xref: /linux-6.15/include/linux/skbuff.h (revision 6ee64cc3)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 
46 /* The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * A. IP checksum related features
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * The checksum related features are:
57  *
58  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
59  *			  IP (one's complement) checksum for any combination
60  *			  of protocols or protocol layering. The checksum is
61  *			  computed and set in a packet per the CHECKSUM_PARTIAL
62  *			  interface (see below).
63  *
64  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65  *			  TCP or UDP packets over IPv4. These are specifically
66  *			  unencapsulated packets of the form IPv4|TCP or
67  *			  IPv4|UDP where the Protocol field in the IPv4 header
68  *			  is TCP or UDP. The IPv4 header may contain IP options.
69  *			  This feature cannot be set in features for a device
70  *			  with NETIF_F_HW_CSUM also set. This feature is being
71  *			  DEPRECATED (see below).
72  *
73  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74  *			  TCP or UDP packets over IPv6. These are specifically
75  *			  unencapsulated packets of the form IPv6|TCP or
76  *			  IPv6|UDP where the Next Header field in the IPv6
77  *			  header is either TCP or UDP. IPv6 extension headers
78  *			  are not supported with this feature. This feature
79  *			  cannot be set in features for a device with
80  *			  NETIF_F_HW_CSUM also set. This feature is being
81  *			  DEPRECATED (see below).
82  *
83  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84  *			 This flag is only used to disable the RX checksum
85  *			 feature for a device. The stack will accept receive
86  *			 checksum indication in packets received on a device
87  *			 regardless of whether NETIF_F_RXCSUM is set.
88  *
89  * B. Checksumming of received packets by device. Indication of checksum
90  *    verification is set in skb->ip_summed. Possible values are:
91  *
92  * CHECKSUM_NONE:
93  *
94  *   Device did not checksum this packet e.g. due to lack of capabilities.
95  *   The packet contains full (though not verified) checksum in packet but
96  *   not in skb->csum. Thus, skb->csum is undefined in this case.
97  *
98  * CHECKSUM_UNNECESSARY:
99  *
100  *   The hardware you're dealing with doesn't calculate the full checksum
101  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103  *   if their checksums are okay. skb->csum is still undefined in this case
104  *   though. A driver or device must never modify the checksum field in the
105  *   packet even if checksum is verified.
106  *
107  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
108  *     TCP: IPv6 and IPv4.
109  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
111  *       may perform further validation in this case.
112  *     GRE: only if the checksum is present in the header.
113  *     SCTP: indicates the CRC in SCTP header has been validated.
114  *     FCOE: indicates the CRC in FC frame has been validated.
115  *
116  *   skb->csum_level indicates the number of consecutive checksums found in
117  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119  *   and a device is able to verify the checksums for UDP (possibly zero),
120  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121  *   two. If the device were only able to verify the UDP checksum and not
122  *   GRE, either because it doesn't support GRE checksum or because GRE
123  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124  *   not considered in this case).
125  *
126  * CHECKSUM_COMPLETE:
127  *
128  *   This is the most generic way. The device supplied checksum of the _whole_
129  *   packet as seen by netif_rx() and fills in skb->csum. This means the
130  *   hardware doesn't need to parse L3/L4 headers to implement this.
131  *
132  *   Notes:
133  *   - Even if device supports only some protocols, but is able to produce
134  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136  *
137  * CHECKSUM_PARTIAL:
138  *
139  *   A checksum is set up to be offloaded to a device as described in the
140  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
141  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
142  *   on the same host, or it may be set in the input path in GRO or remote
143  *   checksum offload. For the purposes of checksum verification, the checksum
144  *   referred to by skb->csum_start + skb->csum_offset and any preceding
145  *   checksums in the packet are considered verified. Any checksums in the
146  *   packet that are after the checksum being offloaded are not considered to
147  *   be verified.
148  *
149  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150  *    in the skb->ip_summed for a packet. Values are:
151  *
152  * CHECKSUM_PARTIAL:
153  *
154  *   The driver is required to checksum the packet as seen by hard_start_xmit()
155  *   from skb->csum_start up to the end, and to record/write the checksum at
156  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
157  *   csum_start and csum_offset values are valid values given the length and
158  *   offset of the packet, but it should not attempt to validate that the
159  *   checksum refers to a legitimate transport layer checksum -- it is the
160  *   purview of the stack to validate that csum_start and csum_offset are set
161  *   correctly.
162  *
163  *   When the stack requests checksum offload for a packet, the driver MUST
164  *   ensure that the checksum is set correctly. A driver can either offload the
165  *   checksum calculation to the device, or call skb_checksum_help (in the case
166  *   that the device does not support offload for a particular checksum).
167  *
168  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170  *   checksum offload capability.
171  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172  *   on network device checksumming capabilities: if a packet does not match
173  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
174  *   csum_not_inet, see item D.) is called to resolve the checksum.
175  *
176  * CHECKSUM_NONE:
177  *
178  *   The skb was already checksummed by the protocol, or a checksum is not
179  *   required.
180  *
181  * CHECKSUM_UNNECESSARY:
182  *
183  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
184  *   output.
185  *
186  * CHECKSUM_COMPLETE:
187  *   Not used in checksum output. If a driver observes a packet with this value
188  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189  *
190  * D. Non-IP checksum (CRC) offloads
191  *
192  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193  *     offloading the SCTP CRC in a packet. To perform this offload the stack
194  *     will set csum_start and csum_offset accordingly, set ip_summed to
195  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
198  *     must verify which offload is configured for a packet by testing the
199  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201  *
202  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203  *     offloading the FCOE CRC in a packet. To perform this offload the stack
204  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205  *     accordingly. Note that there is no indication in the skbuff that the
206  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207  *     both IP checksum offload and FCOE CRC offload must verify which offload
208  *     is configured for a packet, presumably by inspecting packet headers.
209  *
210  * E. Checksumming on output with GSO.
211  *
212  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215  * part of the GSO operation is implied. If a checksum is being offloaded
216  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217  * csum_offset are set to refer to the outermost checksum being offloaded
218  * (two offloaded checksums are possible with UDP encapsulation).
219  */
220 
221 /* Don't change this without changing skb_csum_unnecessary! */
222 #define CHECKSUM_NONE		0
223 #define CHECKSUM_UNNECESSARY	1
224 #define CHECKSUM_COMPLETE	2
225 #define CHECKSUM_PARTIAL	3
226 
227 /* Maximum value in skb->csum_level */
228 #define SKB_MAX_CSUM_LEVEL	3
229 
230 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
231 #define SKB_WITH_OVERHEAD(X)	\
232 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 #define SKB_MAX_ORDER(X, ORDER) \
234 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
236 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
237 
238 /* return minimum truesize of one skb containing X bytes of data */
239 #define SKB_TRUESIZE(X) ((X) +						\
240 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
241 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242 
243 struct ahash_request;
244 struct net_device;
245 struct scatterlist;
246 struct pipe_inode_info;
247 struct iov_iter;
248 struct napi_struct;
249 struct bpf_prog;
250 union bpf_attr;
251 struct skb_ext;
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	enum {
256 		BRNF_PROTO_UNCHANGED,
257 		BRNF_PROTO_8021Q,
258 		BRNF_PROTO_PPPOE
259 	} orig_proto:8;
260 	u8			pkt_otherhost:1;
261 	u8			in_prerouting:1;
262 	u8			bridged_dnat:1;
263 	__u16			frag_max_size;
264 	struct net_device	*physindev;
265 
266 	/* always valid & non-NULL from FORWARD on, for physdev match */
267 	struct net_device	*physoutdev;
268 	union {
269 		/* prerouting: detect dnat in orig/reply direction */
270 		__be32          ipv4_daddr;
271 		struct in6_addr ipv6_daddr;
272 
273 		/* after prerouting + nat detected: store original source
274 		 * mac since neigh resolution overwrites it, only used while
275 		 * skb is out in neigh layer.
276 		 */
277 		char neigh_header[8];
278 	};
279 };
280 #endif
281 
282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
283 /* Chain in tc_skb_ext will be used to share the tc chain with
284  * ovs recirc_id. It will be set to the current chain by tc
285  * and read by ovs to recirc_id.
286  */
287 struct tc_skb_ext {
288 	__u32 chain;
289 	__u16 mru;
290 	__u16 zone;
291 	u8 post_ct:1;
292 	u8 post_ct_snat:1;
293 	u8 post_ct_dnat:1;
294 };
295 #endif
296 
297 struct sk_buff_head {
298 	/* These two members must be first to match sk_buff. */
299 	struct_group_tagged(sk_buff_list, list,
300 		struct sk_buff	*next;
301 		struct sk_buff	*prev;
302 	);
303 
304 	__u32		qlen;
305 	spinlock_t	lock;
306 };
307 
308 struct sk_buff;
309 
310 /* The reason of skb drop, which is used in kfree_skb_reason().
311  * en...maybe they should be splited by group?
312  *
313  * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
314  * used to translate the reason to string.
315  */
316 enum skb_drop_reason {
317 	SKB_DROP_REASON_NOT_SPECIFIED,	/* drop reason is not specified */
318 	SKB_DROP_REASON_NO_SOCKET,	/* socket not found */
319 	SKB_DROP_REASON_PKT_TOO_SMALL,	/* packet size is too small */
320 	SKB_DROP_REASON_TCP_CSUM,	/* TCP checksum error */
321 	SKB_DROP_REASON_SOCKET_FILTER,	/* dropped by socket filter */
322 	SKB_DROP_REASON_UDP_CSUM,	/* UDP checksum error */
323 	SKB_DROP_REASON_NETFILTER_DROP,	/* dropped by netfilter */
324 	SKB_DROP_REASON_OTHERHOST,	/* packet don't belong to current
325 					 * host (interface is in promisc
326 					 * mode)
327 					 */
328 	SKB_DROP_REASON_IP_CSUM,	/* IP checksum error */
329 	SKB_DROP_REASON_IP_INHDR,	/* there is something wrong with
330 					 * IP header (see
331 					 * IPSTATS_MIB_INHDRERRORS)
332 					 */
333 	SKB_DROP_REASON_IP_RPFILTER,	/* IP rpfilter validate failed.
334 					 * see the document for rp_filter
335 					 * in ip-sysctl.rst for more
336 					 * information
337 					 */
338 	SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
339 						  * is multicast, but L3 is
340 						  * unicast.
341 						  */
342 	SKB_DROP_REASON_XFRM_POLICY,	/* xfrm policy check failed */
343 	SKB_DROP_REASON_IP_NOPROTO,	/* no support for IP protocol */
344 	SKB_DROP_REASON_SOCKET_RCVBUFF,	/* socket receive buff is full */
345 	SKB_DROP_REASON_PROTO_MEM,	/* proto memory limition, such as
346 					 * udp packet drop out of
347 					 * udp_memory_allocated.
348 					 */
349 	SKB_DROP_REASON_TCP_MD5NOTFOUND,	/* no MD5 hash and one
350 						 * expected, corresponding
351 						 * to LINUX_MIB_TCPMD5NOTFOUND
352 						 */
353 	SKB_DROP_REASON_TCP_MD5UNEXPECTED,	/* MD5 hash and we're not
354 						 * expecting one, corresponding
355 						 * to LINUX_MIB_TCPMD5UNEXPECTED
356 						 */
357 	SKB_DROP_REASON_TCP_MD5FAILURE,	/* MD5 hash and its wrong,
358 					 * corresponding to
359 					 * LINUX_MIB_TCPMD5FAILURE
360 					 */
361 	SKB_DROP_REASON_SOCKET_BACKLOG,	/* failed to add skb to socket
362 					 * backlog (see
363 					 * LINUX_MIB_TCPBACKLOGDROP)
364 					 */
365 	SKB_DROP_REASON_TCP_FLAGS,	/* TCP flags invalid */
366 	SKB_DROP_REASON_TCP_ZEROWINDOW,	/* TCP receive window size is zero,
367 					 * see LINUX_MIB_TCPZEROWINDOWDROP
368 					 */
369 	SKB_DROP_REASON_TCP_OLD_DATA,	/* the TCP data reveived is already
370 					 * received before (spurious retrans
371 					 * may happened), see
372 					 * LINUX_MIB_DELAYEDACKLOST
373 					 */
374 	SKB_DROP_REASON_TCP_OVERWINDOW,	/* the TCP data is out of window,
375 					 * the seq of the first byte exceed
376 					 * the right edges of receive
377 					 * window
378 					 */
379 	SKB_DROP_REASON_TCP_OFOMERGE,	/* the data of skb is already in
380 					 * the ofo queue, corresponding to
381 					 * LINUX_MIB_TCPOFOMERGE
382 					 */
383 	SKB_DROP_REASON_IP_OUTNOROUTES,	/* route lookup failed */
384 	SKB_DROP_REASON_BPF_CGROUP_EGRESS,	/* dropped by
385 						 * BPF_PROG_TYPE_CGROUP_SKB
386 						 * eBPF program
387 						 */
388 	SKB_DROP_REASON_IPV6DISABLED,	/* IPv6 is disabled on the device */
389 	SKB_DROP_REASON_NEIGH_CREATEFAIL,	/* failed to create neigh
390 						 * entry
391 						 */
392 	SKB_DROP_REASON_NEIGH_FAILED,	/* neigh entry in failed state */
393 	SKB_DROP_REASON_NEIGH_QUEUEFULL,	/* arp_queue for neigh
394 						 * entry is full
395 						 */
396 	SKB_DROP_REASON_NEIGH_DEAD,	/* neigh entry is dead */
397 	SKB_DROP_REASON_TC_EGRESS,	/* dropped in TC egress HOOK */
398 	SKB_DROP_REASON_QDISC_DROP,	/* dropped by qdisc when packet
399 					 * outputting (failed to enqueue to
400 					 * current qdisc)
401 					 */
402 	SKB_DROP_REASON_CPU_BACKLOG,	/* failed to enqueue the skb to
403 					 * the per CPU backlog queue. This
404 					 * can be caused by backlog queue
405 					 * full (see netdev_max_backlog in
406 					 * net.rst) or RPS flow limit
407 					 */
408 	SKB_DROP_REASON_XDP,		/* dropped by XDP in input path */
409 	SKB_DROP_REASON_TC_INGRESS,	/* dropped in TC ingress HOOK */
410 	SKB_DROP_REASON_PTYPE_ABSENT,	/* not packet_type found to handle
411 					 * the skb. For an etner packet,
412 					 * this means that L3 protocol is
413 					 * not supported
414 					 */
415 	SKB_DROP_REASON_MAX,
416 };
417 
418 /* To allow 64K frame to be packed as single skb without frag_list we
419  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
420  * buffers which do not start on a page boundary.
421  *
422  * Since GRO uses frags we allocate at least 16 regardless of page
423  * size.
424  */
425 #if (65536/PAGE_SIZE + 1) < 16
426 #define MAX_SKB_FRAGS 16UL
427 #else
428 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
429 #endif
430 extern int sysctl_max_skb_frags;
431 
432 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
433  * segment using its current segmentation instead.
434  */
435 #define GSO_BY_FRAGS	0xFFFF
436 
437 typedef struct bio_vec skb_frag_t;
438 
439 /**
440  * skb_frag_size() - Returns the size of a skb fragment
441  * @frag: skb fragment
442  */
443 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
444 {
445 	return frag->bv_len;
446 }
447 
448 /**
449  * skb_frag_size_set() - Sets the size of a skb fragment
450  * @frag: skb fragment
451  * @size: size of fragment
452  */
453 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
454 {
455 	frag->bv_len = size;
456 }
457 
458 /**
459  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
460  * @frag: skb fragment
461  * @delta: value to add
462  */
463 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
464 {
465 	frag->bv_len += delta;
466 }
467 
468 /**
469  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
470  * @frag: skb fragment
471  * @delta: value to subtract
472  */
473 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
474 {
475 	frag->bv_len -= delta;
476 }
477 
478 /**
479  * skb_frag_must_loop - Test if %p is a high memory page
480  * @p: fragment's page
481  */
482 static inline bool skb_frag_must_loop(struct page *p)
483 {
484 #if defined(CONFIG_HIGHMEM)
485 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
486 		return true;
487 #endif
488 	return false;
489 }
490 
491 /**
492  *	skb_frag_foreach_page - loop over pages in a fragment
493  *
494  *	@f:		skb frag to operate on
495  *	@f_off:		offset from start of f->bv_page
496  *	@f_len:		length from f_off to loop over
497  *	@p:		(temp var) current page
498  *	@p_off:		(temp var) offset from start of current page,
499  *	                           non-zero only on first page.
500  *	@p_len:		(temp var) length in current page,
501  *				   < PAGE_SIZE only on first and last page.
502  *	@copied:	(temp var) length so far, excluding current p_len.
503  *
504  *	A fragment can hold a compound page, in which case per-page
505  *	operations, notably kmap_atomic, must be called for each
506  *	regular page.
507  */
508 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
509 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
510 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
511 	     p_len = skb_frag_must_loop(p) ?				\
512 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
513 	     copied = 0;						\
514 	     copied < f_len;						\
515 	     copied += p_len, p++, p_off = 0,				\
516 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
517 
518 #define HAVE_HW_TIME_STAMP
519 
520 /**
521  * struct skb_shared_hwtstamps - hardware time stamps
522  * @hwtstamp:	hardware time stamp transformed into duration
523  *		since arbitrary point in time
524  *
525  * Software time stamps generated by ktime_get_real() are stored in
526  * skb->tstamp.
527  *
528  * hwtstamps can only be compared against other hwtstamps from
529  * the same device.
530  *
531  * This structure is attached to packets as part of the
532  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
533  */
534 struct skb_shared_hwtstamps {
535 	ktime_t	hwtstamp;
536 };
537 
538 /* Definitions for tx_flags in struct skb_shared_info */
539 enum {
540 	/* generate hardware time stamp */
541 	SKBTX_HW_TSTAMP = 1 << 0,
542 
543 	/* generate software time stamp when queueing packet to NIC */
544 	SKBTX_SW_TSTAMP = 1 << 1,
545 
546 	/* device driver is going to provide hardware time stamp */
547 	SKBTX_IN_PROGRESS = 1 << 2,
548 
549 	/* generate wifi status information (where possible) */
550 	SKBTX_WIFI_STATUS = 1 << 4,
551 
552 	/* generate software time stamp when entering packet scheduling */
553 	SKBTX_SCHED_TSTAMP = 1 << 6,
554 };
555 
556 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
557 				 SKBTX_SCHED_TSTAMP)
558 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
559 
560 /* Definitions for flags in struct skb_shared_info */
561 enum {
562 	/* use zcopy routines */
563 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
564 
565 	/* This indicates at least one fragment might be overwritten
566 	 * (as in vmsplice(), sendfile() ...)
567 	 * If we need to compute a TX checksum, we'll need to copy
568 	 * all frags to avoid possible bad checksum
569 	 */
570 	SKBFL_SHARED_FRAG = BIT(1),
571 
572 	/* segment contains only zerocopy data and should not be
573 	 * charged to the kernel memory.
574 	 */
575 	SKBFL_PURE_ZEROCOPY = BIT(2),
576 };
577 
578 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
579 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
580 
581 /*
582  * The callback notifies userspace to release buffers when skb DMA is done in
583  * lower device, the skb last reference should be 0 when calling this.
584  * The zerocopy_success argument is true if zero copy transmit occurred,
585  * false on data copy or out of memory error caused by data copy attempt.
586  * The ctx field is used to track device context.
587  * The desc field is used to track userspace buffer index.
588  */
589 struct ubuf_info {
590 	void (*callback)(struct sk_buff *, struct ubuf_info *,
591 			 bool zerocopy_success);
592 	union {
593 		struct {
594 			unsigned long desc;
595 			void *ctx;
596 		};
597 		struct {
598 			u32 id;
599 			u16 len;
600 			u16 zerocopy:1;
601 			u32 bytelen;
602 		};
603 	};
604 	refcount_t refcnt;
605 	u8 flags;
606 
607 	struct mmpin {
608 		struct user_struct *user;
609 		unsigned int num_pg;
610 	} mmp;
611 };
612 
613 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
614 
615 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
616 void mm_unaccount_pinned_pages(struct mmpin *mmp);
617 
618 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
619 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
620 				       struct ubuf_info *uarg);
621 
622 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
623 
624 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
625 			   bool success);
626 
627 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
628 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
629 			     struct msghdr *msg, int len,
630 			     struct ubuf_info *uarg);
631 
632 /* This data is invariant across clones and lives at
633  * the end of the header data, ie. at skb->end.
634  */
635 struct skb_shared_info {
636 	__u8		flags;
637 	__u8		meta_len;
638 	__u8		nr_frags;
639 	__u8		tx_flags;
640 	unsigned short	gso_size;
641 	/* Warning: this field is not always filled in (UFO)! */
642 	unsigned short	gso_segs;
643 	struct sk_buff	*frag_list;
644 	struct skb_shared_hwtstamps hwtstamps;
645 	unsigned int	gso_type;
646 	u32		tskey;
647 
648 	/*
649 	 * Warning : all fields before dataref are cleared in __alloc_skb()
650 	 */
651 	atomic_t	dataref;
652 	unsigned int	xdp_frags_size;
653 
654 	/* Intermediate layers must ensure that destructor_arg
655 	 * remains valid until skb destructor */
656 	void *		destructor_arg;
657 
658 	/* must be last field, see pskb_expand_head() */
659 	skb_frag_t	frags[MAX_SKB_FRAGS];
660 };
661 
662 /* We divide dataref into two halves.  The higher 16 bits hold references
663  * to the payload part of skb->data.  The lower 16 bits hold references to
664  * the entire skb->data.  A clone of a headerless skb holds the length of
665  * the header in skb->hdr_len.
666  *
667  * All users must obey the rule that the skb->data reference count must be
668  * greater than or equal to the payload reference count.
669  *
670  * Holding a reference to the payload part means that the user does not
671  * care about modifications to the header part of skb->data.
672  */
673 #define SKB_DATAREF_SHIFT 16
674 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
675 
676 
677 enum {
678 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
679 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
680 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
681 };
682 
683 enum {
684 	SKB_GSO_TCPV4 = 1 << 0,
685 
686 	/* This indicates the skb is from an untrusted source. */
687 	SKB_GSO_DODGY = 1 << 1,
688 
689 	/* This indicates the tcp segment has CWR set. */
690 	SKB_GSO_TCP_ECN = 1 << 2,
691 
692 	SKB_GSO_TCP_FIXEDID = 1 << 3,
693 
694 	SKB_GSO_TCPV6 = 1 << 4,
695 
696 	SKB_GSO_FCOE = 1 << 5,
697 
698 	SKB_GSO_GRE = 1 << 6,
699 
700 	SKB_GSO_GRE_CSUM = 1 << 7,
701 
702 	SKB_GSO_IPXIP4 = 1 << 8,
703 
704 	SKB_GSO_IPXIP6 = 1 << 9,
705 
706 	SKB_GSO_UDP_TUNNEL = 1 << 10,
707 
708 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
709 
710 	SKB_GSO_PARTIAL = 1 << 12,
711 
712 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
713 
714 	SKB_GSO_SCTP = 1 << 14,
715 
716 	SKB_GSO_ESP = 1 << 15,
717 
718 	SKB_GSO_UDP = 1 << 16,
719 
720 	SKB_GSO_UDP_L4 = 1 << 17,
721 
722 	SKB_GSO_FRAGLIST = 1 << 18,
723 };
724 
725 #if BITS_PER_LONG > 32
726 #define NET_SKBUFF_DATA_USES_OFFSET 1
727 #endif
728 
729 #ifdef NET_SKBUFF_DATA_USES_OFFSET
730 typedef unsigned int sk_buff_data_t;
731 #else
732 typedef unsigned char *sk_buff_data_t;
733 #endif
734 
735 /**
736  *	struct sk_buff - socket buffer
737  *	@next: Next buffer in list
738  *	@prev: Previous buffer in list
739  *	@tstamp: Time we arrived/left
740  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
741  *		for retransmit timer
742  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
743  *	@list: queue head
744  *	@ll_node: anchor in an llist (eg socket defer_list)
745  *	@sk: Socket we are owned by
746  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
747  *		fragmentation management
748  *	@dev: Device we arrived on/are leaving by
749  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
750  *	@cb: Control buffer. Free for use by every layer. Put private vars here
751  *	@_skb_refdst: destination entry (with norefcount bit)
752  *	@sp: the security path, used for xfrm
753  *	@len: Length of actual data
754  *	@data_len: Data length
755  *	@mac_len: Length of link layer header
756  *	@hdr_len: writable header length of cloned skb
757  *	@csum: Checksum (must include start/offset pair)
758  *	@csum_start: Offset from skb->head where checksumming should start
759  *	@csum_offset: Offset from csum_start where checksum should be stored
760  *	@priority: Packet queueing priority
761  *	@ignore_df: allow local fragmentation
762  *	@cloned: Head may be cloned (check refcnt to be sure)
763  *	@ip_summed: Driver fed us an IP checksum
764  *	@nohdr: Payload reference only, must not modify header
765  *	@pkt_type: Packet class
766  *	@fclone: skbuff clone status
767  *	@ipvs_property: skbuff is owned by ipvs
768  *	@inner_protocol_type: whether the inner protocol is
769  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
770  *	@remcsum_offload: remote checksum offload is enabled
771  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
772  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
773  *	@tc_skip_classify: do not classify packet. set by IFB device
774  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
775  *	@redirected: packet was redirected by packet classifier
776  *	@from_ingress: packet was redirected from the ingress path
777  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
778  *	@peeked: this packet has been seen already, so stats have been
779  *		done for it, don't do them again
780  *	@nf_trace: netfilter packet trace flag
781  *	@protocol: Packet protocol from driver
782  *	@destructor: Destruct function
783  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
784  *	@_sk_redir: socket redirection information for skmsg
785  *	@_nfct: Associated connection, if any (with nfctinfo bits)
786  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
787  *	@skb_iif: ifindex of device we arrived on
788  *	@tc_index: Traffic control index
789  *	@hash: the packet hash
790  *	@queue_mapping: Queue mapping for multiqueue devices
791  *	@head_frag: skb was allocated from page fragments,
792  *		not allocated by kmalloc() or vmalloc().
793  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
794  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
795  *		page_pool support on driver)
796  *	@active_extensions: active extensions (skb_ext_id types)
797  *	@ndisc_nodetype: router type (from link layer)
798  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
799  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
800  *		ports.
801  *	@sw_hash: indicates hash was computed in software stack
802  *	@wifi_acked_valid: wifi_acked was set
803  *	@wifi_acked: whether frame was acked on wifi or not
804  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
805  *	@encapsulation: indicates the inner headers in the skbuff are valid
806  *	@encap_hdr_csum: software checksum is needed
807  *	@csum_valid: checksum is already valid
808  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
809  *	@csum_complete_sw: checksum was completed by software
810  *	@csum_level: indicates the number of consecutive checksums found in
811  *		the packet minus one that have been verified as
812  *		CHECKSUM_UNNECESSARY (max 3)
813  *	@dst_pending_confirm: need to confirm neighbour
814  *	@decrypted: Decrypted SKB
815  *	@slow_gro: state present at GRO time, slower prepare step required
816  *	@mono_delivery_time: When set, skb->tstamp has the
817  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
818  *		skb->tstamp has the (rcv) timestamp at ingress and
819  *		delivery_time at egress.
820  *	@napi_id: id of the NAPI struct this skb came from
821  *	@sender_cpu: (aka @napi_id) source CPU in XPS
822  *	@secmark: security marking
823  *	@mark: Generic packet mark
824  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
825  *		at the tail of an sk_buff
826  *	@vlan_present: VLAN tag is present
827  *	@vlan_proto: vlan encapsulation protocol
828  *	@vlan_tci: vlan tag control information
829  *	@inner_protocol: Protocol (encapsulation)
830  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
831  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
832  *	@inner_transport_header: Inner transport layer header (encapsulation)
833  *	@inner_network_header: Network layer header (encapsulation)
834  *	@inner_mac_header: Link layer header (encapsulation)
835  *	@transport_header: Transport layer header
836  *	@network_header: Network layer header
837  *	@mac_header: Link layer header
838  *	@kcov_handle: KCOV remote handle for remote coverage collection
839  *	@tail: Tail pointer
840  *	@end: End pointer
841  *	@head: Head of buffer
842  *	@data: Data head pointer
843  *	@truesize: Buffer size
844  *	@users: User count - see {datagram,tcp}.c
845  *	@extensions: allocated extensions, valid if active_extensions is nonzero
846  */
847 
848 struct sk_buff {
849 	union {
850 		struct {
851 			/* These two members must be first to match sk_buff_head. */
852 			struct sk_buff		*next;
853 			struct sk_buff		*prev;
854 
855 			union {
856 				struct net_device	*dev;
857 				/* Some protocols might use this space to store information,
858 				 * while device pointer would be NULL.
859 				 * UDP receive path is one user.
860 				 */
861 				unsigned long		dev_scratch;
862 			};
863 		};
864 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
865 		struct list_head	list;
866 		struct llist_node	ll_node;
867 	};
868 
869 	union {
870 		struct sock		*sk;
871 		int			ip_defrag_offset;
872 	};
873 
874 	union {
875 		ktime_t		tstamp;
876 		u64		skb_mstamp_ns; /* earliest departure time */
877 	};
878 	/*
879 	 * This is the control buffer. It is free to use for every
880 	 * layer. Please put your private variables there. If you
881 	 * want to keep them across layers you have to do a skb_clone()
882 	 * first. This is owned by whoever has the skb queued ATM.
883 	 */
884 	char			cb[48] __aligned(8);
885 
886 	union {
887 		struct {
888 			unsigned long	_skb_refdst;
889 			void		(*destructor)(struct sk_buff *skb);
890 		};
891 		struct list_head	tcp_tsorted_anchor;
892 #ifdef CONFIG_NET_SOCK_MSG
893 		unsigned long		_sk_redir;
894 #endif
895 	};
896 
897 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
898 	unsigned long		 _nfct;
899 #endif
900 	unsigned int		len,
901 				data_len;
902 	__u16			mac_len,
903 				hdr_len;
904 
905 	/* Following fields are _not_ copied in __copy_skb_header()
906 	 * Note that queue_mapping is here mostly to fill a hole.
907 	 */
908 	__u16			queue_mapping;
909 
910 /* if you move cloned around you also must adapt those constants */
911 #ifdef __BIG_ENDIAN_BITFIELD
912 #define CLONED_MASK	(1 << 7)
913 #else
914 #define CLONED_MASK	1
915 #endif
916 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
917 
918 	/* private: */
919 	__u8			__cloned_offset[0];
920 	/* public: */
921 	__u8			cloned:1,
922 				nohdr:1,
923 				fclone:2,
924 				peeked:1,
925 				head_frag:1,
926 				pfmemalloc:1,
927 				pp_recycle:1; /* page_pool recycle indicator */
928 #ifdef CONFIG_SKB_EXTENSIONS
929 	__u8			active_extensions;
930 #endif
931 
932 	/* Fields enclosed in headers group are copied
933 	 * using a single memcpy() in __copy_skb_header()
934 	 */
935 	struct_group(headers,
936 
937 	/* private: */
938 	__u8			__pkt_type_offset[0];
939 	/* public: */
940 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
941 	__u8			ignore_df:1;
942 	__u8			nf_trace:1;
943 	__u8			ip_summed:2;
944 	__u8			ooo_okay:1;
945 
946 	__u8			l4_hash:1;
947 	__u8			sw_hash:1;
948 	__u8			wifi_acked_valid:1;
949 	__u8			wifi_acked:1;
950 	__u8			no_fcs:1;
951 	/* Indicates the inner headers are valid in the skbuff. */
952 	__u8			encapsulation:1;
953 	__u8			encap_hdr_csum:1;
954 	__u8			csum_valid:1;
955 
956 	/* private: */
957 	__u8			__pkt_vlan_present_offset[0];
958 	/* public: */
959 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
960 	__u8			csum_complete_sw:1;
961 	__u8			csum_level:2;
962 	__u8			dst_pending_confirm:1;
963 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
964 #ifdef CONFIG_NET_CLS_ACT
965 	__u8			tc_skip_classify:1;
966 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
967 #endif
968 #ifdef CONFIG_IPV6_NDISC_NODETYPE
969 	__u8			ndisc_nodetype:2;
970 #endif
971 
972 	__u8			ipvs_property:1;
973 	__u8			inner_protocol_type:1;
974 	__u8			remcsum_offload:1;
975 #ifdef CONFIG_NET_SWITCHDEV
976 	__u8			offload_fwd_mark:1;
977 	__u8			offload_l3_fwd_mark:1;
978 #endif
979 	__u8			redirected:1;
980 #ifdef CONFIG_NET_REDIRECT
981 	__u8			from_ingress:1;
982 #endif
983 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
984 	__u8			nf_skip_egress:1;
985 #endif
986 #ifdef CONFIG_TLS_DEVICE
987 	__u8			decrypted:1;
988 #endif
989 	__u8			slow_gro:1;
990 	__u8			csum_not_inet:1;
991 
992 #ifdef CONFIG_NET_SCHED
993 	__u16			tc_index;	/* traffic control index */
994 #endif
995 
996 	union {
997 		__wsum		csum;
998 		struct {
999 			__u16	csum_start;
1000 			__u16	csum_offset;
1001 		};
1002 	};
1003 	__u32			priority;
1004 	int			skb_iif;
1005 	__u32			hash;
1006 	__be16			vlan_proto;
1007 	__u16			vlan_tci;
1008 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1009 	union {
1010 		unsigned int	napi_id;
1011 		unsigned int	sender_cpu;
1012 	};
1013 #endif
1014 #ifdef CONFIG_NETWORK_SECMARK
1015 	__u32		secmark;
1016 #endif
1017 
1018 	union {
1019 		__u32		mark;
1020 		__u32		reserved_tailroom;
1021 	};
1022 
1023 	union {
1024 		__be16		inner_protocol;
1025 		__u8		inner_ipproto;
1026 	};
1027 
1028 	__u16			inner_transport_header;
1029 	__u16			inner_network_header;
1030 	__u16			inner_mac_header;
1031 
1032 	__be16			protocol;
1033 	__u16			transport_header;
1034 	__u16			network_header;
1035 	__u16			mac_header;
1036 
1037 #ifdef CONFIG_KCOV
1038 	u64			kcov_handle;
1039 #endif
1040 
1041 	); /* end headers group */
1042 
1043 	/* These elements must be at the end, see alloc_skb() for details.  */
1044 	sk_buff_data_t		tail;
1045 	sk_buff_data_t		end;
1046 	unsigned char		*head,
1047 				*data;
1048 	unsigned int		truesize;
1049 	refcount_t		users;
1050 
1051 #ifdef CONFIG_SKB_EXTENSIONS
1052 	/* only useable after checking ->active_extensions != 0 */
1053 	struct skb_ext		*extensions;
1054 #endif
1055 };
1056 
1057 /* if you move pkt_type around you also must adapt those constants */
1058 #ifdef __BIG_ENDIAN_BITFIELD
1059 #define PKT_TYPE_MAX	(7 << 5)
1060 #else
1061 #define PKT_TYPE_MAX	7
1062 #endif
1063 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1064 
1065 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1066  * around, you also must adapt these constants.
1067  */
1068 #ifdef __BIG_ENDIAN_BITFIELD
1069 #define PKT_VLAN_PRESENT_BIT	7
1070 #define TC_AT_INGRESS_MASK		(1 << 0)
1071 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1072 #else
1073 #define PKT_VLAN_PRESENT_BIT	0
1074 #define TC_AT_INGRESS_MASK		(1 << 7)
1075 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1076 #endif
1077 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1078 
1079 #ifdef __KERNEL__
1080 /*
1081  *	Handling routines are only of interest to the kernel
1082  */
1083 
1084 #define SKB_ALLOC_FCLONE	0x01
1085 #define SKB_ALLOC_RX		0x02
1086 #define SKB_ALLOC_NAPI		0x04
1087 
1088 /**
1089  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1090  * @skb: buffer
1091  */
1092 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1093 {
1094 	return unlikely(skb->pfmemalloc);
1095 }
1096 
1097 /*
1098  * skb might have a dst pointer attached, refcounted or not.
1099  * _skb_refdst low order bit is set if refcount was _not_ taken
1100  */
1101 #define SKB_DST_NOREF	1UL
1102 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1103 
1104 /**
1105  * skb_dst - returns skb dst_entry
1106  * @skb: buffer
1107  *
1108  * Returns skb dst_entry, regardless of reference taken or not.
1109  */
1110 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1111 {
1112 	/* If refdst was not refcounted, check we still are in a
1113 	 * rcu_read_lock section
1114 	 */
1115 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1116 		!rcu_read_lock_held() &&
1117 		!rcu_read_lock_bh_held());
1118 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1119 }
1120 
1121 /**
1122  * skb_dst_set - sets skb dst
1123  * @skb: buffer
1124  * @dst: dst entry
1125  *
1126  * Sets skb dst, assuming a reference was taken on dst and should
1127  * be released by skb_dst_drop()
1128  */
1129 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1130 {
1131 	skb->slow_gro |= !!dst;
1132 	skb->_skb_refdst = (unsigned long)dst;
1133 }
1134 
1135 /**
1136  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1137  * @skb: buffer
1138  * @dst: dst entry
1139  *
1140  * Sets skb dst, assuming a reference was not taken on dst.
1141  * If dst entry is cached, we do not take reference and dst_release
1142  * will be avoided by refdst_drop. If dst entry is not cached, we take
1143  * reference, so that last dst_release can destroy the dst immediately.
1144  */
1145 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1146 {
1147 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1148 	skb->slow_gro |= !!dst;
1149 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1150 }
1151 
1152 /**
1153  * skb_dst_is_noref - Test if skb dst isn't refcounted
1154  * @skb: buffer
1155  */
1156 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1157 {
1158 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1159 }
1160 
1161 /**
1162  * skb_rtable - Returns the skb &rtable
1163  * @skb: buffer
1164  */
1165 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1166 {
1167 	return (struct rtable *)skb_dst(skb);
1168 }
1169 
1170 /* For mangling skb->pkt_type from user space side from applications
1171  * such as nft, tc, etc, we only allow a conservative subset of
1172  * possible pkt_types to be set.
1173 */
1174 static inline bool skb_pkt_type_ok(u32 ptype)
1175 {
1176 	return ptype <= PACKET_OTHERHOST;
1177 }
1178 
1179 /**
1180  * skb_napi_id - Returns the skb's NAPI id
1181  * @skb: buffer
1182  */
1183 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1184 {
1185 #ifdef CONFIG_NET_RX_BUSY_POLL
1186 	return skb->napi_id;
1187 #else
1188 	return 0;
1189 #endif
1190 }
1191 
1192 /**
1193  * skb_unref - decrement the skb's reference count
1194  * @skb: buffer
1195  *
1196  * Returns true if we can free the skb.
1197  */
1198 static inline bool skb_unref(struct sk_buff *skb)
1199 {
1200 	if (unlikely(!skb))
1201 		return false;
1202 	if (likely(refcount_read(&skb->users) == 1))
1203 		smp_rmb();
1204 	else if (likely(!refcount_dec_and_test(&skb->users)))
1205 		return false;
1206 
1207 	return true;
1208 }
1209 
1210 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1211 
1212 /**
1213  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1214  *	@skb: buffer to free
1215  */
1216 static inline void kfree_skb(struct sk_buff *skb)
1217 {
1218 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1219 }
1220 
1221 void skb_release_head_state(struct sk_buff *skb);
1222 void kfree_skb_list_reason(struct sk_buff *segs,
1223 			   enum skb_drop_reason reason);
1224 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1225 void skb_tx_error(struct sk_buff *skb);
1226 
1227 static inline void kfree_skb_list(struct sk_buff *segs)
1228 {
1229 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1230 }
1231 
1232 #ifdef CONFIG_TRACEPOINTS
1233 void consume_skb(struct sk_buff *skb);
1234 #else
1235 static inline void consume_skb(struct sk_buff *skb)
1236 {
1237 	return kfree_skb(skb);
1238 }
1239 #endif
1240 
1241 void __consume_stateless_skb(struct sk_buff *skb);
1242 void  __kfree_skb(struct sk_buff *skb);
1243 extern struct kmem_cache *skbuff_head_cache;
1244 
1245 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1246 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1247 		      bool *fragstolen, int *delta_truesize);
1248 
1249 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1250 			    int node);
1251 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1252 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1253 struct sk_buff *build_skb_around(struct sk_buff *skb,
1254 				 void *data, unsigned int frag_size);
1255 
1256 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1257 
1258 /**
1259  * alloc_skb - allocate a network buffer
1260  * @size: size to allocate
1261  * @priority: allocation mask
1262  *
1263  * This function is a convenient wrapper around __alloc_skb().
1264  */
1265 static inline struct sk_buff *alloc_skb(unsigned int size,
1266 					gfp_t priority)
1267 {
1268 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1269 }
1270 
1271 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1272 				     unsigned long data_len,
1273 				     int max_page_order,
1274 				     int *errcode,
1275 				     gfp_t gfp_mask);
1276 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1277 
1278 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1279 struct sk_buff_fclones {
1280 	struct sk_buff	skb1;
1281 
1282 	struct sk_buff	skb2;
1283 
1284 	refcount_t	fclone_ref;
1285 };
1286 
1287 /**
1288  *	skb_fclone_busy - check if fclone is busy
1289  *	@sk: socket
1290  *	@skb: buffer
1291  *
1292  * Returns true if skb is a fast clone, and its clone is not freed.
1293  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1294  * so we also check that this didnt happen.
1295  */
1296 static inline bool skb_fclone_busy(const struct sock *sk,
1297 				   const struct sk_buff *skb)
1298 {
1299 	const struct sk_buff_fclones *fclones;
1300 
1301 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1302 
1303 	return skb->fclone == SKB_FCLONE_ORIG &&
1304 	       refcount_read(&fclones->fclone_ref) > 1 &&
1305 	       READ_ONCE(fclones->skb2.sk) == sk;
1306 }
1307 
1308 /**
1309  * alloc_skb_fclone - allocate a network buffer from fclone cache
1310  * @size: size to allocate
1311  * @priority: allocation mask
1312  *
1313  * This function is a convenient wrapper around __alloc_skb().
1314  */
1315 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1316 					       gfp_t priority)
1317 {
1318 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1319 }
1320 
1321 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1322 void skb_headers_offset_update(struct sk_buff *skb, int off);
1323 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1324 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1325 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1326 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1327 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1328 				   gfp_t gfp_mask, bool fclone);
1329 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1330 					  gfp_t gfp_mask)
1331 {
1332 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1333 }
1334 
1335 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1336 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1337 				     unsigned int headroom);
1338 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1339 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1340 				int newtailroom, gfp_t priority);
1341 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1342 				     int offset, int len);
1343 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1344 			      int offset, int len);
1345 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1346 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1347 
1348 /**
1349  *	skb_pad			-	zero pad the tail of an skb
1350  *	@skb: buffer to pad
1351  *	@pad: space to pad
1352  *
1353  *	Ensure that a buffer is followed by a padding area that is zero
1354  *	filled. Used by network drivers which may DMA or transfer data
1355  *	beyond the buffer end onto the wire.
1356  *
1357  *	May return error in out of memory cases. The skb is freed on error.
1358  */
1359 static inline int skb_pad(struct sk_buff *skb, int pad)
1360 {
1361 	return __skb_pad(skb, pad, true);
1362 }
1363 #define dev_kfree_skb(a)	consume_skb(a)
1364 
1365 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1366 			 int offset, size_t size);
1367 
1368 struct skb_seq_state {
1369 	__u32		lower_offset;
1370 	__u32		upper_offset;
1371 	__u32		frag_idx;
1372 	__u32		stepped_offset;
1373 	struct sk_buff	*root_skb;
1374 	struct sk_buff	*cur_skb;
1375 	__u8		*frag_data;
1376 	__u32		frag_off;
1377 };
1378 
1379 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1380 			  unsigned int to, struct skb_seq_state *st);
1381 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1382 			  struct skb_seq_state *st);
1383 void skb_abort_seq_read(struct skb_seq_state *st);
1384 
1385 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1386 			   unsigned int to, struct ts_config *config);
1387 
1388 /*
1389  * Packet hash types specify the type of hash in skb_set_hash.
1390  *
1391  * Hash types refer to the protocol layer addresses which are used to
1392  * construct a packet's hash. The hashes are used to differentiate or identify
1393  * flows of the protocol layer for the hash type. Hash types are either
1394  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1395  *
1396  * Properties of hashes:
1397  *
1398  * 1) Two packets in different flows have different hash values
1399  * 2) Two packets in the same flow should have the same hash value
1400  *
1401  * A hash at a higher layer is considered to be more specific. A driver should
1402  * set the most specific hash possible.
1403  *
1404  * A driver cannot indicate a more specific hash than the layer at which a hash
1405  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1406  *
1407  * A driver may indicate a hash level which is less specific than the
1408  * actual layer the hash was computed on. For instance, a hash computed
1409  * at L4 may be considered an L3 hash. This should only be done if the
1410  * driver can't unambiguously determine that the HW computed the hash at
1411  * the higher layer. Note that the "should" in the second property above
1412  * permits this.
1413  */
1414 enum pkt_hash_types {
1415 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1416 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1417 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1418 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1419 };
1420 
1421 static inline void skb_clear_hash(struct sk_buff *skb)
1422 {
1423 	skb->hash = 0;
1424 	skb->sw_hash = 0;
1425 	skb->l4_hash = 0;
1426 }
1427 
1428 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1429 {
1430 	if (!skb->l4_hash)
1431 		skb_clear_hash(skb);
1432 }
1433 
1434 static inline void
1435 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1436 {
1437 	skb->l4_hash = is_l4;
1438 	skb->sw_hash = is_sw;
1439 	skb->hash = hash;
1440 }
1441 
1442 static inline void
1443 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1444 {
1445 	/* Used by drivers to set hash from HW */
1446 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1447 }
1448 
1449 static inline void
1450 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1451 {
1452 	__skb_set_hash(skb, hash, true, is_l4);
1453 }
1454 
1455 void __skb_get_hash(struct sk_buff *skb);
1456 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1457 u32 skb_get_poff(const struct sk_buff *skb);
1458 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1459 		   const struct flow_keys_basic *keys, int hlen);
1460 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1461 			    const void *data, int hlen_proto);
1462 
1463 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1464 					int thoff, u8 ip_proto)
1465 {
1466 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1467 }
1468 
1469 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1470 			     const struct flow_dissector_key *key,
1471 			     unsigned int key_count);
1472 
1473 struct bpf_flow_dissector;
1474 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1475 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1476 
1477 bool __skb_flow_dissect(const struct net *net,
1478 			const struct sk_buff *skb,
1479 			struct flow_dissector *flow_dissector,
1480 			void *target_container, const void *data,
1481 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1482 
1483 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1484 				    struct flow_dissector *flow_dissector,
1485 				    void *target_container, unsigned int flags)
1486 {
1487 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1488 				  target_container, NULL, 0, 0, 0, flags);
1489 }
1490 
1491 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1492 					      struct flow_keys *flow,
1493 					      unsigned int flags)
1494 {
1495 	memset(flow, 0, sizeof(*flow));
1496 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1497 				  flow, NULL, 0, 0, 0, flags);
1498 }
1499 
1500 static inline bool
1501 skb_flow_dissect_flow_keys_basic(const struct net *net,
1502 				 const struct sk_buff *skb,
1503 				 struct flow_keys_basic *flow,
1504 				 const void *data, __be16 proto,
1505 				 int nhoff, int hlen, unsigned int flags)
1506 {
1507 	memset(flow, 0, sizeof(*flow));
1508 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1509 				  data, proto, nhoff, hlen, flags);
1510 }
1511 
1512 void skb_flow_dissect_meta(const struct sk_buff *skb,
1513 			   struct flow_dissector *flow_dissector,
1514 			   void *target_container);
1515 
1516 /* Gets a skb connection tracking info, ctinfo map should be a
1517  * map of mapsize to translate enum ip_conntrack_info states
1518  * to user states.
1519  */
1520 void
1521 skb_flow_dissect_ct(const struct sk_buff *skb,
1522 		    struct flow_dissector *flow_dissector,
1523 		    void *target_container,
1524 		    u16 *ctinfo_map, size_t mapsize,
1525 		    bool post_ct, u16 zone);
1526 void
1527 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1528 			     struct flow_dissector *flow_dissector,
1529 			     void *target_container);
1530 
1531 void skb_flow_dissect_hash(const struct sk_buff *skb,
1532 			   struct flow_dissector *flow_dissector,
1533 			   void *target_container);
1534 
1535 static inline __u32 skb_get_hash(struct sk_buff *skb)
1536 {
1537 	if (!skb->l4_hash && !skb->sw_hash)
1538 		__skb_get_hash(skb);
1539 
1540 	return skb->hash;
1541 }
1542 
1543 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1544 {
1545 	if (!skb->l4_hash && !skb->sw_hash) {
1546 		struct flow_keys keys;
1547 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1548 
1549 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1550 	}
1551 
1552 	return skb->hash;
1553 }
1554 
1555 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1556 			   const siphash_key_t *perturb);
1557 
1558 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1559 {
1560 	return skb->hash;
1561 }
1562 
1563 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1564 {
1565 	to->hash = from->hash;
1566 	to->sw_hash = from->sw_hash;
1567 	to->l4_hash = from->l4_hash;
1568 };
1569 
1570 static inline void skb_copy_decrypted(struct sk_buff *to,
1571 				      const struct sk_buff *from)
1572 {
1573 #ifdef CONFIG_TLS_DEVICE
1574 	to->decrypted = from->decrypted;
1575 #endif
1576 }
1577 
1578 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1579 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1580 {
1581 	return skb->head + skb->end;
1582 }
1583 
1584 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1585 {
1586 	return skb->end;
1587 }
1588 
1589 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1590 {
1591 	skb->end = offset;
1592 }
1593 #else
1594 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1595 {
1596 	return skb->end;
1597 }
1598 
1599 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1600 {
1601 	return skb->end - skb->head;
1602 }
1603 
1604 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1605 {
1606 	skb->end = skb->head + offset;
1607 }
1608 #endif
1609 
1610 /* Internal */
1611 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1612 
1613 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1614 {
1615 	return &skb_shinfo(skb)->hwtstamps;
1616 }
1617 
1618 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1619 {
1620 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1621 
1622 	return is_zcopy ? skb_uarg(skb) : NULL;
1623 }
1624 
1625 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1626 {
1627 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1628 }
1629 
1630 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1631 				       const struct sk_buff *skb2)
1632 {
1633 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1634 }
1635 
1636 static inline void net_zcopy_get(struct ubuf_info *uarg)
1637 {
1638 	refcount_inc(&uarg->refcnt);
1639 }
1640 
1641 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1642 {
1643 	skb_shinfo(skb)->destructor_arg = uarg;
1644 	skb_shinfo(skb)->flags |= uarg->flags;
1645 }
1646 
1647 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1648 				 bool *have_ref)
1649 {
1650 	if (skb && uarg && !skb_zcopy(skb)) {
1651 		if (unlikely(have_ref && *have_ref))
1652 			*have_ref = false;
1653 		else
1654 			net_zcopy_get(uarg);
1655 		skb_zcopy_init(skb, uarg);
1656 	}
1657 }
1658 
1659 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1660 {
1661 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1662 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1663 }
1664 
1665 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1666 {
1667 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1668 }
1669 
1670 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1671 {
1672 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1673 }
1674 
1675 static inline void net_zcopy_put(struct ubuf_info *uarg)
1676 {
1677 	if (uarg)
1678 		uarg->callback(NULL, uarg, true);
1679 }
1680 
1681 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1682 {
1683 	if (uarg) {
1684 		if (uarg->callback == msg_zerocopy_callback)
1685 			msg_zerocopy_put_abort(uarg, have_uref);
1686 		else if (have_uref)
1687 			net_zcopy_put(uarg);
1688 	}
1689 }
1690 
1691 /* Release a reference on a zerocopy structure */
1692 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1693 {
1694 	struct ubuf_info *uarg = skb_zcopy(skb);
1695 
1696 	if (uarg) {
1697 		if (!skb_zcopy_is_nouarg(skb))
1698 			uarg->callback(skb, uarg, zerocopy_success);
1699 
1700 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1701 	}
1702 }
1703 
1704 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1705 {
1706 	skb->next = NULL;
1707 }
1708 
1709 /* Iterate through singly-linked GSO fragments of an skb. */
1710 #define skb_list_walk_safe(first, skb, next_skb)                               \
1711 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1712 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1713 
1714 static inline void skb_list_del_init(struct sk_buff *skb)
1715 {
1716 	__list_del_entry(&skb->list);
1717 	skb_mark_not_on_list(skb);
1718 }
1719 
1720 /**
1721  *	skb_queue_empty - check if a queue is empty
1722  *	@list: queue head
1723  *
1724  *	Returns true if the queue is empty, false otherwise.
1725  */
1726 static inline int skb_queue_empty(const struct sk_buff_head *list)
1727 {
1728 	return list->next == (const struct sk_buff *) list;
1729 }
1730 
1731 /**
1732  *	skb_queue_empty_lockless - check if a queue is empty
1733  *	@list: queue head
1734  *
1735  *	Returns true if the queue is empty, false otherwise.
1736  *	This variant can be used in lockless contexts.
1737  */
1738 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1739 {
1740 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1741 }
1742 
1743 
1744 /**
1745  *	skb_queue_is_last - check if skb is the last entry in the queue
1746  *	@list: queue head
1747  *	@skb: buffer
1748  *
1749  *	Returns true if @skb is the last buffer on the list.
1750  */
1751 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1752 				     const struct sk_buff *skb)
1753 {
1754 	return skb->next == (const struct sk_buff *) list;
1755 }
1756 
1757 /**
1758  *	skb_queue_is_first - check if skb is the first entry in the queue
1759  *	@list: queue head
1760  *	@skb: buffer
1761  *
1762  *	Returns true if @skb is the first buffer on the list.
1763  */
1764 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1765 				      const struct sk_buff *skb)
1766 {
1767 	return skb->prev == (const struct sk_buff *) list;
1768 }
1769 
1770 /**
1771  *	skb_queue_next - return the next packet in the queue
1772  *	@list: queue head
1773  *	@skb: current buffer
1774  *
1775  *	Return the next packet in @list after @skb.  It is only valid to
1776  *	call this if skb_queue_is_last() evaluates to false.
1777  */
1778 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1779 					     const struct sk_buff *skb)
1780 {
1781 	/* This BUG_ON may seem severe, but if we just return then we
1782 	 * are going to dereference garbage.
1783 	 */
1784 	BUG_ON(skb_queue_is_last(list, skb));
1785 	return skb->next;
1786 }
1787 
1788 /**
1789  *	skb_queue_prev - return the prev packet in the queue
1790  *	@list: queue head
1791  *	@skb: current buffer
1792  *
1793  *	Return the prev packet in @list before @skb.  It is only valid to
1794  *	call this if skb_queue_is_first() evaluates to false.
1795  */
1796 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1797 					     const struct sk_buff *skb)
1798 {
1799 	/* This BUG_ON may seem severe, but if we just return then we
1800 	 * are going to dereference garbage.
1801 	 */
1802 	BUG_ON(skb_queue_is_first(list, skb));
1803 	return skb->prev;
1804 }
1805 
1806 /**
1807  *	skb_get - reference buffer
1808  *	@skb: buffer to reference
1809  *
1810  *	Makes another reference to a socket buffer and returns a pointer
1811  *	to the buffer.
1812  */
1813 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1814 {
1815 	refcount_inc(&skb->users);
1816 	return skb;
1817 }
1818 
1819 /*
1820  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1821  */
1822 
1823 /**
1824  *	skb_cloned - is the buffer a clone
1825  *	@skb: buffer to check
1826  *
1827  *	Returns true if the buffer was generated with skb_clone() and is
1828  *	one of multiple shared copies of the buffer. Cloned buffers are
1829  *	shared data so must not be written to under normal circumstances.
1830  */
1831 static inline int skb_cloned(const struct sk_buff *skb)
1832 {
1833 	return skb->cloned &&
1834 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1835 }
1836 
1837 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1838 {
1839 	might_sleep_if(gfpflags_allow_blocking(pri));
1840 
1841 	if (skb_cloned(skb))
1842 		return pskb_expand_head(skb, 0, 0, pri);
1843 
1844 	return 0;
1845 }
1846 
1847 /* This variant of skb_unclone() makes sure skb->truesize
1848  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1849  *
1850  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1851  * when various debugging features are in place.
1852  */
1853 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1854 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1855 {
1856 	might_sleep_if(gfpflags_allow_blocking(pri));
1857 
1858 	if (skb_cloned(skb))
1859 		return __skb_unclone_keeptruesize(skb, pri);
1860 	return 0;
1861 }
1862 
1863 /**
1864  *	skb_header_cloned - is the header a clone
1865  *	@skb: buffer to check
1866  *
1867  *	Returns true if modifying the header part of the buffer requires
1868  *	the data to be copied.
1869  */
1870 static inline int skb_header_cloned(const struct sk_buff *skb)
1871 {
1872 	int dataref;
1873 
1874 	if (!skb->cloned)
1875 		return 0;
1876 
1877 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1878 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1879 	return dataref != 1;
1880 }
1881 
1882 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1883 {
1884 	might_sleep_if(gfpflags_allow_blocking(pri));
1885 
1886 	if (skb_header_cloned(skb))
1887 		return pskb_expand_head(skb, 0, 0, pri);
1888 
1889 	return 0;
1890 }
1891 
1892 /**
1893  *	__skb_header_release - release reference to header
1894  *	@skb: buffer to operate on
1895  */
1896 static inline void __skb_header_release(struct sk_buff *skb)
1897 {
1898 	skb->nohdr = 1;
1899 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1900 }
1901 
1902 
1903 /**
1904  *	skb_shared - is the buffer shared
1905  *	@skb: buffer to check
1906  *
1907  *	Returns true if more than one person has a reference to this
1908  *	buffer.
1909  */
1910 static inline int skb_shared(const struct sk_buff *skb)
1911 {
1912 	return refcount_read(&skb->users) != 1;
1913 }
1914 
1915 /**
1916  *	skb_share_check - check if buffer is shared and if so clone it
1917  *	@skb: buffer to check
1918  *	@pri: priority for memory allocation
1919  *
1920  *	If the buffer is shared the buffer is cloned and the old copy
1921  *	drops a reference. A new clone with a single reference is returned.
1922  *	If the buffer is not shared the original buffer is returned. When
1923  *	being called from interrupt status or with spinlocks held pri must
1924  *	be GFP_ATOMIC.
1925  *
1926  *	NULL is returned on a memory allocation failure.
1927  */
1928 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1929 {
1930 	might_sleep_if(gfpflags_allow_blocking(pri));
1931 	if (skb_shared(skb)) {
1932 		struct sk_buff *nskb = skb_clone(skb, pri);
1933 
1934 		if (likely(nskb))
1935 			consume_skb(skb);
1936 		else
1937 			kfree_skb(skb);
1938 		skb = nskb;
1939 	}
1940 	return skb;
1941 }
1942 
1943 /*
1944  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1945  *	packets to handle cases where we have a local reader and forward
1946  *	and a couple of other messy ones. The normal one is tcpdumping
1947  *	a packet thats being forwarded.
1948  */
1949 
1950 /**
1951  *	skb_unshare - make a copy of a shared buffer
1952  *	@skb: buffer to check
1953  *	@pri: priority for memory allocation
1954  *
1955  *	If the socket buffer is a clone then this function creates a new
1956  *	copy of the data, drops a reference count on the old copy and returns
1957  *	the new copy with the reference count at 1. If the buffer is not a clone
1958  *	the original buffer is returned. When called with a spinlock held or
1959  *	from interrupt state @pri must be %GFP_ATOMIC
1960  *
1961  *	%NULL is returned on a memory allocation failure.
1962  */
1963 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1964 					  gfp_t pri)
1965 {
1966 	might_sleep_if(gfpflags_allow_blocking(pri));
1967 	if (skb_cloned(skb)) {
1968 		struct sk_buff *nskb = skb_copy(skb, pri);
1969 
1970 		/* Free our shared copy */
1971 		if (likely(nskb))
1972 			consume_skb(skb);
1973 		else
1974 			kfree_skb(skb);
1975 		skb = nskb;
1976 	}
1977 	return skb;
1978 }
1979 
1980 /**
1981  *	skb_peek - peek at the head of an &sk_buff_head
1982  *	@list_: list to peek at
1983  *
1984  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1985  *	be careful with this one. A peek leaves the buffer on the
1986  *	list and someone else may run off with it. You must hold
1987  *	the appropriate locks or have a private queue to do this.
1988  *
1989  *	Returns %NULL for an empty list or a pointer to the head element.
1990  *	The reference count is not incremented and the reference is therefore
1991  *	volatile. Use with caution.
1992  */
1993 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1994 {
1995 	struct sk_buff *skb = list_->next;
1996 
1997 	if (skb == (struct sk_buff *)list_)
1998 		skb = NULL;
1999 	return skb;
2000 }
2001 
2002 /**
2003  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2004  *	@list_: list to peek at
2005  *
2006  *	Like skb_peek(), but the caller knows that the list is not empty.
2007  */
2008 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2009 {
2010 	return list_->next;
2011 }
2012 
2013 /**
2014  *	skb_peek_next - peek skb following the given one from a queue
2015  *	@skb: skb to start from
2016  *	@list_: list to peek at
2017  *
2018  *	Returns %NULL when the end of the list is met or a pointer to the
2019  *	next element. The reference count is not incremented and the
2020  *	reference is therefore volatile. Use with caution.
2021  */
2022 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2023 		const struct sk_buff_head *list_)
2024 {
2025 	struct sk_buff *next = skb->next;
2026 
2027 	if (next == (struct sk_buff *)list_)
2028 		next = NULL;
2029 	return next;
2030 }
2031 
2032 /**
2033  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2034  *	@list_: list to peek at
2035  *
2036  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2037  *	be careful with this one. A peek leaves the buffer on the
2038  *	list and someone else may run off with it. You must hold
2039  *	the appropriate locks or have a private queue to do this.
2040  *
2041  *	Returns %NULL for an empty list or a pointer to the tail element.
2042  *	The reference count is not incremented and the reference is therefore
2043  *	volatile. Use with caution.
2044  */
2045 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2046 {
2047 	struct sk_buff *skb = READ_ONCE(list_->prev);
2048 
2049 	if (skb == (struct sk_buff *)list_)
2050 		skb = NULL;
2051 	return skb;
2052 
2053 }
2054 
2055 /**
2056  *	skb_queue_len	- get queue length
2057  *	@list_: list to measure
2058  *
2059  *	Return the length of an &sk_buff queue.
2060  */
2061 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2062 {
2063 	return list_->qlen;
2064 }
2065 
2066 /**
2067  *	skb_queue_len_lockless	- get queue length
2068  *	@list_: list to measure
2069  *
2070  *	Return the length of an &sk_buff queue.
2071  *	This variant can be used in lockless contexts.
2072  */
2073 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2074 {
2075 	return READ_ONCE(list_->qlen);
2076 }
2077 
2078 /**
2079  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2080  *	@list: queue to initialize
2081  *
2082  *	This initializes only the list and queue length aspects of
2083  *	an sk_buff_head object.  This allows to initialize the list
2084  *	aspects of an sk_buff_head without reinitializing things like
2085  *	the spinlock.  It can also be used for on-stack sk_buff_head
2086  *	objects where the spinlock is known to not be used.
2087  */
2088 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2089 {
2090 	list->prev = list->next = (struct sk_buff *)list;
2091 	list->qlen = 0;
2092 }
2093 
2094 /*
2095  * This function creates a split out lock class for each invocation;
2096  * this is needed for now since a whole lot of users of the skb-queue
2097  * infrastructure in drivers have different locking usage (in hardirq)
2098  * than the networking core (in softirq only). In the long run either the
2099  * network layer or drivers should need annotation to consolidate the
2100  * main types of usage into 3 classes.
2101  */
2102 static inline void skb_queue_head_init(struct sk_buff_head *list)
2103 {
2104 	spin_lock_init(&list->lock);
2105 	__skb_queue_head_init(list);
2106 }
2107 
2108 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2109 		struct lock_class_key *class)
2110 {
2111 	skb_queue_head_init(list);
2112 	lockdep_set_class(&list->lock, class);
2113 }
2114 
2115 /*
2116  *	Insert an sk_buff on a list.
2117  *
2118  *	The "__skb_xxxx()" functions are the non-atomic ones that
2119  *	can only be called with interrupts disabled.
2120  */
2121 static inline void __skb_insert(struct sk_buff *newsk,
2122 				struct sk_buff *prev, struct sk_buff *next,
2123 				struct sk_buff_head *list)
2124 {
2125 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2126 	 * for the opposite READ_ONCE()
2127 	 */
2128 	WRITE_ONCE(newsk->next, next);
2129 	WRITE_ONCE(newsk->prev, prev);
2130 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2131 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2132 	WRITE_ONCE(list->qlen, list->qlen + 1);
2133 }
2134 
2135 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2136 				      struct sk_buff *prev,
2137 				      struct sk_buff *next)
2138 {
2139 	struct sk_buff *first = list->next;
2140 	struct sk_buff *last = list->prev;
2141 
2142 	WRITE_ONCE(first->prev, prev);
2143 	WRITE_ONCE(prev->next, first);
2144 
2145 	WRITE_ONCE(last->next, next);
2146 	WRITE_ONCE(next->prev, last);
2147 }
2148 
2149 /**
2150  *	skb_queue_splice - join two skb lists, this is designed for stacks
2151  *	@list: the new list to add
2152  *	@head: the place to add it in the first list
2153  */
2154 static inline void skb_queue_splice(const struct sk_buff_head *list,
2155 				    struct sk_buff_head *head)
2156 {
2157 	if (!skb_queue_empty(list)) {
2158 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2159 		head->qlen += list->qlen;
2160 	}
2161 }
2162 
2163 /**
2164  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2165  *	@list: the new list to add
2166  *	@head: the place to add it in the first list
2167  *
2168  *	The list at @list is reinitialised
2169  */
2170 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2171 					 struct sk_buff_head *head)
2172 {
2173 	if (!skb_queue_empty(list)) {
2174 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2175 		head->qlen += list->qlen;
2176 		__skb_queue_head_init(list);
2177 	}
2178 }
2179 
2180 /**
2181  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2182  *	@list: the new list to add
2183  *	@head: the place to add it in the first list
2184  */
2185 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2186 					 struct sk_buff_head *head)
2187 {
2188 	if (!skb_queue_empty(list)) {
2189 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2190 		head->qlen += list->qlen;
2191 	}
2192 }
2193 
2194 /**
2195  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2196  *	@list: the new list to add
2197  *	@head: the place to add it in the first list
2198  *
2199  *	Each of the lists is a queue.
2200  *	The list at @list is reinitialised
2201  */
2202 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2203 					      struct sk_buff_head *head)
2204 {
2205 	if (!skb_queue_empty(list)) {
2206 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2207 		head->qlen += list->qlen;
2208 		__skb_queue_head_init(list);
2209 	}
2210 }
2211 
2212 /**
2213  *	__skb_queue_after - queue a buffer at the list head
2214  *	@list: list to use
2215  *	@prev: place after this buffer
2216  *	@newsk: buffer to queue
2217  *
2218  *	Queue a buffer int the middle of a list. This function takes no locks
2219  *	and you must therefore hold required locks before calling it.
2220  *
2221  *	A buffer cannot be placed on two lists at the same time.
2222  */
2223 static inline void __skb_queue_after(struct sk_buff_head *list,
2224 				     struct sk_buff *prev,
2225 				     struct sk_buff *newsk)
2226 {
2227 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2228 }
2229 
2230 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2231 		struct sk_buff_head *list);
2232 
2233 static inline void __skb_queue_before(struct sk_buff_head *list,
2234 				      struct sk_buff *next,
2235 				      struct sk_buff *newsk)
2236 {
2237 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2238 }
2239 
2240 /**
2241  *	__skb_queue_head - queue a buffer at the list head
2242  *	@list: list to use
2243  *	@newsk: buffer to queue
2244  *
2245  *	Queue a buffer at the start of a list. This function takes no locks
2246  *	and you must therefore hold required locks before calling it.
2247  *
2248  *	A buffer cannot be placed on two lists at the same time.
2249  */
2250 static inline void __skb_queue_head(struct sk_buff_head *list,
2251 				    struct sk_buff *newsk)
2252 {
2253 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2254 }
2255 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2256 
2257 /**
2258  *	__skb_queue_tail - queue a buffer at the list tail
2259  *	@list: list to use
2260  *	@newsk: buffer to queue
2261  *
2262  *	Queue a buffer at the end of a list. This function takes no locks
2263  *	and you must therefore hold required locks before calling it.
2264  *
2265  *	A buffer cannot be placed on two lists at the same time.
2266  */
2267 static inline void __skb_queue_tail(struct sk_buff_head *list,
2268 				   struct sk_buff *newsk)
2269 {
2270 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2271 }
2272 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2273 
2274 /*
2275  * remove sk_buff from list. _Must_ be called atomically, and with
2276  * the list known..
2277  */
2278 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2279 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2280 {
2281 	struct sk_buff *next, *prev;
2282 
2283 	WRITE_ONCE(list->qlen, list->qlen - 1);
2284 	next	   = skb->next;
2285 	prev	   = skb->prev;
2286 	skb->next  = skb->prev = NULL;
2287 	WRITE_ONCE(next->prev, prev);
2288 	WRITE_ONCE(prev->next, next);
2289 }
2290 
2291 /**
2292  *	__skb_dequeue - remove from the head of the queue
2293  *	@list: list to dequeue from
2294  *
2295  *	Remove the head of the list. This function does not take any locks
2296  *	so must be used with appropriate locks held only. The head item is
2297  *	returned or %NULL if the list is empty.
2298  */
2299 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2300 {
2301 	struct sk_buff *skb = skb_peek(list);
2302 	if (skb)
2303 		__skb_unlink(skb, list);
2304 	return skb;
2305 }
2306 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2307 
2308 /**
2309  *	__skb_dequeue_tail - remove from the tail of the queue
2310  *	@list: list to dequeue from
2311  *
2312  *	Remove the tail of the list. This function does not take any locks
2313  *	so must be used with appropriate locks held only. The tail item is
2314  *	returned or %NULL if the list is empty.
2315  */
2316 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2317 {
2318 	struct sk_buff *skb = skb_peek_tail(list);
2319 	if (skb)
2320 		__skb_unlink(skb, list);
2321 	return skb;
2322 }
2323 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2324 
2325 
2326 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2327 {
2328 	return skb->data_len;
2329 }
2330 
2331 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2332 {
2333 	return skb->len - skb->data_len;
2334 }
2335 
2336 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2337 {
2338 	unsigned int i, len = 0;
2339 
2340 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2341 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2342 	return len;
2343 }
2344 
2345 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2346 {
2347 	return skb_headlen(skb) + __skb_pagelen(skb);
2348 }
2349 
2350 /**
2351  * __skb_fill_page_desc - initialise a paged fragment in an skb
2352  * @skb: buffer containing fragment to be initialised
2353  * @i: paged fragment index to initialise
2354  * @page: the page to use for this fragment
2355  * @off: the offset to the data with @page
2356  * @size: the length of the data
2357  *
2358  * Initialises the @i'th fragment of @skb to point to &size bytes at
2359  * offset @off within @page.
2360  *
2361  * Does not take any additional reference on the fragment.
2362  */
2363 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2364 					struct page *page, int off, int size)
2365 {
2366 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2367 
2368 	/*
2369 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2370 	 * that not all callers have unique ownership of the page but rely
2371 	 * on page_is_pfmemalloc doing the right thing(tm).
2372 	 */
2373 	frag->bv_page		  = page;
2374 	frag->bv_offset		  = off;
2375 	skb_frag_size_set(frag, size);
2376 
2377 	page = compound_head(page);
2378 	if (page_is_pfmemalloc(page))
2379 		skb->pfmemalloc	= true;
2380 }
2381 
2382 /**
2383  * skb_fill_page_desc - initialise a paged fragment in an skb
2384  * @skb: buffer containing fragment to be initialised
2385  * @i: paged fragment index to initialise
2386  * @page: the page to use for this fragment
2387  * @off: the offset to the data with @page
2388  * @size: the length of the data
2389  *
2390  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2391  * @skb to point to @size bytes at offset @off within @page. In
2392  * addition updates @skb such that @i is the last fragment.
2393  *
2394  * Does not take any additional reference on the fragment.
2395  */
2396 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2397 				      struct page *page, int off, int size)
2398 {
2399 	__skb_fill_page_desc(skb, i, page, off, size);
2400 	skb_shinfo(skb)->nr_frags = i + 1;
2401 }
2402 
2403 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2404 		     int size, unsigned int truesize);
2405 
2406 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2407 			  unsigned int truesize);
2408 
2409 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2410 
2411 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2412 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2413 {
2414 	return skb->head + skb->tail;
2415 }
2416 
2417 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2418 {
2419 	skb->tail = skb->data - skb->head;
2420 }
2421 
2422 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2423 {
2424 	skb_reset_tail_pointer(skb);
2425 	skb->tail += offset;
2426 }
2427 
2428 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2429 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2430 {
2431 	return skb->tail;
2432 }
2433 
2434 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2435 {
2436 	skb->tail = skb->data;
2437 }
2438 
2439 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2440 {
2441 	skb->tail = skb->data + offset;
2442 }
2443 
2444 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2445 
2446 /*
2447  *	Add data to an sk_buff
2448  */
2449 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2450 void *skb_put(struct sk_buff *skb, unsigned int len);
2451 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2452 {
2453 	void *tmp = skb_tail_pointer(skb);
2454 	SKB_LINEAR_ASSERT(skb);
2455 	skb->tail += len;
2456 	skb->len  += len;
2457 	return tmp;
2458 }
2459 
2460 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2461 {
2462 	void *tmp = __skb_put(skb, len);
2463 
2464 	memset(tmp, 0, len);
2465 	return tmp;
2466 }
2467 
2468 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2469 				   unsigned int len)
2470 {
2471 	void *tmp = __skb_put(skb, len);
2472 
2473 	memcpy(tmp, data, len);
2474 	return tmp;
2475 }
2476 
2477 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2478 {
2479 	*(u8 *)__skb_put(skb, 1) = val;
2480 }
2481 
2482 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2483 {
2484 	void *tmp = skb_put(skb, len);
2485 
2486 	memset(tmp, 0, len);
2487 
2488 	return tmp;
2489 }
2490 
2491 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2492 				 unsigned int len)
2493 {
2494 	void *tmp = skb_put(skb, len);
2495 
2496 	memcpy(tmp, data, len);
2497 
2498 	return tmp;
2499 }
2500 
2501 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2502 {
2503 	*(u8 *)skb_put(skb, 1) = val;
2504 }
2505 
2506 void *skb_push(struct sk_buff *skb, unsigned int len);
2507 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2508 {
2509 	skb->data -= len;
2510 	skb->len  += len;
2511 	return skb->data;
2512 }
2513 
2514 void *skb_pull(struct sk_buff *skb, unsigned int len);
2515 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2516 {
2517 	skb->len -= len;
2518 	BUG_ON(skb->len < skb->data_len);
2519 	return skb->data += len;
2520 }
2521 
2522 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2523 {
2524 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2525 }
2526 
2527 void *skb_pull_data(struct sk_buff *skb, size_t len);
2528 
2529 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2530 
2531 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2532 {
2533 	if (len > skb_headlen(skb) &&
2534 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2535 		return NULL;
2536 	skb->len -= len;
2537 	return skb->data += len;
2538 }
2539 
2540 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2541 {
2542 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2543 }
2544 
2545 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2546 {
2547 	if (likely(len <= skb_headlen(skb)))
2548 		return true;
2549 	if (unlikely(len > skb->len))
2550 		return false;
2551 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2552 }
2553 
2554 void skb_condense(struct sk_buff *skb);
2555 
2556 /**
2557  *	skb_headroom - bytes at buffer head
2558  *	@skb: buffer to check
2559  *
2560  *	Return the number of bytes of free space at the head of an &sk_buff.
2561  */
2562 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2563 {
2564 	return skb->data - skb->head;
2565 }
2566 
2567 /**
2568  *	skb_tailroom - bytes at buffer end
2569  *	@skb: buffer to check
2570  *
2571  *	Return the number of bytes of free space at the tail of an sk_buff
2572  */
2573 static inline int skb_tailroom(const struct sk_buff *skb)
2574 {
2575 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2576 }
2577 
2578 /**
2579  *	skb_availroom - bytes at buffer end
2580  *	@skb: buffer to check
2581  *
2582  *	Return the number of bytes of free space at the tail of an sk_buff
2583  *	allocated by sk_stream_alloc()
2584  */
2585 static inline int skb_availroom(const struct sk_buff *skb)
2586 {
2587 	if (skb_is_nonlinear(skb))
2588 		return 0;
2589 
2590 	return skb->end - skb->tail - skb->reserved_tailroom;
2591 }
2592 
2593 /**
2594  *	skb_reserve - adjust headroom
2595  *	@skb: buffer to alter
2596  *	@len: bytes to move
2597  *
2598  *	Increase the headroom of an empty &sk_buff by reducing the tail
2599  *	room. This is only allowed for an empty buffer.
2600  */
2601 static inline void skb_reserve(struct sk_buff *skb, int len)
2602 {
2603 	skb->data += len;
2604 	skb->tail += len;
2605 }
2606 
2607 /**
2608  *	skb_tailroom_reserve - adjust reserved_tailroom
2609  *	@skb: buffer to alter
2610  *	@mtu: maximum amount of headlen permitted
2611  *	@needed_tailroom: minimum amount of reserved_tailroom
2612  *
2613  *	Set reserved_tailroom so that headlen can be as large as possible but
2614  *	not larger than mtu and tailroom cannot be smaller than
2615  *	needed_tailroom.
2616  *	The required headroom should already have been reserved before using
2617  *	this function.
2618  */
2619 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2620 					unsigned int needed_tailroom)
2621 {
2622 	SKB_LINEAR_ASSERT(skb);
2623 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2624 		/* use at most mtu */
2625 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2626 	else
2627 		/* use up to all available space */
2628 		skb->reserved_tailroom = needed_tailroom;
2629 }
2630 
2631 #define ENCAP_TYPE_ETHER	0
2632 #define ENCAP_TYPE_IPPROTO	1
2633 
2634 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2635 					  __be16 protocol)
2636 {
2637 	skb->inner_protocol = protocol;
2638 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2639 }
2640 
2641 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2642 					 __u8 ipproto)
2643 {
2644 	skb->inner_ipproto = ipproto;
2645 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2646 }
2647 
2648 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2649 {
2650 	skb->inner_mac_header = skb->mac_header;
2651 	skb->inner_network_header = skb->network_header;
2652 	skb->inner_transport_header = skb->transport_header;
2653 }
2654 
2655 static inline void skb_reset_mac_len(struct sk_buff *skb)
2656 {
2657 	skb->mac_len = skb->network_header - skb->mac_header;
2658 }
2659 
2660 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2661 							*skb)
2662 {
2663 	return skb->head + skb->inner_transport_header;
2664 }
2665 
2666 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2667 {
2668 	return skb_inner_transport_header(skb) - skb->data;
2669 }
2670 
2671 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2672 {
2673 	skb->inner_transport_header = skb->data - skb->head;
2674 }
2675 
2676 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2677 						   const int offset)
2678 {
2679 	skb_reset_inner_transport_header(skb);
2680 	skb->inner_transport_header += offset;
2681 }
2682 
2683 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2684 {
2685 	return skb->head + skb->inner_network_header;
2686 }
2687 
2688 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2689 {
2690 	skb->inner_network_header = skb->data - skb->head;
2691 }
2692 
2693 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2694 						const int offset)
2695 {
2696 	skb_reset_inner_network_header(skb);
2697 	skb->inner_network_header += offset;
2698 }
2699 
2700 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2701 {
2702 	return skb->head + skb->inner_mac_header;
2703 }
2704 
2705 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2706 {
2707 	skb->inner_mac_header = skb->data - skb->head;
2708 }
2709 
2710 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2711 					    const int offset)
2712 {
2713 	skb_reset_inner_mac_header(skb);
2714 	skb->inner_mac_header += offset;
2715 }
2716 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2717 {
2718 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2719 }
2720 
2721 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2722 {
2723 	return skb->head + skb->transport_header;
2724 }
2725 
2726 static inline void skb_reset_transport_header(struct sk_buff *skb)
2727 {
2728 	skb->transport_header = skb->data - skb->head;
2729 }
2730 
2731 static inline void skb_set_transport_header(struct sk_buff *skb,
2732 					    const int offset)
2733 {
2734 	skb_reset_transport_header(skb);
2735 	skb->transport_header += offset;
2736 }
2737 
2738 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2739 {
2740 	return skb->head + skb->network_header;
2741 }
2742 
2743 static inline void skb_reset_network_header(struct sk_buff *skb)
2744 {
2745 	skb->network_header = skb->data - skb->head;
2746 }
2747 
2748 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2749 {
2750 	skb_reset_network_header(skb);
2751 	skb->network_header += offset;
2752 }
2753 
2754 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2755 {
2756 	return skb->head + skb->mac_header;
2757 }
2758 
2759 static inline int skb_mac_offset(const struct sk_buff *skb)
2760 {
2761 	return skb_mac_header(skb) - skb->data;
2762 }
2763 
2764 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2765 {
2766 	return skb->network_header - skb->mac_header;
2767 }
2768 
2769 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2770 {
2771 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2772 }
2773 
2774 static inline void skb_unset_mac_header(struct sk_buff *skb)
2775 {
2776 	skb->mac_header = (typeof(skb->mac_header))~0U;
2777 }
2778 
2779 static inline void skb_reset_mac_header(struct sk_buff *skb)
2780 {
2781 	skb->mac_header = skb->data - skb->head;
2782 }
2783 
2784 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2785 {
2786 	skb_reset_mac_header(skb);
2787 	skb->mac_header += offset;
2788 }
2789 
2790 static inline void skb_pop_mac_header(struct sk_buff *skb)
2791 {
2792 	skb->mac_header = skb->network_header;
2793 }
2794 
2795 static inline void skb_probe_transport_header(struct sk_buff *skb)
2796 {
2797 	struct flow_keys_basic keys;
2798 
2799 	if (skb_transport_header_was_set(skb))
2800 		return;
2801 
2802 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2803 					     NULL, 0, 0, 0, 0))
2804 		skb_set_transport_header(skb, keys.control.thoff);
2805 }
2806 
2807 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2808 {
2809 	if (skb_mac_header_was_set(skb)) {
2810 		const unsigned char *old_mac = skb_mac_header(skb);
2811 
2812 		skb_set_mac_header(skb, -skb->mac_len);
2813 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2814 	}
2815 }
2816 
2817 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2818 {
2819 	return skb->csum_start - skb_headroom(skb);
2820 }
2821 
2822 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2823 {
2824 	return skb->head + skb->csum_start;
2825 }
2826 
2827 static inline int skb_transport_offset(const struct sk_buff *skb)
2828 {
2829 	return skb_transport_header(skb) - skb->data;
2830 }
2831 
2832 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2833 {
2834 	return skb->transport_header - skb->network_header;
2835 }
2836 
2837 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2838 {
2839 	return skb->inner_transport_header - skb->inner_network_header;
2840 }
2841 
2842 static inline int skb_network_offset(const struct sk_buff *skb)
2843 {
2844 	return skb_network_header(skb) - skb->data;
2845 }
2846 
2847 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2848 {
2849 	return skb_inner_network_header(skb) - skb->data;
2850 }
2851 
2852 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2853 {
2854 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2855 }
2856 
2857 /*
2858  * CPUs often take a performance hit when accessing unaligned memory
2859  * locations. The actual performance hit varies, it can be small if the
2860  * hardware handles it or large if we have to take an exception and fix it
2861  * in software.
2862  *
2863  * Since an ethernet header is 14 bytes network drivers often end up with
2864  * the IP header at an unaligned offset. The IP header can be aligned by
2865  * shifting the start of the packet by 2 bytes. Drivers should do this
2866  * with:
2867  *
2868  * skb_reserve(skb, NET_IP_ALIGN);
2869  *
2870  * The downside to this alignment of the IP header is that the DMA is now
2871  * unaligned. On some architectures the cost of an unaligned DMA is high
2872  * and this cost outweighs the gains made by aligning the IP header.
2873  *
2874  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2875  * to be overridden.
2876  */
2877 #ifndef NET_IP_ALIGN
2878 #define NET_IP_ALIGN	2
2879 #endif
2880 
2881 /*
2882  * The networking layer reserves some headroom in skb data (via
2883  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2884  * the header has to grow. In the default case, if the header has to grow
2885  * 32 bytes or less we avoid the reallocation.
2886  *
2887  * Unfortunately this headroom changes the DMA alignment of the resulting
2888  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2889  * on some architectures. An architecture can override this value,
2890  * perhaps setting it to a cacheline in size (since that will maintain
2891  * cacheline alignment of the DMA). It must be a power of 2.
2892  *
2893  * Various parts of the networking layer expect at least 32 bytes of
2894  * headroom, you should not reduce this.
2895  *
2896  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2897  * to reduce average number of cache lines per packet.
2898  * get_rps_cpu() for example only access one 64 bytes aligned block :
2899  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2900  */
2901 #ifndef NET_SKB_PAD
2902 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2903 #endif
2904 
2905 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2906 
2907 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2908 {
2909 	if (WARN_ON(skb_is_nonlinear(skb)))
2910 		return;
2911 	skb->len = len;
2912 	skb_set_tail_pointer(skb, len);
2913 }
2914 
2915 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2916 {
2917 	__skb_set_length(skb, len);
2918 }
2919 
2920 void skb_trim(struct sk_buff *skb, unsigned int len);
2921 
2922 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2923 {
2924 	if (skb->data_len)
2925 		return ___pskb_trim(skb, len);
2926 	__skb_trim(skb, len);
2927 	return 0;
2928 }
2929 
2930 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2931 {
2932 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2933 }
2934 
2935 /**
2936  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2937  *	@skb: buffer to alter
2938  *	@len: new length
2939  *
2940  *	This is identical to pskb_trim except that the caller knows that
2941  *	the skb is not cloned so we should never get an error due to out-
2942  *	of-memory.
2943  */
2944 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2945 {
2946 	int err = pskb_trim(skb, len);
2947 	BUG_ON(err);
2948 }
2949 
2950 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2951 {
2952 	unsigned int diff = len - skb->len;
2953 
2954 	if (skb_tailroom(skb) < diff) {
2955 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2956 					   GFP_ATOMIC);
2957 		if (ret)
2958 			return ret;
2959 	}
2960 	__skb_set_length(skb, len);
2961 	return 0;
2962 }
2963 
2964 /**
2965  *	skb_orphan - orphan a buffer
2966  *	@skb: buffer to orphan
2967  *
2968  *	If a buffer currently has an owner then we call the owner's
2969  *	destructor function and make the @skb unowned. The buffer continues
2970  *	to exist but is no longer charged to its former owner.
2971  */
2972 static inline void skb_orphan(struct sk_buff *skb)
2973 {
2974 	if (skb->destructor) {
2975 		skb->destructor(skb);
2976 		skb->destructor = NULL;
2977 		skb->sk		= NULL;
2978 	} else {
2979 		BUG_ON(skb->sk);
2980 	}
2981 }
2982 
2983 /**
2984  *	skb_orphan_frags - orphan the frags contained in a buffer
2985  *	@skb: buffer to orphan frags from
2986  *	@gfp_mask: allocation mask for replacement pages
2987  *
2988  *	For each frag in the SKB which needs a destructor (i.e. has an
2989  *	owner) create a copy of that frag and release the original
2990  *	page by calling the destructor.
2991  */
2992 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2993 {
2994 	if (likely(!skb_zcopy(skb)))
2995 		return 0;
2996 	if (!skb_zcopy_is_nouarg(skb) &&
2997 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2998 		return 0;
2999 	return skb_copy_ubufs(skb, gfp_mask);
3000 }
3001 
3002 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3003 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3004 {
3005 	if (likely(!skb_zcopy(skb)))
3006 		return 0;
3007 	return skb_copy_ubufs(skb, gfp_mask);
3008 }
3009 
3010 /**
3011  *	__skb_queue_purge - empty a list
3012  *	@list: list to empty
3013  *
3014  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3015  *	the list and one reference dropped. This function does not take the
3016  *	list lock and the caller must hold the relevant locks to use it.
3017  */
3018 static inline void __skb_queue_purge(struct sk_buff_head *list)
3019 {
3020 	struct sk_buff *skb;
3021 	while ((skb = __skb_dequeue(list)) != NULL)
3022 		kfree_skb(skb);
3023 }
3024 void skb_queue_purge(struct sk_buff_head *list);
3025 
3026 unsigned int skb_rbtree_purge(struct rb_root *root);
3027 
3028 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3029 
3030 /**
3031  * netdev_alloc_frag - allocate a page fragment
3032  * @fragsz: fragment size
3033  *
3034  * Allocates a frag from a page for receive buffer.
3035  * Uses GFP_ATOMIC allocations.
3036  */
3037 static inline void *netdev_alloc_frag(unsigned int fragsz)
3038 {
3039 	return __netdev_alloc_frag_align(fragsz, ~0u);
3040 }
3041 
3042 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3043 					    unsigned int align)
3044 {
3045 	WARN_ON_ONCE(!is_power_of_2(align));
3046 	return __netdev_alloc_frag_align(fragsz, -align);
3047 }
3048 
3049 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3050 				   gfp_t gfp_mask);
3051 
3052 /**
3053  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3054  *	@dev: network device to receive on
3055  *	@length: length to allocate
3056  *
3057  *	Allocate a new &sk_buff and assign it a usage count of one. The
3058  *	buffer has unspecified headroom built in. Users should allocate
3059  *	the headroom they think they need without accounting for the
3060  *	built in space. The built in space is used for optimisations.
3061  *
3062  *	%NULL is returned if there is no free memory. Although this function
3063  *	allocates memory it can be called from an interrupt.
3064  */
3065 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3066 					       unsigned int length)
3067 {
3068 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3069 }
3070 
3071 /* legacy helper around __netdev_alloc_skb() */
3072 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3073 					      gfp_t gfp_mask)
3074 {
3075 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3076 }
3077 
3078 /* legacy helper around netdev_alloc_skb() */
3079 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3080 {
3081 	return netdev_alloc_skb(NULL, length);
3082 }
3083 
3084 
3085 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3086 		unsigned int length, gfp_t gfp)
3087 {
3088 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3089 
3090 	if (NET_IP_ALIGN && skb)
3091 		skb_reserve(skb, NET_IP_ALIGN);
3092 	return skb;
3093 }
3094 
3095 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3096 		unsigned int length)
3097 {
3098 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3099 }
3100 
3101 static inline void skb_free_frag(void *addr)
3102 {
3103 	page_frag_free(addr);
3104 }
3105 
3106 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3107 
3108 static inline void *napi_alloc_frag(unsigned int fragsz)
3109 {
3110 	return __napi_alloc_frag_align(fragsz, ~0u);
3111 }
3112 
3113 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3114 					  unsigned int align)
3115 {
3116 	WARN_ON_ONCE(!is_power_of_2(align));
3117 	return __napi_alloc_frag_align(fragsz, -align);
3118 }
3119 
3120 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3121 				 unsigned int length, gfp_t gfp_mask);
3122 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3123 					     unsigned int length)
3124 {
3125 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3126 }
3127 void napi_consume_skb(struct sk_buff *skb, int budget);
3128 
3129 void napi_skb_free_stolen_head(struct sk_buff *skb);
3130 void __kfree_skb_defer(struct sk_buff *skb);
3131 
3132 /**
3133  * __dev_alloc_pages - allocate page for network Rx
3134  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3135  * @order: size of the allocation
3136  *
3137  * Allocate a new page.
3138  *
3139  * %NULL is returned if there is no free memory.
3140 */
3141 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3142 					     unsigned int order)
3143 {
3144 	/* This piece of code contains several assumptions.
3145 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3146 	 * 2.  The expectation is the user wants a compound page.
3147 	 * 3.  If requesting a order 0 page it will not be compound
3148 	 *     due to the check to see if order has a value in prep_new_page
3149 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3150 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3151 	 */
3152 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3153 
3154 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3155 }
3156 
3157 static inline struct page *dev_alloc_pages(unsigned int order)
3158 {
3159 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3160 }
3161 
3162 /**
3163  * __dev_alloc_page - allocate a page for network Rx
3164  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3165  *
3166  * Allocate a new page.
3167  *
3168  * %NULL is returned if there is no free memory.
3169  */
3170 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3171 {
3172 	return __dev_alloc_pages(gfp_mask, 0);
3173 }
3174 
3175 static inline struct page *dev_alloc_page(void)
3176 {
3177 	return dev_alloc_pages(0);
3178 }
3179 
3180 /**
3181  * dev_page_is_reusable - check whether a page can be reused for network Rx
3182  * @page: the page to test
3183  *
3184  * A page shouldn't be considered for reusing/recycling if it was allocated
3185  * under memory pressure or at a distant memory node.
3186  *
3187  * Returns false if this page should be returned to page allocator, true
3188  * otherwise.
3189  */
3190 static inline bool dev_page_is_reusable(const struct page *page)
3191 {
3192 	return likely(page_to_nid(page) == numa_mem_id() &&
3193 		      !page_is_pfmemalloc(page));
3194 }
3195 
3196 /**
3197  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3198  *	@page: The page that was allocated from skb_alloc_page
3199  *	@skb: The skb that may need pfmemalloc set
3200  */
3201 static inline void skb_propagate_pfmemalloc(const struct page *page,
3202 					    struct sk_buff *skb)
3203 {
3204 	if (page_is_pfmemalloc(page))
3205 		skb->pfmemalloc = true;
3206 }
3207 
3208 /**
3209  * skb_frag_off() - Returns the offset of a skb fragment
3210  * @frag: the paged fragment
3211  */
3212 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3213 {
3214 	return frag->bv_offset;
3215 }
3216 
3217 /**
3218  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3219  * @frag: skb fragment
3220  * @delta: value to add
3221  */
3222 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3223 {
3224 	frag->bv_offset += delta;
3225 }
3226 
3227 /**
3228  * skb_frag_off_set() - Sets the offset of a skb fragment
3229  * @frag: skb fragment
3230  * @offset: offset of fragment
3231  */
3232 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3233 {
3234 	frag->bv_offset = offset;
3235 }
3236 
3237 /**
3238  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3239  * @fragto: skb fragment where offset is set
3240  * @fragfrom: skb fragment offset is copied from
3241  */
3242 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3243 				     const skb_frag_t *fragfrom)
3244 {
3245 	fragto->bv_offset = fragfrom->bv_offset;
3246 }
3247 
3248 /**
3249  * skb_frag_page - retrieve the page referred to by a paged fragment
3250  * @frag: the paged fragment
3251  *
3252  * Returns the &struct page associated with @frag.
3253  */
3254 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3255 {
3256 	return frag->bv_page;
3257 }
3258 
3259 /**
3260  * __skb_frag_ref - take an addition reference on a paged fragment.
3261  * @frag: the paged fragment
3262  *
3263  * Takes an additional reference on the paged fragment @frag.
3264  */
3265 static inline void __skb_frag_ref(skb_frag_t *frag)
3266 {
3267 	get_page(skb_frag_page(frag));
3268 }
3269 
3270 /**
3271  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3272  * @skb: the buffer
3273  * @f: the fragment offset.
3274  *
3275  * Takes an additional reference on the @f'th paged fragment of @skb.
3276  */
3277 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3278 {
3279 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3280 }
3281 
3282 /**
3283  * __skb_frag_unref - release a reference on a paged fragment.
3284  * @frag: the paged fragment
3285  * @recycle: recycle the page if allocated via page_pool
3286  *
3287  * Releases a reference on the paged fragment @frag
3288  * or recycles the page via the page_pool API.
3289  */
3290 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3291 {
3292 	struct page *page = skb_frag_page(frag);
3293 
3294 #ifdef CONFIG_PAGE_POOL
3295 	if (recycle && page_pool_return_skb_page(page))
3296 		return;
3297 #endif
3298 	put_page(page);
3299 }
3300 
3301 /**
3302  * skb_frag_unref - release a reference on a paged fragment of an skb.
3303  * @skb: the buffer
3304  * @f: the fragment offset
3305  *
3306  * Releases a reference on the @f'th paged fragment of @skb.
3307  */
3308 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3309 {
3310 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3311 }
3312 
3313 /**
3314  * skb_frag_address - gets the address of the data contained in a paged fragment
3315  * @frag: the paged fragment buffer
3316  *
3317  * Returns the address of the data within @frag. The page must already
3318  * be mapped.
3319  */
3320 static inline void *skb_frag_address(const skb_frag_t *frag)
3321 {
3322 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3323 }
3324 
3325 /**
3326  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3327  * @frag: the paged fragment buffer
3328  *
3329  * Returns the address of the data within @frag. Checks that the page
3330  * is mapped and returns %NULL otherwise.
3331  */
3332 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3333 {
3334 	void *ptr = page_address(skb_frag_page(frag));
3335 	if (unlikely(!ptr))
3336 		return NULL;
3337 
3338 	return ptr + skb_frag_off(frag);
3339 }
3340 
3341 /**
3342  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3343  * @fragto: skb fragment where page is set
3344  * @fragfrom: skb fragment page is copied from
3345  */
3346 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3347 				      const skb_frag_t *fragfrom)
3348 {
3349 	fragto->bv_page = fragfrom->bv_page;
3350 }
3351 
3352 /**
3353  * __skb_frag_set_page - sets the page contained in a paged fragment
3354  * @frag: the paged fragment
3355  * @page: the page to set
3356  *
3357  * Sets the fragment @frag to contain @page.
3358  */
3359 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3360 {
3361 	frag->bv_page = page;
3362 }
3363 
3364 /**
3365  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3366  * @skb: the buffer
3367  * @f: the fragment offset
3368  * @page: the page to set
3369  *
3370  * Sets the @f'th fragment of @skb to contain @page.
3371  */
3372 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3373 				     struct page *page)
3374 {
3375 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3376 }
3377 
3378 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3379 
3380 /**
3381  * skb_frag_dma_map - maps a paged fragment via the DMA API
3382  * @dev: the device to map the fragment to
3383  * @frag: the paged fragment to map
3384  * @offset: the offset within the fragment (starting at the
3385  *          fragment's own offset)
3386  * @size: the number of bytes to map
3387  * @dir: the direction of the mapping (``PCI_DMA_*``)
3388  *
3389  * Maps the page associated with @frag to @device.
3390  */
3391 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3392 					  const skb_frag_t *frag,
3393 					  size_t offset, size_t size,
3394 					  enum dma_data_direction dir)
3395 {
3396 	return dma_map_page(dev, skb_frag_page(frag),
3397 			    skb_frag_off(frag) + offset, size, dir);
3398 }
3399 
3400 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3401 					gfp_t gfp_mask)
3402 {
3403 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3404 }
3405 
3406 
3407 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3408 						  gfp_t gfp_mask)
3409 {
3410 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3411 }
3412 
3413 
3414 /**
3415  *	skb_clone_writable - is the header of a clone writable
3416  *	@skb: buffer to check
3417  *	@len: length up to which to write
3418  *
3419  *	Returns true if modifying the header part of the cloned buffer
3420  *	does not requires the data to be copied.
3421  */
3422 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3423 {
3424 	return !skb_header_cloned(skb) &&
3425 	       skb_headroom(skb) + len <= skb->hdr_len;
3426 }
3427 
3428 static inline int skb_try_make_writable(struct sk_buff *skb,
3429 					unsigned int write_len)
3430 {
3431 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3432 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3433 }
3434 
3435 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3436 			    int cloned)
3437 {
3438 	int delta = 0;
3439 
3440 	if (headroom > skb_headroom(skb))
3441 		delta = headroom - skb_headroom(skb);
3442 
3443 	if (delta || cloned)
3444 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3445 					GFP_ATOMIC);
3446 	return 0;
3447 }
3448 
3449 /**
3450  *	skb_cow - copy header of skb when it is required
3451  *	@skb: buffer to cow
3452  *	@headroom: needed headroom
3453  *
3454  *	If the skb passed lacks sufficient headroom or its data part
3455  *	is shared, data is reallocated. If reallocation fails, an error
3456  *	is returned and original skb is not changed.
3457  *
3458  *	The result is skb with writable area skb->head...skb->tail
3459  *	and at least @headroom of space at head.
3460  */
3461 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3462 {
3463 	return __skb_cow(skb, headroom, skb_cloned(skb));
3464 }
3465 
3466 /**
3467  *	skb_cow_head - skb_cow but only making the head writable
3468  *	@skb: buffer to cow
3469  *	@headroom: needed headroom
3470  *
3471  *	This function is identical to skb_cow except that we replace the
3472  *	skb_cloned check by skb_header_cloned.  It should be used when
3473  *	you only need to push on some header and do not need to modify
3474  *	the data.
3475  */
3476 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3477 {
3478 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3479 }
3480 
3481 /**
3482  *	skb_padto	- pad an skbuff up to a minimal size
3483  *	@skb: buffer to pad
3484  *	@len: minimal length
3485  *
3486  *	Pads up a buffer to ensure the trailing bytes exist and are
3487  *	blanked. If the buffer already contains sufficient data it
3488  *	is untouched. Otherwise it is extended. Returns zero on
3489  *	success. The skb is freed on error.
3490  */
3491 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3492 {
3493 	unsigned int size = skb->len;
3494 	if (likely(size >= len))
3495 		return 0;
3496 	return skb_pad(skb, len - size);
3497 }
3498 
3499 /**
3500  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3501  *	@skb: buffer to pad
3502  *	@len: minimal length
3503  *	@free_on_error: free buffer on error
3504  *
3505  *	Pads up a buffer to ensure the trailing bytes exist and are
3506  *	blanked. If the buffer already contains sufficient data it
3507  *	is untouched. Otherwise it is extended. Returns zero on
3508  *	success. The skb is freed on error if @free_on_error is true.
3509  */
3510 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3511 					       unsigned int len,
3512 					       bool free_on_error)
3513 {
3514 	unsigned int size = skb->len;
3515 
3516 	if (unlikely(size < len)) {
3517 		len -= size;
3518 		if (__skb_pad(skb, len, free_on_error))
3519 			return -ENOMEM;
3520 		__skb_put(skb, len);
3521 	}
3522 	return 0;
3523 }
3524 
3525 /**
3526  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3527  *	@skb: buffer to pad
3528  *	@len: minimal length
3529  *
3530  *	Pads up a buffer to ensure the trailing bytes exist and are
3531  *	blanked. If the buffer already contains sufficient data it
3532  *	is untouched. Otherwise it is extended. Returns zero on
3533  *	success. The skb is freed on error.
3534  */
3535 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3536 {
3537 	return __skb_put_padto(skb, len, true);
3538 }
3539 
3540 static inline int skb_add_data(struct sk_buff *skb,
3541 			       struct iov_iter *from, int copy)
3542 {
3543 	const int off = skb->len;
3544 
3545 	if (skb->ip_summed == CHECKSUM_NONE) {
3546 		__wsum csum = 0;
3547 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3548 					         &csum, from)) {
3549 			skb->csum = csum_block_add(skb->csum, csum, off);
3550 			return 0;
3551 		}
3552 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3553 		return 0;
3554 
3555 	__skb_trim(skb, off);
3556 	return -EFAULT;
3557 }
3558 
3559 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3560 				    const struct page *page, int off)
3561 {
3562 	if (skb_zcopy(skb))
3563 		return false;
3564 	if (i) {
3565 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3566 
3567 		return page == skb_frag_page(frag) &&
3568 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3569 	}
3570 	return false;
3571 }
3572 
3573 static inline int __skb_linearize(struct sk_buff *skb)
3574 {
3575 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3576 }
3577 
3578 /**
3579  *	skb_linearize - convert paged skb to linear one
3580  *	@skb: buffer to linarize
3581  *
3582  *	If there is no free memory -ENOMEM is returned, otherwise zero
3583  *	is returned and the old skb data released.
3584  */
3585 static inline int skb_linearize(struct sk_buff *skb)
3586 {
3587 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3588 }
3589 
3590 /**
3591  * skb_has_shared_frag - can any frag be overwritten
3592  * @skb: buffer to test
3593  *
3594  * Return true if the skb has at least one frag that might be modified
3595  * by an external entity (as in vmsplice()/sendfile())
3596  */
3597 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3598 {
3599 	return skb_is_nonlinear(skb) &&
3600 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3601 }
3602 
3603 /**
3604  *	skb_linearize_cow - make sure skb is linear and writable
3605  *	@skb: buffer to process
3606  *
3607  *	If there is no free memory -ENOMEM is returned, otherwise zero
3608  *	is returned and the old skb data released.
3609  */
3610 static inline int skb_linearize_cow(struct sk_buff *skb)
3611 {
3612 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3613 	       __skb_linearize(skb) : 0;
3614 }
3615 
3616 static __always_inline void
3617 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3618 		     unsigned int off)
3619 {
3620 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3621 		skb->csum = csum_block_sub(skb->csum,
3622 					   csum_partial(start, len, 0), off);
3623 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3624 		 skb_checksum_start_offset(skb) < 0)
3625 		skb->ip_summed = CHECKSUM_NONE;
3626 }
3627 
3628 /**
3629  *	skb_postpull_rcsum - update checksum for received skb after pull
3630  *	@skb: buffer to update
3631  *	@start: start of data before pull
3632  *	@len: length of data pulled
3633  *
3634  *	After doing a pull on a received packet, you need to call this to
3635  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3636  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3637  */
3638 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3639 				      const void *start, unsigned int len)
3640 {
3641 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3642 		skb->csum = wsum_negate(csum_partial(start, len,
3643 						     wsum_negate(skb->csum)));
3644 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3645 		 skb_checksum_start_offset(skb) < 0)
3646 		skb->ip_summed = CHECKSUM_NONE;
3647 }
3648 
3649 static __always_inline void
3650 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3651 		     unsigned int off)
3652 {
3653 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3654 		skb->csum = csum_block_add(skb->csum,
3655 					   csum_partial(start, len, 0), off);
3656 }
3657 
3658 /**
3659  *	skb_postpush_rcsum - update checksum for received skb after push
3660  *	@skb: buffer to update
3661  *	@start: start of data after push
3662  *	@len: length of data pushed
3663  *
3664  *	After doing a push on a received packet, you need to call this to
3665  *	update the CHECKSUM_COMPLETE checksum.
3666  */
3667 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3668 				      const void *start, unsigned int len)
3669 {
3670 	__skb_postpush_rcsum(skb, start, len, 0);
3671 }
3672 
3673 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3674 
3675 /**
3676  *	skb_push_rcsum - push skb and update receive checksum
3677  *	@skb: buffer to update
3678  *	@len: length of data pulled
3679  *
3680  *	This function performs an skb_push on the packet and updates
3681  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3682  *	receive path processing instead of skb_push unless you know
3683  *	that the checksum difference is zero (e.g., a valid IP header)
3684  *	or you are setting ip_summed to CHECKSUM_NONE.
3685  */
3686 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3687 {
3688 	skb_push(skb, len);
3689 	skb_postpush_rcsum(skb, skb->data, len);
3690 	return skb->data;
3691 }
3692 
3693 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3694 /**
3695  *	pskb_trim_rcsum - trim received skb and update checksum
3696  *	@skb: buffer to trim
3697  *	@len: new length
3698  *
3699  *	This is exactly the same as pskb_trim except that it ensures the
3700  *	checksum of received packets are still valid after the operation.
3701  *	It can change skb pointers.
3702  */
3703 
3704 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3705 {
3706 	if (likely(len >= skb->len))
3707 		return 0;
3708 	return pskb_trim_rcsum_slow(skb, len);
3709 }
3710 
3711 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3712 {
3713 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3714 		skb->ip_summed = CHECKSUM_NONE;
3715 	__skb_trim(skb, len);
3716 	return 0;
3717 }
3718 
3719 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3720 {
3721 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3722 		skb->ip_summed = CHECKSUM_NONE;
3723 	return __skb_grow(skb, len);
3724 }
3725 
3726 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3727 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3728 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3729 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3730 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3731 
3732 #define skb_queue_walk(queue, skb) \
3733 		for (skb = (queue)->next;					\
3734 		     skb != (struct sk_buff *)(queue);				\
3735 		     skb = skb->next)
3736 
3737 #define skb_queue_walk_safe(queue, skb, tmp)					\
3738 		for (skb = (queue)->next, tmp = skb->next;			\
3739 		     skb != (struct sk_buff *)(queue);				\
3740 		     skb = tmp, tmp = skb->next)
3741 
3742 #define skb_queue_walk_from(queue, skb)						\
3743 		for (; skb != (struct sk_buff *)(queue);			\
3744 		     skb = skb->next)
3745 
3746 #define skb_rbtree_walk(skb, root)						\
3747 		for (skb = skb_rb_first(root); skb != NULL;			\
3748 		     skb = skb_rb_next(skb))
3749 
3750 #define skb_rbtree_walk_from(skb)						\
3751 		for (; skb != NULL;						\
3752 		     skb = skb_rb_next(skb))
3753 
3754 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3755 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3756 		     skb = tmp)
3757 
3758 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3759 		for (tmp = skb->next;						\
3760 		     skb != (struct sk_buff *)(queue);				\
3761 		     skb = tmp, tmp = skb->next)
3762 
3763 #define skb_queue_reverse_walk(queue, skb) \
3764 		for (skb = (queue)->prev;					\
3765 		     skb != (struct sk_buff *)(queue);				\
3766 		     skb = skb->prev)
3767 
3768 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3769 		for (skb = (queue)->prev, tmp = skb->prev;			\
3770 		     skb != (struct sk_buff *)(queue);				\
3771 		     skb = tmp, tmp = skb->prev)
3772 
3773 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3774 		for (tmp = skb->prev;						\
3775 		     skb != (struct sk_buff *)(queue);				\
3776 		     skb = tmp, tmp = skb->prev)
3777 
3778 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3779 {
3780 	return skb_shinfo(skb)->frag_list != NULL;
3781 }
3782 
3783 static inline void skb_frag_list_init(struct sk_buff *skb)
3784 {
3785 	skb_shinfo(skb)->frag_list = NULL;
3786 }
3787 
3788 #define skb_walk_frags(skb, iter)	\
3789 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3790 
3791 
3792 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3793 				int *err, long *timeo_p,
3794 				const struct sk_buff *skb);
3795 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3796 					  struct sk_buff_head *queue,
3797 					  unsigned int flags,
3798 					  int *off, int *err,
3799 					  struct sk_buff **last);
3800 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3801 					struct sk_buff_head *queue,
3802 					unsigned int flags, int *off, int *err,
3803 					struct sk_buff **last);
3804 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3805 				    struct sk_buff_head *sk_queue,
3806 				    unsigned int flags, int *off, int *err);
3807 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3808 				  int *err);
3809 __poll_t datagram_poll(struct file *file, struct socket *sock,
3810 			   struct poll_table_struct *wait);
3811 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3812 			   struct iov_iter *to, int size);
3813 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3814 					struct msghdr *msg, int size)
3815 {
3816 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3817 }
3818 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3819 				   struct msghdr *msg);
3820 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3821 			   struct iov_iter *to, int len,
3822 			   struct ahash_request *hash);
3823 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3824 				 struct iov_iter *from, int len);
3825 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3826 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3827 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3828 static inline void skb_free_datagram_locked(struct sock *sk,
3829 					    struct sk_buff *skb)
3830 {
3831 	__skb_free_datagram_locked(sk, skb, 0);
3832 }
3833 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3834 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3835 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3836 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3837 			      int len);
3838 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3839 		    struct pipe_inode_info *pipe, unsigned int len,
3840 		    unsigned int flags);
3841 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3842 			 int len);
3843 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3844 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3845 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3846 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3847 		 int len, int hlen);
3848 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3849 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3850 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3851 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3852 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3853 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3854 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3855 				 unsigned int offset);
3856 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3857 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3858 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3859 int skb_vlan_pop(struct sk_buff *skb);
3860 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3861 int skb_eth_pop(struct sk_buff *skb);
3862 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3863 		 const unsigned char *src);
3864 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3865 		  int mac_len, bool ethernet);
3866 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3867 		 bool ethernet);
3868 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3869 int skb_mpls_dec_ttl(struct sk_buff *skb);
3870 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3871 			     gfp_t gfp);
3872 
3873 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3874 {
3875 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3876 }
3877 
3878 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3879 {
3880 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3881 }
3882 
3883 struct skb_checksum_ops {
3884 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3885 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3886 };
3887 
3888 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3889 
3890 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3891 		      __wsum csum, const struct skb_checksum_ops *ops);
3892 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3893 		    __wsum csum);
3894 
3895 static inline void * __must_check
3896 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3897 		     const void *data, int hlen, void *buffer)
3898 {
3899 	if (likely(hlen - offset >= len))
3900 		return (void *)data + offset;
3901 
3902 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3903 		return NULL;
3904 
3905 	return buffer;
3906 }
3907 
3908 static inline void * __must_check
3909 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3910 {
3911 	return __skb_header_pointer(skb, offset, len, skb->data,
3912 				    skb_headlen(skb), buffer);
3913 }
3914 
3915 /**
3916  *	skb_needs_linearize - check if we need to linearize a given skb
3917  *			      depending on the given device features.
3918  *	@skb: socket buffer to check
3919  *	@features: net device features
3920  *
3921  *	Returns true if either:
3922  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3923  *	2. skb is fragmented and the device does not support SG.
3924  */
3925 static inline bool skb_needs_linearize(struct sk_buff *skb,
3926 				       netdev_features_t features)
3927 {
3928 	return skb_is_nonlinear(skb) &&
3929 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3930 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3931 }
3932 
3933 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3934 					     void *to,
3935 					     const unsigned int len)
3936 {
3937 	memcpy(to, skb->data, len);
3938 }
3939 
3940 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3941 						    const int offset, void *to,
3942 						    const unsigned int len)
3943 {
3944 	memcpy(to, skb->data + offset, len);
3945 }
3946 
3947 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3948 					   const void *from,
3949 					   const unsigned int len)
3950 {
3951 	memcpy(skb->data, from, len);
3952 }
3953 
3954 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3955 						  const int offset,
3956 						  const void *from,
3957 						  const unsigned int len)
3958 {
3959 	memcpy(skb->data + offset, from, len);
3960 }
3961 
3962 void skb_init(void);
3963 
3964 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3965 {
3966 	return skb->tstamp;
3967 }
3968 
3969 /**
3970  *	skb_get_timestamp - get timestamp from a skb
3971  *	@skb: skb to get stamp from
3972  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3973  *
3974  *	Timestamps are stored in the skb as offsets to a base timestamp.
3975  *	This function converts the offset back to a struct timeval and stores
3976  *	it in stamp.
3977  */
3978 static inline void skb_get_timestamp(const struct sk_buff *skb,
3979 				     struct __kernel_old_timeval *stamp)
3980 {
3981 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3982 }
3983 
3984 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3985 					 struct __kernel_sock_timeval *stamp)
3986 {
3987 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3988 
3989 	stamp->tv_sec = ts.tv_sec;
3990 	stamp->tv_usec = ts.tv_nsec / 1000;
3991 }
3992 
3993 static inline void skb_get_timestampns(const struct sk_buff *skb,
3994 				       struct __kernel_old_timespec *stamp)
3995 {
3996 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3997 
3998 	stamp->tv_sec = ts.tv_sec;
3999 	stamp->tv_nsec = ts.tv_nsec;
4000 }
4001 
4002 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4003 					   struct __kernel_timespec *stamp)
4004 {
4005 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4006 
4007 	stamp->tv_sec = ts.tv_sec;
4008 	stamp->tv_nsec = ts.tv_nsec;
4009 }
4010 
4011 static inline void __net_timestamp(struct sk_buff *skb)
4012 {
4013 	skb->tstamp = ktime_get_real();
4014 	skb->mono_delivery_time = 0;
4015 }
4016 
4017 static inline ktime_t net_timedelta(ktime_t t)
4018 {
4019 	return ktime_sub(ktime_get_real(), t);
4020 }
4021 
4022 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4023 					 bool mono)
4024 {
4025 	skb->tstamp = kt;
4026 	skb->mono_delivery_time = kt && mono;
4027 }
4028 
4029 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4030 
4031 /* It is used in the ingress path to clear the delivery_time.
4032  * If needed, set the skb->tstamp to the (rcv) timestamp.
4033  */
4034 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4035 {
4036 	if (skb->mono_delivery_time) {
4037 		skb->mono_delivery_time = 0;
4038 		if (static_branch_unlikely(&netstamp_needed_key))
4039 			skb->tstamp = ktime_get_real();
4040 		else
4041 			skb->tstamp = 0;
4042 	}
4043 }
4044 
4045 static inline void skb_clear_tstamp(struct sk_buff *skb)
4046 {
4047 	if (skb->mono_delivery_time)
4048 		return;
4049 
4050 	skb->tstamp = 0;
4051 }
4052 
4053 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4054 {
4055 	if (skb->mono_delivery_time)
4056 		return 0;
4057 
4058 	return skb->tstamp;
4059 }
4060 
4061 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4062 {
4063 	if (!skb->mono_delivery_time && skb->tstamp)
4064 		return skb->tstamp;
4065 
4066 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4067 		return ktime_get_real();
4068 
4069 	return 0;
4070 }
4071 
4072 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4073 {
4074 	return skb_shinfo(skb)->meta_len;
4075 }
4076 
4077 static inline void *skb_metadata_end(const struct sk_buff *skb)
4078 {
4079 	return skb_mac_header(skb);
4080 }
4081 
4082 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4083 					  const struct sk_buff *skb_b,
4084 					  u8 meta_len)
4085 {
4086 	const void *a = skb_metadata_end(skb_a);
4087 	const void *b = skb_metadata_end(skb_b);
4088 	/* Using more efficient varaiant than plain call to memcmp(). */
4089 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4090 	u64 diffs = 0;
4091 
4092 	switch (meta_len) {
4093 #define __it(x, op) (x -= sizeof(u##op))
4094 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4095 	case 32: diffs |= __it_diff(a, b, 64);
4096 		fallthrough;
4097 	case 24: diffs |= __it_diff(a, b, 64);
4098 		fallthrough;
4099 	case 16: diffs |= __it_diff(a, b, 64);
4100 		fallthrough;
4101 	case  8: diffs |= __it_diff(a, b, 64);
4102 		break;
4103 	case 28: diffs |= __it_diff(a, b, 64);
4104 		fallthrough;
4105 	case 20: diffs |= __it_diff(a, b, 64);
4106 		fallthrough;
4107 	case 12: diffs |= __it_diff(a, b, 64);
4108 		fallthrough;
4109 	case  4: diffs |= __it_diff(a, b, 32);
4110 		break;
4111 	}
4112 	return diffs;
4113 #else
4114 	return memcmp(a - meta_len, b - meta_len, meta_len);
4115 #endif
4116 }
4117 
4118 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4119 					const struct sk_buff *skb_b)
4120 {
4121 	u8 len_a = skb_metadata_len(skb_a);
4122 	u8 len_b = skb_metadata_len(skb_b);
4123 
4124 	if (!(len_a | len_b))
4125 		return false;
4126 
4127 	return len_a != len_b ?
4128 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4129 }
4130 
4131 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4132 {
4133 	skb_shinfo(skb)->meta_len = meta_len;
4134 }
4135 
4136 static inline void skb_metadata_clear(struct sk_buff *skb)
4137 {
4138 	skb_metadata_set(skb, 0);
4139 }
4140 
4141 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4142 
4143 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4144 
4145 void skb_clone_tx_timestamp(struct sk_buff *skb);
4146 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4147 
4148 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4149 
4150 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4151 {
4152 }
4153 
4154 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4155 {
4156 	return false;
4157 }
4158 
4159 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4160 
4161 /**
4162  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4163  *
4164  * PHY drivers may accept clones of transmitted packets for
4165  * timestamping via their phy_driver.txtstamp method. These drivers
4166  * must call this function to return the skb back to the stack with a
4167  * timestamp.
4168  *
4169  * @skb: clone of the original outgoing packet
4170  * @hwtstamps: hardware time stamps
4171  *
4172  */
4173 void skb_complete_tx_timestamp(struct sk_buff *skb,
4174 			       struct skb_shared_hwtstamps *hwtstamps);
4175 
4176 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4177 		     struct skb_shared_hwtstamps *hwtstamps,
4178 		     struct sock *sk, int tstype);
4179 
4180 /**
4181  * skb_tstamp_tx - queue clone of skb with send time stamps
4182  * @orig_skb:	the original outgoing packet
4183  * @hwtstamps:	hardware time stamps, may be NULL if not available
4184  *
4185  * If the skb has a socket associated, then this function clones the
4186  * skb (thus sharing the actual data and optional structures), stores
4187  * the optional hardware time stamping information (if non NULL) or
4188  * generates a software time stamp (otherwise), then queues the clone
4189  * to the error queue of the socket.  Errors are silently ignored.
4190  */
4191 void skb_tstamp_tx(struct sk_buff *orig_skb,
4192 		   struct skb_shared_hwtstamps *hwtstamps);
4193 
4194 /**
4195  * skb_tx_timestamp() - Driver hook for transmit timestamping
4196  *
4197  * Ethernet MAC Drivers should call this function in their hard_xmit()
4198  * function immediately before giving the sk_buff to the MAC hardware.
4199  *
4200  * Specifically, one should make absolutely sure that this function is
4201  * called before TX completion of this packet can trigger.  Otherwise
4202  * the packet could potentially already be freed.
4203  *
4204  * @skb: A socket buffer.
4205  */
4206 static inline void skb_tx_timestamp(struct sk_buff *skb)
4207 {
4208 	skb_clone_tx_timestamp(skb);
4209 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4210 		skb_tstamp_tx(skb, NULL);
4211 }
4212 
4213 /**
4214  * skb_complete_wifi_ack - deliver skb with wifi status
4215  *
4216  * @skb: the original outgoing packet
4217  * @acked: ack status
4218  *
4219  */
4220 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4221 
4222 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4223 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4224 
4225 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4226 {
4227 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4228 		skb->csum_valid ||
4229 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4230 		 skb_checksum_start_offset(skb) >= 0));
4231 }
4232 
4233 /**
4234  *	skb_checksum_complete - Calculate checksum of an entire packet
4235  *	@skb: packet to process
4236  *
4237  *	This function calculates the checksum over the entire packet plus
4238  *	the value of skb->csum.  The latter can be used to supply the
4239  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4240  *	checksum.
4241  *
4242  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4243  *	this function can be used to verify that checksum on received
4244  *	packets.  In that case the function should return zero if the
4245  *	checksum is correct.  In particular, this function will return zero
4246  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4247  *	hardware has already verified the correctness of the checksum.
4248  */
4249 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4250 {
4251 	return skb_csum_unnecessary(skb) ?
4252 	       0 : __skb_checksum_complete(skb);
4253 }
4254 
4255 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4256 {
4257 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4258 		if (skb->csum_level == 0)
4259 			skb->ip_summed = CHECKSUM_NONE;
4260 		else
4261 			skb->csum_level--;
4262 	}
4263 }
4264 
4265 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4266 {
4267 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4268 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4269 			skb->csum_level++;
4270 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4271 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4272 		skb->csum_level = 0;
4273 	}
4274 }
4275 
4276 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4277 {
4278 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4279 		skb->ip_summed = CHECKSUM_NONE;
4280 		skb->csum_level = 0;
4281 	}
4282 }
4283 
4284 /* Check if we need to perform checksum complete validation.
4285  *
4286  * Returns true if checksum complete is needed, false otherwise
4287  * (either checksum is unnecessary or zero checksum is allowed).
4288  */
4289 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4290 						  bool zero_okay,
4291 						  __sum16 check)
4292 {
4293 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4294 		skb->csum_valid = 1;
4295 		__skb_decr_checksum_unnecessary(skb);
4296 		return false;
4297 	}
4298 
4299 	return true;
4300 }
4301 
4302 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4303  * in checksum_init.
4304  */
4305 #define CHECKSUM_BREAK 76
4306 
4307 /* Unset checksum-complete
4308  *
4309  * Unset checksum complete can be done when packet is being modified
4310  * (uncompressed for instance) and checksum-complete value is
4311  * invalidated.
4312  */
4313 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4314 {
4315 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4316 		skb->ip_summed = CHECKSUM_NONE;
4317 }
4318 
4319 /* Validate (init) checksum based on checksum complete.
4320  *
4321  * Return values:
4322  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4323  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4324  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4325  *   non-zero: value of invalid checksum
4326  *
4327  */
4328 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4329 						       bool complete,
4330 						       __wsum psum)
4331 {
4332 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4333 		if (!csum_fold(csum_add(psum, skb->csum))) {
4334 			skb->csum_valid = 1;
4335 			return 0;
4336 		}
4337 	}
4338 
4339 	skb->csum = psum;
4340 
4341 	if (complete || skb->len <= CHECKSUM_BREAK) {
4342 		__sum16 csum;
4343 
4344 		csum = __skb_checksum_complete(skb);
4345 		skb->csum_valid = !csum;
4346 		return csum;
4347 	}
4348 
4349 	return 0;
4350 }
4351 
4352 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4353 {
4354 	return 0;
4355 }
4356 
4357 /* Perform checksum validate (init). Note that this is a macro since we only
4358  * want to calculate the pseudo header which is an input function if necessary.
4359  * First we try to validate without any computation (checksum unnecessary) and
4360  * then calculate based on checksum complete calling the function to compute
4361  * pseudo header.
4362  *
4363  * Return values:
4364  *   0: checksum is validated or try to in skb_checksum_complete
4365  *   non-zero: value of invalid checksum
4366  */
4367 #define __skb_checksum_validate(skb, proto, complete,			\
4368 				zero_okay, check, compute_pseudo)	\
4369 ({									\
4370 	__sum16 __ret = 0;						\
4371 	skb->csum_valid = 0;						\
4372 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4373 		__ret = __skb_checksum_validate_complete(skb,		\
4374 				complete, compute_pseudo(skb, proto));	\
4375 	__ret;								\
4376 })
4377 
4378 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4379 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4380 
4381 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4382 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4383 
4384 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4385 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4386 
4387 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4388 					 compute_pseudo)		\
4389 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4390 
4391 #define skb_checksum_simple_validate(skb)				\
4392 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4393 
4394 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4395 {
4396 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4397 }
4398 
4399 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4400 {
4401 	skb->csum = ~pseudo;
4402 	skb->ip_summed = CHECKSUM_COMPLETE;
4403 }
4404 
4405 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4406 do {									\
4407 	if (__skb_checksum_convert_check(skb))				\
4408 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4409 } while (0)
4410 
4411 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4412 					      u16 start, u16 offset)
4413 {
4414 	skb->ip_summed = CHECKSUM_PARTIAL;
4415 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4416 	skb->csum_offset = offset - start;
4417 }
4418 
4419 /* Update skbuf and packet to reflect the remote checksum offload operation.
4420  * When called, ptr indicates the starting point for skb->csum when
4421  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4422  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4423  */
4424 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4425 				       int start, int offset, bool nopartial)
4426 {
4427 	__wsum delta;
4428 
4429 	if (!nopartial) {
4430 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4431 		return;
4432 	}
4433 
4434 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4435 		__skb_checksum_complete(skb);
4436 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4437 	}
4438 
4439 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4440 
4441 	/* Adjust skb->csum since we changed the packet */
4442 	skb->csum = csum_add(skb->csum, delta);
4443 }
4444 
4445 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4446 {
4447 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4448 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4449 #else
4450 	return NULL;
4451 #endif
4452 }
4453 
4454 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4455 {
4456 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4457 	return skb->_nfct;
4458 #else
4459 	return 0UL;
4460 #endif
4461 }
4462 
4463 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4464 {
4465 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4466 	skb->slow_gro |= !!nfct;
4467 	skb->_nfct = nfct;
4468 #endif
4469 }
4470 
4471 #ifdef CONFIG_SKB_EXTENSIONS
4472 enum skb_ext_id {
4473 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4474 	SKB_EXT_BRIDGE_NF,
4475 #endif
4476 #ifdef CONFIG_XFRM
4477 	SKB_EXT_SEC_PATH,
4478 #endif
4479 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4480 	TC_SKB_EXT,
4481 #endif
4482 #if IS_ENABLED(CONFIG_MPTCP)
4483 	SKB_EXT_MPTCP,
4484 #endif
4485 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4486 	SKB_EXT_MCTP,
4487 #endif
4488 	SKB_EXT_NUM, /* must be last */
4489 };
4490 
4491 /**
4492  *	struct skb_ext - sk_buff extensions
4493  *	@refcnt: 1 on allocation, deallocated on 0
4494  *	@offset: offset to add to @data to obtain extension address
4495  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4496  *	@data: start of extension data, variable sized
4497  *
4498  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4499  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4500  */
4501 struct skb_ext {
4502 	refcount_t refcnt;
4503 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4504 	u8 chunks;		/* same */
4505 	char data[] __aligned(8);
4506 };
4507 
4508 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4509 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4510 		    struct skb_ext *ext);
4511 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4512 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4513 void __skb_ext_put(struct skb_ext *ext);
4514 
4515 static inline void skb_ext_put(struct sk_buff *skb)
4516 {
4517 	if (skb->active_extensions)
4518 		__skb_ext_put(skb->extensions);
4519 }
4520 
4521 static inline void __skb_ext_copy(struct sk_buff *dst,
4522 				  const struct sk_buff *src)
4523 {
4524 	dst->active_extensions = src->active_extensions;
4525 
4526 	if (src->active_extensions) {
4527 		struct skb_ext *ext = src->extensions;
4528 
4529 		refcount_inc(&ext->refcnt);
4530 		dst->extensions = ext;
4531 	}
4532 }
4533 
4534 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4535 {
4536 	skb_ext_put(dst);
4537 	__skb_ext_copy(dst, src);
4538 }
4539 
4540 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4541 {
4542 	return !!ext->offset[i];
4543 }
4544 
4545 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4546 {
4547 	return skb->active_extensions & (1 << id);
4548 }
4549 
4550 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4551 {
4552 	if (skb_ext_exist(skb, id))
4553 		__skb_ext_del(skb, id);
4554 }
4555 
4556 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4557 {
4558 	if (skb_ext_exist(skb, id)) {
4559 		struct skb_ext *ext = skb->extensions;
4560 
4561 		return (void *)ext + (ext->offset[id] << 3);
4562 	}
4563 
4564 	return NULL;
4565 }
4566 
4567 static inline void skb_ext_reset(struct sk_buff *skb)
4568 {
4569 	if (unlikely(skb->active_extensions)) {
4570 		__skb_ext_put(skb->extensions);
4571 		skb->active_extensions = 0;
4572 	}
4573 }
4574 
4575 static inline bool skb_has_extensions(struct sk_buff *skb)
4576 {
4577 	return unlikely(skb->active_extensions);
4578 }
4579 #else
4580 static inline void skb_ext_put(struct sk_buff *skb) {}
4581 static inline void skb_ext_reset(struct sk_buff *skb) {}
4582 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4583 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4584 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4585 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4586 #endif /* CONFIG_SKB_EXTENSIONS */
4587 
4588 static inline void nf_reset_ct(struct sk_buff *skb)
4589 {
4590 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4591 	nf_conntrack_put(skb_nfct(skb));
4592 	skb->_nfct = 0;
4593 #endif
4594 }
4595 
4596 static inline void nf_reset_trace(struct sk_buff *skb)
4597 {
4598 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4599 	skb->nf_trace = 0;
4600 #endif
4601 }
4602 
4603 static inline void ipvs_reset(struct sk_buff *skb)
4604 {
4605 #if IS_ENABLED(CONFIG_IP_VS)
4606 	skb->ipvs_property = 0;
4607 #endif
4608 }
4609 
4610 /* Note: This doesn't put any conntrack info in dst. */
4611 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4612 			     bool copy)
4613 {
4614 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4615 	dst->_nfct = src->_nfct;
4616 	nf_conntrack_get(skb_nfct(src));
4617 #endif
4618 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4619 	if (copy)
4620 		dst->nf_trace = src->nf_trace;
4621 #endif
4622 }
4623 
4624 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4625 {
4626 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4627 	nf_conntrack_put(skb_nfct(dst));
4628 #endif
4629 	dst->slow_gro = src->slow_gro;
4630 	__nf_copy(dst, src, true);
4631 }
4632 
4633 #ifdef CONFIG_NETWORK_SECMARK
4634 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4635 {
4636 	to->secmark = from->secmark;
4637 }
4638 
4639 static inline void skb_init_secmark(struct sk_buff *skb)
4640 {
4641 	skb->secmark = 0;
4642 }
4643 #else
4644 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4645 { }
4646 
4647 static inline void skb_init_secmark(struct sk_buff *skb)
4648 { }
4649 #endif
4650 
4651 static inline int secpath_exists(const struct sk_buff *skb)
4652 {
4653 #ifdef CONFIG_XFRM
4654 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4655 #else
4656 	return 0;
4657 #endif
4658 }
4659 
4660 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4661 {
4662 	return !skb->destructor &&
4663 		!secpath_exists(skb) &&
4664 		!skb_nfct(skb) &&
4665 		!skb->_skb_refdst &&
4666 		!skb_has_frag_list(skb);
4667 }
4668 
4669 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4670 {
4671 	skb->queue_mapping = queue_mapping;
4672 }
4673 
4674 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4675 {
4676 	return skb->queue_mapping;
4677 }
4678 
4679 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4680 {
4681 	to->queue_mapping = from->queue_mapping;
4682 }
4683 
4684 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4685 {
4686 	skb->queue_mapping = rx_queue + 1;
4687 }
4688 
4689 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4690 {
4691 	return skb->queue_mapping - 1;
4692 }
4693 
4694 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4695 {
4696 	return skb->queue_mapping != 0;
4697 }
4698 
4699 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4700 {
4701 	skb->dst_pending_confirm = val;
4702 }
4703 
4704 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4705 {
4706 	return skb->dst_pending_confirm != 0;
4707 }
4708 
4709 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4710 {
4711 #ifdef CONFIG_XFRM
4712 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4713 #else
4714 	return NULL;
4715 #endif
4716 }
4717 
4718 /* Keeps track of mac header offset relative to skb->head.
4719  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4720  * For non-tunnel skb it points to skb_mac_header() and for
4721  * tunnel skb it points to outer mac header.
4722  * Keeps track of level of encapsulation of network headers.
4723  */
4724 struct skb_gso_cb {
4725 	union {
4726 		int	mac_offset;
4727 		int	data_offset;
4728 	};
4729 	int	encap_level;
4730 	__wsum	csum;
4731 	__u16	csum_start;
4732 };
4733 #define SKB_GSO_CB_OFFSET	32
4734 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4735 
4736 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4737 {
4738 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4739 		SKB_GSO_CB(inner_skb)->mac_offset;
4740 }
4741 
4742 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4743 {
4744 	int new_headroom, headroom;
4745 	int ret;
4746 
4747 	headroom = skb_headroom(skb);
4748 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4749 	if (ret)
4750 		return ret;
4751 
4752 	new_headroom = skb_headroom(skb);
4753 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4754 	return 0;
4755 }
4756 
4757 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4758 {
4759 	/* Do not update partial checksums if remote checksum is enabled. */
4760 	if (skb->remcsum_offload)
4761 		return;
4762 
4763 	SKB_GSO_CB(skb)->csum = res;
4764 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4765 }
4766 
4767 /* Compute the checksum for a gso segment. First compute the checksum value
4768  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4769  * then add in skb->csum (checksum from csum_start to end of packet).
4770  * skb->csum and csum_start are then updated to reflect the checksum of the
4771  * resultant packet starting from the transport header-- the resultant checksum
4772  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4773  * header.
4774  */
4775 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4776 {
4777 	unsigned char *csum_start = skb_transport_header(skb);
4778 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4779 	__wsum partial = SKB_GSO_CB(skb)->csum;
4780 
4781 	SKB_GSO_CB(skb)->csum = res;
4782 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4783 
4784 	return csum_fold(csum_partial(csum_start, plen, partial));
4785 }
4786 
4787 static inline bool skb_is_gso(const struct sk_buff *skb)
4788 {
4789 	return skb_shinfo(skb)->gso_size;
4790 }
4791 
4792 /* Note: Should be called only if skb_is_gso(skb) is true */
4793 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4794 {
4795 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4796 }
4797 
4798 /* Note: Should be called only if skb_is_gso(skb) is true */
4799 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4800 {
4801 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4802 }
4803 
4804 /* Note: Should be called only if skb_is_gso(skb) is true */
4805 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4806 {
4807 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4808 }
4809 
4810 static inline void skb_gso_reset(struct sk_buff *skb)
4811 {
4812 	skb_shinfo(skb)->gso_size = 0;
4813 	skb_shinfo(skb)->gso_segs = 0;
4814 	skb_shinfo(skb)->gso_type = 0;
4815 }
4816 
4817 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4818 					 u16 increment)
4819 {
4820 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4821 		return;
4822 	shinfo->gso_size += increment;
4823 }
4824 
4825 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4826 					 u16 decrement)
4827 {
4828 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4829 		return;
4830 	shinfo->gso_size -= decrement;
4831 }
4832 
4833 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4834 
4835 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4836 {
4837 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4838 	 * wanted then gso_type will be set. */
4839 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4840 
4841 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4842 	    unlikely(shinfo->gso_type == 0)) {
4843 		__skb_warn_lro_forwarding(skb);
4844 		return true;
4845 	}
4846 	return false;
4847 }
4848 
4849 static inline void skb_forward_csum(struct sk_buff *skb)
4850 {
4851 	/* Unfortunately we don't support this one.  Any brave souls? */
4852 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4853 		skb->ip_summed = CHECKSUM_NONE;
4854 }
4855 
4856 /**
4857  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4858  * @skb: skb to check
4859  *
4860  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4861  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4862  * use this helper, to document places where we make this assertion.
4863  */
4864 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4865 {
4866 #ifdef DEBUG
4867 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4868 #endif
4869 }
4870 
4871 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4872 
4873 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4874 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4875 				     unsigned int transport_len,
4876 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4877 
4878 /**
4879  * skb_head_is_locked - Determine if the skb->head is locked down
4880  * @skb: skb to check
4881  *
4882  * The head on skbs build around a head frag can be removed if they are
4883  * not cloned.  This function returns true if the skb head is locked down
4884  * due to either being allocated via kmalloc, or by being a clone with
4885  * multiple references to the head.
4886  */
4887 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4888 {
4889 	return !skb->head_frag || skb_cloned(skb);
4890 }
4891 
4892 /* Local Checksum Offload.
4893  * Compute outer checksum based on the assumption that the
4894  * inner checksum will be offloaded later.
4895  * See Documentation/networking/checksum-offloads.rst for
4896  * explanation of how this works.
4897  * Fill in outer checksum adjustment (e.g. with sum of outer
4898  * pseudo-header) before calling.
4899  * Also ensure that inner checksum is in linear data area.
4900  */
4901 static inline __wsum lco_csum(struct sk_buff *skb)
4902 {
4903 	unsigned char *csum_start = skb_checksum_start(skb);
4904 	unsigned char *l4_hdr = skb_transport_header(skb);
4905 	__wsum partial;
4906 
4907 	/* Start with complement of inner checksum adjustment */
4908 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4909 						    skb->csum_offset));
4910 
4911 	/* Add in checksum of our headers (incl. outer checksum
4912 	 * adjustment filled in by caller) and return result.
4913 	 */
4914 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4915 }
4916 
4917 static inline bool skb_is_redirected(const struct sk_buff *skb)
4918 {
4919 	return skb->redirected;
4920 }
4921 
4922 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4923 {
4924 	skb->redirected = 1;
4925 #ifdef CONFIG_NET_REDIRECT
4926 	skb->from_ingress = from_ingress;
4927 	if (skb->from_ingress)
4928 		skb_clear_tstamp(skb);
4929 #endif
4930 }
4931 
4932 static inline void skb_reset_redirect(struct sk_buff *skb)
4933 {
4934 	skb->redirected = 0;
4935 }
4936 
4937 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4938 {
4939 	return skb->csum_not_inet;
4940 }
4941 
4942 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4943 				       const u64 kcov_handle)
4944 {
4945 #ifdef CONFIG_KCOV
4946 	skb->kcov_handle = kcov_handle;
4947 #endif
4948 }
4949 
4950 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4951 {
4952 #ifdef CONFIG_KCOV
4953 	return skb->kcov_handle;
4954 #else
4955 	return 0;
4956 #endif
4957 }
4958 
4959 #ifdef CONFIG_PAGE_POOL
4960 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4961 {
4962 	skb->pp_recycle = 1;
4963 }
4964 #endif
4965 
4966 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4967 {
4968 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4969 		return false;
4970 	return page_pool_return_skb_page(virt_to_page(data));
4971 }
4972 
4973 #endif	/* __KERNEL__ */
4974 #endif	/* _LINUX_SKBUFF_H */
4975