1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <net/flow.h> 40 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 41 #include <linux/netfilter/nf_conntrack_common.h> 42 #endif 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 struct bpf_prog; 247 union bpf_attr; 248 struct skb_ext; 249 250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 251 struct nf_bridge_info { 252 enum { 253 BRNF_PROTO_UNCHANGED, 254 BRNF_PROTO_8021Q, 255 BRNF_PROTO_PPPOE 256 } orig_proto:8; 257 u8 pkt_otherhost:1; 258 u8 in_prerouting:1; 259 u8 bridged_dnat:1; 260 __u16 frag_max_size; 261 struct net_device *physindev; 262 263 /* always valid & non-NULL from FORWARD on, for physdev match */ 264 struct net_device *physoutdev; 265 union { 266 /* prerouting: detect dnat in orig/reply direction */ 267 __be32 ipv4_daddr; 268 struct in6_addr ipv6_daddr; 269 270 /* after prerouting + nat detected: store original source 271 * mac since neigh resolution overwrites it, only used while 272 * skb is out in neigh layer. 273 */ 274 char neigh_header[8]; 275 }; 276 }; 277 #endif 278 279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 280 /* Chain in tc_skb_ext will be used to share the tc chain with 281 * ovs recirc_id. It will be set to the current chain by tc 282 * and read by ovs to recirc_id. 283 */ 284 struct tc_skb_ext { 285 __u32 chain; 286 }; 287 #endif 288 289 struct sk_buff_head { 290 /* These two members must be first. */ 291 struct sk_buff *next; 292 struct sk_buff *prev; 293 294 __u32 qlen; 295 spinlock_t lock; 296 }; 297 298 struct sk_buff; 299 300 /* To allow 64K frame to be packed as single skb without frag_list we 301 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 302 * buffers which do not start on a page boundary. 303 * 304 * Since GRO uses frags we allocate at least 16 regardless of page 305 * size. 306 */ 307 #if (65536/PAGE_SIZE + 1) < 16 308 #define MAX_SKB_FRAGS 16UL 309 #else 310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 311 #endif 312 extern int sysctl_max_skb_frags; 313 314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 315 * segment using its current segmentation instead. 316 */ 317 #define GSO_BY_FRAGS 0xFFFF 318 319 typedef struct bio_vec skb_frag_t; 320 321 /** 322 * skb_frag_size() - Returns the size of a skb fragment 323 * @frag: skb fragment 324 */ 325 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 326 { 327 return frag->bv_len; 328 } 329 330 /** 331 * skb_frag_size_set() - Sets the size of a skb fragment 332 * @frag: skb fragment 333 * @size: size of fragment 334 */ 335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 336 { 337 frag->bv_len = size; 338 } 339 340 /** 341 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 342 * @frag: skb fragment 343 * @delta: value to add 344 */ 345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 346 { 347 frag->bv_len += delta; 348 } 349 350 /** 351 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 352 * @frag: skb fragment 353 * @delta: value to subtract 354 */ 355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 356 { 357 frag->bv_len -= delta; 358 } 359 360 /** 361 * skb_frag_must_loop - Test if %p is a high memory page 362 * @p: fragment's page 363 */ 364 static inline bool skb_frag_must_loop(struct page *p) 365 { 366 #if defined(CONFIG_HIGHMEM) 367 if (PageHighMem(p)) 368 return true; 369 #endif 370 return false; 371 } 372 373 /** 374 * skb_frag_foreach_page - loop over pages in a fragment 375 * 376 * @f: skb frag to operate on 377 * @f_off: offset from start of f->bv_page 378 * @f_len: length from f_off to loop over 379 * @p: (temp var) current page 380 * @p_off: (temp var) offset from start of current page, 381 * non-zero only on first page. 382 * @p_len: (temp var) length in current page, 383 * < PAGE_SIZE only on first and last page. 384 * @copied: (temp var) length so far, excluding current p_len. 385 * 386 * A fragment can hold a compound page, in which case per-page 387 * operations, notably kmap_atomic, must be called for each 388 * regular page. 389 */ 390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 391 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 392 p_off = (f_off) & (PAGE_SIZE - 1), \ 393 p_len = skb_frag_must_loop(p) ? \ 394 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 395 copied = 0; \ 396 copied < f_len; \ 397 copied += p_len, p++, p_off = 0, \ 398 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 399 400 #define HAVE_HW_TIME_STAMP 401 402 /** 403 * struct skb_shared_hwtstamps - hardware time stamps 404 * @hwtstamp: hardware time stamp transformed into duration 405 * since arbitrary point in time 406 * 407 * Software time stamps generated by ktime_get_real() are stored in 408 * skb->tstamp. 409 * 410 * hwtstamps can only be compared against other hwtstamps from 411 * the same device. 412 * 413 * This structure is attached to packets as part of the 414 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 415 */ 416 struct skb_shared_hwtstamps { 417 ktime_t hwtstamp; 418 }; 419 420 /* Definitions for tx_flags in struct skb_shared_info */ 421 enum { 422 /* generate hardware time stamp */ 423 SKBTX_HW_TSTAMP = 1 << 0, 424 425 /* generate software time stamp when queueing packet to NIC */ 426 SKBTX_SW_TSTAMP = 1 << 1, 427 428 /* device driver is going to provide hardware time stamp */ 429 SKBTX_IN_PROGRESS = 1 << 2, 430 431 /* device driver supports TX zero-copy buffers */ 432 SKBTX_DEV_ZEROCOPY = 1 << 3, 433 434 /* generate wifi status information (where possible) */ 435 SKBTX_WIFI_STATUS = 1 << 4, 436 437 /* This indicates at least one fragment might be overwritten 438 * (as in vmsplice(), sendfile() ...) 439 * If we need to compute a TX checksum, we'll need to copy 440 * all frags to avoid possible bad checksum 441 */ 442 SKBTX_SHARED_FRAG = 1 << 5, 443 444 /* generate software time stamp when entering packet scheduling */ 445 SKBTX_SCHED_TSTAMP = 1 << 6, 446 }; 447 448 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 449 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 450 SKBTX_SCHED_TSTAMP) 451 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 452 453 /* 454 * The callback notifies userspace to release buffers when skb DMA is done in 455 * lower device, the skb last reference should be 0 when calling this. 456 * The zerocopy_success argument is true if zero copy transmit occurred, 457 * false on data copy or out of memory error caused by data copy attempt. 458 * The ctx field is used to track device context. 459 * The desc field is used to track userspace buffer index. 460 */ 461 struct ubuf_info { 462 void (*callback)(struct ubuf_info *, bool zerocopy_success); 463 union { 464 struct { 465 unsigned long desc; 466 void *ctx; 467 }; 468 struct { 469 u32 id; 470 u16 len; 471 u16 zerocopy:1; 472 u32 bytelen; 473 }; 474 }; 475 refcount_t refcnt; 476 477 struct mmpin { 478 struct user_struct *user; 479 unsigned int num_pg; 480 } mmp; 481 }; 482 483 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 484 485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 486 void mm_unaccount_pinned_pages(struct mmpin *mmp); 487 488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 490 struct ubuf_info *uarg); 491 492 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 493 { 494 refcount_inc(&uarg->refcnt); 495 } 496 497 void sock_zerocopy_put(struct ubuf_info *uarg); 498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 499 500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 501 502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 504 struct msghdr *msg, int len, 505 struct ubuf_info *uarg); 506 507 /* This data is invariant across clones and lives at 508 * the end of the header data, ie. at skb->end. 509 */ 510 struct skb_shared_info { 511 __u8 __unused; 512 __u8 meta_len; 513 __u8 nr_frags; 514 __u8 tx_flags; 515 unsigned short gso_size; 516 /* Warning: this field is not always filled in (UFO)! */ 517 unsigned short gso_segs; 518 struct sk_buff *frag_list; 519 struct skb_shared_hwtstamps hwtstamps; 520 unsigned int gso_type; 521 u32 tskey; 522 523 /* 524 * Warning : all fields before dataref are cleared in __alloc_skb() 525 */ 526 atomic_t dataref; 527 528 /* Intermediate layers must ensure that destructor_arg 529 * remains valid until skb destructor */ 530 void * destructor_arg; 531 532 /* must be last field, see pskb_expand_head() */ 533 skb_frag_t frags[MAX_SKB_FRAGS]; 534 }; 535 536 /* We divide dataref into two halves. The higher 16 bits hold references 537 * to the payload part of skb->data. The lower 16 bits hold references to 538 * the entire skb->data. A clone of a headerless skb holds the length of 539 * the header in skb->hdr_len. 540 * 541 * All users must obey the rule that the skb->data reference count must be 542 * greater than or equal to the payload reference count. 543 * 544 * Holding a reference to the payload part means that the user does not 545 * care about modifications to the header part of skb->data. 546 */ 547 #define SKB_DATAREF_SHIFT 16 548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 549 550 551 enum { 552 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 553 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 554 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 555 }; 556 557 enum { 558 SKB_GSO_TCPV4 = 1 << 0, 559 560 /* This indicates the skb is from an untrusted source. */ 561 SKB_GSO_DODGY = 1 << 1, 562 563 /* This indicates the tcp segment has CWR set. */ 564 SKB_GSO_TCP_ECN = 1 << 2, 565 566 SKB_GSO_TCP_FIXEDID = 1 << 3, 567 568 SKB_GSO_TCPV6 = 1 << 4, 569 570 SKB_GSO_FCOE = 1 << 5, 571 572 SKB_GSO_GRE = 1 << 6, 573 574 SKB_GSO_GRE_CSUM = 1 << 7, 575 576 SKB_GSO_IPXIP4 = 1 << 8, 577 578 SKB_GSO_IPXIP6 = 1 << 9, 579 580 SKB_GSO_UDP_TUNNEL = 1 << 10, 581 582 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 583 584 SKB_GSO_PARTIAL = 1 << 12, 585 586 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 587 588 SKB_GSO_SCTP = 1 << 14, 589 590 SKB_GSO_ESP = 1 << 15, 591 592 SKB_GSO_UDP = 1 << 16, 593 594 SKB_GSO_UDP_L4 = 1 << 17, 595 596 SKB_GSO_FRAGLIST = 1 << 18, 597 }; 598 599 #if BITS_PER_LONG > 32 600 #define NET_SKBUFF_DATA_USES_OFFSET 1 601 #endif 602 603 #ifdef NET_SKBUFF_DATA_USES_OFFSET 604 typedef unsigned int sk_buff_data_t; 605 #else 606 typedef unsigned char *sk_buff_data_t; 607 #endif 608 609 /** 610 * struct sk_buff - socket buffer 611 * @next: Next buffer in list 612 * @prev: Previous buffer in list 613 * @tstamp: Time we arrived/left 614 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 615 * @sk: Socket we are owned by 616 * @dev: Device we arrived on/are leaving by 617 * @cb: Control buffer. Free for use by every layer. Put private vars here 618 * @_skb_refdst: destination entry (with norefcount bit) 619 * @sp: the security path, used for xfrm 620 * @len: Length of actual data 621 * @data_len: Data length 622 * @mac_len: Length of link layer header 623 * @hdr_len: writable header length of cloned skb 624 * @csum: Checksum (must include start/offset pair) 625 * @csum_start: Offset from skb->head where checksumming should start 626 * @csum_offset: Offset from csum_start where checksum should be stored 627 * @priority: Packet queueing priority 628 * @ignore_df: allow local fragmentation 629 * @cloned: Head may be cloned (check refcnt to be sure) 630 * @ip_summed: Driver fed us an IP checksum 631 * @nohdr: Payload reference only, must not modify header 632 * @pkt_type: Packet class 633 * @fclone: skbuff clone status 634 * @ipvs_property: skbuff is owned by ipvs 635 * @offload_fwd_mark: Packet was L2-forwarded in hardware 636 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 637 * @tc_skip_classify: do not classify packet. set by IFB device 638 * @tc_at_ingress: used within tc_classify to distinguish in/egress 639 * @tc_redirected: packet was redirected by a tc action 640 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 641 * @peeked: this packet has been seen already, so stats have been 642 * done for it, don't do them again 643 * @nf_trace: netfilter packet trace flag 644 * @protocol: Packet protocol from driver 645 * @destructor: Destruct function 646 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 647 * @_nfct: Associated connection, if any (with nfctinfo bits) 648 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 649 * @skb_iif: ifindex of device we arrived on 650 * @tc_index: Traffic control index 651 * @hash: the packet hash 652 * @queue_mapping: Queue mapping for multiqueue devices 653 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 654 * @active_extensions: active extensions (skb_ext_id types) 655 * @ndisc_nodetype: router type (from link layer) 656 * @ooo_okay: allow the mapping of a socket to a queue to be changed 657 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 658 * ports. 659 * @sw_hash: indicates hash was computed in software stack 660 * @wifi_acked_valid: wifi_acked was set 661 * @wifi_acked: whether frame was acked on wifi or not 662 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 663 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 664 * @dst_pending_confirm: need to confirm neighbour 665 * @decrypted: Decrypted SKB 666 * @napi_id: id of the NAPI struct this skb came from 667 * @secmark: security marking 668 * @mark: Generic packet mark 669 * @vlan_proto: vlan encapsulation protocol 670 * @vlan_tci: vlan tag control information 671 * @inner_protocol: Protocol (encapsulation) 672 * @inner_transport_header: Inner transport layer header (encapsulation) 673 * @inner_network_header: Network layer header (encapsulation) 674 * @inner_mac_header: Link layer header (encapsulation) 675 * @transport_header: Transport layer header 676 * @network_header: Network layer header 677 * @mac_header: Link layer header 678 * @tail: Tail pointer 679 * @end: End pointer 680 * @head: Head of buffer 681 * @data: Data head pointer 682 * @truesize: Buffer size 683 * @users: User count - see {datagram,tcp}.c 684 * @extensions: allocated extensions, valid if active_extensions is nonzero 685 */ 686 687 struct sk_buff { 688 union { 689 struct { 690 /* These two members must be first. */ 691 struct sk_buff *next; 692 struct sk_buff *prev; 693 694 union { 695 struct net_device *dev; 696 /* Some protocols might use this space to store information, 697 * while device pointer would be NULL. 698 * UDP receive path is one user. 699 */ 700 unsigned long dev_scratch; 701 }; 702 }; 703 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 704 struct list_head list; 705 }; 706 707 union { 708 struct sock *sk; 709 int ip_defrag_offset; 710 }; 711 712 union { 713 ktime_t tstamp; 714 u64 skb_mstamp_ns; /* earliest departure time */ 715 }; 716 /* 717 * This is the control buffer. It is free to use for every 718 * layer. Please put your private variables there. If you 719 * want to keep them across layers you have to do a skb_clone() 720 * first. This is owned by whoever has the skb queued ATM. 721 */ 722 char cb[48] __aligned(8); 723 724 union { 725 struct { 726 unsigned long _skb_refdst; 727 void (*destructor)(struct sk_buff *skb); 728 }; 729 struct list_head tcp_tsorted_anchor; 730 }; 731 732 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 733 unsigned long _nfct; 734 #endif 735 unsigned int len, 736 data_len; 737 __u16 mac_len, 738 hdr_len; 739 740 /* Following fields are _not_ copied in __copy_skb_header() 741 * Note that queue_mapping is here mostly to fill a hole. 742 */ 743 __u16 queue_mapping; 744 745 /* if you move cloned around you also must adapt those constants */ 746 #ifdef __BIG_ENDIAN_BITFIELD 747 #define CLONED_MASK (1 << 7) 748 #else 749 #define CLONED_MASK 1 750 #endif 751 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 752 753 __u8 __cloned_offset[0]; 754 __u8 cloned:1, 755 nohdr:1, 756 fclone:2, 757 peeked:1, 758 head_frag:1, 759 pfmemalloc:1; 760 #ifdef CONFIG_SKB_EXTENSIONS 761 __u8 active_extensions; 762 #endif 763 /* fields enclosed in headers_start/headers_end are copied 764 * using a single memcpy() in __copy_skb_header() 765 */ 766 /* private: */ 767 __u32 headers_start[0]; 768 /* public: */ 769 770 /* if you move pkt_type around you also must adapt those constants */ 771 #ifdef __BIG_ENDIAN_BITFIELD 772 #define PKT_TYPE_MAX (7 << 5) 773 #else 774 #define PKT_TYPE_MAX 7 775 #endif 776 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 777 778 __u8 __pkt_type_offset[0]; 779 __u8 pkt_type:3; 780 __u8 ignore_df:1; 781 __u8 nf_trace:1; 782 __u8 ip_summed:2; 783 __u8 ooo_okay:1; 784 785 __u8 l4_hash:1; 786 __u8 sw_hash:1; 787 __u8 wifi_acked_valid:1; 788 __u8 wifi_acked:1; 789 __u8 no_fcs:1; 790 /* Indicates the inner headers are valid in the skbuff. */ 791 __u8 encapsulation:1; 792 __u8 encap_hdr_csum:1; 793 __u8 csum_valid:1; 794 795 #ifdef __BIG_ENDIAN_BITFIELD 796 #define PKT_VLAN_PRESENT_BIT 7 797 #else 798 #define PKT_VLAN_PRESENT_BIT 0 799 #endif 800 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 801 __u8 __pkt_vlan_present_offset[0]; 802 __u8 vlan_present:1; 803 __u8 csum_complete_sw:1; 804 __u8 csum_level:2; 805 __u8 csum_not_inet:1; 806 __u8 dst_pending_confirm:1; 807 #ifdef CONFIG_IPV6_NDISC_NODETYPE 808 __u8 ndisc_nodetype:2; 809 #endif 810 811 __u8 ipvs_property:1; 812 __u8 inner_protocol_type:1; 813 __u8 remcsum_offload:1; 814 #ifdef CONFIG_NET_SWITCHDEV 815 __u8 offload_fwd_mark:1; 816 __u8 offload_l3_fwd_mark:1; 817 #endif 818 #ifdef CONFIG_NET_CLS_ACT 819 __u8 tc_skip_classify:1; 820 __u8 tc_at_ingress:1; 821 __u8 tc_redirected:1; 822 __u8 tc_from_ingress:1; 823 #endif 824 #ifdef CONFIG_TLS_DEVICE 825 __u8 decrypted:1; 826 #endif 827 828 #ifdef CONFIG_NET_SCHED 829 __u16 tc_index; /* traffic control index */ 830 #endif 831 832 union { 833 __wsum csum; 834 struct { 835 __u16 csum_start; 836 __u16 csum_offset; 837 }; 838 }; 839 __u32 priority; 840 int skb_iif; 841 __u32 hash; 842 __be16 vlan_proto; 843 __u16 vlan_tci; 844 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 845 union { 846 unsigned int napi_id; 847 unsigned int sender_cpu; 848 }; 849 #endif 850 #ifdef CONFIG_NETWORK_SECMARK 851 __u32 secmark; 852 #endif 853 854 union { 855 __u32 mark; 856 __u32 reserved_tailroom; 857 }; 858 859 union { 860 __be16 inner_protocol; 861 __u8 inner_ipproto; 862 }; 863 864 __u16 inner_transport_header; 865 __u16 inner_network_header; 866 __u16 inner_mac_header; 867 868 __be16 protocol; 869 __u16 transport_header; 870 __u16 network_header; 871 __u16 mac_header; 872 873 /* private: */ 874 __u32 headers_end[0]; 875 /* public: */ 876 877 /* These elements must be at the end, see alloc_skb() for details. */ 878 sk_buff_data_t tail; 879 sk_buff_data_t end; 880 unsigned char *head, 881 *data; 882 unsigned int truesize; 883 refcount_t users; 884 885 #ifdef CONFIG_SKB_EXTENSIONS 886 /* only useable after checking ->active_extensions != 0 */ 887 struct skb_ext *extensions; 888 #endif 889 }; 890 891 #ifdef __KERNEL__ 892 /* 893 * Handling routines are only of interest to the kernel 894 */ 895 896 #define SKB_ALLOC_FCLONE 0x01 897 #define SKB_ALLOC_RX 0x02 898 #define SKB_ALLOC_NAPI 0x04 899 900 /** 901 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 902 * @skb: buffer 903 */ 904 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 905 { 906 return unlikely(skb->pfmemalloc); 907 } 908 909 /* 910 * skb might have a dst pointer attached, refcounted or not. 911 * _skb_refdst low order bit is set if refcount was _not_ taken 912 */ 913 #define SKB_DST_NOREF 1UL 914 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 915 916 /** 917 * skb_dst - returns skb dst_entry 918 * @skb: buffer 919 * 920 * Returns skb dst_entry, regardless of reference taken or not. 921 */ 922 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 923 { 924 /* If refdst was not refcounted, check we still are in a 925 * rcu_read_lock section 926 */ 927 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 928 !rcu_read_lock_held() && 929 !rcu_read_lock_bh_held()); 930 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 931 } 932 933 /** 934 * skb_dst_set - sets skb dst 935 * @skb: buffer 936 * @dst: dst entry 937 * 938 * Sets skb dst, assuming a reference was taken on dst and should 939 * be released by skb_dst_drop() 940 */ 941 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 942 { 943 skb->_skb_refdst = (unsigned long)dst; 944 } 945 946 /** 947 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 948 * @skb: buffer 949 * @dst: dst entry 950 * 951 * Sets skb dst, assuming a reference was not taken on dst. 952 * If dst entry is cached, we do not take reference and dst_release 953 * will be avoided by refdst_drop. If dst entry is not cached, we take 954 * reference, so that last dst_release can destroy the dst immediately. 955 */ 956 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 957 { 958 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 959 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 960 } 961 962 /** 963 * skb_dst_is_noref - Test if skb dst isn't refcounted 964 * @skb: buffer 965 */ 966 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 967 { 968 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 969 } 970 971 /** 972 * skb_rtable - Returns the skb &rtable 973 * @skb: buffer 974 */ 975 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 976 { 977 return (struct rtable *)skb_dst(skb); 978 } 979 980 /* For mangling skb->pkt_type from user space side from applications 981 * such as nft, tc, etc, we only allow a conservative subset of 982 * possible pkt_types to be set. 983 */ 984 static inline bool skb_pkt_type_ok(u32 ptype) 985 { 986 return ptype <= PACKET_OTHERHOST; 987 } 988 989 /** 990 * skb_napi_id - Returns the skb's NAPI id 991 * @skb: buffer 992 */ 993 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 994 { 995 #ifdef CONFIG_NET_RX_BUSY_POLL 996 return skb->napi_id; 997 #else 998 return 0; 999 #endif 1000 } 1001 1002 /** 1003 * skb_unref - decrement the skb's reference count 1004 * @skb: buffer 1005 * 1006 * Returns true if we can free the skb. 1007 */ 1008 static inline bool skb_unref(struct sk_buff *skb) 1009 { 1010 if (unlikely(!skb)) 1011 return false; 1012 if (likely(refcount_read(&skb->users) == 1)) 1013 smp_rmb(); 1014 else if (likely(!refcount_dec_and_test(&skb->users))) 1015 return false; 1016 1017 return true; 1018 } 1019 1020 void skb_release_head_state(struct sk_buff *skb); 1021 void kfree_skb(struct sk_buff *skb); 1022 void kfree_skb_list(struct sk_buff *segs); 1023 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1024 void skb_tx_error(struct sk_buff *skb); 1025 void consume_skb(struct sk_buff *skb); 1026 void __consume_stateless_skb(struct sk_buff *skb); 1027 void __kfree_skb(struct sk_buff *skb); 1028 extern struct kmem_cache *skbuff_head_cache; 1029 1030 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1031 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1032 bool *fragstolen, int *delta_truesize); 1033 1034 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1035 int node); 1036 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1037 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1038 struct sk_buff *build_skb_around(struct sk_buff *skb, 1039 void *data, unsigned int frag_size); 1040 1041 /** 1042 * alloc_skb - allocate a network buffer 1043 * @size: size to allocate 1044 * @priority: allocation mask 1045 * 1046 * This function is a convenient wrapper around __alloc_skb(). 1047 */ 1048 static inline struct sk_buff *alloc_skb(unsigned int size, 1049 gfp_t priority) 1050 { 1051 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1052 } 1053 1054 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1055 unsigned long data_len, 1056 int max_page_order, 1057 int *errcode, 1058 gfp_t gfp_mask); 1059 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1060 1061 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1062 struct sk_buff_fclones { 1063 struct sk_buff skb1; 1064 1065 struct sk_buff skb2; 1066 1067 refcount_t fclone_ref; 1068 }; 1069 1070 /** 1071 * skb_fclone_busy - check if fclone is busy 1072 * @sk: socket 1073 * @skb: buffer 1074 * 1075 * Returns true if skb is a fast clone, and its clone is not freed. 1076 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1077 * so we also check that this didnt happen. 1078 */ 1079 static inline bool skb_fclone_busy(const struct sock *sk, 1080 const struct sk_buff *skb) 1081 { 1082 const struct sk_buff_fclones *fclones; 1083 1084 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1085 1086 return skb->fclone == SKB_FCLONE_ORIG && 1087 refcount_read(&fclones->fclone_ref) > 1 && 1088 fclones->skb2.sk == sk; 1089 } 1090 1091 /** 1092 * alloc_skb_fclone - allocate a network buffer from fclone cache 1093 * @size: size to allocate 1094 * @priority: allocation mask 1095 * 1096 * This function is a convenient wrapper around __alloc_skb(). 1097 */ 1098 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1099 gfp_t priority) 1100 { 1101 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1102 } 1103 1104 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1105 void skb_headers_offset_update(struct sk_buff *skb, int off); 1106 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1107 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1108 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1109 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1110 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1111 gfp_t gfp_mask, bool fclone); 1112 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1113 gfp_t gfp_mask) 1114 { 1115 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1116 } 1117 1118 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1119 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1120 unsigned int headroom); 1121 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1122 int newtailroom, gfp_t priority); 1123 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1124 int offset, int len); 1125 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1126 int offset, int len); 1127 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1128 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1129 1130 /** 1131 * skb_pad - zero pad the tail of an skb 1132 * @skb: buffer to pad 1133 * @pad: space to pad 1134 * 1135 * Ensure that a buffer is followed by a padding area that is zero 1136 * filled. Used by network drivers which may DMA or transfer data 1137 * beyond the buffer end onto the wire. 1138 * 1139 * May return error in out of memory cases. The skb is freed on error. 1140 */ 1141 static inline int skb_pad(struct sk_buff *skb, int pad) 1142 { 1143 return __skb_pad(skb, pad, true); 1144 } 1145 #define dev_kfree_skb(a) consume_skb(a) 1146 1147 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1148 int offset, size_t size); 1149 1150 struct skb_seq_state { 1151 __u32 lower_offset; 1152 __u32 upper_offset; 1153 __u32 frag_idx; 1154 __u32 stepped_offset; 1155 struct sk_buff *root_skb; 1156 struct sk_buff *cur_skb; 1157 __u8 *frag_data; 1158 }; 1159 1160 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1161 unsigned int to, struct skb_seq_state *st); 1162 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1163 struct skb_seq_state *st); 1164 void skb_abort_seq_read(struct skb_seq_state *st); 1165 1166 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1167 unsigned int to, struct ts_config *config); 1168 1169 /* 1170 * Packet hash types specify the type of hash in skb_set_hash. 1171 * 1172 * Hash types refer to the protocol layer addresses which are used to 1173 * construct a packet's hash. The hashes are used to differentiate or identify 1174 * flows of the protocol layer for the hash type. Hash types are either 1175 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1176 * 1177 * Properties of hashes: 1178 * 1179 * 1) Two packets in different flows have different hash values 1180 * 2) Two packets in the same flow should have the same hash value 1181 * 1182 * A hash at a higher layer is considered to be more specific. A driver should 1183 * set the most specific hash possible. 1184 * 1185 * A driver cannot indicate a more specific hash than the layer at which a hash 1186 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1187 * 1188 * A driver may indicate a hash level which is less specific than the 1189 * actual layer the hash was computed on. For instance, a hash computed 1190 * at L4 may be considered an L3 hash. This should only be done if the 1191 * driver can't unambiguously determine that the HW computed the hash at 1192 * the higher layer. Note that the "should" in the second property above 1193 * permits this. 1194 */ 1195 enum pkt_hash_types { 1196 PKT_HASH_TYPE_NONE, /* Undefined type */ 1197 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1198 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1199 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1200 }; 1201 1202 static inline void skb_clear_hash(struct sk_buff *skb) 1203 { 1204 skb->hash = 0; 1205 skb->sw_hash = 0; 1206 skb->l4_hash = 0; 1207 } 1208 1209 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1210 { 1211 if (!skb->l4_hash) 1212 skb_clear_hash(skb); 1213 } 1214 1215 static inline void 1216 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1217 { 1218 skb->l4_hash = is_l4; 1219 skb->sw_hash = is_sw; 1220 skb->hash = hash; 1221 } 1222 1223 static inline void 1224 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1225 { 1226 /* Used by drivers to set hash from HW */ 1227 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1228 } 1229 1230 static inline void 1231 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1232 { 1233 __skb_set_hash(skb, hash, true, is_l4); 1234 } 1235 1236 void __skb_get_hash(struct sk_buff *skb); 1237 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1238 u32 skb_get_poff(const struct sk_buff *skb); 1239 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1240 const struct flow_keys_basic *keys, int hlen); 1241 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1242 void *data, int hlen_proto); 1243 1244 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1245 int thoff, u8 ip_proto) 1246 { 1247 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1248 } 1249 1250 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1251 const struct flow_dissector_key *key, 1252 unsigned int key_count); 1253 1254 #ifdef CONFIG_NET 1255 int skb_flow_dissector_prog_query(const union bpf_attr *attr, 1256 union bpf_attr __user *uattr); 1257 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1258 struct bpf_prog *prog); 1259 1260 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1261 #else 1262 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr, 1263 union bpf_attr __user *uattr) 1264 { 1265 return -EOPNOTSUPP; 1266 } 1267 1268 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1269 struct bpf_prog *prog) 1270 { 1271 return -EOPNOTSUPP; 1272 } 1273 1274 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1275 { 1276 return -EOPNOTSUPP; 1277 } 1278 #endif 1279 1280 struct bpf_flow_dissector; 1281 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1282 __be16 proto, int nhoff, int hlen, unsigned int flags); 1283 1284 bool __skb_flow_dissect(const struct net *net, 1285 const struct sk_buff *skb, 1286 struct flow_dissector *flow_dissector, 1287 void *target_container, 1288 void *data, __be16 proto, int nhoff, int hlen, 1289 unsigned int flags); 1290 1291 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1292 struct flow_dissector *flow_dissector, 1293 void *target_container, unsigned int flags) 1294 { 1295 return __skb_flow_dissect(NULL, skb, flow_dissector, 1296 target_container, NULL, 0, 0, 0, flags); 1297 } 1298 1299 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1300 struct flow_keys *flow, 1301 unsigned int flags) 1302 { 1303 memset(flow, 0, sizeof(*flow)); 1304 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1305 flow, NULL, 0, 0, 0, flags); 1306 } 1307 1308 static inline bool 1309 skb_flow_dissect_flow_keys_basic(const struct net *net, 1310 const struct sk_buff *skb, 1311 struct flow_keys_basic *flow, void *data, 1312 __be16 proto, int nhoff, int hlen, 1313 unsigned int flags) 1314 { 1315 memset(flow, 0, sizeof(*flow)); 1316 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1317 data, proto, nhoff, hlen, flags); 1318 } 1319 1320 void skb_flow_dissect_meta(const struct sk_buff *skb, 1321 struct flow_dissector *flow_dissector, 1322 void *target_container); 1323 1324 /* Gets a skb connection tracking info, ctinfo map should be a 1325 * a map of mapsize to translate enum ip_conntrack_info states 1326 * to user states. 1327 */ 1328 void 1329 skb_flow_dissect_ct(const struct sk_buff *skb, 1330 struct flow_dissector *flow_dissector, 1331 void *target_container, 1332 u16 *ctinfo_map, 1333 size_t mapsize); 1334 void 1335 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1336 struct flow_dissector *flow_dissector, 1337 void *target_container); 1338 1339 static inline __u32 skb_get_hash(struct sk_buff *skb) 1340 { 1341 if (!skb->l4_hash && !skb->sw_hash) 1342 __skb_get_hash(skb); 1343 1344 return skb->hash; 1345 } 1346 1347 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1348 { 1349 if (!skb->l4_hash && !skb->sw_hash) { 1350 struct flow_keys keys; 1351 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1352 1353 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1354 } 1355 1356 return skb->hash; 1357 } 1358 1359 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1360 const siphash_key_t *perturb); 1361 1362 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1363 { 1364 return skb->hash; 1365 } 1366 1367 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1368 { 1369 to->hash = from->hash; 1370 to->sw_hash = from->sw_hash; 1371 to->l4_hash = from->l4_hash; 1372 }; 1373 1374 static inline void skb_copy_decrypted(struct sk_buff *to, 1375 const struct sk_buff *from) 1376 { 1377 #ifdef CONFIG_TLS_DEVICE 1378 to->decrypted = from->decrypted; 1379 #endif 1380 } 1381 1382 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1383 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1384 { 1385 return skb->head + skb->end; 1386 } 1387 1388 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1389 { 1390 return skb->end; 1391 } 1392 #else 1393 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1394 { 1395 return skb->end; 1396 } 1397 1398 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1399 { 1400 return skb->end - skb->head; 1401 } 1402 #endif 1403 1404 /* Internal */ 1405 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1406 1407 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1408 { 1409 return &skb_shinfo(skb)->hwtstamps; 1410 } 1411 1412 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1413 { 1414 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1415 1416 return is_zcopy ? skb_uarg(skb) : NULL; 1417 } 1418 1419 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1420 bool *have_ref) 1421 { 1422 if (skb && uarg && !skb_zcopy(skb)) { 1423 if (unlikely(have_ref && *have_ref)) 1424 *have_ref = false; 1425 else 1426 sock_zerocopy_get(uarg); 1427 skb_shinfo(skb)->destructor_arg = uarg; 1428 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1429 } 1430 } 1431 1432 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1433 { 1434 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1435 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1436 } 1437 1438 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1439 { 1440 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1441 } 1442 1443 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1444 { 1445 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1446 } 1447 1448 /* Release a reference on a zerocopy structure */ 1449 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1450 { 1451 struct ubuf_info *uarg = skb_zcopy(skb); 1452 1453 if (uarg) { 1454 if (skb_zcopy_is_nouarg(skb)) { 1455 /* no notification callback */ 1456 } else if (uarg->callback == sock_zerocopy_callback) { 1457 uarg->zerocopy = uarg->zerocopy && zerocopy; 1458 sock_zerocopy_put(uarg); 1459 } else { 1460 uarg->callback(uarg, zerocopy); 1461 } 1462 1463 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1464 } 1465 } 1466 1467 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1468 static inline void skb_zcopy_abort(struct sk_buff *skb) 1469 { 1470 struct ubuf_info *uarg = skb_zcopy(skb); 1471 1472 if (uarg) { 1473 sock_zerocopy_put_abort(uarg, false); 1474 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1475 } 1476 } 1477 1478 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1479 { 1480 skb->next = NULL; 1481 } 1482 1483 /* Iterate through singly-linked GSO fragments of an skb. */ 1484 #define skb_list_walk_safe(first, skb, next_skb) \ 1485 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1486 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1487 1488 static inline void skb_list_del_init(struct sk_buff *skb) 1489 { 1490 __list_del_entry(&skb->list); 1491 skb_mark_not_on_list(skb); 1492 } 1493 1494 /** 1495 * skb_queue_empty - check if a queue is empty 1496 * @list: queue head 1497 * 1498 * Returns true if the queue is empty, false otherwise. 1499 */ 1500 static inline int skb_queue_empty(const struct sk_buff_head *list) 1501 { 1502 return list->next == (const struct sk_buff *) list; 1503 } 1504 1505 /** 1506 * skb_queue_empty_lockless - check if a queue is empty 1507 * @list: queue head 1508 * 1509 * Returns true if the queue is empty, false otherwise. 1510 * This variant can be used in lockless contexts. 1511 */ 1512 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1513 { 1514 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1515 } 1516 1517 1518 /** 1519 * skb_queue_is_last - check if skb is the last entry in the queue 1520 * @list: queue head 1521 * @skb: buffer 1522 * 1523 * Returns true if @skb is the last buffer on the list. 1524 */ 1525 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1526 const struct sk_buff *skb) 1527 { 1528 return skb->next == (const struct sk_buff *) list; 1529 } 1530 1531 /** 1532 * skb_queue_is_first - check if skb is the first entry in the queue 1533 * @list: queue head 1534 * @skb: buffer 1535 * 1536 * Returns true if @skb is the first buffer on the list. 1537 */ 1538 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1539 const struct sk_buff *skb) 1540 { 1541 return skb->prev == (const struct sk_buff *) list; 1542 } 1543 1544 /** 1545 * skb_queue_next - return the next packet in the queue 1546 * @list: queue head 1547 * @skb: current buffer 1548 * 1549 * Return the next packet in @list after @skb. It is only valid to 1550 * call this if skb_queue_is_last() evaluates to false. 1551 */ 1552 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1553 const struct sk_buff *skb) 1554 { 1555 /* This BUG_ON may seem severe, but if we just return then we 1556 * are going to dereference garbage. 1557 */ 1558 BUG_ON(skb_queue_is_last(list, skb)); 1559 return skb->next; 1560 } 1561 1562 /** 1563 * skb_queue_prev - return the prev packet in the queue 1564 * @list: queue head 1565 * @skb: current buffer 1566 * 1567 * Return the prev packet in @list before @skb. It is only valid to 1568 * call this if skb_queue_is_first() evaluates to false. 1569 */ 1570 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1571 const struct sk_buff *skb) 1572 { 1573 /* This BUG_ON may seem severe, but if we just return then we 1574 * are going to dereference garbage. 1575 */ 1576 BUG_ON(skb_queue_is_first(list, skb)); 1577 return skb->prev; 1578 } 1579 1580 /** 1581 * skb_get - reference buffer 1582 * @skb: buffer to reference 1583 * 1584 * Makes another reference to a socket buffer and returns a pointer 1585 * to the buffer. 1586 */ 1587 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1588 { 1589 refcount_inc(&skb->users); 1590 return skb; 1591 } 1592 1593 /* 1594 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1595 */ 1596 1597 /** 1598 * skb_cloned - is the buffer a clone 1599 * @skb: buffer to check 1600 * 1601 * Returns true if the buffer was generated with skb_clone() and is 1602 * one of multiple shared copies of the buffer. Cloned buffers are 1603 * shared data so must not be written to under normal circumstances. 1604 */ 1605 static inline int skb_cloned(const struct sk_buff *skb) 1606 { 1607 return skb->cloned && 1608 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1609 } 1610 1611 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1612 { 1613 might_sleep_if(gfpflags_allow_blocking(pri)); 1614 1615 if (skb_cloned(skb)) 1616 return pskb_expand_head(skb, 0, 0, pri); 1617 1618 return 0; 1619 } 1620 1621 /** 1622 * skb_header_cloned - is the header a clone 1623 * @skb: buffer to check 1624 * 1625 * Returns true if modifying the header part of the buffer requires 1626 * the data to be copied. 1627 */ 1628 static inline int skb_header_cloned(const struct sk_buff *skb) 1629 { 1630 int dataref; 1631 1632 if (!skb->cloned) 1633 return 0; 1634 1635 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1636 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1637 return dataref != 1; 1638 } 1639 1640 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1641 { 1642 might_sleep_if(gfpflags_allow_blocking(pri)); 1643 1644 if (skb_header_cloned(skb)) 1645 return pskb_expand_head(skb, 0, 0, pri); 1646 1647 return 0; 1648 } 1649 1650 /** 1651 * __skb_header_release - release reference to header 1652 * @skb: buffer to operate on 1653 */ 1654 static inline void __skb_header_release(struct sk_buff *skb) 1655 { 1656 skb->nohdr = 1; 1657 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1658 } 1659 1660 1661 /** 1662 * skb_shared - is the buffer shared 1663 * @skb: buffer to check 1664 * 1665 * Returns true if more than one person has a reference to this 1666 * buffer. 1667 */ 1668 static inline int skb_shared(const struct sk_buff *skb) 1669 { 1670 return refcount_read(&skb->users) != 1; 1671 } 1672 1673 /** 1674 * skb_share_check - check if buffer is shared and if so clone it 1675 * @skb: buffer to check 1676 * @pri: priority for memory allocation 1677 * 1678 * If the buffer is shared the buffer is cloned and the old copy 1679 * drops a reference. A new clone with a single reference is returned. 1680 * If the buffer is not shared the original buffer is returned. When 1681 * being called from interrupt status or with spinlocks held pri must 1682 * be GFP_ATOMIC. 1683 * 1684 * NULL is returned on a memory allocation failure. 1685 */ 1686 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1687 { 1688 might_sleep_if(gfpflags_allow_blocking(pri)); 1689 if (skb_shared(skb)) { 1690 struct sk_buff *nskb = skb_clone(skb, pri); 1691 1692 if (likely(nskb)) 1693 consume_skb(skb); 1694 else 1695 kfree_skb(skb); 1696 skb = nskb; 1697 } 1698 return skb; 1699 } 1700 1701 /* 1702 * Copy shared buffers into a new sk_buff. We effectively do COW on 1703 * packets to handle cases where we have a local reader and forward 1704 * and a couple of other messy ones. The normal one is tcpdumping 1705 * a packet thats being forwarded. 1706 */ 1707 1708 /** 1709 * skb_unshare - make a copy of a shared buffer 1710 * @skb: buffer to check 1711 * @pri: priority for memory allocation 1712 * 1713 * If the socket buffer is a clone then this function creates a new 1714 * copy of the data, drops a reference count on the old copy and returns 1715 * the new copy with the reference count at 1. If the buffer is not a clone 1716 * the original buffer is returned. When called with a spinlock held or 1717 * from interrupt state @pri must be %GFP_ATOMIC 1718 * 1719 * %NULL is returned on a memory allocation failure. 1720 */ 1721 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1722 gfp_t pri) 1723 { 1724 might_sleep_if(gfpflags_allow_blocking(pri)); 1725 if (skb_cloned(skb)) { 1726 struct sk_buff *nskb = skb_copy(skb, pri); 1727 1728 /* Free our shared copy */ 1729 if (likely(nskb)) 1730 consume_skb(skb); 1731 else 1732 kfree_skb(skb); 1733 skb = nskb; 1734 } 1735 return skb; 1736 } 1737 1738 /** 1739 * skb_peek - peek at the head of an &sk_buff_head 1740 * @list_: list to peek at 1741 * 1742 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1743 * be careful with this one. A peek leaves the buffer on the 1744 * list and someone else may run off with it. You must hold 1745 * the appropriate locks or have a private queue to do this. 1746 * 1747 * Returns %NULL for an empty list or a pointer to the head element. 1748 * The reference count is not incremented and the reference is therefore 1749 * volatile. Use with caution. 1750 */ 1751 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1752 { 1753 struct sk_buff *skb = list_->next; 1754 1755 if (skb == (struct sk_buff *)list_) 1756 skb = NULL; 1757 return skb; 1758 } 1759 1760 /** 1761 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1762 * @list_: list to peek at 1763 * 1764 * Like skb_peek(), but the caller knows that the list is not empty. 1765 */ 1766 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1767 { 1768 return list_->next; 1769 } 1770 1771 /** 1772 * skb_peek_next - peek skb following the given one from a queue 1773 * @skb: skb to start from 1774 * @list_: list to peek at 1775 * 1776 * Returns %NULL when the end of the list is met or a pointer to the 1777 * next element. The reference count is not incremented and the 1778 * reference is therefore volatile. Use with caution. 1779 */ 1780 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1781 const struct sk_buff_head *list_) 1782 { 1783 struct sk_buff *next = skb->next; 1784 1785 if (next == (struct sk_buff *)list_) 1786 next = NULL; 1787 return next; 1788 } 1789 1790 /** 1791 * skb_peek_tail - peek at the tail of an &sk_buff_head 1792 * @list_: list to peek at 1793 * 1794 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1795 * be careful with this one. A peek leaves the buffer on the 1796 * list and someone else may run off with it. You must hold 1797 * the appropriate locks or have a private queue to do this. 1798 * 1799 * Returns %NULL for an empty list or a pointer to the tail element. 1800 * The reference count is not incremented and the reference is therefore 1801 * volatile. Use with caution. 1802 */ 1803 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1804 { 1805 struct sk_buff *skb = READ_ONCE(list_->prev); 1806 1807 if (skb == (struct sk_buff *)list_) 1808 skb = NULL; 1809 return skb; 1810 1811 } 1812 1813 /** 1814 * skb_queue_len - get queue length 1815 * @list_: list to measure 1816 * 1817 * Return the length of an &sk_buff queue. 1818 */ 1819 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1820 { 1821 return list_->qlen; 1822 } 1823 1824 /** 1825 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1826 * @list: queue to initialize 1827 * 1828 * This initializes only the list and queue length aspects of 1829 * an sk_buff_head object. This allows to initialize the list 1830 * aspects of an sk_buff_head without reinitializing things like 1831 * the spinlock. It can also be used for on-stack sk_buff_head 1832 * objects where the spinlock is known to not be used. 1833 */ 1834 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1835 { 1836 list->prev = list->next = (struct sk_buff *)list; 1837 list->qlen = 0; 1838 } 1839 1840 /* 1841 * This function creates a split out lock class for each invocation; 1842 * this is needed for now since a whole lot of users of the skb-queue 1843 * infrastructure in drivers have different locking usage (in hardirq) 1844 * than the networking core (in softirq only). In the long run either the 1845 * network layer or drivers should need annotation to consolidate the 1846 * main types of usage into 3 classes. 1847 */ 1848 static inline void skb_queue_head_init(struct sk_buff_head *list) 1849 { 1850 spin_lock_init(&list->lock); 1851 __skb_queue_head_init(list); 1852 } 1853 1854 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1855 struct lock_class_key *class) 1856 { 1857 skb_queue_head_init(list); 1858 lockdep_set_class(&list->lock, class); 1859 } 1860 1861 /* 1862 * Insert an sk_buff on a list. 1863 * 1864 * The "__skb_xxxx()" functions are the non-atomic ones that 1865 * can only be called with interrupts disabled. 1866 */ 1867 static inline void __skb_insert(struct sk_buff *newsk, 1868 struct sk_buff *prev, struct sk_buff *next, 1869 struct sk_buff_head *list) 1870 { 1871 /* See skb_queue_empty_lockless() and skb_peek_tail() 1872 * for the opposite READ_ONCE() 1873 */ 1874 WRITE_ONCE(newsk->next, next); 1875 WRITE_ONCE(newsk->prev, prev); 1876 WRITE_ONCE(next->prev, newsk); 1877 WRITE_ONCE(prev->next, newsk); 1878 list->qlen++; 1879 } 1880 1881 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1882 struct sk_buff *prev, 1883 struct sk_buff *next) 1884 { 1885 struct sk_buff *first = list->next; 1886 struct sk_buff *last = list->prev; 1887 1888 WRITE_ONCE(first->prev, prev); 1889 WRITE_ONCE(prev->next, first); 1890 1891 WRITE_ONCE(last->next, next); 1892 WRITE_ONCE(next->prev, last); 1893 } 1894 1895 /** 1896 * skb_queue_splice - join two skb lists, this is designed for stacks 1897 * @list: the new list to add 1898 * @head: the place to add it in the first list 1899 */ 1900 static inline void skb_queue_splice(const struct sk_buff_head *list, 1901 struct sk_buff_head *head) 1902 { 1903 if (!skb_queue_empty(list)) { 1904 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1905 head->qlen += list->qlen; 1906 } 1907 } 1908 1909 /** 1910 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1911 * @list: the new list to add 1912 * @head: the place to add it in the first list 1913 * 1914 * The list at @list is reinitialised 1915 */ 1916 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1917 struct sk_buff_head *head) 1918 { 1919 if (!skb_queue_empty(list)) { 1920 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1921 head->qlen += list->qlen; 1922 __skb_queue_head_init(list); 1923 } 1924 } 1925 1926 /** 1927 * skb_queue_splice_tail - join two skb lists, each list being a queue 1928 * @list: the new list to add 1929 * @head: the place to add it in the first list 1930 */ 1931 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1932 struct sk_buff_head *head) 1933 { 1934 if (!skb_queue_empty(list)) { 1935 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1936 head->qlen += list->qlen; 1937 } 1938 } 1939 1940 /** 1941 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1942 * @list: the new list to add 1943 * @head: the place to add it in the first list 1944 * 1945 * Each of the lists is a queue. 1946 * The list at @list is reinitialised 1947 */ 1948 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1949 struct sk_buff_head *head) 1950 { 1951 if (!skb_queue_empty(list)) { 1952 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1953 head->qlen += list->qlen; 1954 __skb_queue_head_init(list); 1955 } 1956 } 1957 1958 /** 1959 * __skb_queue_after - queue a buffer at the list head 1960 * @list: list to use 1961 * @prev: place after this buffer 1962 * @newsk: buffer to queue 1963 * 1964 * Queue a buffer int the middle of a list. This function takes no locks 1965 * and you must therefore hold required locks before calling it. 1966 * 1967 * A buffer cannot be placed on two lists at the same time. 1968 */ 1969 static inline void __skb_queue_after(struct sk_buff_head *list, 1970 struct sk_buff *prev, 1971 struct sk_buff *newsk) 1972 { 1973 __skb_insert(newsk, prev, prev->next, list); 1974 } 1975 1976 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1977 struct sk_buff_head *list); 1978 1979 static inline void __skb_queue_before(struct sk_buff_head *list, 1980 struct sk_buff *next, 1981 struct sk_buff *newsk) 1982 { 1983 __skb_insert(newsk, next->prev, next, list); 1984 } 1985 1986 /** 1987 * __skb_queue_head - queue a buffer at the list head 1988 * @list: list to use 1989 * @newsk: buffer to queue 1990 * 1991 * Queue a buffer at the start of a list. This function takes no locks 1992 * and you must therefore hold required locks before calling it. 1993 * 1994 * A buffer cannot be placed on two lists at the same time. 1995 */ 1996 static inline void __skb_queue_head(struct sk_buff_head *list, 1997 struct sk_buff *newsk) 1998 { 1999 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2000 } 2001 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2002 2003 /** 2004 * __skb_queue_tail - queue a buffer at the list tail 2005 * @list: list to use 2006 * @newsk: buffer to queue 2007 * 2008 * Queue a buffer at the end of a list. This function takes no locks 2009 * and you must therefore hold required locks before calling it. 2010 * 2011 * A buffer cannot be placed on two lists at the same time. 2012 */ 2013 static inline void __skb_queue_tail(struct sk_buff_head *list, 2014 struct sk_buff *newsk) 2015 { 2016 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2017 } 2018 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2019 2020 /* 2021 * remove sk_buff from list. _Must_ be called atomically, and with 2022 * the list known.. 2023 */ 2024 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2025 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2026 { 2027 struct sk_buff *next, *prev; 2028 2029 list->qlen--; 2030 next = skb->next; 2031 prev = skb->prev; 2032 skb->next = skb->prev = NULL; 2033 WRITE_ONCE(next->prev, prev); 2034 WRITE_ONCE(prev->next, next); 2035 } 2036 2037 /** 2038 * __skb_dequeue - remove from the head of the queue 2039 * @list: list to dequeue from 2040 * 2041 * Remove the head of the list. This function does not take any locks 2042 * so must be used with appropriate locks held only. The head item is 2043 * returned or %NULL if the list is empty. 2044 */ 2045 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2046 { 2047 struct sk_buff *skb = skb_peek(list); 2048 if (skb) 2049 __skb_unlink(skb, list); 2050 return skb; 2051 } 2052 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2053 2054 /** 2055 * __skb_dequeue_tail - remove from the tail of the queue 2056 * @list: list to dequeue from 2057 * 2058 * Remove the tail of the list. This function does not take any locks 2059 * so must be used with appropriate locks held only. The tail item is 2060 * returned or %NULL if the list is empty. 2061 */ 2062 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2063 { 2064 struct sk_buff *skb = skb_peek_tail(list); 2065 if (skb) 2066 __skb_unlink(skb, list); 2067 return skb; 2068 } 2069 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2070 2071 2072 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2073 { 2074 return skb->data_len; 2075 } 2076 2077 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2078 { 2079 return skb->len - skb->data_len; 2080 } 2081 2082 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2083 { 2084 unsigned int i, len = 0; 2085 2086 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2087 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2088 return len; 2089 } 2090 2091 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2092 { 2093 return skb_headlen(skb) + __skb_pagelen(skb); 2094 } 2095 2096 /** 2097 * __skb_fill_page_desc - initialise a paged fragment in an skb 2098 * @skb: buffer containing fragment to be initialised 2099 * @i: paged fragment index to initialise 2100 * @page: the page to use for this fragment 2101 * @off: the offset to the data with @page 2102 * @size: the length of the data 2103 * 2104 * Initialises the @i'th fragment of @skb to point to &size bytes at 2105 * offset @off within @page. 2106 * 2107 * Does not take any additional reference on the fragment. 2108 */ 2109 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2110 struct page *page, int off, int size) 2111 { 2112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2113 2114 /* 2115 * Propagate page pfmemalloc to the skb if we can. The problem is 2116 * that not all callers have unique ownership of the page but rely 2117 * on page_is_pfmemalloc doing the right thing(tm). 2118 */ 2119 frag->bv_page = page; 2120 frag->bv_offset = off; 2121 skb_frag_size_set(frag, size); 2122 2123 page = compound_head(page); 2124 if (page_is_pfmemalloc(page)) 2125 skb->pfmemalloc = true; 2126 } 2127 2128 /** 2129 * skb_fill_page_desc - initialise a paged fragment in an skb 2130 * @skb: buffer containing fragment to be initialised 2131 * @i: paged fragment index to initialise 2132 * @page: the page to use for this fragment 2133 * @off: the offset to the data with @page 2134 * @size: the length of the data 2135 * 2136 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2137 * @skb to point to @size bytes at offset @off within @page. In 2138 * addition updates @skb such that @i is the last fragment. 2139 * 2140 * Does not take any additional reference on the fragment. 2141 */ 2142 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2143 struct page *page, int off, int size) 2144 { 2145 __skb_fill_page_desc(skb, i, page, off, size); 2146 skb_shinfo(skb)->nr_frags = i + 1; 2147 } 2148 2149 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2150 int size, unsigned int truesize); 2151 2152 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2153 unsigned int truesize); 2154 2155 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2156 2157 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2158 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2159 { 2160 return skb->head + skb->tail; 2161 } 2162 2163 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2164 { 2165 skb->tail = skb->data - skb->head; 2166 } 2167 2168 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2169 { 2170 skb_reset_tail_pointer(skb); 2171 skb->tail += offset; 2172 } 2173 2174 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2175 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2176 { 2177 return skb->tail; 2178 } 2179 2180 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2181 { 2182 skb->tail = skb->data; 2183 } 2184 2185 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2186 { 2187 skb->tail = skb->data + offset; 2188 } 2189 2190 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2191 2192 /* 2193 * Add data to an sk_buff 2194 */ 2195 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2196 void *skb_put(struct sk_buff *skb, unsigned int len); 2197 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2198 { 2199 void *tmp = skb_tail_pointer(skb); 2200 SKB_LINEAR_ASSERT(skb); 2201 skb->tail += len; 2202 skb->len += len; 2203 return tmp; 2204 } 2205 2206 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2207 { 2208 void *tmp = __skb_put(skb, len); 2209 2210 memset(tmp, 0, len); 2211 return tmp; 2212 } 2213 2214 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2215 unsigned int len) 2216 { 2217 void *tmp = __skb_put(skb, len); 2218 2219 memcpy(tmp, data, len); 2220 return tmp; 2221 } 2222 2223 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2224 { 2225 *(u8 *)__skb_put(skb, 1) = val; 2226 } 2227 2228 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2229 { 2230 void *tmp = skb_put(skb, len); 2231 2232 memset(tmp, 0, len); 2233 2234 return tmp; 2235 } 2236 2237 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2238 unsigned int len) 2239 { 2240 void *tmp = skb_put(skb, len); 2241 2242 memcpy(tmp, data, len); 2243 2244 return tmp; 2245 } 2246 2247 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2248 { 2249 *(u8 *)skb_put(skb, 1) = val; 2250 } 2251 2252 void *skb_push(struct sk_buff *skb, unsigned int len); 2253 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2254 { 2255 skb->data -= len; 2256 skb->len += len; 2257 return skb->data; 2258 } 2259 2260 void *skb_pull(struct sk_buff *skb, unsigned int len); 2261 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2262 { 2263 skb->len -= len; 2264 BUG_ON(skb->len < skb->data_len); 2265 return skb->data += len; 2266 } 2267 2268 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2269 { 2270 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2271 } 2272 2273 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2274 2275 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2276 { 2277 if (len > skb_headlen(skb) && 2278 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2279 return NULL; 2280 skb->len -= len; 2281 return skb->data += len; 2282 } 2283 2284 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2285 { 2286 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2287 } 2288 2289 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2290 { 2291 if (likely(len <= skb_headlen(skb))) 2292 return true; 2293 if (unlikely(len > skb->len)) 2294 return false; 2295 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2296 } 2297 2298 void skb_condense(struct sk_buff *skb); 2299 2300 /** 2301 * skb_headroom - bytes at buffer head 2302 * @skb: buffer to check 2303 * 2304 * Return the number of bytes of free space at the head of an &sk_buff. 2305 */ 2306 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2307 { 2308 return skb->data - skb->head; 2309 } 2310 2311 /** 2312 * skb_tailroom - bytes at buffer end 2313 * @skb: buffer to check 2314 * 2315 * Return the number of bytes of free space at the tail of an sk_buff 2316 */ 2317 static inline int skb_tailroom(const struct sk_buff *skb) 2318 { 2319 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2320 } 2321 2322 /** 2323 * skb_availroom - bytes at buffer end 2324 * @skb: buffer to check 2325 * 2326 * Return the number of bytes of free space at the tail of an sk_buff 2327 * allocated by sk_stream_alloc() 2328 */ 2329 static inline int skb_availroom(const struct sk_buff *skb) 2330 { 2331 if (skb_is_nonlinear(skb)) 2332 return 0; 2333 2334 return skb->end - skb->tail - skb->reserved_tailroom; 2335 } 2336 2337 /** 2338 * skb_reserve - adjust headroom 2339 * @skb: buffer to alter 2340 * @len: bytes to move 2341 * 2342 * Increase the headroom of an empty &sk_buff by reducing the tail 2343 * room. This is only allowed for an empty buffer. 2344 */ 2345 static inline void skb_reserve(struct sk_buff *skb, int len) 2346 { 2347 skb->data += len; 2348 skb->tail += len; 2349 } 2350 2351 /** 2352 * skb_tailroom_reserve - adjust reserved_tailroom 2353 * @skb: buffer to alter 2354 * @mtu: maximum amount of headlen permitted 2355 * @needed_tailroom: minimum amount of reserved_tailroom 2356 * 2357 * Set reserved_tailroom so that headlen can be as large as possible but 2358 * not larger than mtu and tailroom cannot be smaller than 2359 * needed_tailroom. 2360 * The required headroom should already have been reserved before using 2361 * this function. 2362 */ 2363 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2364 unsigned int needed_tailroom) 2365 { 2366 SKB_LINEAR_ASSERT(skb); 2367 if (mtu < skb_tailroom(skb) - needed_tailroom) 2368 /* use at most mtu */ 2369 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2370 else 2371 /* use up to all available space */ 2372 skb->reserved_tailroom = needed_tailroom; 2373 } 2374 2375 #define ENCAP_TYPE_ETHER 0 2376 #define ENCAP_TYPE_IPPROTO 1 2377 2378 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2379 __be16 protocol) 2380 { 2381 skb->inner_protocol = protocol; 2382 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2383 } 2384 2385 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2386 __u8 ipproto) 2387 { 2388 skb->inner_ipproto = ipproto; 2389 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2390 } 2391 2392 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2393 { 2394 skb->inner_mac_header = skb->mac_header; 2395 skb->inner_network_header = skb->network_header; 2396 skb->inner_transport_header = skb->transport_header; 2397 } 2398 2399 static inline void skb_reset_mac_len(struct sk_buff *skb) 2400 { 2401 skb->mac_len = skb->network_header - skb->mac_header; 2402 } 2403 2404 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2405 *skb) 2406 { 2407 return skb->head + skb->inner_transport_header; 2408 } 2409 2410 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2411 { 2412 return skb_inner_transport_header(skb) - skb->data; 2413 } 2414 2415 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2416 { 2417 skb->inner_transport_header = skb->data - skb->head; 2418 } 2419 2420 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2421 const int offset) 2422 { 2423 skb_reset_inner_transport_header(skb); 2424 skb->inner_transport_header += offset; 2425 } 2426 2427 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2428 { 2429 return skb->head + skb->inner_network_header; 2430 } 2431 2432 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2433 { 2434 skb->inner_network_header = skb->data - skb->head; 2435 } 2436 2437 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2438 const int offset) 2439 { 2440 skb_reset_inner_network_header(skb); 2441 skb->inner_network_header += offset; 2442 } 2443 2444 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2445 { 2446 return skb->head + skb->inner_mac_header; 2447 } 2448 2449 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2450 { 2451 skb->inner_mac_header = skb->data - skb->head; 2452 } 2453 2454 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2455 const int offset) 2456 { 2457 skb_reset_inner_mac_header(skb); 2458 skb->inner_mac_header += offset; 2459 } 2460 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2461 { 2462 return skb->transport_header != (typeof(skb->transport_header))~0U; 2463 } 2464 2465 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2466 { 2467 return skb->head + skb->transport_header; 2468 } 2469 2470 static inline void skb_reset_transport_header(struct sk_buff *skb) 2471 { 2472 skb->transport_header = skb->data - skb->head; 2473 } 2474 2475 static inline void skb_set_transport_header(struct sk_buff *skb, 2476 const int offset) 2477 { 2478 skb_reset_transport_header(skb); 2479 skb->transport_header += offset; 2480 } 2481 2482 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2483 { 2484 return skb->head + skb->network_header; 2485 } 2486 2487 static inline void skb_reset_network_header(struct sk_buff *skb) 2488 { 2489 skb->network_header = skb->data - skb->head; 2490 } 2491 2492 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2493 { 2494 skb_reset_network_header(skb); 2495 skb->network_header += offset; 2496 } 2497 2498 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2499 { 2500 return skb->head + skb->mac_header; 2501 } 2502 2503 static inline int skb_mac_offset(const struct sk_buff *skb) 2504 { 2505 return skb_mac_header(skb) - skb->data; 2506 } 2507 2508 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2509 { 2510 return skb->network_header - skb->mac_header; 2511 } 2512 2513 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2514 { 2515 return skb->mac_header != (typeof(skb->mac_header))~0U; 2516 } 2517 2518 static inline void skb_reset_mac_header(struct sk_buff *skb) 2519 { 2520 skb->mac_header = skb->data - skb->head; 2521 } 2522 2523 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2524 { 2525 skb_reset_mac_header(skb); 2526 skb->mac_header += offset; 2527 } 2528 2529 static inline void skb_pop_mac_header(struct sk_buff *skb) 2530 { 2531 skb->mac_header = skb->network_header; 2532 } 2533 2534 static inline void skb_probe_transport_header(struct sk_buff *skb) 2535 { 2536 struct flow_keys_basic keys; 2537 2538 if (skb_transport_header_was_set(skb)) 2539 return; 2540 2541 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2542 NULL, 0, 0, 0, 0)) 2543 skb_set_transport_header(skb, keys.control.thoff); 2544 } 2545 2546 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2547 { 2548 if (skb_mac_header_was_set(skb)) { 2549 const unsigned char *old_mac = skb_mac_header(skb); 2550 2551 skb_set_mac_header(skb, -skb->mac_len); 2552 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2553 } 2554 } 2555 2556 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2557 { 2558 return skb->csum_start - skb_headroom(skb); 2559 } 2560 2561 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2562 { 2563 return skb->head + skb->csum_start; 2564 } 2565 2566 static inline int skb_transport_offset(const struct sk_buff *skb) 2567 { 2568 return skb_transport_header(skb) - skb->data; 2569 } 2570 2571 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2572 { 2573 return skb->transport_header - skb->network_header; 2574 } 2575 2576 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2577 { 2578 return skb->inner_transport_header - skb->inner_network_header; 2579 } 2580 2581 static inline int skb_network_offset(const struct sk_buff *skb) 2582 { 2583 return skb_network_header(skb) - skb->data; 2584 } 2585 2586 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2587 { 2588 return skb_inner_network_header(skb) - skb->data; 2589 } 2590 2591 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2592 { 2593 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2594 } 2595 2596 /* 2597 * CPUs often take a performance hit when accessing unaligned memory 2598 * locations. The actual performance hit varies, it can be small if the 2599 * hardware handles it or large if we have to take an exception and fix it 2600 * in software. 2601 * 2602 * Since an ethernet header is 14 bytes network drivers often end up with 2603 * the IP header at an unaligned offset. The IP header can be aligned by 2604 * shifting the start of the packet by 2 bytes. Drivers should do this 2605 * with: 2606 * 2607 * skb_reserve(skb, NET_IP_ALIGN); 2608 * 2609 * The downside to this alignment of the IP header is that the DMA is now 2610 * unaligned. On some architectures the cost of an unaligned DMA is high 2611 * and this cost outweighs the gains made by aligning the IP header. 2612 * 2613 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2614 * to be overridden. 2615 */ 2616 #ifndef NET_IP_ALIGN 2617 #define NET_IP_ALIGN 2 2618 #endif 2619 2620 /* 2621 * The networking layer reserves some headroom in skb data (via 2622 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2623 * the header has to grow. In the default case, if the header has to grow 2624 * 32 bytes or less we avoid the reallocation. 2625 * 2626 * Unfortunately this headroom changes the DMA alignment of the resulting 2627 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2628 * on some architectures. An architecture can override this value, 2629 * perhaps setting it to a cacheline in size (since that will maintain 2630 * cacheline alignment of the DMA). It must be a power of 2. 2631 * 2632 * Various parts of the networking layer expect at least 32 bytes of 2633 * headroom, you should not reduce this. 2634 * 2635 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2636 * to reduce average number of cache lines per packet. 2637 * get_rps_cpus() for example only access one 64 bytes aligned block : 2638 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2639 */ 2640 #ifndef NET_SKB_PAD 2641 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2642 #endif 2643 2644 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2645 2646 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2647 { 2648 if (WARN_ON(skb_is_nonlinear(skb))) 2649 return; 2650 skb->len = len; 2651 skb_set_tail_pointer(skb, len); 2652 } 2653 2654 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2655 { 2656 __skb_set_length(skb, len); 2657 } 2658 2659 void skb_trim(struct sk_buff *skb, unsigned int len); 2660 2661 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2662 { 2663 if (skb->data_len) 2664 return ___pskb_trim(skb, len); 2665 __skb_trim(skb, len); 2666 return 0; 2667 } 2668 2669 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2670 { 2671 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2672 } 2673 2674 /** 2675 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2676 * @skb: buffer to alter 2677 * @len: new length 2678 * 2679 * This is identical to pskb_trim except that the caller knows that 2680 * the skb is not cloned so we should never get an error due to out- 2681 * of-memory. 2682 */ 2683 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2684 { 2685 int err = pskb_trim(skb, len); 2686 BUG_ON(err); 2687 } 2688 2689 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2690 { 2691 unsigned int diff = len - skb->len; 2692 2693 if (skb_tailroom(skb) < diff) { 2694 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2695 GFP_ATOMIC); 2696 if (ret) 2697 return ret; 2698 } 2699 __skb_set_length(skb, len); 2700 return 0; 2701 } 2702 2703 /** 2704 * skb_orphan - orphan a buffer 2705 * @skb: buffer to orphan 2706 * 2707 * If a buffer currently has an owner then we call the owner's 2708 * destructor function and make the @skb unowned. The buffer continues 2709 * to exist but is no longer charged to its former owner. 2710 */ 2711 static inline void skb_orphan(struct sk_buff *skb) 2712 { 2713 if (skb->destructor) { 2714 skb->destructor(skb); 2715 skb->destructor = NULL; 2716 skb->sk = NULL; 2717 } else { 2718 BUG_ON(skb->sk); 2719 } 2720 } 2721 2722 /** 2723 * skb_orphan_frags - orphan the frags contained in a buffer 2724 * @skb: buffer to orphan frags from 2725 * @gfp_mask: allocation mask for replacement pages 2726 * 2727 * For each frag in the SKB which needs a destructor (i.e. has an 2728 * owner) create a copy of that frag and release the original 2729 * page by calling the destructor. 2730 */ 2731 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2732 { 2733 if (likely(!skb_zcopy(skb))) 2734 return 0; 2735 if (!skb_zcopy_is_nouarg(skb) && 2736 skb_uarg(skb)->callback == sock_zerocopy_callback) 2737 return 0; 2738 return skb_copy_ubufs(skb, gfp_mask); 2739 } 2740 2741 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2742 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2743 { 2744 if (likely(!skb_zcopy(skb))) 2745 return 0; 2746 return skb_copy_ubufs(skb, gfp_mask); 2747 } 2748 2749 /** 2750 * __skb_queue_purge - empty a list 2751 * @list: list to empty 2752 * 2753 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2754 * the list and one reference dropped. This function does not take the 2755 * list lock and the caller must hold the relevant locks to use it. 2756 */ 2757 static inline void __skb_queue_purge(struct sk_buff_head *list) 2758 { 2759 struct sk_buff *skb; 2760 while ((skb = __skb_dequeue(list)) != NULL) 2761 kfree_skb(skb); 2762 } 2763 void skb_queue_purge(struct sk_buff_head *list); 2764 2765 unsigned int skb_rbtree_purge(struct rb_root *root); 2766 2767 void *netdev_alloc_frag(unsigned int fragsz); 2768 2769 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2770 gfp_t gfp_mask); 2771 2772 /** 2773 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2774 * @dev: network device to receive on 2775 * @length: length to allocate 2776 * 2777 * Allocate a new &sk_buff and assign it a usage count of one. The 2778 * buffer has unspecified headroom built in. Users should allocate 2779 * the headroom they think they need without accounting for the 2780 * built in space. The built in space is used for optimisations. 2781 * 2782 * %NULL is returned if there is no free memory. Although this function 2783 * allocates memory it can be called from an interrupt. 2784 */ 2785 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2786 unsigned int length) 2787 { 2788 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2789 } 2790 2791 /* legacy helper around __netdev_alloc_skb() */ 2792 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2793 gfp_t gfp_mask) 2794 { 2795 return __netdev_alloc_skb(NULL, length, gfp_mask); 2796 } 2797 2798 /* legacy helper around netdev_alloc_skb() */ 2799 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2800 { 2801 return netdev_alloc_skb(NULL, length); 2802 } 2803 2804 2805 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2806 unsigned int length, gfp_t gfp) 2807 { 2808 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2809 2810 if (NET_IP_ALIGN && skb) 2811 skb_reserve(skb, NET_IP_ALIGN); 2812 return skb; 2813 } 2814 2815 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2816 unsigned int length) 2817 { 2818 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2819 } 2820 2821 static inline void skb_free_frag(void *addr) 2822 { 2823 page_frag_free(addr); 2824 } 2825 2826 void *napi_alloc_frag(unsigned int fragsz); 2827 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2828 unsigned int length, gfp_t gfp_mask); 2829 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2830 unsigned int length) 2831 { 2832 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2833 } 2834 void napi_consume_skb(struct sk_buff *skb, int budget); 2835 2836 void __kfree_skb_flush(void); 2837 void __kfree_skb_defer(struct sk_buff *skb); 2838 2839 /** 2840 * __dev_alloc_pages - allocate page for network Rx 2841 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2842 * @order: size of the allocation 2843 * 2844 * Allocate a new page. 2845 * 2846 * %NULL is returned if there is no free memory. 2847 */ 2848 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2849 unsigned int order) 2850 { 2851 /* This piece of code contains several assumptions. 2852 * 1. This is for device Rx, therefor a cold page is preferred. 2853 * 2. The expectation is the user wants a compound page. 2854 * 3. If requesting a order 0 page it will not be compound 2855 * due to the check to see if order has a value in prep_new_page 2856 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2857 * code in gfp_to_alloc_flags that should be enforcing this. 2858 */ 2859 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2860 2861 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2862 } 2863 2864 static inline struct page *dev_alloc_pages(unsigned int order) 2865 { 2866 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2867 } 2868 2869 /** 2870 * __dev_alloc_page - allocate a page for network Rx 2871 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2872 * 2873 * Allocate a new page. 2874 * 2875 * %NULL is returned if there is no free memory. 2876 */ 2877 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2878 { 2879 return __dev_alloc_pages(gfp_mask, 0); 2880 } 2881 2882 static inline struct page *dev_alloc_page(void) 2883 { 2884 return dev_alloc_pages(0); 2885 } 2886 2887 /** 2888 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2889 * @page: The page that was allocated from skb_alloc_page 2890 * @skb: The skb that may need pfmemalloc set 2891 */ 2892 static inline void skb_propagate_pfmemalloc(struct page *page, 2893 struct sk_buff *skb) 2894 { 2895 if (page_is_pfmemalloc(page)) 2896 skb->pfmemalloc = true; 2897 } 2898 2899 /** 2900 * skb_frag_off() - Returns the offset of a skb fragment 2901 * @frag: the paged fragment 2902 */ 2903 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 2904 { 2905 return frag->bv_offset; 2906 } 2907 2908 /** 2909 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 2910 * @frag: skb fragment 2911 * @delta: value to add 2912 */ 2913 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 2914 { 2915 frag->bv_offset += delta; 2916 } 2917 2918 /** 2919 * skb_frag_off_set() - Sets the offset of a skb fragment 2920 * @frag: skb fragment 2921 * @offset: offset of fragment 2922 */ 2923 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 2924 { 2925 frag->bv_offset = offset; 2926 } 2927 2928 /** 2929 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 2930 * @fragto: skb fragment where offset is set 2931 * @fragfrom: skb fragment offset is copied from 2932 */ 2933 static inline void skb_frag_off_copy(skb_frag_t *fragto, 2934 const skb_frag_t *fragfrom) 2935 { 2936 fragto->bv_offset = fragfrom->bv_offset; 2937 } 2938 2939 /** 2940 * skb_frag_page - retrieve the page referred to by a paged fragment 2941 * @frag: the paged fragment 2942 * 2943 * Returns the &struct page associated with @frag. 2944 */ 2945 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2946 { 2947 return frag->bv_page; 2948 } 2949 2950 /** 2951 * __skb_frag_ref - take an addition reference on a paged fragment. 2952 * @frag: the paged fragment 2953 * 2954 * Takes an additional reference on the paged fragment @frag. 2955 */ 2956 static inline void __skb_frag_ref(skb_frag_t *frag) 2957 { 2958 get_page(skb_frag_page(frag)); 2959 } 2960 2961 /** 2962 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2963 * @skb: the buffer 2964 * @f: the fragment offset. 2965 * 2966 * Takes an additional reference on the @f'th paged fragment of @skb. 2967 */ 2968 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2969 { 2970 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2971 } 2972 2973 /** 2974 * __skb_frag_unref - release a reference on a paged fragment. 2975 * @frag: the paged fragment 2976 * 2977 * Releases a reference on the paged fragment @frag. 2978 */ 2979 static inline void __skb_frag_unref(skb_frag_t *frag) 2980 { 2981 put_page(skb_frag_page(frag)); 2982 } 2983 2984 /** 2985 * skb_frag_unref - release a reference on a paged fragment of an skb. 2986 * @skb: the buffer 2987 * @f: the fragment offset 2988 * 2989 * Releases a reference on the @f'th paged fragment of @skb. 2990 */ 2991 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2992 { 2993 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2994 } 2995 2996 /** 2997 * skb_frag_address - gets the address of the data contained in a paged fragment 2998 * @frag: the paged fragment buffer 2999 * 3000 * Returns the address of the data within @frag. The page must already 3001 * be mapped. 3002 */ 3003 static inline void *skb_frag_address(const skb_frag_t *frag) 3004 { 3005 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3006 } 3007 3008 /** 3009 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3010 * @frag: the paged fragment buffer 3011 * 3012 * Returns the address of the data within @frag. Checks that the page 3013 * is mapped and returns %NULL otherwise. 3014 */ 3015 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3016 { 3017 void *ptr = page_address(skb_frag_page(frag)); 3018 if (unlikely(!ptr)) 3019 return NULL; 3020 3021 return ptr + skb_frag_off(frag); 3022 } 3023 3024 /** 3025 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3026 * @fragto: skb fragment where page is set 3027 * @fragfrom: skb fragment page is copied from 3028 */ 3029 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3030 const skb_frag_t *fragfrom) 3031 { 3032 fragto->bv_page = fragfrom->bv_page; 3033 } 3034 3035 /** 3036 * __skb_frag_set_page - sets the page contained in a paged fragment 3037 * @frag: the paged fragment 3038 * @page: the page to set 3039 * 3040 * Sets the fragment @frag to contain @page. 3041 */ 3042 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3043 { 3044 frag->bv_page = page; 3045 } 3046 3047 /** 3048 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3049 * @skb: the buffer 3050 * @f: the fragment offset 3051 * @page: the page to set 3052 * 3053 * Sets the @f'th fragment of @skb to contain @page. 3054 */ 3055 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3056 struct page *page) 3057 { 3058 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3059 } 3060 3061 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3062 3063 /** 3064 * skb_frag_dma_map - maps a paged fragment via the DMA API 3065 * @dev: the device to map the fragment to 3066 * @frag: the paged fragment to map 3067 * @offset: the offset within the fragment (starting at the 3068 * fragment's own offset) 3069 * @size: the number of bytes to map 3070 * @dir: the direction of the mapping (``PCI_DMA_*``) 3071 * 3072 * Maps the page associated with @frag to @device. 3073 */ 3074 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3075 const skb_frag_t *frag, 3076 size_t offset, size_t size, 3077 enum dma_data_direction dir) 3078 { 3079 return dma_map_page(dev, skb_frag_page(frag), 3080 skb_frag_off(frag) + offset, size, dir); 3081 } 3082 3083 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3084 gfp_t gfp_mask) 3085 { 3086 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3087 } 3088 3089 3090 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3091 gfp_t gfp_mask) 3092 { 3093 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3094 } 3095 3096 3097 /** 3098 * skb_clone_writable - is the header of a clone writable 3099 * @skb: buffer to check 3100 * @len: length up to which to write 3101 * 3102 * Returns true if modifying the header part of the cloned buffer 3103 * does not requires the data to be copied. 3104 */ 3105 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3106 { 3107 return !skb_header_cloned(skb) && 3108 skb_headroom(skb) + len <= skb->hdr_len; 3109 } 3110 3111 static inline int skb_try_make_writable(struct sk_buff *skb, 3112 unsigned int write_len) 3113 { 3114 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3115 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3116 } 3117 3118 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3119 int cloned) 3120 { 3121 int delta = 0; 3122 3123 if (headroom > skb_headroom(skb)) 3124 delta = headroom - skb_headroom(skb); 3125 3126 if (delta || cloned) 3127 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3128 GFP_ATOMIC); 3129 return 0; 3130 } 3131 3132 /** 3133 * skb_cow - copy header of skb when it is required 3134 * @skb: buffer to cow 3135 * @headroom: needed headroom 3136 * 3137 * If the skb passed lacks sufficient headroom or its data part 3138 * is shared, data is reallocated. If reallocation fails, an error 3139 * is returned and original skb is not changed. 3140 * 3141 * The result is skb with writable area skb->head...skb->tail 3142 * and at least @headroom of space at head. 3143 */ 3144 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3145 { 3146 return __skb_cow(skb, headroom, skb_cloned(skb)); 3147 } 3148 3149 /** 3150 * skb_cow_head - skb_cow but only making the head writable 3151 * @skb: buffer to cow 3152 * @headroom: needed headroom 3153 * 3154 * This function is identical to skb_cow except that we replace the 3155 * skb_cloned check by skb_header_cloned. It should be used when 3156 * you only need to push on some header and do not need to modify 3157 * the data. 3158 */ 3159 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3160 { 3161 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3162 } 3163 3164 /** 3165 * skb_padto - pad an skbuff up to a minimal size 3166 * @skb: buffer to pad 3167 * @len: minimal length 3168 * 3169 * Pads up a buffer to ensure the trailing bytes exist and are 3170 * blanked. If the buffer already contains sufficient data it 3171 * is untouched. Otherwise it is extended. Returns zero on 3172 * success. The skb is freed on error. 3173 */ 3174 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3175 { 3176 unsigned int size = skb->len; 3177 if (likely(size >= len)) 3178 return 0; 3179 return skb_pad(skb, len - size); 3180 } 3181 3182 /** 3183 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3184 * @skb: buffer to pad 3185 * @len: minimal length 3186 * @free_on_error: free buffer on error 3187 * 3188 * Pads up a buffer to ensure the trailing bytes exist and are 3189 * blanked. If the buffer already contains sufficient data it 3190 * is untouched. Otherwise it is extended. Returns zero on 3191 * success. The skb is freed on error if @free_on_error is true. 3192 */ 3193 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3194 bool free_on_error) 3195 { 3196 unsigned int size = skb->len; 3197 3198 if (unlikely(size < len)) { 3199 len -= size; 3200 if (__skb_pad(skb, len, free_on_error)) 3201 return -ENOMEM; 3202 __skb_put(skb, len); 3203 } 3204 return 0; 3205 } 3206 3207 /** 3208 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3209 * @skb: buffer to pad 3210 * @len: minimal length 3211 * 3212 * Pads up a buffer to ensure the trailing bytes exist and are 3213 * blanked. If the buffer already contains sufficient data it 3214 * is untouched. Otherwise it is extended. Returns zero on 3215 * success. The skb is freed on error. 3216 */ 3217 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3218 { 3219 return __skb_put_padto(skb, len, true); 3220 } 3221 3222 static inline int skb_add_data(struct sk_buff *skb, 3223 struct iov_iter *from, int copy) 3224 { 3225 const int off = skb->len; 3226 3227 if (skb->ip_summed == CHECKSUM_NONE) { 3228 __wsum csum = 0; 3229 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3230 &csum, from)) { 3231 skb->csum = csum_block_add(skb->csum, csum, off); 3232 return 0; 3233 } 3234 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3235 return 0; 3236 3237 __skb_trim(skb, off); 3238 return -EFAULT; 3239 } 3240 3241 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3242 const struct page *page, int off) 3243 { 3244 if (skb_zcopy(skb)) 3245 return false; 3246 if (i) { 3247 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3248 3249 return page == skb_frag_page(frag) && 3250 off == skb_frag_off(frag) + skb_frag_size(frag); 3251 } 3252 return false; 3253 } 3254 3255 static inline int __skb_linearize(struct sk_buff *skb) 3256 { 3257 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3258 } 3259 3260 /** 3261 * skb_linearize - convert paged skb to linear one 3262 * @skb: buffer to linarize 3263 * 3264 * If there is no free memory -ENOMEM is returned, otherwise zero 3265 * is returned and the old skb data released. 3266 */ 3267 static inline int skb_linearize(struct sk_buff *skb) 3268 { 3269 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3270 } 3271 3272 /** 3273 * skb_has_shared_frag - can any frag be overwritten 3274 * @skb: buffer to test 3275 * 3276 * Return true if the skb has at least one frag that might be modified 3277 * by an external entity (as in vmsplice()/sendfile()) 3278 */ 3279 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3280 { 3281 return skb_is_nonlinear(skb) && 3282 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3283 } 3284 3285 /** 3286 * skb_linearize_cow - make sure skb is linear and writable 3287 * @skb: buffer to process 3288 * 3289 * If there is no free memory -ENOMEM is returned, otherwise zero 3290 * is returned and the old skb data released. 3291 */ 3292 static inline int skb_linearize_cow(struct sk_buff *skb) 3293 { 3294 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3295 __skb_linearize(skb) : 0; 3296 } 3297 3298 static __always_inline void 3299 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3300 unsigned int off) 3301 { 3302 if (skb->ip_summed == CHECKSUM_COMPLETE) 3303 skb->csum = csum_block_sub(skb->csum, 3304 csum_partial(start, len, 0), off); 3305 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3306 skb_checksum_start_offset(skb) < 0) 3307 skb->ip_summed = CHECKSUM_NONE; 3308 } 3309 3310 /** 3311 * skb_postpull_rcsum - update checksum for received skb after pull 3312 * @skb: buffer to update 3313 * @start: start of data before pull 3314 * @len: length of data pulled 3315 * 3316 * After doing a pull on a received packet, you need to call this to 3317 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3318 * CHECKSUM_NONE so that it can be recomputed from scratch. 3319 */ 3320 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3321 const void *start, unsigned int len) 3322 { 3323 __skb_postpull_rcsum(skb, start, len, 0); 3324 } 3325 3326 static __always_inline void 3327 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3328 unsigned int off) 3329 { 3330 if (skb->ip_summed == CHECKSUM_COMPLETE) 3331 skb->csum = csum_block_add(skb->csum, 3332 csum_partial(start, len, 0), off); 3333 } 3334 3335 /** 3336 * skb_postpush_rcsum - update checksum for received skb after push 3337 * @skb: buffer to update 3338 * @start: start of data after push 3339 * @len: length of data pushed 3340 * 3341 * After doing a push on a received packet, you need to call this to 3342 * update the CHECKSUM_COMPLETE checksum. 3343 */ 3344 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3345 const void *start, unsigned int len) 3346 { 3347 __skb_postpush_rcsum(skb, start, len, 0); 3348 } 3349 3350 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3351 3352 /** 3353 * skb_push_rcsum - push skb and update receive checksum 3354 * @skb: buffer to update 3355 * @len: length of data pulled 3356 * 3357 * This function performs an skb_push on the packet and updates 3358 * the CHECKSUM_COMPLETE checksum. It should be used on 3359 * receive path processing instead of skb_push unless you know 3360 * that the checksum difference is zero (e.g., a valid IP header) 3361 * or you are setting ip_summed to CHECKSUM_NONE. 3362 */ 3363 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3364 { 3365 skb_push(skb, len); 3366 skb_postpush_rcsum(skb, skb->data, len); 3367 return skb->data; 3368 } 3369 3370 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3371 /** 3372 * pskb_trim_rcsum - trim received skb and update checksum 3373 * @skb: buffer to trim 3374 * @len: new length 3375 * 3376 * This is exactly the same as pskb_trim except that it ensures the 3377 * checksum of received packets are still valid after the operation. 3378 * It can change skb pointers. 3379 */ 3380 3381 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3382 { 3383 if (likely(len >= skb->len)) 3384 return 0; 3385 return pskb_trim_rcsum_slow(skb, len); 3386 } 3387 3388 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3389 { 3390 if (skb->ip_summed == CHECKSUM_COMPLETE) 3391 skb->ip_summed = CHECKSUM_NONE; 3392 __skb_trim(skb, len); 3393 return 0; 3394 } 3395 3396 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3397 { 3398 if (skb->ip_summed == CHECKSUM_COMPLETE) 3399 skb->ip_summed = CHECKSUM_NONE; 3400 return __skb_grow(skb, len); 3401 } 3402 3403 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3404 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3405 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3406 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3407 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3408 3409 #define skb_queue_walk(queue, skb) \ 3410 for (skb = (queue)->next; \ 3411 skb != (struct sk_buff *)(queue); \ 3412 skb = skb->next) 3413 3414 #define skb_queue_walk_safe(queue, skb, tmp) \ 3415 for (skb = (queue)->next, tmp = skb->next; \ 3416 skb != (struct sk_buff *)(queue); \ 3417 skb = tmp, tmp = skb->next) 3418 3419 #define skb_queue_walk_from(queue, skb) \ 3420 for (; skb != (struct sk_buff *)(queue); \ 3421 skb = skb->next) 3422 3423 #define skb_rbtree_walk(skb, root) \ 3424 for (skb = skb_rb_first(root); skb != NULL; \ 3425 skb = skb_rb_next(skb)) 3426 3427 #define skb_rbtree_walk_from(skb) \ 3428 for (; skb != NULL; \ 3429 skb = skb_rb_next(skb)) 3430 3431 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3432 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3433 skb = tmp) 3434 3435 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3436 for (tmp = skb->next; \ 3437 skb != (struct sk_buff *)(queue); \ 3438 skb = tmp, tmp = skb->next) 3439 3440 #define skb_queue_reverse_walk(queue, skb) \ 3441 for (skb = (queue)->prev; \ 3442 skb != (struct sk_buff *)(queue); \ 3443 skb = skb->prev) 3444 3445 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3446 for (skb = (queue)->prev, tmp = skb->prev; \ 3447 skb != (struct sk_buff *)(queue); \ 3448 skb = tmp, tmp = skb->prev) 3449 3450 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3451 for (tmp = skb->prev; \ 3452 skb != (struct sk_buff *)(queue); \ 3453 skb = tmp, tmp = skb->prev) 3454 3455 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3456 { 3457 return skb_shinfo(skb)->frag_list != NULL; 3458 } 3459 3460 static inline void skb_frag_list_init(struct sk_buff *skb) 3461 { 3462 skb_shinfo(skb)->frag_list = NULL; 3463 } 3464 3465 #define skb_walk_frags(skb, iter) \ 3466 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3467 3468 3469 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3470 int *err, long *timeo_p, 3471 const struct sk_buff *skb); 3472 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3473 struct sk_buff_head *queue, 3474 unsigned int flags, 3475 void (*destructor)(struct sock *sk, 3476 struct sk_buff *skb), 3477 int *off, int *err, 3478 struct sk_buff **last); 3479 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3480 struct sk_buff_head *queue, 3481 unsigned int flags, 3482 void (*destructor)(struct sock *sk, 3483 struct sk_buff *skb), 3484 int *off, int *err, 3485 struct sk_buff **last); 3486 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3487 struct sk_buff_head *sk_queue, 3488 unsigned int flags, 3489 void (*destructor)(struct sock *sk, 3490 struct sk_buff *skb), 3491 int *off, int *err); 3492 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3493 int *err); 3494 __poll_t datagram_poll(struct file *file, struct socket *sock, 3495 struct poll_table_struct *wait); 3496 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3497 struct iov_iter *to, int size); 3498 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3499 struct msghdr *msg, int size) 3500 { 3501 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3502 } 3503 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3504 struct msghdr *msg); 3505 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3506 struct iov_iter *to, int len, 3507 struct ahash_request *hash); 3508 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3509 struct iov_iter *from, int len); 3510 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3511 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3512 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3513 static inline void skb_free_datagram_locked(struct sock *sk, 3514 struct sk_buff *skb) 3515 { 3516 __skb_free_datagram_locked(sk, skb, 0); 3517 } 3518 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3519 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3520 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3521 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3522 int len, __wsum csum); 3523 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3524 struct pipe_inode_info *pipe, unsigned int len, 3525 unsigned int flags); 3526 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3527 int len); 3528 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3529 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3530 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3531 int len, int hlen); 3532 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3533 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3534 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3535 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3536 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3537 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3538 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3539 unsigned int offset); 3540 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3541 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3542 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3543 int skb_vlan_pop(struct sk_buff *skb); 3544 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3545 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3546 int mac_len, bool ethernet); 3547 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3548 bool ethernet); 3549 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3550 int skb_mpls_dec_ttl(struct sk_buff *skb); 3551 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3552 gfp_t gfp); 3553 3554 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3555 { 3556 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3557 } 3558 3559 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3560 { 3561 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3562 } 3563 3564 struct skb_checksum_ops { 3565 __wsum (*update)(const void *mem, int len, __wsum wsum); 3566 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3567 }; 3568 3569 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3570 3571 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3572 __wsum csum, const struct skb_checksum_ops *ops); 3573 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3574 __wsum csum); 3575 3576 static inline void * __must_check 3577 __skb_header_pointer(const struct sk_buff *skb, int offset, 3578 int len, void *data, int hlen, void *buffer) 3579 { 3580 if (hlen - offset >= len) 3581 return data + offset; 3582 3583 if (!skb || 3584 skb_copy_bits(skb, offset, buffer, len) < 0) 3585 return NULL; 3586 3587 return buffer; 3588 } 3589 3590 static inline void * __must_check 3591 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3592 { 3593 return __skb_header_pointer(skb, offset, len, skb->data, 3594 skb_headlen(skb), buffer); 3595 } 3596 3597 /** 3598 * skb_needs_linearize - check if we need to linearize a given skb 3599 * depending on the given device features. 3600 * @skb: socket buffer to check 3601 * @features: net device features 3602 * 3603 * Returns true if either: 3604 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3605 * 2. skb is fragmented and the device does not support SG. 3606 */ 3607 static inline bool skb_needs_linearize(struct sk_buff *skb, 3608 netdev_features_t features) 3609 { 3610 return skb_is_nonlinear(skb) && 3611 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3612 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3613 } 3614 3615 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3616 void *to, 3617 const unsigned int len) 3618 { 3619 memcpy(to, skb->data, len); 3620 } 3621 3622 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3623 const int offset, void *to, 3624 const unsigned int len) 3625 { 3626 memcpy(to, skb->data + offset, len); 3627 } 3628 3629 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3630 const void *from, 3631 const unsigned int len) 3632 { 3633 memcpy(skb->data, from, len); 3634 } 3635 3636 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3637 const int offset, 3638 const void *from, 3639 const unsigned int len) 3640 { 3641 memcpy(skb->data + offset, from, len); 3642 } 3643 3644 void skb_init(void); 3645 3646 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3647 { 3648 return skb->tstamp; 3649 } 3650 3651 /** 3652 * skb_get_timestamp - get timestamp from a skb 3653 * @skb: skb to get stamp from 3654 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3655 * 3656 * Timestamps are stored in the skb as offsets to a base timestamp. 3657 * This function converts the offset back to a struct timeval and stores 3658 * it in stamp. 3659 */ 3660 static inline void skb_get_timestamp(const struct sk_buff *skb, 3661 struct __kernel_old_timeval *stamp) 3662 { 3663 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3664 } 3665 3666 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3667 struct __kernel_sock_timeval *stamp) 3668 { 3669 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3670 3671 stamp->tv_sec = ts.tv_sec; 3672 stamp->tv_usec = ts.tv_nsec / 1000; 3673 } 3674 3675 static inline void skb_get_timestampns(const struct sk_buff *skb, 3676 struct __kernel_old_timespec *stamp) 3677 { 3678 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3679 3680 stamp->tv_sec = ts.tv_sec; 3681 stamp->tv_nsec = ts.tv_nsec; 3682 } 3683 3684 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3685 struct __kernel_timespec *stamp) 3686 { 3687 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3688 3689 stamp->tv_sec = ts.tv_sec; 3690 stamp->tv_nsec = ts.tv_nsec; 3691 } 3692 3693 static inline void __net_timestamp(struct sk_buff *skb) 3694 { 3695 skb->tstamp = ktime_get_real(); 3696 } 3697 3698 static inline ktime_t net_timedelta(ktime_t t) 3699 { 3700 return ktime_sub(ktime_get_real(), t); 3701 } 3702 3703 static inline ktime_t net_invalid_timestamp(void) 3704 { 3705 return 0; 3706 } 3707 3708 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3709 { 3710 return skb_shinfo(skb)->meta_len; 3711 } 3712 3713 static inline void *skb_metadata_end(const struct sk_buff *skb) 3714 { 3715 return skb_mac_header(skb); 3716 } 3717 3718 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3719 const struct sk_buff *skb_b, 3720 u8 meta_len) 3721 { 3722 const void *a = skb_metadata_end(skb_a); 3723 const void *b = skb_metadata_end(skb_b); 3724 /* Using more efficient varaiant than plain call to memcmp(). */ 3725 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3726 u64 diffs = 0; 3727 3728 switch (meta_len) { 3729 #define __it(x, op) (x -= sizeof(u##op)) 3730 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3731 case 32: diffs |= __it_diff(a, b, 64); 3732 /* fall through */ 3733 case 24: diffs |= __it_diff(a, b, 64); 3734 /* fall through */ 3735 case 16: diffs |= __it_diff(a, b, 64); 3736 /* fall through */ 3737 case 8: diffs |= __it_diff(a, b, 64); 3738 break; 3739 case 28: diffs |= __it_diff(a, b, 64); 3740 /* fall through */ 3741 case 20: diffs |= __it_diff(a, b, 64); 3742 /* fall through */ 3743 case 12: diffs |= __it_diff(a, b, 64); 3744 /* fall through */ 3745 case 4: diffs |= __it_diff(a, b, 32); 3746 break; 3747 } 3748 return diffs; 3749 #else 3750 return memcmp(a - meta_len, b - meta_len, meta_len); 3751 #endif 3752 } 3753 3754 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3755 const struct sk_buff *skb_b) 3756 { 3757 u8 len_a = skb_metadata_len(skb_a); 3758 u8 len_b = skb_metadata_len(skb_b); 3759 3760 if (!(len_a | len_b)) 3761 return false; 3762 3763 return len_a != len_b ? 3764 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3765 } 3766 3767 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3768 { 3769 skb_shinfo(skb)->meta_len = meta_len; 3770 } 3771 3772 static inline void skb_metadata_clear(struct sk_buff *skb) 3773 { 3774 skb_metadata_set(skb, 0); 3775 } 3776 3777 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3778 3779 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3780 3781 void skb_clone_tx_timestamp(struct sk_buff *skb); 3782 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3783 3784 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3785 3786 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3787 { 3788 } 3789 3790 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3791 { 3792 return false; 3793 } 3794 3795 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3796 3797 /** 3798 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3799 * 3800 * PHY drivers may accept clones of transmitted packets for 3801 * timestamping via their phy_driver.txtstamp method. These drivers 3802 * must call this function to return the skb back to the stack with a 3803 * timestamp. 3804 * 3805 * @skb: clone of the the original outgoing packet 3806 * @hwtstamps: hardware time stamps 3807 * 3808 */ 3809 void skb_complete_tx_timestamp(struct sk_buff *skb, 3810 struct skb_shared_hwtstamps *hwtstamps); 3811 3812 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3813 struct skb_shared_hwtstamps *hwtstamps, 3814 struct sock *sk, int tstype); 3815 3816 /** 3817 * skb_tstamp_tx - queue clone of skb with send time stamps 3818 * @orig_skb: the original outgoing packet 3819 * @hwtstamps: hardware time stamps, may be NULL if not available 3820 * 3821 * If the skb has a socket associated, then this function clones the 3822 * skb (thus sharing the actual data and optional structures), stores 3823 * the optional hardware time stamping information (if non NULL) or 3824 * generates a software time stamp (otherwise), then queues the clone 3825 * to the error queue of the socket. Errors are silently ignored. 3826 */ 3827 void skb_tstamp_tx(struct sk_buff *orig_skb, 3828 struct skb_shared_hwtstamps *hwtstamps); 3829 3830 /** 3831 * skb_tx_timestamp() - Driver hook for transmit timestamping 3832 * 3833 * Ethernet MAC Drivers should call this function in their hard_xmit() 3834 * function immediately before giving the sk_buff to the MAC hardware. 3835 * 3836 * Specifically, one should make absolutely sure that this function is 3837 * called before TX completion of this packet can trigger. Otherwise 3838 * the packet could potentially already be freed. 3839 * 3840 * @skb: A socket buffer. 3841 */ 3842 static inline void skb_tx_timestamp(struct sk_buff *skb) 3843 { 3844 skb_clone_tx_timestamp(skb); 3845 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3846 skb_tstamp_tx(skb, NULL); 3847 } 3848 3849 /** 3850 * skb_complete_wifi_ack - deliver skb with wifi status 3851 * 3852 * @skb: the original outgoing packet 3853 * @acked: ack status 3854 * 3855 */ 3856 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3857 3858 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3859 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3860 3861 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3862 { 3863 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3864 skb->csum_valid || 3865 (skb->ip_summed == CHECKSUM_PARTIAL && 3866 skb_checksum_start_offset(skb) >= 0)); 3867 } 3868 3869 /** 3870 * skb_checksum_complete - Calculate checksum of an entire packet 3871 * @skb: packet to process 3872 * 3873 * This function calculates the checksum over the entire packet plus 3874 * the value of skb->csum. The latter can be used to supply the 3875 * checksum of a pseudo header as used by TCP/UDP. It returns the 3876 * checksum. 3877 * 3878 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3879 * this function can be used to verify that checksum on received 3880 * packets. In that case the function should return zero if the 3881 * checksum is correct. In particular, this function will return zero 3882 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3883 * hardware has already verified the correctness of the checksum. 3884 */ 3885 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3886 { 3887 return skb_csum_unnecessary(skb) ? 3888 0 : __skb_checksum_complete(skb); 3889 } 3890 3891 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3892 { 3893 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3894 if (skb->csum_level == 0) 3895 skb->ip_summed = CHECKSUM_NONE; 3896 else 3897 skb->csum_level--; 3898 } 3899 } 3900 3901 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3902 { 3903 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3904 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3905 skb->csum_level++; 3906 } else if (skb->ip_summed == CHECKSUM_NONE) { 3907 skb->ip_summed = CHECKSUM_UNNECESSARY; 3908 skb->csum_level = 0; 3909 } 3910 } 3911 3912 /* Check if we need to perform checksum complete validation. 3913 * 3914 * Returns true if checksum complete is needed, false otherwise 3915 * (either checksum is unnecessary or zero checksum is allowed). 3916 */ 3917 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3918 bool zero_okay, 3919 __sum16 check) 3920 { 3921 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3922 skb->csum_valid = 1; 3923 __skb_decr_checksum_unnecessary(skb); 3924 return false; 3925 } 3926 3927 return true; 3928 } 3929 3930 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3931 * in checksum_init. 3932 */ 3933 #define CHECKSUM_BREAK 76 3934 3935 /* Unset checksum-complete 3936 * 3937 * Unset checksum complete can be done when packet is being modified 3938 * (uncompressed for instance) and checksum-complete value is 3939 * invalidated. 3940 */ 3941 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3942 { 3943 if (skb->ip_summed == CHECKSUM_COMPLETE) 3944 skb->ip_summed = CHECKSUM_NONE; 3945 } 3946 3947 /* Validate (init) checksum based on checksum complete. 3948 * 3949 * Return values: 3950 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3951 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3952 * checksum is stored in skb->csum for use in __skb_checksum_complete 3953 * non-zero: value of invalid checksum 3954 * 3955 */ 3956 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3957 bool complete, 3958 __wsum psum) 3959 { 3960 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3961 if (!csum_fold(csum_add(psum, skb->csum))) { 3962 skb->csum_valid = 1; 3963 return 0; 3964 } 3965 } 3966 3967 skb->csum = psum; 3968 3969 if (complete || skb->len <= CHECKSUM_BREAK) { 3970 __sum16 csum; 3971 3972 csum = __skb_checksum_complete(skb); 3973 skb->csum_valid = !csum; 3974 return csum; 3975 } 3976 3977 return 0; 3978 } 3979 3980 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3981 { 3982 return 0; 3983 } 3984 3985 /* Perform checksum validate (init). Note that this is a macro since we only 3986 * want to calculate the pseudo header which is an input function if necessary. 3987 * First we try to validate without any computation (checksum unnecessary) and 3988 * then calculate based on checksum complete calling the function to compute 3989 * pseudo header. 3990 * 3991 * Return values: 3992 * 0: checksum is validated or try to in skb_checksum_complete 3993 * non-zero: value of invalid checksum 3994 */ 3995 #define __skb_checksum_validate(skb, proto, complete, \ 3996 zero_okay, check, compute_pseudo) \ 3997 ({ \ 3998 __sum16 __ret = 0; \ 3999 skb->csum_valid = 0; \ 4000 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4001 __ret = __skb_checksum_validate_complete(skb, \ 4002 complete, compute_pseudo(skb, proto)); \ 4003 __ret; \ 4004 }) 4005 4006 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4007 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4008 4009 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4010 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4011 4012 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4013 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4014 4015 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4016 compute_pseudo) \ 4017 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4018 4019 #define skb_checksum_simple_validate(skb) \ 4020 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4021 4022 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4023 { 4024 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4025 } 4026 4027 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4028 { 4029 skb->csum = ~pseudo; 4030 skb->ip_summed = CHECKSUM_COMPLETE; 4031 } 4032 4033 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4034 do { \ 4035 if (__skb_checksum_convert_check(skb)) \ 4036 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4037 } while (0) 4038 4039 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4040 u16 start, u16 offset) 4041 { 4042 skb->ip_summed = CHECKSUM_PARTIAL; 4043 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4044 skb->csum_offset = offset - start; 4045 } 4046 4047 /* Update skbuf and packet to reflect the remote checksum offload operation. 4048 * When called, ptr indicates the starting point for skb->csum when 4049 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4050 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4051 */ 4052 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4053 int start, int offset, bool nopartial) 4054 { 4055 __wsum delta; 4056 4057 if (!nopartial) { 4058 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4059 return; 4060 } 4061 4062 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4063 __skb_checksum_complete(skb); 4064 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4065 } 4066 4067 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4068 4069 /* Adjust skb->csum since we changed the packet */ 4070 skb->csum = csum_add(skb->csum, delta); 4071 } 4072 4073 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4074 { 4075 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4076 return (void *)(skb->_nfct & NFCT_PTRMASK); 4077 #else 4078 return NULL; 4079 #endif 4080 } 4081 4082 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4083 { 4084 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4085 return skb->_nfct; 4086 #else 4087 return 0UL; 4088 #endif 4089 } 4090 4091 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4092 { 4093 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4094 skb->_nfct = nfct; 4095 #endif 4096 } 4097 4098 #ifdef CONFIG_SKB_EXTENSIONS 4099 enum skb_ext_id { 4100 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4101 SKB_EXT_BRIDGE_NF, 4102 #endif 4103 #ifdef CONFIG_XFRM 4104 SKB_EXT_SEC_PATH, 4105 #endif 4106 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4107 TC_SKB_EXT, 4108 #endif 4109 #if IS_ENABLED(CONFIG_MPTCP) 4110 SKB_EXT_MPTCP, 4111 #endif 4112 SKB_EXT_NUM, /* must be last */ 4113 }; 4114 4115 /** 4116 * struct skb_ext - sk_buff extensions 4117 * @refcnt: 1 on allocation, deallocated on 0 4118 * @offset: offset to add to @data to obtain extension address 4119 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4120 * @data: start of extension data, variable sized 4121 * 4122 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4123 * to use 'u8' types while allowing up to 2kb worth of extension data. 4124 */ 4125 struct skb_ext { 4126 refcount_t refcnt; 4127 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4128 u8 chunks; /* same */ 4129 char data[0] __aligned(8); 4130 }; 4131 4132 struct skb_ext *__skb_ext_alloc(void); 4133 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4134 struct skb_ext *ext); 4135 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4136 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4137 void __skb_ext_put(struct skb_ext *ext); 4138 4139 static inline void skb_ext_put(struct sk_buff *skb) 4140 { 4141 if (skb->active_extensions) 4142 __skb_ext_put(skb->extensions); 4143 } 4144 4145 static inline void __skb_ext_copy(struct sk_buff *dst, 4146 const struct sk_buff *src) 4147 { 4148 dst->active_extensions = src->active_extensions; 4149 4150 if (src->active_extensions) { 4151 struct skb_ext *ext = src->extensions; 4152 4153 refcount_inc(&ext->refcnt); 4154 dst->extensions = ext; 4155 } 4156 } 4157 4158 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4159 { 4160 skb_ext_put(dst); 4161 __skb_ext_copy(dst, src); 4162 } 4163 4164 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4165 { 4166 return !!ext->offset[i]; 4167 } 4168 4169 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4170 { 4171 return skb->active_extensions & (1 << id); 4172 } 4173 4174 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4175 { 4176 if (skb_ext_exist(skb, id)) 4177 __skb_ext_del(skb, id); 4178 } 4179 4180 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4181 { 4182 if (skb_ext_exist(skb, id)) { 4183 struct skb_ext *ext = skb->extensions; 4184 4185 return (void *)ext + (ext->offset[id] << 3); 4186 } 4187 4188 return NULL; 4189 } 4190 4191 static inline void skb_ext_reset(struct sk_buff *skb) 4192 { 4193 if (unlikely(skb->active_extensions)) { 4194 __skb_ext_put(skb->extensions); 4195 skb->active_extensions = 0; 4196 } 4197 } 4198 4199 static inline bool skb_has_extensions(struct sk_buff *skb) 4200 { 4201 return unlikely(skb->active_extensions); 4202 } 4203 #else 4204 static inline void skb_ext_put(struct sk_buff *skb) {} 4205 static inline void skb_ext_reset(struct sk_buff *skb) {} 4206 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4207 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4208 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4209 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4210 #endif /* CONFIG_SKB_EXTENSIONS */ 4211 4212 static inline void nf_reset_ct(struct sk_buff *skb) 4213 { 4214 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4215 nf_conntrack_put(skb_nfct(skb)); 4216 skb->_nfct = 0; 4217 #endif 4218 } 4219 4220 static inline void nf_reset_trace(struct sk_buff *skb) 4221 { 4222 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4223 skb->nf_trace = 0; 4224 #endif 4225 } 4226 4227 static inline void ipvs_reset(struct sk_buff *skb) 4228 { 4229 #if IS_ENABLED(CONFIG_IP_VS) 4230 skb->ipvs_property = 0; 4231 #endif 4232 } 4233 4234 /* Note: This doesn't put any conntrack info in dst. */ 4235 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4236 bool copy) 4237 { 4238 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4239 dst->_nfct = src->_nfct; 4240 nf_conntrack_get(skb_nfct(src)); 4241 #endif 4242 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4243 if (copy) 4244 dst->nf_trace = src->nf_trace; 4245 #endif 4246 } 4247 4248 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4249 { 4250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4251 nf_conntrack_put(skb_nfct(dst)); 4252 #endif 4253 __nf_copy(dst, src, true); 4254 } 4255 4256 #ifdef CONFIG_NETWORK_SECMARK 4257 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4258 { 4259 to->secmark = from->secmark; 4260 } 4261 4262 static inline void skb_init_secmark(struct sk_buff *skb) 4263 { 4264 skb->secmark = 0; 4265 } 4266 #else 4267 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4268 { } 4269 4270 static inline void skb_init_secmark(struct sk_buff *skb) 4271 { } 4272 #endif 4273 4274 static inline int secpath_exists(const struct sk_buff *skb) 4275 { 4276 #ifdef CONFIG_XFRM 4277 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4278 #else 4279 return 0; 4280 #endif 4281 } 4282 4283 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4284 { 4285 return !skb->destructor && 4286 !secpath_exists(skb) && 4287 !skb_nfct(skb) && 4288 !skb->_skb_refdst && 4289 !skb_has_frag_list(skb); 4290 } 4291 4292 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4293 { 4294 skb->queue_mapping = queue_mapping; 4295 } 4296 4297 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4298 { 4299 return skb->queue_mapping; 4300 } 4301 4302 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4303 { 4304 to->queue_mapping = from->queue_mapping; 4305 } 4306 4307 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4308 { 4309 skb->queue_mapping = rx_queue + 1; 4310 } 4311 4312 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4313 { 4314 return skb->queue_mapping - 1; 4315 } 4316 4317 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4318 { 4319 return skb->queue_mapping != 0; 4320 } 4321 4322 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4323 { 4324 skb->dst_pending_confirm = val; 4325 } 4326 4327 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4328 { 4329 return skb->dst_pending_confirm != 0; 4330 } 4331 4332 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4333 { 4334 #ifdef CONFIG_XFRM 4335 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4336 #else 4337 return NULL; 4338 #endif 4339 } 4340 4341 /* Keeps track of mac header offset relative to skb->head. 4342 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4343 * For non-tunnel skb it points to skb_mac_header() and for 4344 * tunnel skb it points to outer mac header. 4345 * Keeps track of level of encapsulation of network headers. 4346 */ 4347 struct skb_gso_cb { 4348 union { 4349 int mac_offset; 4350 int data_offset; 4351 }; 4352 int encap_level; 4353 __wsum csum; 4354 __u16 csum_start; 4355 }; 4356 #define SKB_SGO_CB_OFFSET 32 4357 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4358 4359 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4360 { 4361 return (skb_mac_header(inner_skb) - inner_skb->head) - 4362 SKB_GSO_CB(inner_skb)->mac_offset; 4363 } 4364 4365 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4366 { 4367 int new_headroom, headroom; 4368 int ret; 4369 4370 headroom = skb_headroom(skb); 4371 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4372 if (ret) 4373 return ret; 4374 4375 new_headroom = skb_headroom(skb); 4376 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4377 return 0; 4378 } 4379 4380 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4381 { 4382 /* Do not update partial checksums if remote checksum is enabled. */ 4383 if (skb->remcsum_offload) 4384 return; 4385 4386 SKB_GSO_CB(skb)->csum = res; 4387 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4388 } 4389 4390 /* Compute the checksum for a gso segment. First compute the checksum value 4391 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4392 * then add in skb->csum (checksum from csum_start to end of packet). 4393 * skb->csum and csum_start are then updated to reflect the checksum of the 4394 * resultant packet starting from the transport header-- the resultant checksum 4395 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4396 * header. 4397 */ 4398 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4399 { 4400 unsigned char *csum_start = skb_transport_header(skb); 4401 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4402 __wsum partial = SKB_GSO_CB(skb)->csum; 4403 4404 SKB_GSO_CB(skb)->csum = res; 4405 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4406 4407 return csum_fold(csum_partial(csum_start, plen, partial)); 4408 } 4409 4410 static inline bool skb_is_gso(const struct sk_buff *skb) 4411 { 4412 return skb_shinfo(skb)->gso_size; 4413 } 4414 4415 /* Note: Should be called only if skb_is_gso(skb) is true */ 4416 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4417 { 4418 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4419 } 4420 4421 /* Note: Should be called only if skb_is_gso(skb) is true */ 4422 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4423 { 4424 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4425 } 4426 4427 /* Note: Should be called only if skb_is_gso(skb) is true */ 4428 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4429 { 4430 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4431 } 4432 4433 static inline void skb_gso_reset(struct sk_buff *skb) 4434 { 4435 skb_shinfo(skb)->gso_size = 0; 4436 skb_shinfo(skb)->gso_segs = 0; 4437 skb_shinfo(skb)->gso_type = 0; 4438 } 4439 4440 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4441 u16 increment) 4442 { 4443 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4444 return; 4445 shinfo->gso_size += increment; 4446 } 4447 4448 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4449 u16 decrement) 4450 { 4451 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4452 return; 4453 shinfo->gso_size -= decrement; 4454 } 4455 4456 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4457 4458 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4459 { 4460 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4461 * wanted then gso_type will be set. */ 4462 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4463 4464 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4465 unlikely(shinfo->gso_type == 0)) { 4466 __skb_warn_lro_forwarding(skb); 4467 return true; 4468 } 4469 return false; 4470 } 4471 4472 static inline void skb_forward_csum(struct sk_buff *skb) 4473 { 4474 /* Unfortunately we don't support this one. Any brave souls? */ 4475 if (skb->ip_summed == CHECKSUM_COMPLETE) 4476 skb->ip_summed = CHECKSUM_NONE; 4477 } 4478 4479 /** 4480 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4481 * @skb: skb to check 4482 * 4483 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4484 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4485 * use this helper, to document places where we make this assertion. 4486 */ 4487 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4488 { 4489 #ifdef DEBUG 4490 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4491 #endif 4492 } 4493 4494 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4495 4496 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4497 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4498 unsigned int transport_len, 4499 __sum16(*skb_chkf)(struct sk_buff *skb)); 4500 4501 /** 4502 * skb_head_is_locked - Determine if the skb->head is locked down 4503 * @skb: skb to check 4504 * 4505 * The head on skbs build around a head frag can be removed if they are 4506 * not cloned. This function returns true if the skb head is locked down 4507 * due to either being allocated via kmalloc, or by being a clone with 4508 * multiple references to the head. 4509 */ 4510 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4511 { 4512 return !skb->head_frag || skb_cloned(skb); 4513 } 4514 4515 /* Local Checksum Offload. 4516 * Compute outer checksum based on the assumption that the 4517 * inner checksum will be offloaded later. 4518 * See Documentation/networking/checksum-offloads.rst for 4519 * explanation of how this works. 4520 * Fill in outer checksum adjustment (e.g. with sum of outer 4521 * pseudo-header) before calling. 4522 * Also ensure that inner checksum is in linear data area. 4523 */ 4524 static inline __wsum lco_csum(struct sk_buff *skb) 4525 { 4526 unsigned char *csum_start = skb_checksum_start(skb); 4527 unsigned char *l4_hdr = skb_transport_header(skb); 4528 __wsum partial; 4529 4530 /* Start with complement of inner checksum adjustment */ 4531 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4532 skb->csum_offset)); 4533 4534 /* Add in checksum of our headers (incl. outer checksum 4535 * adjustment filled in by caller) and return result. 4536 */ 4537 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4538 } 4539 4540 #endif /* __KERNEL__ */ 4541 #endif /* _LINUX_SKBUFF_H */ 4542