1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <linux/llist.h> 40 #include <net/flow.h> 41 #include <net/page_pool.h> 42 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 43 #include <linux/netfilter/nf_conntrack_common.h> 44 #endif 45 46 /* The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * A. IP checksum related features 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * The checksum related features are: 57 * 58 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 59 * IP (one's complement) checksum for any combination 60 * of protocols or protocol layering. The checksum is 61 * computed and set in a packet per the CHECKSUM_PARTIAL 62 * interface (see below). 63 * 64 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 65 * TCP or UDP packets over IPv4. These are specifically 66 * unencapsulated packets of the form IPv4|TCP or 67 * IPv4|UDP where the Protocol field in the IPv4 header 68 * is TCP or UDP. The IPv4 header may contain IP options. 69 * This feature cannot be set in features for a device 70 * with NETIF_F_HW_CSUM also set. This feature is being 71 * DEPRECATED (see below). 72 * 73 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv6. These are specifically 75 * unencapsulated packets of the form IPv6|TCP or 76 * IPv6|UDP where the Next Header field in the IPv6 77 * header is either TCP or UDP. IPv6 extension headers 78 * are not supported with this feature. This feature 79 * cannot be set in features for a device with 80 * NETIF_F_HW_CSUM also set. This feature is being 81 * DEPRECATED (see below). 82 * 83 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 84 * This flag is only used to disable the RX checksum 85 * feature for a device. The stack will accept receive 86 * checksum indication in packets received on a device 87 * regardless of whether NETIF_F_RXCSUM is set. 88 * 89 * B. Checksumming of received packets by device. Indication of checksum 90 * verification is set in skb->ip_summed. Possible values are: 91 * 92 * CHECKSUM_NONE: 93 * 94 * Device did not checksum this packet e.g. due to lack of capabilities. 95 * The packet contains full (though not verified) checksum in packet but 96 * not in skb->csum. Thus, skb->csum is undefined in this case. 97 * 98 * CHECKSUM_UNNECESSARY: 99 * 100 * The hardware you're dealing with doesn't calculate the full checksum 101 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 102 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 103 * if their checksums are okay. skb->csum is still undefined in this case 104 * though. A driver or device must never modify the checksum field in the 105 * packet even if checksum is verified. 106 * 107 * CHECKSUM_UNNECESSARY is applicable to following protocols: 108 * TCP: IPv6 and IPv4. 109 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 110 * zero UDP checksum for either IPv4 or IPv6, the networking stack 111 * may perform further validation in this case. 112 * GRE: only if the checksum is present in the header. 113 * SCTP: indicates the CRC in SCTP header has been validated. 114 * FCOE: indicates the CRC in FC frame has been validated. 115 * 116 * skb->csum_level indicates the number of consecutive checksums found in 117 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 118 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 119 * and a device is able to verify the checksums for UDP (possibly zero), 120 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to 121 * two. If the device were only able to verify the UDP checksum and not 122 * GRE, either because it doesn't support GRE checksum or because GRE 123 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 124 * not considered in this case). 125 * 126 * CHECKSUM_COMPLETE: 127 * 128 * This is the most generic way. The device supplied checksum of the _whole_ 129 * packet as seen by netif_rx() and fills in skb->csum. This means the 130 * hardware doesn't need to parse L3/L4 headers to implement this. 131 * 132 * Notes: 133 * - Even if device supports only some protocols, but is able to produce 134 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 135 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 136 * 137 * CHECKSUM_PARTIAL: 138 * 139 * A checksum is set up to be offloaded to a device as described in the 140 * output description for CHECKSUM_PARTIAL. This may occur on a packet 141 * received directly from another Linux OS, e.g., a virtualized Linux kernel 142 * on the same host, or it may be set in the input path in GRO or remote 143 * checksum offload. For the purposes of checksum verification, the checksum 144 * referred to by skb->csum_start + skb->csum_offset and any preceding 145 * checksums in the packet are considered verified. Any checksums in the 146 * packet that are after the checksum being offloaded are not considered to 147 * be verified. 148 * 149 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 150 * in the skb->ip_summed for a packet. Values are: 151 * 152 * CHECKSUM_PARTIAL: 153 * 154 * The driver is required to checksum the packet as seen by hard_start_xmit() 155 * from skb->csum_start up to the end, and to record/write the checksum at 156 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 157 * csum_start and csum_offset values are valid values given the length and 158 * offset of the packet, but it should not attempt to validate that the 159 * checksum refers to a legitimate transport layer checksum -- it is the 160 * purview of the stack to validate that csum_start and csum_offset are set 161 * correctly. 162 * 163 * When the stack requests checksum offload for a packet, the driver MUST 164 * ensure that the checksum is set correctly. A driver can either offload the 165 * checksum calculation to the device, or call skb_checksum_help (in the case 166 * that the device does not support offload for a particular checksum). 167 * 168 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 169 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 170 * checksum offload capability. 171 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 172 * on network device checksumming capabilities: if a packet does not match 173 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 174 * csum_not_inet, see item D.) is called to resolve the checksum. 175 * 176 * CHECKSUM_NONE: 177 * 178 * The skb was already checksummed by the protocol, or a checksum is not 179 * required. 180 * 181 * CHECKSUM_UNNECESSARY: 182 * 183 * This has the same meaning as CHECKSUM_NONE for checksum offload on 184 * output. 185 * 186 * CHECKSUM_COMPLETE: 187 * Not used in checksum output. If a driver observes a packet with this value 188 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. 189 * 190 * D. Non-IP checksum (CRC) offloads 191 * 192 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 193 * offloading the SCTP CRC in a packet. To perform this offload the stack 194 * will set csum_start and csum_offset accordingly, set ip_summed to 195 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 196 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 197 * A driver that supports both IP checksum offload and SCTP CRC32c offload 198 * must verify which offload is configured for a packet by testing the 199 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 200 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 201 * 202 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 203 * offloading the FCOE CRC in a packet. To perform this offload the stack 204 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 205 * accordingly. Note that there is no indication in the skbuff that the 206 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 207 * both IP checksum offload and FCOE CRC offload must verify which offload 208 * is configured for a packet, presumably by inspecting packet headers. 209 * 210 * E. Checksumming on output with GSO. 211 * 212 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 213 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 214 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 215 * part of the GSO operation is implied. If a checksum is being offloaded 216 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and 217 * csum_offset are set to refer to the outermost checksum being offloaded 218 * (two offloaded checksums are possible with UDP encapsulation). 219 */ 220 221 /* Don't change this without changing skb_csum_unnecessary! */ 222 #define CHECKSUM_NONE 0 223 #define CHECKSUM_UNNECESSARY 1 224 #define CHECKSUM_COMPLETE 2 225 #define CHECKSUM_PARTIAL 3 226 227 /* Maximum value in skb->csum_level */ 228 #define SKB_MAX_CSUM_LEVEL 3 229 230 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 231 #define SKB_WITH_OVERHEAD(X) \ 232 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 233 #define SKB_MAX_ORDER(X, ORDER) \ 234 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 235 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 236 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 237 238 /* return minimum truesize of one skb containing X bytes of data */ 239 #define SKB_TRUESIZE(X) ((X) + \ 240 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 242 243 struct ahash_request; 244 struct net_device; 245 struct scatterlist; 246 struct pipe_inode_info; 247 struct iov_iter; 248 struct napi_struct; 249 struct bpf_prog; 250 union bpf_attr; 251 struct skb_ext; 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 enum { 256 BRNF_PROTO_UNCHANGED, 257 BRNF_PROTO_8021Q, 258 BRNF_PROTO_PPPOE 259 } orig_proto:8; 260 u8 pkt_otherhost:1; 261 u8 in_prerouting:1; 262 u8 bridged_dnat:1; 263 __u16 frag_max_size; 264 struct net_device *physindev; 265 266 /* always valid & non-NULL from FORWARD on, for physdev match */ 267 struct net_device *physoutdev; 268 union { 269 /* prerouting: detect dnat in orig/reply direction */ 270 __be32 ipv4_daddr; 271 struct in6_addr ipv6_daddr; 272 273 /* after prerouting + nat detected: store original source 274 * mac since neigh resolution overwrites it, only used while 275 * skb is out in neigh layer. 276 */ 277 char neigh_header[8]; 278 }; 279 }; 280 #endif 281 282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 283 /* Chain in tc_skb_ext will be used to share the tc chain with 284 * ovs recirc_id. It will be set to the current chain by tc 285 * and read by ovs to recirc_id. 286 */ 287 struct tc_skb_ext { 288 __u32 chain; 289 __u16 mru; 290 __u16 zone; 291 u8 post_ct:1; 292 u8 post_ct_snat:1; 293 u8 post_ct_dnat:1; 294 }; 295 #endif 296 297 struct sk_buff_head { 298 /* These two members must be first to match sk_buff. */ 299 struct_group_tagged(sk_buff_list, list, 300 struct sk_buff *next; 301 struct sk_buff *prev; 302 ); 303 304 __u32 qlen; 305 spinlock_t lock; 306 }; 307 308 struct sk_buff; 309 310 /* The reason of skb drop, which is used in kfree_skb_reason(). 311 * en...maybe they should be splited by group? 312 * 313 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is 314 * used to translate the reason to string. 315 */ 316 enum skb_drop_reason { 317 SKB_DROP_REASON_NOT_SPECIFIED, /* drop reason is not specified */ 318 SKB_DROP_REASON_NO_SOCKET, /* socket not found */ 319 SKB_DROP_REASON_PKT_TOO_SMALL, /* packet size is too small */ 320 SKB_DROP_REASON_TCP_CSUM, /* TCP checksum error */ 321 SKB_DROP_REASON_SOCKET_FILTER, /* dropped by socket filter */ 322 SKB_DROP_REASON_UDP_CSUM, /* UDP checksum error */ 323 SKB_DROP_REASON_NETFILTER_DROP, /* dropped by netfilter */ 324 SKB_DROP_REASON_OTHERHOST, /* packet don't belong to current 325 * host (interface is in promisc 326 * mode) 327 */ 328 SKB_DROP_REASON_IP_CSUM, /* IP checksum error */ 329 SKB_DROP_REASON_IP_INHDR, /* there is something wrong with 330 * IP header (see 331 * IPSTATS_MIB_INHDRERRORS) 332 */ 333 SKB_DROP_REASON_IP_RPFILTER, /* IP rpfilter validate failed. 334 * see the document for rp_filter 335 * in ip-sysctl.rst for more 336 * information 337 */ 338 SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2 339 * is multicast, but L3 is 340 * unicast. 341 */ 342 SKB_DROP_REASON_XFRM_POLICY, /* xfrm policy check failed */ 343 SKB_DROP_REASON_IP_NOPROTO, /* no support for IP protocol */ 344 SKB_DROP_REASON_SOCKET_RCVBUFF, /* socket receive buff is full */ 345 SKB_DROP_REASON_PROTO_MEM, /* proto memory limition, such as 346 * udp packet drop out of 347 * udp_memory_allocated. 348 */ 349 SKB_DROP_REASON_TCP_MD5NOTFOUND, /* no MD5 hash and one 350 * expected, corresponding 351 * to LINUX_MIB_TCPMD5NOTFOUND 352 */ 353 SKB_DROP_REASON_TCP_MD5UNEXPECTED, /* MD5 hash and we're not 354 * expecting one, corresponding 355 * to LINUX_MIB_TCPMD5UNEXPECTED 356 */ 357 SKB_DROP_REASON_TCP_MD5FAILURE, /* MD5 hash and its wrong, 358 * corresponding to 359 * LINUX_MIB_TCPMD5FAILURE 360 */ 361 SKB_DROP_REASON_SOCKET_BACKLOG, /* failed to add skb to socket 362 * backlog (see 363 * LINUX_MIB_TCPBACKLOGDROP) 364 */ 365 SKB_DROP_REASON_TCP_FLAGS, /* TCP flags invalid */ 366 SKB_DROP_REASON_TCP_ZEROWINDOW, /* TCP receive window size is zero, 367 * see LINUX_MIB_TCPZEROWINDOWDROP 368 */ 369 SKB_DROP_REASON_TCP_OLD_DATA, /* the TCP data reveived is already 370 * received before (spurious retrans 371 * may happened), see 372 * LINUX_MIB_DELAYEDACKLOST 373 */ 374 SKB_DROP_REASON_TCP_OVERWINDOW, /* the TCP data is out of window, 375 * the seq of the first byte exceed 376 * the right edges of receive 377 * window 378 */ 379 SKB_DROP_REASON_TCP_OFOMERGE, /* the data of skb is already in 380 * the ofo queue, corresponding to 381 * LINUX_MIB_TCPOFOMERGE 382 */ 383 SKB_DROP_REASON_IP_OUTNOROUTES, /* route lookup failed */ 384 SKB_DROP_REASON_BPF_CGROUP_EGRESS, /* dropped by 385 * BPF_PROG_TYPE_CGROUP_SKB 386 * eBPF program 387 */ 388 SKB_DROP_REASON_IPV6DISABLED, /* IPv6 is disabled on the device */ 389 SKB_DROP_REASON_NEIGH_CREATEFAIL, /* failed to create neigh 390 * entry 391 */ 392 SKB_DROP_REASON_NEIGH_FAILED, /* neigh entry in failed state */ 393 SKB_DROP_REASON_NEIGH_QUEUEFULL, /* arp_queue for neigh 394 * entry is full 395 */ 396 SKB_DROP_REASON_NEIGH_DEAD, /* neigh entry is dead */ 397 SKB_DROP_REASON_TC_EGRESS, /* dropped in TC egress HOOK */ 398 SKB_DROP_REASON_QDISC_DROP, /* dropped by qdisc when packet 399 * outputting (failed to enqueue to 400 * current qdisc) 401 */ 402 SKB_DROP_REASON_CPU_BACKLOG, /* failed to enqueue the skb to 403 * the per CPU backlog queue. This 404 * can be caused by backlog queue 405 * full (see netdev_max_backlog in 406 * net.rst) or RPS flow limit 407 */ 408 SKB_DROP_REASON_XDP, /* dropped by XDP in input path */ 409 SKB_DROP_REASON_TC_INGRESS, /* dropped in TC ingress HOOK */ 410 SKB_DROP_REASON_PTYPE_ABSENT, /* not packet_type found to handle 411 * the skb. For an etner packet, 412 * this means that L3 protocol is 413 * not supported 414 */ 415 SKB_DROP_REASON_MAX, 416 }; 417 418 /* To allow 64K frame to be packed as single skb without frag_list we 419 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 420 * buffers which do not start on a page boundary. 421 * 422 * Since GRO uses frags we allocate at least 16 regardless of page 423 * size. 424 */ 425 #if (65536/PAGE_SIZE + 1) < 16 426 #define MAX_SKB_FRAGS 16UL 427 #else 428 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 429 #endif 430 extern int sysctl_max_skb_frags; 431 432 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 433 * segment using its current segmentation instead. 434 */ 435 #define GSO_BY_FRAGS 0xFFFF 436 437 typedef struct bio_vec skb_frag_t; 438 439 /** 440 * skb_frag_size() - Returns the size of a skb fragment 441 * @frag: skb fragment 442 */ 443 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 444 { 445 return frag->bv_len; 446 } 447 448 /** 449 * skb_frag_size_set() - Sets the size of a skb fragment 450 * @frag: skb fragment 451 * @size: size of fragment 452 */ 453 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 454 { 455 frag->bv_len = size; 456 } 457 458 /** 459 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 460 * @frag: skb fragment 461 * @delta: value to add 462 */ 463 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 464 { 465 frag->bv_len += delta; 466 } 467 468 /** 469 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 470 * @frag: skb fragment 471 * @delta: value to subtract 472 */ 473 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 474 { 475 frag->bv_len -= delta; 476 } 477 478 /** 479 * skb_frag_must_loop - Test if %p is a high memory page 480 * @p: fragment's page 481 */ 482 static inline bool skb_frag_must_loop(struct page *p) 483 { 484 #if defined(CONFIG_HIGHMEM) 485 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 486 return true; 487 #endif 488 return false; 489 } 490 491 /** 492 * skb_frag_foreach_page - loop over pages in a fragment 493 * 494 * @f: skb frag to operate on 495 * @f_off: offset from start of f->bv_page 496 * @f_len: length from f_off to loop over 497 * @p: (temp var) current page 498 * @p_off: (temp var) offset from start of current page, 499 * non-zero only on first page. 500 * @p_len: (temp var) length in current page, 501 * < PAGE_SIZE only on first and last page. 502 * @copied: (temp var) length so far, excluding current p_len. 503 * 504 * A fragment can hold a compound page, in which case per-page 505 * operations, notably kmap_atomic, must be called for each 506 * regular page. 507 */ 508 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 509 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 510 p_off = (f_off) & (PAGE_SIZE - 1), \ 511 p_len = skb_frag_must_loop(p) ? \ 512 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 513 copied = 0; \ 514 copied < f_len; \ 515 copied += p_len, p++, p_off = 0, \ 516 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 517 518 #define HAVE_HW_TIME_STAMP 519 520 /** 521 * struct skb_shared_hwtstamps - hardware time stamps 522 * @hwtstamp: hardware time stamp transformed into duration 523 * since arbitrary point in time 524 * 525 * Software time stamps generated by ktime_get_real() are stored in 526 * skb->tstamp. 527 * 528 * hwtstamps can only be compared against other hwtstamps from 529 * the same device. 530 * 531 * This structure is attached to packets as part of the 532 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 533 */ 534 struct skb_shared_hwtstamps { 535 ktime_t hwtstamp; 536 }; 537 538 /* Definitions for tx_flags in struct skb_shared_info */ 539 enum { 540 /* generate hardware time stamp */ 541 SKBTX_HW_TSTAMP = 1 << 0, 542 543 /* generate software time stamp when queueing packet to NIC */ 544 SKBTX_SW_TSTAMP = 1 << 1, 545 546 /* device driver is going to provide hardware time stamp */ 547 SKBTX_IN_PROGRESS = 1 << 2, 548 549 /* generate wifi status information (where possible) */ 550 SKBTX_WIFI_STATUS = 1 << 4, 551 552 /* generate software time stamp when entering packet scheduling */ 553 SKBTX_SCHED_TSTAMP = 1 << 6, 554 }; 555 556 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 557 SKBTX_SCHED_TSTAMP) 558 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 559 560 /* Definitions for flags in struct skb_shared_info */ 561 enum { 562 /* use zcopy routines */ 563 SKBFL_ZEROCOPY_ENABLE = BIT(0), 564 565 /* This indicates at least one fragment might be overwritten 566 * (as in vmsplice(), sendfile() ...) 567 * If we need to compute a TX checksum, we'll need to copy 568 * all frags to avoid possible bad checksum 569 */ 570 SKBFL_SHARED_FRAG = BIT(1), 571 572 /* segment contains only zerocopy data and should not be 573 * charged to the kernel memory. 574 */ 575 SKBFL_PURE_ZEROCOPY = BIT(2), 576 }; 577 578 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 579 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY) 580 581 /* 582 * The callback notifies userspace to release buffers when skb DMA is done in 583 * lower device, the skb last reference should be 0 when calling this. 584 * The zerocopy_success argument is true if zero copy transmit occurred, 585 * false on data copy or out of memory error caused by data copy attempt. 586 * The ctx field is used to track device context. 587 * The desc field is used to track userspace buffer index. 588 */ 589 struct ubuf_info { 590 void (*callback)(struct sk_buff *, struct ubuf_info *, 591 bool zerocopy_success); 592 union { 593 struct { 594 unsigned long desc; 595 void *ctx; 596 }; 597 struct { 598 u32 id; 599 u16 len; 600 u16 zerocopy:1; 601 u32 bytelen; 602 }; 603 }; 604 refcount_t refcnt; 605 u8 flags; 606 607 struct mmpin { 608 struct user_struct *user; 609 unsigned int num_pg; 610 } mmp; 611 }; 612 613 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 614 615 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 616 void mm_unaccount_pinned_pages(struct mmpin *mmp); 617 618 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size); 619 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 620 struct ubuf_info *uarg); 621 622 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 623 624 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 625 bool success); 626 627 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 628 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 629 struct msghdr *msg, int len, 630 struct ubuf_info *uarg); 631 632 /* This data is invariant across clones and lives at 633 * the end of the header data, ie. at skb->end. 634 */ 635 struct skb_shared_info { 636 __u8 flags; 637 __u8 meta_len; 638 __u8 nr_frags; 639 __u8 tx_flags; 640 unsigned short gso_size; 641 /* Warning: this field is not always filled in (UFO)! */ 642 unsigned short gso_segs; 643 struct sk_buff *frag_list; 644 struct skb_shared_hwtstamps hwtstamps; 645 unsigned int gso_type; 646 u32 tskey; 647 648 /* 649 * Warning : all fields before dataref are cleared in __alloc_skb() 650 */ 651 atomic_t dataref; 652 unsigned int xdp_frags_size; 653 654 /* Intermediate layers must ensure that destructor_arg 655 * remains valid until skb destructor */ 656 void * destructor_arg; 657 658 /* must be last field, see pskb_expand_head() */ 659 skb_frag_t frags[MAX_SKB_FRAGS]; 660 }; 661 662 /* We divide dataref into two halves. The higher 16 bits hold references 663 * to the payload part of skb->data. The lower 16 bits hold references to 664 * the entire skb->data. A clone of a headerless skb holds the length of 665 * the header in skb->hdr_len. 666 * 667 * All users must obey the rule that the skb->data reference count must be 668 * greater than or equal to the payload reference count. 669 * 670 * Holding a reference to the payload part means that the user does not 671 * care about modifications to the header part of skb->data. 672 */ 673 #define SKB_DATAREF_SHIFT 16 674 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 675 676 677 enum { 678 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 679 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 680 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 681 }; 682 683 enum { 684 SKB_GSO_TCPV4 = 1 << 0, 685 686 /* This indicates the skb is from an untrusted source. */ 687 SKB_GSO_DODGY = 1 << 1, 688 689 /* This indicates the tcp segment has CWR set. */ 690 SKB_GSO_TCP_ECN = 1 << 2, 691 692 SKB_GSO_TCP_FIXEDID = 1 << 3, 693 694 SKB_GSO_TCPV6 = 1 << 4, 695 696 SKB_GSO_FCOE = 1 << 5, 697 698 SKB_GSO_GRE = 1 << 6, 699 700 SKB_GSO_GRE_CSUM = 1 << 7, 701 702 SKB_GSO_IPXIP4 = 1 << 8, 703 704 SKB_GSO_IPXIP6 = 1 << 9, 705 706 SKB_GSO_UDP_TUNNEL = 1 << 10, 707 708 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 709 710 SKB_GSO_PARTIAL = 1 << 12, 711 712 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 713 714 SKB_GSO_SCTP = 1 << 14, 715 716 SKB_GSO_ESP = 1 << 15, 717 718 SKB_GSO_UDP = 1 << 16, 719 720 SKB_GSO_UDP_L4 = 1 << 17, 721 722 SKB_GSO_FRAGLIST = 1 << 18, 723 }; 724 725 #if BITS_PER_LONG > 32 726 #define NET_SKBUFF_DATA_USES_OFFSET 1 727 #endif 728 729 #ifdef NET_SKBUFF_DATA_USES_OFFSET 730 typedef unsigned int sk_buff_data_t; 731 #else 732 typedef unsigned char *sk_buff_data_t; 733 #endif 734 735 /** 736 * struct sk_buff - socket buffer 737 * @next: Next buffer in list 738 * @prev: Previous buffer in list 739 * @tstamp: Time we arrived/left 740 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 741 * for retransmit timer 742 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 743 * @list: queue head 744 * @ll_node: anchor in an llist (eg socket defer_list) 745 * @sk: Socket we are owned by 746 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 747 * fragmentation management 748 * @dev: Device we arrived on/are leaving by 749 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 750 * @cb: Control buffer. Free for use by every layer. Put private vars here 751 * @_skb_refdst: destination entry (with norefcount bit) 752 * @sp: the security path, used for xfrm 753 * @len: Length of actual data 754 * @data_len: Data length 755 * @mac_len: Length of link layer header 756 * @hdr_len: writable header length of cloned skb 757 * @csum: Checksum (must include start/offset pair) 758 * @csum_start: Offset from skb->head where checksumming should start 759 * @csum_offset: Offset from csum_start where checksum should be stored 760 * @priority: Packet queueing priority 761 * @ignore_df: allow local fragmentation 762 * @cloned: Head may be cloned (check refcnt to be sure) 763 * @ip_summed: Driver fed us an IP checksum 764 * @nohdr: Payload reference only, must not modify header 765 * @pkt_type: Packet class 766 * @fclone: skbuff clone status 767 * @ipvs_property: skbuff is owned by ipvs 768 * @inner_protocol_type: whether the inner protocol is 769 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 770 * @remcsum_offload: remote checksum offload is enabled 771 * @offload_fwd_mark: Packet was L2-forwarded in hardware 772 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 773 * @tc_skip_classify: do not classify packet. set by IFB device 774 * @tc_at_ingress: used within tc_classify to distinguish in/egress 775 * @redirected: packet was redirected by packet classifier 776 * @from_ingress: packet was redirected from the ingress path 777 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 778 * @peeked: this packet has been seen already, so stats have been 779 * done for it, don't do them again 780 * @nf_trace: netfilter packet trace flag 781 * @protocol: Packet protocol from driver 782 * @destructor: Destruct function 783 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 784 * @_sk_redir: socket redirection information for skmsg 785 * @_nfct: Associated connection, if any (with nfctinfo bits) 786 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 787 * @skb_iif: ifindex of device we arrived on 788 * @tc_index: Traffic control index 789 * @hash: the packet hash 790 * @queue_mapping: Queue mapping for multiqueue devices 791 * @head_frag: skb was allocated from page fragments, 792 * not allocated by kmalloc() or vmalloc(). 793 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 794 * @pp_recycle: mark the packet for recycling instead of freeing (implies 795 * page_pool support on driver) 796 * @active_extensions: active extensions (skb_ext_id types) 797 * @ndisc_nodetype: router type (from link layer) 798 * @ooo_okay: allow the mapping of a socket to a queue to be changed 799 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 800 * ports. 801 * @sw_hash: indicates hash was computed in software stack 802 * @wifi_acked_valid: wifi_acked was set 803 * @wifi_acked: whether frame was acked on wifi or not 804 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 805 * @encapsulation: indicates the inner headers in the skbuff are valid 806 * @encap_hdr_csum: software checksum is needed 807 * @csum_valid: checksum is already valid 808 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 809 * @csum_complete_sw: checksum was completed by software 810 * @csum_level: indicates the number of consecutive checksums found in 811 * the packet minus one that have been verified as 812 * CHECKSUM_UNNECESSARY (max 3) 813 * @dst_pending_confirm: need to confirm neighbour 814 * @decrypted: Decrypted SKB 815 * @slow_gro: state present at GRO time, slower prepare step required 816 * @mono_delivery_time: When set, skb->tstamp has the 817 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 818 * skb->tstamp has the (rcv) timestamp at ingress and 819 * delivery_time at egress. 820 * @napi_id: id of the NAPI struct this skb came from 821 * @sender_cpu: (aka @napi_id) source CPU in XPS 822 * @secmark: security marking 823 * @mark: Generic packet mark 824 * @reserved_tailroom: (aka @mark) number of bytes of free space available 825 * at the tail of an sk_buff 826 * @vlan_present: VLAN tag is present 827 * @vlan_proto: vlan encapsulation protocol 828 * @vlan_tci: vlan tag control information 829 * @inner_protocol: Protocol (encapsulation) 830 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 831 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 832 * @inner_transport_header: Inner transport layer header (encapsulation) 833 * @inner_network_header: Network layer header (encapsulation) 834 * @inner_mac_header: Link layer header (encapsulation) 835 * @transport_header: Transport layer header 836 * @network_header: Network layer header 837 * @mac_header: Link layer header 838 * @kcov_handle: KCOV remote handle for remote coverage collection 839 * @tail: Tail pointer 840 * @end: End pointer 841 * @head: Head of buffer 842 * @data: Data head pointer 843 * @truesize: Buffer size 844 * @users: User count - see {datagram,tcp}.c 845 * @extensions: allocated extensions, valid if active_extensions is nonzero 846 */ 847 848 struct sk_buff { 849 union { 850 struct { 851 /* These two members must be first to match sk_buff_head. */ 852 struct sk_buff *next; 853 struct sk_buff *prev; 854 855 union { 856 struct net_device *dev; 857 /* Some protocols might use this space to store information, 858 * while device pointer would be NULL. 859 * UDP receive path is one user. 860 */ 861 unsigned long dev_scratch; 862 }; 863 }; 864 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 865 struct list_head list; 866 struct llist_node ll_node; 867 }; 868 869 union { 870 struct sock *sk; 871 int ip_defrag_offset; 872 }; 873 874 union { 875 ktime_t tstamp; 876 u64 skb_mstamp_ns; /* earliest departure time */ 877 }; 878 /* 879 * This is the control buffer. It is free to use for every 880 * layer. Please put your private variables there. If you 881 * want to keep them across layers you have to do a skb_clone() 882 * first. This is owned by whoever has the skb queued ATM. 883 */ 884 char cb[48] __aligned(8); 885 886 union { 887 struct { 888 unsigned long _skb_refdst; 889 void (*destructor)(struct sk_buff *skb); 890 }; 891 struct list_head tcp_tsorted_anchor; 892 #ifdef CONFIG_NET_SOCK_MSG 893 unsigned long _sk_redir; 894 #endif 895 }; 896 897 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 898 unsigned long _nfct; 899 #endif 900 unsigned int len, 901 data_len; 902 __u16 mac_len, 903 hdr_len; 904 905 /* Following fields are _not_ copied in __copy_skb_header() 906 * Note that queue_mapping is here mostly to fill a hole. 907 */ 908 __u16 queue_mapping; 909 910 /* if you move cloned around you also must adapt those constants */ 911 #ifdef __BIG_ENDIAN_BITFIELD 912 #define CLONED_MASK (1 << 7) 913 #else 914 #define CLONED_MASK 1 915 #endif 916 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 917 918 /* private: */ 919 __u8 __cloned_offset[0]; 920 /* public: */ 921 __u8 cloned:1, 922 nohdr:1, 923 fclone:2, 924 peeked:1, 925 head_frag:1, 926 pfmemalloc:1, 927 pp_recycle:1; /* page_pool recycle indicator */ 928 #ifdef CONFIG_SKB_EXTENSIONS 929 __u8 active_extensions; 930 #endif 931 932 /* Fields enclosed in headers group are copied 933 * using a single memcpy() in __copy_skb_header() 934 */ 935 struct_group(headers, 936 937 /* private: */ 938 __u8 __pkt_type_offset[0]; 939 /* public: */ 940 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 941 __u8 ignore_df:1; 942 __u8 nf_trace:1; 943 __u8 ip_summed:2; 944 __u8 ooo_okay:1; 945 946 __u8 l4_hash:1; 947 __u8 sw_hash:1; 948 __u8 wifi_acked_valid:1; 949 __u8 wifi_acked:1; 950 __u8 no_fcs:1; 951 /* Indicates the inner headers are valid in the skbuff. */ 952 __u8 encapsulation:1; 953 __u8 encap_hdr_csum:1; 954 __u8 csum_valid:1; 955 956 /* private: */ 957 __u8 __pkt_vlan_present_offset[0]; 958 /* public: */ 959 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 960 __u8 csum_complete_sw:1; 961 __u8 csum_level:2; 962 __u8 dst_pending_confirm:1; 963 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 964 #ifdef CONFIG_NET_CLS_ACT 965 __u8 tc_skip_classify:1; 966 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 967 #endif 968 #ifdef CONFIG_IPV6_NDISC_NODETYPE 969 __u8 ndisc_nodetype:2; 970 #endif 971 972 __u8 ipvs_property:1; 973 __u8 inner_protocol_type:1; 974 __u8 remcsum_offload:1; 975 #ifdef CONFIG_NET_SWITCHDEV 976 __u8 offload_fwd_mark:1; 977 __u8 offload_l3_fwd_mark:1; 978 #endif 979 __u8 redirected:1; 980 #ifdef CONFIG_NET_REDIRECT 981 __u8 from_ingress:1; 982 #endif 983 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 984 __u8 nf_skip_egress:1; 985 #endif 986 #ifdef CONFIG_TLS_DEVICE 987 __u8 decrypted:1; 988 #endif 989 __u8 slow_gro:1; 990 __u8 csum_not_inet:1; 991 992 #ifdef CONFIG_NET_SCHED 993 __u16 tc_index; /* traffic control index */ 994 #endif 995 996 union { 997 __wsum csum; 998 struct { 999 __u16 csum_start; 1000 __u16 csum_offset; 1001 }; 1002 }; 1003 __u32 priority; 1004 int skb_iif; 1005 __u32 hash; 1006 __be16 vlan_proto; 1007 __u16 vlan_tci; 1008 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1009 union { 1010 unsigned int napi_id; 1011 unsigned int sender_cpu; 1012 }; 1013 #endif 1014 #ifdef CONFIG_NETWORK_SECMARK 1015 __u32 secmark; 1016 #endif 1017 1018 union { 1019 __u32 mark; 1020 __u32 reserved_tailroom; 1021 }; 1022 1023 union { 1024 __be16 inner_protocol; 1025 __u8 inner_ipproto; 1026 }; 1027 1028 __u16 inner_transport_header; 1029 __u16 inner_network_header; 1030 __u16 inner_mac_header; 1031 1032 __be16 protocol; 1033 __u16 transport_header; 1034 __u16 network_header; 1035 __u16 mac_header; 1036 1037 #ifdef CONFIG_KCOV 1038 u64 kcov_handle; 1039 #endif 1040 1041 ); /* end headers group */ 1042 1043 /* These elements must be at the end, see alloc_skb() for details. */ 1044 sk_buff_data_t tail; 1045 sk_buff_data_t end; 1046 unsigned char *head, 1047 *data; 1048 unsigned int truesize; 1049 refcount_t users; 1050 1051 #ifdef CONFIG_SKB_EXTENSIONS 1052 /* only useable after checking ->active_extensions != 0 */ 1053 struct skb_ext *extensions; 1054 #endif 1055 }; 1056 1057 /* if you move pkt_type around you also must adapt those constants */ 1058 #ifdef __BIG_ENDIAN_BITFIELD 1059 #define PKT_TYPE_MAX (7 << 5) 1060 #else 1061 #define PKT_TYPE_MAX 7 1062 #endif 1063 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1064 1065 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time 1066 * around, you also must adapt these constants. 1067 */ 1068 #ifdef __BIG_ENDIAN_BITFIELD 1069 #define PKT_VLAN_PRESENT_BIT 7 1070 #define TC_AT_INGRESS_MASK (1 << 0) 1071 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1072 #else 1073 #define PKT_VLAN_PRESENT_BIT 0 1074 #define TC_AT_INGRESS_MASK (1 << 7) 1075 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1076 #endif 1077 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1078 1079 #ifdef __KERNEL__ 1080 /* 1081 * Handling routines are only of interest to the kernel 1082 */ 1083 1084 #define SKB_ALLOC_FCLONE 0x01 1085 #define SKB_ALLOC_RX 0x02 1086 #define SKB_ALLOC_NAPI 0x04 1087 1088 /** 1089 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1090 * @skb: buffer 1091 */ 1092 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1093 { 1094 return unlikely(skb->pfmemalloc); 1095 } 1096 1097 /* 1098 * skb might have a dst pointer attached, refcounted or not. 1099 * _skb_refdst low order bit is set if refcount was _not_ taken 1100 */ 1101 #define SKB_DST_NOREF 1UL 1102 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1103 1104 /** 1105 * skb_dst - returns skb dst_entry 1106 * @skb: buffer 1107 * 1108 * Returns skb dst_entry, regardless of reference taken or not. 1109 */ 1110 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1111 { 1112 /* If refdst was not refcounted, check we still are in a 1113 * rcu_read_lock section 1114 */ 1115 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1116 !rcu_read_lock_held() && 1117 !rcu_read_lock_bh_held()); 1118 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1119 } 1120 1121 /** 1122 * skb_dst_set - sets skb dst 1123 * @skb: buffer 1124 * @dst: dst entry 1125 * 1126 * Sets skb dst, assuming a reference was taken on dst and should 1127 * be released by skb_dst_drop() 1128 */ 1129 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1130 { 1131 skb->slow_gro |= !!dst; 1132 skb->_skb_refdst = (unsigned long)dst; 1133 } 1134 1135 /** 1136 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1137 * @skb: buffer 1138 * @dst: dst entry 1139 * 1140 * Sets skb dst, assuming a reference was not taken on dst. 1141 * If dst entry is cached, we do not take reference and dst_release 1142 * will be avoided by refdst_drop. If dst entry is not cached, we take 1143 * reference, so that last dst_release can destroy the dst immediately. 1144 */ 1145 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1146 { 1147 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1148 skb->slow_gro |= !!dst; 1149 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1150 } 1151 1152 /** 1153 * skb_dst_is_noref - Test if skb dst isn't refcounted 1154 * @skb: buffer 1155 */ 1156 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1157 { 1158 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1159 } 1160 1161 /** 1162 * skb_rtable - Returns the skb &rtable 1163 * @skb: buffer 1164 */ 1165 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1166 { 1167 return (struct rtable *)skb_dst(skb); 1168 } 1169 1170 /* For mangling skb->pkt_type from user space side from applications 1171 * such as nft, tc, etc, we only allow a conservative subset of 1172 * possible pkt_types to be set. 1173 */ 1174 static inline bool skb_pkt_type_ok(u32 ptype) 1175 { 1176 return ptype <= PACKET_OTHERHOST; 1177 } 1178 1179 /** 1180 * skb_napi_id - Returns the skb's NAPI id 1181 * @skb: buffer 1182 */ 1183 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1184 { 1185 #ifdef CONFIG_NET_RX_BUSY_POLL 1186 return skb->napi_id; 1187 #else 1188 return 0; 1189 #endif 1190 } 1191 1192 /** 1193 * skb_unref - decrement the skb's reference count 1194 * @skb: buffer 1195 * 1196 * Returns true if we can free the skb. 1197 */ 1198 static inline bool skb_unref(struct sk_buff *skb) 1199 { 1200 if (unlikely(!skb)) 1201 return false; 1202 if (likely(refcount_read(&skb->users) == 1)) 1203 smp_rmb(); 1204 else if (likely(!refcount_dec_and_test(&skb->users))) 1205 return false; 1206 1207 return true; 1208 } 1209 1210 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1211 1212 /** 1213 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1214 * @skb: buffer to free 1215 */ 1216 static inline void kfree_skb(struct sk_buff *skb) 1217 { 1218 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1219 } 1220 1221 void skb_release_head_state(struct sk_buff *skb); 1222 void kfree_skb_list_reason(struct sk_buff *segs, 1223 enum skb_drop_reason reason); 1224 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1225 void skb_tx_error(struct sk_buff *skb); 1226 1227 static inline void kfree_skb_list(struct sk_buff *segs) 1228 { 1229 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1230 } 1231 1232 #ifdef CONFIG_TRACEPOINTS 1233 void consume_skb(struct sk_buff *skb); 1234 #else 1235 static inline void consume_skb(struct sk_buff *skb) 1236 { 1237 return kfree_skb(skb); 1238 } 1239 #endif 1240 1241 void __consume_stateless_skb(struct sk_buff *skb); 1242 void __kfree_skb(struct sk_buff *skb); 1243 extern struct kmem_cache *skbuff_head_cache; 1244 1245 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1246 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1247 bool *fragstolen, int *delta_truesize); 1248 1249 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1250 int node); 1251 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1252 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1253 struct sk_buff *build_skb_around(struct sk_buff *skb, 1254 void *data, unsigned int frag_size); 1255 1256 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1257 1258 /** 1259 * alloc_skb - allocate a network buffer 1260 * @size: size to allocate 1261 * @priority: allocation mask 1262 * 1263 * This function is a convenient wrapper around __alloc_skb(). 1264 */ 1265 static inline struct sk_buff *alloc_skb(unsigned int size, 1266 gfp_t priority) 1267 { 1268 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1269 } 1270 1271 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1272 unsigned long data_len, 1273 int max_page_order, 1274 int *errcode, 1275 gfp_t gfp_mask); 1276 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1277 1278 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1279 struct sk_buff_fclones { 1280 struct sk_buff skb1; 1281 1282 struct sk_buff skb2; 1283 1284 refcount_t fclone_ref; 1285 }; 1286 1287 /** 1288 * skb_fclone_busy - check if fclone is busy 1289 * @sk: socket 1290 * @skb: buffer 1291 * 1292 * Returns true if skb is a fast clone, and its clone is not freed. 1293 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1294 * so we also check that this didnt happen. 1295 */ 1296 static inline bool skb_fclone_busy(const struct sock *sk, 1297 const struct sk_buff *skb) 1298 { 1299 const struct sk_buff_fclones *fclones; 1300 1301 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1302 1303 return skb->fclone == SKB_FCLONE_ORIG && 1304 refcount_read(&fclones->fclone_ref) > 1 && 1305 READ_ONCE(fclones->skb2.sk) == sk; 1306 } 1307 1308 /** 1309 * alloc_skb_fclone - allocate a network buffer from fclone cache 1310 * @size: size to allocate 1311 * @priority: allocation mask 1312 * 1313 * This function is a convenient wrapper around __alloc_skb(). 1314 */ 1315 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1316 gfp_t priority) 1317 { 1318 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1319 } 1320 1321 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1322 void skb_headers_offset_update(struct sk_buff *skb, int off); 1323 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1324 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1325 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1326 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1327 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1328 gfp_t gfp_mask, bool fclone); 1329 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1330 gfp_t gfp_mask) 1331 { 1332 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1333 } 1334 1335 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1336 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1337 unsigned int headroom); 1338 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1339 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1340 int newtailroom, gfp_t priority); 1341 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1342 int offset, int len); 1343 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1344 int offset, int len); 1345 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1346 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1347 1348 /** 1349 * skb_pad - zero pad the tail of an skb 1350 * @skb: buffer to pad 1351 * @pad: space to pad 1352 * 1353 * Ensure that a buffer is followed by a padding area that is zero 1354 * filled. Used by network drivers which may DMA or transfer data 1355 * beyond the buffer end onto the wire. 1356 * 1357 * May return error in out of memory cases. The skb is freed on error. 1358 */ 1359 static inline int skb_pad(struct sk_buff *skb, int pad) 1360 { 1361 return __skb_pad(skb, pad, true); 1362 } 1363 #define dev_kfree_skb(a) consume_skb(a) 1364 1365 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1366 int offset, size_t size); 1367 1368 struct skb_seq_state { 1369 __u32 lower_offset; 1370 __u32 upper_offset; 1371 __u32 frag_idx; 1372 __u32 stepped_offset; 1373 struct sk_buff *root_skb; 1374 struct sk_buff *cur_skb; 1375 __u8 *frag_data; 1376 __u32 frag_off; 1377 }; 1378 1379 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1380 unsigned int to, struct skb_seq_state *st); 1381 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1382 struct skb_seq_state *st); 1383 void skb_abort_seq_read(struct skb_seq_state *st); 1384 1385 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1386 unsigned int to, struct ts_config *config); 1387 1388 /* 1389 * Packet hash types specify the type of hash in skb_set_hash. 1390 * 1391 * Hash types refer to the protocol layer addresses which are used to 1392 * construct a packet's hash. The hashes are used to differentiate or identify 1393 * flows of the protocol layer for the hash type. Hash types are either 1394 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1395 * 1396 * Properties of hashes: 1397 * 1398 * 1) Two packets in different flows have different hash values 1399 * 2) Two packets in the same flow should have the same hash value 1400 * 1401 * A hash at a higher layer is considered to be more specific. A driver should 1402 * set the most specific hash possible. 1403 * 1404 * A driver cannot indicate a more specific hash than the layer at which a hash 1405 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1406 * 1407 * A driver may indicate a hash level which is less specific than the 1408 * actual layer the hash was computed on. For instance, a hash computed 1409 * at L4 may be considered an L3 hash. This should only be done if the 1410 * driver can't unambiguously determine that the HW computed the hash at 1411 * the higher layer. Note that the "should" in the second property above 1412 * permits this. 1413 */ 1414 enum pkt_hash_types { 1415 PKT_HASH_TYPE_NONE, /* Undefined type */ 1416 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1417 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1418 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1419 }; 1420 1421 static inline void skb_clear_hash(struct sk_buff *skb) 1422 { 1423 skb->hash = 0; 1424 skb->sw_hash = 0; 1425 skb->l4_hash = 0; 1426 } 1427 1428 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1429 { 1430 if (!skb->l4_hash) 1431 skb_clear_hash(skb); 1432 } 1433 1434 static inline void 1435 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1436 { 1437 skb->l4_hash = is_l4; 1438 skb->sw_hash = is_sw; 1439 skb->hash = hash; 1440 } 1441 1442 static inline void 1443 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1444 { 1445 /* Used by drivers to set hash from HW */ 1446 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1447 } 1448 1449 static inline void 1450 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1451 { 1452 __skb_set_hash(skb, hash, true, is_l4); 1453 } 1454 1455 void __skb_get_hash(struct sk_buff *skb); 1456 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1457 u32 skb_get_poff(const struct sk_buff *skb); 1458 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1459 const struct flow_keys_basic *keys, int hlen); 1460 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1461 const void *data, int hlen_proto); 1462 1463 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1464 int thoff, u8 ip_proto) 1465 { 1466 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1467 } 1468 1469 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1470 const struct flow_dissector_key *key, 1471 unsigned int key_count); 1472 1473 struct bpf_flow_dissector; 1474 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1475 __be16 proto, int nhoff, int hlen, unsigned int flags); 1476 1477 bool __skb_flow_dissect(const struct net *net, 1478 const struct sk_buff *skb, 1479 struct flow_dissector *flow_dissector, 1480 void *target_container, const void *data, 1481 __be16 proto, int nhoff, int hlen, unsigned int flags); 1482 1483 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1484 struct flow_dissector *flow_dissector, 1485 void *target_container, unsigned int flags) 1486 { 1487 return __skb_flow_dissect(NULL, skb, flow_dissector, 1488 target_container, NULL, 0, 0, 0, flags); 1489 } 1490 1491 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1492 struct flow_keys *flow, 1493 unsigned int flags) 1494 { 1495 memset(flow, 0, sizeof(*flow)); 1496 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1497 flow, NULL, 0, 0, 0, flags); 1498 } 1499 1500 static inline bool 1501 skb_flow_dissect_flow_keys_basic(const struct net *net, 1502 const struct sk_buff *skb, 1503 struct flow_keys_basic *flow, 1504 const void *data, __be16 proto, 1505 int nhoff, int hlen, unsigned int flags) 1506 { 1507 memset(flow, 0, sizeof(*flow)); 1508 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1509 data, proto, nhoff, hlen, flags); 1510 } 1511 1512 void skb_flow_dissect_meta(const struct sk_buff *skb, 1513 struct flow_dissector *flow_dissector, 1514 void *target_container); 1515 1516 /* Gets a skb connection tracking info, ctinfo map should be a 1517 * map of mapsize to translate enum ip_conntrack_info states 1518 * to user states. 1519 */ 1520 void 1521 skb_flow_dissect_ct(const struct sk_buff *skb, 1522 struct flow_dissector *flow_dissector, 1523 void *target_container, 1524 u16 *ctinfo_map, size_t mapsize, 1525 bool post_ct, u16 zone); 1526 void 1527 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1528 struct flow_dissector *flow_dissector, 1529 void *target_container); 1530 1531 void skb_flow_dissect_hash(const struct sk_buff *skb, 1532 struct flow_dissector *flow_dissector, 1533 void *target_container); 1534 1535 static inline __u32 skb_get_hash(struct sk_buff *skb) 1536 { 1537 if (!skb->l4_hash && !skb->sw_hash) 1538 __skb_get_hash(skb); 1539 1540 return skb->hash; 1541 } 1542 1543 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1544 { 1545 if (!skb->l4_hash && !skb->sw_hash) { 1546 struct flow_keys keys; 1547 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1548 1549 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1550 } 1551 1552 return skb->hash; 1553 } 1554 1555 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1556 const siphash_key_t *perturb); 1557 1558 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1559 { 1560 return skb->hash; 1561 } 1562 1563 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1564 { 1565 to->hash = from->hash; 1566 to->sw_hash = from->sw_hash; 1567 to->l4_hash = from->l4_hash; 1568 }; 1569 1570 static inline void skb_copy_decrypted(struct sk_buff *to, 1571 const struct sk_buff *from) 1572 { 1573 #ifdef CONFIG_TLS_DEVICE 1574 to->decrypted = from->decrypted; 1575 #endif 1576 } 1577 1578 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1579 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1580 { 1581 return skb->head + skb->end; 1582 } 1583 1584 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1585 { 1586 return skb->end; 1587 } 1588 1589 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1590 { 1591 skb->end = offset; 1592 } 1593 #else 1594 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1595 { 1596 return skb->end; 1597 } 1598 1599 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1600 { 1601 return skb->end - skb->head; 1602 } 1603 1604 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1605 { 1606 skb->end = skb->head + offset; 1607 } 1608 #endif 1609 1610 /* Internal */ 1611 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1612 1613 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1614 { 1615 return &skb_shinfo(skb)->hwtstamps; 1616 } 1617 1618 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1619 { 1620 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1621 1622 return is_zcopy ? skb_uarg(skb) : NULL; 1623 } 1624 1625 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1626 { 1627 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1628 } 1629 1630 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1631 const struct sk_buff *skb2) 1632 { 1633 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1634 } 1635 1636 static inline void net_zcopy_get(struct ubuf_info *uarg) 1637 { 1638 refcount_inc(&uarg->refcnt); 1639 } 1640 1641 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1642 { 1643 skb_shinfo(skb)->destructor_arg = uarg; 1644 skb_shinfo(skb)->flags |= uarg->flags; 1645 } 1646 1647 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1648 bool *have_ref) 1649 { 1650 if (skb && uarg && !skb_zcopy(skb)) { 1651 if (unlikely(have_ref && *have_ref)) 1652 *have_ref = false; 1653 else 1654 net_zcopy_get(uarg); 1655 skb_zcopy_init(skb, uarg); 1656 } 1657 } 1658 1659 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1660 { 1661 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1662 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1663 } 1664 1665 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1666 { 1667 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1668 } 1669 1670 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1671 { 1672 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1673 } 1674 1675 static inline void net_zcopy_put(struct ubuf_info *uarg) 1676 { 1677 if (uarg) 1678 uarg->callback(NULL, uarg, true); 1679 } 1680 1681 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1682 { 1683 if (uarg) { 1684 if (uarg->callback == msg_zerocopy_callback) 1685 msg_zerocopy_put_abort(uarg, have_uref); 1686 else if (have_uref) 1687 net_zcopy_put(uarg); 1688 } 1689 } 1690 1691 /* Release a reference on a zerocopy structure */ 1692 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1693 { 1694 struct ubuf_info *uarg = skb_zcopy(skb); 1695 1696 if (uarg) { 1697 if (!skb_zcopy_is_nouarg(skb)) 1698 uarg->callback(skb, uarg, zerocopy_success); 1699 1700 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1701 } 1702 } 1703 1704 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1705 { 1706 skb->next = NULL; 1707 } 1708 1709 /* Iterate through singly-linked GSO fragments of an skb. */ 1710 #define skb_list_walk_safe(first, skb, next_skb) \ 1711 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1712 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1713 1714 static inline void skb_list_del_init(struct sk_buff *skb) 1715 { 1716 __list_del_entry(&skb->list); 1717 skb_mark_not_on_list(skb); 1718 } 1719 1720 /** 1721 * skb_queue_empty - check if a queue is empty 1722 * @list: queue head 1723 * 1724 * Returns true if the queue is empty, false otherwise. 1725 */ 1726 static inline int skb_queue_empty(const struct sk_buff_head *list) 1727 { 1728 return list->next == (const struct sk_buff *) list; 1729 } 1730 1731 /** 1732 * skb_queue_empty_lockless - check if a queue is empty 1733 * @list: queue head 1734 * 1735 * Returns true if the queue is empty, false otherwise. 1736 * This variant can be used in lockless contexts. 1737 */ 1738 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1739 { 1740 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1741 } 1742 1743 1744 /** 1745 * skb_queue_is_last - check if skb is the last entry in the queue 1746 * @list: queue head 1747 * @skb: buffer 1748 * 1749 * Returns true if @skb is the last buffer on the list. 1750 */ 1751 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1752 const struct sk_buff *skb) 1753 { 1754 return skb->next == (const struct sk_buff *) list; 1755 } 1756 1757 /** 1758 * skb_queue_is_first - check if skb is the first entry in the queue 1759 * @list: queue head 1760 * @skb: buffer 1761 * 1762 * Returns true if @skb is the first buffer on the list. 1763 */ 1764 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1765 const struct sk_buff *skb) 1766 { 1767 return skb->prev == (const struct sk_buff *) list; 1768 } 1769 1770 /** 1771 * skb_queue_next - return the next packet in the queue 1772 * @list: queue head 1773 * @skb: current buffer 1774 * 1775 * Return the next packet in @list after @skb. It is only valid to 1776 * call this if skb_queue_is_last() evaluates to false. 1777 */ 1778 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1779 const struct sk_buff *skb) 1780 { 1781 /* This BUG_ON may seem severe, but if we just return then we 1782 * are going to dereference garbage. 1783 */ 1784 BUG_ON(skb_queue_is_last(list, skb)); 1785 return skb->next; 1786 } 1787 1788 /** 1789 * skb_queue_prev - return the prev packet in the queue 1790 * @list: queue head 1791 * @skb: current buffer 1792 * 1793 * Return the prev packet in @list before @skb. It is only valid to 1794 * call this if skb_queue_is_first() evaluates to false. 1795 */ 1796 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1797 const struct sk_buff *skb) 1798 { 1799 /* This BUG_ON may seem severe, but if we just return then we 1800 * are going to dereference garbage. 1801 */ 1802 BUG_ON(skb_queue_is_first(list, skb)); 1803 return skb->prev; 1804 } 1805 1806 /** 1807 * skb_get - reference buffer 1808 * @skb: buffer to reference 1809 * 1810 * Makes another reference to a socket buffer and returns a pointer 1811 * to the buffer. 1812 */ 1813 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1814 { 1815 refcount_inc(&skb->users); 1816 return skb; 1817 } 1818 1819 /* 1820 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1821 */ 1822 1823 /** 1824 * skb_cloned - is the buffer a clone 1825 * @skb: buffer to check 1826 * 1827 * Returns true if the buffer was generated with skb_clone() and is 1828 * one of multiple shared copies of the buffer. Cloned buffers are 1829 * shared data so must not be written to under normal circumstances. 1830 */ 1831 static inline int skb_cloned(const struct sk_buff *skb) 1832 { 1833 return skb->cloned && 1834 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1835 } 1836 1837 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1838 { 1839 might_sleep_if(gfpflags_allow_blocking(pri)); 1840 1841 if (skb_cloned(skb)) 1842 return pskb_expand_head(skb, 0, 0, pri); 1843 1844 return 0; 1845 } 1846 1847 /* This variant of skb_unclone() makes sure skb->truesize 1848 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1849 * 1850 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1851 * when various debugging features are in place. 1852 */ 1853 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1854 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1855 { 1856 might_sleep_if(gfpflags_allow_blocking(pri)); 1857 1858 if (skb_cloned(skb)) 1859 return __skb_unclone_keeptruesize(skb, pri); 1860 return 0; 1861 } 1862 1863 /** 1864 * skb_header_cloned - is the header a clone 1865 * @skb: buffer to check 1866 * 1867 * Returns true if modifying the header part of the buffer requires 1868 * the data to be copied. 1869 */ 1870 static inline int skb_header_cloned(const struct sk_buff *skb) 1871 { 1872 int dataref; 1873 1874 if (!skb->cloned) 1875 return 0; 1876 1877 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1878 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1879 return dataref != 1; 1880 } 1881 1882 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1883 { 1884 might_sleep_if(gfpflags_allow_blocking(pri)); 1885 1886 if (skb_header_cloned(skb)) 1887 return pskb_expand_head(skb, 0, 0, pri); 1888 1889 return 0; 1890 } 1891 1892 /** 1893 * __skb_header_release - release reference to header 1894 * @skb: buffer to operate on 1895 */ 1896 static inline void __skb_header_release(struct sk_buff *skb) 1897 { 1898 skb->nohdr = 1; 1899 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1900 } 1901 1902 1903 /** 1904 * skb_shared - is the buffer shared 1905 * @skb: buffer to check 1906 * 1907 * Returns true if more than one person has a reference to this 1908 * buffer. 1909 */ 1910 static inline int skb_shared(const struct sk_buff *skb) 1911 { 1912 return refcount_read(&skb->users) != 1; 1913 } 1914 1915 /** 1916 * skb_share_check - check if buffer is shared and if so clone it 1917 * @skb: buffer to check 1918 * @pri: priority for memory allocation 1919 * 1920 * If the buffer is shared the buffer is cloned and the old copy 1921 * drops a reference. A new clone with a single reference is returned. 1922 * If the buffer is not shared the original buffer is returned. When 1923 * being called from interrupt status or with spinlocks held pri must 1924 * be GFP_ATOMIC. 1925 * 1926 * NULL is returned on a memory allocation failure. 1927 */ 1928 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1929 { 1930 might_sleep_if(gfpflags_allow_blocking(pri)); 1931 if (skb_shared(skb)) { 1932 struct sk_buff *nskb = skb_clone(skb, pri); 1933 1934 if (likely(nskb)) 1935 consume_skb(skb); 1936 else 1937 kfree_skb(skb); 1938 skb = nskb; 1939 } 1940 return skb; 1941 } 1942 1943 /* 1944 * Copy shared buffers into a new sk_buff. We effectively do COW on 1945 * packets to handle cases where we have a local reader and forward 1946 * and a couple of other messy ones. The normal one is tcpdumping 1947 * a packet thats being forwarded. 1948 */ 1949 1950 /** 1951 * skb_unshare - make a copy of a shared buffer 1952 * @skb: buffer to check 1953 * @pri: priority for memory allocation 1954 * 1955 * If the socket buffer is a clone then this function creates a new 1956 * copy of the data, drops a reference count on the old copy and returns 1957 * the new copy with the reference count at 1. If the buffer is not a clone 1958 * the original buffer is returned. When called with a spinlock held or 1959 * from interrupt state @pri must be %GFP_ATOMIC 1960 * 1961 * %NULL is returned on a memory allocation failure. 1962 */ 1963 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1964 gfp_t pri) 1965 { 1966 might_sleep_if(gfpflags_allow_blocking(pri)); 1967 if (skb_cloned(skb)) { 1968 struct sk_buff *nskb = skb_copy(skb, pri); 1969 1970 /* Free our shared copy */ 1971 if (likely(nskb)) 1972 consume_skb(skb); 1973 else 1974 kfree_skb(skb); 1975 skb = nskb; 1976 } 1977 return skb; 1978 } 1979 1980 /** 1981 * skb_peek - peek at the head of an &sk_buff_head 1982 * @list_: list to peek at 1983 * 1984 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1985 * be careful with this one. A peek leaves the buffer on the 1986 * list and someone else may run off with it. You must hold 1987 * the appropriate locks or have a private queue to do this. 1988 * 1989 * Returns %NULL for an empty list or a pointer to the head element. 1990 * The reference count is not incremented and the reference is therefore 1991 * volatile. Use with caution. 1992 */ 1993 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1994 { 1995 struct sk_buff *skb = list_->next; 1996 1997 if (skb == (struct sk_buff *)list_) 1998 skb = NULL; 1999 return skb; 2000 } 2001 2002 /** 2003 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2004 * @list_: list to peek at 2005 * 2006 * Like skb_peek(), but the caller knows that the list is not empty. 2007 */ 2008 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2009 { 2010 return list_->next; 2011 } 2012 2013 /** 2014 * skb_peek_next - peek skb following the given one from a queue 2015 * @skb: skb to start from 2016 * @list_: list to peek at 2017 * 2018 * Returns %NULL when the end of the list is met or a pointer to the 2019 * next element. The reference count is not incremented and the 2020 * reference is therefore volatile. Use with caution. 2021 */ 2022 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2023 const struct sk_buff_head *list_) 2024 { 2025 struct sk_buff *next = skb->next; 2026 2027 if (next == (struct sk_buff *)list_) 2028 next = NULL; 2029 return next; 2030 } 2031 2032 /** 2033 * skb_peek_tail - peek at the tail of an &sk_buff_head 2034 * @list_: list to peek at 2035 * 2036 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2037 * be careful with this one. A peek leaves the buffer on the 2038 * list and someone else may run off with it. You must hold 2039 * the appropriate locks or have a private queue to do this. 2040 * 2041 * Returns %NULL for an empty list or a pointer to the tail element. 2042 * The reference count is not incremented and the reference is therefore 2043 * volatile. Use with caution. 2044 */ 2045 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2046 { 2047 struct sk_buff *skb = READ_ONCE(list_->prev); 2048 2049 if (skb == (struct sk_buff *)list_) 2050 skb = NULL; 2051 return skb; 2052 2053 } 2054 2055 /** 2056 * skb_queue_len - get queue length 2057 * @list_: list to measure 2058 * 2059 * Return the length of an &sk_buff queue. 2060 */ 2061 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2062 { 2063 return list_->qlen; 2064 } 2065 2066 /** 2067 * skb_queue_len_lockless - get queue length 2068 * @list_: list to measure 2069 * 2070 * Return the length of an &sk_buff queue. 2071 * This variant can be used in lockless contexts. 2072 */ 2073 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2074 { 2075 return READ_ONCE(list_->qlen); 2076 } 2077 2078 /** 2079 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2080 * @list: queue to initialize 2081 * 2082 * This initializes only the list and queue length aspects of 2083 * an sk_buff_head object. This allows to initialize the list 2084 * aspects of an sk_buff_head without reinitializing things like 2085 * the spinlock. It can also be used for on-stack sk_buff_head 2086 * objects where the spinlock is known to not be used. 2087 */ 2088 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2089 { 2090 list->prev = list->next = (struct sk_buff *)list; 2091 list->qlen = 0; 2092 } 2093 2094 /* 2095 * This function creates a split out lock class for each invocation; 2096 * this is needed for now since a whole lot of users of the skb-queue 2097 * infrastructure in drivers have different locking usage (in hardirq) 2098 * than the networking core (in softirq only). In the long run either the 2099 * network layer or drivers should need annotation to consolidate the 2100 * main types of usage into 3 classes. 2101 */ 2102 static inline void skb_queue_head_init(struct sk_buff_head *list) 2103 { 2104 spin_lock_init(&list->lock); 2105 __skb_queue_head_init(list); 2106 } 2107 2108 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2109 struct lock_class_key *class) 2110 { 2111 skb_queue_head_init(list); 2112 lockdep_set_class(&list->lock, class); 2113 } 2114 2115 /* 2116 * Insert an sk_buff on a list. 2117 * 2118 * The "__skb_xxxx()" functions are the non-atomic ones that 2119 * can only be called with interrupts disabled. 2120 */ 2121 static inline void __skb_insert(struct sk_buff *newsk, 2122 struct sk_buff *prev, struct sk_buff *next, 2123 struct sk_buff_head *list) 2124 { 2125 /* See skb_queue_empty_lockless() and skb_peek_tail() 2126 * for the opposite READ_ONCE() 2127 */ 2128 WRITE_ONCE(newsk->next, next); 2129 WRITE_ONCE(newsk->prev, prev); 2130 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2131 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2132 WRITE_ONCE(list->qlen, list->qlen + 1); 2133 } 2134 2135 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2136 struct sk_buff *prev, 2137 struct sk_buff *next) 2138 { 2139 struct sk_buff *first = list->next; 2140 struct sk_buff *last = list->prev; 2141 2142 WRITE_ONCE(first->prev, prev); 2143 WRITE_ONCE(prev->next, first); 2144 2145 WRITE_ONCE(last->next, next); 2146 WRITE_ONCE(next->prev, last); 2147 } 2148 2149 /** 2150 * skb_queue_splice - join two skb lists, this is designed for stacks 2151 * @list: the new list to add 2152 * @head: the place to add it in the first list 2153 */ 2154 static inline void skb_queue_splice(const struct sk_buff_head *list, 2155 struct sk_buff_head *head) 2156 { 2157 if (!skb_queue_empty(list)) { 2158 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2159 head->qlen += list->qlen; 2160 } 2161 } 2162 2163 /** 2164 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2165 * @list: the new list to add 2166 * @head: the place to add it in the first list 2167 * 2168 * The list at @list is reinitialised 2169 */ 2170 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2171 struct sk_buff_head *head) 2172 { 2173 if (!skb_queue_empty(list)) { 2174 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2175 head->qlen += list->qlen; 2176 __skb_queue_head_init(list); 2177 } 2178 } 2179 2180 /** 2181 * skb_queue_splice_tail - join two skb lists, each list being a queue 2182 * @list: the new list to add 2183 * @head: the place to add it in the first list 2184 */ 2185 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2186 struct sk_buff_head *head) 2187 { 2188 if (!skb_queue_empty(list)) { 2189 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2190 head->qlen += list->qlen; 2191 } 2192 } 2193 2194 /** 2195 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2196 * @list: the new list to add 2197 * @head: the place to add it in the first list 2198 * 2199 * Each of the lists is a queue. 2200 * The list at @list is reinitialised 2201 */ 2202 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2203 struct sk_buff_head *head) 2204 { 2205 if (!skb_queue_empty(list)) { 2206 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2207 head->qlen += list->qlen; 2208 __skb_queue_head_init(list); 2209 } 2210 } 2211 2212 /** 2213 * __skb_queue_after - queue a buffer at the list head 2214 * @list: list to use 2215 * @prev: place after this buffer 2216 * @newsk: buffer to queue 2217 * 2218 * Queue a buffer int the middle of a list. This function takes no locks 2219 * and you must therefore hold required locks before calling it. 2220 * 2221 * A buffer cannot be placed on two lists at the same time. 2222 */ 2223 static inline void __skb_queue_after(struct sk_buff_head *list, 2224 struct sk_buff *prev, 2225 struct sk_buff *newsk) 2226 { 2227 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2228 } 2229 2230 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2231 struct sk_buff_head *list); 2232 2233 static inline void __skb_queue_before(struct sk_buff_head *list, 2234 struct sk_buff *next, 2235 struct sk_buff *newsk) 2236 { 2237 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2238 } 2239 2240 /** 2241 * __skb_queue_head - queue a buffer at the list head 2242 * @list: list to use 2243 * @newsk: buffer to queue 2244 * 2245 * Queue a buffer at the start of a list. This function takes no locks 2246 * and you must therefore hold required locks before calling it. 2247 * 2248 * A buffer cannot be placed on two lists at the same time. 2249 */ 2250 static inline void __skb_queue_head(struct sk_buff_head *list, 2251 struct sk_buff *newsk) 2252 { 2253 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2254 } 2255 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2256 2257 /** 2258 * __skb_queue_tail - queue a buffer at the list tail 2259 * @list: list to use 2260 * @newsk: buffer to queue 2261 * 2262 * Queue a buffer at the end of a list. This function takes no locks 2263 * and you must therefore hold required locks before calling it. 2264 * 2265 * A buffer cannot be placed on two lists at the same time. 2266 */ 2267 static inline void __skb_queue_tail(struct sk_buff_head *list, 2268 struct sk_buff *newsk) 2269 { 2270 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2271 } 2272 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2273 2274 /* 2275 * remove sk_buff from list. _Must_ be called atomically, and with 2276 * the list known.. 2277 */ 2278 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2279 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2280 { 2281 struct sk_buff *next, *prev; 2282 2283 WRITE_ONCE(list->qlen, list->qlen - 1); 2284 next = skb->next; 2285 prev = skb->prev; 2286 skb->next = skb->prev = NULL; 2287 WRITE_ONCE(next->prev, prev); 2288 WRITE_ONCE(prev->next, next); 2289 } 2290 2291 /** 2292 * __skb_dequeue - remove from the head of the queue 2293 * @list: list to dequeue from 2294 * 2295 * Remove the head of the list. This function does not take any locks 2296 * so must be used with appropriate locks held only. The head item is 2297 * returned or %NULL if the list is empty. 2298 */ 2299 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2300 { 2301 struct sk_buff *skb = skb_peek(list); 2302 if (skb) 2303 __skb_unlink(skb, list); 2304 return skb; 2305 } 2306 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2307 2308 /** 2309 * __skb_dequeue_tail - remove from the tail of the queue 2310 * @list: list to dequeue from 2311 * 2312 * Remove the tail of the list. This function does not take any locks 2313 * so must be used with appropriate locks held only. The tail item is 2314 * returned or %NULL if the list is empty. 2315 */ 2316 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2317 { 2318 struct sk_buff *skb = skb_peek_tail(list); 2319 if (skb) 2320 __skb_unlink(skb, list); 2321 return skb; 2322 } 2323 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2324 2325 2326 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2327 { 2328 return skb->data_len; 2329 } 2330 2331 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2332 { 2333 return skb->len - skb->data_len; 2334 } 2335 2336 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2337 { 2338 unsigned int i, len = 0; 2339 2340 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2341 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2342 return len; 2343 } 2344 2345 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2346 { 2347 return skb_headlen(skb) + __skb_pagelen(skb); 2348 } 2349 2350 /** 2351 * __skb_fill_page_desc - initialise a paged fragment in an skb 2352 * @skb: buffer containing fragment to be initialised 2353 * @i: paged fragment index to initialise 2354 * @page: the page to use for this fragment 2355 * @off: the offset to the data with @page 2356 * @size: the length of the data 2357 * 2358 * Initialises the @i'th fragment of @skb to point to &size bytes at 2359 * offset @off within @page. 2360 * 2361 * Does not take any additional reference on the fragment. 2362 */ 2363 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2364 struct page *page, int off, int size) 2365 { 2366 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2367 2368 /* 2369 * Propagate page pfmemalloc to the skb if we can. The problem is 2370 * that not all callers have unique ownership of the page but rely 2371 * on page_is_pfmemalloc doing the right thing(tm). 2372 */ 2373 frag->bv_page = page; 2374 frag->bv_offset = off; 2375 skb_frag_size_set(frag, size); 2376 2377 page = compound_head(page); 2378 if (page_is_pfmemalloc(page)) 2379 skb->pfmemalloc = true; 2380 } 2381 2382 /** 2383 * skb_fill_page_desc - initialise a paged fragment in an skb 2384 * @skb: buffer containing fragment to be initialised 2385 * @i: paged fragment index to initialise 2386 * @page: the page to use for this fragment 2387 * @off: the offset to the data with @page 2388 * @size: the length of the data 2389 * 2390 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2391 * @skb to point to @size bytes at offset @off within @page. In 2392 * addition updates @skb such that @i is the last fragment. 2393 * 2394 * Does not take any additional reference on the fragment. 2395 */ 2396 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2397 struct page *page, int off, int size) 2398 { 2399 __skb_fill_page_desc(skb, i, page, off, size); 2400 skb_shinfo(skb)->nr_frags = i + 1; 2401 } 2402 2403 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2404 int size, unsigned int truesize); 2405 2406 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2407 unsigned int truesize); 2408 2409 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2410 2411 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2412 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2413 { 2414 return skb->head + skb->tail; 2415 } 2416 2417 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2418 { 2419 skb->tail = skb->data - skb->head; 2420 } 2421 2422 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2423 { 2424 skb_reset_tail_pointer(skb); 2425 skb->tail += offset; 2426 } 2427 2428 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2429 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2430 { 2431 return skb->tail; 2432 } 2433 2434 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2435 { 2436 skb->tail = skb->data; 2437 } 2438 2439 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2440 { 2441 skb->tail = skb->data + offset; 2442 } 2443 2444 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2445 2446 /* 2447 * Add data to an sk_buff 2448 */ 2449 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2450 void *skb_put(struct sk_buff *skb, unsigned int len); 2451 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2452 { 2453 void *tmp = skb_tail_pointer(skb); 2454 SKB_LINEAR_ASSERT(skb); 2455 skb->tail += len; 2456 skb->len += len; 2457 return tmp; 2458 } 2459 2460 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2461 { 2462 void *tmp = __skb_put(skb, len); 2463 2464 memset(tmp, 0, len); 2465 return tmp; 2466 } 2467 2468 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2469 unsigned int len) 2470 { 2471 void *tmp = __skb_put(skb, len); 2472 2473 memcpy(tmp, data, len); 2474 return tmp; 2475 } 2476 2477 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2478 { 2479 *(u8 *)__skb_put(skb, 1) = val; 2480 } 2481 2482 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2483 { 2484 void *tmp = skb_put(skb, len); 2485 2486 memset(tmp, 0, len); 2487 2488 return tmp; 2489 } 2490 2491 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2492 unsigned int len) 2493 { 2494 void *tmp = skb_put(skb, len); 2495 2496 memcpy(tmp, data, len); 2497 2498 return tmp; 2499 } 2500 2501 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2502 { 2503 *(u8 *)skb_put(skb, 1) = val; 2504 } 2505 2506 void *skb_push(struct sk_buff *skb, unsigned int len); 2507 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2508 { 2509 skb->data -= len; 2510 skb->len += len; 2511 return skb->data; 2512 } 2513 2514 void *skb_pull(struct sk_buff *skb, unsigned int len); 2515 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2516 { 2517 skb->len -= len; 2518 BUG_ON(skb->len < skb->data_len); 2519 return skb->data += len; 2520 } 2521 2522 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2523 { 2524 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2525 } 2526 2527 void *skb_pull_data(struct sk_buff *skb, size_t len); 2528 2529 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2530 2531 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2532 { 2533 if (len > skb_headlen(skb) && 2534 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2535 return NULL; 2536 skb->len -= len; 2537 return skb->data += len; 2538 } 2539 2540 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2541 { 2542 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2543 } 2544 2545 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2546 { 2547 if (likely(len <= skb_headlen(skb))) 2548 return true; 2549 if (unlikely(len > skb->len)) 2550 return false; 2551 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2552 } 2553 2554 void skb_condense(struct sk_buff *skb); 2555 2556 /** 2557 * skb_headroom - bytes at buffer head 2558 * @skb: buffer to check 2559 * 2560 * Return the number of bytes of free space at the head of an &sk_buff. 2561 */ 2562 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2563 { 2564 return skb->data - skb->head; 2565 } 2566 2567 /** 2568 * skb_tailroom - bytes at buffer end 2569 * @skb: buffer to check 2570 * 2571 * Return the number of bytes of free space at the tail of an sk_buff 2572 */ 2573 static inline int skb_tailroom(const struct sk_buff *skb) 2574 { 2575 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2576 } 2577 2578 /** 2579 * skb_availroom - bytes at buffer end 2580 * @skb: buffer to check 2581 * 2582 * Return the number of bytes of free space at the tail of an sk_buff 2583 * allocated by sk_stream_alloc() 2584 */ 2585 static inline int skb_availroom(const struct sk_buff *skb) 2586 { 2587 if (skb_is_nonlinear(skb)) 2588 return 0; 2589 2590 return skb->end - skb->tail - skb->reserved_tailroom; 2591 } 2592 2593 /** 2594 * skb_reserve - adjust headroom 2595 * @skb: buffer to alter 2596 * @len: bytes to move 2597 * 2598 * Increase the headroom of an empty &sk_buff by reducing the tail 2599 * room. This is only allowed for an empty buffer. 2600 */ 2601 static inline void skb_reserve(struct sk_buff *skb, int len) 2602 { 2603 skb->data += len; 2604 skb->tail += len; 2605 } 2606 2607 /** 2608 * skb_tailroom_reserve - adjust reserved_tailroom 2609 * @skb: buffer to alter 2610 * @mtu: maximum amount of headlen permitted 2611 * @needed_tailroom: minimum amount of reserved_tailroom 2612 * 2613 * Set reserved_tailroom so that headlen can be as large as possible but 2614 * not larger than mtu and tailroom cannot be smaller than 2615 * needed_tailroom. 2616 * The required headroom should already have been reserved before using 2617 * this function. 2618 */ 2619 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2620 unsigned int needed_tailroom) 2621 { 2622 SKB_LINEAR_ASSERT(skb); 2623 if (mtu < skb_tailroom(skb) - needed_tailroom) 2624 /* use at most mtu */ 2625 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2626 else 2627 /* use up to all available space */ 2628 skb->reserved_tailroom = needed_tailroom; 2629 } 2630 2631 #define ENCAP_TYPE_ETHER 0 2632 #define ENCAP_TYPE_IPPROTO 1 2633 2634 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2635 __be16 protocol) 2636 { 2637 skb->inner_protocol = protocol; 2638 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2639 } 2640 2641 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2642 __u8 ipproto) 2643 { 2644 skb->inner_ipproto = ipproto; 2645 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2646 } 2647 2648 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2649 { 2650 skb->inner_mac_header = skb->mac_header; 2651 skb->inner_network_header = skb->network_header; 2652 skb->inner_transport_header = skb->transport_header; 2653 } 2654 2655 static inline void skb_reset_mac_len(struct sk_buff *skb) 2656 { 2657 skb->mac_len = skb->network_header - skb->mac_header; 2658 } 2659 2660 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2661 *skb) 2662 { 2663 return skb->head + skb->inner_transport_header; 2664 } 2665 2666 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2667 { 2668 return skb_inner_transport_header(skb) - skb->data; 2669 } 2670 2671 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2672 { 2673 skb->inner_transport_header = skb->data - skb->head; 2674 } 2675 2676 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2677 const int offset) 2678 { 2679 skb_reset_inner_transport_header(skb); 2680 skb->inner_transport_header += offset; 2681 } 2682 2683 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2684 { 2685 return skb->head + skb->inner_network_header; 2686 } 2687 2688 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2689 { 2690 skb->inner_network_header = skb->data - skb->head; 2691 } 2692 2693 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2694 const int offset) 2695 { 2696 skb_reset_inner_network_header(skb); 2697 skb->inner_network_header += offset; 2698 } 2699 2700 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2701 { 2702 return skb->head + skb->inner_mac_header; 2703 } 2704 2705 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2706 { 2707 skb->inner_mac_header = skb->data - skb->head; 2708 } 2709 2710 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2711 const int offset) 2712 { 2713 skb_reset_inner_mac_header(skb); 2714 skb->inner_mac_header += offset; 2715 } 2716 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2717 { 2718 return skb->transport_header != (typeof(skb->transport_header))~0U; 2719 } 2720 2721 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2722 { 2723 return skb->head + skb->transport_header; 2724 } 2725 2726 static inline void skb_reset_transport_header(struct sk_buff *skb) 2727 { 2728 skb->transport_header = skb->data - skb->head; 2729 } 2730 2731 static inline void skb_set_transport_header(struct sk_buff *skb, 2732 const int offset) 2733 { 2734 skb_reset_transport_header(skb); 2735 skb->transport_header += offset; 2736 } 2737 2738 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2739 { 2740 return skb->head + skb->network_header; 2741 } 2742 2743 static inline void skb_reset_network_header(struct sk_buff *skb) 2744 { 2745 skb->network_header = skb->data - skb->head; 2746 } 2747 2748 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2749 { 2750 skb_reset_network_header(skb); 2751 skb->network_header += offset; 2752 } 2753 2754 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2755 { 2756 return skb->head + skb->mac_header; 2757 } 2758 2759 static inline int skb_mac_offset(const struct sk_buff *skb) 2760 { 2761 return skb_mac_header(skb) - skb->data; 2762 } 2763 2764 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2765 { 2766 return skb->network_header - skb->mac_header; 2767 } 2768 2769 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2770 { 2771 return skb->mac_header != (typeof(skb->mac_header))~0U; 2772 } 2773 2774 static inline void skb_unset_mac_header(struct sk_buff *skb) 2775 { 2776 skb->mac_header = (typeof(skb->mac_header))~0U; 2777 } 2778 2779 static inline void skb_reset_mac_header(struct sk_buff *skb) 2780 { 2781 skb->mac_header = skb->data - skb->head; 2782 } 2783 2784 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2785 { 2786 skb_reset_mac_header(skb); 2787 skb->mac_header += offset; 2788 } 2789 2790 static inline void skb_pop_mac_header(struct sk_buff *skb) 2791 { 2792 skb->mac_header = skb->network_header; 2793 } 2794 2795 static inline void skb_probe_transport_header(struct sk_buff *skb) 2796 { 2797 struct flow_keys_basic keys; 2798 2799 if (skb_transport_header_was_set(skb)) 2800 return; 2801 2802 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2803 NULL, 0, 0, 0, 0)) 2804 skb_set_transport_header(skb, keys.control.thoff); 2805 } 2806 2807 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2808 { 2809 if (skb_mac_header_was_set(skb)) { 2810 const unsigned char *old_mac = skb_mac_header(skb); 2811 2812 skb_set_mac_header(skb, -skb->mac_len); 2813 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2814 } 2815 } 2816 2817 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2818 { 2819 return skb->csum_start - skb_headroom(skb); 2820 } 2821 2822 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2823 { 2824 return skb->head + skb->csum_start; 2825 } 2826 2827 static inline int skb_transport_offset(const struct sk_buff *skb) 2828 { 2829 return skb_transport_header(skb) - skb->data; 2830 } 2831 2832 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2833 { 2834 return skb->transport_header - skb->network_header; 2835 } 2836 2837 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2838 { 2839 return skb->inner_transport_header - skb->inner_network_header; 2840 } 2841 2842 static inline int skb_network_offset(const struct sk_buff *skb) 2843 { 2844 return skb_network_header(skb) - skb->data; 2845 } 2846 2847 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2848 { 2849 return skb_inner_network_header(skb) - skb->data; 2850 } 2851 2852 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2853 { 2854 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2855 } 2856 2857 /* 2858 * CPUs often take a performance hit when accessing unaligned memory 2859 * locations. The actual performance hit varies, it can be small if the 2860 * hardware handles it or large if we have to take an exception and fix it 2861 * in software. 2862 * 2863 * Since an ethernet header is 14 bytes network drivers often end up with 2864 * the IP header at an unaligned offset. The IP header can be aligned by 2865 * shifting the start of the packet by 2 bytes. Drivers should do this 2866 * with: 2867 * 2868 * skb_reserve(skb, NET_IP_ALIGN); 2869 * 2870 * The downside to this alignment of the IP header is that the DMA is now 2871 * unaligned. On some architectures the cost of an unaligned DMA is high 2872 * and this cost outweighs the gains made by aligning the IP header. 2873 * 2874 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2875 * to be overridden. 2876 */ 2877 #ifndef NET_IP_ALIGN 2878 #define NET_IP_ALIGN 2 2879 #endif 2880 2881 /* 2882 * The networking layer reserves some headroom in skb data (via 2883 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2884 * the header has to grow. In the default case, if the header has to grow 2885 * 32 bytes or less we avoid the reallocation. 2886 * 2887 * Unfortunately this headroom changes the DMA alignment of the resulting 2888 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2889 * on some architectures. An architecture can override this value, 2890 * perhaps setting it to a cacheline in size (since that will maintain 2891 * cacheline alignment of the DMA). It must be a power of 2. 2892 * 2893 * Various parts of the networking layer expect at least 32 bytes of 2894 * headroom, you should not reduce this. 2895 * 2896 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2897 * to reduce average number of cache lines per packet. 2898 * get_rps_cpu() for example only access one 64 bytes aligned block : 2899 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2900 */ 2901 #ifndef NET_SKB_PAD 2902 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2903 #endif 2904 2905 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2906 2907 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2908 { 2909 if (WARN_ON(skb_is_nonlinear(skb))) 2910 return; 2911 skb->len = len; 2912 skb_set_tail_pointer(skb, len); 2913 } 2914 2915 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2916 { 2917 __skb_set_length(skb, len); 2918 } 2919 2920 void skb_trim(struct sk_buff *skb, unsigned int len); 2921 2922 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2923 { 2924 if (skb->data_len) 2925 return ___pskb_trim(skb, len); 2926 __skb_trim(skb, len); 2927 return 0; 2928 } 2929 2930 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2931 { 2932 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2933 } 2934 2935 /** 2936 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2937 * @skb: buffer to alter 2938 * @len: new length 2939 * 2940 * This is identical to pskb_trim except that the caller knows that 2941 * the skb is not cloned so we should never get an error due to out- 2942 * of-memory. 2943 */ 2944 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2945 { 2946 int err = pskb_trim(skb, len); 2947 BUG_ON(err); 2948 } 2949 2950 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2951 { 2952 unsigned int diff = len - skb->len; 2953 2954 if (skb_tailroom(skb) < diff) { 2955 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2956 GFP_ATOMIC); 2957 if (ret) 2958 return ret; 2959 } 2960 __skb_set_length(skb, len); 2961 return 0; 2962 } 2963 2964 /** 2965 * skb_orphan - orphan a buffer 2966 * @skb: buffer to orphan 2967 * 2968 * If a buffer currently has an owner then we call the owner's 2969 * destructor function and make the @skb unowned. The buffer continues 2970 * to exist but is no longer charged to its former owner. 2971 */ 2972 static inline void skb_orphan(struct sk_buff *skb) 2973 { 2974 if (skb->destructor) { 2975 skb->destructor(skb); 2976 skb->destructor = NULL; 2977 skb->sk = NULL; 2978 } else { 2979 BUG_ON(skb->sk); 2980 } 2981 } 2982 2983 /** 2984 * skb_orphan_frags - orphan the frags contained in a buffer 2985 * @skb: buffer to orphan frags from 2986 * @gfp_mask: allocation mask for replacement pages 2987 * 2988 * For each frag in the SKB which needs a destructor (i.e. has an 2989 * owner) create a copy of that frag and release the original 2990 * page by calling the destructor. 2991 */ 2992 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2993 { 2994 if (likely(!skb_zcopy(skb))) 2995 return 0; 2996 if (!skb_zcopy_is_nouarg(skb) && 2997 skb_uarg(skb)->callback == msg_zerocopy_callback) 2998 return 0; 2999 return skb_copy_ubufs(skb, gfp_mask); 3000 } 3001 3002 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3003 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3004 { 3005 if (likely(!skb_zcopy(skb))) 3006 return 0; 3007 return skb_copy_ubufs(skb, gfp_mask); 3008 } 3009 3010 /** 3011 * __skb_queue_purge - empty a list 3012 * @list: list to empty 3013 * 3014 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3015 * the list and one reference dropped. This function does not take the 3016 * list lock and the caller must hold the relevant locks to use it. 3017 */ 3018 static inline void __skb_queue_purge(struct sk_buff_head *list) 3019 { 3020 struct sk_buff *skb; 3021 while ((skb = __skb_dequeue(list)) != NULL) 3022 kfree_skb(skb); 3023 } 3024 void skb_queue_purge(struct sk_buff_head *list); 3025 3026 unsigned int skb_rbtree_purge(struct rb_root *root); 3027 3028 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3029 3030 /** 3031 * netdev_alloc_frag - allocate a page fragment 3032 * @fragsz: fragment size 3033 * 3034 * Allocates a frag from a page for receive buffer. 3035 * Uses GFP_ATOMIC allocations. 3036 */ 3037 static inline void *netdev_alloc_frag(unsigned int fragsz) 3038 { 3039 return __netdev_alloc_frag_align(fragsz, ~0u); 3040 } 3041 3042 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3043 unsigned int align) 3044 { 3045 WARN_ON_ONCE(!is_power_of_2(align)); 3046 return __netdev_alloc_frag_align(fragsz, -align); 3047 } 3048 3049 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3050 gfp_t gfp_mask); 3051 3052 /** 3053 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3054 * @dev: network device to receive on 3055 * @length: length to allocate 3056 * 3057 * Allocate a new &sk_buff and assign it a usage count of one. The 3058 * buffer has unspecified headroom built in. Users should allocate 3059 * the headroom they think they need without accounting for the 3060 * built in space. The built in space is used for optimisations. 3061 * 3062 * %NULL is returned if there is no free memory. Although this function 3063 * allocates memory it can be called from an interrupt. 3064 */ 3065 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3066 unsigned int length) 3067 { 3068 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3069 } 3070 3071 /* legacy helper around __netdev_alloc_skb() */ 3072 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3073 gfp_t gfp_mask) 3074 { 3075 return __netdev_alloc_skb(NULL, length, gfp_mask); 3076 } 3077 3078 /* legacy helper around netdev_alloc_skb() */ 3079 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3080 { 3081 return netdev_alloc_skb(NULL, length); 3082 } 3083 3084 3085 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3086 unsigned int length, gfp_t gfp) 3087 { 3088 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3089 3090 if (NET_IP_ALIGN && skb) 3091 skb_reserve(skb, NET_IP_ALIGN); 3092 return skb; 3093 } 3094 3095 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3096 unsigned int length) 3097 { 3098 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3099 } 3100 3101 static inline void skb_free_frag(void *addr) 3102 { 3103 page_frag_free(addr); 3104 } 3105 3106 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3107 3108 static inline void *napi_alloc_frag(unsigned int fragsz) 3109 { 3110 return __napi_alloc_frag_align(fragsz, ~0u); 3111 } 3112 3113 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3114 unsigned int align) 3115 { 3116 WARN_ON_ONCE(!is_power_of_2(align)); 3117 return __napi_alloc_frag_align(fragsz, -align); 3118 } 3119 3120 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3121 unsigned int length, gfp_t gfp_mask); 3122 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3123 unsigned int length) 3124 { 3125 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3126 } 3127 void napi_consume_skb(struct sk_buff *skb, int budget); 3128 3129 void napi_skb_free_stolen_head(struct sk_buff *skb); 3130 void __kfree_skb_defer(struct sk_buff *skb); 3131 3132 /** 3133 * __dev_alloc_pages - allocate page for network Rx 3134 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3135 * @order: size of the allocation 3136 * 3137 * Allocate a new page. 3138 * 3139 * %NULL is returned if there is no free memory. 3140 */ 3141 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3142 unsigned int order) 3143 { 3144 /* This piece of code contains several assumptions. 3145 * 1. This is for device Rx, therefor a cold page is preferred. 3146 * 2. The expectation is the user wants a compound page. 3147 * 3. If requesting a order 0 page it will not be compound 3148 * due to the check to see if order has a value in prep_new_page 3149 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3150 * code in gfp_to_alloc_flags that should be enforcing this. 3151 */ 3152 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3153 3154 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3155 } 3156 3157 static inline struct page *dev_alloc_pages(unsigned int order) 3158 { 3159 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3160 } 3161 3162 /** 3163 * __dev_alloc_page - allocate a page for network Rx 3164 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3165 * 3166 * Allocate a new page. 3167 * 3168 * %NULL is returned if there is no free memory. 3169 */ 3170 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3171 { 3172 return __dev_alloc_pages(gfp_mask, 0); 3173 } 3174 3175 static inline struct page *dev_alloc_page(void) 3176 { 3177 return dev_alloc_pages(0); 3178 } 3179 3180 /** 3181 * dev_page_is_reusable - check whether a page can be reused for network Rx 3182 * @page: the page to test 3183 * 3184 * A page shouldn't be considered for reusing/recycling if it was allocated 3185 * under memory pressure or at a distant memory node. 3186 * 3187 * Returns false if this page should be returned to page allocator, true 3188 * otherwise. 3189 */ 3190 static inline bool dev_page_is_reusable(const struct page *page) 3191 { 3192 return likely(page_to_nid(page) == numa_mem_id() && 3193 !page_is_pfmemalloc(page)); 3194 } 3195 3196 /** 3197 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3198 * @page: The page that was allocated from skb_alloc_page 3199 * @skb: The skb that may need pfmemalloc set 3200 */ 3201 static inline void skb_propagate_pfmemalloc(const struct page *page, 3202 struct sk_buff *skb) 3203 { 3204 if (page_is_pfmemalloc(page)) 3205 skb->pfmemalloc = true; 3206 } 3207 3208 /** 3209 * skb_frag_off() - Returns the offset of a skb fragment 3210 * @frag: the paged fragment 3211 */ 3212 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3213 { 3214 return frag->bv_offset; 3215 } 3216 3217 /** 3218 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3219 * @frag: skb fragment 3220 * @delta: value to add 3221 */ 3222 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3223 { 3224 frag->bv_offset += delta; 3225 } 3226 3227 /** 3228 * skb_frag_off_set() - Sets the offset of a skb fragment 3229 * @frag: skb fragment 3230 * @offset: offset of fragment 3231 */ 3232 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3233 { 3234 frag->bv_offset = offset; 3235 } 3236 3237 /** 3238 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3239 * @fragto: skb fragment where offset is set 3240 * @fragfrom: skb fragment offset is copied from 3241 */ 3242 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3243 const skb_frag_t *fragfrom) 3244 { 3245 fragto->bv_offset = fragfrom->bv_offset; 3246 } 3247 3248 /** 3249 * skb_frag_page - retrieve the page referred to by a paged fragment 3250 * @frag: the paged fragment 3251 * 3252 * Returns the &struct page associated with @frag. 3253 */ 3254 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3255 { 3256 return frag->bv_page; 3257 } 3258 3259 /** 3260 * __skb_frag_ref - take an addition reference on a paged fragment. 3261 * @frag: the paged fragment 3262 * 3263 * Takes an additional reference on the paged fragment @frag. 3264 */ 3265 static inline void __skb_frag_ref(skb_frag_t *frag) 3266 { 3267 get_page(skb_frag_page(frag)); 3268 } 3269 3270 /** 3271 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3272 * @skb: the buffer 3273 * @f: the fragment offset. 3274 * 3275 * Takes an additional reference on the @f'th paged fragment of @skb. 3276 */ 3277 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3278 { 3279 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3280 } 3281 3282 /** 3283 * __skb_frag_unref - release a reference on a paged fragment. 3284 * @frag: the paged fragment 3285 * @recycle: recycle the page if allocated via page_pool 3286 * 3287 * Releases a reference on the paged fragment @frag 3288 * or recycles the page via the page_pool API. 3289 */ 3290 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3291 { 3292 struct page *page = skb_frag_page(frag); 3293 3294 #ifdef CONFIG_PAGE_POOL 3295 if (recycle && page_pool_return_skb_page(page)) 3296 return; 3297 #endif 3298 put_page(page); 3299 } 3300 3301 /** 3302 * skb_frag_unref - release a reference on a paged fragment of an skb. 3303 * @skb: the buffer 3304 * @f: the fragment offset 3305 * 3306 * Releases a reference on the @f'th paged fragment of @skb. 3307 */ 3308 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3309 { 3310 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle); 3311 } 3312 3313 /** 3314 * skb_frag_address - gets the address of the data contained in a paged fragment 3315 * @frag: the paged fragment buffer 3316 * 3317 * Returns the address of the data within @frag. The page must already 3318 * be mapped. 3319 */ 3320 static inline void *skb_frag_address(const skb_frag_t *frag) 3321 { 3322 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3323 } 3324 3325 /** 3326 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3327 * @frag: the paged fragment buffer 3328 * 3329 * Returns the address of the data within @frag. Checks that the page 3330 * is mapped and returns %NULL otherwise. 3331 */ 3332 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3333 { 3334 void *ptr = page_address(skb_frag_page(frag)); 3335 if (unlikely(!ptr)) 3336 return NULL; 3337 3338 return ptr + skb_frag_off(frag); 3339 } 3340 3341 /** 3342 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3343 * @fragto: skb fragment where page is set 3344 * @fragfrom: skb fragment page is copied from 3345 */ 3346 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3347 const skb_frag_t *fragfrom) 3348 { 3349 fragto->bv_page = fragfrom->bv_page; 3350 } 3351 3352 /** 3353 * __skb_frag_set_page - sets the page contained in a paged fragment 3354 * @frag: the paged fragment 3355 * @page: the page to set 3356 * 3357 * Sets the fragment @frag to contain @page. 3358 */ 3359 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3360 { 3361 frag->bv_page = page; 3362 } 3363 3364 /** 3365 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3366 * @skb: the buffer 3367 * @f: the fragment offset 3368 * @page: the page to set 3369 * 3370 * Sets the @f'th fragment of @skb to contain @page. 3371 */ 3372 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3373 struct page *page) 3374 { 3375 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3376 } 3377 3378 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3379 3380 /** 3381 * skb_frag_dma_map - maps a paged fragment via the DMA API 3382 * @dev: the device to map the fragment to 3383 * @frag: the paged fragment to map 3384 * @offset: the offset within the fragment (starting at the 3385 * fragment's own offset) 3386 * @size: the number of bytes to map 3387 * @dir: the direction of the mapping (``PCI_DMA_*``) 3388 * 3389 * Maps the page associated with @frag to @device. 3390 */ 3391 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3392 const skb_frag_t *frag, 3393 size_t offset, size_t size, 3394 enum dma_data_direction dir) 3395 { 3396 return dma_map_page(dev, skb_frag_page(frag), 3397 skb_frag_off(frag) + offset, size, dir); 3398 } 3399 3400 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3401 gfp_t gfp_mask) 3402 { 3403 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3404 } 3405 3406 3407 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3408 gfp_t gfp_mask) 3409 { 3410 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3411 } 3412 3413 3414 /** 3415 * skb_clone_writable - is the header of a clone writable 3416 * @skb: buffer to check 3417 * @len: length up to which to write 3418 * 3419 * Returns true if modifying the header part of the cloned buffer 3420 * does not requires the data to be copied. 3421 */ 3422 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3423 { 3424 return !skb_header_cloned(skb) && 3425 skb_headroom(skb) + len <= skb->hdr_len; 3426 } 3427 3428 static inline int skb_try_make_writable(struct sk_buff *skb, 3429 unsigned int write_len) 3430 { 3431 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3432 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3433 } 3434 3435 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3436 int cloned) 3437 { 3438 int delta = 0; 3439 3440 if (headroom > skb_headroom(skb)) 3441 delta = headroom - skb_headroom(skb); 3442 3443 if (delta || cloned) 3444 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3445 GFP_ATOMIC); 3446 return 0; 3447 } 3448 3449 /** 3450 * skb_cow - copy header of skb when it is required 3451 * @skb: buffer to cow 3452 * @headroom: needed headroom 3453 * 3454 * If the skb passed lacks sufficient headroom or its data part 3455 * is shared, data is reallocated. If reallocation fails, an error 3456 * is returned and original skb is not changed. 3457 * 3458 * The result is skb with writable area skb->head...skb->tail 3459 * and at least @headroom of space at head. 3460 */ 3461 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3462 { 3463 return __skb_cow(skb, headroom, skb_cloned(skb)); 3464 } 3465 3466 /** 3467 * skb_cow_head - skb_cow but only making the head writable 3468 * @skb: buffer to cow 3469 * @headroom: needed headroom 3470 * 3471 * This function is identical to skb_cow except that we replace the 3472 * skb_cloned check by skb_header_cloned. It should be used when 3473 * you only need to push on some header and do not need to modify 3474 * the data. 3475 */ 3476 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3477 { 3478 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3479 } 3480 3481 /** 3482 * skb_padto - pad an skbuff up to a minimal size 3483 * @skb: buffer to pad 3484 * @len: minimal length 3485 * 3486 * Pads up a buffer to ensure the trailing bytes exist and are 3487 * blanked. If the buffer already contains sufficient data it 3488 * is untouched. Otherwise it is extended. Returns zero on 3489 * success. The skb is freed on error. 3490 */ 3491 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3492 { 3493 unsigned int size = skb->len; 3494 if (likely(size >= len)) 3495 return 0; 3496 return skb_pad(skb, len - size); 3497 } 3498 3499 /** 3500 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3501 * @skb: buffer to pad 3502 * @len: minimal length 3503 * @free_on_error: free buffer on error 3504 * 3505 * Pads up a buffer to ensure the trailing bytes exist and are 3506 * blanked. If the buffer already contains sufficient data it 3507 * is untouched. Otherwise it is extended. Returns zero on 3508 * success. The skb is freed on error if @free_on_error is true. 3509 */ 3510 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3511 unsigned int len, 3512 bool free_on_error) 3513 { 3514 unsigned int size = skb->len; 3515 3516 if (unlikely(size < len)) { 3517 len -= size; 3518 if (__skb_pad(skb, len, free_on_error)) 3519 return -ENOMEM; 3520 __skb_put(skb, len); 3521 } 3522 return 0; 3523 } 3524 3525 /** 3526 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3527 * @skb: buffer to pad 3528 * @len: minimal length 3529 * 3530 * Pads up a buffer to ensure the trailing bytes exist and are 3531 * blanked. If the buffer already contains sufficient data it 3532 * is untouched. Otherwise it is extended. Returns zero on 3533 * success. The skb is freed on error. 3534 */ 3535 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3536 { 3537 return __skb_put_padto(skb, len, true); 3538 } 3539 3540 static inline int skb_add_data(struct sk_buff *skb, 3541 struct iov_iter *from, int copy) 3542 { 3543 const int off = skb->len; 3544 3545 if (skb->ip_summed == CHECKSUM_NONE) { 3546 __wsum csum = 0; 3547 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3548 &csum, from)) { 3549 skb->csum = csum_block_add(skb->csum, csum, off); 3550 return 0; 3551 } 3552 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3553 return 0; 3554 3555 __skb_trim(skb, off); 3556 return -EFAULT; 3557 } 3558 3559 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3560 const struct page *page, int off) 3561 { 3562 if (skb_zcopy(skb)) 3563 return false; 3564 if (i) { 3565 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3566 3567 return page == skb_frag_page(frag) && 3568 off == skb_frag_off(frag) + skb_frag_size(frag); 3569 } 3570 return false; 3571 } 3572 3573 static inline int __skb_linearize(struct sk_buff *skb) 3574 { 3575 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3576 } 3577 3578 /** 3579 * skb_linearize - convert paged skb to linear one 3580 * @skb: buffer to linarize 3581 * 3582 * If there is no free memory -ENOMEM is returned, otherwise zero 3583 * is returned and the old skb data released. 3584 */ 3585 static inline int skb_linearize(struct sk_buff *skb) 3586 { 3587 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3588 } 3589 3590 /** 3591 * skb_has_shared_frag - can any frag be overwritten 3592 * @skb: buffer to test 3593 * 3594 * Return true if the skb has at least one frag that might be modified 3595 * by an external entity (as in vmsplice()/sendfile()) 3596 */ 3597 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3598 { 3599 return skb_is_nonlinear(skb) && 3600 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3601 } 3602 3603 /** 3604 * skb_linearize_cow - make sure skb is linear and writable 3605 * @skb: buffer to process 3606 * 3607 * If there is no free memory -ENOMEM is returned, otherwise zero 3608 * is returned and the old skb data released. 3609 */ 3610 static inline int skb_linearize_cow(struct sk_buff *skb) 3611 { 3612 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3613 __skb_linearize(skb) : 0; 3614 } 3615 3616 static __always_inline void 3617 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3618 unsigned int off) 3619 { 3620 if (skb->ip_summed == CHECKSUM_COMPLETE) 3621 skb->csum = csum_block_sub(skb->csum, 3622 csum_partial(start, len, 0), off); 3623 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3624 skb_checksum_start_offset(skb) < 0) 3625 skb->ip_summed = CHECKSUM_NONE; 3626 } 3627 3628 /** 3629 * skb_postpull_rcsum - update checksum for received skb after pull 3630 * @skb: buffer to update 3631 * @start: start of data before pull 3632 * @len: length of data pulled 3633 * 3634 * After doing a pull on a received packet, you need to call this to 3635 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3636 * CHECKSUM_NONE so that it can be recomputed from scratch. 3637 */ 3638 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3639 const void *start, unsigned int len) 3640 { 3641 if (skb->ip_summed == CHECKSUM_COMPLETE) 3642 skb->csum = wsum_negate(csum_partial(start, len, 3643 wsum_negate(skb->csum))); 3644 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3645 skb_checksum_start_offset(skb) < 0) 3646 skb->ip_summed = CHECKSUM_NONE; 3647 } 3648 3649 static __always_inline void 3650 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3651 unsigned int off) 3652 { 3653 if (skb->ip_summed == CHECKSUM_COMPLETE) 3654 skb->csum = csum_block_add(skb->csum, 3655 csum_partial(start, len, 0), off); 3656 } 3657 3658 /** 3659 * skb_postpush_rcsum - update checksum for received skb after push 3660 * @skb: buffer to update 3661 * @start: start of data after push 3662 * @len: length of data pushed 3663 * 3664 * After doing a push on a received packet, you need to call this to 3665 * update the CHECKSUM_COMPLETE checksum. 3666 */ 3667 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3668 const void *start, unsigned int len) 3669 { 3670 __skb_postpush_rcsum(skb, start, len, 0); 3671 } 3672 3673 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3674 3675 /** 3676 * skb_push_rcsum - push skb and update receive checksum 3677 * @skb: buffer to update 3678 * @len: length of data pulled 3679 * 3680 * This function performs an skb_push on the packet and updates 3681 * the CHECKSUM_COMPLETE checksum. It should be used on 3682 * receive path processing instead of skb_push unless you know 3683 * that the checksum difference is zero (e.g., a valid IP header) 3684 * or you are setting ip_summed to CHECKSUM_NONE. 3685 */ 3686 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3687 { 3688 skb_push(skb, len); 3689 skb_postpush_rcsum(skb, skb->data, len); 3690 return skb->data; 3691 } 3692 3693 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3694 /** 3695 * pskb_trim_rcsum - trim received skb and update checksum 3696 * @skb: buffer to trim 3697 * @len: new length 3698 * 3699 * This is exactly the same as pskb_trim except that it ensures the 3700 * checksum of received packets are still valid after the operation. 3701 * It can change skb pointers. 3702 */ 3703 3704 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3705 { 3706 if (likely(len >= skb->len)) 3707 return 0; 3708 return pskb_trim_rcsum_slow(skb, len); 3709 } 3710 3711 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3712 { 3713 if (skb->ip_summed == CHECKSUM_COMPLETE) 3714 skb->ip_summed = CHECKSUM_NONE; 3715 __skb_trim(skb, len); 3716 return 0; 3717 } 3718 3719 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3720 { 3721 if (skb->ip_summed == CHECKSUM_COMPLETE) 3722 skb->ip_summed = CHECKSUM_NONE; 3723 return __skb_grow(skb, len); 3724 } 3725 3726 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3727 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3728 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3729 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3730 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3731 3732 #define skb_queue_walk(queue, skb) \ 3733 for (skb = (queue)->next; \ 3734 skb != (struct sk_buff *)(queue); \ 3735 skb = skb->next) 3736 3737 #define skb_queue_walk_safe(queue, skb, tmp) \ 3738 for (skb = (queue)->next, tmp = skb->next; \ 3739 skb != (struct sk_buff *)(queue); \ 3740 skb = tmp, tmp = skb->next) 3741 3742 #define skb_queue_walk_from(queue, skb) \ 3743 for (; skb != (struct sk_buff *)(queue); \ 3744 skb = skb->next) 3745 3746 #define skb_rbtree_walk(skb, root) \ 3747 for (skb = skb_rb_first(root); skb != NULL; \ 3748 skb = skb_rb_next(skb)) 3749 3750 #define skb_rbtree_walk_from(skb) \ 3751 for (; skb != NULL; \ 3752 skb = skb_rb_next(skb)) 3753 3754 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3755 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3756 skb = tmp) 3757 3758 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3759 for (tmp = skb->next; \ 3760 skb != (struct sk_buff *)(queue); \ 3761 skb = tmp, tmp = skb->next) 3762 3763 #define skb_queue_reverse_walk(queue, skb) \ 3764 for (skb = (queue)->prev; \ 3765 skb != (struct sk_buff *)(queue); \ 3766 skb = skb->prev) 3767 3768 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3769 for (skb = (queue)->prev, tmp = skb->prev; \ 3770 skb != (struct sk_buff *)(queue); \ 3771 skb = tmp, tmp = skb->prev) 3772 3773 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3774 for (tmp = skb->prev; \ 3775 skb != (struct sk_buff *)(queue); \ 3776 skb = tmp, tmp = skb->prev) 3777 3778 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3779 { 3780 return skb_shinfo(skb)->frag_list != NULL; 3781 } 3782 3783 static inline void skb_frag_list_init(struct sk_buff *skb) 3784 { 3785 skb_shinfo(skb)->frag_list = NULL; 3786 } 3787 3788 #define skb_walk_frags(skb, iter) \ 3789 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3790 3791 3792 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3793 int *err, long *timeo_p, 3794 const struct sk_buff *skb); 3795 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3796 struct sk_buff_head *queue, 3797 unsigned int flags, 3798 int *off, int *err, 3799 struct sk_buff **last); 3800 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3801 struct sk_buff_head *queue, 3802 unsigned int flags, int *off, int *err, 3803 struct sk_buff **last); 3804 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3805 struct sk_buff_head *sk_queue, 3806 unsigned int flags, int *off, int *err); 3807 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3808 int *err); 3809 __poll_t datagram_poll(struct file *file, struct socket *sock, 3810 struct poll_table_struct *wait); 3811 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3812 struct iov_iter *to, int size); 3813 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3814 struct msghdr *msg, int size) 3815 { 3816 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3817 } 3818 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3819 struct msghdr *msg); 3820 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3821 struct iov_iter *to, int len, 3822 struct ahash_request *hash); 3823 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3824 struct iov_iter *from, int len); 3825 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3826 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3827 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3828 static inline void skb_free_datagram_locked(struct sock *sk, 3829 struct sk_buff *skb) 3830 { 3831 __skb_free_datagram_locked(sk, skb, 0); 3832 } 3833 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3834 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3835 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3836 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3837 int len); 3838 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3839 struct pipe_inode_info *pipe, unsigned int len, 3840 unsigned int flags); 3841 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3842 int len); 3843 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3844 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3845 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3846 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3847 int len, int hlen); 3848 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3849 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3850 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3851 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3852 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3853 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3854 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3855 unsigned int offset); 3856 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3857 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3858 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3859 int skb_vlan_pop(struct sk_buff *skb); 3860 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3861 int skb_eth_pop(struct sk_buff *skb); 3862 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3863 const unsigned char *src); 3864 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3865 int mac_len, bool ethernet); 3866 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3867 bool ethernet); 3868 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3869 int skb_mpls_dec_ttl(struct sk_buff *skb); 3870 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3871 gfp_t gfp); 3872 3873 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3874 { 3875 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3876 } 3877 3878 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3879 { 3880 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3881 } 3882 3883 struct skb_checksum_ops { 3884 __wsum (*update)(const void *mem, int len, __wsum wsum); 3885 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3886 }; 3887 3888 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3889 3890 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3891 __wsum csum, const struct skb_checksum_ops *ops); 3892 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3893 __wsum csum); 3894 3895 static inline void * __must_check 3896 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3897 const void *data, int hlen, void *buffer) 3898 { 3899 if (likely(hlen - offset >= len)) 3900 return (void *)data + offset; 3901 3902 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3903 return NULL; 3904 3905 return buffer; 3906 } 3907 3908 static inline void * __must_check 3909 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3910 { 3911 return __skb_header_pointer(skb, offset, len, skb->data, 3912 skb_headlen(skb), buffer); 3913 } 3914 3915 /** 3916 * skb_needs_linearize - check if we need to linearize a given skb 3917 * depending on the given device features. 3918 * @skb: socket buffer to check 3919 * @features: net device features 3920 * 3921 * Returns true if either: 3922 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3923 * 2. skb is fragmented and the device does not support SG. 3924 */ 3925 static inline bool skb_needs_linearize(struct sk_buff *skb, 3926 netdev_features_t features) 3927 { 3928 return skb_is_nonlinear(skb) && 3929 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3930 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3931 } 3932 3933 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3934 void *to, 3935 const unsigned int len) 3936 { 3937 memcpy(to, skb->data, len); 3938 } 3939 3940 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3941 const int offset, void *to, 3942 const unsigned int len) 3943 { 3944 memcpy(to, skb->data + offset, len); 3945 } 3946 3947 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3948 const void *from, 3949 const unsigned int len) 3950 { 3951 memcpy(skb->data, from, len); 3952 } 3953 3954 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3955 const int offset, 3956 const void *from, 3957 const unsigned int len) 3958 { 3959 memcpy(skb->data + offset, from, len); 3960 } 3961 3962 void skb_init(void); 3963 3964 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3965 { 3966 return skb->tstamp; 3967 } 3968 3969 /** 3970 * skb_get_timestamp - get timestamp from a skb 3971 * @skb: skb to get stamp from 3972 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3973 * 3974 * Timestamps are stored in the skb as offsets to a base timestamp. 3975 * This function converts the offset back to a struct timeval and stores 3976 * it in stamp. 3977 */ 3978 static inline void skb_get_timestamp(const struct sk_buff *skb, 3979 struct __kernel_old_timeval *stamp) 3980 { 3981 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3982 } 3983 3984 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3985 struct __kernel_sock_timeval *stamp) 3986 { 3987 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3988 3989 stamp->tv_sec = ts.tv_sec; 3990 stamp->tv_usec = ts.tv_nsec / 1000; 3991 } 3992 3993 static inline void skb_get_timestampns(const struct sk_buff *skb, 3994 struct __kernel_old_timespec *stamp) 3995 { 3996 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3997 3998 stamp->tv_sec = ts.tv_sec; 3999 stamp->tv_nsec = ts.tv_nsec; 4000 } 4001 4002 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4003 struct __kernel_timespec *stamp) 4004 { 4005 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4006 4007 stamp->tv_sec = ts.tv_sec; 4008 stamp->tv_nsec = ts.tv_nsec; 4009 } 4010 4011 static inline void __net_timestamp(struct sk_buff *skb) 4012 { 4013 skb->tstamp = ktime_get_real(); 4014 skb->mono_delivery_time = 0; 4015 } 4016 4017 static inline ktime_t net_timedelta(ktime_t t) 4018 { 4019 return ktime_sub(ktime_get_real(), t); 4020 } 4021 4022 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4023 bool mono) 4024 { 4025 skb->tstamp = kt; 4026 skb->mono_delivery_time = kt && mono; 4027 } 4028 4029 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4030 4031 /* It is used in the ingress path to clear the delivery_time. 4032 * If needed, set the skb->tstamp to the (rcv) timestamp. 4033 */ 4034 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4035 { 4036 if (skb->mono_delivery_time) { 4037 skb->mono_delivery_time = 0; 4038 if (static_branch_unlikely(&netstamp_needed_key)) 4039 skb->tstamp = ktime_get_real(); 4040 else 4041 skb->tstamp = 0; 4042 } 4043 } 4044 4045 static inline void skb_clear_tstamp(struct sk_buff *skb) 4046 { 4047 if (skb->mono_delivery_time) 4048 return; 4049 4050 skb->tstamp = 0; 4051 } 4052 4053 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4054 { 4055 if (skb->mono_delivery_time) 4056 return 0; 4057 4058 return skb->tstamp; 4059 } 4060 4061 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4062 { 4063 if (!skb->mono_delivery_time && skb->tstamp) 4064 return skb->tstamp; 4065 4066 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4067 return ktime_get_real(); 4068 4069 return 0; 4070 } 4071 4072 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4073 { 4074 return skb_shinfo(skb)->meta_len; 4075 } 4076 4077 static inline void *skb_metadata_end(const struct sk_buff *skb) 4078 { 4079 return skb_mac_header(skb); 4080 } 4081 4082 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4083 const struct sk_buff *skb_b, 4084 u8 meta_len) 4085 { 4086 const void *a = skb_metadata_end(skb_a); 4087 const void *b = skb_metadata_end(skb_b); 4088 /* Using more efficient varaiant than plain call to memcmp(). */ 4089 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4090 u64 diffs = 0; 4091 4092 switch (meta_len) { 4093 #define __it(x, op) (x -= sizeof(u##op)) 4094 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4095 case 32: diffs |= __it_diff(a, b, 64); 4096 fallthrough; 4097 case 24: diffs |= __it_diff(a, b, 64); 4098 fallthrough; 4099 case 16: diffs |= __it_diff(a, b, 64); 4100 fallthrough; 4101 case 8: diffs |= __it_diff(a, b, 64); 4102 break; 4103 case 28: diffs |= __it_diff(a, b, 64); 4104 fallthrough; 4105 case 20: diffs |= __it_diff(a, b, 64); 4106 fallthrough; 4107 case 12: diffs |= __it_diff(a, b, 64); 4108 fallthrough; 4109 case 4: diffs |= __it_diff(a, b, 32); 4110 break; 4111 } 4112 return diffs; 4113 #else 4114 return memcmp(a - meta_len, b - meta_len, meta_len); 4115 #endif 4116 } 4117 4118 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4119 const struct sk_buff *skb_b) 4120 { 4121 u8 len_a = skb_metadata_len(skb_a); 4122 u8 len_b = skb_metadata_len(skb_b); 4123 4124 if (!(len_a | len_b)) 4125 return false; 4126 4127 return len_a != len_b ? 4128 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4129 } 4130 4131 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4132 { 4133 skb_shinfo(skb)->meta_len = meta_len; 4134 } 4135 4136 static inline void skb_metadata_clear(struct sk_buff *skb) 4137 { 4138 skb_metadata_set(skb, 0); 4139 } 4140 4141 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4142 4143 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4144 4145 void skb_clone_tx_timestamp(struct sk_buff *skb); 4146 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4147 4148 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4149 4150 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4151 { 4152 } 4153 4154 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4155 { 4156 return false; 4157 } 4158 4159 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4160 4161 /** 4162 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4163 * 4164 * PHY drivers may accept clones of transmitted packets for 4165 * timestamping via their phy_driver.txtstamp method. These drivers 4166 * must call this function to return the skb back to the stack with a 4167 * timestamp. 4168 * 4169 * @skb: clone of the original outgoing packet 4170 * @hwtstamps: hardware time stamps 4171 * 4172 */ 4173 void skb_complete_tx_timestamp(struct sk_buff *skb, 4174 struct skb_shared_hwtstamps *hwtstamps); 4175 4176 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4177 struct skb_shared_hwtstamps *hwtstamps, 4178 struct sock *sk, int tstype); 4179 4180 /** 4181 * skb_tstamp_tx - queue clone of skb with send time stamps 4182 * @orig_skb: the original outgoing packet 4183 * @hwtstamps: hardware time stamps, may be NULL if not available 4184 * 4185 * If the skb has a socket associated, then this function clones the 4186 * skb (thus sharing the actual data and optional structures), stores 4187 * the optional hardware time stamping information (if non NULL) or 4188 * generates a software time stamp (otherwise), then queues the clone 4189 * to the error queue of the socket. Errors are silently ignored. 4190 */ 4191 void skb_tstamp_tx(struct sk_buff *orig_skb, 4192 struct skb_shared_hwtstamps *hwtstamps); 4193 4194 /** 4195 * skb_tx_timestamp() - Driver hook for transmit timestamping 4196 * 4197 * Ethernet MAC Drivers should call this function in their hard_xmit() 4198 * function immediately before giving the sk_buff to the MAC hardware. 4199 * 4200 * Specifically, one should make absolutely sure that this function is 4201 * called before TX completion of this packet can trigger. Otherwise 4202 * the packet could potentially already be freed. 4203 * 4204 * @skb: A socket buffer. 4205 */ 4206 static inline void skb_tx_timestamp(struct sk_buff *skb) 4207 { 4208 skb_clone_tx_timestamp(skb); 4209 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4210 skb_tstamp_tx(skb, NULL); 4211 } 4212 4213 /** 4214 * skb_complete_wifi_ack - deliver skb with wifi status 4215 * 4216 * @skb: the original outgoing packet 4217 * @acked: ack status 4218 * 4219 */ 4220 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4221 4222 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4223 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4224 4225 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4226 { 4227 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4228 skb->csum_valid || 4229 (skb->ip_summed == CHECKSUM_PARTIAL && 4230 skb_checksum_start_offset(skb) >= 0)); 4231 } 4232 4233 /** 4234 * skb_checksum_complete - Calculate checksum of an entire packet 4235 * @skb: packet to process 4236 * 4237 * This function calculates the checksum over the entire packet plus 4238 * the value of skb->csum. The latter can be used to supply the 4239 * checksum of a pseudo header as used by TCP/UDP. It returns the 4240 * checksum. 4241 * 4242 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4243 * this function can be used to verify that checksum on received 4244 * packets. In that case the function should return zero if the 4245 * checksum is correct. In particular, this function will return zero 4246 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4247 * hardware has already verified the correctness of the checksum. 4248 */ 4249 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4250 { 4251 return skb_csum_unnecessary(skb) ? 4252 0 : __skb_checksum_complete(skb); 4253 } 4254 4255 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4256 { 4257 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4258 if (skb->csum_level == 0) 4259 skb->ip_summed = CHECKSUM_NONE; 4260 else 4261 skb->csum_level--; 4262 } 4263 } 4264 4265 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4266 { 4267 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4268 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4269 skb->csum_level++; 4270 } else if (skb->ip_summed == CHECKSUM_NONE) { 4271 skb->ip_summed = CHECKSUM_UNNECESSARY; 4272 skb->csum_level = 0; 4273 } 4274 } 4275 4276 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4277 { 4278 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4279 skb->ip_summed = CHECKSUM_NONE; 4280 skb->csum_level = 0; 4281 } 4282 } 4283 4284 /* Check if we need to perform checksum complete validation. 4285 * 4286 * Returns true if checksum complete is needed, false otherwise 4287 * (either checksum is unnecessary or zero checksum is allowed). 4288 */ 4289 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4290 bool zero_okay, 4291 __sum16 check) 4292 { 4293 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4294 skb->csum_valid = 1; 4295 __skb_decr_checksum_unnecessary(skb); 4296 return false; 4297 } 4298 4299 return true; 4300 } 4301 4302 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4303 * in checksum_init. 4304 */ 4305 #define CHECKSUM_BREAK 76 4306 4307 /* Unset checksum-complete 4308 * 4309 * Unset checksum complete can be done when packet is being modified 4310 * (uncompressed for instance) and checksum-complete value is 4311 * invalidated. 4312 */ 4313 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4314 { 4315 if (skb->ip_summed == CHECKSUM_COMPLETE) 4316 skb->ip_summed = CHECKSUM_NONE; 4317 } 4318 4319 /* Validate (init) checksum based on checksum complete. 4320 * 4321 * Return values: 4322 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4323 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4324 * checksum is stored in skb->csum for use in __skb_checksum_complete 4325 * non-zero: value of invalid checksum 4326 * 4327 */ 4328 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4329 bool complete, 4330 __wsum psum) 4331 { 4332 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4333 if (!csum_fold(csum_add(psum, skb->csum))) { 4334 skb->csum_valid = 1; 4335 return 0; 4336 } 4337 } 4338 4339 skb->csum = psum; 4340 4341 if (complete || skb->len <= CHECKSUM_BREAK) { 4342 __sum16 csum; 4343 4344 csum = __skb_checksum_complete(skb); 4345 skb->csum_valid = !csum; 4346 return csum; 4347 } 4348 4349 return 0; 4350 } 4351 4352 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4353 { 4354 return 0; 4355 } 4356 4357 /* Perform checksum validate (init). Note that this is a macro since we only 4358 * want to calculate the pseudo header which is an input function if necessary. 4359 * First we try to validate without any computation (checksum unnecessary) and 4360 * then calculate based on checksum complete calling the function to compute 4361 * pseudo header. 4362 * 4363 * Return values: 4364 * 0: checksum is validated or try to in skb_checksum_complete 4365 * non-zero: value of invalid checksum 4366 */ 4367 #define __skb_checksum_validate(skb, proto, complete, \ 4368 zero_okay, check, compute_pseudo) \ 4369 ({ \ 4370 __sum16 __ret = 0; \ 4371 skb->csum_valid = 0; \ 4372 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4373 __ret = __skb_checksum_validate_complete(skb, \ 4374 complete, compute_pseudo(skb, proto)); \ 4375 __ret; \ 4376 }) 4377 4378 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4379 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4380 4381 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4382 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4383 4384 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4385 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4386 4387 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4388 compute_pseudo) \ 4389 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4390 4391 #define skb_checksum_simple_validate(skb) \ 4392 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4393 4394 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4395 { 4396 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4397 } 4398 4399 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4400 { 4401 skb->csum = ~pseudo; 4402 skb->ip_summed = CHECKSUM_COMPLETE; 4403 } 4404 4405 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4406 do { \ 4407 if (__skb_checksum_convert_check(skb)) \ 4408 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4409 } while (0) 4410 4411 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4412 u16 start, u16 offset) 4413 { 4414 skb->ip_summed = CHECKSUM_PARTIAL; 4415 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4416 skb->csum_offset = offset - start; 4417 } 4418 4419 /* Update skbuf and packet to reflect the remote checksum offload operation. 4420 * When called, ptr indicates the starting point for skb->csum when 4421 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4422 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4423 */ 4424 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4425 int start, int offset, bool nopartial) 4426 { 4427 __wsum delta; 4428 4429 if (!nopartial) { 4430 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4431 return; 4432 } 4433 4434 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4435 __skb_checksum_complete(skb); 4436 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4437 } 4438 4439 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4440 4441 /* Adjust skb->csum since we changed the packet */ 4442 skb->csum = csum_add(skb->csum, delta); 4443 } 4444 4445 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4446 { 4447 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4448 return (void *)(skb->_nfct & NFCT_PTRMASK); 4449 #else 4450 return NULL; 4451 #endif 4452 } 4453 4454 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4455 { 4456 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4457 return skb->_nfct; 4458 #else 4459 return 0UL; 4460 #endif 4461 } 4462 4463 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4464 { 4465 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4466 skb->slow_gro |= !!nfct; 4467 skb->_nfct = nfct; 4468 #endif 4469 } 4470 4471 #ifdef CONFIG_SKB_EXTENSIONS 4472 enum skb_ext_id { 4473 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4474 SKB_EXT_BRIDGE_NF, 4475 #endif 4476 #ifdef CONFIG_XFRM 4477 SKB_EXT_SEC_PATH, 4478 #endif 4479 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4480 TC_SKB_EXT, 4481 #endif 4482 #if IS_ENABLED(CONFIG_MPTCP) 4483 SKB_EXT_MPTCP, 4484 #endif 4485 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4486 SKB_EXT_MCTP, 4487 #endif 4488 SKB_EXT_NUM, /* must be last */ 4489 }; 4490 4491 /** 4492 * struct skb_ext - sk_buff extensions 4493 * @refcnt: 1 on allocation, deallocated on 0 4494 * @offset: offset to add to @data to obtain extension address 4495 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4496 * @data: start of extension data, variable sized 4497 * 4498 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4499 * to use 'u8' types while allowing up to 2kb worth of extension data. 4500 */ 4501 struct skb_ext { 4502 refcount_t refcnt; 4503 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4504 u8 chunks; /* same */ 4505 char data[] __aligned(8); 4506 }; 4507 4508 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4509 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4510 struct skb_ext *ext); 4511 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4512 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4513 void __skb_ext_put(struct skb_ext *ext); 4514 4515 static inline void skb_ext_put(struct sk_buff *skb) 4516 { 4517 if (skb->active_extensions) 4518 __skb_ext_put(skb->extensions); 4519 } 4520 4521 static inline void __skb_ext_copy(struct sk_buff *dst, 4522 const struct sk_buff *src) 4523 { 4524 dst->active_extensions = src->active_extensions; 4525 4526 if (src->active_extensions) { 4527 struct skb_ext *ext = src->extensions; 4528 4529 refcount_inc(&ext->refcnt); 4530 dst->extensions = ext; 4531 } 4532 } 4533 4534 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4535 { 4536 skb_ext_put(dst); 4537 __skb_ext_copy(dst, src); 4538 } 4539 4540 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4541 { 4542 return !!ext->offset[i]; 4543 } 4544 4545 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4546 { 4547 return skb->active_extensions & (1 << id); 4548 } 4549 4550 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4551 { 4552 if (skb_ext_exist(skb, id)) 4553 __skb_ext_del(skb, id); 4554 } 4555 4556 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4557 { 4558 if (skb_ext_exist(skb, id)) { 4559 struct skb_ext *ext = skb->extensions; 4560 4561 return (void *)ext + (ext->offset[id] << 3); 4562 } 4563 4564 return NULL; 4565 } 4566 4567 static inline void skb_ext_reset(struct sk_buff *skb) 4568 { 4569 if (unlikely(skb->active_extensions)) { 4570 __skb_ext_put(skb->extensions); 4571 skb->active_extensions = 0; 4572 } 4573 } 4574 4575 static inline bool skb_has_extensions(struct sk_buff *skb) 4576 { 4577 return unlikely(skb->active_extensions); 4578 } 4579 #else 4580 static inline void skb_ext_put(struct sk_buff *skb) {} 4581 static inline void skb_ext_reset(struct sk_buff *skb) {} 4582 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4583 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4584 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4585 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4586 #endif /* CONFIG_SKB_EXTENSIONS */ 4587 4588 static inline void nf_reset_ct(struct sk_buff *skb) 4589 { 4590 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4591 nf_conntrack_put(skb_nfct(skb)); 4592 skb->_nfct = 0; 4593 #endif 4594 } 4595 4596 static inline void nf_reset_trace(struct sk_buff *skb) 4597 { 4598 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4599 skb->nf_trace = 0; 4600 #endif 4601 } 4602 4603 static inline void ipvs_reset(struct sk_buff *skb) 4604 { 4605 #if IS_ENABLED(CONFIG_IP_VS) 4606 skb->ipvs_property = 0; 4607 #endif 4608 } 4609 4610 /* Note: This doesn't put any conntrack info in dst. */ 4611 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4612 bool copy) 4613 { 4614 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4615 dst->_nfct = src->_nfct; 4616 nf_conntrack_get(skb_nfct(src)); 4617 #endif 4618 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4619 if (copy) 4620 dst->nf_trace = src->nf_trace; 4621 #endif 4622 } 4623 4624 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4625 { 4626 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4627 nf_conntrack_put(skb_nfct(dst)); 4628 #endif 4629 dst->slow_gro = src->slow_gro; 4630 __nf_copy(dst, src, true); 4631 } 4632 4633 #ifdef CONFIG_NETWORK_SECMARK 4634 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4635 { 4636 to->secmark = from->secmark; 4637 } 4638 4639 static inline void skb_init_secmark(struct sk_buff *skb) 4640 { 4641 skb->secmark = 0; 4642 } 4643 #else 4644 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4645 { } 4646 4647 static inline void skb_init_secmark(struct sk_buff *skb) 4648 { } 4649 #endif 4650 4651 static inline int secpath_exists(const struct sk_buff *skb) 4652 { 4653 #ifdef CONFIG_XFRM 4654 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4655 #else 4656 return 0; 4657 #endif 4658 } 4659 4660 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4661 { 4662 return !skb->destructor && 4663 !secpath_exists(skb) && 4664 !skb_nfct(skb) && 4665 !skb->_skb_refdst && 4666 !skb_has_frag_list(skb); 4667 } 4668 4669 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4670 { 4671 skb->queue_mapping = queue_mapping; 4672 } 4673 4674 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4675 { 4676 return skb->queue_mapping; 4677 } 4678 4679 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4680 { 4681 to->queue_mapping = from->queue_mapping; 4682 } 4683 4684 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4685 { 4686 skb->queue_mapping = rx_queue + 1; 4687 } 4688 4689 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4690 { 4691 return skb->queue_mapping - 1; 4692 } 4693 4694 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4695 { 4696 return skb->queue_mapping != 0; 4697 } 4698 4699 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4700 { 4701 skb->dst_pending_confirm = val; 4702 } 4703 4704 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4705 { 4706 return skb->dst_pending_confirm != 0; 4707 } 4708 4709 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4710 { 4711 #ifdef CONFIG_XFRM 4712 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4713 #else 4714 return NULL; 4715 #endif 4716 } 4717 4718 /* Keeps track of mac header offset relative to skb->head. 4719 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4720 * For non-tunnel skb it points to skb_mac_header() and for 4721 * tunnel skb it points to outer mac header. 4722 * Keeps track of level of encapsulation of network headers. 4723 */ 4724 struct skb_gso_cb { 4725 union { 4726 int mac_offset; 4727 int data_offset; 4728 }; 4729 int encap_level; 4730 __wsum csum; 4731 __u16 csum_start; 4732 }; 4733 #define SKB_GSO_CB_OFFSET 32 4734 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4735 4736 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4737 { 4738 return (skb_mac_header(inner_skb) - inner_skb->head) - 4739 SKB_GSO_CB(inner_skb)->mac_offset; 4740 } 4741 4742 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4743 { 4744 int new_headroom, headroom; 4745 int ret; 4746 4747 headroom = skb_headroom(skb); 4748 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4749 if (ret) 4750 return ret; 4751 4752 new_headroom = skb_headroom(skb); 4753 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4754 return 0; 4755 } 4756 4757 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4758 { 4759 /* Do not update partial checksums if remote checksum is enabled. */ 4760 if (skb->remcsum_offload) 4761 return; 4762 4763 SKB_GSO_CB(skb)->csum = res; 4764 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4765 } 4766 4767 /* Compute the checksum for a gso segment. First compute the checksum value 4768 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4769 * then add in skb->csum (checksum from csum_start to end of packet). 4770 * skb->csum and csum_start are then updated to reflect the checksum of the 4771 * resultant packet starting from the transport header-- the resultant checksum 4772 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4773 * header. 4774 */ 4775 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4776 { 4777 unsigned char *csum_start = skb_transport_header(skb); 4778 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4779 __wsum partial = SKB_GSO_CB(skb)->csum; 4780 4781 SKB_GSO_CB(skb)->csum = res; 4782 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4783 4784 return csum_fold(csum_partial(csum_start, plen, partial)); 4785 } 4786 4787 static inline bool skb_is_gso(const struct sk_buff *skb) 4788 { 4789 return skb_shinfo(skb)->gso_size; 4790 } 4791 4792 /* Note: Should be called only if skb_is_gso(skb) is true */ 4793 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4794 { 4795 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4796 } 4797 4798 /* Note: Should be called only if skb_is_gso(skb) is true */ 4799 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4800 { 4801 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4802 } 4803 4804 /* Note: Should be called only if skb_is_gso(skb) is true */ 4805 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4806 { 4807 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4808 } 4809 4810 static inline void skb_gso_reset(struct sk_buff *skb) 4811 { 4812 skb_shinfo(skb)->gso_size = 0; 4813 skb_shinfo(skb)->gso_segs = 0; 4814 skb_shinfo(skb)->gso_type = 0; 4815 } 4816 4817 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4818 u16 increment) 4819 { 4820 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4821 return; 4822 shinfo->gso_size += increment; 4823 } 4824 4825 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4826 u16 decrement) 4827 { 4828 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4829 return; 4830 shinfo->gso_size -= decrement; 4831 } 4832 4833 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4834 4835 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4836 { 4837 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4838 * wanted then gso_type will be set. */ 4839 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4840 4841 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4842 unlikely(shinfo->gso_type == 0)) { 4843 __skb_warn_lro_forwarding(skb); 4844 return true; 4845 } 4846 return false; 4847 } 4848 4849 static inline void skb_forward_csum(struct sk_buff *skb) 4850 { 4851 /* Unfortunately we don't support this one. Any brave souls? */ 4852 if (skb->ip_summed == CHECKSUM_COMPLETE) 4853 skb->ip_summed = CHECKSUM_NONE; 4854 } 4855 4856 /** 4857 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4858 * @skb: skb to check 4859 * 4860 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4861 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4862 * use this helper, to document places where we make this assertion. 4863 */ 4864 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4865 { 4866 #ifdef DEBUG 4867 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4868 #endif 4869 } 4870 4871 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4872 4873 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4874 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4875 unsigned int transport_len, 4876 __sum16(*skb_chkf)(struct sk_buff *skb)); 4877 4878 /** 4879 * skb_head_is_locked - Determine if the skb->head is locked down 4880 * @skb: skb to check 4881 * 4882 * The head on skbs build around a head frag can be removed if they are 4883 * not cloned. This function returns true if the skb head is locked down 4884 * due to either being allocated via kmalloc, or by being a clone with 4885 * multiple references to the head. 4886 */ 4887 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4888 { 4889 return !skb->head_frag || skb_cloned(skb); 4890 } 4891 4892 /* Local Checksum Offload. 4893 * Compute outer checksum based on the assumption that the 4894 * inner checksum will be offloaded later. 4895 * See Documentation/networking/checksum-offloads.rst for 4896 * explanation of how this works. 4897 * Fill in outer checksum adjustment (e.g. with sum of outer 4898 * pseudo-header) before calling. 4899 * Also ensure that inner checksum is in linear data area. 4900 */ 4901 static inline __wsum lco_csum(struct sk_buff *skb) 4902 { 4903 unsigned char *csum_start = skb_checksum_start(skb); 4904 unsigned char *l4_hdr = skb_transport_header(skb); 4905 __wsum partial; 4906 4907 /* Start with complement of inner checksum adjustment */ 4908 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4909 skb->csum_offset)); 4910 4911 /* Add in checksum of our headers (incl. outer checksum 4912 * adjustment filled in by caller) and return result. 4913 */ 4914 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4915 } 4916 4917 static inline bool skb_is_redirected(const struct sk_buff *skb) 4918 { 4919 return skb->redirected; 4920 } 4921 4922 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4923 { 4924 skb->redirected = 1; 4925 #ifdef CONFIG_NET_REDIRECT 4926 skb->from_ingress = from_ingress; 4927 if (skb->from_ingress) 4928 skb_clear_tstamp(skb); 4929 #endif 4930 } 4931 4932 static inline void skb_reset_redirect(struct sk_buff *skb) 4933 { 4934 skb->redirected = 0; 4935 } 4936 4937 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 4938 { 4939 return skb->csum_not_inet; 4940 } 4941 4942 static inline void skb_set_kcov_handle(struct sk_buff *skb, 4943 const u64 kcov_handle) 4944 { 4945 #ifdef CONFIG_KCOV 4946 skb->kcov_handle = kcov_handle; 4947 #endif 4948 } 4949 4950 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 4951 { 4952 #ifdef CONFIG_KCOV 4953 return skb->kcov_handle; 4954 #else 4955 return 0; 4956 #endif 4957 } 4958 4959 #ifdef CONFIG_PAGE_POOL 4960 static inline void skb_mark_for_recycle(struct sk_buff *skb) 4961 { 4962 skb->pp_recycle = 1; 4963 } 4964 #endif 4965 4966 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 4967 { 4968 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 4969 return false; 4970 return page_pool_return_skb_page(virt_to_page(data)); 4971 } 4972 4973 #endif /* __KERNEL__ */ 4974 #endif /* _LINUX_SKBUFF_H */ 4975