1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 24 #include <linux/atomic.h> 25 #include <asm/types.h> 26 #include <linux/spinlock.h> 27 #include <linux/net.h> 28 #include <linux/textsearch.h> 29 #include <net/checksum.h> 30 #include <linux/rcupdate.h> 31 #include <linux/dmaengine.h> 32 #include <linux/hrtimer.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/netdev_features.h> 35 36 /* Don't change this without changing skb_csum_unnecessary! */ 37 #define CHECKSUM_NONE 0 38 #define CHECKSUM_UNNECESSARY 1 39 #define CHECKSUM_COMPLETE 2 40 #define CHECKSUM_PARTIAL 3 41 42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 43 ~(SMP_CACHE_BYTES - 1)) 44 #define SKB_WITH_OVERHEAD(X) \ 45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 46 #define SKB_MAX_ORDER(X, ORDER) \ 47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 50 51 /* return minimum truesize of one skb containing X bytes of data */ 52 #define SKB_TRUESIZE(X) ((X) + \ 53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 55 56 /* A. Checksumming of received packets by device. 57 * 58 * NONE: device failed to checksum this packet. 59 * skb->csum is undefined. 60 * 61 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 62 * skb->csum is undefined. 63 * It is bad option, but, unfortunately, many of vendors do this. 64 * Apparently with secret goal to sell you new device, when you 65 * will add new protocol to your host. F.e. IPv6. 8) 66 * 67 * COMPLETE: the most generic way. Device supplied checksum of _all_ 68 * the packet as seen by netif_rx in skb->csum. 69 * NOTE: Even if device supports only some protocols, but 70 * is able to produce some skb->csum, it MUST use COMPLETE, 71 * not UNNECESSARY. 72 * 73 * PARTIAL: identical to the case for output below. This may occur 74 * on a packet received directly from another Linux OS, e.g., 75 * a virtualised Linux kernel on the same host. The packet can 76 * be treated in the same way as UNNECESSARY except that on 77 * output (i.e., forwarding) the checksum must be filled in 78 * by the OS or the hardware. 79 * 80 * B. Checksumming on output. 81 * 82 * NONE: skb is checksummed by protocol or csum is not required. 83 * 84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 85 * from skb->csum_start to the end and to record the checksum 86 * at skb->csum_start + skb->csum_offset. 87 * 88 * Device must show its capabilities in dev->features, set 89 * at device setup time. 90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 91 * everything. 92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 93 * TCP/UDP over IPv4. Sigh. Vendors like this 94 * way by an unknown reason. Though, see comment above 95 * about CHECKSUM_UNNECESSARY. 8) 96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 97 * 98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 99 * that do not want net to perform the checksum calculation should use 100 * this flag in their outgoing skbs. 101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 102 * offload. Correspondingly, the FCoE protocol driver 103 * stack should use CHECKSUM_UNNECESSARY. 104 * 105 * Any questions? No questions, good. --ANK 106 */ 107 108 struct net_device; 109 struct scatterlist; 110 struct pipe_inode_info; 111 112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 113 struct nf_conntrack { 114 atomic_t use; 115 }; 116 #endif 117 118 #ifdef CONFIG_BRIDGE_NETFILTER 119 struct nf_bridge_info { 120 atomic_t use; 121 unsigned int mask; 122 struct net_device *physindev; 123 struct net_device *physoutdev; 124 unsigned long data[32 / sizeof(unsigned long)]; 125 }; 126 #endif 127 128 struct sk_buff_head { 129 /* These two members must be first. */ 130 struct sk_buff *next; 131 struct sk_buff *prev; 132 133 __u32 qlen; 134 spinlock_t lock; 135 }; 136 137 struct sk_buff; 138 139 /* To allow 64K frame to be packed as single skb without frag_list we 140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 141 * buffers which do not start on a page boundary. 142 * 143 * Since GRO uses frags we allocate at least 16 regardless of page 144 * size. 145 */ 146 #if (65536/PAGE_SIZE + 1) < 16 147 #define MAX_SKB_FRAGS 16UL 148 #else 149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 150 #endif 151 152 typedef struct skb_frag_struct skb_frag_t; 153 154 struct skb_frag_struct { 155 struct { 156 struct page *p; 157 } page; 158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 159 __u32 page_offset; 160 __u32 size; 161 #else 162 __u16 page_offset; 163 __u16 size; 164 #endif 165 }; 166 167 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 168 { 169 return frag->size; 170 } 171 172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 173 { 174 frag->size = size; 175 } 176 177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 178 { 179 frag->size += delta; 180 } 181 182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 183 { 184 frag->size -= delta; 185 } 186 187 #define HAVE_HW_TIME_STAMP 188 189 /** 190 * struct skb_shared_hwtstamps - hardware time stamps 191 * @hwtstamp: hardware time stamp transformed into duration 192 * since arbitrary point in time 193 * @syststamp: hwtstamp transformed to system time base 194 * 195 * Software time stamps generated by ktime_get_real() are stored in 196 * skb->tstamp. The relation between the different kinds of time 197 * stamps is as follows: 198 * 199 * syststamp and tstamp can be compared against each other in 200 * arbitrary combinations. The accuracy of a 201 * syststamp/tstamp/"syststamp from other device" comparison is 202 * limited by the accuracy of the transformation into system time 203 * base. This depends on the device driver and its underlying 204 * hardware. 205 * 206 * hwtstamps can only be compared against other hwtstamps from 207 * the same device. 208 * 209 * This structure is attached to packets as part of the 210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 211 */ 212 struct skb_shared_hwtstamps { 213 ktime_t hwtstamp; 214 ktime_t syststamp; 215 }; 216 217 /* Definitions for tx_flags in struct skb_shared_info */ 218 enum { 219 /* generate hardware time stamp */ 220 SKBTX_HW_TSTAMP = 1 << 0, 221 222 /* generate software time stamp */ 223 SKBTX_SW_TSTAMP = 1 << 1, 224 225 /* device driver is going to provide hardware time stamp */ 226 SKBTX_IN_PROGRESS = 1 << 2, 227 228 /* device driver supports TX zero-copy buffers */ 229 SKBTX_DEV_ZEROCOPY = 1 << 3, 230 231 /* generate wifi status information (where possible) */ 232 SKBTX_WIFI_STATUS = 1 << 4, 233 234 /* This indicates at least one fragment might be overwritten 235 * (as in vmsplice(), sendfile() ...) 236 * If we need to compute a TX checksum, we'll need to copy 237 * all frags to avoid possible bad checksum 238 */ 239 SKBTX_SHARED_FRAG = 1 << 5, 240 }; 241 242 /* 243 * The callback notifies userspace to release buffers when skb DMA is done in 244 * lower device, the skb last reference should be 0 when calling this. 245 * The zerocopy_success argument is true if zero copy transmit occurred, 246 * false on data copy or out of memory error caused by data copy attempt. 247 * The ctx field is used to track device context. 248 * The desc field is used to track userspace buffer index. 249 */ 250 struct ubuf_info { 251 void (*callback)(struct ubuf_info *, bool zerocopy_success); 252 void *ctx; 253 unsigned long desc; 254 }; 255 256 /* This data is invariant across clones and lives at 257 * the end of the header data, ie. at skb->end. 258 */ 259 struct skb_shared_info { 260 unsigned char nr_frags; 261 __u8 tx_flags; 262 unsigned short gso_size; 263 /* Warning: this field is not always filled in (UFO)! */ 264 unsigned short gso_segs; 265 unsigned short gso_type; 266 struct sk_buff *frag_list; 267 struct skb_shared_hwtstamps hwtstamps; 268 __be32 ip6_frag_id; 269 270 /* 271 * Warning : all fields before dataref are cleared in __alloc_skb() 272 */ 273 atomic_t dataref; 274 275 /* Intermediate layers must ensure that destructor_arg 276 * remains valid until skb destructor */ 277 void * destructor_arg; 278 279 /* must be last field, see pskb_expand_head() */ 280 skb_frag_t frags[MAX_SKB_FRAGS]; 281 }; 282 283 /* We divide dataref into two halves. The higher 16 bits hold references 284 * to the payload part of skb->data. The lower 16 bits hold references to 285 * the entire skb->data. A clone of a headerless skb holds the length of 286 * the header in skb->hdr_len. 287 * 288 * All users must obey the rule that the skb->data reference count must be 289 * greater than or equal to the payload reference count. 290 * 291 * Holding a reference to the payload part means that the user does not 292 * care about modifications to the header part of skb->data. 293 */ 294 #define SKB_DATAREF_SHIFT 16 295 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 296 297 298 enum { 299 SKB_FCLONE_UNAVAILABLE, 300 SKB_FCLONE_ORIG, 301 SKB_FCLONE_CLONE, 302 }; 303 304 enum { 305 SKB_GSO_TCPV4 = 1 << 0, 306 SKB_GSO_UDP = 1 << 1, 307 308 /* This indicates the skb is from an untrusted source. */ 309 SKB_GSO_DODGY = 1 << 2, 310 311 /* This indicates the tcp segment has CWR set. */ 312 SKB_GSO_TCP_ECN = 1 << 3, 313 314 SKB_GSO_TCPV6 = 1 << 4, 315 316 SKB_GSO_FCOE = 1 << 5, 317 318 SKB_GSO_GRE = 1 << 6, 319 }; 320 321 #if BITS_PER_LONG > 32 322 #define NET_SKBUFF_DATA_USES_OFFSET 1 323 #endif 324 325 #ifdef NET_SKBUFF_DATA_USES_OFFSET 326 typedef unsigned int sk_buff_data_t; 327 #else 328 typedef unsigned char *sk_buff_data_t; 329 #endif 330 331 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 332 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 333 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 334 #endif 335 336 /** 337 * struct sk_buff - socket buffer 338 * @next: Next buffer in list 339 * @prev: Previous buffer in list 340 * @tstamp: Time we arrived 341 * @sk: Socket we are owned by 342 * @dev: Device we arrived on/are leaving by 343 * @cb: Control buffer. Free for use by every layer. Put private vars here 344 * @_skb_refdst: destination entry (with norefcount bit) 345 * @sp: the security path, used for xfrm 346 * @len: Length of actual data 347 * @data_len: Data length 348 * @mac_len: Length of link layer header 349 * @hdr_len: writable header length of cloned skb 350 * @csum: Checksum (must include start/offset pair) 351 * @csum_start: Offset from skb->head where checksumming should start 352 * @csum_offset: Offset from csum_start where checksum should be stored 353 * @priority: Packet queueing priority 354 * @local_df: allow local fragmentation 355 * @cloned: Head may be cloned (check refcnt to be sure) 356 * @ip_summed: Driver fed us an IP checksum 357 * @nohdr: Payload reference only, must not modify header 358 * @nfctinfo: Relationship of this skb to the connection 359 * @pkt_type: Packet class 360 * @fclone: skbuff clone status 361 * @ipvs_property: skbuff is owned by ipvs 362 * @peeked: this packet has been seen already, so stats have been 363 * done for it, don't do them again 364 * @nf_trace: netfilter packet trace flag 365 * @protocol: Packet protocol from driver 366 * @destructor: Destruct function 367 * @nfct: Associated connection, if any 368 * @nfct_reasm: netfilter conntrack re-assembly pointer 369 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 370 * @skb_iif: ifindex of device we arrived on 371 * @tc_index: Traffic control index 372 * @tc_verd: traffic control verdict 373 * @rxhash: the packet hash computed on receive 374 * @queue_mapping: Queue mapping for multiqueue devices 375 * @ndisc_nodetype: router type (from link layer) 376 * @ooo_okay: allow the mapping of a socket to a queue to be changed 377 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 378 * ports. 379 * @wifi_acked_valid: wifi_acked was set 380 * @wifi_acked: whether frame was acked on wifi or not 381 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 382 * @dma_cookie: a cookie to one of several possible DMA operations 383 * done by skb DMA functions 384 * @secmark: security marking 385 * @mark: Generic packet mark 386 * @dropcount: total number of sk_receive_queue overflows 387 * @vlan_tci: vlan tag control information 388 * @inner_transport_header: Inner transport layer header (encapsulation) 389 * @inner_network_header: Network layer header (encapsulation) 390 * @transport_header: Transport layer header 391 * @network_header: Network layer header 392 * @mac_header: Link layer header 393 * @tail: Tail pointer 394 * @end: End pointer 395 * @head: Head of buffer 396 * @data: Data head pointer 397 * @truesize: Buffer size 398 * @users: User count - see {datagram,tcp}.c 399 */ 400 401 struct sk_buff { 402 /* These two members must be first. */ 403 struct sk_buff *next; 404 struct sk_buff *prev; 405 406 ktime_t tstamp; 407 408 struct sock *sk; 409 struct net_device *dev; 410 411 /* 412 * This is the control buffer. It is free to use for every 413 * layer. Please put your private variables there. If you 414 * want to keep them across layers you have to do a skb_clone() 415 * first. This is owned by whoever has the skb queued ATM. 416 */ 417 char cb[48] __aligned(8); 418 419 unsigned long _skb_refdst; 420 #ifdef CONFIG_XFRM 421 struct sec_path *sp; 422 #endif 423 unsigned int len, 424 data_len; 425 __u16 mac_len, 426 hdr_len; 427 union { 428 __wsum csum; 429 struct { 430 __u16 csum_start; 431 __u16 csum_offset; 432 }; 433 }; 434 __u32 priority; 435 kmemcheck_bitfield_begin(flags1); 436 __u8 local_df:1, 437 cloned:1, 438 ip_summed:2, 439 nohdr:1, 440 nfctinfo:3; 441 __u8 pkt_type:3, 442 fclone:2, 443 ipvs_property:1, 444 peeked:1, 445 nf_trace:1; 446 kmemcheck_bitfield_end(flags1); 447 __be16 protocol; 448 449 void (*destructor)(struct sk_buff *skb); 450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 451 struct nf_conntrack *nfct; 452 #endif 453 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 454 struct sk_buff *nfct_reasm; 455 #endif 456 #ifdef CONFIG_BRIDGE_NETFILTER 457 struct nf_bridge_info *nf_bridge; 458 #endif 459 460 int skb_iif; 461 462 __u32 rxhash; 463 464 __u16 vlan_tci; 465 466 #ifdef CONFIG_NET_SCHED 467 __u16 tc_index; /* traffic control index */ 468 #ifdef CONFIG_NET_CLS_ACT 469 __u16 tc_verd; /* traffic control verdict */ 470 #endif 471 #endif 472 473 __u16 queue_mapping; 474 kmemcheck_bitfield_begin(flags2); 475 #ifdef CONFIG_IPV6_NDISC_NODETYPE 476 __u8 ndisc_nodetype:2; 477 #endif 478 __u8 pfmemalloc:1; 479 __u8 ooo_okay:1; 480 __u8 l4_rxhash:1; 481 __u8 wifi_acked_valid:1; 482 __u8 wifi_acked:1; 483 __u8 no_fcs:1; 484 __u8 head_frag:1; 485 /* Encapsulation protocol and NIC drivers should use 486 * this flag to indicate to each other if the skb contains 487 * encapsulated packet or not and maybe use the inner packet 488 * headers if needed 489 */ 490 __u8 encapsulation:1; 491 /* 7/9 bit hole (depending on ndisc_nodetype presence) */ 492 kmemcheck_bitfield_end(flags2); 493 494 #ifdef CONFIG_NET_DMA 495 dma_cookie_t dma_cookie; 496 #endif 497 #ifdef CONFIG_NETWORK_SECMARK 498 __u32 secmark; 499 #endif 500 union { 501 __u32 mark; 502 __u32 dropcount; 503 __u32 avail_size; 504 }; 505 506 sk_buff_data_t inner_transport_header; 507 sk_buff_data_t inner_network_header; 508 sk_buff_data_t transport_header; 509 sk_buff_data_t network_header; 510 sk_buff_data_t mac_header; 511 /* These elements must be at the end, see alloc_skb() for details. */ 512 sk_buff_data_t tail; 513 sk_buff_data_t end; 514 unsigned char *head, 515 *data; 516 unsigned int truesize; 517 atomic_t users; 518 }; 519 520 #ifdef __KERNEL__ 521 /* 522 * Handling routines are only of interest to the kernel 523 */ 524 #include <linux/slab.h> 525 526 527 #define SKB_ALLOC_FCLONE 0x01 528 #define SKB_ALLOC_RX 0x02 529 530 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 531 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 532 { 533 return unlikely(skb->pfmemalloc); 534 } 535 536 /* 537 * skb might have a dst pointer attached, refcounted or not. 538 * _skb_refdst low order bit is set if refcount was _not_ taken 539 */ 540 #define SKB_DST_NOREF 1UL 541 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 542 543 /** 544 * skb_dst - returns skb dst_entry 545 * @skb: buffer 546 * 547 * Returns skb dst_entry, regardless of reference taken or not. 548 */ 549 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 550 { 551 /* If refdst was not refcounted, check we still are in a 552 * rcu_read_lock section 553 */ 554 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 555 !rcu_read_lock_held() && 556 !rcu_read_lock_bh_held()); 557 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 558 } 559 560 /** 561 * skb_dst_set - sets skb dst 562 * @skb: buffer 563 * @dst: dst entry 564 * 565 * Sets skb dst, assuming a reference was taken on dst and should 566 * be released by skb_dst_drop() 567 */ 568 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 569 { 570 skb->_skb_refdst = (unsigned long)dst; 571 } 572 573 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 574 575 /** 576 * skb_dst_is_noref - Test if skb dst isn't refcounted 577 * @skb: buffer 578 */ 579 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 580 { 581 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 582 } 583 584 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 585 { 586 return (struct rtable *)skb_dst(skb); 587 } 588 589 extern void kfree_skb(struct sk_buff *skb); 590 extern void skb_tx_error(struct sk_buff *skb); 591 extern void consume_skb(struct sk_buff *skb); 592 extern void __kfree_skb(struct sk_buff *skb); 593 extern struct kmem_cache *skbuff_head_cache; 594 595 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 596 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 597 bool *fragstolen, int *delta_truesize); 598 599 extern struct sk_buff *__alloc_skb(unsigned int size, 600 gfp_t priority, int flags, int node); 601 extern struct sk_buff *build_skb(void *data, unsigned int frag_size); 602 static inline struct sk_buff *alloc_skb(unsigned int size, 603 gfp_t priority) 604 { 605 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 606 } 607 608 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 609 gfp_t priority) 610 { 611 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 612 } 613 614 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 615 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 616 extern struct sk_buff *skb_clone(struct sk_buff *skb, 617 gfp_t priority); 618 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 619 gfp_t priority); 620 extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 621 int headroom, gfp_t gfp_mask); 622 623 extern int pskb_expand_head(struct sk_buff *skb, 624 int nhead, int ntail, 625 gfp_t gfp_mask); 626 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 627 unsigned int headroom); 628 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 629 int newheadroom, int newtailroom, 630 gfp_t priority); 631 extern int skb_to_sgvec(struct sk_buff *skb, 632 struct scatterlist *sg, int offset, 633 int len); 634 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 635 struct sk_buff **trailer); 636 extern int skb_pad(struct sk_buff *skb, int pad); 637 #define dev_kfree_skb(a) consume_skb(a) 638 639 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 640 int getfrag(void *from, char *to, int offset, 641 int len,int odd, struct sk_buff *skb), 642 void *from, int length); 643 644 struct skb_seq_state { 645 __u32 lower_offset; 646 __u32 upper_offset; 647 __u32 frag_idx; 648 __u32 stepped_offset; 649 struct sk_buff *root_skb; 650 struct sk_buff *cur_skb; 651 __u8 *frag_data; 652 }; 653 654 extern void skb_prepare_seq_read(struct sk_buff *skb, 655 unsigned int from, unsigned int to, 656 struct skb_seq_state *st); 657 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 658 struct skb_seq_state *st); 659 extern void skb_abort_seq_read(struct skb_seq_state *st); 660 661 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 662 unsigned int to, struct ts_config *config, 663 struct ts_state *state); 664 665 extern void __skb_get_rxhash(struct sk_buff *skb); 666 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 667 { 668 if (!skb->l4_rxhash) 669 __skb_get_rxhash(skb); 670 671 return skb->rxhash; 672 } 673 674 #ifdef NET_SKBUFF_DATA_USES_OFFSET 675 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 676 { 677 return skb->head + skb->end; 678 } 679 680 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 681 { 682 return skb->end; 683 } 684 #else 685 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 686 { 687 return skb->end; 688 } 689 690 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 691 { 692 return skb->end - skb->head; 693 } 694 #endif 695 696 /* Internal */ 697 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 698 699 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 700 { 701 return &skb_shinfo(skb)->hwtstamps; 702 } 703 704 /** 705 * skb_queue_empty - check if a queue is empty 706 * @list: queue head 707 * 708 * Returns true if the queue is empty, false otherwise. 709 */ 710 static inline int skb_queue_empty(const struct sk_buff_head *list) 711 { 712 return list->next == (struct sk_buff *)list; 713 } 714 715 /** 716 * skb_queue_is_last - check if skb is the last entry in the queue 717 * @list: queue head 718 * @skb: buffer 719 * 720 * Returns true if @skb is the last buffer on the list. 721 */ 722 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 723 const struct sk_buff *skb) 724 { 725 return skb->next == (struct sk_buff *)list; 726 } 727 728 /** 729 * skb_queue_is_first - check if skb is the first entry in the queue 730 * @list: queue head 731 * @skb: buffer 732 * 733 * Returns true if @skb is the first buffer on the list. 734 */ 735 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 736 const struct sk_buff *skb) 737 { 738 return skb->prev == (struct sk_buff *)list; 739 } 740 741 /** 742 * skb_queue_next - return the next packet in the queue 743 * @list: queue head 744 * @skb: current buffer 745 * 746 * Return the next packet in @list after @skb. It is only valid to 747 * call this if skb_queue_is_last() evaluates to false. 748 */ 749 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 750 const struct sk_buff *skb) 751 { 752 /* This BUG_ON may seem severe, but if we just return then we 753 * are going to dereference garbage. 754 */ 755 BUG_ON(skb_queue_is_last(list, skb)); 756 return skb->next; 757 } 758 759 /** 760 * skb_queue_prev - return the prev packet in the queue 761 * @list: queue head 762 * @skb: current buffer 763 * 764 * Return the prev packet in @list before @skb. It is only valid to 765 * call this if skb_queue_is_first() evaluates to false. 766 */ 767 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 768 const struct sk_buff *skb) 769 { 770 /* This BUG_ON may seem severe, but if we just return then we 771 * are going to dereference garbage. 772 */ 773 BUG_ON(skb_queue_is_first(list, skb)); 774 return skb->prev; 775 } 776 777 /** 778 * skb_get - reference buffer 779 * @skb: buffer to reference 780 * 781 * Makes another reference to a socket buffer and returns a pointer 782 * to the buffer. 783 */ 784 static inline struct sk_buff *skb_get(struct sk_buff *skb) 785 { 786 atomic_inc(&skb->users); 787 return skb; 788 } 789 790 /* 791 * If users == 1, we are the only owner and are can avoid redundant 792 * atomic change. 793 */ 794 795 /** 796 * skb_cloned - is the buffer a clone 797 * @skb: buffer to check 798 * 799 * Returns true if the buffer was generated with skb_clone() and is 800 * one of multiple shared copies of the buffer. Cloned buffers are 801 * shared data so must not be written to under normal circumstances. 802 */ 803 static inline int skb_cloned(const struct sk_buff *skb) 804 { 805 return skb->cloned && 806 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 807 } 808 809 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 810 { 811 might_sleep_if(pri & __GFP_WAIT); 812 813 if (skb_cloned(skb)) 814 return pskb_expand_head(skb, 0, 0, pri); 815 816 return 0; 817 } 818 819 /** 820 * skb_header_cloned - is the header a clone 821 * @skb: buffer to check 822 * 823 * Returns true if modifying the header part of the buffer requires 824 * the data to be copied. 825 */ 826 static inline int skb_header_cloned(const struct sk_buff *skb) 827 { 828 int dataref; 829 830 if (!skb->cloned) 831 return 0; 832 833 dataref = atomic_read(&skb_shinfo(skb)->dataref); 834 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 835 return dataref != 1; 836 } 837 838 /** 839 * skb_header_release - release reference to header 840 * @skb: buffer to operate on 841 * 842 * Drop a reference to the header part of the buffer. This is done 843 * by acquiring a payload reference. You must not read from the header 844 * part of skb->data after this. 845 */ 846 static inline void skb_header_release(struct sk_buff *skb) 847 { 848 BUG_ON(skb->nohdr); 849 skb->nohdr = 1; 850 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 851 } 852 853 /** 854 * skb_shared - is the buffer shared 855 * @skb: buffer to check 856 * 857 * Returns true if more than one person has a reference to this 858 * buffer. 859 */ 860 static inline int skb_shared(const struct sk_buff *skb) 861 { 862 return atomic_read(&skb->users) != 1; 863 } 864 865 /** 866 * skb_share_check - check if buffer is shared and if so clone it 867 * @skb: buffer to check 868 * @pri: priority for memory allocation 869 * 870 * If the buffer is shared the buffer is cloned and the old copy 871 * drops a reference. A new clone with a single reference is returned. 872 * If the buffer is not shared the original buffer is returned. When 873 * being called from interrupt status or with spinlocks held pri must 874 * be GFP_ATOMIC. 875 * 876 * NULL is returned on a memory allocation failure. 877 */ 878 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 879 { 880 might_sleep_if(pri & __GFP_WAIT); 881 if (skb_shared(skb)) { 882 struct sk_buff *nskb = skb_clone(skb, pri); 883 884 if (likely(nskb)) 885 consume_skb(skb); 886 else 887 kfree_skb(skb); 888 skb = nskb; 889 } 890 return skb; 891 } 892 893 /* 894 * Copy shared buffers into a new sk_buff. We effectively do COW on 895 * packets to handle cases where we have a local reader and forward 896 * and a couple of other messy ones. The normal one is tcpdumping 897 * a packet thats being forwarded. 898 */ 899 900 /** 901 * skb_unshare - make a copy of a shared buffer 902 * @skb: buffer to check 903 * @pri: priority for memory allocation 904 * 905 * If the socket buffer is a clone then this function creates a new 906 * copy of the data, drops a reference count on the old copy and returns 907 * the new copy with the reference count at 1. If the buffer is not a clone 908 * the original buffer is returned. When called with a spinlock held or 909 * from interrupt state @pri must be %GFP_ATOMIC 910 * 911 * %NULL is returned on a memory allocation failure. 912 */ 913 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 914 gfp_t pri) 915 { 916 might_sleep_if(pri & __GFP_WAIT); 917 if (skb_cloned(skb)) { 918 struct sk_buff *nskb = skb_copy(skb, pri); 919 kfree_skb(skb); /* Free our shared copy */ 920 skb = nskb; 921 } 922 return skb; 923 } 924 925 /** 926 * skb_peek - peek at the head of an &sk_buff_head 927 * @list_: list to peek at 928 * 929 * Peek an &sk_buff. Unlike most other operations you _MUST_ 930 * be careful with this one. A peek leaves the buffer on the 931 * list and someone else may run off with it. You must hold 932 * the appropriate locks or have a private queue to do this. 933 * 934 * Returns %NULL for an empty list or a pointer to the head element. 935 * The reference count is not incremented and the reference is therefore 936 * volatile. Use with caution. 937 */ 938 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 939 { 940 struct sk_buff *skb = list_->next; 941 942 if (skb == (struct sk_buff *)list_) 943 skb = NULL; 944 return skb; 945 } 946 947 /** 948 * skb_peek_next - peek skb following the given one from a queue 949 * @skb: skb to start from 950 * @list_: list to peek at 951 * 952 * Returns %NULL when the end of the list is met or a pointer to the 953 * next element. The reference count is not incremented and the 954 * reference is therefore volatile. Use with caution. 955 */ 956 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 957 const struct sk_buff_head *list_) 958 { 959 struct sk_buff *next = skb->next; 960 961 if (next == (struct sk_buff *)list_) 962 next = NULL; 963 return next; 964 } 965 966 /** 967 * skb_peek_tail - peek at the tail of an &sk_buff_head 968 * @list_: list to peek at 969 * 970 * Peek an &sk_buff. Unlike most other operations you _MUST_ 971 * be careful with this one. A peek leaves the buffer on the 972 * list and someone else may run off with it. You must hold 973 * the appropriate locks or have a private queue to do this. 974 * 975 * Returns %NULL for an empty list or a pointer to the tail element. 976 * The reference count is not incremented and the reference is therefore 977 * volatile. Use with caution. 978 */ 979 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 980 { 981 struct sk_buff *skb = list_->prev; 982 983 if (skb == (struct sk_buff *)list_) 984 skb = NULL; 985 return skb; 986 987 } 988 989 /** 990 * skb_queue_len - get queue length 991 * @list_: list to measure 992 * 993 * Return the length of an &sk_buff queue. 994 */ 995 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 996 { 997 return list_->qlen; 998 } 999 1000 /** 1001 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1002 * @list: queue to initialize 1003 * 1004 * This initializes only the list and queue length aspects of 1005 * an sk_buff_head object. This allows to initialize the list 1006 * aspects of an sk_buff_head without reinitializing things like 1007 * the spinlock. It can also be used for on-stack sk_buff_head 1008 * objects where the spinlock is known to not be used. 1009 */ 1010 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1011 { 1012 list->prev = list->next = (struct sk_buff *)list; 1013 list->qlen = 0; 1014 } 1015 1016 /* 1017 * This function creates a split out lock class for each invocation; 1018 * this is needed for now since a whole lot of users of the skb-queue 1019 * infrastructure in drivers have different locking usage (in hardirq) 1020 * than the networking core (in softirq only). In the long run either the 1021 * network layer or drivers should need annotation to consolidate the 1022 * main types of usage into 3 classes. 1023 */ 1024 static inline void skb_queue_head_init(struct sk_buff_head *list) 1025 { 1026 spin_lock_init(&list->lock); 1027 __skb_queue_head_init(list); 1028 } 1029 1030 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1031 struct lock_class_key *class) 1032 { 1033 skb_queue_head_init(list); 1034 lockdep_set_class(&list->lock, class); 1035 } 1036 1037 /* 1038 * Insert an sk_buff on a list. 1039 * 1040 * The "__skb_xxxx()" functions are the non-atomic ones that 1041 * can only be called with interrupts disabled. 1042 */ 1043 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 1044 static inline void __skb_insert(struct sk_buff *newsk, 1045 struct sk_buff *prev, struct sk_buff *next, 1046 struct sk_buff_head *list) 1047 { 1048 newsk->next = next; 1049 newsk->prev = prev; 1050 next->prev = prev->next = newsk; 1051 list->qlen++; 1052 } 1053 1054 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1055 struct sk_buff *prev, 1056 struct sk_buff *next) 1057 { 1058 struct sk_buff *first = list->next; 1059 struct sk_buff *last = list->prev; 1060 1061 first->prev = prev; 1062 prev->next = first; 1063 1064 last->next = next; 1065 next->prev = last; 1066 } 1067 1068 /** 1069 * skb_queue_splice - join two skb lists, this is designed for stacks 1070 * @list: the new list to add 1071 * @head: the place to add it in the first list 1072 */ 1073 static inline void skb_queue_splice(const struct sk_buff_head *list, 1074 struct sk_buff_head *head) 1075 { 1076 if (!skb_queue_empty(list)) { 1077 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1078 head->qlen += list->qlen; 1079 } 1080 } 1081 1082 /** 1083 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1084 * @list: the new list to add 1085 * @head: the place to add it in the first list 1086 * 1087 * The list at @list is reinitialised 1088 */ 1089 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1090 struct sk_buff_head *head) 1091 { 1092 if (!skb_queue_empty(list)) { 1093 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1094 head->qlen += list->qlen; 1095 __skb_queue_head_init(list); 1096 } 1097 } 1098 1099 /** 1100 * skb_queue_splice_tail - join two skb lists, each list being a queue 1101 * @list: the new list to add 1102 * @head: the place to add it in the first list 1103 */ 1104 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1105 struct sk_buff_head *head) 1106 { 1107 if (!skb_queue_empty(list)) { 1108 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1109 head->qlen += list->qlen; 1110 } 1111 } 1112 1113 /** 1114 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1115 * @list: the new list to add 1116 * @head: the place to add it in the first list 1117 * 1118 * Each of the lists is a queue. 1119 * The list at @list is reinitialised 1120 */ 1121 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1122 struct sk_buff_head *head) 1123 { 1124 if (!skb_queue_empty(list)) { 1125 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1126 head->qlen += list->qlen; 1127 __skb_queue_head_init(list); 1128 } 1129 } 1130 1131 /** 1132 * __skb_queue_after - queue a buffer at the list head 1133 * @list: list to use 1134 * @prev: place after this buffer 1135 * @newsk: buffer to queue 1136 * 1137 * Queue a buffer int the middle of a list. This function takes no locks 1138 * and you must therefore hold required locks before calling it. 1139 * 1140 * A buffer cannot be placed on two lists at the same time. 1141 */ 1142 static inline void __skb_queue_after(struct sk_buff_head *list, 1143 struct sk_buff *prev, 1144 struct sk_buff *newsk) 1145 { 1146 __skb_insert(newsk, prev, prev->next, list); 1147 } 1148 1149 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1150 struct sk_buff_head *list); 1151 1152 static inline void __skb_queue_before(struct sk_buff_head *list, 1153 struct sk_buff *next, 1154 struct sk_buff *newsk) 1155 { 1156 __skb_insert(newsk, next->prev, next, list); 1157 } 1158 1159 /** 1160 * __skb_queue_head - queue a buffer at the list head 1161 * @list: list to use 1162 * @newsk: buffer to queue 1163 * 1164 * Queue a buffer at the start of a list. This function takes no locks 1165 * and you must therefore hold required locks before calling it. 1166 * 1167 * A buffer cannot be placed on two lists at the same time. 1168 */ 1169 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1170 static inline void __skb_queue_head(struct sk_buff_head *list, 1171 struct sk_buff *newsk) 1172 { 1173 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1174 } 1175 1176 /** 1177 * __skb_queue_tail - queue a buffer at the list tail 1178 * @list: list to use 1179 * @newsk: buffer to queue 1180 * 1181 * Queue a buffer at the end of a list. This function takes no locks 1182 * and you must therefore hold required locks before calling it. 1183 * 1184 * A buffer cannot be placed on two lists at the same time. 1185 */ 1186 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1187 static inline void __skb_queue_tail(struct sk_buff_head *list, 1188 struct sk_buff *newsk) 1189 { 1190 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1191 } 1192 1193 /* 1194 * remove sk_buff from list. _Must_ be called atomically, and with 1195 * the list known.. 1196 */ 1197 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1198 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1199 { 1200 struct sk_buff *next, *prev; 1201 1202 list->qlen--; 1203 next = skb->next; 1204 prev = skb->prev; 1205 skb->next = skb->prev = NULL; 1206 next->prev = prev; 1207 prev->next = next; 1208 } 1209 1210 /** 1211 * __skb_dequeue - remove from the head of the queue 1212 * @list: list to dequeue from 1213 * 1214 * Remove the head of the list. This function does not take any locks 1215 * so must be used with appropriate locks held only. The head item is 1216 * returned or %NULL if the list is empty. 1217 */ 1218 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1219 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1220 { 1221 struct sk_buff *skb = skb_peek(list); 1222 if (skb) 1223 __skb_unlink(skb, list); 1224 return skb; 1225 } 1226 1227 /** 1228 * __skb_dequeue_tail - remove from the tail of the queue 1229 * @list: list to dequeue from 1230 * 1231 * Remove the tail of the list. This function does not take any locks 1232 * so must be used with appropriate locks held only. The tail item is 1233 * returned or %NULL if the list is empty. 1234 */ 1235 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1236 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1237 { 1238 struct sk_buff *skb = skb_peek_tail(list); 1239 if (skb) 1240 __skb_unlink(skb, list); 1241 return skb; 1242 } 1243 1244 1245 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1246 { 1247 return skb->data_len; 1248 } 1249 1250 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1251 { 1252 return skb->len - skb->data_len; 1253 } 1254 1255 static inline int skb_pagelen(const struct sk_buff *skb) 1256 { 1257 int i, len = 0; 1258 1259 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1260 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1261 return len + skb_headlen(skb); 1262 } 1263 1264 /** 1265 * __skb_fill_page_desc - initialise a paged fragment in an skb 1266 * @skb: buffer containing fragment to be initialised 1267 * @i: paged fragment index to initialise 1268 * @page: the page to use for this fragment 1269 * @off: the offset to the data with @page 1270 * @size: the length of the data 1271 * 1272 * Initialises the @i'th fragment of @skb to point to &size bytes at 1273 * offset @off within @page. 1274 * 1275 * Does not take any additional reference on the fragment. 1276 */ 1277 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1278 struct page *page, int off, int size) 1279 { 1280 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1281 1282 /* 1283 * Propagate page->pfmemalloc to the skb if we can. The problem is 1284 * that not all callers have unique ownership of the page. If 1285 * pfmemalloc is set, we check the mapping as a mapping implies 1286 * page->index is set (index and pfmemalloc share space). 1287 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1288 * do not lose pfmemalloc information as the pages would not be 1289 * allocated using __GFP_MEMALLOC. 1290 */ 1291 if (page->pfmemalloc && !page->mapping) 1292 skb->pfmemalloc = true; 1293 frag->page.p = page; 1294 frag->page_offset = off; 1295 skb_frag_size_set(frag, size); 1296 } 1297 1298 /** 1299 * skb_fill_page_desc - initialise a paged fragment in an skb 1300 * @skb: buffer containing fragment to be initialised 1301 * @i: paged fragment index to initialise 1302 * @page: the page to use for this fragment 1303 * @off: the offset to the data with @page 1304 * @size: the length of the data 1305 * 1306 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1307 * @skb to point to &size bytes at offset @off within @page. In 1308 * addition updates @skb such that @i is the last fragment. 1309 * 1310 * Does not take any additional reference on the fragment. 1311 */ 1312 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1313 struct page *page, int off, int size) 1314 { 1315 __skb_fill_page_desc(skb, i, page, off, size); 1316 skb_shinfo(skb)->nr_frags = i + 1; 1317 } 1318 1319 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1320 int off, int size, unsigned int truesize); 1321 1322 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1323 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1324 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1325 1326 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1327 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1328 { 1329 return skb->head + skb->tail; 1330 } 1331 1332 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1333 { 1334 skb->tail = skb->data - skb->head; 1335 } 1336 1337 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1338 { 1339 skb_reset_tail_pointer(skb); 1340 skb->tail += offset; 1341 } 1342 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1343 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1344 { 1345 return skb->tail; 1346 } 1347 1348 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1349 { 1350 skb->tail = skb->data; 1351 } 1352 1353 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1354 { 1355 skb->tail = skb->data + offset; 1356 } 1357 1358 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1359 1360 /* 1361 * Add data to an sk_buff 1362 */ 1363 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1364 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1365 { 1366 unsigned char *tmp = skb_tail_pointer(skb); 1367 SKB_LINEAR_ASSERT(skb); 1368 skb->tail += len; 1369 skb->len += len; 1370 return tmp; 1371 } 1372 1373 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1374 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1375 { 1376 skb->data -= len; 1377 skb->len += len; 1378 return skb->data; 1379 } 1380 1381 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1382 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1383 { 1384 skb->len -= len; 1385 BUG_ON(skb->len < skb->data_len); 1386 return skb->data += len; 1387 } 1388 1389 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1390 { 1391 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1392 } 1393 1394 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1395 1396 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1397 { 1398 if (len > skb_headlen(skb) && 1399 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1400 return NULL; 1401 skb->len -= len; 1402 return skb->data += len; 1403 } 1404 1405 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1406 { 1407 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1408 } 1409 1410 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1411 { 1412 if (likely(len <= skb_headlen(skb))) 1413 return 1; 1414 if (unlikely(len > skb->len)) 1415 return 0; 1416 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1417 } 1418 1419 /** 1420 * skb_headroom - bytes at buffer head 1421 * @skb: buffer to check 1422 * 1423 * Return the number of bytes of free space at the head of an &sk_buff. 1424 */ 1425 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1426 { 1427 return skb->data - skb->head; 1428 } 1429 1430 /** 1431 * skb_tailroom - bytes at buffer end 1432 * @skb: buffer to check 1433 * 1434 * Return the number of bytes of free space at the tail of an sk_buff 1435 */ 1436 static inline int skb_tailroom(const struct sk_buff *skb) 1437 { 1438 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1439 } 1440 1441 /** 1442 * skb_availroom - bytes at buffer end 1443 * @skb: buffer to check 1444 * 1445 * Return the number of bytes of free space at the tail of an sk_buff 1446 * allocated by sk_stream_alloc() 1447 */ 1448 static inline int skb_availroom(const struct sk_buff *skb) 1449 { 1450 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len; 1451 } 1452 1453 /** 1454 * skb_reserve - adjust headroom 1455 * @skb: buffer to alter 1456 * @len: bytes to move 1457 * 1458 * Increase the headroom of an empty &sk_buff by reducing the tail 1459 * room. This is only allowed for an empty buffer. 1460 */ 1461 static inline void skb_reserve(struct sk_buff *skb, int len) 1462 { 1463 skb->data += len; 1464 skb->tail += len; 1465 } 1466 1467 static inline void skb_reset_inner_headers(struct sk_buff *skb) 1468 { 1469 skb->inner_network_header = skb->network_header; 1470 skb->inner_transport_header = skb->transport_header; 1471 } 1472 1473 static inline void skb_reset_mac_len(struct sk_buff *skb) 1474 { 1475 skb->mac_len = skb->network_header - skb->mac_header; 1476 } 1477 1478 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1479 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1480 *skb) 1481 { 1482 return skb->head + skb->inner_transport_header; 1483 } 1484 1485 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1486 { 1487 skb->inner_transport_header = skb->data - skb->head; 1488 } 1489 1490 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1491 const int offset) 1492 { 1493 skb_reset_inner_transport_header(skb); 1494 skb->inner_transport_header += offset; 1495 } 1496 1497 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1498 { 1499 return skb->head + skb->inner_network_header; 1500 } 1501 1502 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1503 { 1504 skb->inner_network_header = skb->data - skb->head; 1505 } 1506 1507 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1508 const int offset) 1509 { 1510 skb_reset_inner_network_header(skb); 1511 skb->inner_network_header += offset; 1512 } 1513 1514 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1515 { 1516 return skb->transport_header != ~0U; 1517 } 1518 1519 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1520 { 1521 return skb->head + skb->transport_header; 1522 } 1523 1524 static inline void skb_reset_transport_header(struct sk_buff *skb) 1525 { 1526 skb->transport_header = skb->data - skb->head; 1527 } 1528 1529 static inline void skb_set_transport_header(struct sk_buff *skb, 1530 const int offset) 1531 { 1532 skb_reset_transport_header(skb); 1533 skb->transport_header += offset; 1534 } 1535 1536 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1537 { 1538 return skb->head + skb->network_header; 1539 } 1540 1541 static inline void skb_reset_network_header(struct sk_buff *skb) 1542 { 1543 skb->network_header = skb->data - skb->head; 1544 } 1545 1546 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1547 { 1548 skb_reset_network_header(skb); 1549 skb->network_header += offset; 1550 } 1551 1552 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1553 { 1554 return skb->head + skb->mac_header; 1555 } 1556 1557 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1558 { 1559 return skb->mac_header != ~0U; 1560 } 1561 1562 static inline void skb_reset_mac_header(struct sk_buff *skb) 1563 { 1564 skb->mac_header = skb->data - skb->head; 1565 } 1566 1567 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1568 { 1569 skb_reset_mac_header(skb); 1570 skb->mac_header += offset; 1571 } 1572 1573 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1574 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1575 *skb) 1576 { 1577 return skb->inner_transport_header; 1578 } 1579 1580 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1581 { 1582 skb->inner_transport_header = skb->data; 1583 } 1584 1585 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1586 const int offset) 1587 { 1588 skb->inner_transport_header = skb->data + offset; 1589 } 1590 1591 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1592 { 1593 return skb->inner_network_header; 1594 } 1595 1596 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1597 { 1598 skb->inner_network_header = skb->data; 1599 } 1600 1601 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1602 const int offset) 1603 { 1604 skb->inner_network_header = skb->data + offset; 1605 } 1606 1607 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1608 { 1609 return skb->transport_header != NULL; 1610 } 1611 1612 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1613 { 1614 return skb->transport_header; 1615 } 1616 1617 static inline void skb_reset_transport_header(struct sk_buff *skb) 1618 { 1619 skb->transport_header = skb->data; 1620 } 1621 1622 static inline void skb_set_transport_header(struct sk_buff *skb, 1623 const int offset) 1624 { 1625 skb->transport_header = skb->data + offset; 1626 } 1627 1628 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1629 { 1630 return skb->network_header; 1631 } 1632 1633 static inline void skb_reset_network_header(struct sk_buff *skb) 1634 { 1635 skb->network_header = skb->data; 1636 } 1637 1638 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1639 { 1640 skb->network_header = skb->data + offset; 1641 } 1642 1643 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1644 { 1645 return skb->mac_header; 1646 } 1647 1648 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1649 { 1650 return skb->mac_header != NULL; 1651 } 1652 1653 static inline void skb_reset_mac_header(struct sk_buff *skb) 1654 { 1655 skb->mac_header = skb->data; 1656 } 1657 1658 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1659 { 1660 skb->mac_header = skb->data + offset; 1661 } 1662 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1663 1664 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1665 { 1666 if (skb_mac_header_was_set(skb)) { 1667 const unsigned char *old_mac = skb_mac_header(skb); 1668 1669 skb_set_mac_header(skb, -skb->mac_len); 1670 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1671 } 1672 } 1673 1674 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1675 { 1676 return skb->csum_start - skb_headroom(skb); 1677 } 1678 1679 static inline int skb_transport_offset(const struct sk_buff *skb) 1680 { 1681 return skb_transport_header(skb) - skb->data; 1682 } 1683 1684 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1685 { 1686 return skb->transport_header - skb->network_header; 1687 } 1688 1689 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1690 { 1691 return skb->inner_transport_header - skb->inner_network_header; 1692 } 1693 1694 static inline int skb_network_offset(const struct sk_buff *skb) 1695 { 1696 return skb_network_header(skb) - skb->data; 1697 } 1698 1699 static inline int skb_inner_network_offset(const struct sk_buff *skb) 1700 { 1701 return skb_inner_network_header(skb) - skb->data; 1702 } 1703 1704 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1705 { 1706 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1707 } 1708 1709 /* 1710 * CPUs often take a performance hit when accessing unaligned memory 1711 * locations. The actual performance hit varies, it can be small if the 1712 * hardware handles it or large if we have to take an exception and fix it 1713 * in software. 1714 * 1715 * Since an ethernet header is 14 bytes network drivers often end up with 1716 * the IP header at an unaligned offset. The IP header can be aligned by 1717 * shifting the start of the packet by 2 bytes. Drivers should do this 1718 * with: 1719 * 1720 * skb_reserve(skb, NET_IP_ALIGN); 1721 * 1722 * The downside to this alignment of the IP header is that the DMA is now 1723 * unaligned. On some architectures the cost of an unaligned DMA is high 1724 * and this cost outweighs the gains made by aligning the IP header. 1725 * 1726 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1727 * to be overridden. 1728 */ 1729 #ifndef NET_IP_ALIGN 1730 #define NET_IP_ALIGN 2 1731 #endif 1732 1733 /* 1734 * The networking layer reserves some headroom in skb data (via 1735 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1736 * the header has to grow. In the default case, if the header has to grow 1737 * 32 bytes or less we avoid the reallocation. 1738 * 1739 * Unfortunately this headroom changes the DMA alignment of the resulting 1740 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1741 * on some architectures. An architecture can override this value, 1742 * perhaps setting it to a cacheline in size (since that will maintain 1743 * cacheline alignment of the DMA). It must be a power of 2. 1744 * 1745 * Various parts of the networking layer expect at least 32 bytes of 1746 * headroom, you should not reduce this. 1747 * 1748 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1749 * to reduce average number of cache lines per packet. 1750 * get_rps_cpus() for example only access one 64 bytes aligned block : 1751 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1752 */ 1753 #ifndef NET_SKB_PAD 1754 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1755 #endif 1756 1757 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1758 1759 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1760 { 1761 if (unlikely(skb_is_nonlinear(skb))) { 1762 WARN_ON(1); 1763 return; 1764 } 1765 skb->len = len; 1766 skb_set_tail_pointer(skb, len); 1767 } 1768 1769 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1770 1771 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1772 { 1773 if (skb->data_len) 1774 return ___pskb_trim(skb, len); 1775 __skb_trim(skb, len); 1776 return 0; 1777 } 1778 1779 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1780 { 1781 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1782 } 1783 1784 /** 1785 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1786 * @skb: buffer to alter 1787 * @len: new length 1788 * 1789 * This is identical to pskb_trim except that the caller knows that 1790 * the skb is not cloned so we should never get an error due to out- 1791 * of-memory. 1792 */ 1793 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1794 { 1795 int err = pskb_trim(skb, len); 1796 BUG_ON(err); 1797 } 1798 1799 /** 1800 * skb_orphan - orphan a buffer 1801 * @skb: buffer to orphan 1802 * 1803 * If a buffer currently has an owner then we call the owner's 1804 * destructor function and make the @skb unowned. The buffer continues 1805 * to exist but is no longer charged to its former owner. 1806 */ 1807 static inline void skb_orphan(struct sk_buff *skb) 1808 { 1809 if (skb->destructor) 1810 skb->destructor(skb); 1811 skb->destructor = NULL; 1812 skb->sk = NULL; 1813 } 1814 1815 /** 1816 * skb_orphan_frags - orphan the frags contained in a buffer 1817 * @skb: buffer to orphan frags from 1818 * @gfp_mask: allocation mask for replacement pages 1819 * 1820 * For each frag in the SKB which needs a destructor (i.e. has an 1821 * owner) create a copy of that frag and release the original 1822 * page by calling the destructor. 1823 */ 1824 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1825 { 1826 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1827 return 0; 1828 return skb_copy_ubufs(skb, gfp_mask); 1829 } 1830 1831 /** 1832 * __skb_queue_purge - empty a list 1833 * @list: list to empty 1834 * 1835 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1836 * the list and one reference dropped. This function does not take the 1837 * list lock and the caller must hold the relevant locks to use it. 1838 */ 1839 extern void skb_queue_purge(struct sk_buff_head *list); 1840 static inline void __skb_queue_purge(struct sk_buff_head *list) 1841 { 1842 struct sk_buff *skb; 1843 while ((skb = __skb_dequeue(list)) != NULL) 1844 kfree_skb(skb); 1845 } 1846 1847 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1848 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1849 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1850 1851 extern void *netdev_alloc_frag(unsigned int fragsz); 1852 1853 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1854 unsigned int length, 1855 gfp_t gfp_mask); 1856 1857 /** 1858 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1859 * @dev: network device to receive on 1860 * @length: length to allocate 1861 * 1862 * Allocate a new &sk_buff and assign it a usage count of one. The 1863 * buffer has unspecified headroom built in. Users should allocate 1864 * the headroom they think they need without accounting for the 1865 * built in space. The built in space is used for optimisations. 1866 * 1867 * %NULL is returned if there is no free memory. Although this function 1868 * allocates memory it can be called from an interrupt. 1869 */ 1870 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1871 unsigned int length) 1872 { 1873 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1874 } 1875 1876 /* legacy helper around __netdev_alloc_skb() */ 1877 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1878 gfp_t gfp_mask) 1879 { 1880 return __netdev_alloc_skb(NULL, length, gfp_mask); 1881 } 1882 1883 /* legacy helper around netdev_alloc_skb() */ 1884 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1885 { 1886 return netdev_alloc_skb(NULL, length); 1887 } 1888 1889 1890 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1891 unsigned int length, gfp_t gfp) 1892 { 1893 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1894 1895 if (NET_IP_ALIGN && skb) 1896 skb_reserve(skb, NET_IP_ALIGN); 1897 return skb; 1898 } 1899 1900 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1901 unsigned int length) 1902 { 1903 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1904 } 1905 1906 /* 1907 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data 1908 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1909 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1910 * @order: size of the allocation 1911 * 1912 * Allocate a new page. 1913 * 1914 * %NULL is returned if there is no free memory. 1915 */ 1916 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 1917 struct sk_buff *skb, 1918 unsigned int order) 1919 { 1920 struct page *page; 1921 1922 gfp_mask |= __GFP_COLD; 1923 1924 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1925 gfp_mask |= __GFP_MEMALLOC; 1926 1927 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 1928 if (skb && page && page->pfmemalloc) 1929 skb->pfmemalloc = true; 1930 1931 return page; 1932 } 1933 1934 /** 1935 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 1936 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1937 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1938 * 1939 * Allocate a new page. 1940 * 1941 * %NULL is returned if there is no free memory. 1942 */ 1943 static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 1944 struct sk_buff *skb) 1945 { 1946 return __skb_alloc_pages(gfp_mask, skb, 0); 1947 } 1948 1949 /** 1950 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 1951 * @page: The page that was allocated from skb_alloc_page 1952 * @skb: The skb that may need pfmemalloc set 1953 */ 1954 static inline void skb_propagate_pfmemalloc(struct page *page, 1955 struct sk_buff *skb) 1956 { 1957 if (page && page->pfmemalloc) 1958 skb->pfmemalloc = true; 1959 } 1960 1961 /** 1962 * skb_frag_page - retrieve the page refered to by a paged fragment 1963 * @frag: the paged fragment 1964 * 1965 * Returns the &struct page associated with @frag. 1966 */ 1967 static inline struct page *skb_frag_page(const skb_frag_t *frag) 1968 { 1969 return frag->page.p; 1970 } 1971 1972 /** 1973 * __skb_frag_ref - take an addition reference on a paged fragment. 1974 * @frag: the paged fragment 1975 * 1976 * Takes an additional reference on the paged fragment @frag. 1977 */ 1978 static inline void __skb_frag_ref(skb_frag_t *frag) 1979 { 1980 get_page(skb_frag_page(frag)); 1981 } 1982 1983 /** 1984 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1985 * @skb: the buffer 1986 * @f: the fragment offset. 1987 * 1988 * Takes an additional reference on the @f'th paged fragment of @skb. 1989 */ 1990 static inline void skb_frag_ref(struct sk_buff *skb, int f) 1991 { 1992 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1993 } 1994 1995 /** 1996 * __skb_frag_unref - release a reference on a paged fragment. 1997 * @frag: the paged fragment 1998 * 1999 * Releases a reference on the paged fragment @frag. 2000 */ 2001 static inline void __skb_frag_unref(skb_frag_t *frag) 2002 { 2003 put_page(skb_frag_page(frag)); 2004 } 2005 2006 /** 2007 * skb_frag_unref - release a reference on a paged fragment of an skb. 2008 * @skb: the buffer 2009 * @f: the fragment offset 2010 * 2011 * Releases a reference on the @f'th paged fragment of @skb. 2012 */ 2013 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2014 { 2015 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2016 } 2017 2018 /** 2019 * skb_frag_address - gets the address of the data contained in a paged fragment 2020 * @frag: the paged fragment buffer 2021 * 2022 * Returns the address of the data within @frag. The page must already 2023 * be mapped. 2024 */ 2025 static inline void *skb_frag_address(const skb_frag_t *frag) 2026 { 2027 return page_address(skb_frag_page(frag)) + frag->page_offset; 2028 } 2029 2030 /** 2031 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2032 * @frag: the paged fragment buffer 2033 * 2034 * Returns the address of the data within @frag. Checks that the page 2035 * is mapped and returns %NULL otherwise. 2036 */ 2037 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2038 { 2039 void *ptr = page_address(skb_frag_page(frag)); 2040 if (unlikely(!ptr)) 2041 return NULL; 2042 2043 return ptr + frag->page_offset; 2044 } 2045 2046 /** 2047 * __skb_frag_set_page - sets the page contained in a paged fragment 2048 * @frag: the paged fragment 2049 * @page: the page to set 2050 * 2051 * Sets the fragment @frag to contain @page. 2052 */ 2053 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2054 { 2055 frag->page.p = page; 2056 } 2057 2058 /** 2059 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2060 * @skb: the buffer 2061 * @f: the fragment offset 2062 * @page: the page to set 2063 * 2064 * Sets the @f'th fragment of @skb to contain @page. 2065 */ 2066 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2067 struct page *page) 2068 { 2069 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2070 } 2071 2072 /** 2073 * skb_frag_dma_map - maps a paged fragment via the DMA API 2074 * @dev: the device to map the fragment to 2075 * @frag: the paged fragment to map 2076 * @offset: the offset within the fragment (starting at the 2077 * fragment's own offset) 2078 * @size: the number of bytes to map 2079 * @dir: the direction of the mapping (%PCI_DMA_*) 2080 * 2081 * Maps the page associated with @frag to @device. 2082 */ 2083 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2084 const skb_frag_t *frag, 2085 size_t offset, size_t size, 2086 enum dma_data_direction dir) 2087 { 2088 return dma_map_page(dev, skb_frag_page(frag), 2089 frag->page_offset + offset, size, dir); 2090 } 2091 2092 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2093 gfp_t gfp_mask) 2094 { 2095 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2096 } 2097 2098 /** 2099 * skb_clone_writable - is the header of a clone writable 2100 * @skb: buffer to check 2101 * @len: length up to which to write 2102 * 2103 * Returns true if modifying the header part of the cloned buffer 2104 * does not requires the data to be copied. 2105 */ 2106 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2107 { 2108 return !skb_header_cloned(skb) && 2109 skb_headroom(skb) + len <= skb->hdr_len; 2110 } 2111 2112 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2113 int cloned) 2114 { 2115 int delta = 0; 2116 2117 if (headroom > skb_headroom(skb)) 2118 delta = headroom - skb_headroom(skb); 2119 2120 if (delta || cloned) 2121 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2122 GFP_ATOMIC); 2123 return 0; 2124 } 2125 2126 /** 2127 * skb_cow - copy header of skb when it is required 2128 * @skb: buffer to cow 2129 * @headroom: needed headroom 2130 * 2131 * If the skb passed lacks sufficient headroom or its data part 2132 * is shared, data is reallocated. If reallocation fails, an error 2133 * is returned and original skb is not changed. 2134 * 2135 * The result is skb with writable area skb->head...skb->tail 2136 * and at least @headroom of space at head. 2137 */ 2138 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2139 { 2140 return __skb_cow(skb, headroom, skb_cloned(skb)); 2141 } 2142 2143 /** 2144 * skb_cow_head - skb_cow but only making the head writable 2145 * @skb: buffer to cow 2146 * @headroom: needed headroom 2147 * 2148 * This function is identical to skb_cow except that we replace the 2149 * skb_cloned check by skb_header_cloned. It should be used when 2150 * you only need to push on some header and do not need to modify 2151 * the data. 2152 */ 2153 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2154 { 2155 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2156 } 2157 2158 /** 2159 * skb_padto - pad an skbuff up to a minimal size 2160 * @skb: buffer to pad 2161 * @len: minimal length 2162 * 2163 * Pads up a buffer to ensure the trailing bytes exist and are 2164 * blanked. If the buffer already contains sufficient data it 2165 * is untouched. Otherwise it is extended. Returns zero on 2166 * success. The skb is freed on error. 2167 */ 2168 2169 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2170 { 2171 unsigned int size = skb->len; 2172 if (likely(size >= len)) 2173 return 0; 2174 return skb_pad(skb, len - size); 2175 } 2176 2177 static inline int skb_add_data(struct sk_buff *skb, 2178 char __user *from, int copy) 2179 { 2180 const int off = skb->len; 2181 2182 if (skb->ip_summed == CHECKSUM_NONE) { 2183 int err = 0; 2184 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2185 copy, 0, &err); 2186 if (!err) { 2187 skb->csum = csum_block_add(skb->csum, csum, off); 2188 return 0; 2189 } 2190 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2191 return 0; 2192 2193 __skb_trim(skb, off); 2194 return -EFAULT; 2195 } 2196 2197 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2198 const struct page *page, int off) 2199 { 2200 if (i) { 2201 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2202 2203 return page == skb_frag_page(frag) && 2204 off == frag->page_offset + skb_frag_size(frag); 2205 } 2206 return false; 2207 } 2208 2209 static inline int __skb_linearize(struct sk_buff *skb) 2210 { 2211 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2212 } 2213 2214 /** 2215 * skb_linearize - convert paged skb to linear one 2216 * @skb: buffer to linarize 2217 * 2218 * If there is no free memory -ENOMEM is returned, otherwise zero 2219 * is returned and the old skb data released. 2220 */ 2221 static inline int skb_linearize(struct sk_buff *skb) 2222 { 2223 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2224 } 2225 2226 /** 2227 * skb_has_shared_frag - can any frag be overwritten 2228 * @skb: buffer to test 2229 * 2230 * Return true if the skb has at least one frag that might be modified 2231 * by an external entity (as in vmsplice()/sendfile()) 2232 */ 2233 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2234 { 2235 return skb_is_nonlinear(skb) && 2236 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2237 } 2238 2239 /** 2240 * skb_linearize_cow - make sure skb is linear and writable 2241 * @skb: buffer to process 2242 * 2243 * If there is no free memory -ENOMEM is returned, otherwise zero 2244 * is returned and the old skb data released. 2245 */ 2246 static inline int skb_linearize_cow(struct sk_buff *skb) 2247 { 2248 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2249 __skb_linearize(skb) : 0; 2250 } 2251 2252 /** 2253 * skb_postpull_rcsum - update checksum for received skb after pull 2254 * @skb: buffer to update 2255 * @start: start of data before pull 2256 * @len: length of data pulled 2257 * 2258 * After doing a pull on a received packet, you need to call this to 2259 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2260 * CHECKSUM_NONE so that it can be recomputed from scratch. 2261 */ 2262 2263 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2264 const void *start, unsigned int len) 2265 { 2266 if (skb->ip_summed == CHECKSUM_COMPLETE) 2267 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2268 } 2269 2270 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2271 2272 /** 2273 * pskb_trim_rcsum - trim received skb and update checksum 2274 * @skb: buffer to trim 2275 * @len: new length 2276 * 2277 * This is exactly the same as pskb_trim except that it ensures the 2278 * checksum of received packets are still valid after the operation. 2279 */ 2280 2281 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2282 { 2283 if (likely(len >= skb->len)) 2284 return 0; 2285 if (skb->ip_summed == CHECKSUM_COMPLETE) 2286 skb->ip_summed = CHECKSUM_NONE; 2287 return __pskb_trim(skb, len); 2288 } 2289 2290 #define skb_queue_walk(queue, skb) \ 2291 for (skb = (queue)->next; \ 2292 skb != (struct sk_buff *)(queue); \ 2293 skb = skb->next) 2294 2295 #define skb_queue_walk_safe(queue, skb, tmp) \ 2296 for (skb = (queue)->next, tmp = skb->next; \ 2297 skb != (struct sk_buff *)(queue); \ 2298 skb = tmp, tmp = skb->next) 2299 2300 #define skb_queue_walk_from(queue, skb) \ 2301 for (; skb != (struct sk_buff *)(queue); \ 2302 skb = skb->next) 2303 2304 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2305 for (tmp = skb->next; \ 2306 skb != (struct sk_buff *)(queue); \ 2307 skb = tmp, tmp = skb->next) 2308 2309 #define skb_queue_reverse_walk(queue, skb) \ 2310 for (skb = (queue)->prev; \ 2311 skb != (struct sk_buff *)(queue); \ 2312 skb = skb->prev) 2313 2314 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2315 for (skb = (queue)->prev, tmp = skb->prev; \ 2316 skb != (struct sk_buff *)(queue); \ 2317 skb = tmp, tmp = skb->prev) 2318 2319 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2320 for (tmp = skb->prev; \ 2321 skb != (struct sk_buff *)(queue); \ 2322 skb = tmp, tmp = skb->prev) 2323 2324 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2325 { 2326 return skb_shinfo(skb)->frag_list != NULL; 2327 } 2328 2329 static inline void skb_frag_list_init(struct sk_buff *skb) 2330 { 2331 skb_shinfo(skb)->frag_list = NULL; 2332 } 2333 2334 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2335 { 2336 frag->next = skb_shinfo(skb)->frag_list; 2337 skb_shinfo(skb)->frag_list = frag; 2338 } 2339 2340 #define skb_walk_frags(skb, iter) \ 2341 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2342 2343 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2344 int *peeked, int *off, int *err); 2345 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2346 int noblock, int *err); 2347 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2348 struct poll_table_struct *wait); 2349 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2350 int offset, struct iovec *to, 2351 int size); 2352 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2353 int hlen, 2354 struct iovec *iov); 2355 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2356 int offset, 2357 const struct iovec *from, 2358 int from_offset, 2359 int len); 2360 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2361 int offset, 2362 const struct iovec *to, 2363 int to_offset, 2364 int size); 2365 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2366 extern void skb_free_datagram_locked(struct sock *sk, 2367 struct sk_buff *skb); 2368 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2369 unsigned int flags); 2370 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2371 int len, __wsum csum); 2372 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2373 void *to, int len); 2374 extern int skb_store_bits(struct sk_buff *skb, int offset, 2375 const void *from, int len); 2376 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2377 int offset, u8 *to, int len, 2378 __wsum csum); 2379 extern int skb_splice_bits(struct sk_buff *skb, 2380 unsigned int offset, 2381 struct pipe_inode_info *pipe, 2382 unsigned int len, 2383 unsigned int flags); 2384 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2385 extern void skb_split(struct sk_buff *skb, 2386 struct sk_buff *skb1, const u32 len); 2387 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2388 int shiftlen); 2389 2390 extern struct sk_buff *skb_segment(struct sk_buff *skb, 2391 netdev_features_t features); 2392 2393 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2394 int len, void *buffer) 2395 { 2396 int hlen = skb_headlen(skb); 2397 2398 if (hlen - offset >= len) 2399 return skb->data + offset; 2400 2401 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2402 return NULL; 2403 2404 return buffer; 2405 } 2406 2407 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2408 void *to, 2409 const unsigned int len) 2410 { 2411 memcpy(to, skb->data, len); 2412 } 2413 2414 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2415 const int offset, void *to, 2416 const unsigned int len) 2417 { 2418 memcpy(to, skb->data + offset, len); 2419 } 2420 2421 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2422 const void *from, 2423 const unsigned int len) 2424 { 2425 memcpy(skb->data, from, len); 2426 } 2427 2428 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2429 const int offset, 2430 const void *from, 2431 const unsigned int len) 2432 { 2433 memcpy(skb->data + offset, from, len); 2434 } 2435 2436 extern void skb_init(void); 2437 2438 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2439 { 2440 return skb->tstamp; 2441 } 2442 2443 /** 2444 * skb_get_timestamp - get timestamp from a skb 2445 * @skb: skb to get stamp from 2446 * @stamp: pointer to struct timeval to store stamp in 2447 * 2448 * Timestamps are stored in the skb as offsets to a base timestamp. 2449 * This function converts the offset back to a struct timeval and stores 2450 * it in stamp. 2451 */ 2452 static inline void skb_get_timestamp(const struct sk_buff *skb, 2453 struct timeval *stamp) 2454 { 2455 *stamp = ktime_to_timeval(skb->tstamp); 2456 } 2457 2458 static inline void skb_get_timestampns(const struct sk_buff *skb, 2459 struct timespec *stamp) 2460 { 2461 *stamp = ktime_to_timespec(skb->tstamp); 2462 } 2463 2464 static inline void __net_timestamp(struct sk_buff *skb) 2465 { 2466 skb->tstamp = ktime_get_real(); 2467 } 2468 2469 static inline ktime_t net_timedelta(ktime_t t) 2470 { 2471 return ktime_sub(ktime_get_real(), t); 2472 } 2473 2474 static inline ktime_t net_invalid_timestamp(void) 2475 { 2476 return ktime_set(0, 0); 2477 } 2478 2479 extern void skb_timestamping_init(void); 2480 2481 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2482 2483 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2484 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2485 2486 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2487 2488 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2489 { 2490 } 2491 2492 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2493 { 2494 return false; 2495 } 2496 2497 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2498 2499 /** 2500 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2501 * 2502 * PHY drivers may accept clones of transmitted packets for 2503 * timestamping via their phy_driver.txtstamp method. These drivers 2504 * must call this function to return the skb back to the stack, with 2505 * or without a timestamp. 2506 * 2507 * @skb: clone of the the original outgoing packet 2508 * @hwtstamps: hardware time stamps, may be NULL if not available 2509 * 2510 */ 2511 void skb_complete_tx_timestamp(struct sk_buff *skb, 2512 struct skb_shared_hwtstamps *hwtstamps); 2513 2514 /** 2515 * skb_tstamp_tx - queue clone of skb with send time stamps 2516 * @orig_skb: the original outgoing packet 2517 * @hwtstamps: hardware time stamps, may be NULL if not available 2518 * 2519 * If the skb has a socket associated, then this function clones the 2520 * skb (thus sharing the actual data and optional structures), stores 2521 * the optional hardware time stamping information (if non NULL) or 2522 * generates a software time stamp (otherwise), then queues the clone 2523 * to the error queue of the socket. Errors are silently ignored. 2524 */ 2525 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2526 struct skb_shared_hwtstamps *hwtstamps); 2527 2528 static inline void sw_tx_timestamp(struct sk_buff *skb) 2529 { 2530 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2531 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2532 skb_tstamp_tx(skb, NULL); 2533 } 2534 2535 /** 2536 * skb_tx_timestamp() - Driver hook for transmit timestamping 2537 * 2538 * Ethernet MAC Drivers should call this function in their hard_xmit() 2539 * function immediately before giving the sk_buff to the MAC hardware. 2540 * 2541 * @skb: A socket buffer. 2542 */ 2543 static inline void skb_tx_timestamp(struct sk_buff *skb) 2544 { 2545 skb_clone_tx_timestamp(skb); 2546 sw_tx_timestamp(skb); 2547 } 2548 2549 /** 2550 * skb_complete_wifi_ack - deliver skb with wifi status 2551 * 2552 * @skb: the original outgoing packet 2553 * @acked: ack status 2554 * 2555 */ 2556 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2557 2558 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2559 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2560 2561 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2562 { 2563 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2564 } 2565 2566 /** 2567 * skb_checksum_complete - Calculate checksum of an entire packet 2568 * @skb: packet to process 2569 * 2570 * This function calculates the checksum over the entire packet plus 2571 * the value of skb->csum. The latter can be used to supply the 2572 * checksum of a pseudo header as used by TCP/UDP. It returns the 2573 * checksum. 2574 * 2575 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2576 * this function can be used to verify that checksum on received 2577 * packets. In that case the function should return zero if the 2578 * checksum is correct. In particular, this function will return zero 2579 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2580 * hardware has already verified the correctness of the checksum. 2581 */ 2582 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2583 { 2584 return skb_csum_unnecessary(skb) ? 2585 0 : __skb_checksum_complete(skb); 2586 } 2587 2588 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2589 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2590 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2591 { 2592 if (nfct && atomic_dec_and_test(&nfct->use)) 2593 nf_conntrack_destroy(nfct); 2594 } 2595 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2596 { 2597 if (nfct) 2598 atomic_inc(&nfct->use); 2599 } 2600 #endif 2601 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2602 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2603 { 2604 if (skb) 2605 atomic_inc(&skb->users); 2606 } 2607 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2608 { 2609 if (skb) 2610 kfree_skb(skb); 2611 } 2612 #endif 2613 #ifdef CONFIG_BRIDGE_NETFILTER 2614 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2615 { 2616 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2617 kfree(nf_bridge); 2618 } 2619 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2620 { 2621 if (nf_bridge) 2622 atomic_inc(&nf_bridge->use); 2623 } 2624 #endif /* CONFIG_BRIDGE_NETFILTER */ 2625 static inline void nf_reset(struct sk_buff *skb) 2626 { 2627 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2628 nf_conntrack_put(skb->nfct); 2629 skb->nfct = NULL; 2630 #endif 2631 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2632 nf_conntrack_put_reasm(skb->nfct_reasm); 2633 skb->nfct_reasm = NULL; 2634 #endif 2635 #ifdef CONFIG_BRIDGE_NETFILTER 2636 nf_bridge_put(skb->nf_bridge); 2637 skb->nf_bridge = NULL; 2638 #endif 2639 } 2640 2641 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2642 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2643 { 2644 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2645 dst->nfct = src->nfct; 2646 nf_conntrack_get(src->nfct); 2647 dst->nfctinfo = src->nfctinfo; 2648 #endif 2649 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2650 dst->nfct_reasm = src->nfct_reasm; 2651 nf_conntrack_get_reasm(src->nfct_reasm); 2652 #endif 2653 #ifdef CONFIG_BRIDGE_NETFILTER 2654 dst->nf_bridge = src->nf_bridge; 2655 nf_bridge_get(src->nf_bridge); 2656 #endif 2657 } 2658 2659 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2660 { 2661 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2662 nf_conntrack_put(dst->nfct); 2663 #endif 2664 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2665 nf_conntrack_put_reasm(dst->nfct_reasm); 2666 #endif 2667 #ifdef CONFIG_BRIDGE_NETFILTER 2668 nf_bridge_put(dst->nf_bridge); 2669 #endif 2670 __nf_copy(dst, src); 2671 } 2672 2673 #ifdef CONFIG_NETWORK_SECMARK 2674 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2675 { 2676 to->secmark = from->secmark; 2677 } 2678 2679 static inline void skb_init_secmark(struct sk_buff *skb) 2680 { 2681 skb->secmark = 0; 2682 } 2683 #else 2684 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2685 { } 2686 2687 static inline void skb_init_secmark(struct sk_buff *skb) 2688 { } 2689 #endif 2690 2691 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2692 { 2693 skb->queue_mapping = queue_mapping; 2694 } 2695 2696 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2697 { 2698 return skb->queue_mapping; 2699 } 2700 2701 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2702 { 2703 to->queue_mapping = from->queue_mapping; 2704 } 2705 2706 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2707 { 2708 skb->queue_mapping = rx_queue + 1; 2709 } 2710 2711 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2712 { 2713 return skb->queue_mapping - 1; 2714 } 2715 2716 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2717 { 2718 return skb->queue_mapping != 0; 2719 } 2720 2721 extern u16 __skb_tx_hash(const struct net_device *dev, 2722 const struct sk_buff *skb, 2723 unsigned int num_tx_queues); 2724 2725 #ifdef CONFIG_XFRM 2726 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2727 { 2728 return skb->sp; 2729 } 2730 #else 2731 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2732 { 2733 return NULL; 2734 } 2735 #endif 2736 2737 /* Keeps track of mac header offset relative to skb->head. 2738 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2739 * For non-tunnel skb it points to skb_mac_header() and for 2740 * tunnel skb it points to outer mac header. */ 2741 struct skb_gso_cb { 2742 int mac_offset; 2743 }; 2744 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2745 2746 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2747 { 2748 return (skb_mac_header(inner_skb) - inner_skb->head) - 2749 SKB_GSO_CB(inner_skb)->mac_offset; 2750 } 2751 2752 static inline bool skb_is_gso(const struct sk_buff *skb) 2753 { 2754 return skb_shinfo(skb)->gso_size; 2755 } 2756 2757 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2758 { 2759 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2760 } 2761 2762 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2763 2764 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2765 { 2766 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2767 * wanted then gso_type will be set. */ 2768 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2769 2770 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2771 unlikely(shinfo->gso_type == 0)) { 2772 __skb_warn_lro_forwarding(skb); 2773 return true; 2774 } 2775 return false; 2776 } 2777 2778 static inline void skb_forward_csum(struct sk_buff *skb) 2779 { 2780 /* Unfortunately we don't support this one. Any brave souls? */ 2781 if (skb->ip_summed == CHECKSUM_COMPLETE) 2782 skb->ip_summed = CHECKSUM_NONE; 2783 } 2784 2785 /** 2786 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2787 * @skb: skb to check 2788 * 2789 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2790 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2791 * use this helper, to document places where we make this assertion. 2792 */ 2793 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2794 { 2795 #ifdef DEBUG 2796 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2797 #endif 2798 } 2799 2800 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2801 2802 /** 2803 * skb_head_is_locked - Determine if the skb->head is locked down 2804 * @skb: skb to check 2805 * 2806 * The head on skbs build around a head frag can be removed if they are 2807 * not cloned. This function returns true if the skb head is locked down 2808 * due to either being allocated via kmalloc, or by being a clone with 2809 * multiple references to the head. 2810 */ 2811 static inline bool skb_head_is_locked(const struct sk_buff *skb) 2812 { 2813 return !skb->head_frag || skb_cloned(skb); 2814 } 2815 #endif /* __KERNEL__ */ 2816 #endif /* _LINUX_SKBUFF_H */ 2817