1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <net/flow_keys.h> 38 39 /* A. Checksumming of received packets by device. 40 * 41 * CHECKSUM_NONE: 42 * 43 * Device failed to checksum this packet e.g. due to lack of capabilities. 44 * The packet contains full (though not verified) checksum in packet but 45 * not in skb->csum. Thus, skb->csum is undefined in this case. 46 * 47 * CHECKSUM_UNNECESSARY: 48 * 49 * The hardware you're dealing with doesn't calculate the full checksum 50 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 51 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 52 * if their checksums are okay. skb->csum is still undefined in this case 53 * though. It is a bad option, but, unfortunately, nowadays most vendors do 54 * this. Apparently with the secret goal to sell you new devices, when you 55 * will add new protocol to your host, f.e. IPv6 8) 56 * 57 * CHECKSUM_UNNECESSARY is applicable to following protocols: 58 * TCP: IPv6 and IPv4. 59 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 60 * zero UDP checksum for either IPv4 or IPv6, the networking stack 61 * may perform further validation in this case. 62 * GRE: only if the checksum is present in the header. 63 * SCTP: indicates the CRC in SCTP header has been validated. 64 * 65 * skb->csum_level indicates the number of consecutive checksums found in 66 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 67 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 68 * and a device is able to verify the checksums for UDP (possibly zero), 69 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 70 * two. If the device were only able to verify the UDP checksum and not 71 * GRE, either because it doesn't support GRE checksum of because GRE 72 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 73 * not considered in this case). 74 * 75 * CHECKSUM_COMPLETE: 76 * 77 * This is the most generic way. The device supplied checksum of the _whole_ 78 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 79 * hardware doesn't need to parse L3/L4 headers to implement this. 80 * 81 * Note: Even if device supports only some protocols, but is able to produce 82 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 83 * 84 * CHECKSUM_PARTIAL: 85 * 86 * A checksum is set up to be offloaded to a device as described in the 87 * output description for CHECKSUM_PARTIAL. This may occur on a packet 88 * received directly from another Linux OS, e.g., a virtualized Linux kernel 89 * on the same host, or it may be set in the input path in GRO or remote 90 * checksum offload. For the purposes of checksum verification, the checksum 91 * referred to by skb->csum_start + skb->csum_offset and any preceding 92 * checksums in the packet are considered verified. Any checksums in the 93 * packet that are after the checksum being offloaded are not considered to 94 * be verified. 95 * 96 * B. Checksumming on output. 97 * 98 * CHECKSUM_NONE: 99 * 100 * The skb was already checksummed by the protocol, or a checksum is not 101 * required. 102 * 103 * CHECKSUM_PARTIAL: 104 * 105 * The device is required to checksum the packet as seen by hard_start_xmit() 106 * from skb->csum_start up to the end, and to record/write the checksum at 107 * offset skb->csum_start + skb->csum_offset. 108 * 109 * The device must show its capabilities in dev->features, set up at device 110 * setup time, e.g. netdev_features.h: 111 * 112 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 113 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 114 * IPv4. Sigh. Vendors like this way for an unknown reason. 115 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 116 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 117 * NETIF_F_... - Well, you get the picture. 118 * 119 * CHECKSUM_UNNECESSARY: 120 * 121 * Normally, the device will do per protocol specific checksumming. Protocol 122 * implementations that do not want the NIC to perform the checksum 123 * calculation should use this flag in their outgoing skbs. 124 * 125 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 126 * offload. Correspondingly, the FCoE protocol driver 127 * stack should use CHECKSUM_UNNECESSARY. 128 * 129 * Any questions? No questions, good. --ANK 130 */ 131 132 /* Don't change this without changing skb_csum_unnecessary! */ 133 #define CHECKSUM_NONE 0 134 #define CHECKSUM_UNNECESSARY 1 135 #define CHECKSUM_COMPLETE 2 136 #define CHECKSUM_PARTIAL 3 137 138 /* Maximum value in skb->csum_level */ 139 #define SKB_MAX_CSUM_LEVEL 3 140 141 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 142 #define SKB_WITH_OVERHEAD(X) \ 143 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 144 #define SKB_MAX_ORDER(X, ORDER) \ 145 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 146 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 147 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 148 149 /* return minimum truesize of one skb containing X bytes of data */ 150 #define SKB_TRUESIZE(X) ((X) + \ 151 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 152 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 153 154 struct net_device; 155 struct scatterlist; 156 struct pipe_inode_info; 157 struct iov_iter; 158 struct napi_struct; 159 160 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 161 struct nf_conntrack { 162 atomic_t use; 163 }; 164 #endif 165 166 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 167 struct nf_bridge_info { 168 atomic_t use; 169 unsigned int mask; 170 struct net_device *physindev; 171 struct net_device *physoutdev; 172 unsigned long data[32 / sizeof(unsigned long)]; 173 }; 174 #endif 175 176 struct sk_buff_head { 177 /* These two members must be first. */ 178 struct sk_buff *next; 179 struct sk_buff *prev; 180 181 __u32 qlen; 182 spinlock_t lock; 183 }; 184 185 struct sk_buff; 186 187 /* To allow 64K frame to be packed as single skb without frag_list we 188 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 189 * buffers which do not start on a page boundary. 190 * 191 * Since GRO uses frags we allocate at least 16 regardless of page 192 * size. 193 */ 194 #if (65536/PAGE_SIZE + 1) < 16 195 #define MAX_SKB_FRAGS 16UL 196 #else 197 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 198 #endif 199 200 typedef struct skb_frag_struct skb_frag_t; 201 202 struct skb_frag_struct { 203 struct { 204 struct page *p; 205 } page; 206 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 207 __u32 page_offset; 208 __u32 size; 209 #else 210 __u16 page_offset; 211 __u16 size; 212 #endif 213 }; 214 215 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 216 { 217 return frag->size; 218 } 219 220 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 221 { 222 frag->size = size; 223 } 224 225 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 226 { 227 frag->size += delta; 228 } 229 230 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 231 { 232 frag->size -= delta; 233 } 234 235 #define HAVE_HW_TIME_STAMP 236 237 /** 238 * struct skb_shared_hwtstamps - hardware time stamps 239 * @hwtstamp: hardware time stamp transformed into duration 240 * since arbitrary point in time 241 * 242 * Software time stamps generated by ktime_get_real() are stored in 243 * skb->tstamp. 244 * 245 * hwtstamps can only be compared against other hwtstamps from 246 * the same device. 247 * 248 * This structure is attached to packets as part of the 249 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 250 */ 251 struct skb_shared_hwtstamps { 252 ktime_t hwtstamp; 253 }; 254 255 /* Definitions for tx_flags in struct skb_shared_info */ 256 enum { 257 /* generate hardware time stamp */ 258 SKBTX_HW_TSTAMP = 1 << 0, 259 260 /* generate software time stamp when queueing packet to NIC */ 261 SKBTX_SW_TSTAMP = 1 << 1, 262 263 /* device driver is going to provide hardware time stamp */ 264 SKBTX_IN_PROGRESS = 1 << 2, 265 266 /* device driver supports TX zero-copy buffers */ 267 SKBTX_DEV_ZEROCOPY = 1 << 3, 268 269 /* generate wifi status information (where possible) */ 270 SKBTX_WIFI_STATUS = 1 << 4, 271 272 /* This indicates at least one fragment might be overwritten 273 * (as in vmsplice(), sendfile() ...) 274 * If we need to compute a TX checksum, we'll need to copy 275 * all frags to avoid possible bad checksum 276 */ 277 SKBTX_SHARED_FRAG = 1 << 5, 278 279 /* generate software time stamp when entering packet scheduling */ 280 SKBTX_SCHED_TSTAMP = 1 << 6, 281 282 /* generate software timestamp on peer data acknowledgment */ 283 SKBTX_ACK_TSTAMP = 1 << 7, 284 }; 285 286 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 287 SKBTX_SCHED_TSTAMP | \ 288 SKBTX_ACK_TSTAMP) 289 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 290 291 /* 292 * The callback notifies userspace to release buffers when skb DMA is done in 293 * lower device, the skb last reference should be 0 when calling this. 294 * The zerocopy_success argument is true if zero copy transmit occurred, 295 * false on data copy or out of memory error caused by data copy attempt. 296 * The ctx field is used to track device context. 297 * The desc field is used to track userspace buffer index. 298 */ 299 struct ubuf_info { 300 void (*callback)(struct ubuf_info *, bool zerocopy_success); 301 void *ctx; 302 unsigned long desc; 303 }; 304 305 /* This data is invariant across clones and lives at 306 * the end of the header data, ie. at skb->end. 307 */ 308 struct skb_shared_info { 309 unsigned char nr_frags; 310 __u8 tx_flags; 311 unsigned short gso_size; 312 /* Warning: this field is not always filled in (UFO)! */ 313 unsigned short gso_segs; 314 unsigned short gso_type; 315 struct sk_buff *frag_list; 316 struct skb_shared_hwtstamps hwtstamps; 317 u32 tskey; 318 __be32 ip6_frag_id; 319 320 /* 321 * Warning : all fields before dataref are cleared in __alloc_skb() 322 */ 323 atomic_t dataref; 324 325 /* Intermediate layers must ensure that destructor_arg 326 * remains valid until skb destructor */ 327 void * destructor_arg; 328 329 /* must be last field, see pskb_expand_head() */ 330 skb_frag_t frags[MAX_SKB_FRAGS]; 331 }; 332 333 /* We divide dataref into two halves. The higher 16 bits hold references 334 * to the payload part of skb->data. The lower 16 bits hold references to 335 * the entire skb->data. A clone of a headerless skb holds the length of 336 * the header in skb->hdr_len. 337 * 338 * All users must obey the rule that the skb->data reference count must be 339 * greater than or equal to the payload reference count. 340 * 341 * Holding a reference to the payload part means that the user does not 342 * care about modifications to the header part of skb->data. 343 */ 344 #define SKB_DATAREF_SHIFT 16 345 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 346 347 348 enum { 349 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 350 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 351 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 352 }; 353 354 enum { 355 SKB_GSO_TCPV4 = 1 << 0, 356 SKB_GSO_UDP = 1 << 1, 357 358 /* This indicates the skb is from an untrusted source. */ 359 SKB_GSO_DODGY = 1 << 2, 360 361 /* This indicates the tcp segment has CWR set. */ 362 SKB_GSO_TCP_ECN = 1 << 3, 363 364 SKB_GSO_TCPV6 = 1 << 4, 365 366 SKB_GSO_FCOE = 1 << 5, 367 368 SKB_GSO_GRE = 1 << 6, 369 370 SKB_GSO_GRE_CSUM = 1 << 7, 371 372 SKB_GSO_IPIP = 1 << 8, 373 374 SKB_GSO_SIT = 1 << 9, 375 376 SKB_GSO_UDP_TUNNEL = 1 << 10, 377 378 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 379 380 SKB_GSO_TUNNEL_REMCSUM = 1 << 12, 381 }; 382 383 #if BITS_PER_LONG > 32 384 #define NET_SKBUFF_DATA_USES_OFFSET 1 385 #endif 386 387 #ifdef NET_SKBUFF_DATA_USES_OFFSET 388 typedef unsigned int sk_buff_data_t; 389 #else 390 typedef unsigned char *sk_buff_data_t; 391 #endif 392 393 /** 394 * struct skb_mstamp - multi resolution time stamps 395 * @stamp_us: timestamp in us resolution 396 * @stamp_jiffies: timestamp in jiffies 397 */ 398 struct skb_mstamp { 399 union { 400 u64 v64; 401 struct { 402 u32 stamp_us; 403 u32 stamp_jiffies; 404 }; 405 }; 406 }; 407 408 /** 409 * skb_mstamp_get - get current timestamp 410 * @cl: place to store timestamps 411 */ 412 static inline void skb_mstamp_get(struct skb_mstamp *cl) 413 { 414 u64 val = local_clock(); 415 416 do_div(val, NSEC_PER_USEC); 417 cl->stamp_us = (u32)val; 418 cl->stamp_jiffies = (u32)jiffies; 419 } 420 421 /** 422 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 423 * @t1: pointer to newest sample 424 * @t0: pointer to oldest sample 425 */ 426 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 427 const struct skb_mstamp *t0) 428 { 429 s32 delta_us = t1->stamp_us - t0->stamp_us; 430 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 431 432 /* If delta_us is negative, this might be because interval is too big, 433 * or local_clock() drift is too big : fallback using jiffies. 434 */ 435 if (delta_us <= 0 || 436 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 437 438 delta_us = jiffies_to_usecs(delta_jiffies); 439 440 return delta_us; 441 } 442 443 444 /** 445 * struct sk_buff - socket buffer 446 * @next: Next buffer in list 447 * @prev: Previous buffer in list 448 * @tstamp: Time we arrived/left 449 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 450 * @sk: Socket we are owned by 451 * @dev: Device we arrived on/are leaving by 452 * @cb: Control buffer. Free for use by every layer. Put private vars here 453 * @_skb_refdst: destination entry (with norefcount bit) 454 * @sp: the security path, used for xfrm 455 * @len: Length of actual data 456 * @data_len: Data length 457 * @mac_len: Length of link layer header 458 * @hdr_len: writable header length of cloned skb 459 * @csum: Checksum (must include start/offset pair) 460 * @csum_start: Offset from skb->head where checksumming should start 461 * @csum_offset: Offset from csum_start where checksum should be stored 462 * @priority: Packet queueing priority 463 * @ignore_df: allow local fragmentation 464 * @cloned: Head may be cloned (check refcnt to be sure) 465 * @ip_summed: Driver fed us an IP checksum 466 * @nohdr: Payload reference only, must not modify header 467 * @nfctinfo: Relationship of this skb to the connection 468 * @pkt_type: Packet class 469 * @fclone: skbuff clone status 470 * @ipvs_property: skbuff is owned by ipvs 471 * @peeked: this packet has been seen already, so stats have been 472 * done for it, don't do them again 473 * @nf_trace: netfilter packet trace flag 474 * @protocol: Packet protocol from driver 475 * @destructor: Destruct function 476 * @nfct: Associated connection, if any 477 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 478 * @skb_iif: ifindex of device we arrived on 479 * @tc_index: Traffic control index 480 * @tc_verd: traffic control verdict 481 * @hash: the packet hash 482 * @queue_mapping: Queue mapping for multiqueue devices 483 * @xmit_more: More SKBs are pending for this queue 484 * @ndisc_nodetype: router type (from link layer) 485 * @ooo_okay: allow the mapping of a socket to a queue to be changed 486 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 487 * ports. 488 * @sw_hash: indicates hash was computed in software stack 489 * @wifi_acked_valid: wifi_acked was set 490 * @wifi_acked: whether frame was acked on wifi or not 491 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 492 * @napi_id: id of the NAPI struct this skb came from 493 * @secmark: security marking 494 * @mark: Generic packet mark 495 * @dropcount: total number of sk_receive_queue overflows 496 * @vlan_proto: vlan encapsulation protocol 497 * @vlan_tci: vlan tag control information 498 * @inner_protocol: Protocol (encapsulation) 499 * @inner_transport_header: Inner transport layer header (encapsulation) 500 * @inner_network_header: Network layer header (encapsulation) 501 * @inner_mac_header: Link layer header (encapsulation) 502 * @transport_header: Transport layer header 503 * @network_header: Network layer header 504 * @mac_header: Link layer header 505 * @tail: Tail pointer 506 * @end: End pointer 507 * @head: Head of buffer 508 * @data: Data head pointer 509 * @truesize: Buffer size 510 * @users: User count - see {datagram,tcp}.c 511 */ 512 513 struct sk_buff { 514 union { 515 struct { 516 /* These two members must be first. */ 517 struct sk_buff *next; 518 struct sk_buff *prev; 519 520 union { 521 ktime_t tstamp; 522 struct skb_mstamp skb_mstamp; 523 }; 524 }; 525 struct rb_node rbnode; /* used in netem & tcp stack */ 526 }; 527 struct sock *sk; 528 struct net_device *dev; 529 530 /* 531 * This is the control buffer. It is free to use for every 532 * layer. Please put your private variables there. If you 533 * want to keep them across layers you have to do a skb_clone() 534 * first. This is owned by whoever has the skb queued ATM. 535 */ 536 char cb[48] __aligned(8); 537 538 unsigned long _skb_refdst; 539 void (*destructor)(struct sk_buff *skb); 540 #ifdef CONFIG_XFRM 541 struct sec_path *sp; 542 #endif 543 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 544 struct nf_conntrack *nfct; 545 #endif 546 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 547 struct nf_bridge_info *nf_bridge; 548 #endif 549 unsigned int len, 550 data_len; 551 __u16 mac_len, 552 hdr_len; 553 554 /* Following fields are _not_ copied in __copy_skb_header() 555 * Note that queue_mapping is here mostly to fill a hole. 556 */ 557 kmemcheck_bitfield_begin(flags1); 558 __u16 queue_mapping; 559 __u8 cloned:1, 560 nohdr:1, 561 fclone:2, 562 peeked:1, 563 head_frag:1, 564 xmit_more:1; 565 /* one bit hole */ 566 kmemcheck_bitfield_end(flags1); 567 568 /* fields enclosed in headers_start/headers_end are copied 569 * using a single memcpy() in __copy_skb_header() 570 */ 571 /* private: */ 572 __u32 headers_start[0]; 573 /* public: */ 574 575 /* if you move pkt_type around you also must adapt those constants */ 576 #ifdef __BIG_ENDIAN_BITFIELD 577 #define PKT_TYPE_MAX (7 << 5) 578 #else 579 #define PKT_TYPE_MAX 7 580 #endif 581 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 582 583 __u8 __pkt_type_offset[0]; 584 __u8 pkt_type:3; 585 __u8 pfmemalloc:1; 586 __u8 ignore_df:1; 587 __u8 nfctinfo:3; 588 589 __u8 nf_trace:1; 590 __u8 ip_summed:2; 591 __u8 ooo_okay:1; 592 __u8 l4_hash:1; 593 __u8 sw_hash:1; 594 __u8 wifi_acked_valid:1; 595 __u8 wifi_acked:1; 596 597 __u8 no_fcs:1; 598 /* Indicates the inner headers are valid in the skbuff. */ 599 __u8 encapsulation:1; 600 __u8 encap_hdr_csum:1; 601 __u8 csum_valid:1; 602 __u8 csum_complete_sw:1; 603 __u8 csum_level:2; 604 __u8 csum_bad:1; 605 606 #ifdef CONFIG_IPV6_NDISC_NODETYPE 607 __u8 ndisc_nodetype:2; 608 #endif 609 __u8 ipvs_property:1; 610 __u8 inner_protocol_type:1; 611 __u8 remcsum_offload:1; 612 /* 3 or 5 bit hole */ 613 614 #ifdef CONFIG_NET_SCHED 615 __u16 tc_index; /* traffic control index */ 616 #ifdef CONFIG_NET_CLS_ACT 617 __u16 tc_verd; /* traffic control verdict */ 618 #endif 619 #endif 620 621 union { 622 __wsum csum; 623 struct { 624 __u16 csum_start; 625 __u16 csum_offset; 626 }; 627 }; 628 __u32 priority; 629 int skb_iif; 630 __u32 hash; 631 __be16 vlan_proto; 632 __u16 vlan_tci; 633 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 634 union { 635 unsigned int napi_id; 636 unsigned int sender_cpu; 637 }; 638 #endif 639 #ifdef CONFIG_NETWORK_SECMARK 640 __u32 secmark; 641 #endif 642 union { 643 __u32 mark; 644 __u32 dropcount; 645 __u32 reserved_tailroom; 646 }; 647 648 union { 649 __be16 inner_protocol; 650 __u8 inner_ipproto; 651 }; 652 653 __u16 inner_transport_header; 654 __u16 inner_network_header; 655 __u16 inner_mac_header; 656 657 __be16 protocol; 658 __u16 transport_header; 659 __u16 network_header; 660 __u16 mac_header; 661 662 /* private: */ 663 __u32 headers_end[0]; 664 /* public: */ 665 666 /* These elements must be at the end, see alloc_skb() for details. */ 667 sk_buff_data_t tail; 668 sk_buff_data_t end; 669 unsigned char *head, 670 *data; 671 unsigned int truesize; 672 atomic_t users; 673 }; 674 675 #ifdef __KERNEL__ 676 /* 677 * Handling routines are only of interest to the kernel 678 */ 679 #include <linux/slab.h> 680 681 682 #define SKB_ALLOC_FCLONE 0x01 683 #define SKB_ALLOC_RX 0x02 684 #define SKB_ALLOC_NAPI 0x04 685 686 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 687 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 688 { 689 return unlikely(skb->pfmemalloc); 690 } 691 692 /* 693 * skb might have a dst pointer attached, refcounted or not. 694 * _skb_refdst low order bit is set if refcount was _not_ taken 695 */ 696 #define SKB_DST_NOREF 1UL 697 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 698 699 /** 700 * skb_dst - returns skb dst_entry 701 * @skb: buffer 702 * 703 * Returns skb dst_entry, regardless of reference taken or not. 704 */ 705 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 706 { 707 /* If refdst was not refcounted, check we still are in a 708 * rcu_read_lock section 709 */ 710 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 711 !rcu_read_lock_held() && 712 !rcu_read_lock_bh_held()); 713 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 714 } 715 716 /** 717 * skb_dst_set - sets skb dst 718 * @skb: buffer 719 * @dst: dst entry 720 * 721 * Sets skb dst, assuming a reference was taken on dst and should 722 * be released by skb_dst_drop() 723 */ 724 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 725 { 726 skb->_skb_refdst = (unsigned long)dst; 727 } 728 729 /** 730 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 731 * @skb: buffer 732 * @dst: dst entry 733 * 734 * Sets skb dst, assuming a reference was not taken on dst. 735 * If dst entry is cached, we do not take reference and dst_release 736 * will be avoided by refdst_drop. If dst entry is not cached, we take 737 * reference, so that last dst_release can destroy the dst immediately. 738 */ 739 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 740 { 741 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 742 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 743 } 744 745 /** 746 * skb_dst_is_noref - Test if skb dst isn't refcounted 747 * @skb: buffer 748 */ 749 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 750 { 751 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 752 } 753 754 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 755 { 756 return (struct rtable *)skb_dst(skb); 757 } 758 759 void kfree_skb(struct sk_buff *skb); 760 void kfree_skb_list(struct sk_buff *segs); 761 void skb_tx_error(struct sk_buff *skb); 762 void consume_skb(struct sk_buff *skb); 763 void __kfree_skb(struct sk_buff *skb); 764 extern struct kmem_cache *skbuff_head_cache; 765 766 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 767 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 768 bool *fragstolen, int *delta_truesize); 769 770 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 771 int node); 772 struct sk_buff *build_skb(void *data, unsigned int frag_size); 773 static inline struct sk_buff *alloc_skb(unsigned int size, 774 gfp_t priority) 775 { 776 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 777 } 778 779 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 780 unsigned long data_len, 781 int max_page_order, 782 int *errcode, 783 gfp_t gfp_mask); 784 785 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 786 struct sk_buff_fclones { 787 struct sk_buff skb1; 788 789 struct sk_buff skb2; 790 791 atomic_t fclone_ref; 792 }; 793 794 /** 795 * skb_fclone_busy - check if fclone is busy 796 * @skb: buffer 797 * 798 * Returns true is skb is a fast clone, and its clone is not freed. 799 * Some drivers call skb_orphan() in their ndo_start_xmit(), 800 * so we also check that this didnt happen. 801 */ 802 static inline bool skb_fclone_busy(const struct sock *sk, 803 const struct sk_buff *skb) 804 { 805 const struct sk_buff_fclones *fclones; 806 807 fclones = container_of(skb, struct sk_buff_fclones, skb1); 808 809 return skb->fclone == SKB_FCLONE_ORIG && 810 atomic_read(&fclones->fclone_ref) > 1 && 811 fclones->skb2.sk == sk; 812 } 813 814 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 815 gfp_t priority) 816 { 817 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 818 } 819 820 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 821 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 822 { 823 return __alloc_skb_head(priority, -1); 824 } 825 826 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 827 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 828 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 829 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 830 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 831 gfp_t gfp_mask, bool fclone); 832 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 833 gfp_t gfp_mask) 834 { 835 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 836 } 837 838 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 839 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 840 unsigned int headroom); 841 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 842 int newtailroom, gfp_t priority); 843 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 844 int offset, int len); 845 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 846 int len); 847 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 848 int skb_pad(struct sk_buff *skb, int pad); 849 #define dev_kfree_skb(a) consume_skb(a) 850 851 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 852 int getfrag(void *from, char *to, int offset, 853 int len, int odd, struct sk_buff *skb), 854 void *from, int length); 855 856 struct skb_seq_state { 857 __u32 lower_offset; 858 __u32 upper_offset; 859 __u32 frag_idx; 860 __u32 stepped_offset; 861 struct sk_buff *root_skb; 862 struct sk_buff *cur_skb; 863 __u8 *frag_data; 864 }; 865 866 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 867 unsigned int to, struct skb_seq_state *st); 868 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 869 struct skb_seq_state *st); 870 void skb_abort_seq_read(struct skb_seq_state *st); 871 872 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 873 unsigned int to, struct ts_config *config, 874 struct ts_state *state); 875 876 /* 877 * Packet hash types specify the type of hash in skb_set_hash. 878 * 879 * Hash types refer to the protocol layer addresses which are used to 880 * construct a packet's hash. The hashes are used to differentiate or identify 881 * flows of the protocol layer for the hash type. Hash types are either 882 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 883 * 884 * Properties of hashes: 885 * 886 * 1) Two packets in different flows have different hash values 887 * 2) Two packets in the same flow should have the same hash value 888 * 889 * A hash at a higher layer is considered to be more specific. A driver should 890 * set the most specific hash possible. 891 * 892 * A driver cannot indicate a more specific hash than the layer at which a hash 893 * was computed. For instance an L3 hash cannot be set as an L4 hash. 894 * 895 * A driver may indicate a hash level which is less specific than the 896 * actual layer the hash was computed on. For instance, a hash computed 897 * at L4 may be considered an L3 hash. This should only be done if the 898 * driver can't unambiguously determine that the HW computed the hash at 899 * the higher layer. Note that the "should" in the second property above 900 * permits this. 901 */ 902 enum pkt_hash_types { 903 PKT_HASH_TYPE_NONE, /* Undefined type */ 904 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 905 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 906 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 907 }; 908 909 static inline void 910 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 911 { 912 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 913 skb->sw_hash = 0; 914 skb->hash = hash; 915 } 916 917 void __skb_get_hash(struct sk_buff *skb); 918 static inline __u32 skb_get_hash(struct sk_buff *skb) 919 { 920 if (!skb->l4_hash && !skb->sw_hash) 921 __skb_get_hash(skb); 922 923 return skb->hash; 924 } 925 926 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 927 { 928 return skb->hash; 929 } 930 931 static inline void skb_clear_hash(struct sk_buff *skb) 932 { 933 skb->hash = 0; 934 skb->sw_hash = 0; 935 skb->l4_hash = 0; 936 } 937 938 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 939 { 940 if (!skb->l4_hash) 941 skb_clear_hash(skb); 942 } 943 944 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 945 { 946 to->hash = from->hash; 947 to->sw_hash = from->sw_hash; 948 to->l4_hash = from->l4_hash; 949 }; 950 951 #ifdef NET_SKBUFF_DATA_USES_OFFSET 952 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 953 { 954 return skb->head + skb->end; 955 } 956 957 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 958 { 959 return skb->end; 960 } 961 #else 962 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 963 { 964 return skb->end; 965 } 966 967 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 968 { 969 return skb->end - skb->head; 970 } 971 #endif 972 973 /* Internal */ 974 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 975 976 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 977 { 978 return &skb_shinfo(skb)->hwtstamps; 979 } 980 981 /** 982 * skb_queue_empty - check if a queue is empty 983 * @list: queue head 984 * 985 * Returns true if the queue is empty, false otherwise. 986 */ 987 static inline int skb_queue_empty(const struct sk_buff_head *list) 988 { 989 return list->next == (const struct sk_buff *) list; 990 } 991 992 /** 993 * skb_queue_is_last - check if skb is the last entry in the queue 994 * @list: queue head 995 * @skb: buffer 996 * 997 * Returns true if @skb is the last buffer on the list. 998 */ 999 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1000 const struct sk_buff *skb) 1001 { 1002 return skb->next == (const struct sk_buff *) list; 1003 } 1004 1005 /** 1006 * skb_queue_is_first - check if skb is the first entry in the queue 1007 * @list: queue head 1008 * @skb: buffer 1009 * 1010 * Returns true if @skb is the first buffer on the list. 1011 */ 1012 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1013 const struct sk_buff *skb) 1014 { 1015 return skb->prev == (const struct sk_buff *) list; 1016 } 1017 1018 /** 1019 * skb_queue_next - return the next packet in the queue 1020 * @list: queue head 1021 * @skb: current buffer 1022 * 1023 * Return the next packet in @list after @skb. It is only valid to 1024 * call this if skb_queue_is_last() evaluates to false. 1025 */ 1026 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1027 const struct sk_buff *skb) 1028 { 1029 /* This BUG_ON may seem severe, but if we just return then we 1030 * are going to dereference garbage. 1031 */ 1032 BUG_ON(skb_queue_is_last(list, skb)); 1033 return skb->next; 1034 } 1035 1036 /** 1037 * skb_queue_prev - return the prev packet in the queue 1038 * @list: queue head 1039 * @skb: current buffer 1040 * 1041 * Return the prev packet in @list before @skb. It is only valid to 1042 * call this if skb_queue_is_first() evaluates to false. 1043 */ 1044 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1045 const struct sk_buff *skb) 1046 { 1047 /* This BUG_ON may seem severe, but if we just return then we 1048 * are going to dereference garbage. 1049 */ 1050 BUG_ON(skb_queue_is_first(list, skb)); 1051 return skb->prev; 1052 } 1053 1054 /** 1055 * skb_get - reference buffer 1056 * @skb: buffer to reference 1057 * 1058 * Makes another reference to a socket buffer and returns a pointer 1059 * to the buffer. 1060 */ 1061 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1062 { 1063 atomic_inc(&skb->users); 1064 return skb; 1065 } 1066 1067 /* 1068 * If users == 1, we are the only owner and are can avoid redundant 1069 * atomic change. 1070 */ 1071 1072 /** 1073 * skb_cloned - is the buffer a clone 1074 * @skb: buffer to check 1075 * 1076 * Returns true if the buffer was generated with skb_clone() and is 1077 * one of multiple shared copies of the buffer. Cloned buffers are 1078 * shared data so must not be written to under normal circumstances. 1079 */ 1080 static inline int skb_cloned(const struct sk_buff *skb) 1081 { 1082 return skb->cloned && 1083 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1084 } 1085 1086 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1087 { 1088 might_sleep_if(pri & __GFP_WAIT); 1089 1090 if (skb_cloned(skb)) 1091 return pskb_expand_head(skb, 0, 0, pri); 1092 1093 return 0; 1094 } 1095 1096 /** 1097 * skb_header_cloned - is the header a clone 1098 * @skb: buffer to check 1099 * 1100 * Returns true if modifying the header part of the buffer requires 1101 * the data to be copied. 1102 */ 1103 static inline int skb_header_cloned(const struct sk_buff *skb) 1104 { 1105 int dataref; 1106 1107 if (!skb->cloned) 1108 return 0; 1109 1110 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1111 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1112 return dataref != 1; 1113 } 1114 1115 /** 1116 * skb_header_release - release reference to header 1117 * @skb: buffer to operate on 1118 * 1119 * Drop a reference to the header part of the buffer. This is done 1120 * by acquiring a payload reference. You must not read from the header 1121 * part of skb->data after this. 1122 * Note : Check if you can use __skb_header_release() instead. 1123 */ 1124 static inline void skb_header_release(struct sk_buff *skb) 1125 { 1126 BUG_ON(skb->nohdr); 1127 skb->nohdr = 1; 1128 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1129 } 1130 1131 /** 1132 * __skb_header_release - release reference to header 1133 * @skb: buffer to operate on 1134 * 1135 * Variant of skb_header_release() assuming skb is private to caller. 1136 * We can avoid one atomic operation. 1137 */ 1138 static inline void __skb_header_release(struct sk_buff *skb) 1139 { 1140 skb->nohdr = 1; 1141 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1142 } 1143 1144 1145 /** 1146 * skb_shared - is the buffer shared 1147 * @skb: buffer to check 1148 * 1149 * Returns true if more than one person has a reference to this 1150 * buffer. 1151 */ 1152 static inline int skb_shared(const struct sk_buff *skb) 1153 { 1154 return atomic_read(&skb->users) != 1; 1155 } 1156 1157 /** 1158 * skb_share_check - check if buffer is shared and if so clone it 1159 * @skb: buffer to check 1160 * @pri: priority for memory allocation 1161 * 1162 * If the buffer is shared the buffer is cloned and the old copy 1163 * drops a reference. A new clone with a single reference is returned. 1164 * If the buffer is not shared the original buffer is returned. When 1165 * being called from interrupt status or with spinlocks held pri must 1166 * be GFP_ATOMIC. 1167 * 1168 * NULL is returned on a memory allocation failure. 1169 */ 1170 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1171 { 1172 might_sleep_if(pri & __GFP_WAIT); 1173 if (skb_shared(skb)) { 1174 struct sk_buff *nskb = skb_clone(skb, pri); 1175 1176 if (likely(nskb)) 1177 consume_skb(skb); 1178 else 1179 kfree_skb(skb); 1180 skb = nskb; 1181 } 1182 return skb; 1183 } 1184 1185 /* 1186 * Copy shared buffers into a new sk_buff. We effectively do COW on 1187 * packets to handle cases where we have a local reader and forward 1188 * and a couple of other messy ones. The normal one is tcpdumping 1189 * a packet thats being forwarded. 1190 */ 1191 1192 /** 1193 * skb_unshare - make a copy of a shared buffer 1194 * @skb: buffer to check 1195 * @pri: priority for memory allocation 1196 * 1197 * If the socket buffer is a clone then this function creates a new 1198 * copy of the data, drops a reference count on the old copy and returns 1199 * the new copy with the reference count at 1. If the buffer is not a clone 1200 * the original buffer is returned. When called with a spinlock held or 1201 * from interrupt state @pri must be %GFP_ATOMIC 1202 * 1203 * %NULL is returned on a memory allocation failure. 1204 */ 1205 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1206 gfp_t pri) 1207 { 1208 might_sleep_if(pri & __GFP_WAIT); 1209 if (skb_cloned(skb)) { 1210 struct sk_buff *nskb = skb_copy(skb, pri); 1211 1212 /* Free our shared copy */ 1213 if (likely(nskb)) 1214 consume_skb(skb); 1215 else 1216 kfree_skb(skb); 1217 skb = nskb; 1218 } 1219 return skb; 1220 } 1221 1222 /** 1223 * skb_peek - peek at the head of an &sk_buff_head 1224 * @list_: list to peek at 1225 * 1226 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1227 * be careful with this one. A peek leaves the buffer on the 1228 * list and someone else may run off with it. You must hold 1229 * the appropriate locks or have a private queue to do this. 1230 * 1231 * Returns %NULL for an empty list or a pointer to the head element. 1232 * The reference count is not incremented and the reference is therefore 1233 * volatile. Use with caution. 1234 */ 1235 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1236 { 1237 struct sk_buff *skb = list_->next; 1238 1239 if (skb == (struct sk_buff *)list_) 1240 skb = NULL; 1241 return skb; 1242 } 1243 1244 /** 1245 * skb_peek_next - peek skb following the given one from a queue 1246 * @skb: skb to start from 1247 * @list_: list to peek at 1248 * 1249 * Returns %NULL when the end of the list is met or a pointer to the 1250 * next element. The reference count is not incremented and the 1251 * reference is therefore volatile. Use with caution. 1252 */ 1253 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1254 const struct sk_buff_head *list_) 1255 { 1256 struct sk_buff *next = skb->next; 1257 1258 if (next == (struct sk_buff *)list_) 1259 next = NULL; 1260 return next; 1261 } 1262 1263 /** 1264 * skb_peek_tail - peek at the tail of an &sk_buff_head 1265 * @list_: list to peek at 1266 * 1267 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1268 * be careful with this one. A peek leaves the buffer on the 1269 * list and someone else may run off with it. You must hold 1270 * the appropriate locks or have a private queue to do this. 1271 * 1272 * Returns %NULL for an empty list or a pointer to the tail element. 1273 * The reference count is not incremented and the reference is therefore 1274 * volatile. Use with caution. 1275 */ 1276 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1277 { 1278 struct sk_buff *skb = list_->prev; 1279 1280 if (skb == (struct sk_buff *)list_) 1281 skb = NULL; 1282 return skb; 1283 1284 } 1285 1286 /** 1287 * skb_queue_len - get queue length 1288 * @list_: list to measure 1289 * 1290 * Return the length of an &sk_buff queue. 1291 */ 1292 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1293 { 1294 return list_->qlen; 1295 } 1296 1297 /** 1298 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1299 * @list: queue to initialize 1300 * 1301 * This initializes only the list and queue length aspects of 1302 * an sk_buff_head object. This allows to initialize the list 1303 * aspects of an sk_buff_head without reinitializing things like 1304 * the spinlock. It can also be used for on-stack sk_buff_head 1305 * objects where the spinlock is known to not be used. 1306 */ 1307 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1308 { 1309 list->prev = list->next = (struct sk_buff *)list; 1310 list->qlen = 0; 1311 } 1312 1313 /* 1314 * This function creates a split out lock class for each invocation; 1315 * this is needed for now since a whole lot of users of the skb-queue 1316 * infrastructure in drivers have different locking usage (in hardirq) 1317 * than the networking core (in softirq only). In the long run either the 1318 * network layer or drivers should need annotation to consolidate the 1319 * main types of usage into 3 classes. 1320 */ 1321 static inline void skb_queue_head_init(struct sk_buff_head *list) 1322 { 1323 spin_lock_init(&list->lock); 1324 __skb_queue_head_init(list); 1325 } 1326 1327 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1328 struct lock_class_key *class) 1329 { 1330 skb_queue_head_init(list); 1331 lockdep_set_class(&list->lock, class); 1332 } 1333 1334 /* 1335 * Insert an sk_buff on a list. 1336 * 1337 * The "__skb_xxxx()" functions are the non-atomic ones that 1338 * can only be called with interrupts disabled. 1339 */ 1340 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1341 struct sk_buff_head *list); 1342 static inline void __skb_insert(struct sk_buff *newsk, 1343 struct sk_buff *prev, struct sk_buff *next, 1344 struct sk_buff_head *list) 1345 { 1346 newsk->next = next; 1347 newsk->prev = prev; 1348 next->prev = prev->next = newsk; 1349 list->qlen++; 1350 } 1351 1352 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1353 struct sk_buff *prev, 1354 struct sk_buff *next) 1355 { 1356 struct sk_buff *first = list->next; 1357 struct sk_buff *last = list->prev; 1358 1359 first->prev = prev; 1360 prev->next = first; 1361 1362 last->next = next; 1363 next->prev = last; 1364 } 1365 1366 /** 1367 * skb_queue_splice - join two skb lists, this is designed for stacks 1368 * @list: the new list to add 1369 * @head: the place to add it in the first list 1370 */ 1371 static inline void skb_queue_splice(const struct sk_buff_head *list, 1372 struct sk_buff_head *head) 1373 { 1374 if (!skb_queue_empty(list)) { 1375 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1376 head->qlen += list->qlen; 1377 } 1378 } 1379 1380 /** 1381 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1382 * @list: the new list to add 1383 * @head: the place to add it in the first list 1384 * 1385 * The list at @list is reinitialised 1386 */ 1387 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1388 struct sk_buff_head *head) 1389 { 1390 if (!skb_queue_empty(list)) { 1391 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1392 head->qlen += list->qlen; 1393 __skb_queue_head_init(list); 1394 } 1395 } 1396 1397 /** 1398 * skb_queue_splice_tail - join two skb lists, each list being a queue 1399 * @list: the new list to add 1400 * @head: the place to add it in the first list 1401 */ 1402 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1403 struct sk_buff_head *head) 1404 { 1405 if (!skb_queue_empty(list)) { 1406 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1407 head->qlen += list->qlen; 1408 } 1409 } 1410 1411 /** 1412 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1413 * @list: the new list to add 1414 * @head: the place to add it in the first list 1415 * 1416 * Each of the lists is a queue. 1417 * The list at @list is reinitialised 1418 */ 1419 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1420 struct sk_buff_head *head) 1421 { 1422 if (!skb_queue_empty(list)) { 1423 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1424 head->qlen += list->qlen; 1425 __skb_queue_head_init(list); 1426 } 1427 } 1428 1429 /** 1430 * __skb_queue_after - queue a buffer at the list head 1431 * @list: list to use 1432 * @prev: place after this buffer 1433 * @newsk: buffer to queue 1434 * 1435 * Queue a buffer int the middle of a list. This function takes no locks 1436 * and you must therefore hold required locks before calling it. 1437 * 1438 * A buffer cannot be placed on two lists at the same time. 1439 */ 1440 static inline void __skb_queue_after(struct sk_buff_head *list, 1441 struct sk_buff *prev, 1442 struct sk_buff *newsk) 1443 { 1444 __skb_insert(newsk, prev, prev->next, list); 1445 } 1446 1447 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1448 struct sk_buff_head *list); 1449 1450 static inline void __skb_queue_before(struct sk_buff_head *list, 1451 struct sk_buff *next, 1452 struct sk_buff *newsk) 1453 { 1454 __skb_insert(newsk, next->prev, next, list); 1455 } 1456 1457 /** 1458 * __skb_queue_head - queue a buffer at the list head 1459 * @list: list to use 1460 * @newsk: buffer to queue 1461 * 1462 * Queue a buffer at the start of a list. This function takes no locks 1463 * and you must therefore hold required locks before calling it. 1464 * 1465 * A buffer cannot be placed on two lists at the same time. 1466 */ 1467 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1468 static inline void __skb_queue_head(struct sk_buff_head *list, 1469 struct sk_buff *newsk) 1470 { 1471 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1472 } 1473 1474 /** 1475 * __skb_queue_tail - queue a buffer at the list tail 1476 * @list: list to use 1477 * @newsk: buffer to queue 1478 * 1479 * Queue a buffer at the end of a list. This function takes no locks 1480 * and you must therefore hold required locks before calling it. 1481 * 1482 * A buffer cannot be placed on two lists at the same time. 1483 */ 1484 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1485 static inline void __skb_queue_tail(struct sk_buff_head *list, 1486 struct sk_buff *newsk) 1487 { 1488 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1489 } 1490 1491 /* 1492 * remove sk_buff from list. _Must_ be called atomically, and with 1493 * the list known.. 1494 */ 1495 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1496 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1497 { 1498 struct sk_buff *next, *prev; 1499 1500 list->qlen--; 1501 next = skb->next; 1502 prev = skb->prev; 1503 skb->next = skb->prev = NULL; 1504 next->prev = prev; 1505 prev->next = next; 1506 } 1507 1508 /** 1509 * __skb_dequeue - remove from the head of the queue 1510 * @list: list to dequeue from 1511 * 1512 * Remove the head of the list. This function does not take any locks 1513 * so must be used with appropriate locks held only. The head item is 1514 * returned or %NULL if the list is empty. 1515 */ 1516 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1517 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1518 { 1519 struct sk_buff *skb = skb_peek(list); 1520 if (skb) 1521 __skb_unlink(skb, list); 1522 return skb; 1523 } 1524 1525 /** 1526 * __skb_dequeue_tail - remove from the tail of the queue 1527 * @list: list to dequeue from 1528 * 1529 * Remove the tail of the list. This function does not take any locks 1530 * so must be used with appropriate locks held only. The tail item is 1531 * returned or %NULL if the list is empty. 1532 */ 1533 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1534 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1535 { 1536 struct sk_buff *skb = skb_peek_tail(list); 1537 if (skb) 1538 __skb_unlink(skb, list); 1539 return skb; 1540 } 1541 1542 1543 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1544 { 1545 return skb->data_len; 1546 } 1547 1548 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1549 { 1550 return skb->len - skb->data_len; 1551 } 1552 1553 static inline int skb_pagelen(const struct sk_buff *skb) 1554 { 1555 int i, len = 0; 1556 1557 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1558 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1559 return len + skb_headlen(skb); 1560 } 1561 1562 /** 1563 * __skb_fill_page_desc - initialise a paged fragment in an skb 1564 * @skb: buffer containing fragment to be initialised 1565 * @i: paged fragment index to initialise 1566 * @page: the page to use for this fragment 1567 * @off: the offset to the data with @page 1568 * @size: the length of the data 1569 * 1570 * Initialises the @i'th fragment of @skb to point to &size bytes at 1571 * offset @off within @page. 1572 * 1573 * Does not take any additional reference on the fragment. 1574 */ 1575 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1576 struct page *page, int off, int size) 1577 { 1578 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1579 1580 /* 1581 * Propagate page->pfmemalloc to the skb if we can. The problem is 1582 * that not all callers have unique ownership of the page. If 1583 * pfmemalloc is set, we check the mapping as a mapping implies 1584 * page->index is set (index and pfmemalloc share space). 1585 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1586 * do not lose pfmemalloc information as the pages would not be 1587 * allocated using __GFP_MEMALLOC. 1588 */ 1589 frag->page.p = page; 1590 frag->page_offset = off; 1591 skb_frag_size_set(frag, size); 1592 1593 page = compound_head(page); 1594 if (page->pfmemalloc && !page->mapping) 1595 skb->pfmemalloc = true; 1596 } 1597 1598 /** 1599 * skb_fill_page_desc - initialise a paged fragment in an skb 1600 * @skb: buffer containing fragment to be initialised 1601 * @i: paged fragment index to initialise 1602 * @page: the page to use for this fragment 1603 * @off: the offset to the data with @page 1604 * @size: the length of the data 1605 * 1606 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1607 * @skb to point to @size bytes at offset @off within @page. In 1608 * addition updates @skb such that @i is the last fragment. 1609 * 1610 * Does not take any additional reference on the fragment. 1611 */ 1612 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1613 struct page *page, int off, int size) 1614 { 1615 __skb_fill_page_desc(skb, i, page, off, size); 1616 skb_shinfo(skb)->nr_frags = i + 1; 1617 } 1618 1619 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1620 int size, unsigned int truesize); 1621 1622 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1623 unsigned int truesize); 1624 1625 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1626 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1627 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1628 1629 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1630 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1631 { 1632 return skb->head + skb->tail; 1633 } 1634 1635 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1636 { 1637 skb->tail = skb->data - skb->head; 1638 } 1639 1640 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1641 { 1642 skb_reset_tail_pointer(skb); 1643 skb->tail += offset; 1644 } 1645 1646 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1647 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1648 { 1649 return skb->tail; 1650 } 1651 1652 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1653 { 1654 skb->tail = skb->data; 1655 } 1656 1657 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1658 { 1659 skb->tail = skb->data + offset; 1660 } 1661 1662 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1663 1664 /* 1665 * Add data to an sk_buff 1666 */ 1667 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1668 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1669 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1670 { 1671 unsigned char *tmp = skb_tail_pointer(skb); 1672 SKB_LINEAR_ASSERT(skb); 1673 skb->tail += len; 1674 skb->len += len; 1675 return tmp; 1676 } 1677 1678 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1679 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1680 { 1681 skb->data -= len; 1682 skb->len += len; 1683 return skb->data; 1684 } 1685 1686 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1687 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1688 { 1689 skb->len -= len; 1690 BUG_ON(skb->len < skb->data_len); 1691 return skb->data += len; 1692 } 1693 1694 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1695 { 1696 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1697 } 1698 1699 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1700 1701 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1702 { 1703 if (len > skb_headlen(skb) && 1704 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1705 return NULL; 1706 skb->len -= len; 1707 return skb->data += len; 1708 } 1709 1710 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1711 { 1712 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1713 } 1714 1715 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1716 { 1717 if (likely(len <= skb_headlen(skb))) 1718 return 1; 1719 if (unlikely(len > skb->len)) 1720 return 0; 1721 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1722 } 1723 1724 /** 1725 * skb_headroom - bytes at buffer head 1726 * @skb: buffer to check 1727 * 1728 * Return the number of bytes of free space at the head of an &sk_buff. 1729 */ 1730 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1731 { 1732 return skb->data - skb->head; 1733 } 1734 1735 /** 1736 * skb_tailroom - bytes at buffer end 1737 * @skb: buffer to check 1738 * 1739 * Return the number of bytes of free space at the tail of an sk_buff 1740 */ 1741 static inline int skb_tailroom(const struct sk_buff *skb) 1742 { 1743 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1744 } 1745 1746 /** 1747 * skb_availroom - bytes at buffer end 1748 * @skb: buffer to check 1749 * 1750 * Return the number of bytes of free space at the tail of an sk_buff 1751 * allocated by sk_stream_alloc() 1752 */ 1753 static inline int skb_availroom(const struct sk_buff *skb) 1754 { 1755 if (skb_is_nonlinear(skb)) 1756 return 0; 1757 1758 return skb->end - skb->tail - skb->reserved_tailroom; 1759 } 1760 1761 /** 1762 * skb_reserve - adjust headroom 1763 * @skb: buffer to alter 1764 * @len: bytes to move 1765 * 1766 * Increase the headroom of an empty &sk_buff by reducing the tail 1767 * room. This is only allowed for an empty buffer. 1768 */ 1769 static inline void skb_reserve(struct sk_buff *skb, int len) 1770 { 1771 skb->data += len; 1772 skb->tail += len; 1773 } 1774 1775 #define ENCAP_TYPE_ETHER 0 1776 #define ENCAP_TYPE_IPPROTO 1 1777 1778 static inline void skb_set_inner_protocol(struct sk_buff *skb, 1779 __be16 protocol) 1780 { 1781 skb->inner_protocol = protocol; 1782 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1783 } 1784 1785 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1786 __u8 ipproto) 1787 { 1788 skb->inner_ipproto = ipproto; 1789 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1790 } 1791 1792 static inline void skb_reset_inner_headers(struct sk_buff *skb) 1793 { 1794 skb->inner_mac_header = skb->mac_header; 1795 skb->inner_network_header = skb->network_header; 1796 skb->inner_transport_header = skb->transport_header; 1797 } 1798 1799 static inline void skb_reset_mac_len(struct sk_buff *skb) 1800 { 1801 skb->mac_len = skb->network_header - skb->mac_header; 1802 } 1803 1804 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1805 *skb) 1806 { 1807 return skb->head + skb->inner_transport_header; 1808 } 1809 1810 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1811 { 1812 skb->inner_transport_header = skb->data - skb->head; 1813 } 1814 1815 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1816 const int offset) 1817 { 1818 skb_reset_inner_transport_header(skb); 1819 skb->inner_transport_header += offset; 1820 } 1821 1822 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1823 { 1824 return skb->head + skb->inner_network_header; 1825 } 1826 1827 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1828 { 1829 skb->inner_network_header = skb->data - skb->head; 1830 } 1831 1832 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1833 const int offset) 1834 { 1835 skb_reset_inner_network_header(skb); 1836 skb->inner_network_header += offset; 1837 } 1838 1839 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1840 { 1841 return skb->head + skb->inner_mac_header; 1842 } 1843 1844 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1845 { 1846 skb->inner_mac_header = skb->data - skb->head; 1847 } 1848 1849 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1850 const int offset) 1851 { 1852 skb_reset_inner_mac_header(skb); 1853 skb->inner_mac_header += offset; 1854 } 1855 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1856 { 1857 return skb->transport_header != (typeof(skb->transport_header))~0U; 1858 } 1859 1860 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1861 { 1862 return skb->head + skb->transport_header; 1863 } 1864 1865 static inline void skb_reset_transport_header(struct sk_buff *skb) 1866 { 1867 skb->transport_header = skb->data - skb->head; 1868 } 1869 1870 static inline void skb_set_transport_header(struct sk_buff *skb, 1871 const int offset) 1872 { 1873 skb_reset_transport_header(skb); 1874 skb->transport_header += offset; 1875 } 1876 1877 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1878 { 1879 return skb->head + skb->network_header; 1880 } 1881 1882 static inline void skb_reset_network_header(struct sk_buff *skb) 1883 { 1884 skb->network_header = skb->data - skb->head; 1885 } 1886 1887 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1888 { 1889 skb_reset_network_header(skb); 1890 skb->network_header += offset; 1891 } 1892 1893 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1894 { 1895 return skb->head + skb->mac_header; 1896 } 1897 1898 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1899 { 1900 return skb->mac_header != (typeof(skb->mac_header))~0U; 1901 } 1902 1903 static inline void skb_reset_mac_header(struct sk_buff *skb) 1904 { 1905 skb->mac_header = skb->data - skb->head; 1906 } 1907 1908 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1909 { 1910 skb_reset_mac_header(skb); 1911 skb->mac_header += offset; 1912 } 1913 1914 static inline void skb_pop_mac_header(struct sk_buff *skb) 1915 { 1916 skb->mac_header = skb->network_header; 1917 } 1918 1919 static inline void skb_probe_transport_header(struct sk_buff *skb, 1920 const int offset_hint) 1921 { 1922 struct flow_keys keys; 1923 1924 if (skb_transport_header_was_set(skb)) 1925 return; 1926 else if (skb_flow_dissect(skb, &keys)) 1927 skb_set_transport_header(skb, keys.thoff); 1928 else 1929 skb_set_transport_header(skb, offset_hint); 1930 } 1931 1932 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1933 { 1934 if (skb_mac_header_was_set(skb)) { 1935 const unsigned char *old_mac = skb_mac_header(skb); 1936 1937 skb_set_mac_header(skb, -skb->mac_len); 1938 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1939 } 1940 } 1941 1942 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1943 { 1944 return skb->csum_start - skb_headroom(skb); 1945 } 1946 1947 static inline int skb_transport_offset(const struct sk_buff *skb) 1948 { 1949 return skb_transport_header(skb) - skb->data; 1950 } 1951 1952 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1953 { 1954 return skb->transport_header - skb->network_header; 1955 } 1956 1957 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1958 { 1959 return skb->inner_transport_header - skb->inner_network_header; 1960 } 1961 1962 static inline int skb_network_offset(const struct sk_buff *skb) 1963 { 1964 return skb_network_header(skb) - skb->data; 1965 } 1966 1967 static inline int skb_inner_network_offset(const struct sk_buff *skb) 1968 { 1969 return skb_inner_network_header(skb) - skb->data; 1970 } 1971 1972 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1973 { 1974 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1975 } 1976 1977 /* 1978 * CPUs often take a performance hit when accessing unaligned memory 1979 * locations. The actual performance hit varies, it can be small if the 1980 * hardware handles it or large if we have to take an exception and fix it 1981 * in software. 1982 * 1983 * Since an ethernet header is 14 bytes network drivers often end up with 1984 * the IP header at an unaligned offset. The IP header can be aligned by 1985 * shifting the start of the packet by 2 bytes. Drivers should do this 1986 * with: 1987 * 1988 * skb_reserve(skb, NET_IP_ALIGN); 1989 * 1990 * The downside to this alignment of the IP header is that the DMA is now 1991 * unaligned. On some architectures the cost of an unaligned DMA is high 1992 * and this cost outweighs the gains made by aligning the IP header. 1993 * 1994 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1995 * to be overridden. 1996 */ 1997 #ifndef NET_IP_ALIGN 1998 #define NET_IP_ALIGN 2 1999 #endif 2000 2001 /* 2002 * The networking layer reserves some headroom in skb data (via 2003 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2004 * the header has to grow. In the default case, if the header has to grow 2005 * 32 bytes or less we avoid the reallocation. 2006 * 2007 * Unfortunately this headroom changes the DMA alignment of the resulting 2008 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2009 * on some architectures. An architecture can override this value, 2010 * perhaps setting it to a cacheline in size (since that will maintain 2011 * cacheline alignment of the DMA). It must be a power of 2. 2012 * 2013 * Various parts of the networking layer expect at least 32 bytes of 2014 * headroom, you should not reduce this. 2015 * 2016 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2017 * to reduce average number of cache lines per packet. 2018 * get_rps_cpus() for example only access one 64 bytes aligned block : 2019 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2020 */ 2021 #ifndef NET_SKB_PAD 2022 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2023 #endif 2024 2025 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2026 2027 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2028 { 2029 if (unlikely(skb_is_nonlinear(skb))) { 2030 WARN_ON(1); 2031 return; 2032 } 2033 skb->len = len; 2034 skb_set_tail_pointer(skb, len); 2035 } 2036 2037 void skb_trim(struct sk_buff *skb, unsigned int len); 2038 2039 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2040 { 2041 if (skb->data_len) 2042 return ___pskb_trim(skb, len); 2043 __skb_trim(skb, len); 2044 return 0; 2045 } 2046 2047 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2048 { 2049 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2050 } 2051 2052 /** 2053 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2054 * @skb: buffer to alter 2055 * @len: new length 2056 * 2057 * This is identical to pskb_trim except that the caller knows that 2058 * the skb is not cloned so we should never get an error due to out- 2059 * of-memory. 2060 */ 2061 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2062 { 2063 int err = pskb_trim(skb, len); 2064 BUG_ON(err); 2065 } 2066 2067 /** 2068 * skb_orphan - orphan a buffer 2069 * @skb: buffer to orphan 2070 * 2071 * If a buffer currently has an owner then we call the owner's 2072 * destructor function and make the @skb unowned. The buffer continues 2073 * to exist but is no longer charged to its former owner. 2074 */ 2075 static inline void skb_orphan(struct sk_buff *skb) 2076 { 2077 if (skb->destructor) { 2078 skb->destructor(skb); 2079 skb->destructor = NULL; 2080 skb->sk = NULL; 2081 } else { 2082 BUG_ON(skb->sk); 2083 } 2084 } 2085 2086 /** 2087 * skb_orphan_frags - orphan the frags contained in a buffer 2088 * @skb: buffer to orphan frags from 2089 * @gfp_mask: allocation mask for replacement pages 2090 * 2091 * For each frag in the SKB which needs a destructor (i.e. has an 2092 * owner) create a copy of that frag and release the original 2093 * page by calling the destructor. 2094 */ 2095 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2096 { 2097 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2098 return 0; 2099 return skb_copy_ubufs(skb, gfp_mask); 2100 } 2101 2102 /** 2103 * __skb_queue_purge - empty a list 2104 * @list: list to empty 2105 * 2106 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2107 * the list and one reference dropped. This function does not take the 2108 * list lock and the caller must hold the relevant locks to use it. 2109 */ 2110 void skb_queue_purge(struct sk_buff_head *list); 2111 static inline void __skb_queue_purge(struct sk_buff_head *list) 2112 { 2113 struct sk_buff *skb; 2114 while ((skb = __skb_dequeue(list)) != NULL) 2115 kfree_skb(skb); 2116 } 2117 2118 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 2119 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 2120 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 2121 2122 void *netdev_alloc_frag(unsigned int fragsz); 2123 2124 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2125 gfp_t gfp_mask); 2126 2127 /** 2128 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2129 * @dev: network device to receive on 2130 * @length: length to allocate 2131 * 2132 * Allocate a new &sk_buff and assign it a usage count of one. The 2133 * buffer has unspecified headroom built in. Users should allocate 2134 * the headroom they think they need without accounting for the 2135 * built in space. The built in space is used for optimisations. 2136 * 2137 * %NULL is returned if there is no free memory. Although this function 2138 * allocates memory it can be called from an interrupt. 2139 */ 2140 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2141 unsigned int length) 2142 { 2143 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2144 } 2145 2146 /* legacy helper around __netdev_alloc_skb() */ 2147 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2148 gfp_t gfp_mask) 2149 { 2150 return __netdev_alloc_skb(NULL, length, gfp_mask); 2151 } 2152 2153 /* legacy helper around netdev_alloc_skb() */ 2154 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2155 { 2156 return netdev_alloc_skb(NULL, length); 2157 } 2158 2159 2160 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2161 unsigned int length, gfp_t gfp) 2162 { 2163 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2164 2165 if (NET_IP_ALIGN && skb) 2166 skb_reserve(skb, NET_IP_ALIGN); 2167 return skb; 2168 } 2169 2170 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2171 unsigned int length) 2172 { 2173 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2174 } 2175 2176 void *napi_alloc_frag(unsigned int fragsz); 2177 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2178 unsigned int length, gfp_t gfp_mask); 2179 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2180 unsigned int length) 2181 { 2182 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2183 } 2184 2185 /** 2186 * __dev_alloc_pages - allocate page for network Rx 2187 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2188 * @order: size of the allocation 2189 * 2190 * Allocate a new page. 2191 * 2192 * %NULL is returned if there is no free memory. 2193 */ 2194 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2195 unsigned int order) 2196 { 2197 /* This piece of code contains several assumptions. 2198 * 1. This is for device Rx, therefor a cold page is preferred. 2199 * 2. The expectation is the user wants a compound page. 2200 * 3. If requesting a order 0 page it will not be compound 2201 * due to the check to see if order has a value in prep_new_page 2202 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2203 * code in gfp_to_alloc_flags that should be enforcing this. 2204 */ 2205 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2206 2207 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2208 } 2209 2210 static inline struct page *dev_alloc_pages(unsigned int order) 2211 { 2212 return __dev_alloc_pages(GFP_ATOMIC, order); 2213 } 2214 2215 /** 2216 * __dev_alloc_page - allocate a page for network Rx 2217 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2218 * 2219 * Allocate a new page. 2220 * 2221 * %NULL is returned if there is no free memory. 2222 */ 2223 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2224 { 2225 return __dev_alloc_pages(gfp_mask, 0); 2226 } 2227 2228 static inline struct page *dev_alloc_page(void) 2229 { 2230 return __dev_alloc_page(GFP_ATOMIC); 2231 } 2232 2233 /** 2234 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2235 * @page: The page that was allocated from skb_alloc_page 2236 * @skb: The skb that may need pfmemalloc set 2237 */ 2238 static inline void skb_propagate_pfmemalloc(struct page *page, 2239 struct sk_buff *skb) 2240 { 2241 if (page && page->pfmemalloc) 2242 skb->pfmemalloc = true; 2243 } 2244 2245 /** 2246 * skb_frag_page - retrieve the page referred to by a paged fragment 2247 * @frag: the paged fragment 2248 * 2249 * Returns the &struct page associated with @frag. 2250 */ 2251 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2252 { 2253 return frag->page.p; 2254 } 2255 2256 /** 2257 * __skb_frag_ref - take an addition reference on a paged fragment. 2258 * @frag: the paged fragment 2259 * 2260 * Takes an additional reference on the paged fragment @frag. 2261 */ 2262 static inline void __skb_frag_ref(skb_frag_t *frag) 2263 { 2264 get_page(skb_frag_page(frag)); 2265 } 2266 2267 /** 2268 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2269 * @skb: the buffer 2270 * @f: the fragment offset. 2271 * 2272 * Takes an additional reference on the @f'th paged fragment of @skb. 2273 */ 2274 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2275 { 2276 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2277 } 2278 2279 /** 2280 * __skb_frag_unref - release a reference on a paged fragment. 2281 * @frag: the paged fragment 2282 * 2283 * Releases a reference on the paged fragment @frag. 2284 */ 2285 static inline void __skb_frag_unref(skb_frag_t *frag) 2286 { 2287 put_page(skb_frag_page(frag)); 2288 } 2289 2290 /** 2291 * skb_frag_unref - release a reference on a paged fragment of an skb. 2292 * @skb: the buffer 2293 * @f: the fragment offset 2294 * 2295 * Releases a reference on the @f'th paged fragment of @skb. 2296 */ 2297 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2298 { 2299 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2300 } 2301 2302 /** 2303 * skb_frag_address - gets the address of the data contained in a paged fragment 2304 * @frag: the paged fragment buffer 2305 * 2306 * Returns the address of the data within @frag. The page must already 2307 * be mapped. 2308 */ 2309 static inline void *skb_frag_address(const skb_frag_t *frag) 2310 { 2311 return page_address(skb_frag_page(frag)) + frag->page_offset; 2312 } 2313 2314 /** 2315 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2316 * @frag: the paged fragment buffer 2317 * 2318 * Returns the address of the data within @frag. Checks that the page 2319 * is mapped and returns %NULL otherwise. 2320 */ 2321 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2322 { 2323 void *ptr = page_address(skb_frag_page(frag)); 2324 if (unlikely(!ptr)) 2325 return NULL; 2326 2327 return ptr + frag->page_offset; 2328 } 2329 2330 /** 2331 * __skb_frag_set_page - sets the page contained in a paged fragment 2332 * @frag: the paged fragment 2333 * @page: the page to set 2334 * 2335 * Sets the fragment @frag to contain @page. 2336 */ 2337 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2338 { 2339 frag->page.p = page; 2340 } 2341 2342 /** 2343 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2344 * @skb: the buffer 2345 * @f: the fragment offset 2346 * @page: the page to set 2347 * 2348 * Sets the @f'th fragment of @skb to contain @page. 2349 */ 2350 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2351 struct page *page) 2352 { 2353 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2354 } 2355 2356 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2357 2358 /** 2359 * skb_frag_dma_map - maps a paged fragment via the DMA API 2360 * @dev: the device to map the fragment to 2361 * @frag: the paged fragment to map 2362 * @offset: the offset within the fragment (starting at the 2363 * fragment's own offset) 2364 * @size: the number of bytes to map 2365 * @dir: the direction of the mapping (%PCI_DMA_*) 2366 * 2367 * Maps the page associated with @frag to @device. 2368 */ 2369 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2370 const skb_frag_t *frag, 2371 size_t offset, size_t size, 2372 enum dma_data_direction dir) 2373 { 2374 return dma_map_page(dev, skb_frag_page(frag), 2375 frag->page_offset + offset, size, dir); 2376 } 2377 2378 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2379 gfp_t gfp_mask) 2380 { 2381 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2382 } 2383 2384 2385 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2386 gfp_t gfp_mask) 2387 { 2388 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2389 } 2390 2391 2392 /** 2393 * skb_clone_writable - is the header of a clone writable 2394 * @skb: buffer to check 2395 * @len: length up to which to write 2396 * 2397 * Returns true if modifying the header part of the cloned buffer 2398 * does not requires the data to be copied. 2399 */ 2400 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2401 { 2402 return !skb_header_cloned(skb) && 2403 skb_headroom(skb) + len <= skb->hdr_len; 2404 } 2405 2406 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2407 int cloned) 2408 { 2409 int delta = 0; 2410 2411 if (headroom > skb_headroom(skb)) 2412 delta = headroom - skb_headroom(skb); 2413 2414 if (delta || cloned) 2415 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2416 GFP_ATOMIC); 2417 return 0; 2418 } 2419 2420 /** 2421 * skb_cow - copy header of skb when it is required 2422 * @skb: buffer to cow 2423 * @headroom: needed headroom 2424 * 2425 * If the skb passed lacks sufficient headroom or its data part 2426 * is shared, data is reallocated. If reallocation fails, an error 2427 * is returned and original skb is not changed. 2428 * 2429 * The result is skb with writable area skb->head...skb->tail 2430 * and at least @headroom of space at head. 2431 */ 2432 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2433 { 2434 return __skb_cow(skb, headroom, skb_cloned(skb)); 2435 } 2436 2437 /** 2438 * skb_cow_head - skb_cow but only making the head writable 2439 * @skb: buffer to cow 2440 * @headroom: needed headroom 2441 * 2442 * This function is identical to skb_cow except that we replace the 2443 * skb_cloned check by skb_header_cloned. It should be used when 2444 * you only need to push on some header and do not need to modify 2445 * the data. 2446 */ 2447 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2448 { 2449 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2450 } 2451 2452 /** 2453 * skb_padto - pad an skbuff up to a minimal size 2454 * @skb: buffer to pad 2455 * @len: minimal length 2456 * 2457 * Pads up a buffer to ensure the trailing bytes exist and are 2458 * blanked. If the buffer already contains sufficient data it 2459 * is untouched. Otherwise it is extended. Returns zero on 2460 * success. The skb is freed on error. 2461 */ 2462 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2463 { 2464 unsigned int size = skb->len; 2465 if (likely(size >= len)) 2466 return 0; 2467 return skb_pad(skb, len - size); 2468 } 2469 2470 /** 2471 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2472 * @skb: buffer to pad 2473 * @len: minimal length 2474 * 2475 * Pads up a buffer to ensure the trailing bytes exist and are 2476 * blanked. If the buffer already contains sufficient data it 2477 * is untouched. Otherwise it is extended. Returns zero on 2478 * success. The skb is freed on error. 2479 */ 2480 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2481 { 2482 unsigned int size = skb->len; 2483 2484 if (unlikely(size < len)) { 2485 len -= size; 2486 if (skb_pad(skb, len)) 2487 return -ENOMEM; 2488 __skb_put(skb, len); 2489 } 2490 return 0; 2491 } 2492 2493 static inline int skb_add_data(struct sk_buff *skb, 2494 struct iov_iter *from, int copy) 2495 { 2496 const int off = skb->len; 2497 2498 if (skb->ip_summed == CHECKSUM_NONE) { 2499 __wsum csum = 0; 2500 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2501 &csum, from) == copy) { 2502 skb->csum = csum_block_add(skb->csum, csum, off); 2503 return 0; 2504 } 2505 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2506 return 0; 2507 2508 __skb_trim(skb, off); 2509 return -EFAULT; 2510 } 2511 2512 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2513 const struct page *page, int off) 2514 { 2515 if (i) { 2516 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2517 2518 return page == skb_frag_page(frag) && 2519 off == frag->page_offset + skb_frag_size(frag); 2520 } 2521 return false; 2522 } 2523 2524 static inline int __skb_linearize(struct sk_buff *skb) 2525 { 2526 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2527 } 2528 2529 /** 2530 * skb_linearize - convert paged skb to linear one 2531 * @skb: buffer to linarize 2532 * 2533 * If there is no free memory -ENOMEM is returned, otherwise zero 2534 * is returned and the old skb data released. 2535 */ 2536 static inline int skb_linearize(struct sk_buff *skb) 2537 { 2538 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2539 } 2540 2541 /** 2542 * skb_has_shared_frag - can any frag be overwritten 2543 * @skb: buffer to test 2544 * 2545 * Return true if the skb has at least one frag that might be modified 2546 * by an external entity (as in vmsplice()/sendfile()) 2547 */ 2548 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2549 { 2550 return skb_is_nonlinear(skb) && 2551 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2552 } 2553 2554 /** 2555 * skb_linearize_cow - make sure skb is linear and writable 2556 * @skb: buffer to process 2557 * 2558 * If there is no free memory -ENOMEM is returned, otherwise zero 2559 * is returned and the old skb data released. 2560 */ 2561 static inline int skb_linearize_cow(struct sk_buff *skb) 2562 { 2563 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2564 __skb_linearize(skb) : 0; 2565 } 2566 2567 /** 2568 * skb_postpull_rcsum - update checksum for received skb after pull 2569 * @skb: buffer to update 2570 * @start: start of data before pull 2571 * @len: length of data pulled 2572 * 2573 * After doing a pull on a received packet, you need to call this to 2574 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2575 * CHECKSUM_NONE so that it can be recomputed from scratch. 2576 */ 2577 2578 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2579 const void *start, unsigned int len) 2580 { 2581 if (skb->ip_summed == CHECKSUM_COMPLETE) 2582 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2583 } 2584 2585 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2586 2587 /** 2588 * pskb_trim_rcsum - trim received skb and update checksum 2589 * @skb: buffer to trim 2590 * @len: new length 2591 * 2592 * This is exactly the same as pskb_trim except that it ensures the 2593 * checksum of received packets are still valid after the operation. 2594 */ 2595 2596 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2597 { 2598 if (likely(len >= skb->len)) 2599 return 0; 2600 if (skb->ip_summed == CHECKSUM_COMPLETE) 2601 skb->ip_summed = CHECKSUM_NONE; 2602 return __pskb_trim(skb, len); 2603 } 2604 2605 #define skb_queue_walk(queue, skb) \ 2606 for (skb = (queue)->next; \ 2607 skb != (struct sk_buff *)(queue); \ 2608 skb = skb->next) 2609 2610 #define skb_queue_walk_safe(queue, skb, tmp) \ 2611 for (skb = (queue)->next, tmp = skb->next; \ 2612 skb != (struct sk_buff *)(queue); \ 2613 skb = tmp, tmp = skb->next) 2614 2615 #define skb_queue_walk_from(queue, skb) \ 2616 for (; skb != (struct sk_buff *)(queue); \ 2617 skb = skb->next) 2618 2619 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2620 for (tmp = skb->next; \ 2621 skb != (struct sk_buff *)(queue); \ 2622 skb = tmp, tmp = skb->next) 2623 2624 #define skb_queue_reverse_walk(queue, skb) \ 2625 for (skb = (queue)->prev; \ 2626 skb != (struct sk_buff *)(queue); \ 2627 skb = skb->prev) 2628 2629 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2630 for (skb = (queue)->prev, tmp = skb->prev; \ 2631 skb != (struct sk_buff *)(queue); \ 2632 skb = tmp, tmp = skb->prev) 2633 2634 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2635 for (tmp = skb->prev; \ 2636 skb != (struct sk_buff *)(queue); \ 2637 skb = tmp, tmp = skb->prev) 2638 2639 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2640 { 2641 return skb_shinfo(skb)->frag_list != NULL; 2642 } 2643 2644 static inline void skb_frag_list_init(struct sk_buff *skb) 2645 { 2646 skb_shinfo(skb)->frag_list = NULL; 2647 } 2648 2649 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2650 { 2651 frag->next = skb_shinfo(skb)->frag_list; 2652 skb_shinfo(skb)->frag_list = frag; 2653 } 2654 2655 #define skb_walk_frags(skb, iter) \ 2656 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2657 2658 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2659 int *peeked, int *off, int *err); 2660 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2661 int *err); 2662 unsigned int datagram_poll(struct file *file, struct socket *sock, 2663 struct poll_table_struct *wait); 2664 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 2665 struct iov_iter *to, int size); 2666 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 2667 struct msghdr *msg, int size) 2668 { 2669 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 2670 } 2671 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 2672 struct msghdr *msg); 2673 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 2674 struct iov_iter *from, int len); 2675 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 2676 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2677 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2678 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2679 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2680 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2681 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2682 int len, __wsum csum); 2683 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2684 struct pipe_inode_info *pipe, unsigned int len, 2685 unsigned int flags); 2686 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2687 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2688 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2689 int len, int hlen); 2690 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2691 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2692 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2693 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2694 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2695 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2696 int skb_ensure_writable(struct sk_buff *skb, int write_len); 2697 int skb_vlan_pop(struct sk_buff *skb); 2698 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 2699 2700 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 2701 { 2702 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2703 } 2704 2705 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 2706 { 2707 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2708 } 2709 2710 struct skb_checksum_ops { 2711 __wsum (*update)(const void *mem, int len, __wsum wsum); 2712 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2713 }; 2714 2715 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2716 __wsum csum, const struct skb_checksum_ops *ops); 2717 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2718 __wsum csum); 2719 2720 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset, 2721 int len, void *data, int hlen, void *buffer) 2722 { 2723 if (hlen - offset >= len) 2724 return data + offset; 2725 2726 if (!skb || 2727 skb_copy_bits(skb, offset, buffer, len) < 0) 2728 return NULL; 2729 2730 return buffer; 2731 } 2732 2733 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2734 int len, void *buffer) 2735 { 2736 return __skb_header_pointer(skb, offset, len, skb->data, 2737 skb_headlen(skb), buffer); 2738 } 2739 2740 /** 2741 * skb_needs_linearize - check if we need to linearize a given skb 2742 * depending on the given device features. 2743 * @skb: socket buffer to check 2744 * @features: net device features 2745 * 2746 * Returns true if either: 2747 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2748 * 2. skb is fragmented and the device does not support SG. 2749 */ 2750 static inline bool skb_needs_linearize(struct sk_buff *skb, 2751 netdev_features_t features) 2752 { 2753 return skb_is_nonlinear(skb) && 2754 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2755 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2756 } 2757 2758 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2759 void *to, 2760 const unsigned int len) 2761 { 2762 memcpy(to, skb->data, len); 2763 } 2764 2765 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2766 const int offset, void *to, 2767 const unsigned int len) 2768 { 2769 memcpy(to, skb->data + offset, len); 2770 } 2771 2772 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2773 const void *from, 2774 const unsigned int len) 2775 { 2776 memcpy(skb->data, from, len); 2777 } 2778 2779 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2780 const int offset, 2781 const void *from, 2782 const unsigned int len) 2783 { 2784 memcpy(skb->data + offset, from, len); 2785 } 2786 2787 void skb_init(void); 2788 2789 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2790 { 2791 return skb->tstamp; 2792 } 2793 2794 /** 2795 * skb_get_timestamp - get timestamp from a skb 2796 * @skb: skb to get stamp from 2797 * @stamp: pointer to struct timeval to store stamp in 2798 * 2799 * Timestamps are stored in the skb as offsets to a base timestamp. 2800 * This function converts the offset back to a struct timeval and stores 2801 * it in stamp. 2802 */ 2803 static inline void skb_get_timestamp(const struct sk_buff *skb, 2804 struct timeval *stamp) 2805 { 2806 *stamp = ktime_to_timeval(skb->tstamp); 2807 } 2808 2809 static inline void skb_get_timestampns(const struct sk_buff *skb, 2810 struct timespec *stamp) 2811 { 2812 *stamp = ktime_to_timespec(skb->tstamp); 2813 } 2814 2815 static inline void __net_timestamp(struct sk_buff *skb) 2816 { 2817 skb->tstamp = ktime_get_real(); 2818 } 2819 2820 static inline ktime_t net_timedelta(ktime_t t) 2821 { 2822 return ktime_sub(ktime_get_real(), t); 2823 } 2824 2825 static inline ktime_t net_invalid_timestamp(void) 2826 { 2827 return ktime_set(0, 0); 2828 } 2829 2830 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2831 2832 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2833 2834 void skb_clone_tx_timestamp(struct sk_buff *skb); 2835 bool skb_defer_rx_timestamp(struct sk_buff *skb); 2836 2837 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2838 2839 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2840 { 2841 } 2842 2843 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2844 { 2845 return false; 2846 } 2847 2848 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2849 2850 /** 2851 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2852 * 2853 * PHY drivers may accept clones of transmitted packets for 2854 * timestamping via their phy_driver.txtstamp method. These drivers 2855 * must call this function to return the skb back to the stack, with 2856 * or without a timestamp. 2857 * 2858 * @skb: clone of the the original outgoing packet 2859 * @hwtstamps: hardware time stamps, may be NULL if not available 2860 * 2861 */ 2862 void skb_complete_tx_timestamp(struct sk_buff *skb, 2863 struct skb_shared_hwtstamps *hwtstamps); 2864 2865 void __skb_tstamp_tx(struct sk_buff *orig_skb, 2866 struct skb_shared_hwtstamps *hwtstamps, 2867 struct sock *sk, int tstype); 2868 2869 /** 2870 * skb_tstamp_tx - queue clone of skb with send time stamps 2871 * @orig_skb: the original outgoing packet 2872 * @hwtstamps: hardware time stamps, may be NULL if not available 2873 * 2874 * If the skb has a socket associated, then this function clones the 2875 * skb (thus sharing the actual data and optional structures), stores 2876 * the optional hardware time stamping information (if non NULL) or 2877 * generates a software time stamp (otherwise), then queues the clone 2878 * to the error queue of the socket. Errors are silently ignored. 2879 */ 2880 void skb_tstamp_tx(struct sk_buff *orig_skb, 2881 struct skb_shared_hwtstamps *hwtstamps); 2882 2883 static inline void sw_tx_timestamp(struct sk_buff *skb) 2884 { 2885 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2886 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2887 skb_tstamp_tx(skb, NULL); 2888 } 2889 2890 /** 2891 * skb_tx_timestamp() - Driver hook for transmit timestamping 2892 * 2893 * Ethernet MAC Drivers should call this function in their hard_xmit() 2894 * function immediately before giving the sk_buff to the MAC hardware. 2895 * 2896 * Specifically, one should make absolutely sure that this function is 2897 * called before TX completion of this packet can trigger. Otherwise 2898 * the packet could potentially already be freed. 2899 * 2900 * @skb: A socket buffer. 2901 */ 2902 static inline void skb_tx_timestamp(struct sk_buff *skb) 2903 { 2904 skb_clone_tx_timestamp(skb); 2905 sw_tx_timestamp(skb); 2906 } 2907 2908 /** 2909 * skb_complete_wifi_ack - deliver skb with wifi status 2910 * 2911 * @skb: the original outgoing packet 2912 * @acked: ack status 2913 * 2914 */ 2915 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2916 2917 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2918 __sum16 __skb_checksum_complete(struct sk_buff *skb); 2919 2920 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2921 { 2922 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 2923 skb->csum_valid || 2924 (skb->ip_summed == CHECKSUM_PARTIAL && 2925 skb_checksum_start_offset(skb) >= 0)); 2926 } 2927 2928 /** 2929 * skb_checksum_complete - Calculate checksum of an entire packet 2930 * @skb: packet to process 2931 * 2932 * This function calculates the checksum over the entire packet plus 2933 * the value of skb->csum. The latter can be used to supply the 2934 * checksum of a pseudo header as used by TCP/UDP. It returns the 2935 * checksum. 2936 * 2937 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2938 * this function can be used to verify that checksum on received 2939 * packets. In that case the function should return zero if the 2940 * checksum is correct. In particular, this function will return zero 2941 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2942 * hardware has already verified the correctness of the checksum. 2943 */ 2944 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2945 { 2946 return skb_csum_unnecessary(skb) ? 2947 0 : __skb_checksum_complete(skb); 2948 } 2949 2950 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 2951 { 2952 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2953 if (skb->csum_level == 0) 2954 skb->ip_summed = CHECKSUM_NONE; 2955 else 2956 skb->csum_level--; 2957 } 2958 } 2959 2960 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 2961 { 2962 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2963 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 2964 skb->csum_level++; 2965 } else if (skb->ip_summed == CHECKSUM_NONE) { 2966 skb->ip_summed = CHECKSUM_UNNECESSARY; 2967 skb->csum_level = 0; 2968 } 2969 } 2970 2971 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 2972 { 2973 /* Mark current checksum as bad (typically called from GRO 2974 * path). In the case that ip_summed is CHECKSUM_NONE 2975 * this must be the first checksum encountered in the packet. 2976 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 2977 * checksum after the last one validated. For UDP, a zero 2978 * checksum can not be marked as bad. 2979 */ 2980 2981 if (skb->ip_summed == CHECKSUM_NONE || 2982 skb->ip_summed == CHECKSUM_UNNECESSARY) 2983 skb->csum_bad = 1; 2984 } 2985 2986 /* Check if we need to perform checksum complete validation. 2987 * 2988 * Returns true if checksum complete is needed, false otherwise 2989 * (either checksum is unnecessary or zero checksum is allowed). 2990 */ 2991 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 2992 bool zero_okay, 2993 __sum16 check) 2994 { 2995 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 2996 skb->csum_valid = 1; 2997 __skb_decr_checksum_unnecessary(skb); 2998 return false; 2999 } 3000 3001 return true; 3002 } 3003 3004 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3005 * in checksum_init. 3006 */ 3007 #define CHECKSUM_BREAK 76 3008 3009 /* Validate (init) checksum based on checksum complete. 3010 * 3011 * Return values: 3012 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3013 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3014 * checksum is stored in skb->csum for use in __skb_checksum_complete 3015 * non-zero: value of invalid checksum 3016 * 3017 */ 3018 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3019 bool complete, 3020 __wsum psum) 3021 { 3022 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3023 if (!csum_fold(csum_add(psum, skb->csum))) { 3024 skb->csum_valid = 1; 3025 return 0; 3026 } 3027 } else if (skb->csum_bad) { 3028 /* ip_summed == CHECKSUM_NONE in this case */ 3029 return 1; 3030 } 3031 3032 skb->csum = psum; 3033 3034 if (complete || skb->len <= CHECKSUM_BREAK) { 3035 __sum16 csum; 3036 3037 csum = __skb_checksum_complete(skb); 3038 skb->csum_valid = !csum; 3039 return csum; 3040 } 3041 3042 return 0; 3043 } 3044 3045 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3046 { 3047 return 0; 3048 } 3049 3050 /* Perform checksum validate (init). Note that this is a macro since we only 3051 * want to calculate the pseudo header which is an input function if necessary. 3052 * First we try to validate without any computation (checksum unnecessary) and 3053 * then calculate based on checksum complete calling the function to compute 3054 * pseudo header. 3055 * 3056 * Return values: 3057 * 0: checksum is validated or try to in skb_checksum_complete 3058 * non-zero: value of invalid checksum 3059 */ 3060 #define __skb_checksum_validate(skb, proto, complete, \ 3061 zero_okay, check, compute_pseudo) \ 3062 ({ \ 3063 __sum16 __ret = 0; \ 3064 skb->csum_valid = 0; \ 3065 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3066 __ret = __skb_checksum_validate_complete(skb, \ 3067 complete, compute_pseudo(skb, proto)); \ 3068 __ret; \ 3069 }) 3070 3071 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3072 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3073 3074 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3075 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3076 3077 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3078 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3079 3080 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3081 compute_pseudo) \ 3082 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3083 3084 #define skb_checksum_simple_validate(skb) \ 3085 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3086 3087 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3088 { 3089 return (skb->ip_summed == CHECKSUM_NONE && 3090 skb->csum_valid && !skb->csum_bad); 3091 } 3092 3093 static inline void __skb_checksum_convert(struct sk_buff *skb, 3094 __sum16 check, __wsum pseudo) 3095 { 3096 skb->csum = ~pseudo; 3097 skb->ip_summed = CHECKSUM_COMPLETE; 3098 } 3099 3100 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3101 do { \ 3102 if (__skb_checksum_convert_check(skb)) \ 3103 __skb_checksum_convert(skb, check, \ 3104 compute_pseudo(skb, proto)); \ 3105 } while (0) 3106 3107 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3108 u16 start, u16 offset) 3109 { 3110 skb->ip_summed = CHECKSUM_PARTIAL; 3111 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3112 skb->csum_offset = offset - start; 3113 } 3114 3115 /* Update skbuf and packet to reflect the remote checksum offload operation. 3116 * When called, ptr indicates the starting point for skb->csum when 3117 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3118 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3119 */ 3120 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3121 int start, int offset, bool nopartial) 3122 { 3123 __wsum delta; 3124 3125 if (!nopartial) { 3126 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3127 return; 3128 } 3129 3130 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3131 __skb_checksum_complete(skb); 3132 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3133 } 3134 3135 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3136 3137 /* Adjust skb->csum since we changed the packet */ 3138 skb->csum = csum_add(skb->csum, delta); 3139 } 3140 3141 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3142 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3143 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3144 { 3145 if (nfct && atomic_dec_and_test(&nfct->use)) 3146 nf_conntrack_destroy(nfct); 3147 } 3148 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3149 { 3150 if (nfct) 3151 atomic_inc(&nfct->use); 3152 } 3153 #endif 3154 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3155 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3156 { 3157 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3158 kfree(nf_bridge); 3159 } 3160 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3161 { 3162 if (nf_bridge) 3163 atomic_inc(&nf_bridge->use); 3164 } 3165 #endif /* CONFIG_BRIDGE_NETFILTER */ 3166 static inline void nf_reset(struct sk_buff *skb) 3167 { 3168 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3169 nf_conntrack_put(skb->nfct); 3170 skb->nfct = NULL; 3171 #endif 3172 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3173 nf_bridge_put(skb->nf_bridge); 3174 skb->nf_bridge = NULL; 3175 #endif 3176 } 3177 3178 static inline void nf_reset_trace(struct sk_buff *skb) 3179 { 3180 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3181 skb->nf_trace = 0; 3182 #endif 3183 } 3184 3185 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3186 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3187 bool copy) 3188 { 3189 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3190 dst->nfct = src->nfct; 3191 nf_conntrack_get(src->nfct); 3192 if (copy) 3193 dst->nfctinfo = src->nfctinfo; 3194 #endif 3195 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3196 dst->nf_bridge = src->nf_bridge; 3197 nf_bridge_get(src->nf_bridge); 3198 #endif 3199 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3200 if (copy) 3201 dst->nf_trace = src->nf_trace; 3202 #endif 3203 } 3204 3205 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3206 { 3207 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3208 nf_conntrack_put(dst->nfct); 3209 #endif 3210 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3211 nf_bridge_put(dst->nf_bridge); 3212 #endif 3213 __nf_copy(dst, src, true); 3214 } 3215 3216 #ifdef CONFIG_NETWORK_SECMARK 3217 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3218 { 3219 to->secmark = from->secmark; 3220 } 3221 3222 static inline void skb_init_secmark(struct sk_buff *skb) 3223 { 3224 skb->secmark = 0; 3225 } 3226 #else 3227 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3228 { } 3229 3230 static inline void skb_init_secmark(struct sk_buff *skb) 3231 { } 3232 #endif 3233 3234 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3235 { 3236 return !skb->destructor && 3237 #if IS_ENABLED(CONFIG_XFRM) 3238 !skb->sp && 3239 #endif 3240 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3241 !skb->nfct && 3242 #endif 3243 !skb->_skb_refdst && 3244 !skb_has_frag_list(skb); 3245 } 3246 3247 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3248 { 3249 skb->queue_mapping = queue_mapping; 3250 } 3251 3252 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3253 { 3254 return skb->queue_mapping; 3255 } 3256 3257 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3258 { 3259 to->queue_mapping = from->queue_mapping; 3260 } 3261 3262 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3263 { 3264 skb->queue_mapping = rx_queue + 1; 3265 } 3266 3267 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3268 { 3269 return skb->queue_mapping - 1; 3270 } 3271 3272 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3273 { 3274 return skb->queue_mapping != 0; 3275 } 3276 3277 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3278 unsigned int num_tx_queues); 3279 3280 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3281 { 3282 #ifdef CONFIG_XFRM 3283 return skb->sp; 3284 #else 3285 return NULL; 3286 #endif 3287 } 3288 3289 /* Keeps track of mac header offset relative to skb->head. 3290 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3291 * For non-tunnel skb it points to skb_mac_header() and for 3292 * tunnel skb it points to outer mac header. 3293 * Keeps track of level of encapsulation of network headers. 3294 */ 3295 struct skb_gso_cb { 3296 int mac_offset; 3297 int encap_level; 3298 __u16 csum_start; 3299 }; 3300 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3301 3302 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3303 { 3304 return (skb_mac_header(inner_skb) - inner_skb->head) - 3305 SKB_GSO_CB(inner_skb)->mac_offset; 3306 } 3307 3308 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3309 { 3310 int new_headroom, headroom; 3311 int ret; 3312 3313 headroom = skb_headroom(skb); 3314 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3315 if (ret) 3316 return ret; 3317 3318 new_headroom = skb_headroom(skb); 3319 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3320 return 0; 3321 } 3322 3323 /* Compute the checksum for a gso segment. First compute the checksum value 3324 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3325 * then add in skb->csum (checksum from csum_start to end of packet). 3326 * skb->csum and csum_start are then updated to reflect the checksum of the 3327 * resultant packet starting from the transport header-- the resultant checksum 3328 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3329 * header. 3330 */ 3331 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3332 { 3333 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3334 skb_transport_offset(skb); 3335 __u16 csum; 3336 3337 csum = csum_fold(csum_partial(skb_transport_header(skb), 3338 plen, skb->csum)); 3339 skb->csum = res; 3340 SKB_GSO_CB(skb)->csum_start -= plen; 3341 3342 return csum; 3343 } 3344 3345 static inline bool skb_is_gso(const struct sk_buff *skb) 3346 { 3347 return skb_shinfo(skb)->gso_size; 3348 } 3349 3350 /* Note: Should be called only if skb_is_gso(skb) is true */ 3351 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3352 { 3353 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3354 } 3355 3356 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3357 3358 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3359 { 3360 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3361 * wanted then gso_type will be set. */ 3362 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3363 3364 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3365 unlikely(shinfo->gso_type == 0)) { 3366 __skb_warn_lro_forwarding(skb); 3367 return true; 3368 } 3369 return false; 3370 } 3371 3372 static inline void skb_forward_csum(struct sk_buff *skb) 3373 { 3374 /* Unfortunately we don't support this one. Any brave souls? */ 3375 if (skb->ip_summed == CHECKSUM_COMPLETE) 3376 skb->ip_summed = CHECKSUM_NONE; 3377 } 3378 3379 /** 3380 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3381 * @skb: skb to check 3382 * 3383 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3384 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3385 * use this helper, to document places where we make this assertion. 3386 */ 3387 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3388 { 3389 #ifdef DEBUG 3390 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3391 #endif 3392 } 3393 3394 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3395 3396 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3397 3398 u32 skb_get_poff(const struct sk_buff *skb); 3399 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 3400 const struct flow_keys *keys, int hlen); 3401 3402 /** 3403 * skb_head_is_locked - Determine if the skb->head is locked down 3404 * @skb: skb to check 3405 * 3406 * The head on skbs build around a head frag can be removed if they are 3407 * not cloned. This function returns true if the skb head is locked down 3408 * due to either being allocated via kmalloc, or by being a clone with 3409 * multiple references to the head. 3410 */ 3411 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3412 { 3413 return !skb->head_frag || skb_cloned(skb); 3414 } 3415 3416 /** 3417 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3418 * 3419 * @skb: GSO skb 3420 * 3421 * skb_gso_network_seglen is used to determine the real size of the 3422 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3423 * 3424 * The MAC/L2 header is not accounted for. 3425 */ 3426 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3427 { 3428 unsigned int hdr_len = skb_transport_header(skb) - 3429 skb_network_header(skb); 3430 return hdr_len + skb_gso_transport_seglen(skb); 3431 } 3432 #endif /* __KERNEL__ */ 3433 #endif /* _LINUX_SKBUFF_H */ 3434