_ingress;
5010 	if (skb->from_ingress)
5011 		skb_clear_tstamp(skb);
5012 #endif
5013 }
5014 
5015 static inline void skb_reset_redirect(struct sk_buff *skb)
5016 {
5017 	skb->redirected = 0;
5018 }
5019 
5020 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5021 {
5022 	return skb->csum_not_inet;
5023 }
5024 
5025 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5026 				       const u64 kcov_handle)
5027 {
5028 #ifdef CONFIG_KCOV
5029 	skb->kcov_handle = kcov_handle;
5030 #endif
5031 }
5032 
5033 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5034 {
5035 #ifdef CONFIG_KCOV
5036 	return skb->kcov_handle;
5037 #else
5038 	return 0;
5039 #endif
5040 }
5041 
5042 #ifdef CONFIG_PAGE_POOL
5043 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5044 {
5045 	skb->pp_recycle = 1;
5046 }
5047 #endif
5048 
5049 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5050 {
5051 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5052 		return false;
5053 	return page_pool_return_skb_page(virt_to_page(data));
5054 }
5055 
5056 #endif	/* __KERNEL__ */
5057 #endif	/* _LINUX_SKBUFF_H */
5058