xref: /linux-6.15/include/linux/skbuff.h (revision 6faeeea4)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_keys.h>
38 
39 /* A. Checksumming of received packets by device.
40  *
41  * CHECKSUM_NONE:
42  *
43  *   Device failed to checksum this packet e.g. due to lack of capabilities.
44  *   The packet contains full (though not verified) checksum in packet but
45  *   not in skb->csum. Thus, skb->csum is undefined in this case.
46  *
47  * CHECKSUM_UNNECESSARY:
48  *
49  *   The hardware you're dealing with doesn't calculate the full checksum
50  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52  *   if their checksums are okay. skb->csum is still undefined in this case
53  *   though. It is a bad option, but, unfortunately, nowadays most vendors do
54  *   this. Apparently with the secret goal to sell you new devices, when you
55  *   will add new protocol to your host, f.e. IPv6 8)
56  *
57  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
58  *     TCP: IPv6 and IPv4.
59  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
61  *       may perform further validation in this case.
62  *     GRE: only if the checksum is present in the header.
63  *     SCTP: indicates the CRC in SCTP header has been validated.
64  *
65  *   skb->csum_level indicates the number of consecutive checksums found in
66  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68  *   and a device is able to verify the checksums for UDP (possibly zero),
69  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70  *   two. If the device were only able to verify the UDP checksum and not
71  *   GRE, either because it doesn't support GRE checksum of because GRE
72  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73  *   not considered in this case).
74  *
75  * CHECKSUM_COMPLETE:
76  *
77  *   This is the most generic way. The device supplied checksum of the _whole_
78  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79  *   hardware doesn't need to parse L3/L4 headers to implement this.
80  *
81  *   Note: Even if device supports only some protocols, but is able to produce
82  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83  *
84  * CHECKSUM_PARTIAL:
85  *
86  *   A checksum is set up to be offloaded to a device as described in the
87  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
88  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
89  *   on the same host, or it may be set in the input path in GRO or remote
90  *   checksum offload. For the purposes of checksum verification, the checksum
91  *   referred to by skb->csum_start + skb->csum_offset and any preceding
92  *   checksums in the packet are considered verified. Any checksums in the
93  *   packet that are after the checksum being offloaded are not considered to
94  *   be verified.
95  *
96  * B. Checksumming on output.
97  *
98  * CHECKSUM_NONE:
99  *
100  *   The skb was already checksummed by the protocol, or a checksum is not
101  *   required.
102  *
103  * CHECKSUM_PARTIAL:
104  *
105  *   The device is required to checksum the packet as seen by hard_start_xmit()
106  *   from skb->csum_start up to the end, and to record/write the checksum at
107  *   offset skb->csum_start + skb->csum_offset.
108  *
109  *   The device must show its capabilities in dev->features, set up at device
110  *   setup time, e.g. netdev_features.h:
111  *
112  *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
113  *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
114  *			  IPv4. Sigh. Vendors like this way for an unknown reason.
115  *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
116  *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
117  *	NETIF_F_...     - Well, you get the picture.
118  *
119  * CHECKSUM_UNNECESSARY:
120  *
121  *   Normally, the device will do per protocol specific checksumming. Protocol
122  *   implementations that do not want the NIC to perform the checksum
123  *   calculation should use this flag in their outgoing skbs.
124  *
125  *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
126  *			   offload. Correspondingly, the FCoE protocol driver
127  *			   stack should use CHECKSUM_UNNECESSARY.
128  *
129  * Any questions? No questions, good.		--ANK
130  */
131 
132 /* Don't change this without changing skb_csum_unnecessary! */
133 #define CHECKSUM_NONE		0
134 #define CHECKSUM_UNNECESSARY	1
135 #define CHECKSUM_COMPLETE	2
136 #define CHECKSUM_PARTIAL	3
137 
138 /* Maximum value in skb->csum_level */
139 #define SKB_MAX_CSUM_LEVEL	3
140 
141 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
142 #define SKB_WITH_OVERHEAD(X)	\
143 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
144 #define SKB_MAX_ORDER(X, ORDER) \
145 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
146 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
147 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
148 
149 /* return minimum truesize of one skb containing X bytes of data */
150 #define SKB_TRUESIZE(X) ((X) +						\
151 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
152 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
153 
154 struct net_device;
155 struct scatterlist;
156 struct pipe_inode_info;
157 struct iov_iter;
158 struct napi_struct;
159 
160 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
161 struct nf_conntrack {
162 	atomic_t use;
163 };
164 #endif
165 
166 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
167 struct nf_bridge_info {
168 	atomic_t		use;
169 	unsigned int		mask;
170 	struct net_device	*physindev;
171 	struct net_device	*physoutdev;
172 	unsigned long		data[32 / sizeof(unsigned long)];
173 };
174 #endif
175 
176 struct sk_buff_head {
177 	/* These two members must be first. */
178 	struct sk_buff	*next;
179 	struct sk_buff	*prev;
180 
181 	__u32		qlen;
182 	spinlock_t	lock;
183 };
184 
185 struct sk_buff;
186 
187 /* To allow 64K frame to be packed as single skb without frag_list we
188  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
189  * buffers which do not start on a page boundary.
190  *
191  * Since GRO uses frags we allocate at least 16 regardless of page
192  * size.
193  */
194 #if (65536/PAGE_SIZE + 1) < 16
195 #define MAX_SKB_FRAGS 16UL
196 #else
197 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
198 #endif
199 
200 typedef struct skb_frag_struct skb_frag_t;
201 
202 struct skb_frag_struct {
203 	struct {
204 		struct page *p;
205 	} page;
206 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
207 	__u32 page_offset;
208 	__u32 size;
209 #else
210 	__u16 page_offset;
211 	__u16 size;
212 #endif
213 };
214 
215 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
216 {
217 	return frag->size;
218 }
219 
220 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
221 {
222 	frag->size = size;
223 }
224 
225 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
226 {
227 	frag->size += delta;
228 }
229 
230 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
231 {
232 	frag->size -= delta;
233 }
234 
235 #define HAVE_HW_TIME_STAMP
236 
237 /**
238  * struct skb_shared_hwtstamps - hardware time stamps
239  * @hwtstamp:	hardware time stamp transformed into duration
240  *		since arbitrary point in time
241  *
242  * Software time stamps generated by ktime_get_real() are stored in
243  * skb->tstamp.
244  *
245  * hwtstamps can only be compared against other hwtstamps from
246  * the same device.
247  *
248  * This structure is attached to packets as part of the
249  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
250  */
251 struct skb_shared_hwtstamps {
252 	ktime_t	hwtstamp;
253 };
254 
255 /* Definitions for tx_flags in struct skb_shared_info */
256 enum {
257 	/* generate hardware time stamp */
258 	SKBTX_HW_TSTAMP = 1 << 0,
259 
260 	/* generate software time stamp when queueing packet to NIC */
261 	SKBTX_SW_TSTAMP = 1 << 1,
262 
263 	/* device driver is going to provide hardware time stamp */
264 	SKBTX_IN_PROGRESS = 1 << 2,
265 
266 	/* device driver supports TX zero-copy buffers */
267 	SKBTX_DEV_ZEROCOPY = 1 << 3,
268 
269 	/* generate wifi status information (where possible) */
270 	SKBTX_WIFI_STATUS = 1 << 4,
271 
272 	/* This indicates at least one fragment might be overwritten
273 	 * (as in vmsplice(), sendfile() ...)
274 	 * If we need to compute a TX checksum, we'll need to copy
275 	 * all frags to avoid possible bad checksum
276 	 */
277 	SKBTX_SHARED_FRAG = 1 << 5,
278 
279 	/* generate software time stamp when entering packet scheduling */
280 	SKBTX_SCHED_TSTAMP = 1 << 6,
281 
282 	/* generate software timestamp on peer data acknowledgment */
283 	SKBTX_ACK_TSTAMP = 1 << 7,
284 };
285 
286 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
287 				 SKBTX_SCHED_TSTAMP | \
288 				 SKBTX_ACK_TSTAMP)
289 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
290 
291 /*
292  * The callback notifies userspace to release buffers when skb DMA is done in
293  * lower device, the skb last reference should be 0 when calling this.
294  * The zerocopy_success argument is true if zero copy transmit occurred,
295  * false on data copy or out of memory error caused by data copy attempt.
296  * The ctx field is used to track device context.
297  * The desc field is used to track userspace buffer index.
298  */
299 struct ubuf_info {
300 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
301 	void *ctx;
302 	unsigned long desc;
303 };
304 
305 /* This data is invariant across clones and lives at
306  * the end of the header data, ie. at skb->end.
307  */
308 struct skb_shared_info {
309 	unsigned char	nr_frags;
310 	__u8		tx_flags;
311 	unsigned short	gso_size;
312 	/* Warning: this field is not always filled in (UFO)! */
313 	unsigned short	gso_segs;
314 	unsigned short  gso_type;
315 	struct sk_buff	*frag_list;
316 	struct skb_shared_hwtstamps hwtstamps;
317 	u32		tskey;
318 	__be32          ip6_frag_id;
319 
320 	/*
321 	 * Warning : all fields before dataref are cleared in __alloc_skb()
322 	 */
323 	atomic_t	dataref;
324 
325 	/* Intermediate layers must ensure that destructor_arg
326 	 * remains valid until skb destructor */
327 	void *		destructor_arg;
328 
329 	/* must be last field, see pskb_expand_head() */
330 	skb_frag_t	frags[MAX_SKB_FRAGS];
331 };
332 
333 /* We divide dataref into two halves.  The higher 16 bits hold references
334  * to the payload part of skb->data.  The lower 16 bits hold references to
335  * the entire skb->data.  A clone of a headerless skb holds the length of
336  * the header in skb->hdr_len.
337  *
338  * All users must obey the rule that the skb->data reference count must be
339  * greater than or equal to the payload reference count.
340  *
341  * Holding a reference to the payload part means that the user does not
342  * care about modifications to the header part of skb->data.
343  */
344 #define SKB_DATAREF_SHIFT 16
345 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
346 
347 
348 enum {
349 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
350 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
351 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
352 };
353 
354 enum {
355 	SKB_GSO_TCPV4 = 1 << 0,
356 	SKB_GSO_UDP = 1 << 1,
357 
358 	/* This indicates the skb is from an untrusted source. */
359 	SKB_GSO_DODGY = 1 << 2,
360 
361 	/* This indicates the tcp segment has CWR set. */
362 	SKB_GSO_TCP_ECN = 1 << 3,
363 
364 	SKB_GSO_TCPV6 = 1 << 4,
365 
366 	SKB_GSO_FCOE = 1 << 5,
367 
368 	SKB_GSO_GRE = 1 << 6,
369 
370 	SKB_GSO_GRE_CSUM = 1 << 7,
371 
372 	SKB_GSO_IPIP = 1 << 8,
373 
374 	SKB_GSO_SIT = 1 << 9,
375 
376 	SKB_GSO_UDP_TUNNEL = 1 << 10,
377 
378 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
379 
380 	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
381 };
382 
383 #if BITS_PER_LONG > 32
384 #define NET_SKBUFF_DATA_USES_OFFSET 1
385 #endif
386 
387 #ifdef NET_SKBUFF_DATA_USES_OFFSET
388 typedef unsigned int sk_buff_data_t;
389 #else
390 typedef unsigned char *sk_buff_data_t;
391 #endif
392 
393 /**
394  * struct skb_mstamp - multi resolution time stamps
395  * @stamp_us: timestamp in us resolution
396  * @stamp_jiffies: timestamp in jiffies
397  */
398 struct skb_mstamp {
399 	union {
400 		u64		v64;
401 		struct {
402 			u32	stamp_us;
403 			u32	stamp_jiffies;
404 		};
405 	};
406 };
407 
408 /**
409  * skb_mstamp_get - get current timestamp
410  * @cl: place to store timestamps
411  */
412 static inline void skb_mstamp_get(struct skb_mstamp *cl)
413 {
414 	u64 val = local_clock();
415 
416 	do_div(val, NSEC_PER_USEC);
417 	cl->stamp_us = (u32)val;
418 	cl->stamp_jiffies = (u32)jiffies;
419 }
420 
421 /**
422  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
423  * @t1: pointer to newest sample
424  * @t0: pointer to oldest sample
425  */
426 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
427 				      const struct skb_mstamp *t0)
428 {
429 	s32 delta_us = t1->stamp_us - t0->stamp_us;
430 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
431 
432 	/* If delta_us is negative, this might be because interval is too big,
433 	 * or local_clock() drift is too big : fallback using jiffies.
434 	 */
435 	if (delta_us <= 0 ||
436 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
437 
438 		delta_us = jiffies_to_usecs(delta_jiffies);
439 
440 	return delta_us;
441 }
442 
443 
444 /**
445  *	struct sk_buff - socket buffer
446  *	@next: Next buffer in list
447  *	@prev: Previous buffer in list
448  *	@tstamp: Time we arrived/left
449  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
450  *	@sk: Socket we are owned by
451  *	@dev: Device we arrived on/are leaving by
452  *	@cb: Control buffer. Free for use by every layer. Put private vars here
453  *	@_skb_refdst: destination entry (with norefcount bit)
454  *	@sp: the security path, used for xfrm
455  *	@len: Length of actual data
456  *	@data_len: Data length
457  *	@mac_len: Length of link layer header
458  *	@hdr_len: writable header length of cloned skb
459  *	@csum: Checksum (must include start/offset pair)
460  *	@csum_start: Offset from skb->head where checksumming should start
461  *	@csum_offset: Offset from csum_start where checksum should be stored
462  *	@priority: Packet queueing priority
463  *	@ignore_df: allow local fragmentation
464  *	@cloned: Head may be cloned (check refcnt to be sure)
465  *	@ip_summed: Driver fed us an IP checksum
466  *	@nohdr: Payload reference only, must not modify header
467  *	@nfctinfo: Relationship of this skb to the connection
468  *	@pkt_type: Packet class
469  *	@fclone: skbuff clone status
470  *	@ipvs_property: skbuff is owned by ipvs
471  *	@peeked: this packet has been seen already, so stats have been
472  *		done for it, don't do them again
473  *	@nf_trace: netfilter packet trace flag
474  *	@protocol: Packet protocol from driver
475  *	@destructor: Destruct function
476  *	@nfct: Associated connection, if any
477  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
478  *	@skb_iif: ifindex of device we arrived on
479  *	@tc_index: Traffic control index
480  *	@tc_verd: traffic control verdict
481  *	@hash: the packet hash
482  *	@queue_mapping: Queue mapping for multiqueue devices
483  *	@xmit_more: More SKBs are pending for this queue
484  *	@ndisc_nodetype: router type (from link layer)
485  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
486  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
487  *		ports.
488  *	@sw_hash: indicates hash was computed in software stack
489  *	@wifi_acked_valid: wifi_acked was set
490  *	@wifi_acked: whether frame was acked on wifi or not
491  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
492   *	@napi_id: id of the NAPI struct this skb came from
493  *	@secmark: security marking
494  *	@mark: Generic packet mark
495  *	@dropcount: total number of sk_receive_queue overflows
496  *	@vlan_proto: vlan encapsulation protocol
497  *	@vlan_tci: vlan tag control information
498  *	@inner_protocol: Protocol (encapsulation)
499  *	@inner_transport_header: Inner transport layer header (encapsulation)
500  *	@inner_network_header: Network layer header (encapsulation)
501  *	@inner_mac_header: Link layer header (encapsulation)
502  *	@transport_header: Transport layer header
503  *	@network_header: Network layer header
504  *	@mac_header: Link layer header
505  *	@tail: Tail pointer
506  *	@end: End pointer
507  *	@head: Head of buffer
508  *	@data: Data head pointer
509  *	@truesize: Buffer size
510  *	@users: User count - see {datagram,tcp}.c
511  */
512 
513 struct sk_buff {
514 	union {
515 		struct {
516 			/* These two members must be first. */
517 			struct sk_buff		*next;
518 			struct sk_buff		*prev;
519 
520 			union {
521 				ktime_t		tstamp;
522 				struct skb_mstamp skb_mstamp;
523 			};
524 		};
525 		struct rb_node	rbnode; /* used in netem & tcp stack */
526 	};
527 	struct sock		*sk;
528 	struct net_device	*dev;
529 
530 	/*
531 	 * This is the control buffer. It is free to use for every
532 	 * layer. Please put your private variables there. If you
533 	 * want to keep them across layers you have to do a skb_clone()
534 	 * first. This is owned by whoever has the skb queued ATM.
535 	 */
536 	char			cb[48] __aligned(8);
537 
538 	unsigned long		_skb_refdst;
539 	void			(*destructor)(struct sk_buff *skb);
540 #ifdef CONFIG_XFRM
541 	struct	sec_path	*sp;
542 #endif
543 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
544 	struct nf_conntrack	*nfct;
545 #endif
546 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
547 	struct nf_bridge_info	*nf_bridge;
548 #endif
549 	unsigned int		len,
550 				data_len;
551 	__u16			mac_len,
552 				hdr_len;
553 
554 	/* Following fields are _not_ copied in __copy_skb_header()
555 	 * Note that queue_mapping is here mostly to fill a hole.
556 	 */
557 	kmemcheck_bitfield_begin(flags1);
558 	__u16			queue_mapping;
559 	__u8			cloned:1,
560 				nohdr:1,
561 				fclone:2,
562 				peeked:1,
563 				head_frag:1,
564 				xmit_more:1;
565 	/* one bit hole */
566 	kmemcheck_bitfield_end(flags1);
567 
568 	/* fields enclosed in headers_start/headers_end are copied
569 	 * using a single memcpy() in __copy_skb_header()
570 	 */
571 	/* private: */
572 	__u32			headers_start[0];
573 	/* public: */
574 
575 /* if you move pkt_type around you also must adapt those constants */
576 #ifdef __BIG_ENDIAN_BITFIELD
577 #define PKT_TYPE_MAX	(7 << 5)
578 #else
579 #define PKT_TYPE_MAX	7
580 #endif
581 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
582 
583 	__u8			__pkt_type_offset[0];
584 	__u8			pkt_type:3;
585 	__u8			pfmemalloc:1;
586 	__u8			ignore_df:1;
587 	__u8			nfctinfo:3;
588 
589 	__u8			nf_trace:1;
590 	__u8			ip_summed:2;
591 	__u8			ooo_okay:1;
592 	__u8			l4_hash:1;
593 	__u8			sw_hash:1;
594 	__u8			wifi_acked_valid:1;
595 	__u8			wifi_acked:1;
596 
597 	__u8			no_fcs:1;
598 	/* Indicates the inner headers are valid in the skbuff. */
599 	__u8			encapsulation:1;
600 	__u8			encap_hdr_csum:1;
601 	__u8			csum_valid:1;
602 	__u8			csum_complete_sw:1;
603 	__u8			csum_level:2;
604 	__u8			csum_bad:1;
605 
606 #ifdef CONFIG_IPV6_NDISC_NODETYPE
607 	__u8			ndisc_nodetype:2;
608 #endif
609 	__u8			ipvs_property:1;
610 	__u8			inner_protocol_type:1;
611 	__u8			remcsum_offload:1;
612 	/* 3 or 5 bit hole */
613 
614 #ifdef CONFIG_NET_SCHED
615 	__u16			tc_index;	/* traffic control index */
616 #ifdef CONFIG_NET_CLS_ACT
617 	__u16			tc_verd;	/* traffic control verdict */
618 #endif
619 #endif
620 
621 	union {
622 		__wsum		csum;
623 		struct {
624 			__u16	csum_start;
625 			__u16	csum_offset;
626 		};
627 	};
628 	__u32			priority;
629 	int			skb_iif;
630 	__u32			hash;
631 	__be16			vlan_proto;
632 	__u16			vlan_tci;
633 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
634 	union {
635 		unsigned int	napi_id;
636 		unsigned int	sender_cpu;
637 	};
638 #endif
639 #ifdef CONFIG_NETWORK_SECMARK
640 	__u32			secmark;
641 #endif
642 	union {
643 		__u32		mark;
644 		__u32		dropcount;
645 		__u32		reserved_tailroom;
646 	};
647 
648 	union {
649 		__be16		inner_protocol;
650 		__u8		inner_ipproto;
651 	};
652 
653 	__u16			inner_transport_header;
654 	__u16			inner_network_header;
655 	__u16			inner_mac_header;
656 
657 	__be16			protocol;
658 	__u16			transport_header;
659 	__u16			network_header;
660 	__u16			mac_header;
661 
662 	/* private: */
663 	__u32			headers_end[0];
664 	/* public: */
665 
666 	/* These elements must be at the end, see alloc_skb() for details.  */
667 	sk_buff_data_t		tail;
668 	sk_buff_data_t		end;
669 	unsigned char		*head,
670 				*data;
671 	unsigned int		truesize;
672 	atomic_t		users;
673 };
674 
675 #ifdef __KERNEL__
676 /*
677  *	Handling routines are only of interest to the kernel
678  */
679 #include <linux/slab.h>
680 
681 
682 #define SKB_ALLOC_FCLONE	0x01
683 #define SKB_ALLOC_RX		0x02
684 #define SKB_ALLOC_NAPI		0x04
685 
686 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
687 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
688 {
689 	return unlikely(skb->pfmemalloc);
690 }
691 
692 /*
693  * skb might have a dst pointer attached, refcounted or not.
694  * _skb_refdst low order bit is set if refcount was _not_ taken
695  */
696 #define SKB_DST_NOREF	1UL
697 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
698 
699 /**
700  * skb_dst - returns skb dst_entry
701  * @skb: buffer
702  *
703  * Returns skb dst_entry, regardless of reference taken or not.
704  */
705 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
706 {
707 	/* If refdst was not refcounted, check we still are in a
708 	 * rcu_read_lock section
709 	 */
710 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
711 		!rcu_read_lock_held() &&
712 		!rcu_read_lock_bh_held());
713 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
714 }
715 
716 /**
717  * skb_dst_set - sets skb dst
718  * @skb: buffer
719  * @dst: dst entry
720  *
721  * Sets skb dst, assuming a reference was taken on dst and should
722  * be released by skb_dst_drop()
723  */
724 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
725 {
726 	skb->_skb_refdst = (unsigned long)dst;
727 }
728 
729 /**
730  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
731  * @skb: buffer
732  * @dst: dst entry
733  *
734  * Sets skb dst, assuming a reference was not taken on dst.
735  * If dst entry is cached, we do not take reference and dst_release
736  * will be avoided by refdst_drop. If dst entry is not cached, we take
737  * reference, so that last dst_release can destroy the dst immediately.
738  */
739 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
740 {
741 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
742 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
743 }
744 
745 /**
746  * skb_dst_is_noref - Test if skb dst isn't refcounted
747  * @skb: buffer
748  */
749 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
750 {
751 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
752 }
753 
754 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
755 {
756 	return (struct rtable *)skb_dst(skb);
757 }
758 
759 void kfree_skb(struct sk_buff *skb);
760 void kfree_skb_list(struct sk_buff *segs);
761 void skb_tx_error(struct sk_buff *skb);
762 void consume_skb(struct sk_buff *skb);
763 void  __kfree_skb(struct sk_buff *skb);
764 extern struct kmem_cache *skbuff_head_cache;
765 
766 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
767 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
768 		      bool *fragstolen, int *delta_truesize);
769 
770 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
771 			    int node);
772 struct sk_buff *build_skb(void *data, unsigned int frag_size);
773 static inline struct sk_buff *alloc_skb(unsigned int size,
774 					gfp_t priority)
775 {
776 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
777 }
778 
779 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
780 				     unsigned long data_len,
781 				     int max_page_order,
782 				     int *errcode,
783 				     gfp_t gfp_mask);
784 
785 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
786 struct sk_buff_fclones {
787 	struct sk_buff	skb1;
788 
789 	struct sk_buff	skb2;
790 
791 	atomic_t	fclone_ref;
792 };
793 
794 /**
795  *	skb_fclone_busy - check if fclone is busy
796  *	@skb: buffer
797  *
798  * Returns true is skb is a fast clone, and its clone is not freed.
799  * Some drivers call skb_orphan() in their ndo_start_xmit(),
800  * so we also check that this didnt happen.
801  */
802 static inline bool skb_fclone_busy(const struct sock *sk,
803 				   const struct sk_buff *skb)
804 {
805 	const struct sk_buff_fclones *fclones;
806 
807 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
808 
809 	return skb->fclone == SKB_FCLONE_ORIG &&
810 	       atomic_read(&fclones->fclone_ref) > 1 &&
811 	       fclones->skb2.sk == sk;
812 }
813 
814 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
815 					       gfp_t priority)
816 {
817 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
818 }
819 
820 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
821 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
822 {
823 	return __alloc_skb_head(priority, -1);
824 }
825 
826 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
827 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
828 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
829 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
830 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
831 				   gfp_t gfp_mask, bool fclone);
832 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
833 					  gfp_t gfp_mask)
834 {
835 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
836 }
837 
838 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
839 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
840 				     unsigned int headroom);
841 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
842 				int newtailroom, gfp_t priority);
843 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
844 			int offset, int len);
845 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
846 		 int len);
847 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
848 int skb_pad(struct sk_buff *skb, int pad);
849 #define dev_kfree_skb(a)	consume_skb(a)
850 
851 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
852 			    int getfrag(void *from, char *to, int offset,
853 					int len, int odd, struct sk_buff *skb),
854 			    void *from, int length);
855 
856 struct skb_seq_state {
857 	__u32		lower_offset;
858 	__u32		upper_offset;
859 	__u32		frag_idx;
860 	__u32		stepped_offset;
861 	struct sk_buff	*root_skb;
862 	struct sk_buff	*cur_skb;
863 	__u8		*frag_data;
864 };
865 
866 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
867 			  unsigned int to, struct skb_seq_state *st);
868 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
869 			  struct skb_seq_state *st);
870 void skb_abort_seq_read(struct skb_seq_state *st);
871 
872 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
873 			   unsigned int to, struct ts_config *config,
874 			   struct ts_state *state);
875 
876 /*
877  * Packet hash types specify the type of hash in skb_set_hash.
878  *
879  * Hash types refer to the protocol layer addresses which are used to
880  * construct a packet's hash. The hashes are used to differentiate or identify
881  * flows of the protocol layer for the hash type. Hash types are either
882  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
883  *
884  * Properties of hashes:
885  *
886  * 1) Two packets in different flows have different hash values
887  * 2) Two packets in the same flow should have the same hash value
888  *
889  * A hash at a higher layer is considered to be more specific. A driver should
890  * set the most specific hash possible.
891  *
892  * A driver cannot indicate a more specific hash than the layer at which a hash
893  * was computed. For instance an L3 hash cannot be set as an L4 hash.
894  *
895  * A driver may indicate a hash level which is less specific than the
896  * actual layer the hash was computed on. For instance, a hash computed
897  * at L4 may be considered an L3 hash. This should only be done if the
898  * driver can't unambiguously determine that the HW computed the hash at
899  * the higher layer. Note that the "should" in the second property above
900  * permits this.
901  */
902 enum pkt_hash_types {
903 	PKT_HASH_TYPE_NONE,	/* Undefined type */
904 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
905 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
906 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
907 };
908 
909 static inline void
910 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
911 {
912 	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
913 	skb->sw_hash = 0;
914 	skb->hash = hash;
915 }
916 
917 void __skb_get_hash(struct sk_buff *skb);
918 static inline __u32 skb_get_hash(struct sk_buff *skb)
919 {
920 	if (!skb->l4_hash && !skb->sw_hash)
921 		__skb_get_hash(skb);
922 
923 	return skb->hash;
924 }
925 
926 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
927 {
928 	return skb->hash;
929 }
930 
931 static inline void skb_clear_hash(struct sk_buff *skb)
932 {
933 	skb->hash = 0;
934 	skb->sw_hash = 0;
935 	skb->l4_hash = 0;
936 }
937 
938 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
939 {
940 	if (!skb->l4_hash)
941 		skb_clear_hash(skb);
942 }
943 
944 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
945 {
946 	to->hash = from->hash;
947 	to->sw_hash = from->sw_hash;
948 	to->l4_hash = from->l4_hash;
949 };
950 
951 #ifdef NET_SKBUFF_DATA_USES_OFFSET
952 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
953 {
954 	return skb->head + skb->end;
955 }
956 
957 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
958 {
959 	return skb->end;
960 }
961 #else
962 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
963 {
964 	return skb->end;
965 }
966 
967 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
968 {
969 	return skb->end - skb->head;
970 }
971 #endif
972 
973 /* Internal */
974 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
975 
976 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
977 {
978 	return &skb_shinfo(skb)->hwtstamps;
979 }
980 
981 /**
982  *	skb_queue_empty - check if a queue is empty
983  *	@list: queue head
984  *
985  *	Returns true if the queue is empty, false otherwise.
986  */
987 static inline int skb_queue_empty(const struct sk_buff_head *list)
988 {
989 	return list->next == (const struct sk_buff *) list;
990 }
991 
992 /**
993  *	skb_queue_is_last - check if skb is the last entry in the queue
994  *	@list: queue head
995  *	@skb: buffer
996  *
997  *	Returns true if @skb is the last buffer on the list.
998  */
999 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1000 				     const struct sk_buff *skb)
1001 {
1002 	return skb->next == (const struct sk_buff *) list;
1003 }
1004 
1005 /**
1006  *	skb_queue_is_first - check if skb is the first entry in the queue
1007  *	@list: queue head
1008  *	@skb: buffer
1009  *
1010  *	Returns true if @skb is the first buffer on the list.
1011  */
1012 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1013 				      const struct sk_buff *skb)
1014 {
1015 	return skb->prev == (const struct sk_buff *) list;
1016 }
1017 
1018 /**
1019  *	skb_queue_next - return the next packet in the queue
1020  *	@list: queue head
1021  *	@skb: current buffer
1022  *
1023  *	Return the next packet in @list after @skb.  It is only valid to
1024  *	call this if skb_queue_is_last() evaluates to false.
1025  */
1026 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1027 					     const struct sk_buff *skb)
1028 {
1029 	/* This BUG_ON may seem severe, but if we just return then we
1030 	 * are going to dereference garbage.
1031 	 */
1032 	BUG_ON(skb_queue_is_last(list, skb));
1033 	return skb->next;
1034 }
1035 
1036 /**
1037  *	skb_queue_prev - return the prev packet in the queue
1038  *	@list: queue head
1039  *	@skb: current buffer
1040  *
1041  *	Return the prev packet in @list before @skb.  It is only valid to
1042  *	call this if skb_queue_is_first() evaluates to false.
1043  */
1044 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1045 					     const struct sk_buff *skb)
1046 {
1047 	/* This BUG_ON may seem severe, but if we just return then we
1048 	 * are going to dereference garbage.
1049 	 */
1050 	BUG_ON(skb_queue_is_first(list, skb));
1051 	return skb->prev;
1052 }
1053 
1054 /**
1055  *	skb_get - reference buffer
1056  *	@skb: buffer to reference
1057  *
1058  *	Makes another reference to a socket buffer and returns a pointer
1059  *	to the buffer.
1060  */
1061 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1062 {
1063 	atomic_inc(&skb->users);
1064 	return skb;
1065 }
1066 
1067 /*
1068  * If users == 1, we are the only owner and are can avoid redundant
1069  * atomic change.
1070  */
1071 
1072 /**
1073  *	skb_cloned - is the buffer a clone
1074  *	@skb: buffer to check
1075  *
1076  *	Returns true if the buffer was generated with skb_clone() and is
1077  *	one of multiple shared copies of the buffer. Cloned buffers are
1078  *	shared data so must not be written to under normal circumstances.
1079  */
1080 static inline int skb_cloned(const struct sk_buff *skb)
1081 {
1082 	return skb->cloned &&
1083 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1084 }
1085 
1086 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1087 {
1088 	might_sleep_if(pri & __GFP_WAIT);
1089 
1090 	if (skb_cloned(skb))
1091 		return pskb_expand_head(skb, 0, 0, pri);
1092 
1093 	return 0;
1094 }
1095 
1096 /**
1097  *	skb_header_cloned - is the header a clone
1098  *	@skb: buffer to check
1099  *
1100  *	Returns true if modifying the header part of the buffer requires
1101  *	the data to be copied.
1102  */
1103 static inline int skb_header_cloned(const struct sk_buff *skb)
1104 {
1105 	int dataref;
1106 
1107 	if (!skb->cloned)
1108 		return 0;
1109 
1110 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1111 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1112 	return dataref != 1;
1113 }
1114 
1115 /**
1116  *	skb_header_release - release reference to header
1117  *	@skb: buffer to operate on
1118  *
1119  *	Drop a reference to the header part of the buffer.  This is done
1120  *	by acquiring a payload reference.  You must not read from the header
1121  *	part of skb->data after this.
1122  *	Note : Check if you can use __skb_header_release() instead.
1123  */
1124 static inline void skb_header_release(struct sk_buff *skb)
1125 {
1126 	BUG_ON(skb->nohdr);
1127 	skb->nohdr = 1;
1128 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1129 }
1130 
1131 /**
1132  *	__skb_header_release - release reference to header
1133  *	@skb: buffer to operate on
1134  *
1135  *	Variant of skb_header_release() assuming skb is private to caller.
1136  *	We can avoid one atomic operation.
1137  */
1138 static inline void __skb_header_release(struct sk_buff *skb)
1139 {
1140 	skb->nohdr = 1;
1141 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1142 }
1143 
1144 
1145 /**
1146  *	skb_shared - is the buffer shared
1147  *	@skb: buffer to check
1148  *
1149  *	Returns true if more than one person has a reference to this
1150  *	buffer.
1151  */
1152 static inline int skb_shared(const struct sk_buff *skb)
1153 {
1154 	return atomic_read(&skb->users) != 1;
1155 }
1156 
1157 /**
1158  *	skb_share_check - check if buffer is shared and if so clone it
1159  *	@skb: buffer to check
1160  *	@pri: priority for memory allocation
1161  *
1162  *	If the buffer is shared the buffer is cloned and the old copy
1163  *	drops a reference. A new clone with a single reference is returned.
1164  *	If the buffer is not shared the original buffer is returned. When
1165  *	being called from interrupt status or with spinlocks held pri must
1166  *	be GFP_ATOMIC.
1167  *
1168  *	NULL is returned on a memory allocation failure.
1169  */
1170 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1171 {
1172 	might_sleep_if(pri & __GFP_WAIT);
1173 	if (skb_shared(skb)) {
1174 		struct sk_buff *nskb = skb_clone(skb, pri);
1175 
1176 		if (likely(nskb))
1177 			consume_skb(skb);
1178 		else
1179 			kfree_skb(skb);
1180 		skb = nskb;
1181 	}
1182 	return skb;
1183 }
1184 
1185 /*
1186  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1187  *	packets to handle cases where we have a local reader and forward
1188  *	and a couple of other messy ones. The normal one is tcpdumping
1189  *	a packet thats being forwarded.
1190  */
1191 
1192 /**
1193  *	skb_unshare - make a copy of a shared buffer
1194  *	@skb: buffer to check
1195  *	@pri: priority for memory allocation
1196  *
1197  *	If the socket buffer is a clone then this function creates a new
1198  *	copy of the data, drops a reference count on the old copy and returns
1199  *	the new copy with the reference count at 1. If the buffer is not a clone
1200  *	the original buffer is returned. When called with a spinlock held or
1201  *	from interrupt state @pri must be %GFP_ATOMIC
1202  *
1203  *	%NULL is returned on a memory allocation failure.
1204  */
1205 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1206 					  gfp_t pri)
1207 {
1208 	might_sleep_if(pri & __GFP_WAIT);
1209 	if (skb_cloned(skb)) {
1210 		struct sk_buff *nskb = skb_copy(skb, pri);
1211 
1212 		/* Free our shared copy */
1213 		if (likely(nskb))
1214 			consume_skb(skb);
1215 		else
1216 			kfree_skb(skb);
1217 		skb = nskb;
1218 	}
1219 	return skb;
1220 }
1221 
1222 /**
1223  *	skb_peek - peek at the head of an &sk_buff_head
1224  *	@list_: list to peek at
1225  *
1226  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1227  *	be careful with this one. A peek leaves the buffer on the
1228  *	list and someone else may run off with it. You must hold
1229  *	the appropriate locks or have a private queue to do this.
1230  *
1231  *	Returns %NULL for an empty list or a pointer to the head element.
1232  *	The reference count is not incremented and the reference is therefore
1233  *	volatile. Use with caution.
1234  */
1235 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1236 {
1237 	struct sk_buff *skb = list_->next;
1238 
1239 	if (skb == (struct sk_buff *)list_)
1240 		skb = NULL;
1241 	return skb;
1242 }
1243 
1244 /**
1245  *	skb_peek_next - peek skb following the given one from a queue
1246  *	@skb: skb to start from
1247  *	@list_: list to peek at
1248  *
1249  *	Returns %NULL when the end of the list is met or a pointer to the
1250  *	next element. The reference count is not incremented and the
1251  *	reference is therefore volatile. Use with caution.
1252  */
1253 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1254 		const struct sk_buff_head *list_)
1255 {
1256 	struct sk_buff *next = skb->next;
1257 
1258 	if (next == (struct sk_buff *)list_)
1259 		next = NULL;
1260 	return next;
1261 }
1262 
1263 /**
1264  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1265  *	@list_: list to peek at
1266  *
1267  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1268  *	be careful with this one. A peek leaves the buffer on the
1269  *	list and someone else may run off with it. You must hold
1270  *	the appropriate locks or have a private queue to do this.
1271  *
1272  *	Returns %NULL for an empty list or a pointer to the tail element.
1273  *	The reference count is not incremented and the reference is therefore
1274  *	volatile. Use with caution.
1275  */
1276 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1277 {
1278 	struct sk_buff *skb = list_->prev;
1279 
1280 	if (skb == (struct sk_buff *)list_)
1281 		skb = NULL;
1282 	return skb;
1283 
1284 }
1285 
1286 /**
1287  *	skb_queue_len	- get queue length
1288  *	@list_: list to measure
1289  *
1290  *	Return the length of an &sk_buff queue.
1291  */
1292 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1293 {
1294 	return list_->qlen;
1295 }
1296 
1297 /**
1298  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1299  *	@list: queue to initialize
1300  *
1301  *	This initializes only the list and queue length aspects of
1302  *	an sk_buff_head object.  This allows to initialize the list
1303  *	aspects of an sk_buff_head without reinitializing things like
1304  *	the spinlock.  It can also be used for on-stack sk_buff_head
1305  *	objects where the spinlock is known to not be used.
1306  */
1307 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1308 {
1309 	list->prev = list->next = (struct sk_buff *)list;
1310 	list->qlen = 0;
1311 }
1312 
1313 /*
1314  * This function creates a split out lock class for each invocation;
1315  * this is needed for now since a whole lot of users of the skb-queue
1316  * infrastructure in drivers have different locking usage (in hardirq)
1317  * than the networking core (in softirq only). In the long run either the
1318  * network layer or drivers should need annotation to consolidate the
1319  * main types of usage into 3 classes.
1320  */
1321 static inline void skb_queue_head_init(struct sk_buff_head *list)
1322 {
1323 	spin_lock_init(&list->lock);
1324 	__skb_queue_head_init(list);
1325 }
1326 
1327 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1328 		struct lock_class_key *class)
1329 {
1330 	skb_queue_head_init(list);
1331 	lockdep_set_class(&list->lock, class);
1332 }
1333 
1334 /*
1335  *	Insert an sk_buff on a list.
1336  *
1337  *	The "__skb_xxxx()" functions are the non-atomic ones that
1338  *	can only be called with interrupts disabled.
1339  */
1340 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1341 		struct sk_buff_head *list);
1342 static inline void __skb_insert(struct sk_buff *newsk,
1343 				struct sk_buff *prev, struct sk_buff *next,
1344 				struct sk_buff_head *list)
1345 {
1346 	newsk->next = next;
1347 	newsk->prev = prev;
1348 	next->prev  = prev->next = newsk;
1349 	list->qlen++;
1350 }
1351 
1352 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1353 				      struct sk_buff *prev,
1354 				      struct sk_buff *next)
1355 {
1356 	struct sk_buff *first = list->next;
1357 	struct sk_buff *last = list->prev;
1358 
1359 	first->prev = prev;
1360 	prev->next = first;
1361 
1362 	last->next = next;
1363 	next->prev = last;
1364 }
1365 
1366 /**
1367  *	skb_queue_splice - join two skb lists, this is designed for stacks
1368  *	@list: the new list to add
1369  *	@head: the place to add it in the first list
1370  */
1371 static inline void skb_queue_splice(const struct sk_buff_head *list,
1372 				    struct sk_buff_head *head)
1373 {
1374 	if (!skb_queue_empty(list)) {
1375 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1376 		head->qlen += list->qlen;
1377 	}
1378 }
1379 
1380 /**
1381  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1382  *	@list: the new list to add
1383  *	@head: the place to add it in the first list
1384  *
1385  *	The list at @list is reinitialised
1386  */
1387 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1388 					 struct sk_buff_head *head)
1389 {
1390 	if (!skb_queue_empty(list)) {
1391 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1392 		head->qlen += list->qlen;
1393 		__skb_queue_head_init(list);
1394 	}
1395 }
1396 
1397 /**
1398  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1399  *	@list: the new list to add
1400  *	@head: the place to add it in the first list
1401  */
1402 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1403 					 struct sk_buff_head *head)
1404 {
1405 	if (!skb_queue_empty(list)) {
1406 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1407 		head->qlen += list->qlen;
1408 	}
1409 }
1410 
1411 /**
1412  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1413  *	@list: the new list to add
1414  *	@head: the place to add it in the first list
1415  *
1416  *	Each of the lists is a queue.
1417  *	The list at @list is reinitialised
1418  */
1419 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1420 					      struct sk_buff_head *head)
1421 {
1422 	if (!skb_queue_empty(list)) {
1423 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1424 		head->qlen += list->qlen;
1425 		__skb_queue_head_init(list);
1426 	}
1427 }
1428 
1429 /**
1430  *	__skb_queue_after - queue a buffer at the list head
1431  *	@list: list to use
1432  *	@prev: place after this buffer
1433  *	@newsk: buffer to queue
1434  *
1435  *	Queue a buffer int the middle of a list. This function takes no locks
1436  *	and you must therefore hold required locks before calling it.
1437  *
1438  *	A buffer cannot be placed on two lists at the same time.
1439  */
1440 static inline void __skb_queue_after(struct sk_buff_head *list,
1441 				     struct sk_buff *prev,
1442 				     struct sk_buff *newsk)
1443 {
1444 	__skb_insert(newsk, prev, prev->next, list);
1445 }
1446 
1447 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1448 		struct sk_buff_head *list);
1449 
1450 static inline void __skb_queue_before(struct sk_buff_head *list,
1451 				      struct sk_buff *next,
1452 				      struct sk_buff *newsk)
1453 {
1454 	__skb_insert(newsk, next->prev, next, list);
1455 }
1456 
1457 /**
1458  *	__skb_queue_head - queue a buffer at the list head
1459  *	@list: list to use
1460  *	@newsk: buffer to queue
1461  *
1462  *	Queue a buffer at the start of a list. This function takes no locks
1463  *	and you must therefore hold required locks before calling it.
1464  *
1465  *	A buffer cannot be placed on two lists at the same time.
1466  */
1467 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1468 static inline void __skb_queue_head(struct sk_buff_head *list,
1469 				    struct sk_buff *newsk)
1470 {
1471 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1472 }
1473 
1474 /**
1475  *	__skb_queue_tail - queue a buffer at the list tail
1476  *	@list: list to use
1477  *	@newsk: buffer to queue
1478  *
1479  *	Queue a buffer at the end of a list. This function takes no locks
1480  *	and you must therefore hold required locks before calling it.
1481  *
1482  *	A buffer cannot be placed on two lists at the same time.
1483  */
1484 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1485 static inline void __skb_queue_tail(struct sk_buff_head *list,
1486 				   struct sk_buff *newsk)
1487 {
1488 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1489 }
1490 
1491 /*
1492  * remove sk_buff from list. _Must_ be called atomically, and with
1493  * the list known..
1494  */
1495 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1496 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1497 {
1498 	struct sk_buff *next, *prev;
1499 
1500 	list->qlen--;
1501 	next	   = skb->next;
1502 	prev	   = skb->prev;
1503 	skb->next  = skb->prev = NULL;
1504 	next->prev = prev;
1505 	prev->next = next;
1506 }
1507 
1508 /**
1509  *	__skb_dequeue - remove from the head of the queue
1510  *	@list: list to dequeue from
1511  *
1512  *	Remove the head of the list. This function does not take any locks
1513  *	so must be used with appropriate locks held only. The head item is
1514  *	returned or %NULL if the list is empty.
1515  */
1516 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1517 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1518 {
1519 	struct sk_buff *skb = skb_peek(list);
1520 	if (skb)
1521 		__skb_unlink(skb, list);
1522 	return skb;
1523 }
1524 
1525 /**
1526  *	__skb_dequeue_tail - remove from the tail of the queue
1527  *	@list: list to dequeue from
1528  *
1529  *	Remove the tail of the list. This function does not take any locks
1530  *	so must be used with appropriate locks held only. The tail item is
1531  *	returned or %NULL if the list is empty.
1532  */
1533 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1534 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1535 {
1536 	struct sk_buff *skb = skb_peek_tail(list);
1537 	if (skb)
1538 		__skb_unlink(skb, list);
1539 	return skb;
1540 }
1541 
1542 
1543 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1544 {
1545 	return skb->data_len;
1546 }
1547 
1548 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1549 {
1550 	return skb->len - skb->data_len;
1551 }
1552 
1553 static inline int skb_pagelen(const struct sk_buff *skb)
1554 {
1555 	int i, len = 0;
1556 
1557 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1558 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1559 	return len + skb_headlen(skb);
1560 }
1561 
1562 /**
1563  * __skb_fill_page_desc - initialise a paged fragment in an skb
1564  * @skb: buffer containing fragment to be initialised
1565  * @i: paged fragment index to initialise
1566  * @page: the page to use for this fragment
1567  * @off: the offset to the data with @page
1568  * @size: the length of the data
1569  *
1570  * Initialises the @i'th fragment of @skb to point to &size bytes at
1571  * offset @off within @page.
1572  *
1573  * Does not take any additional reference on the fragment.
1574  */
1575 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1576 					struct page *page, int off, int size)
1577 {
1578 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1579 
1580 	/*
1581 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1582 	 * that not all callers have unique ownership of the page. If
1583 	 * pfmemalloc is set, we check the mapping as a mapping implies
1584 	 * page->index is set (index and pfmemalloc share space).
1585 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1586 	 * do not lose pfmemalloc information as the pages would not be
1587 	 * allocated using __GFP_MEMALLOC.
1588 	 */
1589 	frag->page.p		  = page;
1590 	frag->page_offset	  = off;
1591 	skb_frag_size_set(frag, size);
1592 
1593 	page = compound_head(page);
1594 	if (page->pfmemalloc && !page->mapping)
1595 		skb->pfmemalloc	= true;
1596 }
1597 
1598 /**
1599  * skb_fill_page_desc - initialise a paged fragment in an skb
1600  * @skb: buffer containing fragment to be initialised
1601  * @i: paged fragment index to initialise
1602  * @page: the page to use for this fragment
1603  * @off: the offset to the data with @page
1604  * @size: the length of the data
1605  *
1606  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1607  * @skb to point to @size bytes at offset @off within @page. In
1608  * addition updates @skb such that @i is the last fragment.
1609  *
1610  * Does not take any additional reference on the fragment.
1611  */
1612 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1613 				      struct page *page, int off, int size)
1614 {
1615 	__skb_fill_page_desc(skb, i, page, off, size);
1616 	skb_shinfo(skb)->nr_frags = i + 1;
1617 }
1618 
1619 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1620 		     int size, unsigned int truesize);
1621 
1622 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1623 			  unsigned int truesize);
1624 
1625 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1626 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1627 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1628 
1629 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1630 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1631 {
1632 	return skb->head + skb->tail;
1633 }
1634 
1635 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1636 {
1637 	skb->tail = skb->data - skb->head;
1638 }
1639 
1640 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1641 {
1642 	skb_reset_tail_pointer(skb);
1643 	skb->tail += offset;
1644 }
1645 
1646 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1647 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1648 {
1649 	return skb->tail;
1650 }
1651 
1652 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1653 {
1654 	skb->tail = skb->data;
1655 }
1656 
1657 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1658 {
1659 	skb->tail = skb->data + offset;
1660 }
1661 
1662 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1663 
1664 /*
1665  *	Add data to an sk_buff
1666  */
1667 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1668 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1669 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1670 {
1671 	unsigned char *tmp = skb_tail_pointer(skb);
1672 	SKB_LINEAR_ASSERT(skb);
1673 	skb->tail += len;
1674 	skb->len  += len;
1675 	return tmp;
1676 }
1677 
1678 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1679 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1680 {
1681 	skb->data -= len;
1682 	skb->len  += len;
1683 	return skb->data;
1684 }
1685 
1686 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1687 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1688 {
1689 	skb->len -= len;
1690 	BUG_ON(skb->len < skb->data_len);
1691 	return skb->data += len;
1692 }
1693 
1694 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1695 {
1696 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1697 }
1698 
1699 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1700 
1701 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1702 {
1703 	if (len > skb_headlen(skb) &&
1704 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1705 		return NULL;
1706 	skb->len -= len;
1707 	return skb->data += len;
1708 }
1709 
1710 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1711 {
1712 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1713 }
1714 
1715 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1716 {
1717 	if (likely(len <= skb_headlen(skb)))
1718 		return 1;
1719 	if (unlikely(len > skb->len))
1720 		return 0;
1721 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1722 }
1723 
1724 /**
1725  *	skb_headroom - bytes at buffer head
1726  *	@skb: buffer to check
1727  *
1728  *	Return the number of bytes of free space at the head of an &sk_buff.
1729  */
1730 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1731 {
1732 	return skb->data - skb->head;
1733 }
1734 
1735 /**
1736  *	skb_tailroom - bytes at buffer end
1737  *	@skb: buffer to check
1738  *
1739  *	Return the number of bytes of free space at the tail of an sk_buff
1740  */
1741 static inline int skb_tailroom(const struct sk_buff *skb)
1742 {
1743 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1744 }
1745 
1746 /**
1747  *	skb_availroom - bytes at buffer end
1748  *	@skb: buffer to check
1749  *
1750  *	Return the number of bytes of free space at the tail of an sk_buff
1751  *	allocated by sk_stream_alloc()
1752  */
1753 static inline int skb_availroom(const struct sk_buff *skb)
1754 {
1755 	if (skb_is_nonlinear(skb))
1756 		return 0;
1757 
1758 	return skb->end - skb->tail - skb->reserved_tailroom;
1759 }
1760 
1761 /**
1762  *	skb_reserve - adjust headroom
1763  *	@skb: buffer to alter
1764  *	@len: bytes to move
1765  *
1766  *	Increase the headroom of an empty &sk_buff by reducing the tail
1767  *	room. This is only allowed for an empty buffer.
1768  */
1769 static inline void skb_reserve(struct sk_buff *skb, int len)
1770 {
1771 	skb->data += len;
1772 	skb->tail += len;
1773 }
1774 
1775 #define ENCAP_TYPE_ETHER	0
1776 #define ENCAP_TYPE_IPPROTO	1
1777 
1778 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1779 					  __be16 protocol)
1780 {
1781 	skb->inner_protocol = protocol;
1782 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1783 }
1784 
1785 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1786 					 __u8 ipproto)
1787 {
1788 	skb->inner_ipproto = ipproto;
1789 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1790 }
1791 
1792 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1793 {
1794 	skb->inner_mac_header = skb->mac_header;
1795 	skb->inner_network_header = skb->network_header;
1796 	skb->inner_transport_header = skb->transport_header;
1797 }
1798 
1799 static inline void skb_reset_mac_len(struct sk_buff *skb)
1800 {
1801 	skb->mac_len = skb->network_header - skb->mac_header;
1802 }
1803 
1804 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1805 							*skb)
1806 {
1807 	return skb->head + skb->inner_transport_header;
1808 }
1809 
1810 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1811 {
1812 	skb->inner_transport_header = skb->data - skb->head;
1813 }
1814 
1815 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1816 						   const int offset)
1817 {
1818 	skb_reset_inner_transport_header(skb);
1819 	skb->inner_transport_header += offset;
1820 }
1821 
1822 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1823 {
1824 	return skb->head + skb->inner_network_header;
1825 }
1826 
1827 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1828 {
1829 	skb->inner_network_header = skb->data - skb->head;
1830 }
1831 
1832 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1833 						const int offset)
1834 {
1835 	skb_reset_inner_network_header(skb);
1836 	skb->inner_network_header += offset;
1837 }
1838 
1839 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1840 {
1841 	return skb->head + skb->inner_mac_header;
1842 }
1843 
1844 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1845 {
1846 	skb->inner_mac_header = skb->data - skb->head;
1847 }
1848 
1849 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1850 					    const int offset)
1851 {
1852 	skb_reset_inner_mac_header(skb);
1853 	skb->inner_mac_header += offset;
1854 }
1855 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1856 {
1857 	return skb->transport_header != (typeof(skb->transport_header))~0U;
1858 }
1859 
1860 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1861 {
1862 	return skb->head + skb->transport_header;
1863 }
1864 
1865 static inline void skb_reset_transport_header(struct sk_buff *skb)
1866 {
1867 	skb->transport_header = skb->data - skb->head;
1868 }
1869 
1870 static inline void skb_set_transport_header(struct sk_buff *skb,
1871 					    const int offset)
1872 {
1873 	skb_reset_transport_header(skb);
1874 	skb->transport_header += offset;
1875 }
1876 
1877 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1878 {
1879 	return skb->head + skb->network_header;
1880 }
1881 
1882 static inline void skb_reset_network_header(struct sk_buff *skb)
1883 {
1884 	skb->network_header = skb->data - skb->head;
1885 }
1886 
1887 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1888 {
1889 	skb_reset_network_header(skb);
1890 	skb->network_header += offset;
1891 }
1892 
1893 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1894 {
1895 	return skb->head + skb->mac_header;
1896 }
1897 
1898 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1899 {
1900 	return skb->mac_header != (typeof(skb->mac_header))~0U;
1901 }
1902 
1903 static inline void skb_reset_mac_header(struct sk_buff *skb)
1904 {
1905 	skb->mac_header = skb->data - skb->head;
1906 }
1907 
1908 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1909 {
1910 	skb_reset_mac_header(skb);
1911 	skb->mac_header += offset;
1912 }
1913 
1914 static inline void skb_pop_mac_header(struct sk_buff *skb)
1915 {
1916 	skb->mac_header = skb->network_header;
1917 }
1918 
1919 static inline void skb_probe_transport_header(struct sk_buff *skb,
1920 					      const int offset_hint)
1921 {
1922 	struct flow_keys keys;
1923 
1924 	if (skb_transport_header_was_set(skb))
1925 		return;
1926 	else if (skb_flow_dissect(skb, &keys))
1927 		skb_set_transport_header(skb, keys.thoff);
1928 	else
1929 		skb_set_transport_header(skb, offset_hint);
1930 }
1931 
1932 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1933 {
1934 	if (skb_mac_header_was_set(skb)) {
1935 		const unsigned char *old_mac = skb_mac_header(skb);
1936 
1937 		skb_set_mac_header(skb, -skb->mac_len);
1938 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1939 	}
1940 }
1941 
1942 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1943 {
1944 	return skb->csum_start - skb_headroom(skb);
1945 }
1946 
1947 static inline int skb_transport_offset(const struct sk_buff *skb)
1948 {
1949 	return skb_transport_header(skb) - skb->data;
1950 }
1951 
1952 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1953 {
1954 	return skb->transport_header - skb->network_header;
1955 }
1956 
1957 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1958 {
1959 	return skb->inner_transport_header - skb->inner_network_header;
1960 }
1961 
1962 static inline int skb_network_offset(const struct sk_buff *skb)
1963 {
1964 	return skb_network_header(skb) - skb->data;
1965 }
1966 
1967 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1968 {
1969 	return skb_inner_network_header(skb) - skb->data;
1970 }
1971 
1972 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1973 {
1974 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1975 }
1976 
1977 /*
1978  * CPUs often take a performance hit when accessing unaligned memory
1979  * locations. The actual performance hit varies, it can be small if the
1980  * hardware handles it or large if we have to take an exception and fix it
1981  * in software.
1982  *
1983  * Since an ethernet header is 14 bytes network drivers often end up with
1984  * the IP header at an unaligned offset. The IP header can be aligned by
1985  * shifting the start of the packet by 2 bytes. Drivers should do this
1986  * with:
1987  *
1988  * skb_reserve(skb, NET_IP_ALIGN);
1989  *
1990  * The downside to this alignment of the IP header is that the DMA is now
1991  * unaligned. On some architectures the cost of an unaligned DMA is high
1992  * and this cost outweighs the gains made by aligning the IP header.
1993  *
1994  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1995  * to be overridden.
1996  */
1997 #ifndef NET_IP_ALIGN
1998 #define NET_IP_ALIGN	2
1999 #endif
2000 
2001 /*
2002  * The networking layer reserves some headroom in skb data (via
2003  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2004  * the header has to grow. In the default case, if the header has to grow
2005  * 32 bytes or less we avoid the reallocation.
2006  *
2007  * Unfortunately this headroom changes the DMA alignment of the resulting
2008  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2009  * on some architectures. An architecture can override this value,
2010  * perhaps setting it to a cacheline in size (since that will maintain
2011  * cacheline alignment of the DMA). It must be a power of 2.
2012  *
2013  * Various parts of the networking layer expect at least 32 bytes of
2014  * headroom, you should not reduce this.
2015  *
2016  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2017  * to reduce average number of cache lines per packet.
2018  * get_rps_cpus() for example only access one 64 bytes aligned block :
2019  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2020  */
2021 #ifndef NET_SKB_PAD
2022 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2023 #endif
2024 
2025 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2026 
2027 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2028 {
2029 	if (unlikely(skb_is_nonlinear(skb))) {
2030 		WARN_ON(1);
2031 		return;
2032 	}
2033 	skb->len = len;
2034 	skb_set_tail_pointer(skb, len);
2035 }
2036 
2037 void skb_trim(struct sk_buff *skb, unsigned int len);
2038 
2039 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2040 {
2041 	if (skb->data_len)
2042 		return ___pskb_trim(skb, len);
2043 	__skb_trim(skb, len);
2044 	return 0;
2045 }
2046 
2047 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2048 {
2049 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2050 }
2051 
2052 /**
2053  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2054  *	@skb: buffer to alter
2055  *	@len: new length
2056  *
2057  *	This is identical to pskb_trim except that the caller knows that
2058  *	the skb is not cloned so we should never get an error due to out-
2059  *	of-memory.
2060  */
2061 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2062 {
2063 	int err = pskb_trim(skb, len);
2064 	BUG_ON(err);
2065 }
2066 
2067 /**
2068  *	skb_orphan - orphan a buffer
2069  *	@skb: buffer to orphan
2070  *
2071  *	If a buffer currently has an owner then we call the owner's
2072  *	destructor function and make the @skb unowned. The buffer continues
2073  *	to exist but is no longer charged to its former owner.
2074  */
2075 static inline void skb_orphan(struct sk_buff *skb)
2076 {
2077 	if (skb->destructor) {
2078 		skb->destructor(skb);
2079 		skb->destructor = NULL;
2080 		skb->sk		= NULL;
2081 	} else {
2082 		BUG_ON(skb->sk);
2083 	}
2084 }
2085 
2086 /**
2087  *	skb_orphan_frags - orphan the frags contained in a buffer
2088  *	@skb: buffer to orphan frags from
2089  *	@gfp_mask: allocation mask for replacement pages
2090  *
2091  *	For each frag in the SKB which needs a destructor (i.e. has an
2092  *	owner) create a copy of that frag and release the original
2093  *	page by calling the destructor.
2094  */
2095 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2096 {
2097 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2098 		return 0;
2099 	return skb_copy_ubufs(skb, gfp_mask);
2100 }
2101 
2102 /**
2103  *	__skb_queue_purge - empty a list
2104  *	@list: list to empty
2105  *
2106  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2107  *	the list and one reference dropped. This function does not take the
2108  *	list lock and the caller must hold the relevant locks to use it.
2109  */
2110 void skb_queue_purge(struct sk_buff_head *list);
2111 static inline void __skb_queue_purge(struct sk_buff_head *list)
2112 {
2113 	struct sk_buff *skb;
2114 	while ((skb = __skb_dequeue(list)) != NULL)
2115 		kfree_skb(skb);
2116 }
2117 
2118 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2119 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2120 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
2121 
2122 void *netdev_alloc_frag(unsigned int fragsz);
2123 
2124 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2125 				   gfp_t gfp_mask);
2126 
2127 /**
2128  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2129  *	@dev: network device to receive on
2130  *	@length: length to allocate
2131  *
2132  *	Allocate a new &sk_buff and assign it a usage count of one. The
2133  *	buffer has unspecified headroom built in. Users should allocate
2134  *	the headroom they think they need without accounting for the
2135  *	built in space. The built in space is used for optimisations.
2136  *
2137  *	%NULL is returned if there is no free memory. Although this function
2138  *	allocates memory it can be called from an interrupt.
2139  */
2140 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2141 					       unsigned int length)
2142 {
2143 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2144 }
2145 
2146 /* legacy helper around __netdev_alloc_skb() */
2147 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2148 					      gfp_t gfp_mask)
2149 {
2150 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2151 }
2152 
2153 /* legacy helper around netdev_alloc_skb() */
2154 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2155 {
2156 	return netdev_alloc_skb(NULL, length);
2157 }
2158 
2159 
2160 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2161 		unsigned int length, gfp_t gfp)
2162 {
2163 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2164 
2165 	if (NET_IP_ALIGN && skb)
2166 		skb_reserve(skb, NET_IP_ALIGN);
2167 	return skb;
2168 }
2169 
2170 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2171 		unsigned int length)
2172 {
2173 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2174 }
2175 
2176 void *napi_alloc_frag(unsigned int fragsz);
2177 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2178 				 unsigned int length, gfp_t gfp_mask);
2179 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2180 					     unsigned int length)
2181 {
2182 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2183 }
2184 
2185 /**
2186  * __dev_alloc_pages - allocate page for network Rx
2187  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2188  * @order: size of the allocation
2189  *
2190  * Allocate a new page.
2191  *
2192  * %NULL is returned if there is no free memory.
2193 */
2194 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2195 					     unsigned int order)
2196 {
2197 	/* This piece of code contains several assumptions.
2198 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2199 	 * 2.  The expectation is the user wants a compound page.
2200 	 * 3.  If requesting a order 0 page it will not be compound
2201 	 *     due to the check to see if order has a value in prep_new_page
2202 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2203 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2204 	 */
2205 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2206 
2207 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2208 }
2209 
2210 static inline struct page *dev_alloc_pages(unsigned int order)
2211 {
2212 	return __dev_alloc_pages(GFP_ATOMIC, order);
2213 }
2214 
2215 /**
2216  * __dev_alloc_page - allocate a page for network Rx
2217  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2218  *
2219  * Allocate a new page.
2220  *
2221  * %NULL is returned if there is no free memory.
2222  */
2223 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2224 {
2225 	return __dev_alloc_pages(gfp_mask, 0);
2226 }
2227 
2228 static inline struct page *dev_alloc_page(void)
2229 {
2230 	return __dev_alloc_page(GFP_ATOMIC);
2231 }
2232 
2233 /**
2234  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2235  *	@page: The page that was allocated from skb_alloc_page
2236  *	@skb: The skb that may need pfmemalloc set
2237  */
2238 static inline void skb_propagate_pfmemalloc(struct page *page,
2239 					     struct sk_buff *skb)
2240 {
2241 	if (page && page->pfmemalloc)
2242 		skb->pfmemalloc = true;
2243 }
2244 
2245 /**
2246  * skb_frag_page - retrieve the page referred to by a paged fragment
2247  * @frag: the paged fragment
2248  *
2249  * Returns the &struct page associated with @frag.
2250  */
2251 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2252 {
2253 	return frag->page.p;
2254 }
2255 
2256 /**
2257  * __skb_frag_ref - take an addition reference on a paged fragment.
2258  * @frag: the paged fragment
2259  *
2260  * Takes an additional reference on the paged fragment @frag.
2261  */
2262 static inline void __skb_frag_ref(skb_frag_t *frag)
2263 {
2264 	get_page(skb_frag_page(frag));
2265 }
2266 
2267 /**
2268  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2269  * @skb: the buffer
2270  * @f: the fragment offset.
2271  *
2272  * Takes an additional reference on the @f'th paged fragment of @skb.
2273  */
2274 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2275 {
2276 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2277 }
2278 
2279 /**
2280  * __skb_frag_unref - release a reference on a paged fragment.
2281  * @frag: the paged fragment
2282  *
2283  * Releases a reference on the paged fragment @frag.
2284  */
2285 static inline void __skb_frag_unref(skb_frag_t *frag)
2286 {
2287 	put_page(skb_frag_page(frag));
2288 }
2289 
2290 /**
2291  * skb_frag_unref - release a reference on a paged fragment of an skb.
2292  * @skb: the buffer
2293  * @f: the fragment offset
2294  *
2295  * Releases a reference on the @f'th paged fragment of @skb.
2296  */
2297 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2298 {
2299 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2300 }
2301 
2302 /**
2303  * skb_frag_address - gets the address of the data contained in a paged fragment
2304  * @frag: the paged fragment buffer
2305  *
2306  * Returns the address of the data within @frag. The page must already
2307  * be mapped.
2308  */
2309 static inline void *skb_frag_address(const skb_frag_t *frag)
2310 {
2311 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2312 }
2313 
2314 /**
2315  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2316  * @frag: the paged fragment buffer
2317  *
2318  * Returns the address of the data within @frag. Checks that the page
2319  * is mapped and returns %NULL otherwise.
2320  */
2321 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2322 {
2323 	void *ptr = page_address(skb_frag_page(frag));
2324 	if (unlikely(!ptr))
2325 		return NULL;
2326 
2327 	return ptr + frag->page_offset;
2328 }
2329 
2330 /**
2331  * __skb_frag_set_page - sets the page contained in a paged fragment
2332  * @frag: the paged fragment
2333  * @page: the page to set
2334  *
2335  * Sets the fragment @frag to contain @page.
2336  */
2337 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2338 {
2339 	frag->page.p = page;
2340 }
2341 
2342 /**
2343  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2344  * @skb: the buffer
2345  * @f: the fragment offset
2346  * @page: the page to set
2347  *
2348  * Sets the @f'th fragment of @skb to contain @page.
2349  */
2350 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2351 				     struct page *page)
2352 {
2353 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2354 }
2355 
2356 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2357 
2358 /**
2359  * skb_frag_dma_map - maps a paged fragment via the DMA API
2360  * @dev: the device to map the fragment to
2361  * @frag: the paged fragment to map
2362  * @offset: the offset within the fragment (starting at the
2363  *          fragment's own offset)
2364  * @size: the number of bytes to map
2365  * @dir: the direction of the mapping (%PCI_DMA_*)
2366  *
2367  * Maps the page associated with @frag to @device.
2368  */
2369 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2370 					  const skb_frag_t *frag,
2371 					  size_t offset, size_t size,
2372 					  enum dma_data_direction dir)
2373 {
2374 	return dma_map_page(dev, skb_frag_page(frag),
2375 			    frag->page_offset + offset, size, dir);
2376 }
2377 
2378 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2379 					gfp_t gfp_mask)
2380 {
2381 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2382 }
2383 
2384 
2385 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2386 						  gfp_t gfp_mask)
2387 {
2388 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2389 }
2390 
2391 
2392 /**
2393  *	skb_clone_writable - is the header of a clone writable
2394  *	@skb: buffer to check
2395  *	@len: length up to which to write
2396  *
2397  *	Returns true if modifying the header part of the cloned buffer
2398  *	does not requires the data to be copied.
2399  */
2400 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2401 {
2402 	return !skb_header_cloned(skb) &&
2403 	       skb_headroom(skb) + len <= skb->hdr_len;
2404 }
2405 
2406 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2407 			    int cloned)
2408 {
2409 	int delta = 0;
2410 
2411 	if (headroom > skb_headroom(skb))
2412 		delta = headroom - skb_headroom(skb);
2413 
2414 	if (delta || cloned)
2415 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2416 					GFP_ATOMIC);
2417 	return 0;
2418 }
2419 
2420 /**
2421  *	skb_cow - copy header of skb when it is required
2422  *	@skb: buffer to cow
2423  *	@headroom: needed headroom
2424  *
2425  *	If the skb passed lacks sufficient headroom or its data part
2426  *	is shared, data is reallocated. If reallocation fails, an error
2427  *	is returned and original skb is not changed.
2428  *
2429  *	The result is skb with writable area skb->head...skb->tail
2430  *	and at least @headroom of space at head.
2431  */
2432 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2433 {
2434 	return __skb_cow(skb, headroom, skb_cloned(skb));
2435 }
2436 
2437 /**
2438  *	skb_cow_head - skb_cow but only making the head writable
2439  *	@skb: buffer to cow
2440  *	@headroom: needed headroom
2441  *
2442  *	This function is identical to skb_cow except that we replace the
2443  *	skb_cloned check by skb_header_cloned.  It should be used when
2444  *	you only need to push on some header and do not need to modify
2445  *	the data.
2446  */
2447 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2448 {
2449 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2450 }
2451 
2452 /**
2453  *	skb_padto	- pad an skbuff up to a minimal size
2454  *	@skb: buffer to pad
2455  *	@len: minimal length
2456  *
2457  *	Pads up a buffer to ensure the trailing bytes exist and are
2458  *	blanked. If the buffer already contains sufficient data it
2459  *	is untouched. Otherwise it is extended. Returns zero on
2460  *	success. The skb is freed on error.
2461  */
2462 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2463 {
2464 	unsigned int size = skb->len;
2465 	if (likely(size >= len))
2466 		return 0;
2467 	return skb_pad(skb, len - size);
2468 }
2469 
2470 /**
2471  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2472  *	@skb: buffer to pad
2473  *	@len: minimal length
2474  *
2475  *	Pads up a buffer to ensure the trailing bytes exist and are
2476  *	blanked. If the buffer already contains sufficient data it
2477  *	is untouched. Otherwise it is extended. Returns zero on
2478  *	success. The skb is freed on error.
2479  */
2480 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2481 {
2482 	unsigned int size = skb->len;
2483 
2484 	if (unlikely(size < len)) {
2485 		len -= size;
2486 		if (skb_pad(skb, len))
2487 			return -ENOMEM;
2488 		__skb_put(skb, len);
2489 	}
2490 	return 0;
2491 }
2492 
2493 static inline int skb_add_data(struct sk_buff *skb,
2494 			       struct iov_iter *from, int copy)
2495 {
2496 	const int off = skb->len;
2497 
2498 	if (skb->ip_summed == CHECKSUM_NONE) {
2499 		__wsum csum = 0;
2500 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2501 					    &csum, from) == copy) {
2502 			skb->csum = csum_block_add(skb->csum, csum, off);
2503 			return 0;
2504 		}
2505 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2506 		return 0;
2507 
2508 	__skb_trim(skb, off);
2509 	return -EFAULT;
2510 }
2511 
2512 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2513 				    const struct page *page, int off)
2514 {
2515 	if (i) {
2516 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2517 
2518 		return page == skb_frag_page(frag) &&
2519 		       off == frag->page_offset + skb_frag_size(frag);
2520 	}
2521 	return false;
2522 }
2523 
2524 static inline int __skb_linearize(struct sk_buff *skb)
2525 {
2526 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2527 }
2528 
2529 /**
2530  *	skb_linearize - convert paged skb to linear one
2531  *	@skb: buffer to linarize
2532  *
2533  *	If there is no free memory -ENOMEM is returned, otherwise zero
2534  *	is returned and the old skb data released.
2535  */
2536 static inline int skb_linearize(struct sk_buff *skb)
2537 {
2538 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2539 }
2540 
2541 /**
2542  * skb_has_shared_frag - can any frag be overwritten
2543  * @skb: buffer to test
2544  *
2545  * Return true if the skb has at least one frag that might be modified
2546  * by an external entity (as in vmsplice()/sendfile())
2547  */
2548 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2549 {
2550 	return skb_is_nonlinear(skb) &&
2551 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2552 }
2553 
2554 /**
2555  *	skb_linearize_cow - make sure skb is linear and writable
2556  *	@skb: buffer to process
2557  *
2558  *	If there is no free memory -ENOMEM is returned, otherwise zero
2559  *	is returned and the old skb data released.
2560  */
2561 static inline int skb_linearize_cow(struct sk_buff *skb)
2562 {
2563 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2564 	       __skb_linearize(skb) : 0;
2565 }
2566 
2567 /**
2568  *	skb_postpull_rcsum - update checksum for received skb after pull
2569  *	@skb: buffer to update
2570  *	@start: start of data before pull
2571  *	@len: length of data pulled
2572  *
2573  *	After doing a pull on a received packet, you need to call this to
2574  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2575  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2576  */
2577 
2578 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2579 				      const void *start, unsigned int len)
2580 {
2581 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2582 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2583 }
2584 
2585 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2586 
2587 /**
2588  *	pskb_trim_rcsum - trim received skb and update checksum
2589  *	@skb: buffer to trim
2590  *	@len: new length
2591  *
2592  *	This is exactly the same as pskb_trim except that it ensures the
2593  *	checksum of received packets are still valid after the operation.
2594  */
2595 
2596 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2597 {
2598 	if (likely(len >= skb->len))
2599 		return 0;
2600 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2601 		skb->ip_summed = CHECKSUM_NONE;
2602 	return __pskb_trim(skb, len);
2603 }
2604 
2605 #define skb_queue_walk(queue, skb) \
2606 		for (skb = (queue)->next;					\
2607 		     skb != (struct sk_buff *)(queue);				\
2608 		     skb = skb->next)
2609 
2610 #define skb_queue_walk_safe(queue, skb, tmp)					\
2611 		for (skb = (queue)->next, tmp = skb->next;			\
2612 		     skb != (struct sk_buff *)(queue);				\
2613 		     skb = tmp, tmp = skb->next)
2614 
2615 #define skb_queue_walk_from(queue, skb)						\
2616 		for (; skb != (struct sk_buff *)(queue);			\
2617 		     skb = skb->next)
2618 
2619 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2620 		for (tmp = skb->next;						\
2621 		     skb != (struct sk_buff *)(queue);				\
2622 		     skb = tmp, tmp = skb->next)
2623 
2624 #define skb_queue_reverse_walk(queue, skb) \
2625 		for (skb = (queue)->prev;					\
2626 		     skb != (struct sk_buff *)(queue);				\
2627 		     skb = skb->prev)
2628 
2629 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2630 		for (skb = (queue)->prev, tmp = skb->prev;			\
2631 		     skb != (struct sk_buff *)(queue);				\
2632 		     skb = tmp, tmp = skb->prev)
2633 
2634 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2635 		for (tmp = skb->prev;						\
2636 		     skb != (struct sk_buff *)(queue);				\
2637 		     skb = tmp, tmp = skb->prev)
2638 
2639 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2640 {
2641 	return skb_shinfo(skb)->frag_list != NULL;
2642 }
2643 
2644 static inline void skb_frag_list_init(struct sk_buff *skb)
2645 {
2646 	skb_shinfo(skb)->frag_list = NULL;
2647 }
2648 
2649 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2650 {
2651 	frag->next = skb_shinfo(skb)->frag_list;
2652 	skb_shinfo(skb)->frag_list = frag;
2653 }
2654 
2655 #define skb_walk_frags(skb, iter)	\
2656 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2657 
2658 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2659 				    int *peeked, int *off, int *err);
2660 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2661 				  int *err);
2662 unsigned int datagram_poll(struct file *file, struct socket *sock,
2663 			   struct poll_table_struct *wait);
2664 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2665 			   struct iov_iter *to, int size);
2666 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2667 					struct msghdr *msg, int size)
2668 {
2669 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2670 }
2671 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2672 				   struct msghdr *msg);
2673 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2674 				 struct iov_iter *from, int len);
2675 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2676 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2677 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2678 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2679 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2680 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2681 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2682 			      int len, __wsum csum);
2683 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2684 		    struct pipe_inode_info *pipe, unsigned int len,
2685 		    unsigned int flags);
2686 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2687 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2688 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2689 		 int len, int hlen);
2690 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2691 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2692 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2693 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2694 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2695 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2696 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2697 int skb_vlan_pop(struct sk_buff *skb);
2698 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2699 
2700 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2701 {
2702 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2703 }
2704 
2705 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2706 {
2707 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2708 }
2709 
2710 struct skb_checksum_ops {
2711 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2712 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2713 };
2714 
2715 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2716 		      __wsum csum, const struct skb_checksum_ops *ops);
2717 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2718 		    __wsum csum);
2719 
2720 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2721 					 int len, void *data, int hlen, void *buffer)
2722 {
2723 	if (hlen - offset >= len)
2724 		return data + offset;
2725 
2726 	if (!skb ||
2727 	    skb_copy_bits(skb, offset, buffer, len) < 0)
2728 		return NULL;
2729 
2730 	return buffer;
2731 }
2732 
2733 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2734 				       int len, void *buffer)
2735 {
2736 	return __skb_header_pointer(skb, offset, len, skb->data,
2737 				    skb_headlen(skb), buffer);
2738 }
2739 
2740 /**
2741  *	skb_needs_linearize - check if we need to linearize a given skb
2742  *			      depending on the given device features.
2743  *	@skb: socket buffer to check
2744  *	@features: net device features
2745  *
2746  *	Returns true if either:
2747  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2748  *	2. skb is fragmented and the device does not support SG.
2749  */
2750 static inline bool skb_needs_linearize(struct sk_buff *skb,
2751 				       netdev_features_t features)
2752 {
2753 	return skb_is_nonlinear(skb) &&
2754 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2755 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2756 }
2757 
2758 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2759 					     void *to,
2760 					     const unsigned int len)
2761 {
2762 	memcpy(to, skb->data, len);
2763 }
2764 
2765 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2766 						    const int offset, void *to,
2767 						    const unsigned int len)
2768 {
2769 	memcpy(to, skb->data + offset, len);
2770 }
2771 
2772 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2773 					   const void *from,
2774 					   const unsigned int len)
2775 {
2776 	memcpy(skb->data, from, len);
2777 }
2778 
2779 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2780 						  const int offset,
2781 						  const void *from,
2782 						  const unsigned int len)
2783 {
2784 	memcpy(skb->data + offset, from, len);
2785 }
2786 
2787 void skb_init(void);
2788 
2789 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2790 {
2791 	return skb->tstamp;
2792 }
2793 
2794 /**
2795  *	skb_get_timestamp - get timestamp from a skb
2796  *	@skb: skb to get stamp from
2797  *	@stamp: pointer to struct timeval to store stamp in
2798  *
2799  *	Timestamps are stored in the skb as offsets to a base timestamp.
2800  *	This function converts the offset back to a struct timeval and stores
2801  *	it in stamp.
2802  */
2803 static inline void skb_get_timestamp(const struct sk_buff *skb,
2804 				     struct timeval *stamp)
2805 {
2806 	*stamp = ktime_to_timeval(skb->tstamp);
2807 }
2808 
2809 static inline void skb_get_timestampns(const struct sk_buff *skb,
2810 				       struct timespec *stamp)
2811 {
2812 	*stamp = ktime_to_timespec(skb->tstamp);
2813 }
2814 
2815 static inline void __net_timestamp(struct sk_buff *skb)
2816 {
2817 	skb->tstamp = ktime_get_real();
2818 }
2819 
2820 static inline ktime_t net_timedelta(ktime_t t)
2821 {
2822 	return ktime_sub(ktime_get_real(), t);
2823 }
2824 
2825 static inline ktime_t net_invalid_timestamp(void)
2826 {
2827 	return ktime_set(0, 0);
2828 }
2829 
2830 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2831 
2832 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2833 
2834 void skb_clone_tx_timestamp(struct sk_buff *skb);
2835 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2836 
2837 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2838 
2839 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2840 {
2841 }
2842 
2843 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2844 {
2845 	return false;
2846 }
2847 
2848 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2849 
2850 /**
2851  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2852  *
2853  * PHY drivers may accept clones of transmitted packets for
2854  * timestamping via their phy_driver.txtstamp method. These drivers
2855  * must call this function to return the skb back to the stack, with
2856  * or without a timestamp.
2857  *
2858  * @skb: clone of the the original outgoing packet
2859  * @hwtstamps: hardware time stamps, may be NULL if not available
2860  *
2861  */
2862 void skb_complete_tx_timestamp(struct sk_buff *skb,
2863 			       struct skb_shared_hwtstamps *hwtstamps);
2864 
2865 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2866 		     struct skb_shared_hwtstamps *hwtstamps,
2867 		     struct sock *sk, int tstype);
2868 
2869 /**
2870  * skb_tstamp_tx - queue clone of skb with send time stamps
2871  * @orig_skb:	the original outgoing packet
2872  * @hwtstamps:	hardware time stamps, may be NULL if not available
2873  *
2874  * If the skb has a socket associated, then this function clones the
2875  * skb (thus sharing the actual data and optional structures), stores
2876  * the optional hardware time stamping information (if non NULL) or
2877  * generates a software time stamp (otherwise), then queues the clone
2878  * to the error queue of the socket.  Errors are silently ignored.
2879  */
2880 void skb_tstamp_tx(struct sk_buff *orig_skb,
2881 		   struct skb_shared_hwtstamps *hwtstamps);
2882 
2883 static inline void sw_tx_timestamp(struct sk_buff *skb)
2884 {
2885 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2886 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2887 		skb_tstamp_tx(skb, NULL);
2888 }
2889 
2890 /**
2891  * skb_tx_timestamp() - Driver hook for transmit timestamping
2892  *
2893  * Ethernet MAC Drivers should call this function in their hard_xmit()
2894  * function immediately before giving the sk_buff to the MAC hardware.
2895  *
2896  * Specifically, one should make absolutely sure that this function is
2897  * called before TX completion of this packet can trigger.  Otherwise
2898  * the packet could potentially already be freed.
2899  *
2900  * @skb: A socket buffer.
2901  */
2902 static inline void skb_tx_timestamp(struct sk_buff *skb)
2903 {
2904 	skb_clone_tx_timestamp(skb);
2905 	sw_tx_timestamp(skb);
2906 }
2907 
2908 /**
2909  * skb_complete_wifi_ack - deliver skb with wifi status
2910  *
2911  * @skb: the original outgoing packet
2912  * @acked: ack status
2913  *
2914  */
2915 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2916 
2917 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2918 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2919 
2920 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2921 {
2922 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2923 		skb->csum_valid ||
2924 		(skb->ip_summed == CHECKSUM_PARTIAL &&
2925 		 skb_checksum_start_offset(skb) >= 0));
2926 }
2927 
2928 /**
2929  *	skb_checksum_complete - Calculate checksum of an entire packet
2930  *	@skb: packet to process
2931  *
2932  *	This function calculates the checksum over the entire packet plus
2933  *	the value of skb->csum.  The latter can be used to supply the
2934  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2935  *	checksum.
2936  *
2937  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2938  *	this function can be used to verify that checksum on received
2939  *	packets.  In that case the function should return zero if the
2940  *	checksum is correct.  In particular, this function will return zero
2941  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2942  *	hardware has already verified the correctness of the checksum.
2943  */
2944 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2945 {
2946 	return skb_csum_unnecessary(skb) ?
2947 	       0 : __skb_checksum_complete(skb);
2948 }
2949 
2950 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2951 {
2952 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2953 		if (skb->csum_level == 0)
2954 			skb->ip_summed = CHECKSUM_NONE;
2955 		else
2956 			skb->csum_level--;
2957 	}
2958 }
2959 
2960 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2961 {
2962 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2963 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2964 			skb->csum_level++;
2965 	} else if (skb->ip_summed == CHECKSUM_NONE) {
2966 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2967 		skb->csum_level = 0;
2968 	}
2969 }
2970 
2971 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2972 {
2973 	/* Mark current checksum as bad (typically called from GRO
2974 	 * path). In the case that ip_summed is CHECKSUM_NONE
2975 	 * this must be the first checksum encountered in the packet.
2976 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2977 	 * checksum after the last one validated. For UDP, a zero
2978 	 * checksum can not be marked as bad.
2979 	 */
2980 
2981 	if (skb->ip_summed == CHECKSUM_NONE ||
2982 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
2983 		skb->csum_bad = 1;
2984 }
2985 
2986 /* Check if we need to perform checksum complete validation.
2987  *
2988  * Returns true if checksum complete is needed, false otherwise
2989  * (either checksum is unnecessary or zero checksum is allowed).
2990  */
2991 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2992 						  bool zero_okay,
2993 						  __sum16 check)
2994 {
2995 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2996 		skb->csum_valid = 1;
2997 		__skb_decr_checksum_unnecessary(skb);
2998 		return false;
2999 	}
3000 
3001 	return true;
3002 }
3003 
3004 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3005  * in checksum_init.
3006  */
3007 #define CHECKSUM_BREAK 76
3008 
3009 /* Validate (init) checksum based on checksum complete.
3010  *
3011  * Return values:
3012  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3013  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3014  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3015  *   non-zero: value of invalid checksum
3016  *
3017  */
3018 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3019 						       bool complete,
3020 						       __wsum psum)
3021 {
3022 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3023 		if (!csum_fold(csum_add(psum, skb->csum))) {
3024 			skb->csum_valid = 1;
3025 			return 0;
3026 		}
3027 	} else if (skb->csum_bad) {
3028 		/* ip_summed == CHECKSUM_NONE in this case */
3029 		return 1;
3030 	}
3031 
3032 	skb->csum = psum;
3033 
3034 	if (complete || skb->len <= CHECKSUM_BREAK) {
3035 		__sum16 csum;
3036 
3037 		csum = __skb_checksum_complete(skb);
3038 		skb->csum_valid = !csum;
3039 		return csum;
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3046 {
3047 	return 0;
3048 }
3049 
3050 /* Perform checksum validate (init). Note that this is a macro since we only
3051  * want to calculate the pseudo header which is an input function if necessary.
3052  * First we try to validate without any computation (checksum unnecessary) and
3053  * then calculate based on checksum complete calling the function to compute
3054  * pseudo header.
3055  *
3056  * Return values:
3057  *   0: checksum is validated or try to in skb_checksum_complete
3058  *   non-zero: value of invalid checksum
3059  */
3060 #define __skb_checksum_validate(skb, proto, complete,			\
3061 				zero_okay, check, compute_pseudo)	\
3062 ({									\
3063 	__sum16 __ret = 0;						\
3064 	skb->csum_valid = 0;						\
3065 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3066 		__ret = __skb_checksum_validate_complete(skb,		\
3067 				complete, compute_pseudo(skb, proto));	\
3068 	__ret;								\
3069 })
3070 
3071 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3072 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3073 
3074 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3075 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3076 
3077 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3078 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3079 
3080 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3081 					 compute_pseudo)		\
3082 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3083 
3084 #define skb_checksum_simple_validate(skb)				\
3085 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3086 
3087 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3088 {
3089 	return (skb->ip_summed == CHECKSUM_NONE &&
3090 		skb->csum_valid && !skb->csum_bad);
3091 }
3092 
3093 static inline void __skb_checksum_convert(struct sk_buff *skb,
3094 					  __sum16 check, __wsum pseudo)
3095 {
3096 	skb->csum = ~pseudo;
3097 	skb->ip_summed = CHECKSUM_COMPLETE;
3098 }
3099 
3100 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3101 do {									\
3102 	if (__skb_checksum_convert_check(skb))				\
3103 		__skb_checksum_convert(skb, check,			\
3104 				       compute_pseudo(skb, proto));	\
3105 } while (0)
3106 
3107 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3108 					      u16 start, u16 offset)
3109 {
3110 	skb->ip_summed = CHECKSUM_PARTIAL;
3111 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3112 	skb->csum_offset = offset - start;
3113 }
3114 
3115 /* Update skbuf and packet to reflect the remote checksum offload operation.
3116  * When called, ptr indicates the starting point for skb->csum when
3117  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3118  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3119  */
3120 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3121 				       int start, int offset, bool nopartial)
3122 {
3123 	__wsum delta;
3124 
3125 	if (!nopartial) {
3126 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3127 		return;
3128 	}
3129 
3130 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3131 		__skb_checksum_complete(skb);
3132 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3133 	}
3134 
3135 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3136 
3137 	/* Adjust skb->csum since we changed the packet */
3138 	skb->csum = csum_add(skb->csum, delta);
3139 }
3140 
3141 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3142 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3143 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3144 {
3145 	if (nfct && atomic_dec_and_test(&nfct->use))
3146 		nf_conntrack_destroy(nfct);
3147 }
3148 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3149 {
3150 	if (nfct)
3151 		atomic_inc(&nfct->use);
3152 }
3153 #endif
3154 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3155 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3156 {
3157 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3158 		kfree(nf_bridge);
3159 }
3160 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3161 {
3162 	if (nf_bridge)
3163 		atomic_inc(&nf_bridge->use);
3164 }
3165 #endif /* CONFIG_BRIDGE_NETFILTER */
3166 static inline void nf_reset(struct sk_buff *skb)
3167 {
3168 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3169 	nf_conntrack_put(skb->nfct);
3170 	skb->nfct = NULL;
3171 #endif
3172 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3173 	nf_bridge_put(skb->nf_bridge);
3174 	skb->nf_bridge = NULL;
3175 #endif
3176 }
3177 
3178 static inline void nf_reset_trace(struct sk_buff *skb)
3179 {
3180 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3181 	skb->nf_trace = 0;
3182 #endif
3183 }
3184 
3185 /* Note: This doesn't put any conntrack and bridge info in dst. */
3186 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3187 			     bool copy)
3188 {
3189 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3190 	dst->nfct = src->nfct;
3191 	nf_conntrack_get(src->nfct);
3192 	if (copy)
3193 		dst->nfctinfo = src->nfctinfo;
3194 #endif
3195 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3196 	dst->nf_bridge  = src->nf_bridge;
3197 	nf_bridge_get(src->nf_bridge);
3198 #endif
3199 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3200 	if (copy)
3201 		dst->nf_trace = src->nf_trace;
3202 #endif
3203 }
3204 
3205 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3206 {
3207 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3208 	nf_conntrack_put(dst->nfct);
3209 #endif
3210 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3211 	nf_bridge_put(dst->nf_bridge);
3212 #endif
3213 	__nf_copy(dst, src, true);
3214 }
3215 
3216 #ifdef CONFIG_NETWORK_SECMARK
3217 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3218 {
3219 	to->secmark = from->secmark;
3220 }
3221 
3222 static inline void skb_init_secmark(struct sk_buff *skb)
3223 {
3224 	skb->secmark = 0;
3225 }
3226 #else
3227 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3228 { }
3229 
3230 static inline void skb_init_secmark(struct sk_buff *skb)
3231 { }
3232 #endif
3233 
3234 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3235 {
3236 	return !skb->destructor &&
3237 #if IS_ENABLED(CONFIG_XFRM)
3238 		!skb->sp &&
3239 #endif
3240 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3241 		!skb->nfct &&
3242 #endif
3243 		!skb->_skb_refdst &&
3244 		!skb_has_frag_list(skb);
3245 }
3246 
3247 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3248 {
3249 	skb->queue_mapping = queue_mapping;
3250 }
3251 
3252 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3253 {
3254 	return skb->queue_mapping;
3255 }
3256 
3257 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3258 {
3259 	to->queue_mapping = from->queue_mapping;
3260 }
3261 
3262 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3263 {
3264 	skb->queue_mapping = rx_queue + 1;
3265 }
3266 
3267 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3268 {
3269 	return skb->queue_mapping - 1;
3270 }
3271 
3272 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3273 {
3274 	return skb->queue_mapping != 0;
3275 }
3276 
3277 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3278 		  unsigned int num_tx_queues);
3279 
3280 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3281 {
3282 #ifdef CONFIG_XFRM
3283 	return skb->sp;
3284 #else
3285 	return NULL;
3286 #endif
3287 }
3288 
3289 /* Keeps track of mac header offset relative to skb->head.
3290  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3291  * For non-tunnel skb it points to skb_mac_header() and for
3292  * tunnel skb it points to outer mac header.
3293  * Keeps track of level of encapsulation of network headers.
3294  */
3295 struct skb_gso_cb {
3296 	int	mac_offset;
3297 	int	encap_level;
3298 	__u16	csum_start;
3299 };
3300 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3301 
3302 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3303 {
3304 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3305 		SKB_GSO_CB(inner_skb)->mac_offset;
3306 }
3307 
3308 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3309 {
3310 	int new_headroom, headroom;
3311 	int ret;
3312 
3313 	headroom = skb_headroom(skb);
3314 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3315 	if (ret)
3316 		return ret;
3317 
3318 	new_headroom = skb_headroom(skb);
3319 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3320 	return 0;
3321 }
3322 
3323 /* Compute the checksum for a gso segment. First compute the checksum value
3324  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3325  * then add in skb->csum (checksum from csum_start to end of packet).
3326  * skb->csum and csum_start are then updated to reflect the checksum of the
3327  * resultant packet starting from the transport header-- the resultant checksum
3328  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3329  * header.
3330  */
3331 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3332 {
3333 	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3334 	    skb_transport_offset(skb);
3335 	__u16 csum;
3336 
3337 	csum = csum_fold(csum_partial(skb_transport_header(skb),
3338 				      plen, skb->csum));
3339 	skb->csum = res;
3340 	SKB_GSO_CB(skb)->csum_start -= plen;
3341 
3342 	return csum;
3343 }
3344 
3345 static inline bool skb_is_gso(const struct sk_buff *skb)
3346 {
3347 	return skb_shinfo(skb)->gso_size;
3348 }
3349 
3350 /* Note: Should be called only if skb_is_gso(skb) is true */
3351 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3352 {
3353 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3354 }
3355 
3356 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3357 
3358 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3359 {
3360 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3361 	 * wanted then gso_type will be set. */
3362 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3363 
3364 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3365 	    unlikely(shinfo->gso_type == 0)) {
3366 		__skb_warn_lro_forwarding(skb);
3367 		return true;
3368 	}
3369 	return false;
3370 }
3371 
3372 static inline void skb_forward_csum(struct sk_buff *skb)
3373 {
3374 	/* Unfortunately we don't support this one.  Any brave souls? */
3375 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3376 		skb->ip_summed = CHECKSUM_NONE;
3377 }
3378 
3379 /**
3380  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3381  * @skb: skb to check
3382  *
3383  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3384  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3385  * use this helper, to document places where we make this assertion.
3386  */
3387 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3388 {
3389 #ifdef DEBUG
3390 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3391 #endif
3392 }
3393 
3394 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3395 
3396 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3397 
3398 u32 skb_get_poff(const struct sk_buff *skb);
3399 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3400 		   const struct flow_keys *keys, int hlen);
3401 
3402 /**
3403  * skb_head_is_locked - Determine if the skb->head is locked down
3404  * @skb: skb to check
3405  *
3406  * The head on skbs build around a head frag can be removed if they are
3407  * not cloned.  This function returns true if the skb head is locked down
3408  * due to either being allocated via kmalloc, or by being a clone with
3409  * multiple references to the head.
3410  */
3411 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3412 {
3413 	return !skb->head_frag || skb_cloned(skb);
3414 }
3415 
3416 /**
3417  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3418  *
3419  * @skb: GSO skb
3420  *
3421  * skb_gso_network_seglen is used to determine the real size of the
3422  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3423  *
3424  * The MAC/L2 header is not accounted for.
3425  */
3426 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3427 {
3428 	unsigned int hdr_len = skb_transport_header(skb) -
3429 			       skb_network_header(skb);
3430 	return hdr_len + skb_gso_transport_seglen(skb);
3431 }
3432 #endif	/* __KERNEL__ */
3433 #endif	/* _LINUX_SKBUFF_H */
3434