xref: /linux-6.15/include/linux/skbuff.h (revision 7145fcff)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281  * ovs recirc_id. It will be set to the current chain by tc
282  * and read by ovs to recirc_id.
283  */
284 struct tc_skb_ext {
285 	__u32 chain;
286 };
287 #endif
288 
289 struct sk_buff_head {
290 	/* These two members must be first. */
291 	struct sk_buff	*next;
292 	struct sk_buff	*prev;
293 
294 	__u32		qlen;
295 	spinlock_t	lock;
296 };
297 
298 struct sk_buff;
299 
300 /* To allow 64K frame to be packed as single skb without frag_list we
301  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
302  * buffers which do not start on a page boundary.
303  *
304  * Since GRO uses frags we allocate at least 16 regardless of page
305  * size.
306  */
307 #if (65536/PAGE_SIZE + 1) < 16
308 #define MAX_SKB_FRAGS 16UL
309 #else
310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
311 #endif
312 extern int sysctl_max_skb_frags;
313 
314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
315  * segment using its current segmentation instead.
316  */
317 #define GSO_BY_FRAGS	0xFFFF
318 
319 typedef struct bio_vec skb_frag_t;
320 
321 /**
322  * skb_frag_size() - Returns the size of a skb fragment
323  * @frag: skb fragment
324  */
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->bv_len;
328 }
329 
330 /**
331  * skb_frag_size_set() - Sets the size of a skb fragment
332  * @frag: skb fragment
333  * @size: size of fragment
334  */
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->bv_len = size;
338 }
339 
340 /**
341  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
342  * @frag: skb fragment
343  * @delta: value to add
344  */
345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
346 {
347 	frag->bv_len += delta;
348 }
349 
350 /**
351  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
352  * @frag: skb fragment
353  * @delta: value to subtract
354  */
355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
356 {
357 	frag->bv_len -= delta;
358 }
359 
360 /**
361  * skb_frag_must_loop - Test if %p is a high memory page
362  * @p: fragment's page
363  */
364 static inline bool skb_frag_must_loop(struct page *p)
365 {
366 #if defined(CONFIG_HIGHMEM)
367 	if (PageHighMem(p))
368 		return true;
369 #endif
370 	return false;
371 }
372 
373 /**
374  *	skb_frag_foreach_page - loop over pages in a fragment
375  *
376  *	@f:		skb frag to operate on
377  *	@f_off:		offset from start of f->bv_page
378  *	@f_len:		length from f_off to loop over
379  *	@p:		(temp var) current page
380  *	@p_off:		(temp var) offset from start of current page,
381  *	                           non-zero only on first page.
382  *	@p_len:		(temp var) length in current page,
383  *				   < PAGE_SIZE only on first and last page.
384  *	@copied:	(temp var) length so far, excluding current p_len.
385  *
386  *	A fragment can hold a compound page, in which case per-page
387  *	operations, notably kmap_atomic, must be called for each
388  *	regular page.
389  */
390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
391 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
392 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
393 	     p_len = skb_frag_must_loop(p) ?				\
394 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
395 	     copied = 0;						\
396 	     copied < f_len;						\
397 	     copied += p_len, p++, p_off = 0,				\
398 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
399 
400 #define HAVE_HW_TIME_STAMP
401 
402 /**
403  * struct skb_shared_hwtstamps - hardware time stamps
404  * @hwtstamp:	hardware time stamp transformed into duration
405  *		since arbitrary point in time
406  *
407  * Software time stamps generated by ktime_get_real() are stored in
408  * skb->tstamp.
409  *
410  * hwtstamps can only be compared against other hwtstamps from
411  * the same device.
412  *
413  * This structure is attached to packets as part of the
414  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
415  */
416 struct skb_shared_hwtstamps {
417 	ktime_t	hwtstamp;
418 };
419 
420 /* Definitions for tx_flags in struct skb_shared_info */
421 enum {
422 	/* generate hardware time stamp */
423 	SKBTX_HW_TSTAMP = 1 << 0,
424 
425 	/* generate software time stamp when queueing packet to NIC */
426 	SKBTX_SW_TSTAMP = 1 << 1,
427 
428 	/* device driver is going to provide hardware time stamp */
429 	SKBTX_IN_PROGRESS = 1 << 2,
430 
431 	/* device driver supports TX zero-copy buffers */
432 	SKBTX_DEV_ZEROCOPY = 1 << 3,
433 
434 	/* generate wifi status information (where possible) */
435 	SKBTX_WIFI_STATUS = 1 << 4,
436 
437 	/* This indicates at least one fragment might be overwritten
438 	 * (as in vmsplice(), sendfile() ...)
439 	 * If we need to compute a TX checksum, we'll need to copy
440 	 * all frags to avoid possible bad checksum
441 	 */
442 	SKBTX_SHARED_FRAG = 1 << 5,
443 
444 	/* generate software time stamp when entering packet scheduling */
445 	SKBTX_SCHED_TSTAMP = 1 << 6,
446 };
447 
448 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
449 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
450 				 SKBTX_SCHED_TSTAMP)
451 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
452 
453 /*
454  * The callback notifies userspace to release buffers when skb DMA is done in
455  * lower device, the skb last reference should be 0 when calling this.
456  * The zerocopy_success argument is true if zero copy transmit occurred,
457  * false on data copy or out of memory error caused by data copy attempt.
458  * The ctx field is used to track device context.
459  * The desc field is used to track userspace buffer index.
460  */
461 struct ubuf_info {
462 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
463 	union {
464 		struct {
465 			unsigned long desc;
466 			void *ctx;
467 		};
468 		struct {
469 			u32 id;
470 			u16 len;
471 			u16 zerocopy:1;
472 			u32 bytelen;
473 		};
474 	};
475 	refcount_t refcnt;
476 
477 	struct mmpin {
478 		struct user_struct *user;
479 		unsigned int num_pg;
480 	} mmp;
481 };
482 
483 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
484 
485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
486 void mm_unaccount_pinned_pages(struct mmpin *mmp);
487 
488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
490 					struct ubuf_info *uarg);
491 
492 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
493 {
494 	refcount_inc(&uarg->refcnt);
495 }
496 
497 void sock_zerocopy_put(struct ubuf_info *uarg);
498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
499 
500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
501 
502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
504 			     struct msghdr *msg, int len,
505 			     struct ubuf_info *uarg);
506 
507 /* This data is invariant across clones and lives at
508  * the end of the header data, ie. at skb->end.
509  */
510 struct skb_shared_info {
511 	__u8		__unused;
512 	__u8		meta_len;
513 	__u8		nr_frags;
514 	__u8		tx_flags;
515 	unsigned short	gso_size;
516 	/* Warning: this field is not always filled in (UFO)! */
517 	unsigned short	gso_segs;
518 	struct sk_buff	*frag_list;
519 	struct skb_shared_hwtstamps hwtstamps;
520 	unsigned int	gso_type;
521 	u32		tskey;
522 
523 	/*
524 	 * Warning : all fields before dataref are cleared in __alloc_skb()
525 	 */
526 	atomic_t	dataref;
527 
528 	/* Intermediate layers must ensure that destructor_arg
529 	 * remains valid until skb destructor */
530 	void *		destructor_arg;
531 
532 	/* must be last field, see pskb_expand_head() */
533 	skb_frag_t	frags[MAX_SKB_FRAGS];
534 };
535 
536 /* We divide dataref into two halves.  The higher 16 bits hold references
537  * to the payload part of skb->data.  The lower 16 bits hold references to
538  * the entire skb->data.  A clone of a headerless skb holds the length of
539  * the header in skb->hdr_len.
540  *
541  * All users must obey the rule that the skb->data reference count must be
542  * greater than or equal to the payload reference count.
543  *
544  * Holding a reference to the payload part means that the user does not
545  * care about modifications to the header part of skb->data.
546  */
547 #define SKB_DATAREF_SHIFT 16
548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
549 
550 
551 enum {
552 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
553 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
554 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
555 };
556 
557 enum {
558 	SKB_GSO_TCPV4 = 1 << 0,
559 
560 	/* This indicates the skb is from an untrusted source. */
561 	SKB_GSO_DODGY = 1 << 1,
562 
563 	/* This indicates the tcp segment has CWR set. */
564 	SKB_GSO_TCP_ECN = 1 << 2,
565 
566 	SKB_GSO_TCP_FIXEDID = 1 << 3,
567 
568 	SKB_GSO_TCPV6 = 1 << 4,
569 
570 	SKB_GSO_FCOE = 1 << 5,
571 
572 	SKB_GSO_GRE = 1 << 6,
573 
574 	SKB_GSO_GRE_CSUM = 1 << 7,
575 
576 	SKB_GSO_IPXIP4 = 1 << 8,
577 
578 	SKB_GSO_IPXIP6 = 1 << 9,
579 
580 	SKB_GSO_UDP_TUNNEL = 1 << 10,
581 
582 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
583 
584 	SKB_GSO_PARTIAL = 1 << 12,
585 
586 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
587 
588 	SKB_GSO_SCTP = 1 << 14,
589 
590 	SKB_GSO_ESP = 1 << 15,
591 
592 	SKB_GSO_UDP = 1 << 16,
593 
594 	SKB_GSO_UDP_L4 = 1 << 17,
595 
596 	SKB_GSO_FRAGLIST = 1 << 18,
597 };
598 
599 #if BITS_PER_LONG > 32
600 #define NET_SKBUFF_DATA_USES_OFFSET 1
601 #endif
602 
603 #ifdef NET_SKBUFF_DATA_USES_OFFSET
604 typedef unsigned int sk_buff_data_t;
605 #else
606 typedef unsigned char *sk_buff_data_t;
607 #endif
608 
609 /**
610  *	struct sk_buff - socket buffer
611  *	@next: Next buffer in list
612  *	@prev: Previous buffer in list
613  *	@tstamp: Time we arrived/left
614  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
615  *	@sk: Socket we are owned by
616  *	@dev: Device we arrived on/are leaving by
617  *	@cb: Control buffer. Free for use by every layer. Put private vars here
618  *	@_skb_refdst: destination entry (with norefcount bit)
619  *	@sp: the security path, used for xfrm
620  *	@len: Length of actual data
621  *	@data_len: Data length
622  *	@mac_len: Length of link layer header
623  *	@hdr_len: writable header length of cloned skb
624  *	@csum: Checksum (must include start/offset pair)
625  *	@csum_start: Offset from skb->head where checksumming should start
626  *	@csum_offset: Offset from csum_start where checksum should be stored
627  *	@priority: Packet queueing priority
628  *	@ignore_df: allow local fragmentation
629  *	@cloned: Head may be cloned (check refcnt to be sure)
630  *	@ip_summed: Driver fed us an IP checksum
631  *	@nohdr: Payload reference only, must not modify header
632  *	@pkt_type: Packet class
633  *	@fclone: skbuff clone status
634  *	@ipvs_property: skbuff is owned by ipvs
635  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
636  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
637  *	@tc_skip_classify: do not classify packet. set by IFB device
638  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
639  *	@tc_redirected: packet was redirected by a tc action
640  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
641  *	@peeked: this packet has been seen already, so stats have been
642  *		done for it, don't do them again
643  *	@nf_trace: netfilter packet trace flag
644  *	@protocol: Packet protocol from driver
645  *	@destructor: Destruct function
646  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
647  *	@_nfct: Associated connection, if any (with nfctinfo bits)
648  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
649  *	@skb_iif: ifindex of device we arrived on
650  *	@tc_index: Traffic control index
651  *	@hash: the packet hash
652  *	@queue_mapping: Queue mapping for multiqueue devices
653  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
654  *	@active_extensions: active extensions (skb_ext_id types)
655  *	@ndisc_nodetype: router type (from link layer)
656  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
657  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
658  *		ports.
659  *	@sw_hash: indicates hash was computed in software stack
660  *	@wifi_acked_valid: wifi_acked was set
661  *	@wifi_acked: whether frame was acked on wifi or not
662  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
663  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
664  *	@dst_pending_confirm: need to confirm neighbour
665  *	@decrypted: Decrypted SKB
666  *	@napi_id: id of the NAPI struct this skb came from
667  *	@secmark: security marking
668  *	@mark: Generic packet mark
669  *	@vlan_proto: vlan encapsulation protocol
670  *	@vlan_tci: vlan tag control information
671  *	@inner_protocol: Protocol (encapsulation)
672  *	@inner_transport_header: Inner transport layer header (encapsulation)
673  *	@inner_network_header: Network layer header (encapsulation)
674  *	@inner_mac_header: Link layer header (encapsulation)
675  *	@transport_header: Transport layer header
676  *	@network_header: Network layer header
677  *	@mac_header: Link layer header
678  *	@tail: Tail pointer
679  *	@end: End pointer
680  *	@head: Head of buffer
681  *	@data: Data head pointer
682  *	@truesize: Buffer size
683  *	@users: User count - see {datagram,tcp}.c
684  *	@extensions: allocated extensions, valid if active_extensions is nonzero
685  */
686 
687 struct sk_buff {
688 	union {
689 		struct {
690 			/* These two members must be first. */
691 			struct sk_buff		*next;
692 			struct sk_buff		*prev;
693 
694 			union {
695 				struct net_device	*dev;
696 				/* Some protocols might use this space to store information,
697 				 * while device pointer would be NULL.
698 				 * UDP receive path is one user.
699 				 */
700 				unsigned long		dev_scratch;
701 			};
702 		};
703 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
704 		struct list_head	list;
705 	};
706 
707 	union {
708 		struct sock		*sk;
709 		int			ip_defrag_offset;
710 	};
711 
712 	union {
713 		ktime_t		tstamp;
714 		u64		skb_mstamp_ns; /* earliest departure time */
715 	};
716 	/*
717 	 * This is the control buffer. It is free to use for every
718 	 * layer. Please put your private variables there. If you
719 	 * want to keep them across layers you have to do a skb_clone()
720 	 * first. This is owned by whoever has the skb queued ATM.
721 	 */
722 	char			cb[48] __aligned(8);
723 
724 	union {
725 		struct {
726 			unsigned long	_skb_refdst;
727 			void		(*destructor)(struct sk_buff *skb);
728 		};
729 		struct list_head	tcp_tsorted_anchor;
730 	};
731 
732 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
733 	unsigned long		 _nfct;
734 #endif
735 	unsigned int		len,
736 				data_len;
737 	__u16			mac_len,
738 				hdr_len;
739 
740 	/* Following fields are _not_ copied in __copy_skb_header()
741 	 * Note that queue_mapping is here mostly to fill a hole.
742 	 */
743 	__u16			queue_mapping;
744 
745 /* if you move cloned around you also must adapt those constants */
746 #ifdef __BIG_ENDIAN_BITFIELD
747 #define CLONED_MASK	(1 << 7)
748 #else
749 #define CLONED_MASK	1
750 #endif
751 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
752 
753 	__u8			__cloned_offset[0];
754 	__u8			cloned:1,
755 				nohdr:1,
756 				fclone:2,
757 				peeked:1,
758 				head_frag:1,
759 				pfmemalloc:1;
760 #ifdef CONFIG_SKB_EXTENSIONS
761 	__u8			active_extensions;
762 #endif
763 	/* fields enclosed in headers_start/headers_end are copied
764 	 * using a single memcpy() in __copy_skb_header()
765 	 */
766 	/* private: */
767 	__u32			headers_start[0];
768 	/* public: */
769 
770 /* if you move pkt_type around you also must adapt those constants */
771 #ifdef __BIG_ENDIAN_BITFIELD
772 #define PKT_TYPE_MAX	(7 << 5)
773 #else
774 #define PKT_TYPE_MAX	7
775 #endif
776 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
777 
778 	__u8			__pkt_type_offset[0];
779 	__u8			pkt_type:3;
780 	__u8			ignore_df:1;
781 	__u8			nf_trace:1;
782 	__u8			ip_summed:2;
783 	__u8			ooo_okay:1;
784 
785 	__u8			l4_hash:1;
786 	__u8			sw_hash:1;
787 	__u8			wifi_acked_valid:1;
788 	__u8			wifi_acked:1;
789 	__u8			no_fcs:1;
790 	/* Indicates the inner headers are valid in the skbuff. */
791 	__u8			encapsulation:1;
792 	__u8			encap_hdr_csum:1;
793 	__u8			csum_valid:1;
794 
795 #ifdef __BIG_ENDIAN_BITFIELD
796 #define PKT_VLAN_PRESENT_BIT	7
797 #else
798 #define PKT_VLAN_PRESENT_BIT	0
799 #endif
800 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
801 	__u8			__pkt_vlan_present_offset[0];
802 	__u8			vlan_present:1;
803 	__u8			csum_complete_sw:1;
804 	__u8			csum_level:2;
805 	__u8			csum_not_inet:1;
806 	__u8			dst_pending_confirm:1;
807 #ifdef CONFIG_IPV6_NDISC_NODETYPE
808 	__u8			ndisc_nodetype:2;
809 #endif
810 
811 	__u8			ipvs_property:1;
812 	__u8			inner_protocol_type:1;
813 	__u8			remcsum_offload:1;
814 #ifdef CONFIG_NET_SWITCHDEV
815 	__u8			offload_fwd_mark:1;
816 	__u8			offload_l3_fwd_mark:1;
817 #endif
818 #ifdef CONFIG_NET_CLS_ACT
819 	__u8			tc_skip_classify:1;
820 	__u8			tc_at_ingress:1;
821 	__u8			tc_redirected:1;
822 	__u8			tc_from_ingress:1;
823 #endif
824 #ifdef CONFIG_TLS_DEVICE
825 	__u8			decrypted:1;
826 #endif
827 
828 #ifdef CONFIG_NET_SCHED
829 	__u16			tc_index;	/* traffic control index */
830 #endif
831 
832 	union {
833 		__wsum		csum;
834 		struct {
835 			__u16	csum_start;
836 			__u16	csum_offset;
837 		};
838 	};
839 	__u32			priority;
840 	int			skb_iif;
841 	__u32			hash;
842 	__be16			vlan_proto;
843 	__u16			vlan_tci;
844 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
845 	union {
846 		unsigned int	napi_id;
847 		unsigned int	sender_cpu;
848 	};
849 #endif
850 #ifdef CONFIG_NETWORK_SECMARK
851 	__u32		secmark;
852 #endif
853 
854 	union {
855 		__u32		mark;
856 		__u32		reserved_tailroom;
857 	};
858 
859 	union {
860 		__be16		inner_protocol;
861 		__u8		inner_ipproto;
862 	};
863 
864 	__u16			inner_transport_header;
865 	__u16			inner_network_header;
866 	__u16			inner_mac_header;
867 
868 	__be16			protocol;
869 	__u16			transport_header;
870 	__u16			network_header;
871 	__u16			mac_header;
872 
873 	/* private: */
874 	__u32			headers_end[0];
875 	/* public: */
876 
877 	/* These elements must be at the end, see alloc_skb() for details.  */
878 	sk_buff_data_t		tail;
879 	sk_buff_data_t		end;
880 	unsigned char		*head,
881 				*data;
882 	unsigned int		truesize;
883 	refcount_t		users;
884 
885 #ifdef CONFIG_SKB_EXTENSIONS
886 	/* only useable after checking ->active_extensions != 0 */
887 	struct skb_ext		*extensions;
888 #endif
889 };
890 
891 #ifdef __KERNEL__
892 /*
893  *	Handling routines are only of interest to the kernel
894  */
895 
896 #define SKB_ALLOC_FCLONE	0x01
897 #define SKB_ALLOC_RX		0x02
898 #define SKB_ALLOC_NAPI		0x04
899 
900 /**
901  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
902  * @skb: buffer
903  */
904 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
905 {
906 	return unlikely(skb->pfmemalloc);
907 }
908 
909 /*
910  * skb might have a dst pointer attached, refcounted or not.
911  * _skb_refdst low order bit is set if refcount was _not_ taken
912  */
913 #define SKB_DST_NOREF	1UL
914 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
915 
916 /**
917  * skb_dst - returns skb dst_entry
918  * @skb: buffer
919  *
920  * Returns skb dst_entry, regardless of reference taken or not.
921  */
922 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
923 {
924 	/* If refdst was not refcounted, check we still are in a
925 	 * rcu_read_lock section
926 	 */
927 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
928 		!rcu_read_lock_held() &&
929 		!rcu_read_lock_bh_held());
930 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
931 }
932 
933 /**
934  * skb_dst_set - sets skb dst
935  * @skb: buffer
936  * @dst: dst entry
937  *
938  * Sets skb dst, assuming a reference was taken on dst and should
939  * be released by skb_dst_drop()
940  */
941 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
942 {
943 	skb->_skb_refdst = (unsigned long)dst;
944 }
945 
946 /**
947  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
948  * @skb: buffer
949  * @dst: dst entry
950  *
951  * Sets skb dst, assuming a reference was not taken on dst.
952  * If dst entry is cached, we do not take reference and dst_release
953  * will be avoided by refdst_drop. If dst entry is not cached, we take
954  * reference, so that last dst_release can destroy the dst immediately.
955  */
956 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
957 {
958 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
959 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
960 }
961 
962 /**
963  * skb_dst_is_noref - Test if skb dst isn't refcounted
964  * @skb: buffer
965  */
966 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
967 {
968 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
969 }
970 
971 /**
972  * skb_rtable - Returns the skb &rtable
973  * @skb: buffer
974  */
975 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
976 {
977 	return (struct rtable *)skb_dst(skb);
978 }
979 
980 /* For mangling skb->pkt_type from user space side from applications
981  * such as nft, tc, etc, we only allow a conservative subset of
982  * possible pkt_types to be set.
983 */
984 static inline bool skb_pkt_type_ok(u32 ptype)
985 {
986 	return ptype <= PACKET_OTHERHOST;
987 }
988 
989 /**
990  * skb_napi_id - Returns the skb's NAPI id
991  * @skb: buffer
992  */
993 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
994 {
995 #ifdef CONFIG_NET_RX_BUSY_POLL
996 	return skb->napi_id;
997 #else
998 	return 0;
999 #endif
1000 }
1001 
1002 /**
1003  * skb_unref - decrement the skb's reference count
1004  * @skb: buffer
1005  *
1006  * Returns true if we can free the skb.
1007  */
1008 static inline bool skb_unref(struct sk_buff *skb)
1009 {
1010 	if (unlikely(!skb))
1011 		return false;
1012 	if (likely(refcount_read(&skb->users) == 1))
1013 		smp_rmb();
1014 	else if (likely(!refcount_dec_and_test(&skb->users)))
1015 		return false;
1016 
1017 	return true;
1018 }
1019 
1020 void skb_release_head_state(struct sk_buff *skb);
1021 void kfree_skb(struct sk_buff *skb);
1022 void kfree_skb_list(struct sk_buff *segs);
1023 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1024 void skb_tx_error(struct sk_buff *skb);
1025 void consume_skb(struct sk_buff *skb);
1026 void __consume_stateless_skb(struct sk_buff *skb);
1027 void  __kfree_skb(struct sk_buff *skb);
1028 extern struct kmem_cache *skbuff_head_cache;
1029 
1030 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1031 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1032 		      bool *fragstolen, int *delta_truesize);
1033 
1034 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1035 			    int node);
1036 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1037 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1038 struct sk_buff *build_skb_around(struct sk_buff *skb,
1039 				 void *data, unsigned int frag_size);
1040 
1041 /**
1042  * alloc_skb - allocate a network buffer
1043  * @size: size to allocate
1044  * @priority: allocation mask
1045  *
1046  * This function is a convenient wrapper around __alloc_skb().
1047  */
1048 static inline struct sk_buff *alloc_skb(unsigned int size,
1049 					gfp_t priority)
1050 {
1051 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1052 }
1053 
1054 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1055 				     unsigned long data_len,
1056 				     int max_page_order,
1057 				     int *errcode,
1058 				     gfp_t gfp_mask);
1059 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1060 
1061 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1062 struct sk_buff_fclones {
1063 	struct sk_buff	skb1;
1064 
1065 	struct sk_buff	skb2;
1066 
1067 	refcount_t	fclone_ref;
1068 };
1069 
1070 /**
1071  *	skb_fclone_busy - check if fclone is busy
1072  *	@sk: socket
1073  *	@skb: buffer
1074  *
1075  * Returns true if skb is a fast clone, and its clone is not freed.
1076  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1077  * so we also check that this didnt happen.
1078  */
1079 static inline bool skb_fclone_busy(const struct sock *sk,
1080 				   const struct sk_buff *skb)
1081 {
1082 	const struct sk_buff_fclones *fclones;
1083 
1084 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1085 
1086 	return skb->fclone == SKB_FCLONE_ORIG &&
1087 	       refcount_read(&fclones->fclone_ref) > 1 &&
1088 	       fclones->skb2.sk == sk;
1089 }
1090 
1091 /**
1092  * alloc_skb_fclone - allocate a network buffer from fclone cache
1093  * @size: size to allocate
1094  * @priority: allocation mask
1095  *
1096  * This function is a convenient wrapper around __alloc_skb().
1097  */
1098 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1099 					       gfp_t priority)
1100 {
1101 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1102 }
1103 
1104 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1105 void skb_headers_offset_update(struct sk_buff *skb, int off);
1106 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1107 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1108 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1109 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1110 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1111 				   gfp_t gfp_mask, bool fclone);
1112 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1113 					  gfp_t gfp_mask)
1114 {
1115 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1116 }
1117 
1118 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1119 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1120 				     unsigned int headroom);
1121 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1122 				int newtailroom, gfp_t priority);
1123 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1124 				     int offset, int len);
1125 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1126 			      int offset, int len);
1127 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1128 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1129 
1130 /**
1131  *	skb_pad			-	zero pad the tail of an skb
1132  *	@skb: buffer to pad
1133  *	@pad: space to pad
1134  *
1135  *	Ensure that a buffer is followed by a padding area that is zero
1136  *	filled. Used by network drivers which may DMA or transfer data
1137  *	beyond the buffer end onto the wire.
1138  *
1139  *	May return error in out of memory cases. The skb is freed on error.
1140  */
1141 static inline int skb_pad(struct sk_buff *skb, int pad)
1142 {
1143 	return __skb_pad(skb, pad, true);
1144 }
1145 #define dev_kfree_skb(a)	consume_skb(a)
1146 
1147 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1148 			 int offset, size_t size);
1149 
1150 struct skb_seq_state {
1151 	__u32		lower_offset;
1152 	__u32		upper_offset;
1153 	__u32		frag_idx;
1154 	__u32		stepped_offset;
1155 	struct sk_buff	*root_skb;
1156 	struct sk_buff	*cur_skb;
1157 	__u8		*frag_data;
1158 };
1159 
1160 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1161 			  unsigned int to, struct skb_seq_state *st);
1162 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1163 			  struct skb_seq_state *st);
1164 void skb_abort_seq_read(struct skb_seq_state *st);
1165 
1166 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1167 			   unsigned int to, struct ts_config *config);
1168 
1169 /*
1170  * Packet hash types specify the type of hash in skb_set_hash.
1171  *
1172  * Hash types refer to the protocol layer addresses which are used to
1173  * construct a packet's hash. The hashes are used to differentiate or identify
1174  * flows of the protocol layer for the hash type. Hash types are either
1175  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1176  *
1177  * Properties of hashes:
1178  *
1179  * 1) Two packets in different flows have different hash values
1180  * 2) Two packets in the same flow should have the same hash value
1181  *
1182  * A hash at a higher layer is considered to be more specific. A driver should
1183  * set the most specific hash possible.
1184  *
1185  * A driver cannot indicate a more specific hash than the layer at which a hash
1186  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1187  *
1188  * A driver may indicate a hash level which is less specific than the
1189  * actual layer the hash was computed on. For instance, a hash computed
1190  * at L4 may be considered an L3 hash. This should only be done if the
1191  * driver can't unambiguously determine that the HW computed the hash at
1192  * the higher layer. Note that the "should" in the second property above
1193  * permits this.
1194  */
1195 enum pkt_hash_types {
1196 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1197 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1198 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1199 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1200 };
1201 
1202 static inline void skb_clear_hash(struct sk_buff *skb)
1203 {
1204 	skb->hash = 0;
1205 	skb->sw_hash = 0;
1206 	skb->l4_hash = 0;
1207 }
1208 
1209 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1210 {
1211 	if (!skb->l4_hash)
1212 		skb_clear_hash(skb);
1213 }
1214 
1215 static inline void
1216 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1217 {
1218 	skb->l4_hash = is_l4;
1219 	skb->sw_hash = is_sw;
1220 	skb->hash = hash;
1221 }
1222 
1223 static inline void
1224 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1225 {
1226 	/* Used by drivers to set hash from HW */
1227 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1228 }
1229 
1230 static inline void
1231 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1232 {
1233 	__skb_set_hash(skb, hash, true, is_l4);
1234 }
1235 
1236 void __skb_get_hash(struct sk_buff *skb);
1237 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1238 u32 skb_get_poff(const struct sk_buff *skb);
1239 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1240 		   const struct flow_keys_basic *keys, int hlen);
1241 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1242 			    void *data, int hlen_proto);
1243 
1244 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1245 					int thoff, u8 ip_proto)
1246 {
1247 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1248 }
1249 
1250 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1251 			     const struct flow_dissector_key *key,
1252 			     unsigned int key_count);
1253 
1254 #ifdef CONFIG_NET
1255 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1256 				  union bpf_attr __user *uattr);
1257 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1258 				       struct bpf_prog *prog);
1259 
1260 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1261 #else
1262 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1263 						union bpf_attr __user *uattr)
1264 {
1265 	return -EOPNOTSUPP;
1266 }
1267 
1268 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1269 						     struct bpf_prog *prog)
1270 {
1271 	return -EOPNOTSUPP;
1272 }
1273 
1274 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1275 {
1276 	return -EOPNOTSUPP;
1277 }
1278 #endif
1279 
1280 struct bpf_flow_dissector;
1281 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1282 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1283 
1284 bool __skb_flow_dissect(const struct net *net,
1285 			const struct sk_buff *skb,
1286 			struct flow_dissector *flow_dissector,
1287 			void *target_container,
1288 			void *data, __be16 proto, int nhoff, int hlen,
1289 			unsigned int flags);
1290 
1291 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1292 				    struct flow_dissector *flow_dissector,
1293 				    void *target_container, unsigned int flags)
1294 {
1295 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1296 				  target_container, NULL, 0, 0, 0, flags);
1297 }
1298 
1299 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1300 					      struct flow_keys *flow,
1301 					      unsigned int flags)
1302 {
1303 	memset(flow, 0, sizeof(*flow));
1304 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1305 				  flow, NULL, 0, 0, 0, flags);
1306 }
1307 
1308 static inline bool
1309 skb_flow_dissect_flow_keys_basic(const struct net *net,
1310 				 const struct sk_buff *skb,
1311 				 struct flow_keys_basic *flow, void *data,
1312 				 __be16 proto, int nhoff, int hlen,
1313 				 unsigned int flags)
1314 {
1315 	memset(flow, 0, sizeof(*flow));
1316 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1317 				  data, proto, nhoff, hlen, flags);
1318 }
1319 
1320 void skb_flow_dissect_meta(const struct sk_buff *skb,
1321 			   struct flow_dissector *flow_dissector,
1322 			   void *target_container);
1323 
1324 /* Gets a skb connection tracking info, ctinfo map should be a
1325  * a map of mapsize to translate enum ip_conntrack_info states
1326  * to user states.
1327  */
1328 void
1329 skb_flow_dissect_ct(const struct sk_buff *skb,
1330 		    struct flow_dissector *flow_dissector,
1331 		    void *target_container,
1332 		    u16 *ctinfo_map,
1333 		    size_t mapsize);
1334 void
1335 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1336 			     struct flow_dissector *flow_dissector,
1337 			     void *target_container);
1338 
1339 static inline __u32 skb_get_hash(struct sk_buff *skb)
1340 {
1341 	if (!skb->l4_hash && !skb->sw_hash)
1342 		__skb_get_hash(skb);
1343 
1344 	return skb->hash;
1345 }
1346 
1347 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1348 {
1349 	if (!skb->l4_hash && !skb->sw_hash) {
1350 		struct flow_keys keys;
1351 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1352 
1353 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1354 	}
1355 
1356 	return skb->hash;
1357 }
1358 
1359 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1360 			   const siphash_key_t *perturb);
1361 
1362 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1363 {
1364 	return skb->hash;
1365 }
1366 
1367 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1368 {
1369 	to->hash = from->hash;
1370 	to->sw_hash = from->sw_hash;
1371 	to->l4_hash = from->l4_hash;
1372 };
1373 
1374 static inline void skb_copy_decrypted(struct sk_buff *to,
1375 				      const struct sk_buff *from)
1376 {
1377 #ifdef CONFIG_TLS_DEVICE
1378 	to->decrypted = from->decrypted;
1379 #endif
1380 }
1381 
1382 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1383 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1384 {
1385 	return skb->head + skb->end;
1386 }
1387 
1388 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1389 {
1390 	return skb->end;
1391 }
1392 #else
1393 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1394 {
1395 	return skb->end;
1396 }
1397 
1398 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1399 {
1400 	return skb->end - skb->head;
1401 }
1402 #endif
1403 
1404 /* Internal */
1405 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1406 
1407 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1408 {
1409 	return &skb_shinfo(skb)->hwtstamps;
1410 }
1411 
1412 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1413 {
1414 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1415 
1416 	return is_zcopy ? skb_uarg(skb) : NULL;
1417 }
1418 
1419 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1420 				 bool *have_ref)
1421 {
1422 	if (skb && uarg && !skb_zcopy(skb)) {
1423 		if (unlikely(have_ref && *have_ref))
1424 			*have_ref = false;
1425 		else
1426 			sock_zerocopy_get(uarg);
1427 		skb_shinfo(skb)->destructor_arg = uarg;
1428 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1429 	}
1430 }
1431 
1432 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1433 {
1434 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1435 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1436 }
1437 
1438 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1439 {
1440 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1441 }
1442 
1443 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1444 {
1445 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1446 }
1447 
1448 /* Release a reference on a zerocopy structure */
1449 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1450 {
1451 	struct ubuf_info *uarg = skb_zcopy(skb);
1452 
1453 	if (uarg) {
1454 		if (skb_zcopy_is_nouarg(skb)) {
1455 			/* no notification callback */
1456 		} else if (uarg->callback == sock_zerocopy_callback) {
1457 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1458 			sock_zerocopy_put(uarg);
1459 		} else {
1460 			uarg->callback(uarg, zerocopy);
1461 		}
1462 
1463 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1464 	}
1465 }
1466 
1467 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1468 static inline void skb_zcopy_abort(struct sk_buff *skb)
1469 {
1470 	struct ubuf_info *uarg = skb_zcopy(skb);
1471 
1472 	if (uarg) {
1473 		sock_zerocopy_put_abort(uarg, false);
1474 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1475 	}
1476 }
1477 
1478 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1479 {
1480 	skb->next = NULL;
1481 }
1482 
1483 /* Iterate through singly-linked GSO fragments of an skb. */
1484 #define skb_list_walk_safe(first, skb, next_skb)                               \
1485 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1486 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1487 
1488 static inline void skb_list_del_init(struct sk_buff *skb)
1489 {
1490 	__list_del_entry(&skb->list);
1491 	skb_mark_not_on_list(skb);
1492 }
1493 
1494 /**
1495  *	skb_queue_empty - check if a queue is empty
1496  *	@list: queue head
1497  *
1498  *	Returns true if the queue is empty, false otherwise.
1499  */
1500 static inline int skb_queue_empty(const struct sk_buff_head *list)
1501 {
1502 	return list->next == (const struct sk_buff *) list;
1503 }
1504 
1505 /**
1506  *	skb_queue_empty_lockless - check if a queue is empty
1507  *	@list: queue head
1508  *
1509  *	Returns true if the queue is empty, false otherwise.
1510  *	This variant can be used in lockless contexts.
1511  */
1512 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1513 {
1514 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1515 }
1516 
1517 
1518 /**
1519  *	skb_queue_is_last - check if skb is the last entry in the queue
1520  *	@list: queue head
1521  *	@skb: buffer
1522  *
1523  *	Returns true if @skb is the last buffer on the list.
1524  */
1525 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1526 				     const struct sk_buff *skb)
1527 {
1528 	return skb->next == (const struct sk_buff *) list;
1529 }
1530 
1531 /**
1532  *	skb_queue_is_first - check if skb is the first entry in the queue
1533  *	@list: queue head
1534  *	@skb: buffer
1535  *
1536  *	Returns true if @skb is the first buffer on the list.
1537  */
1538 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1539 				      const struct sk_buff *skb)
1540 {
1541 	return skb->prev == (const struct sk_buff *) list;
1542 }
1543 
1544 /**
1545  *	skb_queue_next - return the next packet in the queue
1546  *	@list: queue head
1547  *	@skb: current buffer
1548  *
1549  *	Return the next packet in @list after @skb.  It is only valid to
1550  *	call this if skb_queue_is_last() evaluates to false.
1551  */
1552 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1553 					     const struct sk_buff *skb)
1554 {
1555 	/* This BUG_ON may seem severe, but if we just return then we
1556 	 * are going to dereference garbage.
1557 	 */
1558 	BUG_ON(skb_queue_is_last(list, skb));
1559 	return skb->next;
1560 }
1561 
1562 /**
1563  *	skb_queue_prev - return the prev packet in the queue
1564  *	@list: queue head
1565  *	@skb: current buffer
1566  *
1567  *	Return the prev packet in @list before @skb.  It is only valid to
1568  *	call this if skb_queue_is_first() evaluates to false.
1569  */
1570 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1571 					     const struct sk_buff *skb)
1572 {
1573 	/* This BUG_ON may seem severe, but if we just return then we
1574 	 * are going to dereference garbage.
1575 	 */
1576 	BUG_ON(skb_queue_is_first(list, skb));
1577 	return skb->prev;
1578 }
1579 
1580 /**
1581  *	skb_get - reference buffer
1582  *	@skb: buffer to reference
1583  *
1584  *	Makes another reference to a socket buffer and returns a pointer
1585  *	to the buffer.
1586  */
1587 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1588 {
1589 	refcount_inc(&skb->users);
1590 	return skb;
1591 }
1592 
1593 /*
1594  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1595  */
1596 
1597 /**
1598  *	skb_cloned - is the buffer a clone
1599  *	@skb: buffer to check
1600  *
1601  *	Returns true if the buffer was generated with skb_clone() and is
1602  *	one of multiple shared copies of the buffer. Cloned buffers are
1603  *	shared data so must not be written to under normal circumstances.
1604  */
1605 static inline int skb_cloned(const struct sk_buff *skb)
1606 {
1607 	return skb->cloned &&
1608 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1609 }
1610 
1611 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1612 {
1613 	might_sleep_if(gfpflags_allow_blocking(pri));
1614 
1615 	if (skb_cloned(skb))
1616 		return pskb_expand_head(skb, 0, 0, pri);
1617 
1618 	return 0;
1619 }
1620 
1621 /**
1622  *	skb_header_cloned - is the header a clone
1623  *	@skb: buffer to check
1624  *
1625  *	Returns true if modifying the header part of the buffer requires
1626  *	the data to be copied.
1627  */
1628 static inline int skb_header_cloned(const struct sk_buff *skb)
1629 {
1630 	int dataref;
1631 
1632 	if (!skb->cloned)
1633 		return 0;
1634 
1635 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1636 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1637 	return dataref != 1;
1638 }
1639 
1640 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1641 {
1642 	might_sleep_if(gfpflags_allow_blocking(pri));
1643 
1644 	if (skb_header_cloned(skb))
1645 		return pskb_expand_head(skb, 0, 0, pri);
1646 
1647 	return 0;
1648 }
1649 
1650 /**
1651  *	__skb_header_release - release reference to header
1652  *	@skb: buffer to operate on
1653  */
1654 static inline void __skb_header_release(struct sk_buff *skb)
1655 {
1656 	skb->nohdr = 1;
1657 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1658 }
1659 
1660 
1661 /**
1662  *	skb_shared - is the buffer shared
1663  *	@skb: buffer to check
1664  *
1665  *	Returns true if more than one person has a reference to this
1666  *	buffer.
1667  */
1668 static inline int skb_shared(const struct sk_buff *skb)
1669 {
1670 	return refcount_read(&skb->users) != 1;
1671 }
1672 
1673 /**
1674  *	skb_share_check - check if buffer is shared and if so clone it
1675  *	@skb: buffer to check
1676  *	@pri: priority for memory allocation
1677  *
1678  *	If the buffer is shared the buffer is cloned and the old copy
1679  *	drops a reference. A new clone with a single reference is returned.
1680  *	If the buffer is not shared the original buffer is returned. When
1681  *	being called from interrupt status or with spinlocks held pri must
1682  *	be GFP_ATOMIC.
1683  *
1684  *	NULL is returned on a memory allocation failure.
1685  */
1686 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1687 {
1688 	might_sleep_if(gfpflags_allow_blocking(pri));
1689 	if (skb_shared(skb)) {
1690 		struct sk_buff *nskb = skb_clone(skb, pri);
1691 
1692 		if (likely(nskb))
1693 			consume_skb(skb);
1694 		else
1695 			kfree_skb(skb);
1696 		skb = nskb;
1697 	}
1698 	return skb;
1699 }
1700 
1701 /*
1702  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1703  *	packets to handle cases where we have a local reader and forward
1704  *	and a couple of other messy ones. The normal one is tcpdumping
1705  *	a packet thats being forwarded.
1706  */
1707 
1708 /**
1709  *	skb_unshare - make a copy of a shared buffer
1710  *	@skb: buffer to check
1711  *	@pri: priority for memory allocation
1712  *
1713  *	If the socket buffer is a clone then this function creates a new
1714  *	copy of the data, drops a reference count on the old copy and returns
1715  *	the new copy with the reference count at 1. If the buffer is not a clone
1716  *	the original buffer is returned. When called with a spinlock held or
1717  *	from interrupt state @pri must be %GFP_ATOMIC
1718  *
1719  *	%NULL is returned on a memory allocation failure.
1720  */
1721 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1722 					  gfp_t pri)
1723 {
1724 	might_sleep_if(gfpflags_allow_blocking(pri));
1725 	if (skb_cloned(skb)) {
1726 		struct sk_buff *nskb = skb_copy(skb, pri);
1727 
1728 		/* Free our shared copy */
1729 		if (likely(nskb))
1730 			consume_skb(skb);
1731 		else
1732 			kfree_skb(skb);
1733 		skb = nskb;
1734 	}
1735 	return skb;
1736 }
1737 
1738 /**
1739  *	skb_peek - peek at the head of an &sk_buff_head
1740  *	@list_: list to peek at
1741  *
1742  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1743  *	be careful with this one. A peek leaves the buffer on the
1744  *	list and someone else may run off with it. You must hold
1745  *	the appropriate locks or have a private queue to do this.
1746  *
1747  *	Returns %NULL for an empty list or a pointer to the head element.
1748  *	The reference count is not incremented and the reference is therefore
1749  *	volatile. Use with caution.
1750  */
1751 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1752 {
1753 	struct sk_buff *skb = list_->next;
1754 
1755 	if (skb == (struct sk_buff *)list_)
1756 		skb = NULL;
1757 	return skb;
1758 }
1759 
1760 /**
1761  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1762  *	@list_: list to peek at
1763  *
1764  *	Like skb_peek(), but the caller knows that the list is not empty.
1765  */
1766 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1767 {
1768 	return list_->next;
1769 }
1770 
1771 /**
1772  *	skb_peek_next - peek skb following the given one from a queue
1773  *	@skb: skb to start from
1774  *	@list_: list to peek at
1775  *
1776  *	Returns %NULL when the end of the list is met or a pointer to the
1777  *	next element. The reference count is not incremented and the
1778  *	reference is therefore volatile. Use with caution.
1779  */
1780 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1781 		const struct sk_buff_head *list_)
1782 {
1783 	struct sk_buff *next = skb->next;
1784 
1785 	if (next == (struct sk_buff *)list_)
1786 		next = NULL;
1787 	return next;
1788 }
1789 
1790 /**
1791  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1792  *	@list_: list to peek at
1793  *
1794  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1795  *	be careful with this one. A peek leaves the buffer on the
1796  *	list and someone else may run off with it. You must hold
1797  *	the appropriate locks or have a private queue to do this.
1798  *
1799  *	Returns %NULL for an empty list or a pointer to the tail element.
1800  *	The reference count is not incremented and the reference is therefore
1801  *	volatile. Use with caution.
1802  */
1803 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1804 {
1805 	struct sk_buff *skb = READ_ONCE(list_->prev);
1806 
1807 	if (skb == (struct sk_buff *)list_)
1808 		skb = NULL;
1809 	return skb;
1810 
1811 }
1812 
1813 /**
1814  *	skb_queue_len	- get queue length
1815  *	@list_: list to measure
1816  *
1817  *	Return the length of an &sk_buff queue.
1818  */
1819 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1820 {
1821 	return list_->qlen;
1822 }
1823 
1824 /**
1825  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1826  *	@list: queue to initialize
1827  *
1828  *	This initializes only the list and queue length aspects of
1829  *	an sk_buff_head object.  This allows to initialize the list
1830  *	aspects of an sk_buff_head without reinitializing things like
1831  *	the spinlock.  It can also be used for on-stack sk_buff_head
1832  *	objects where the spinlock is known to not be used.
1833  */
1834 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1835 {
1836 	list->prev = list->next = (struct sk_buff *)list;
1837 	list->qlen = 0;
1838 }
1839 
1840 /*
1841  * This function creates a split out lock class for each invocation;
1842  * this is needed for now since a whole lot of users of the skb-queue
1843  * infrastructure in drivers have different locking usage (in hardirq)
1844  * than the networking core (in softirq only). In the long run either the
1845  * network layer or drivers should need annotation to consolidate the
1846  * main types of usage into 3 classes.
1847  */
1848 static inline void skb_queue_head_init(struct sk_buff_head *list)
1849 {
1850 	spin_lock_init(&list->lock);
1851 	__skb_queue_head_init(list);
1852 }
1853 
1854 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1855 		struct lock_class_key *class)
1856 {
1857 	skb_queue_head_init(list);
1858 	lockdep_set_class(&list->lock, class);
1859 }
1860 
1861 /*
1862  *	Insert an sk_buff on a list.
1863  *
1864  *	The "__skb_xxxx()" functions are the non-atomic ones that
1865  *	can only be called with interrupts disabled.
1866  */
1867 static inline void __skb_insert(struct sk_buff *newsk,
1868 				struct sk_buff *prev, struct sk_buff *next,
1869 				struct sk_buff_head *list)
1870 {
1871 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1872 	 * for the opposite READ_ONCE()
1873 	 */
1874 	WRITE_ONCE(newsk->next, next);
1875 	WRITE_ONCE(newsk->prev, prev);
1876 	WRITE_ONCE(next->prev, newsk);
1877 	WRITE_ONCE(prev->next, newsk);
1878 	list->qlen++;
1879 }
1880 
1881 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1882 				      struct sk_buff *prev,
1883 				      struct sk_buff *next)
1884 {
1885 	struct sk_buff *first = list->next;
1886 	struct sk_buff *last = list->prev;
1887 
1888 	WRITE_ONCE(first->prev, prev);
1889 	WRITE_ONCE(prev->next, first);
1890 
1891 	WRITE_ONCE(last->next, next);
1892 	WRITE_ONCE(next->prev, last);
1893 }
1894 
1895 /**
1896  *	skb_queue_splice - join two skb lists, this is designed for stacks
1897  *	@list: the new list to add
1898  *	@head: the place to add it in the first list
1899  */
1900 static inline void skb_queue_splice(const struct sk_buff_head *list,
1901 				    struct sk_buff_head *head)
1902 {
1903 	if (!skb_queue_empty(list)) {
1904 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1905 		head->qlen += list->qlen;
1906 	}
1907 }
1908 
1909 /**
1910  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1911  *	@list: the new list to add
1912  *	@head: the place to add it in the first list
1913  *
1914  *	The list at @list is reinitialised
1915  */
1916 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1917 					 struct sk_buff_head *head)
1918 {
1919 	if (!skb_queue_empty(list)) {
1920 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1921 		head->qlen += list->qlen;
1922 		__skb_queue_head_init(list);
1923 	}
1924 }
1925 
1926 /**
1927  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1928  *	@list: the new list to add
1929  *	@head: the place to add it in the first list
1930  */
1931 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1932 					 struct sk_buff_head *head)
1933 {
1934 	if (!skb_queue_empty(list)) {
1935 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1936 		head->qlen += list->qlen;
1937 	}
1938 }
1939 
1940 /**
1941  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1942  *	@list: the new list to add
1943  *	@head: the place to add it in the first list
1944  *
1945  *	Each of the lists is a queue.
1946  *	The list at @list is reinitialised
1947  */
1948 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1949 					      struct sk_buff_head *head)
1950 {
1951 	if (!skb_queue_empty(list)) {
1952 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1953 		head->qlen += list->qlen;
1954 		__skb_queue_head_init(list);
1955 	}
1956 }
1957 
1958 /**
1959  *	__skb_queue_after - queue a buffer at the list head
1960  *	@list: list to use
1961  *	@prev: place after this buffer
1962  *	@newsk: buffer to queue
1963  *
1964  *	Queue a buffer int the middle of a list. This function takes no locks
1965  *	and you must therefore hold required locks before calling it.
1966  *
1967  *	A buffer cannot be placed on two lists at the same time.
1968  */
1969 static inline void __skb_queue_after(struct sk_buff_head *list,
1970 				     struct sk_buff *prev,
1971 				     struct sk_buff *newsk)
1972 {
1973 	__skb_insert(newsk, prev, prev->next, list);
1974 }
1975 
1976 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1977 		struct sk_buff_head *list);
1978 
1979 static inline void __skb_queue_before(struct sk_buff_head *list,
1980 				      struct sk_buff *next,
1981 				      struct sk_buff *newsk)
1982 {
1983 	__skb_insert(newsk, next->prev, next, list);
1984 }
1985 
1986 /**
1987  *	__skb_queue_head - queue a buffer at the list head
1988  *	@list: list to use
1989  *	@newsk: buffer to queue
1990  *
1991  *	Queue a buffer at the start of a list. This function takes no locks
1992  *	and you must therefore hold required locks before calling it.
1993  *
1994  *	A buffer cannot be placed on two lists at the same time.
1995  */
1996 static inline void __skb_queue_head(struct sk_buff_head *list,
1997 				    struct sk_buff *newsk)
1998 {
1999 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2000 }
2001 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2002 
2003 /**
2004  *	__skb_queue_tail - queue a buffer at the list tail
2005  *	@list: list to use
2006  *	@newsk: buffer to queue
2007  *
2008  *	Queue a buffer at the end of a list. This function takes no locks
2009  *	and you must therefore hold required locks before calling it.
2010  *
2011  *	A buffer cannot be placed on two lists at the same time.
2012  */
2013 static inline void __skb_queue_tail(struct sk_buff_head *list,
2014 				   struct sk_buff *newsk)
2015 {
2016 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2017 }
2018 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2019 
2020 /*
2021  * remove sk_buff from list. _Must_ be called atomically, and with
2022  * the list known..
2023  */
2024 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2025 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2026 {
2027 	struct sk_buff *next, *prev;
2028 
2029 	list->qlen--;
2030 	next	   = skb->next;
2031 	prev	   = skb->prev;
2032 	skb->next  = skb->prev = NULL;
2033 	WRITE_ONCE(next->prev, prev);
2034 	WRITE_ONCE(prev->next, next);
2035 }
2036 
2037 /**
2038  *	__skb_dequeue - remove from the head of the queue
2039  *	@list: list to dequeue from
2040  *
2041  *	Remove the head of the list. This function does not take any locks
2042  *	so must be used with appropriate locks held only. The head item is
2043  *	returned or %NULL if the list is empty.
2044  */
2045 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2046 {
2047 	struct sk_buff *skb = skb_peek(list);
2048 	if (skb)
2049 		__skb_unlink(skb, list);
2050 	return skb;
2051 }
2052 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2053 
2054 /**
2055  *	__skb_dequeue_tail - remove from the tail of the queue
2056  *	@list: list to dequeue from
2057  *
2058  *	Remove the tail of the list. This function does not take any locks
2059  *	so must be used with appropriate locks held only. The tail item is
2060  *	returned or %NULL if the list is empty.
2061  */
2062 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2063 {
2064 	struct sk_buff *skb = skb_peek_tail(list);
2065 	if (skb)
2066 		__skb_unlink(skb, list);
2067 	return skb;
2068 }
2069 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2070 
2071 
2072 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2073 {
2074 	return skb->data_len;
2075 }
2076 
2077 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2078 {
2079 	return skb->len - skb->data_len;
2080 }
2081 
2082 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2083 {
2084 	unsigned int i, len = 0;
2085 
2086 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2087 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2088 	return len;
2089 }
2090 
2091 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2092 {
2093 	return skb_headlen(skb) + __skb_pagelen(skb);
2094 }
2095 
2096 /**
2097  * __skb_fill_page_desc - initialise a paged fragment in an skb
2098  * @skb: buffer containing fragment to be initialised
2099  * @i: paged fragment index to initialise
2100  * @page: the page to use for this fragment
2101  * @off: the offset to the data with @page
2102  * @size: the length of the data
2103  *
2104  * Initialises the @i'th fragment of @skb to point to &size bytes at
2105  * offset @off within @page.
2106  *
2107  * Does not take any additional reference on the fragment.
2108  */
2109 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2110 					struct page *page, int off, int size)
2111 {
2112 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2113 
2114 	/*
2115 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2116 	 * that not all callers have unique ownership of the page but rely
2117 	 * on page_is_pfmemalloc doing the right thing(tm).
2118 	 */
2119 	frag->bv_page		  = page;
2120 	frag->bv_offset		  = off;
2121 	skb_frag_size_set(frag, size);
2122 
2123 	page = compound_head(page);
2124 	if (page_is_pfmemalloc(page))
2125 		skb->pfmemalloc	= true;
2126 }
2127 
2128 /**
2129  * skb_fill_page_desc - initialise a paged fragment in an skb
2130  * @skb: buffer containing fragment to be initialised
2131  * @i: paged fragment index to initialise
2132  * @page: the page to use for this fragment
2133  * @off: the offset to the data with @page
2134  * @size: the length of the data
2135  *
2136  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2137  * @skb to point to @size bytes at offset @off within @page. In
2138  * addition updates @skb such that @i is the last fragment.
2139  *
2140  * Does not take any additional reference on the fragment.
2141  */
2142 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2143 				      struct page *page, int off, int size)
2144 {
2145 	__skb_fill_page_desc(skb, i, page, off, size);
2146 	skb_shinfo(skb)->nr_frags = i + 1;
2147 }
2148 
2149 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2150 		     int size, unsigned int truesize);
2151 
2152 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2153 			  unsigned int truesize);
2154 
2155 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2156 
2157 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2158 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2159 {
2160 	return skb->head + skb->tail;
2161 }
2162 
2163 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2164 {
2165 	skb->tail = skb->data - skb->head;
2166 }
2167 
2168 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2169 {
2170 	skb_reset_tail_pointer(skb);
2171 	skb->tail += offset;
2172 }
2173 
2174 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2175 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2176 {
2177 	return skb->tail;
2178 }
2179 
2180 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2181 {
2182 	skb->tail = skb->data;
2183 }
2184 
2185 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2186 {
2187 	skb->tail = skb->data + offset;
2188 }
2189 
2190 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2191 
2192 /*
2193  *	Add data to an sk_buff
2194  */
2195 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2196 void *skb_put(struct sk_buff *skb, unsigned int len);
2197 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2198 {
2199 	void *tmp = skb_tail_pointer(skb);
2200 	SKB_LINEAR_ASSERT(skb);
2201 	skb->tail += len;
2202 	skb->len  += len;
2203 	return tmp;
2204 }
2205 
2206 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2207 {
2208 	void *tmp = __skb_put(skb, len);
2209 
2210 	memset(tmp, 0, len);
2211 	return tmp;
2212 }
2213 
2214 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2215 				   unsigned int len)
2216 {
2217 	void *tmp = __skb_put(skb, len);
2218 
2219 	memcpy(tmp, data, len);
2220 	return tmp;
2221 }
2222 
2223 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2224 {
2225 	*(u8 *)__skb_put(skb, 1) = val;
2226 }
2227 
2228 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2229 {
2230 	void *tmp = skb_put(skb, len);
2231 
2232 	memset(tmp, 0, len);
2233 
2234 	return tmp;
2235 }
2236 
2237 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2238 				 unsigned int len)
2239 {
2240 	void *tmp = skb_put(skb, len);
2241 
2242 	memcpy(tmp, data, len);
2243 
2244 	return tmp;
2245 }
2246 
2247 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2248 {
2249 	*(u8 *)skb_put(skb, 1) = val;
2250 }
2251 
2252 void *skb_push(struct sk_buff *skb, unsigned int len);
2253 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2254 {
2255 	skb->data -= len;
2256 	skb->len  += len;
2257 	return skb->data;
2258 }
2259 
2260 void *skb_pull(struct sk_buff *skb, unsigned int len);
2261 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2262 {
2263 	skb->len -= len;
2264 	BUG_ON(skb->len < skb->data_len);
2265 	return skb->data += len;
2266 }
2267 
2268 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2269 {
2270 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2271 }
2272 
2273 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2274 
2275 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2276 {
2277 	if (len > skb_headlen(skb) &&
2278 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2279 		return NULL;
2280 	skb->len -= len;
2281 	return skb->data += len;
2282 }
2283 
2284 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2285 {
2286 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2287 }
2288 
2289 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2290 {
2291 	if (likely(len <= skb_headlen(skb)))
2292 		return true;
2293 	if (unlikely(len > skb->len))
2294 		return false;
2295 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2296 }
2297 
2298 void skb_condense(struct sk_buff *skb);
2299 
2300 /**
2301  *	skb_headroom - bytes at buffer head
2302  *	@skb: buffer to check
2303  *
2304  *	Return the number of bytes of free space at the head of an &sk_buff.
2305  */
2306 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2307 {
2308 	return skb->data - skb->head;
2309 }
2310 
2311 /**
2312  *	skb_tailroom - bytes at buffer end
2313  *	@skb: buffer to check
2314  *
2315  *	Return the number of bytes of free space at the tail of an sk_buff
2316  */
2317 static inline int skb_tailroom(const struct sk_buff *skb)
2318 {
2319 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2320 }
2321 
2322 /**
2323  *	skb_availroom - bytes at buffer end
2324  *	@skb: buffer to check
2325  *
2326  *	Return the number of bytes of free space at the tail of an sk_buff
2327  *	allocated by sk_stream_alloc()
2328  */
2329 static inline int skb_availroom(const struct sk_buff *skb)
2330 {
2331 	if (skb_is_nonlinear(skb))
2332 		return 0;
2333 
2334 	return skb->end - skb->tail - skb->reserved_tailroom;
2335 }
2336 
2337 /**
2338  *	skb_reserve - adjust headroom
2339  *	@skb: buffer to alter
2340  *	@len: bytes to move
2341  *
2342  *	Increase the headroom of an empty &sk_buff by reducing the tail
2343  *	room. This is only allowed for an empty buffer.
2344  */
2345 static inline void skb_reserve(struct sk_buff *skb, int len)
2346 {
2347 	skb->data += len;
2348 	skb->tail += len;
2349 }
2350 
2351 /**
2352  *	skb_tailroom_reserve - adjust reserved_tailroom
2353  *	@skb: buffer to alter
2354  *	@mtu: maximum amount of headlen permitted
2355  *	@needed_tailroom: minimum amount of reserved_tailroom
2356  *
2357  *	Set reserved_tailroom so that headlen can be as large as possible but
2358  *	not larger than mtu and tailroom cannot be smaller than
2359  *	needed_tailroom.
2360  *	The required headroom should already have been reserved before using
2361  *	this function.
2362  */
2363 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2364 					unsigned int needed_tailroom)
2365 {
2366 	SKB_LINEAR_ASSERT(skb);
2367 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2368 		/* use at most mtu */
2369 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2370 	else
2371 		/* use up to all available space */
2372 		skb->reserved_tailroom = needed_tailroom;
2373 }
2374 
2375 #define ENCAP_TYPE_ETHER	0
2376 #define ENCAP_TYPE_IPPROTO	1
2377 
2378 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2379 					  __be16 protocol)
2380 {
2381 	skb->inner_protocol = protocol;
2382 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2383 }
2384 
2385 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2386 					 __u8 ipproto)
2387 {
2388 	skb->inner_ipproto = ipproto;
2389 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2390 }
2391 
2392 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2393 {
2394 	skb->inner_mac_header = skb->mac_header;
2395 	skb->inner_network_header = skb->network_header;
2396 	skb->inner_transport_header = skb->transport_header;
2397 }
2398 
2399 static inline void skb_reset_mac_len(struct sk_buff *skb)
2400 {
2401 	skb->mac_len = skb->network_header - skb->mac_header;
2402 }
2403 
2404 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2405 							*skb)
2406 {
2407 	return skb->head + skb->inner_transport_header;
2408 }
2409 
2410 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2411 {
2412 	return skb_inner_transport_header(skb) - skb->data;
2413 }
2414 
2415 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2416 {
2417 	skb->inner_transport_header = skb->data - skb->head;
2418 }
2419 
2420 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2421 						   const int offset)
2422 {
2423 	skb_reset_inner_transport_header(skb);
2424 	skb->inner_transport_header += offset;
2425 }
2426 
2427 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2428 {
2429 	return skb->head + skb->inner_network_header;
2430 }
2431 
2432 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2433 {
2434 	skb->inner_network_header = skb->data - skb->head;
2435 }
2436 
2437 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2438 						const int offset)
2439 {
2440 	skb_reset_inner_network_header(skb);
2441 	skb->inner_network_header += offset;
2442 }
2443 
2444 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2445 {
2446 	return skb->head + skb->inner_mac_header;
2447 }
2448 
2449 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2450 {
2451 	skb->inner_mac_header = skb->data - skb->head;
2452 }
2453 
2454 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2455 					    const int offset)
2456 {
2457 	skb_reset_inner_mac_header(skb);
2458 	skb->inner_mac_header += offset;
2459 }
2460 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2461 {
2462 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2463 }
2464 
2465 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2466 {
2467 	return skb->head + skb->transport_header;
2468 }
2469 
2470 static inline void skb_reset_transport_header(struct sk_buff *skb)
2471 {
2472 	skb->transport_header = skb->data - skb->head;
2473 }
2474 
2475 static inline void skb_set_transport_header(struct sk_buff *skb,
2476 					    const int offset)
2477 {
2478 	skb_reset_transport_header(skb);
2479 	skb->transport_header += offset;
2480 }
2481 
2482 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2483 {
2484 	return skb->head + skb->network_header;
2485 }
2486 
2487 static inline void skb_reset_network_header(struct sk_buff *skb)
2488 {
2489 	skb->network_header = skb->data - skb->head;
2490 }
2491 
2492 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2493 {
2494 	skb_reset_network_header(skb);
2495 	skb->network_header += offset;
2496 }
2497 
2498 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2499 {
2500 	return skb->head + skb->mac_header;
2501 }
2502 
2503 static inline int skb_mac_offset(const struct sk_buff *skb)
2504 {
2505 	return skb_mac_header(skb) - skb->data;
2506 }
2507 
2508 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2509 {
2510 	return skb->network_header - skb->mac_header;
2511 }
2512 
2513 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2514 {
2515 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2516 }
2517 
2518 static inline void skb_reset_mac_header(struct sk_buff *skb)
2519 {
2520 	skb->mac_header = skb->data - skb->head;
2521 }
2522 
2523 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2524 {
2525 	skb_reset_mac_header(skb);
2526 	skb->mac_header += offset;
2527 }
2528 
2529 static inline void skb_pop_mac_header(struct sk_buff *skb)
2530 {
2531 	skb->mac_header = skb->network_header;
2532 }
2533 
2534 static inline void skb_probe_transport_header(struct sk_buff *skb)
2535 {
2536 	struct flow_keys_basic keys;
2537 
2538 	if (skb_transport_header_was_set(skb))
2539 		return;
2540 
2541 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2542 					     NULL, 0, 0, 0, 0))
2543 		skb_set_transport_header(skb, keys.control.thoff);
2544 }
2545 
2546 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2547 {
2548 	if (skb_mac_header_was_set(skb)) {
2549 		const unsigned char *old_mac = skb_mac_header(skb);
2550 
2551 		skb_set_mac_header(skb, -skb->mac_len);
2552 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2553 	}
2554 }
2555 
2556 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2557 {
2558 	return skb->csum_start - skb_headroom(skb);
2559 }
2560 
2561 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2562 {
2563 	return skb->head + skb->csum_start;
2564 }
2565 
2566 static inline int skb_transport_offset(const struct sk_buff *skb)
2567 {
2568 	return skb_transport_header(skb) - skb->data;
2569 }
2570 
2571 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2572 {
2573 	return skb->transport_header - skb->network_header;
2574 }
2575 
2576 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2577 {
2578 	return skb->inner_transport_header - skb->inner_network_header;
2579 }
2580 
2581 static inline int skb_network_offset(const struct sk_buff *skb)
2582 {
2583 	return skb_network_header(skb) - skb->data;
2584 }
2585 
2586 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2587 {
2588 	return skb_inner_network_header(skb) - skb->data;
2589 }
2590 
2591 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2592 {
2593 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2594 }
2595 
2596 /*
2597  * CPUs often take a performance hit when accessing unaligned memory
2598  * locations. The actual performance hit varies, it can be small if the
2599  * hardware handles it or large if we have to take an exception and fix it
2600  * in software.
2601  *
2602  * Since an ethernet header is 14 bytes network drivers often end up with
2603  * the IP header at an unaligned offset. The IP header can be aligned by
2604  * shifting the start of the packet by 2 bytes. Drivers should do this
2605  * with:
2606  *
2607  * skb_reserve(skb, NET_IP_ALIGN);
2608  *
2609  * The downside to this alignment of the IP header is that the DMA is now
2610  * unaligned. On some architectures the cost of an unaligned DMA is high
2611  * and this cost outweighs the gains made by aligning the IP header.
2612  *
2613  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2614  * to be overridden.
2615  */
2616 #ifndef NET_IP_ALIGN
2617 #define NET_IP_ALIGN	2
2618 #endif
2619 
2620 /*
2621  * The networking layer reserves some headroom in skb data (via
2622  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2623  * the header has to grow. In the default case, if the header has to grow
2624  * 32 bytes or less we avoid the reallocation.
2625  *
2626  * Unfortunately this headroom changes the DMA alignment of the resulting
2627  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2628  * on some architectures. An architecture can override this value,
2629  * perhaps setting it to a cacheline in size (since that will maintain
2630  * cacheline alignment of the DMA). It must be a power of 2.
2631  *
2632  * Various parts of the networking layer expect at least 32 bytes of
2633  * headroom, you should not reduce this.
2634  *
2635  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2636  * to reduce average number of cache lines per packet.
2637  * get_rps_cpus() for example only access one 64 bytes aligned block :
2638  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2639  */
2640 #ifndef NET_SKB_PAD
2641 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2642 #endif
2643 
2644 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2645 
2646 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2647 {
2648 	if (WARN_ON(skb_is_nonlinear(skb)))
2649 		return;
2650 	skb->len = len;
2651 	skb_set_tail_pointer(skb, len);
2652 }
2653 
2654 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2655 {
2656 	__skb_set_length(skb, len);
2657 }
2658 
2659 void skb_trim(struct sk_buff *skb, unsigned int len);
2660 
2661 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2662 {
2663 	if (skb->data_len)
2664 		return ___pskb_trim(skb, len);
2665 	__skb_trim(skb, len);
2666 	return 0;
2667 }
2668 
2669 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2670 {
2671 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2672 }
2673 
2674 /**
2675  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2676  *	@skb: buffer to alter
2677  *	@len: new length
2678  *
2679  *	This is identical to pskb_trim except that the caller knows that
2680  *	the skb is not cloned so we should never get an error due to out-
2681  *	of-memory.
2682  */
2683 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2684 {
2685 	int err = pskb_trim(skb, len);
2686 	BUG_ON(err);
2687 }
2688 
2689 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2690 {
2691 	unsigned int diff = len - skb->len;
2692 
2693 	if (skb_tailroom(skb) < diff) {
2694 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2695 					   GFP_ATOMIC);
2696 		if (ret)
2697 			return ret;
2698 	}
2699 	__skb_set_length(skb, len);
2700 	return 0;
2701 }
2702 
2703 /**
2704  *	skb_orphan - orphan a buffer
2705  *	@skb: buffer to orphan
2706  *
2707  *	If a buffer currently has an owner then we call the owner's
2708  *	destructor function and make the @skb unowned. The buffer continues
2709  *	to exist but is no longer charged to its former owner.
2710  */
2711 static inline void skb_orphan(struct sk_buff *skb)
2712 {
2713 	if (skb->destructor) {
2714 		skb->destructor(skb);
2715 		skb->destructor = NULL;
2716 		skb->sk		= NULL;
2717 	} else {
2718 		BUG_ON(skb->sk);
2719 	}
2720 }
2721 
2722 /**
2723  *	skb_orphan_frags - orphan the frags contained in a buffer
2724  *	@skb: buffer to orphan frags from
2725  *	@gfp_mask: allocation mask for replacement pages
2726  *
2727  *	For each frag in the SKB which needs a destructor (i.e. has an
2728  *	owner) create a copy of that frag and release the original
2729  *	page by calling the destructor.
2730  */
2731 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2732 {
2733 	if (likely(!skb_zcopy(skb)))
2734 		return 0;
2735 	if (!skb_zcopy_is_nouarg(skb) &&
2736 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2737 		return 0;
2738 	return skb_copy_ubufs(skb, gfp_mask);
2739 }
2740 
2741 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2742 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2743 {
2744 	if (likely(!skb_zcopy(skb)))
2745 		return 0;
2746 	return skb_copy_ubufs(skb, gfp_mask);
2747 }
2748 
2749 /**
2750  *	__skb_queue_purge - empty a list
2751  *	@list: list to empty
2752  *
2753  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2754  *	the list and one reference dropped. This function does not take the
2755  *	list lock and the caller must hold the relevant locks to use it.
2756  */
2757 static inline void __skb_queue_purge(struct sk_buff_head *list)
2758 {
2759 	struct sk_buff *skb;
2760 	while ((skb = __skb_dequeue(list)) != NULL)
2761 		kfree_skb(skb);
2762 }
2763 void skb_queue_purge(struct sk_buff_head *list);
2764 
2765 unsigned int skb_rbtree_purge(struct rb_root *root);
2766 
2767 void *netdev_alloc_frag(unsigned int fragsz);
2768 
2769 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2770 				   gfp_t gfp_mask);
2771 
2772 /**
2773  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2774  *	@dev: network device to receive on
2775  *	@length: length to allocate
2776  *
2777  *	Allocate a new &sk_buff and assign it a usage count of one. The
2778  *	buffer has unspecified headroom built in. Users should allocate
2779  *	the headroom they think they need without accounting for the
2780  *	built in space. The built in space is used for optimisations.
2781  *
2782  *	%NULL is returned if there is no free memory. Although this function
2783  *	allocates memory it can be called from an interrupt.
2784  */
2785 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2786 					       unsigned int length)
2787 {
2788 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2789 }
2790 
2791 /* legacy helper around __netdev_alloc_skb() */
2792 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2793 					      gfp_t gfp_mask)
2794 {
2795 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2796 }
2797 
2798 /* legacy helper around netdev_alloc_skb() */
2799 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2800 {
2801 	return netdev_alloc_skb(NULL, length);
2802 }
2803 
2804 
2805 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2806 		unsigned int length, gfp_t gfp)
2807 {
2808 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2809 
2810 	if (NET_IP_ALIGN && skb)
2811 		skb_reserve(skb, NET_IP_ALIGN);
2812 	return skb;
2813 }
2814 
2815 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2816 		unsigned int length)
2817 {
2818 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2819 }
2820 
2821 static inline void skb_free_frag(void *addr)
2822 {
2823 	page_frag_free(addr);
2824 }
2825 
2826 void *napi_alloc_frag(unsigned int fragsz);
2827 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2828 				 unsigned int length, gfp_t gfp_mask);
2829 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2830 					     unsigned int length)
2831 {
2832 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2833 }
2834 void napi_consume_skb(struct sk_buff *skb, int budget);
2835 
2836 void __kfree_skb_flush(void);
2837 void __kfree_skb_defer(struct sk_buff *skb);
2838 
2839 /**
2840  * __dev_alloc_pages - allocate page for network Rx
2841  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2842  * @order: size of the allocation
2843  *
2844  * Allocate a new page.
2845  *
2846  * %NULL is returned if there is no free memory.
2847 */
2848 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2849 					     unsigned int order)
2850 {
2851 	/* This piece of code contains several assumptions.
2852 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2853 	 * 2.  The expectation is the user wants a compound page.
2854 	 * 3.  If requesting a order 0 page it will not be compound
2855 	 *     due to the check to see if order has a value in prep_new_page
2856 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2857 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2858 	 */
2859 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2860 
2861 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2862 }
2863 
2864 static inline struct page *dev_alloc_pages(unsigned int order)
2865 {
2866 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2867 }
2868 
2869 /**
2870  * __dev_alloc_page - allocate a page for network Rx
2871  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2872  *
2873  * Allocate a new page.
2874  *
2875  * %NULL is returned if there is no free memory.
2876  */
2877 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2878 {
2879 	return __dev_alloc_pages(gfp_mask, 0);
2880 }
2881 
2882 static inline struct page *dev_alloc_page(void)
2883 {
2884 	return dev_alloc_pages(0);
2885 }
2886 
2887 /**
2888  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2889  *	@page: The page that was allocated from skb_alloc_page
2890  *	@skb: The skb that may need pfmemalloc set
2891  */
2892 static inline void skb_propagate_pfmemalloc(struct page *page,
2893 					     struct sk_buff *skb)
2894 {
2895 	if (page_is_pfmemalloc(page))
2896 		skb->pfmemalloc = true;
2897 }
2898 
2899 /**
2900  * skb_frag_off() - Returns the offset of a skb fragment
2901  * @frag: the paged fragment
2902  */
2903 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2904 {
2905 	return frag->bv_offset;
2906 }
2907 
2908 /**
2909  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2910  * @frag: skb fragment
2911  * @delta: value to add
2912  */
2913 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2914 {
2915 	frag->bv_offset += delta;
2916 }
2917 
2918 /**
2919  * skb_frag_off_set() - Sets the offset of a skb fragment
2920  * @frag: skb fragment
2921  * @offset: offset of fragment
2922  */
2923 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2924 {
2925 	frag->bv_offset = offset;
2926 }
2927 
2928 /**
2929  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2930  * @fragto: skb fragment where offset is set
2931  * @fragfrom: skb fragment offset is copied from
2932  */
2933 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2934 				     const skb_frag_t *fragfrom)
2935 {
2936 	fragto->bv_offset = fragfrom->bv_offset;
2937 }
2938 
2939 /**
2940  * skb_frag_page - retrieve the page referred to by a paged fragment
2941  * @frag: the paged fragment
2942  *
2943  * Returns the &struct page associated with @frag.
2944  */
2945 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2946 {
2947 	return frag->bv_page;
2948 }
2949 
2950 /**
2951  * __skb_frag_ref - take an addition reference on a paged fragment.
2952  * @frag: the paged fragment
2953  *
2954  * Takes an additional reference on the paged fragment @frag.
2955  */
2956 static inline void __skb_frag_ref(skb_frag_t *frag)
2957 {
2958 	get_page(skb_frag_page(frag));
2959 }
2960 
2961 /**
2962  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2963  * @skb: the buffer
2964  * @f: the fragment offset.
2965  *
2966  * Takes an additional reference on the @f'th paged fragment of @skb.
2967  */
2968 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2969 {
2970 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2971 }
2972 
2973 /**
2974  * __skb_frag_unref - release a reference on a paged fragment.
2975  * @frag: the paged fragment
2976  *
2977  * Releases a reference on the paged fragment @frag.
2978  */
2979 static inline void __skb_frag_unref(skb_frag_t *frag)
2980 {
2981 	put_page(skb_frag_page(frag));
2982 }
2983 
2984 /**
2985  * skb_frag_unref - release a reference on a paged fragment of an skb.
2986  * @skb: the buffer
2987  * @f: the fragment offset
2988  *
2989  * Releases a reference on the @f'th paged fragment of @skb.
2990  */
2991 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2992 {
2993 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2994 }
2995 
2996 /**
2997  * skb_frag_address - gets the address of the data contained in a paged fragment
2998  * @frag: the paged fragment buffer
2999  *
3000  * Returns the address of the data within @frag. The page must already
3001  * be mapped.
3002  */
3003 static inline void *skb_frag_address(const skb_frag_t *frag)
3004 {
3005 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3006 }
3007 
3008 /**
3009  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3010  * @frag: the paged fragment buffer
3011  *
3012  * Returns the address of the data within @frag. Checks that the page
3013  * is mapped and returns %NULL otherwise.
3014  */
3015 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3016 {
3017 	void *ptr = page_address(skb_frag_page(frag));
3018 	if (unlikely(!ptr))
3019 		return NULL;
3020 
3021 	return ptr + skb_frag_off(frag);
3022 }
3023 
3024 /**
3025  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3026  * @fragto: skb fragment where page is set
3027  * @fragfrom: skb fragment page is copied from
3028  */
3029 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3030 				      const skb_frag_t *fragfrom)
3031 {
3032 	fragto->bv_page = fragfrom->bv_page;
3033 }
3034 
3035 /**
3036  * __skb_frag_set_page - sets the page contained in a paged fragment
3037  * @frag: the paged fragment
3038  * @page: the page to set
3039  *
3040  * Sets the fragment @frag to contain @page.
3041  */
3042 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3043 {
3044 	frag->bv_page = page;
3045 }
3046 
3047 /**
3048  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3049  * @skb: the buffer
3050  * @f: the fragment offset
3051  * @page: the page to set
3052  *
3053  * Sets the @f'th fragment of @skb to contain @page.
3054  */
3055 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3056 				     struct page *page)
3057 {
3058 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3059 }
3060 
3061 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3062 
3063 /**
3064  * skb_frag_dma_map - maps a paged fragment via the DMA API
3065  * @dev: the device to map the fragment to
3066  * @frag: the paged fragment to map
3067  * @offset: the offset within the fragment (starting at the
3068  *          fragment's own offset)
3069  * @size: the number of bytes to map
3070  * @dir: the direction of the mapping (``PCI_DMA_*``)
3071  *
3072  * Maps the page associated with @frag to @device.
3073  */
3074 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3075 					  const skb_frag_t *frag,
3076 					  size_t offset, size_t size,
3077 					  enum dma_data_direction dir)
3078 {
3079 	return dma_map_page(dev, skb_frag_page(frag),
3080 			    skb_frag_off(frag) + offset, size, dir);
3081 }
3082 
3083 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3084 					gfp_t gfp_mask)
3085 {
3086 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3087 }
3088 
3089 
3090 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3091 						  gfp_t gfp_mask)
3092 {
3093 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3094 }
3095 
3096 
3097 /**
3098  *	skb_clone_writable - is the header of a clone writable
3099  *	@skb: buffer to check
3100  *	@len: length up to which to write
3101  *
3102  *	Returns true if modifying the header part of the cloned buffer
3103  *	does not requires the data to be copied.
3104  */
3105 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3106 {
3107 	return !skb_header_cloned(skb) &&
3108 	       skb_headroom(skb) + len <= skb->hdr_len;
3109 }
3110 
3111 static inline int skb_try_make_writable(struct sk_buff *skb,
3112 					unsigned int write_len)
3113 {
3114 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3115 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3116 }
3117 
3118 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3119 			    int cloned)
3120 {
3121 	int delta = 0;
3122 
3123 	if (headroom > skb_headroom(skb))
3124 		delta = headroom - skb_headroom(skb);
3125 
3126 	if (delta || cloned)
3127 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3128 					GFP_ATOMIC);
3129 	return 0;
3130 }
3131 
3132 /**
3133  *	skb_cow - copy header of skb when it is required
3134  *	@skb: buffer to cow
3135  *	@headroom: needed headroom
3136  *
3137  *	If the skb passed lacks sufficient headroom or its data part
3138  *	is shared, data is reallocated. If reallocation fails, an error
3139  *	is returned and original skb is not changed.
3140  *
3141  *	The result is skb with writable area skb->head...skb->tail
3142  *	and at least @headroom of space at head.
3143  */
3144 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3145 {
3146 	return __skb_cow(skb, headroom, skb_cloned(skb));
3147 }
3148 
3149 /**
3150  *	skb_cow_head - skb_cow but only making the head writable
3151  *	@skb: buffer to cow
3152  *	@headroom: needed headroom
3153  *
3154  *	This function is identical to skb_cow except that we replace the
3155  *	skb_cloned check by skb_header_cloned.  It should be used when
3156  *	you only need to push on some header and do not need to modify
3157  *	the data.
3158  */
3159 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3160 {
3161 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3162 }
3163 
3164 /**
3165  *	skb_padto	- pad an skbuff up to a minimal size
3166  *	@skb: buffer to pad
3167  *	@len: minimal length
3168  *
3169  *	Pads up a buffer to ensure the trailing bytes exist and are
3170  *	blanked. If the buffer already contains sufficient data it
3171  *	is untouched. Otherwise it is extended. Returns zero on
3172  *	success. The skb is freed on error.
3173  */
3174 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3175 {
3176 	unsigned int size = skb->len;
3177 	if (likely(size >= len))
3178 		return 0;
3179 	return skb_pad(skb, len - size);
3180 }
3181 
3182 /**
3183  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3184  *	@skb: buffer to pad
3185  *	@len: minimal length
3186  *	@free_on_error: free buffer on error
3187  *
3188  *	Pads up a buffer to ensure the trailing bytes exist and are
3189  *	blanked. If the buffer already contains sufficient data it
3190  *	is untouched. Otherwise it is extended. Returns zero on
3191  *	success. The skb is freed on error if @free_on_error is true.
3192  */
3193 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3194 				  bool free_on_error)
3195 {
3196 	unsigned int size = skb->len;
3197 
3198 	if (unlikely(size < len)) {
3199 		len -= size;
3200 		if (__skb_pad(skb, len, free_on_error))
3201 			return -ENOMEM;
3202 		__skb_put(skb, len);
3203 	}
3204 	return 0;
3205 }
3206 
3207 /**
3208  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3209  *	@skb: buffer to pad
3210  *	@len: minimal length
3211  *
3212  *	Pads up a buffer to ensure the trailing bytes exist and are
3213  *	blanked. If the buffer already contains sufficient data it
3214  *	is untouched. Otherwise it is extended. Returns zero on
3215  *	success. The skb is freed on error.
3216  */
3217 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3218 {
3219 	return __skb_put_padto(skb, len, true);
3220 }
3221 
3222 static inline int skb_add_data(struct sk_buff *skb,
3223 			       struct iov_iter *from, int copy)
3224 {
3225 	const int off = skb->len;
3226 
3227 	if (skb->ip_summed == CHECKSUM_NONE) {
3228 		__wsum csum = 0;
3229 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3230 					         &csum, from)) {
3231 			skb->csum = csum_block_add(skb->csum, csum, off);
3232 			return 0;
3233 		}
3234 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3235 		return 0;
3236 
3237 	__skb_trim(skb, off);
3238 	return -EFAULT;
3239 }
3240 
3241 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3242 				    const struct page *page, int off)
3243 {
3244 	if (skb_zcopy(skb))
3245 		return false;
3246 	if (i) {
3247 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3248 
3249 		return page == skb_frag_page(frag) &&
3250 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3251 	}
3252 	return false;
3253 }
3254 
3255 static inline int __skb_linearize(struct sk_buff *skb)
3256 {
3257 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3258 }
3259 
3260 /**
3261  *	skb_linearize - convert paged skb to linear one
3262  *	@skb: buffer to linarize
3263  *
3264  *	If there is no free memory -ENOMEM is returned, otherwise zero
3265  *	is returned and the old skb data released.
3266  */
3267 static inline int skb_linearize(struct sk_buff *skb)
3268 {
3269 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3270 }
3271 
3272 /**
3273  * skb_has_shared_frag - can any frag be overwritten
3274  * @skb: buffer to test
3275  *
3276  * Return true if the skb has at least one frag that might be modified
3277  * by an external entity (as in vmsplice()/sendfile())
3278  */
3279 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3280 {
3281 	return skb_is_nonlinear(skb) &&
3282 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3283 }
3284 
3285 /**
3286  *	skb_linearize_cow - make sure skb is linear and writable
3287  *	@skb: buffer to process
3288  *
3289  *	If there is no free memory -ENOMEM is returned, otherwise zero
3290  *	is returned and the old skb data released.
3291  */
3292 static inline int skb_linearize_cow(struct sk_buff *skb)
3293 {
3294 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3295 	       __skb_linearize(skb) : 0;
3296 }
3297 
3298 static __always_inline void
3299 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3300 		     unsigned int off)
3301 {
3302 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3303 		skb->csum = csum_block_sub(skb->csum,
3304 					   csum_partial(start, len, 0), off);
3305 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3306 		 skb_checksum_start_offset(skb) < 0)
3307 		skb->ip_summed = CHECKSUM_NONE;
3308 }
3309 
3310 /**
3311  *	skb_postpull_rcsum - update checksum for received skb after pull
3312  *	@skb: buffer to update
3313  *	@start: start of data before pull
3314  *	@len: length of data pulled
3315  *
3316  *	After doing a pull on a received packet, you need to call this to
3317  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3318  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3319  */
3320 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3321 				      const void *start, unsigned int len)
3322 {
3323 	__skb_postpull_rcsum(skb, start, len, 0);
3324 }
3325 
3326 static __always_inline void
3327 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3328 		     unsigned int off)
3329 {
3330 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3331 		skb->csum = csum_block_add(skb->csum,
3332 					   csum_partial(start, len, 0), off);
3333 }
3334 
3335 /**
3336  *	skb_postpush_rcsum - update checksum for received skb after push
3337  *	@skb: buffer to update
3338  *	@start: start of data after push
3339  *	@len: length of data pushed
3340  *
3341  *	After doing a push on a received packet, you need to call this to
3342  *	update the CHECKSUM_COMPLETE checksum.
3343  */
3344 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3345 				      const void *start, unsigned int len)
3346 {
3347 	__skb_postpush_rcsum(skb, start, len, 0);
3348 }
3349 
3350 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3351 
3352 /**
3353  *	skb_push_rcsum - push skb and update receive checksum
3354  *	@skb: buffer to update
3355  *	@len: length of data pulled
3356  *
3357  *	This function performs an skb_push on the packet and updates
3358  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3359  *	receive path processing instead of skb_push unless you know
3360  *	that the checksum difference is zero (e.g., a valid IP header)
3361  *	or you are setting ip_summed to CHECKSUM_NONE.
3362  */
3363 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3364 {
3365 	skb_push(skb, len);
3366 	skb_postpush_rcsum(skb, skb->data, len);
3367 	return skb->data;
3368 }
3369 
3370 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3371 /**
3372  *	pskb_trim_rcsum - trim received skb and update checksum
3373  *	@skb: buffer to trim
3374  *	@len: new length
3375  *
3376  *	This is exactly the same as pskb_trim except that it ensures the
3377  *	checksum of received packets are still valid after the operation.
3378  *	It can change skb pointers.
3379  */
3380 
3381 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3382 {
3383 	if (likely(len >= skb->len))
3384 		return 0;
3385 	return pskb_trim_rcsum_slow(skb, len);
3386 }
3387 
3388 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3389 {
3390 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3391 		skb->ip_summed = CHECKSUM_NONE;
3392 	__skb_trim(skb, len);
3393 	return 0;
3394 }
3395 
3396 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3397 {
3398 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3399 		skb->ip_summed = CHECKSUM_NONE;
3400 	return __skb_grow(skb, len);
3401 }
3402 
3403 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3404 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3405 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3406 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3407 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3408 
3409 #define skb_queue_walk(queue, skb) \
3410 		for (skb = (queue)->next;					\
3411 		     skb != (struct sk_buff *)(queue);				\
3412 		     skb = skb->next)
3413 
3414 #define skb_queue_walk_safe(queue, skb, tmp)					\
3415 		for (skb = (queue)->next, tmp = skb->next;			\
3416 		     skb != (struct sk_buff *)(queue);				\
3417 		     skb = tmp, tmp = skb->next)
3418 
3419 #define skb_queue_walk_from(queue, skb)						\
3420 		for (; skb != (struct sk_buff *)(queue);			\
3421 		     skb = skb->next)
3422 
3423 #define skb_rbtree_walk(skb, root)						\
3424 		for (skb = skb_rb_first(root); skb != NULL;			\
3425 		     skb = skb_rb_next(skb))
3426 
3427 #define skb_rbtree_walk_from(skb)						\
3428 		for (; skb != NULL;						\
3429 		     skb = skb_rb_next(skb))
3430 
3431 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3432 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3433 		     skb = tmp)
3434 
3435 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3436 		for (tmp = skb->next;						\
3437 		     skb != (struct sk_buff *)(queue);				\
3438 		     skb = tmp, tmp = skb->next)
3439 
3440 #define skb_queue_reverse_walk(queue, skb) \
3441 		for (skb = (queue)->prev;					\
3442 		     skb != (struct sk_buff *)(queue);				\
3443 		     skb = skb->prev)
3444 
3445 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3446 		for (skb = (queue)->prev, tmp = skb->prev;			\
3447 		     skb != (struct sk_buff *)(queue);				\
3448 		     skb = tmp, tmp = skb->prev)
3449 
3450 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3451 		for (tmp = skb->prev;						\
3452 		     skb != (struct sk_buff *)(queue);				\
3453 		     skb = tmp, tmp = skb->prev)
3454 
3455 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3456 {
3457 	return skb_shinfo(skb)->frag_list != NULL;
3458 }
3459 
3460 static inline void skb_frag_list_init(struct sk_buff *skb)
3461 {
3462 	skb_shinfo(skb)->frag_list = NULL;
3463 }
3464 
3465 #define skb_walk_frags(skb, iter)	\
3466 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3467 
3468 
3469 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3470 				int *err, long *timeo_p,
3471 				const struct sk_buff *skb);
3472 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3473 					  struct sk_buff_head *queue,
3474 					  unsigned int flags,
3475 					  void (*destructor)(struct sock *sk,
3476 							   struct sk_buff *skb),
3477 					  int *off, int *err,
3478 					  struct sk_buff **last);
3479 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3480 					struct sk_buff_head *queue,
3481 					unsigned int flags,
3482 					void (*destructor)(struct sock *sk,
3483 							   struct sk_buff *skb),
3484 					int *off, int *err,
3485 					struct sk_buff **last);
3486 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3487 				    struct sk_buff_head *sk_queue,
3488 				    unsigned int flags,
3489 				    void (*destructor)(struct sock *sk,
3490 						       struct sk_buff *skb),
3491 				    int *off, int *err);
3492 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3493 				  int *err);
3494 __poll_t datagram_poll(struct file *file, struct socket *sock,
3495 			   struct poll_table_struct *wait);
3496 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3497 			   struct iov_iter *to, int size);
3498 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3499 					struct msghdr *msg, int size)
3500 {
3501 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3502 }
3503 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3504 				   struct msghdr *msg);
3505 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3506 			   struct iov_iter *to, int len,
3507 			   struct ahash_request *hash);
3508 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3509 				 struct iov_iter *from, int len);
3510 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3511 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3512 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3513 static inline void skb_free_datagram_locked(struct sock *sk,
3514 					    struct sk_buff *skb)
3515 {
3516 	__skb_free_datagram_locked(sk, skb, 0);
3517 }
3518 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3519 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3520 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3521 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3522 			      int len, __wsum csum);
3523 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3524 		    struct pipe_inode_info *pipe, unsigned int len,
3525 		    unsigned int flags);
3526 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3527 			 int len);
3528 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3529 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3530 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3531 		 int len, int hlen);
3532 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3533 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3534 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3535 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3536 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3537 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3538 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3539 				 unsigned int offset);
3540 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3541 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3542 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3543 int skb_vlan_pop(struct sk_buff *skb);
3544 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3545 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3546 		  int mac_len, bool ethernet);
3547 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3548 		 bool ethernet);
3549 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3550 int skb_mpls_dec_ttl(struct sk_buff *skb);
3551 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3552 			     gfp_t gfp);
3553 
3554 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3555 {
3556 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3557 }
3558 
3559 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3560 {
3561 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3562 }
3563 
3564 struct skb_checksum_ops {
3565 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3566 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3567 };
3568 
3569 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3570 
3571 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3572 		      __wsum csum, const struct skb_checksum_ops *ops);
3573 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3574 		    __wsum csum);
3575 
3576 static inline void * __must_check
3577 __skb_header_pointer(const struct sk_buff *skb, int offset,
3578 		     int len, void *data, int hlen, void *buffer)
3579 {
3580 	if (hlen - offset >= len)
3581 		return data + offset;
3582 
3583 	if (!skb ||
3584 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3585 		return NULL;
3586 
3587 	return buffer;
3588 }
3589 
3590 static inline void * __must_check
3591 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3592 {
3593 	return __skb_header_pointer(skb, offset, len, skb->data,
3594 				    skb_headlen(skb), buffer);
3595 }
3596 
3597 /**
3598  *	skb_needs_linearize - check if we need to linearize a given skb
3599  *			      depending on the given device features.
3600  *	@skb: socket buffer to check
3601  *	@features: net device features
3602  *
3603  *	Returns true if either:
3604  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3605  *	2. skb is fragmented and the device does not support SG.
3606  */
3607 static inline bool skb_needs_linearize(struct sk_buff *skb,
3608 				       netdev_features_t features)
3609 {
3610 	return skb_is_nonlinear(skb) &&
3611 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3612 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3613 }
3614 
3615 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3616 					     void *to,
3617 					     const unsigned int len)
3618 {
3619 	memcpy(to, skb->data, len);
3620 }
3621 
3622 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3623 						    const int offset, void *to,
3624 						    const unsigned int len)
3625 {
3626 	memcpy(to, skb->data + offset, len);
3627 }
3628 
3629 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3630 					   const void *from,
3631 					   const unsigned int len)
3632 {
3633 	memcpy(skb->data, from, len);
3634 }
3635 
3636 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3637 						  const int offset,
3638 						  const void *from,
3639 						  const unsigned int len)
3640 {
3641 	memcpy(skb->data + offset, from, len);
3642 }
3643 
3644 void skb_init(void);
3645 
3646 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3647 {
3648 	return skb->tstamp;
3649 }
3650 
3651 /**
3652  *	skb_get_timestamp - get timestamp from a skb
3653  *	@skb: skb to get stamp from
3654  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3655  *
3656  *	Timestamps are stored in the skb as offsets to a base timestamp.
3657  *	This function converts the offset back to a struct timeval and stores
3658  *	it in stamp.
3659  */
3660 static inline void skb_get_timestamp(const struct sk_buff *skb,
3661 				     struct __kernel_old_timeval *stamp)
3662 {
3663 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3664 }
3665 
3666 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3667 					 struct __kernel_sock_timeval *stamp)
3668 {
3669 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3670 
3671 	stamp->tv_sec = ts.tv_sec;
3672 	stamp->tv_usec = ts.tv_nsec / 1000;
3673 }
3674 
3675 static inline void skb_get_timestampns(const struct sk_buff *skb,
3676 				       struct __kernel_old_timespec *stamp)
3677 {
3678 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3679 
3680 	stamp->tv_sec = ts.tv_sec;
3681 	stamp->tv_nsec = ts.tv_nsec;
3682 }
3683 
3684 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3685 					   struct __kernel_timespec *stamp)
3686 {
3687 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3688 
3689 	stamp->tv_sec = ts.tv_sec;
3690 	stamp->tv_nsec = ts.tv_nsec;
3691 }
3692 
3693 static inline void __net_timestamp(struct sk_buff *skb)
3694 {
3695 	skb->tstamp = ktime_get_real();
3696 }
3697 
3698 static inline ktime_t net_timedelta(ktime_t t)
3699 {
3700 	return ktime_sub(ktime_get_real(), t);
3701 }
3702 
3703 static inline ktime_t net_invalid_timestamp(void)
3704 {
3705 	return 0;
3706 }
3707 
3708 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3709 {
3710 	return skb_shinfo(skb)->meta_len;
3711 }
3712 
3713 static inline void *skb_metadata_end(const struct sk_buff *skb)
3714 {
3715 	return skb_mac_header(skb);
3716 }
3717 
3718 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3719 					  const struct sk_buff *skb_b,
3720 					  u8 meta_len)
3721 {
3722 	const void *a = skb_metadata_end(skb_a);
3723 	const void *b = skb_metadata_end(skb_b);
3724 	/* Using more efficient varaiant than plain call to memcmp(). */
3725 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3726 	u64 diffs = 0;
3727 
3728 	switch (meta_len) {
3729 #define __it(x, op) (x -= sizeof(u##op))
3730 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3731 	case 32: diffs |= __it_diff(a, b, 64);
3732 		 /* fall through */
3733 	case 24: diffs |= __it_diff(a, b, 64);
3734 		 /* fall through */
3735 	case 16: diffs |= __it_diff(a, b, 64);
3736 		 /* fall through */
3737 	case  8: diffs |= __it_diff(a, b, 64);
3738 		break;
3739 	case 28: diffs |= __it_diff(a, b, 64);
3740 		 /* fall through */
3741 	case 20: diffs |= __it_diff(a, b, 64);
3742 		 /* fall through */
3743 	case 12: diffs |= __it_diff(a, b, 64);
3744 		 /* fall through */
3745 	case  4: diffs |= __it_diff(a, b, 32);
3746 		break;
3747 	}
3748 	return diffs;
3749 #else
3750 	return memcmp(a - meta_len, b - meta_len, meta_len);
3751 #endif
3752 }
3753 
3754 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3755 					const struct sk_buff *skb_b)
3756 {
3757 	u8 len_a = skb_metadata_len(skb_a);
3758 	u8 len_b = skb_metadata_len(skb_b);
3759 
3760 	if (!(len_a | len_b))
3761 		return false;
3762 
3763 	return len_a != len_b ?
3764 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3765 }
3766 
3767 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3768 {
3769 	skb_shinfo(skb)->meta_len = meta_len;
3770 }
3771 
3772 static inline void skb_metadata_clear(struct sk_buff *skb)
3773 {
3774 	skb_metadata_set(skb, 0);
3775 }
3776 
3777 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3778 
3779 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3780 
3781 void skb_clone_tx_timestamp(struct sk_buff *skb);
3782 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3783 
3784 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3785 
3786 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3787 {
3788 }
3789 
3790 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3791 {
3792 	return false;
3793 }
3794 
3795 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3796 
3797 /**
3798  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3799  *
3800  * PHY drivers may accept clones of transmitted packets for
3801  * timestamping via their phy_driver.txtstamp method. These drivers
3802  * must call this function to return the skb back to the stack with a
3803  * timestamp.
3804  *
3805  * @skb: clone of the the original outgoing packet
3806  * @hwtstamps: hardware time stamps
3807  *
3808  */
3809 void skb_complete_tx_timestamp(struct sk_buff *skb,
3810 			       struct skb_shared_hwtstamps *hwtstamps);
3811 
3812 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3813 		     struct skb_shared_hwtstamps *hwtstamps,
3814 		     struct sock *sk, int tstype);
3815 
3816 /**
3817  * skb_tstamp_tx - queue clone of skb with send time stamps
3818  * @orig_skb:	the original outgoing packet
3819  * @hwtstamps:	hardware time stamps, may be NULL if not available
3820  *
3821  * If the skb has a socket associated, then this function clones the
3822  * skb (thus sharing the actual data and optional structures), stores
3823  * the optional hardware time stamping information (if non NULL) or
3824  * generates a software time stamp (otherwise), then queues the clone
3825  * to the error queue of the socket.  Errors are silently ignored.
3826  */
3827 void skb_tstamp_tx(struct sk_buff *orig_skb,
3828 		   struct skb_shared_hwtstamps *hwtstamps);
3829 
3830 /**
3831  * skb_tx_timestamp() - Driver hook for transmit timestamping
3832  *
3833  * Ethernet MAC Drivers should call this function in their hard_xmit()
3834  * function immediately before giving the sk_buff to the MAC hardware.
3835  *
3836  * Specifically, one should make absolutely sure that this function is
3837  * called before TX completion of this packet can trigger.  Otherwise
3838  * the packet could potentially already be freed.
3839  *
3840  * @skb: A socket buffer.
3841  */
3842 static inline void skb_tx_timestamp(struct sk_buff *skb)
3843 {
3844 	skb_clone_tx_timestamp(skb);
3845 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3846 		skb_tstamp_tx(skb, NULL);
3847 }
3848 
3849 /**
3850  * skb_complete_wifi_ack - deliver skb with wifi status
3851  *
3852  * @skb: the original outgoing packet
3853  * @acked: ack status
3854  *
3855  */
3856 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3857 
3858 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3859 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3860 
3861 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3862 {
3863 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3864 		skb->csum_valid ||
3865 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3866 		 skb_checksum_start_offset(skb) >= 0));
3867 }
3868 
3869 /**
3870  *	skb_checksum_complete - Calculate checksum of an entire packet
3871  *	@skb: packet to process
3872  *
3873  *	This function calculates the checksum over the entire packet plus
3874  *	the value of skb->csum.  The latter can be used to supply the
3875  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3876  *	checksum.
3877  *
3878  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3879  *	this function can be used to verify that checksum on received
3880  *	packets.  In that case the function should return zero if the
3881  *	checksum is correct.  In particular, this function will return zero
3882  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3883  *	hardware has already verified the correctness of the checksum.
3884  */
3885 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3886 {
3887 	return skb_csum_unnecessary(skb) ?
3888 	       0 : __skb_checksum_complete(skb);
3889 }
3890 
3891 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3892 {
3893 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3894 		if (skb->csum_level == 0)
3895 			skb->ip_summed = CHECKSUM_NONE;
3896 		else
3897 			skb->csum_level--;
3898 	}
3899 }
3900 
3901 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3902 {
3903 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3904 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3905 			skb->csum_level++;
3906 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3907 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3908 		skb->csum_level = 0;
3909 	}
3910 }
3911 
3912 /* Check if we need to perform checksum complete validation.
3913  *
3914  * Returns true if checksum complete is needed, false otherwise
3915  * (either checksum is unnecessary or zero checksum is allowed).
3916  */
3917 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3918 						  bool zero_okay,
3919 						  __sum16 check)
3920 {
3921 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3922 		skb->csum_valid = 1;
3923 		__skb_decr_checksum_unnecessary(skb);
3924 		return false;
3925 	}
3926 
3927 	return true;
3928 }
3929 
3930 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3931  * in checksum_init.
3932  */
3933 #define CHECKSUM_BREAK 76
3934 
3935 /* Unset checksum-complete
3936  *
3937  * Unset checksum complete can be done when packet is being modified
3938  * (uncompressed for instance) and checksum-complete value is
3939  * invalidated.
3940  */
3941 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3942 {
3943 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3944 		skb->ip_summed = CHECKSUM_NONE;
3945 }
3946 
3947 /* Validate (init) checksum based on checksum complete.
3948  *
3949  * Return values:
3950  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3951  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3952  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3953  *   non-zero: value of invalid checksum
3954  *
3955  */
3956 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3957 						       bool complete,
3958 						       __wsum psum)
3959 {
3960 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3961 		if (!csum_fold(csum_add(psum, skb->csum))) {
3962 			skb->csum_valid = 1;
3963 			return 0;
3964 		}
3965 	}
3966 
3967 	skb->csum = psum;
3968 
3969 	if (complete || skb->len <= CHECKSUM_BREAK) {
3970 		__sum16 csum;
3971 
3972 		csum = __skb_checksum_complete(skb);
3973 		skb->csum_valid = !csum;
3974 		return csum;
3975 	}
3976 
3977 	return 0;
3978 }
3979 
3980 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3981 {
3982 	return 0;
3983 }
3984 
3985 /* Perform checksum validate (init). Note that this is a macro since we only
3986  * want to calculate the pseudo header which is an input function if necessary.
3987  * First we try to validate without any computation (checksum unnecessary) and
3988  * then calculate based on checksum complete calling the function to compute
3989  * pseudo header.
3990  *
3991  * Return values:
3992  *   0: checksum is validated or try to in skb_checksum_complete
3993  *   non-zero: value of invalid checksum
3994  */
3995 #define __skb_checksum_validate(skb, proto, complete,			\
3996 				zero_okay, check, compute_pseudo)	\
3997 ({									\
3998 	__sum16 __ret = 0;						\
3999 	skb->csum_valid = 0;						\
4000 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4001 		__ret = __skb_checksum_validate_complete(skb,		\
4002 				complete, compute_pseudo(skb, proto));	\
4003 	__ret;								\
4004 })
4005 
4006 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4007 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4008 
4009 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4010 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4011 
4012 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4013 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4014 
4015 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4016 					 compute_pseudo)		\
4017 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4018 
4019 #define skb_checksum_simple_validate(skb)				\
4020 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4021 
4022 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4023 {
4024 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4025 }
4026 
4027 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4028 {
4029 	skb->csum = ~pseudo;
4030 	skb->ip_summed = CHECKSUM_COMPLETE;
4031 }
4032 
4033 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4034 do {									\
4035 	if (__skb_checksum_convert_check(skb))				\
4036 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4037 } while (0)
4038 
4039 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4040 					      u16 start, u16 offset)
4041 {
4042 	skb->ip_summed = CHECKSUM_PARTIAL;
4043 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4044 	skb->csum_offset = offset - start;
4045 }
4046 
4047 /* Update skbuf and packet to reflect the remote checksum offload operation.
4048  * When called, ptr indicates the starting point for skb->csum when
4049  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4050  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4051  */
4052 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4053 				       int start, int offset, bool nopartial)
4054 {
4055 	__wsum delta;
4056 
4057 	if (!nopartial) {
4058 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4059 		return;
4060 	}
4061 
4062 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4063 		__skb_checksum_complete(skb);
4064 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4065 	}
4066 
4067 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4068 
4069 	/* Adjust skb->csum since we changed the packet */
4070 	skb->csum = csum_add(skb->csum, delta);
4071 }
4072 
4073 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4074 {
4075 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4076 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4077 #else
4078 	return NULL;
4079 #endif
4080 }
4081 
4082 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4083 {
4084 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4085 	return skb->_nfct;
4086 #else
4087 	return 0UL;
4088 #endif
4089 }
4090 
4091 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4092 {
4093 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4094 	skb->_nfct = nfct;
4095 #endif
4096 }
4097 
4098 #ifdef CONFIG_SKB_EXTENSIONS
4099 enum skb_ext_id {
4100 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4101 	SKB_EXT_BRIDGE_NF,
4102 #endif
4103 #ifdef CONFIG_XFRM
4104 	SKB_EXT_SEC_PATH,
4105 #endif
4106 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4107 	TC_SKB_EXT,
4108 #endif
4109 #if IS_ENABLED(CONFIG_MPTCP)
4110 	SKB_EXT_MPTCP,
4111 #endif
4112 	SKB_EXT_NUM, /* must be last */
4113 };
4114 
4115 /**
4116  *	struct skb_ext - sk_buff extensions
4117  *	@refcnt: 1 on allocation, deallocated on 0
4118  *	@offset: offset to add to @data to obtain extension address
4119  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4120  *	@data: start of extension data, variable sized
4121  *
4122  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4123  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4124  */
4125 struct skb_ext {
4126 	refcount_t refcnt;
4127 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4128 	u8 chunks;		/* same */
4129 	char data[0] __aligned(8);
4130 };
4131 
4132 struct skb_ext *__skb_ext_alloc(void);
4133 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4134 		    struct skb_ext *ext);
4135 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4136 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4137 void __skb_ext_put(struct skb_ext *ext);
4138 
4139 static inline void skb_ext_put(struct sk_buff *skb)
4140 {
4141 	if (skb->active_extensions)
4142 		__skb_ext_put(skb->extensions);
4143 }
4144 
4145 static inline void __skb_ext_copy(struct sk_buff *dst,
4146 				  const struct sk_buff *src)
4147 {
4148 	dst->active_extensions = src->active_extensions;
4149 
4150 	if (src->active_extensions) {
4151 		struct skb_ext *ext = src->extensions;
4152 
4153 		refcount_inc(&ext->refcnt);
4154 		dst->extensions = ext;
4155 	}
4156 }
4157 
4158 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4159 {
4160 	skb_ext_put(dst);
4161 	__skb_ext_copy(dst, src);
4162 }
4163 
4164 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4165 {
4166 	return !!ext->offset[i];
4167 }
4168 
4169 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4170 {
4171 	return skb->active_extensions & (1 << id);
4172 }
4173 
4174 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4175 {
4176 	if (skb_ext_exist(skb, id))
4177 		__skb_ext_del(skb, id);
4178 }
4179 
4180 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4181 {
4182 	if (skb_ext_exist(skb, id)) {
4183 		struct skb_ext *ext = skb->extensions;
4184 
4185 		return (void *)ext + (ext->offset[id] << 3);
4186 	}
4187 
4188 	return NULL;
4189 }
4190 
4191 static inline void skb_ext_reset(struct sk_buff *skb)
4192 {
4193 	if (unlikely(skb->active_extensions)) {
4194 		__skb_ext_put(skb->extensions);
4195 		skb->active_extensions = 0;
4196 	}
4197 }
4198 
4199 static inline bool skb_has_extensions(struct sk_buff *skb)
4200 {
4201 	return unlikely(skb->active_extensions);
4202 }
4203 #else
4204 static inline void skb_ext_put(struct sk_buff *skb) {}
4205 static inline void skb_ext_reset(struct sk_buff *skb) {}
4206 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4207 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4208 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4209 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4210 #endif /* CONFIG_SKB_EXTENSIONS */
4211 
4212 static inline void nf_reset_ct(struct sk_buff *skb)
4213 {
4214 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4215 	nf_conntrack_put(skb_nfct(skb));
4216 	skb->_nfct = 0;
4217 #endif
4218 }
4219 
4220 static inline void nf_reset_trace(struct sk_buff *skb)
4221 {
4222 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4223 	skb->nf_trace = 0;
4224 #endif
4225 }
4226 
4227 static inline void ipvs_reset(struct sk_buff *skb)
4228 {
4229 #if IS_ENABLED(CONFIG_IP_VS)
4230 	skb->ipvs_property = 0;
4231 #endif
4232 }
4233 
4234 /* Note: This doesn't put any conntrack info in dst. */
4235 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4236 			     bool copy)
4237 {
4238 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4239 	dst->_nfct = src->_nfct;
4240 	nf_conntrack_get(skb_nfct(src));
4241 #endif
4242 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4243 	if (copy)
4244 		dst->nf_trace = src->nf_trace;
4245 #endif
4246 }
4247 
4248 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4249 {
4250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4251 	nf_conntrack_put(skb_nfct(dst));
4252 #endif
4253 	__nf_copy(dst, src, true);
4254 }
4255 
4256 #ifdef CONFIG_NETWORK_SECMARK
4257 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4258 {
4259 	to->secmark = from->secmark;
4260 }
4261 
4262 static inline void skb_init_secmark(struct sk_buff *skb)
4263 {
4264 	skb->secmark = 0;
4265 }
4266 #else
4267 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4268 { }
4269 
4270 static inline void skb_init_secmark(struct sk_buff *skb)
4271 { }
4272 #endif
4273 
4274 static inline int secpath_exists(const struct sk_buff *skb)
4275 {
4276 #ifdef CONFIG_XFRM
4277 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4278 #else
4279 	return 0;
4280 #endif
4281 }
4282 
4283 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4284 {
4285 	return !skb->destructor &&
4286 		!secpath_exists(skb) &&
4287 		!skb_nfct(skb) &&
4288 		!skb->_skb_refdst &&
4289 		!skb_has_frag_list(skb);
4290 }
4291 
4292 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4293 {
4294 	skb->queue_mapping = queue_mapping;
4295 }
4296 
4297 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4298 {
4299 	return skb->queue_mapping;
4300 }
4301 
4302 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4303 {
4304 	to->queue_mapping = from->queue_mapping;
4305 }
4306 
4307 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4308 {
4309 	skb->queue_mapping = rx_queue + 1;
4310 }
4311 
4312 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4313 {
4314 	return skb->queue_mapping - 1;
4315 }
4316 
4317 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4318 {
4319 	return skb->queue_mapping != 0;
4320 }
4321 
4322 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4323 {
4324 	skb->dst_pending_confirm = val;
4325 }
4326 
4327 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4328 {
4329 	return skb->dst_pending_confirm != 0;
4330 }
4331 
4332 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4333 {
4334 #ifdef CONFIG_XFRM
4335 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4336 #else
4337 	return NULL;
4338 #endif
4339 }
4340 
4341 /* Keeps track of mac header offset relative to skb->head.
4342  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4343  * For non-tunnel skb it points to skb_mac_header() and for
4344  * tunnel skb it points to outer mac header.
4345  * Keeps track of level of encapsulation of network headers.
4346  */
4347 struct skb_gso_cb {
4348 	union {
4349 		int	mac_offset;
4350 		int	data_offset;
4351 	};
4352 	int	encap_level;
4353 	__wsum	csum;
4354 	__u16	csum_start;
4355 };
4356 #define SKB_SGO_CB_OFFSET	32
4357 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4358 
4359 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4360 {
4361 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4362 		SKB_GSO_CB(inner_skb)->mac_offset;
4363 }
4364 
4365 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4366 {
4367 	int new_headroom, headroom;
4368 	int ret;
4369 
4370 	headroom = skb_headroom(skb);
4371 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4372 	if (ret)
4373 		return ret;
4374 
4375 	new_headroom = skb_headroom(skb);
4376 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4377 	return 0;
4378 }
4379 
4380 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4381 {
4382 	/* Do not update partial checksums if remote checksum is enabled. */
4383 	if (skb->remcsum_offload)
4384 		return;
4385 
4386 	SKB_GSO_CB(skb)->csum = res;
4387 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4388 }
4389 
4390 /* Compute the checksum for a gso segment. First compute the checksum value
4391  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4392  * then add in skb->csum (checksum from csum_start to end of packet).
4393  * skb->csum and csum_start are then updated to reflect the checksum of the
4394  * resultant packet starting from the transport header-- the resultant checksum
4395  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4396  * header.
4397  */
4398 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4399 {
4400 	unsigned char *csum_start = skb_transport_header(skb);
4401 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4402 	__wsum partial = SKB_GSO_CB(skb)->csum;
4403 
4404 	SKB_GSO_CB(skb)->csum = res;
4405 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4406 
4407 	return csum_fold(csum_partial(csum_start, plen, partial));
4408 }
4409 
4410 static inline bool skb_is_gso(const struct sk_buff *skb)
4411 {
4412 	return skb_shinfo(skb)->gso_size;
4413 }
4414 
4415 /* Note: Should be called only if skb_is_gso(skb) is true */
4416 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4417 {
4418 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4419 }
4420 
4421 /* Note: Should be called only if skb_is_gso(skb) is true */
4422 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4423 {
4424 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4425 }
4426 
4427 /* Note: Should be called only if skb_is_gso(skb) is true */
4428 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4429 {
4430 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4431 }
4432 
4433 static inline void skb_gso_reset(struct sk_buff *skb)
4434 {
4435 	skb_shinfo(skb)->gso_size = 0;
4436 	skb_shinfo(skb)->gso_segs = 0;
4437 	skb_shinfo(skb)->gso_type = 0;
4438 }
4439 
4440 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4441 					 u16 increment)
4442 {
4443 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4444 		return;
4445 	shinfo->gso_size += increment;
4446 }
4447 
4448 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4449 					 u16 decrement)
4450 {
4451 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4452 		return;
4453 	shinfo->gso_size -= decrement;
4454 }
4455 
4456 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4457 
4458 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4459 {
4460 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4461 	 * wanted then gso_type will be set. */
4462 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4463 
4464 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4465 	    unlikely(shinfo->gso_type == 0)) {
4466 		__skb_warn_lro_forwarding(skb);
4467 		return true;
4468 	}
4469 	return false;
4470 }
4471 
4472 static inline void skb_forward_csum(struct sk_buff *skb)
4473 {
4474 	/* Unfortunately we don't support this one.  Any brave souls? */
4475 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4476 		skb->ip_summed = CHECKSUM_NONE;
4477 }
4478 
4479 /**
4480  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4481  * @skb: skb to check
4482  *
4483  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4484  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4485  * use this helper, to document places where we make this assertion.
4486  */
4487 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4488 {
4489 #ifdef DEBUG
4490 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4491 #endif
4492 }
4493 
4494 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4495 
4496 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4497 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4498 				     unsigned int transport_len,
4499 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4500 
4501 /**
4502  * skb_head_is_locked - Determine if the skb->head is locked down
4503  * @skb: skb to check
4504  *
4505  * The head on skbs build around a head frag can be removed if they are
4506  * not cloned.  This function returns true if the skb head is locked down
4507  * due to either being allocated via kmalloc, or by being a clone with
4508  * multiple references to the head.
4509  */
4510 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4511 {
4512 	return !skb->head_frag || skb_cloned(skb);
4513 }
4514 
4515 /* Local Checksum Offload.
4516  * Compute outer checksum based on the assumption that the
4517  * inner checksum will be offloaded later.
4518  * See Documentation/networking/checksum-offloads.rst for
4519  * explanation of how this works.
4520  * Fill in outer checksum adjustment (e.g. with sum of outer
4521  * pseudo-header) before calling.
4522  * Also ensure that inner checksum is in linear data area.
4523  */
4524 static inline __wsum lco_csum(struct sk_buff *skb)
4525 {
4526 	unsigned char *csum_start = skb_checksum_start(skb);
4527 	unsigned char *l4_hdr = skb_transport_header(skb);
4528 	__wsum partial;
4529 
4530 	/* Start with complement of inner checksum adjustment */
4531 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4532 						    skb->csum_offset));
4533 
4534 	/* Add in checksum of our headers (incl. outer checksum
4535 	 * adjustment filled in by caller) and return result.
4536 	 */
4537 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4538 }
4539 
4540 #endif	/* __KERNEL__ */
4541 #endif	/* _LINUX_SKBUFF_H */
4542