xref: /linux-6.15/include/linux/skbuff.h (revision 6dcd6d01)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47 
48 /**
49  * DOC: skb checksums
50  *
51  * The interface for checksum offload between the stack and networking drivers
52  * is as follows...
53  *
54  * IP checksum related features
55  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56  *
57  * Drivers advertise checksum offload capabilities in the features of a device.
58  * From the stack's point of view these are capabilities offered by the driver.
59  * A driver typically only advertises features that it is capable of offloading
60  * to its device.
61  *
62  * .. flat-table:: Checksum related device features
63  *   :widths: 1 10
64  *
65  *   * - %NETIF_F_HW_CSUM
66  *     - The driver (or its device) is able to compute one
67  *	 IP (one's complement) checksum for any combination
68  *	 of protocols or protocol layering. The checksum is
69  *	 computed and set in a packet per the CHECKSUM_PARTIAL
70  *	 interface (see below).
71  *
72  *   * - %NETIF_F_IP_CSUM
73  *     - Driver (device) is only able to checksum plain
74  *	 TCP or UDP packets over IPv4. These are specifically
75  *	 unencapsulated packets of the form IPv4|TCP or
76  *	 IPv4|UDP where the Protocol field in the IPv4 header
77  *	 is TCP or UDP. The IPv4 header may contain IP options.
78  *	 This feature cannot be set in features for a device
79  *	 with NETIF_F_HW_CSUM also set. This feature is being
80  *	 DEPRECATED (see below).
81  *
82  *   * - %NETIF_F_IPV6_CSUM
83  *     - Driver (device) is only able to checksum plain
84  *	 TCP or UDP packets over IPv6. These are specifically
85  *	 unencapsulated packets of the form IPv6|TCP or
86  *	 IPv6|UDP where the Next Header field in the IPv6
87  *	 header is either TCP or UDP. IPv6 extension headers
88  *	 are not supported with this feature. This feature
89  *	 cannot be set in features for a device with
90  *	 NETIF_F_HW_CSUM also set. This feature is being
91  *	 DEPRECATED (see below).
92  *
93  *   * - %NETIF_F_RXCSUM
94  *     - Driver (device) performs receive checksum offload.
95  *	 This flag is only used to disable the RX checksum
96  *	 feature for a device. The stack will accept receive
97  *	 checksum indication in packets received on a device
98  *	 regardless of whether NETIF_F_RXCSUM is set.
99  *
100  * Checksumming of received packets by device
101  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102  *
103  * Indication of checksum verification is set in &sk_buff.ip_summed.
104  * Possible values are:
105  *
106  * - %CHECKSUM_NONE
107  *
108  *   Device did not checksum this packet e.g. due to lack of capabilities.
109  *   The packet contains full (though not verified) checksum in packet but
110  *   not in skb->csum. Thus, skb->csum is undefined in this case.
111  *
112  * - %CHECKSUM_UNNECESSARY
113  *
114  *   The hardware you're dealing with doesn't calculate the full checksum
115  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
118  *   though. A driver or device must never modify the checksum field in the
119  *   packet even if checksum is verified.
120  *
121  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
122  *
123  *     - TCP: IPv6 and IPv4.
124  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
126  *       may perform further validation in this case.
127  *     - GRE: only if the checksum is present in the header.
128  *     - SCTP: indicates the CRC in SCTP header has been validated.
129  *     - FCOE: indicates the CRC in FC frame has been validated.
130  *
131  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
132  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134  *   and a device is able to verify the checksums for UDP (possibly zero),
135  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136  *   two. If the device were only able to verify the UDP checksum and not
137  *   GRE, either because it doesn't support GRE checksum or because GRE
138  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139  *   not considered in this case).
140  *
141  * - %CHECKSUM_COMPLETE
142  *
143  *   This is the most generic way. The device supplied checksum of the _whole_
144  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145  *   hardware doesn't need to parse L3/L4 headers to implement this.
146  *
147  *   Notes:
148  *
149  *   - Even if device supports only some protocols, but is able to produce
150  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
152  *
153  * - %CHECKSUM_PARTIAL
154  *
155  *   A checksum is set up to be offloaded to a device as described in the
156  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
157  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
158  *   on the same host, or it may be set in the input path in GRO or remote
159  *   checksum offload. For the purposes of checksum verification, the checksum
160  *   referred to by skb->csum_start + skb->csum_offset and any preceding
161  *   checksums in the packet are considered verified. Any checksums in the
162  *   packet that are after the checksum being offloaded are not considered to
163  *   be verified.
164  *
165  * Checksumming on transmit for non-GSO
166  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167  *
168  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
169  * Values are:
170  *
171  * - %CHECKSUM_PARTIAL
172  *
173  *   The driver is required to checksum the packet as seen by hard_start_xmit()
174  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
175  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
176  *   A driver may verify that the
177  *   csum_start and csum_offset values are valid values given the length and
178  *   offset of the packet, but it should not attempt to validate that the
179  *   checksum refers to a legitimate transport layer checksum -- it is the
180  *   purview of the stack to validate that csum_start and csum_offset are set
181  *   correctly.
182  *
183  *   When the stack requests checksum offload for a packet, the driver MUST
184  *   ensure that the checksum is set correctly. A driver can either offload the
185  *   checksum calculation to the device, or call skb_checksum_help (in the case
186  *   that the device does not support offload for a particular checksum).
187  *
188  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190  *   checksum offload capability.
191  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192  *   on network device checksumming capabilities: if a packet does not match
193  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194  *   &sk_buff.csum_not_inet, see :ref:`crc`)
195  *   is called to resolve the checksum.
196  *
197  * - %CHECKSUM_NONE
198  *
199  *   The skb was already checksummed by the protocol, or a checksum is not
200  *   required.
201  *
202  * - %CHECKSUM_UNNECESSARY
203  *
204  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
205  *   output.
206  *
207  * - %CHECKSUM_COMPLETE
208  *
209  *   Not used in checksum output. If a driver observes a packet with this value
210  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
211  *
212  * .. _crc:
213  *
214  * Non-IP checksum (CRC) offloads
215  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
216  *
217  * .. flat-table::
218  *   :widths: 1 10
219  *
220  *   * - %NETIF_F_SCTP_CRC
221  *     - This feature indicates that a device is capable of
222  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
223  *	 will set csum_start and csum_offset accordingly, set ip_summed to
224  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
227  *	 must verify which offload is configured for a packet by testing the
228  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
230  *
231  *   * - %NETIF_F_FCOE_CRC
232  *     - This feature indicates that a device is capable of offloading the FCOE
233  *	 CRC in a packet. To perform this offload the stack will set ip_summed
234  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235  *	 accordingly. Note that there is no indication in the skbuff that the
236  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237  *	 both IP checksum offload and FCOE CRC offload must verify which offload
238  *	 is configured for a packet, presumably by inspecting packet headers.
239  *
240  * Checksumming on output with GSO
241  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
242  *
243  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246  * part of the GSO operation is implied. If a checksum is being offloaded
247  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248  * csum_offset are set to refer to the outermost checksum being offloaded
249  * (two offloaded checksums are possible with UDP encapsulation).
250  */
251 
252 /* Don't change this without changing skb_csum_unnecessary! */
253 #define CHECKSUM_NONE		0
254 #define CHECKSUM_UNNECESSARY	1
255 #define CHECKSUM_COMPLETE	2
256 #define CHECKSUM_PARTIAL	3
257 
258 /* Maximum value in skb->csum_level */
259 #define SKB_MAX_CSUM_LEVEL	3
260 
261 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
262 #define SKB_WITH_OVERHEAD(X)	\
263 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 #define SKB_MAX_ORDER(X, ORDER) \
265 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
267 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
268 
269 /* return minimum truesize of one skb containing X bytes of data */
270 #define SKB_TRUESIZE(X) ((X) +						\
271 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
272 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273 
274 struct ahash_request;
275 struct net_device;
276 struct scatterlist;
277 struct pipe_inode_info;
278 struct iov_iter;
279 struct napi_struct;
280 struct bpf_prog;
281 union bpf_attr;
282 struct skb_ext;
283 
284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285 struct nf_bridge_info {
286 	enum {
287 		BRNF_PROTO_UNCHANGED,
288 		BRNF_PROTO_8021Q,
289 		BRNF_PROTO_PPPOE
290 	} orig_proto:8;
291 	u8			pkt_otherhost:1;
292 	u8			in_prerouting:1;
293 	u8			bridged_dnat:1;
294 	__u16			frag_max_size;
295 	struct net_device	*physindev;
296 
297 	/* always valid & non-NULL from FORWARD on, for physdev match */
298 	struct net_device	*physoutdev;
299 	union {
300 		/* prerouting: detect dnat in orig/reply direction */
301 		__be32          ipv4_daddr;
302 		struct in6_addr ipv6_daddr;
303 
304 		/* after prerouting + nat detected: store original source
305 		 * mac since neigh resolution overwrites it, only used while
306 		 * skb is out in neigh layer.
307 		 */
308 		char neigh_header[8];
309 	};
310 };
311 #endif
312 
313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314 /* Chain in tc_skb_ext will be used to share the tc chain with
315  * ovs recirc_id. It will be set to the current chain by tc
316  * and read by ovs to recirc_id.
317  */
318 struct tc_skb_ext {
319 	__u32 chain;
320 	__u16 mru;
321 	__u16 zone;
322 	u8 post_ct:1;
323 	u8 post_ct_snat:1;
324 	u8 post_ct_dnat:1;
325 };
326 #endif
327 
328 struct sk_buff_head {
329 	/* These two members must be first to match sk_buff. */
330 	struct_group_tagged(sk_buff_list, list,
331 		struct sk_buff	*next;
332 		struct sk_buff	*prev;
333 	);
334 
335 	__u32		qlen;
336 	spinlock_t	lock;
337 };
338 
339 struct sk_buff;
340 
341 /* To allow 64K frame to be packed as single skb without frag_list we
342  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343  * buffers which do not start on a page boundary.
344  *
345  * Since GRO uses frags we allocate at least 16 regardless of page
346  * size.
347  */
348 #if (65536/PAGE_SIZE + 1) < 16
349 #define MAX_SKB_FRAGS 16UL
350 #else
351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
352 #endif
353 extern int sysctl_max_skb_frags;
354 
355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356  * segment using its current segmentation instead.
357  */
358 #define GSO_BY_FRAGS	0xFFFF
359 
360 typedef struct bio_vec skb_frag_t;
361 
362 /**
363  * skb_frag_size() - Returns the size of a skb fragment
364  * @frag: skb fragment
365  */
366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
367 {
368 	return frag->bv_len;
369 }
370 
371 /**
372  * skb_frag_size_set() - Sets the size of a skb fragment
373  * @frag: skb fragment
374  * @size: size of fragment
375  */
376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
377 {
378 	frag->bv_len = size;
379 }
380 
381 /**
382  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383  * @frag: skb fragment
384  * @delta: value to add
385  */
386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
387 {
388 	frag->bv_len += delta;
389 }
390 
391 /**
392  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393  * @frag: skb fragment
394  * @delta: value to subtract
395  */
396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
397 {
398 	frag->bv_len -= delta;
399 }
400 
401 /**
402  * skb_frag_must_loop - Test if %p is a high memory page
403  * @p: fragment's page
404  */
405 static inline bool skb_frag_must_loop(struct page *p)
406 {
407 #if defined(CONFIG_HIGHMEM)
408 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
409 		return true;
410 #endif
411 	return false;
412 }
413 
414 /**
415  *	skb_frag_foreach_page - loop over pages in a fragment
416  *
417  *	@f:		skb frag to operate on
418  *	@f_off:		offset from start of f->bv_page
419  *	@f_len:		length from f_off to loop over
420  *	@p:		(temp var) current page
421  *	@p_off:		(temp var) offset from start of current page,
422  *	                           non-zero only on first page.
423  *	@p_len:		(temp var) length in current page,
424  *				   < PAGE_SIZE only on first and last page.
425  *	@copied:	(temp var) length so far, excluding current p_len.
426  *
427  *	A fragment can hold a compound page, in which case per-page
428  *	operations, notably kmap_atomic, must be called for each
429  *	regular page.
430  */
431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
432 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
433 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
434 	     p_len = skb_frag_must_loop(p) ?				\
435 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
436 	     copied = 0;						\
437 	     copied < f_len;						\
438 	     copied += p_len, p++, p_off = 0,				\
439 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
440 
441 #define HAVE_HW_TIME_STAMP
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 
513 	SKBFL_DONT_ORPHAN = BIT(3),
514 
515 	/* page references are managed by the ubuf_info, so it's safe to
516 	 * use frags only up until ubuf_info is released
517 	 */
518 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520 
521 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524 
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534 	void (*callback)(struct sk_buff *, struct ubuf_info *,
535 			 bool zerocopy_success);
536 	refcount_t refcnt;
537 	u8 flags;
538 };
539 
540 struct ubuf_info_msgzc {
541 	struct ubuf_info ubuf;
542 
543 	union {
544 		struct {
545 			unsigned long desc;
546 			void *ctx;
547 		};
548 		struct {
549 			u32 id;
550 			u16 len;
551 			u16 zerocopy:1;
552 			u32 bytelen;
553 		};
554 	};
555 
556 	struct mmpin {
557 		struct user_struct *user;
558 		unsigned int num_pg;
559 	} mmp;
560 };
561 
562 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 					     ubuf)
565 
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568 
569 /* This data is invariant across clones and lives at
570  * the end of the header data, ie. at skb->end.
571  */
572 struct skb_shared_info {
573 	__u8		flags;
574 	__u8		meta_len;
575 	__u8		nr_frags;
576 	__u8		tx_flags;
577 	unsigned short	gso_size;
578 	/* Warning: this field is not always filled in (UFO)! */
579 	unsigned short	gso_segs;
580 	struct sk_buff	*frag_list;
581 	struct skb_shared_hwtstamps hwtstamps;
582 	unsigned int	gso_type;
583 	u32		tskey;
584 
585 	/*
586 	 * Warning : all fields before dataref are cleared in __alloc_skb()
587 	 */
588 	atomic_t	dataref;
589 	unsigned int	xdp_frags_size;
590 
591 	/* Intermediate layers must ensure that destructor_arg
592 	 * remains valid until skb destructor */
593 	void *		destructor_arg;
594 
595 	/* must be last field, see pskb_expand_head() */
596 	skb_frag_t	frags[MAX_SKB_FRAGS];
597 };
598 
599 /**
600  * DOC: dataref and headerless skbs
601  *
602  * Transport layers send out clones of payload skbs they hold for
603  * retransmissions. To allow lower layers of the stack to prepend their headers
604  * we split &skb_shared_info.dataref into two halves.
605  * The lower 16 bits count the overall number of references.
606  * The higher 16 bits indicate how many of the references are payload-only.
607  * skb_header_cloned() checks if skb is allowed to add / write the headers.
608  *
609  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
610  * (via __skb_header_release()). Any clone created from marked skb will get
611  * &sk_buff.hdr_len populated with the available headroom.
612  * If there's the only clone in existence it's able to modify the headroom
613  * at will. The sequence of calls inside the transport layer is::
614  *
615  *  <alloc skb>
616  *  skb_reserve()
617  *  __skb_header_release()
618  *  skb_clone()
619  *  // send the clone down the stack
620  *
621  * This is not a very generic construct and it depends on the transport layers
622  * doing the right thing. In practice there's usually only one payload-only skb.
623  * Having multiple payload-only skbs with different lengths of hdr_len is not
624  * possible. The payload-only skbs should never leave their owner.
625  */
626 #define SKB_DATAREF_SHIFT 16
627 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
628 
629 
630 enum {
631 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
632 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
633 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
634 };
635 
636 enum {
637 	SKB_GSO_TCPV4 = 1 << 0,
638 
639 	/* This indicates the skb is from an untrusted source. */
640 	SKB_GSO_DODGY = 1 << 1,
641 
642 	/* This indicates the tcp segment has CWR set. */
643 	SKB_GSO_TCP_ECN = 1 << 2,
644 
645 	SKB_GSO_TCP_FIXEDID = 1 << 3,
646 
647 	SKB_GSO_TCPV6 = 1 << 4,
648 
649 	SKB_GSO_FCOE = 1 << 5,
650 
651 	SKB_GSO_GRE = 1 << 6,
652 
653 	SKB_GSO_GRE_CSUM = 1 << 7,
654 
655 	SKB_GSO_IPXIP4 = 1 << 8,
656 
657 	SKB_GSO_IPXIP6 = 1 << 9,
658 
659 	SKB_GSO_UDP_TUNNEL = 1 << 10,
660 
661 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
662 
663 	SKB_GSO_PARTIAL = 1 << 12,
664 
665 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
666 
667 	SKB_GSO_SCTP = 1 << 14,
668 
669 	SKB_GSO_ESP = 1 << 15,
670 
671 	SKB_GSO_UDP = 1 << 16,
672 
673 	SKB_GSO_UDP_L4 = 1 << 17,
674 
675 	SKB_GSO_FRAGLIST = 1 << 18,
676 };
677 
678 #if BITS_PER_LONG > 32
679 #define NET_SKBUFF_DATA_USES_OFFSET 1
680 #endif
681 
682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
683 typedef unsigned int sk_buff_data_t;
684 #else
685 typedef unsigned char *sk_buff_data_t;
686 #endif
687 
688 /**
689  * DOC: Basic sk_buff geometry
690  *
691  * struct sk_buff itself is a metadata structure and does not hold any packet
692  * data. All the data is held in associated buffers.
693  *
694  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
695  * into two parts:
696  *
697  *  - data buffer, containing headers and sometimes payload;
698  *    this is the part of the skb operated on by the common helpers
699  *    such as skb_put() or skb_pull();
700  *  - shared info (struct skb_shared_info) which holds an array of pointers
701  *    to read-only data in the (page, offset, length) format.
702  *
703  * Optionally &skb_shared_info.frag_list may point to another skb.
704  *
705  * Basic diagram may look like this::
706  *
707  *                                  ---------------
708  *                                 | sk_buff       |
709  *                                  ---------------
710  *     ,---------------------------  + head
711  *    /          ,-----------------  + data
712  *   /          /      ,-----------  + tail
713  *  |          |      |            , + end
714  *  |          |      |           |
715  *  v          v      v           v
716  *   -----------------------------------------------
717  *  | headroom | data |  tailroom | skb_shared_info |
718  *   -----------------------------------------------
719  *                                 + [page frag]
720  *                                 + [page frag]
721  *                                 + [page frag]
722  *                                 + [page frag]       ---------
723  *                                 + frag_list    --> | sk_buff |
724  *                                                     ---------
725  *
726  */
727 
728 /**
729  *	struct sk_buff - socket buffer
730  *	@next: Next buffer in list
731  *	@prev: Previous buffer in list
732  *	@tstamp: Time we arrived/left
733  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
734  *		for retransmit timer
735  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
736  *	@list: queue head
737  *	@ll_node: anchor in an llist (eg socket defer_list)
738  *	@sk: Socket we are owned by
739  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
740  *		fragmentation management
741  *	@dev: Device we arrived on/are leaving by
742  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
743  *	@cb: Control buffer. Free for use by every layer. Put private vars here
744  *	@_skb_refdst: destination entry (with norefcount bit)
745  *	@sp: the security path, used for xfrm
746  *	@len: Length of actual data
747  *	@data_len: Data length
748  *	@mac_len: Length of link layer header
749  *	@hdr_len: writable header length of cloned skb
750  *	@csum: Checksum (must include start/offset pair)
751  *	@csum_start: Offset from skb->head where checksumming should start
752  *	@csum_offset: Offset from csum_start where checksum should be stored
753  *	@priority: Packet queueing priority
754  *	@ignore_df: allow local fragmentation
755  *	@cloned: Head may be cloned (check refcnt to be sure)
756  *	@ip_summed: Driver fed us an IP checksum
757  *	@nohdr: Payload reference only, must not modify header
758  *	@pkt_type: Packet class
759  *	@fclone: skbuff clone status
760  *	@ipvs_property: skbuff is owned by ipvs
761  *	@inner_protocol_type: whether the inner protocol is
762  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
763  *	@remcsum_offload: remote checksum offload is enabled
764  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
765  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
766  *	@tc_skip_classify: do not classify packet. set by IFB device
767  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
768  *	@redirected: packet was redirected by packet classifier
769  *	@from_ingress: packet was redirected from the ingress path
770  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
771  *	@peeked: this packet has been seen already, so stats have been
772  *		done for it, don't do them again
773  *	@nf_trace: netfilter packet trace flag
774  *	@protocol: Packet protocol from driver
775  *	@destructor: Destruct function
776  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
777  *	@_sk_redir: socket redirection information for skmsg
778  *	@_nfct: Associated connection, if any (with nfctinfo bits)
779  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
780  *	@skb_iif: ifindex of device we arrived on
781  *	@tc_index: Traffic control index
782  *	@hash: the packet hash
783  *	@queue_mapping: Queue mapping for multiqueue devices
784  *	@head_frag: skb was allocated from page fragments,
785  *		not allocated by kmalloc() or vmalloc().
786  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
787  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
788  *		page_pool support on driver)
789  *	@active_extensions: active extensions (skb_ext_id types)
790  *	@ndisc_nodetype: router type (from link layer)
791  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
792  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
793  *		ports.
794  *	@sw_hash: indicates hash was computed in software stack
795  *	@wifi_acked_valid: wifi_acked was set
796  *	@wifi_acked: whether frame was acked on wifi or not
797  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
798  *	@encapsulation: indicates the inner headers in the skbuff are valid
799  *	@encap_hdr_csum: software checksum is needed
800  *	@csum_valid: checksum is already valid
801  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
802  *	@csum_complete_sw: checksum was completed by software
803  *	@csum_level: indicates the number of consecutive checksums found in
804  *		the packet minus one that have been verified as
805  *		CHECKSUM_UNNECESSARY (max 3)
806  *	@scm_io_uring: SKB holds io_uring registered files
807  *	@dst_pending_confirm: need to confirm neighbour
808  *	@decrypted: Decrypted SKB
809  *	@slow_gro: state present at GRO time, slower prepare step required
810  *	@mono_delivery_time: When set, skb->tstamp has the
811  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
812  *		skb->tstamp has the (rcv) timestamp at ingress and
813  *		delivery_time at egress.
814  *	@napi_id: id of the NAPI struct this skb came from
815  *	@sender_cpu: (aka @napi_id) source CPU in XPS
816  *	@alloc_cpu: CPU which did the skb allocation.
817  *	@secmark: security marking
818  *	@mark: Generic packet mark
819  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
820  *		at the tail of an sk_buff
821  *	@vlan_all: vlan fields (proto & tci)
822  *	@vlan_proto: vlan encapsulation protocol
823  *	@vlan_tci: vlan tag control information
824  *	@inner_protocol: Protocol (encapsulation)
825  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
826  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
827  *	@inner_transport_header: Inner transport layer header (encapsulation)
828  *	@inner_network_header: Network layer header (encapsulation)
829  *	@inner_mac_header: Link layer header (encapsulation)
830  *	@transport_header: Transport layer header
831  *	@network_header: Network layer header
832  *	@mac_header: Link layer header
833  *	@kcov_handle: KCOV remote handle for remote coverage collection
834  *	@tail: Tail pointer
835  *	@end: End pointer
836  *	@head: Head of buffer
837  *	@data: Data head pointer
838  *	@truesize: Buffer size
839  *	@users: User count - see {datagram,tcp}.c
840  *	@extensions: allocated extensions, valid if active_extensions is nonzero
841  */
842 
843 struct sk_buff {
844 	union {
845 		struct {
846 			/* These two members must be first to match sk_buff_head. */
847 			struct sk_buff		*next;
848 			struct sk_buff		*prev;
849 
850 			union {
851 				struct net_device	*dev;
852 				/* Some protocols might use this space to store information,
853 				 * while device pointer would be NULL.
854 				 * UDP receive path is one user.
855 				 */
856 				unsigned long		dev_scratch;
857 			};
858 		};
859 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
860 		struct list_head	list;
861 		struct llist_node	ll_node;
862 	};
863 
864 	union {
865 		struct sock		*sk;
866 		int			ip_defrag_offset;
867 	};
868 
869 	union {
870 		ktime_t		tstamp;
871 		u64		skb_mstamp_ns; /* earliest departure time */
872 	};
873 	/*
874 	 * This is the control buffer. It is free to use for every
875 	 * layer. Please put your private variables there. If you
876 	 * want to keep them across layers you have to do a skb_clone()
877 	 * first. This is owned by whoever has the skb queued ATM.
878 	 */
879 	char			cb[48] __aligned(8);
880 
881 	union {
882 		struct {
883 			unsigned long	_skb_refdst;
884 			void		(*destructor)(struct sk_buff *skb);
885 		};
886 		struct list_head	tcp_tsorted_anchor;
887 #ifdef CONFIG_NET_SOCK_MSG
888 		unsigned long		_sk_redir;
889 #endif
890 	};
891 
892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
893 	unsigned long		 _nfct;
894 #endif
895 	unsigned int		len,
896 				data_len;
897 	__u16			mac_len,
898 				hdr_len;
899 
900 	/* Following fields are _not_ copied in __copy_skb_header()
901 	 * Note that queue_mapping is here mostly to fill a hole.
902 	 */
903 	__u16			queue_mapping;
904 
905 /* if you move cloned around you also must adapt those constants */
906 #ifdef __BIG_ENDIAN_BITFIELD
907 #define CLONED_MASK	(1 << 7)
908 #else
909 #define CLONED_MASK	1
910 #endif
911 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
912 
913 	/* private: */
914 	__u8			__cloned_offset[0];
915 	/* public: */
916 	__u8			cloned:1,
917 				nohdr:1,
918 				fclone:2,
919 				peeked:1,
920 				head_frag:1,
921 				pfmemalloc:1,
922 				pp_recycle:1; /* page_pool recycle indicator */
923 #ifdef CONFIG_SKB_EXTENSIONS
924 	__u8			active_extensions;
925 #endif
926 
927 	/* Fields enclosed in headers group are copied
928 	 * using a single memcpy() in __copy_skb_header()
929 	 */
930 	struct_group(headers,
931 
932 	/* private: */
933 	__u8			__pkt_type_offset[0];
934 	/* public: */
935 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
936 	__u8			ignore_df:1;
937 	__u8			nf_trace:1;
938 	__u8			ip_summed:2;
939 	__u8			ooo_okay:1;
940 
941 	__u8			l4_hash:1;
942 	__u8			sw_hash:1;
943 	__u8			wifi_acked_valid:1;
944 	__u8			wifi_acked:1;
945 	__u8			no_fcs:1;
946 	/* Indicates the inner headers are valid in the skbuff. */
947 	__u8			encapsulation:1;
948 	__u8			encap_hdr_csum:1;
949 	__u8			csum_valid:1;
950 
951 	/* private: */
952 	__u8			__pkt_vlan_present_offset[0];
953 	/* public: */
954 	__u8			remcsum_offload:1;
955 	__u8			csum_complete_sw:1;
956 	__u8			csum_level:2;
957 	__u8			dst_pending_confirm:1;
958 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
959 #ifdef CONFIG_NET_CLS_ACT
960 	__u8			tc_skip_classify:1;
961 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
962 #endif
963 #ifdef CONFIG_IPV6_NDISC_NODETYPE
964 	__u8			ndisc_nodetype:2;
965 #endif
966 
967 	__u8			ipvs_property:1;
968 	__u8			inner_protocol_type:1;
969 #ifdef CONFIG_NET_SWITCHDEV
970 	__u8			offload_fwd_mark:1;
971 	__u8			offload_l3_fwd_mark:1;
972 #endif
973 	__u8			redirected:1;
974 #ifdef CONFIG_NET_REDIRECT
975 	__u8			from_ingress:1;
976 #endif
977 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
978 	__u8			nf_skip_egress:1;
979 #endif
980 #ifdef CONFIG_TLS_DEVICE
981 	__u8			decrypted:1;
982 #endif
983 	__u8			slow_gro:1;
984 	__u8			csum_not_inet:1;
985 	__u8			scm_io_uring:1;
986 
987 #ifdef CONFIG_NET_SCHED
988 	__u16			tc_index;	/* traffic control index */
989 #endif
990 
991 	union {
992 		__wsum		csum;
993 		struct {
994 			__u16	csum_start;
995 			__u16	csum_offset;
996 		};
997 	};
998 	__u32			priority;
999 	int			skb_iif;
1000 	__u32			hash;
1001 	union {
1002 		u32		vlan_all;
1003 		struct {
1004 			__be16	vlan_proto;
1005 			__u16	vlan_tci;
1006 		};
1007 	};
1008 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1009 	union {
1010 		unsigned int	napi_id;
1011 		unsigned int	sender_cpu;
1012 	};
1013 #endif
1014 	u16			alloc_cpu;
1015 #ifdef CONFIG_NETWORK_SECMARK
1016 	__u32		secmark;
1017 #endif
1018 
1019 	union {
1020 		__u32		mark;
1021 		__u32		reserved_tailroom;
1022 	};
1023 
1024 	union {
1025 		__be16		inner_protocol;
1026 		__u8		inner_ipproto;
1027 	};
1028 
1029 	__u16			inner_transport_header;
1030 	__u16			inner_network_header;
1031 	__u16			inner_mac_header;
1032 
1033 	__be16			protocol;
1034 	__u16			transport_header;
1035 	__u16			network_header;
1036 	__u16			mac_header;
1037 
1038 #ifdef CONFIG_KCOV
1039 	u64			kcov_handle;
1040 #endif
1041 
1042 	); /* end headers group */
1043 
1044 	/* These elements must be at the end, see alloc_skb() for details.  */
1045 	sk_buff_data_t		tail;
1046 	sk_buff_data_t		end;
1047 	unsigned char		*head,
1048 				*data;
1049 	unsigned int		truesize;
1050 	refcount_t		users;
1051 
1052 #ifdef CONFIG_SKB_EXTENSIONS
1053 	/* only useable after checking ->active_extensions != 0 */
1054 	struct skb_ext		*extensions;
1055 #endif
1056 };
1057 
1058 /* if you move pkt_type around you also must adapt those constants */
1059 #ifdef __BIG_ENDIAN_BITFIELD
1060 #define PKT_TYPE_MAX	(7 << 5)
1061 #else
1062 #define PKT_TYPE_MAX	7
1063 #endif
1064 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1065 
1066 /* if you move tc_at_ingress or mono_delivery_time
1067  * around, you also must adapt these constants.
1068  */
1069 #ifdef __BIG_ENDIAN_BITFIELD
1070 #define TC_AT_INGRESS_MASK		(1 << 0)
1071 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1072 #else
1073 #define TC_AT_INGRESS_MASK		(1 << 7)
1074 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1075 #endif
1076 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1077 
1078 #ifdef __KERNEL__
1079 /*
1080  *	Handling routines are only of interest to the kernel
1081  */
1082 
1083 #define SKB_ALLOC_FCLONE	0x01
1084 #define SKB_ALLOC_RX		0x02
1085 #define SKB_ALLOC_NAPI		0x04
1086 
1087 /**
1088  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1089  * @skb: buffer
1090  */
1091 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1092 {
1093 	return unlikely(skb->pfmemalloc);
1094 }
1095 
1096 /*
1097  * skb might have a dst pointer attached, refcounted or not.
1098  * _skb_refdst low order bit is set if refcount was _not_ taken
1099  */
1100 #define SKB_DST_NOREF	1UL
1101 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1102 
1103 /**
1104  * skb_dst - returns skb dst_entry
1105  * @skb: buffer
1106  *
1107  * Returns skb dst_entry, regardless of reference taken or not.
1108  */
1109 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1110 {
1111 	/* If refdst was not refcounted, check we still are in a
1112 	 * rcu_read_lock section
1113 	 */
1114 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1115 		!rcu_read_lock_held() &&
1116 		!rcu_read_lock_bh_held());
1117 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1118 }
1119 
1120 /**
1121  * skb_dst_set - sets skb dst
1122  * @skb: buffer
1123  * @dst: dst entry
1124  *
1125  * Sets skb dst, assuming a reference was taken on dst and should
1126  * be released by skb_dst_drop()
1127  */
1128 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1129 {
1130 	skb->slow_gro |= !!dst;
1131 	skb->_skb_refdst = (unsigned long)dst;
1132 }
1133 
1134 /**
1135  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1136  * @skb: buffer
1137  * @dst: dst entry
1138  *
1139  * Sets skb dst, assuming a reference was not taken on dst.
1140  * If dst entry is cached, we do not take reference and dst_release
1141  * will be avoided by refdst_drop. If dst entry is not cached, we take
1142  * reference, so that last dst_release can destroy the dst immediately.
1143  */
1144 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1145 {
1146 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1147 	skb->slow_gro |= !!dst;
1148 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1149 }
1150 
1151 /**
1152  * skb_dst_is_noref - Test if skb dst isn't refcounted
1153  * @skb: buffer
1154  */
1155 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1156 {
1157 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1158 }
1159 
1160 /**
1161  * skb_rtable - Returns the skb &rtable
1162  * @skb: buffer
1163  */
1164 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1165 {
1166 	return (struct rtable *)skb_dst(skb);
1167 }
1168 
1169 /* For mangling skb->pkt_type from user space side from applications
1170  * such as nft, tc, etc, we only allow a conservative subset of
1171  * possible pkt_types to be set.
1172 */
1173 static inline bool skb_pkt_type_ok(u32 ptype)
1174 {
1175 	return ptype <= PACKET_OTHERHOST;
1176 }
1177 
1178 /**
1179  * skb_napi_id - Returns the skb's NAPI id
1180  * @skb: buffer
1181  */
1182 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1183 {
1184 #ifdef CONFIG_NET_RX_BUSY_POLL
1185 	return skb->napi_id;
1186 #else
1187 	return 0;
1188 #endif
1189 }
1190 
1191 /**
1192  * skb_unref - decrement the skb's reference count
1193  * @skb: buffer
1194  *
1195  * Returns true if we can free the skb.
1196  */
1197 static inline bool skb_unref(struct sk_buff *skb)
1198 {
1199 	if (unlikely(!skb))
1200 		return false;
1201 	if (likely(refcount_read(&skb->users) == 1))
1202 		smp_rmb();
1203 	else if (likely(!refcount_dec_and_test(&skb->users)))
1204 		return false;
1205 
1206 	return true;
1207 }
1208 
1209 void __fix_address
1210 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1211 
1212 /**
1213  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1214  *	@skb: buffer to free
1215  */
1216 static inline void kfree_skb(struct sk_buff *skb)
1217 {
1218 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1219 }
1220 
1221 void skb_release_head_state(struct sk_buff *skb);
1222 void kfree_skb_list_reason(struct sk_buff *segs,
1223 			   enum skb_drop_reason reason);
1224 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1225 void skb_tx_error(struct sk_buff *skb);
1226 
1227 static inline void kfree_skb_list(struct sk_buff *segs)
1228 {
1229 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1230 }
1231 
1232 #ifdef CONFIG_TRACEPOINTS
1233 void consume_skb(struct sk_buff *skb);
1234 #else
1235 static inline void consume_skb(struct sk_buff *skb)
1236 {
1237 	return kfree_skb(skb);
1238 }
1239 #endif
1240 
1241 void __consume_stateless_skb(struct sk_buff *skb);
1242 void  __kfree_skb(struct sk_buff *skb);
1243 extern struct kmem_cache *skbuff_head_cache;
1244 
1245 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1246 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1247 		      bool *fragstolen, int *delta_truesize);
1248 
1249 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1250 			    int node);
1251 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1252 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1253 struct sk_buff *build_skb_around(struct sk_buff *skb,
1254 				 void *data, unsigned int frag_size);
1255 void skb_attempt_defer_free(struct sk_buff *skb);
1256 
1257 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1258 
1259 /**
1260  * alloc_skb - allocate a network buffer
1261  * @size: size to allocate
1262  * @priority: allocation mask
1263  *
1264  * This function is a convenient wrapper around __alloc_skb().
1265  */
1266 static inline struct sk_buff *alloc_skb(unsigned int size,
1267 					gfp_t priority)
1268 {
1269 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1270 }
1271 
1272 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1273 				     unsigned long data_len,
1274 				     int max_page_order,
1275 				     int *errcode,
1276 				     gfp_t gfp_mask);
1277 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1278 
1279 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1280 struct sk_buff_fclones {
1281 	struct sk_buff	skb1;
1282 
1283 	struct sk_buff	skb2;
1284 
1285 	refcount_t	fclone_ref;
1286 };
1287 
1288 /**
1289  *	skb_fclone_busy - check if fclone is busy
1290  *	@sk: socket
1291  *	@skb: buffer
1292  *
1293  * Returns true if skb is a fast clone, and its clone is not freed.
1294  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1295  * so we also check that this didnt happen.
1296  */
1297 static inline bool skb_fclone_busy(const struct sock *sk,
1298 				   const struct sk_buff *skb)
1299 {
1300 	const struct sk_buff_fclones *fclones;
1301 
1302 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1303 
1304 	return skb->fclone == SKB_FCLONE_ORIG &&
1305 	       refcount_read(&fclones->fclone_ref) > 1 &&
1306 	       READ_ONCE(fclones->skb2.sk) == sk;
1307 }
1308 
1309 /**
1310  * alloc_skb_fclone - allocate a network buffer from fclone cache
1311  * @size: size to allocate
1312  * @priority: allocation mask
1313  *
1314  * This function is a convenient wrapper around __alloc_skb().
1315  */
1316 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1317 					       gfp_t priority)
1318 {
1319 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1320 }
1321 
1322 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1323 void skb_headers_offset_update(struct sk_buff *skb, int off);
1324 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1325 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1326 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1327 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1328 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1329 				   gfp_t gfp_mask, bool fclone);
1330 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1331 					  gfp_t gfp_mask)
1332 {
1333 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1334 }
1335 
1336 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1337 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1338 				     unsigned int headroom);
1339 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1340 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1341 				int newtailroom, gfp_t priority);
1342 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1343 				     int offset, int len);
1344 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1345 			      int offset, int len);
1346 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1347 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1348 
1349 /**
1350  *	skb_pad			-	zero pad the tail of an skb
1351  *	@skb: buffer to pad
1352  *	@pad: space to pad
1353  *
1354  *	Ensure that a buffer is followed by a padding area that is zero
1355  *	filled. Used by network drivers which may DMA or transfer data
1356  *	beyond the buffer end onto the wire.
1357  *
1358  *	May return error in out of memory cases. The skb is freed on error.
1359  */
1360 static inline int skb_pad(struct sk_buff *skb, int pad)
1361 {
1362 	return __skb_pad(skb, pad, true);
1363 }
1364 #define dev_kfree_skb(a)	consume_skb(a)
1365 
1366 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1367 			 int offset, size_t size);
1368 
1369 struct skb_seq_state {
1370 	__u32		lower_offset;
1371 	__u32		upper_offset;
1372 	__u32		frag_idx;
1373 	__u32		stepped_offset;
1374 	struct sk_buff	*root_skb;
1375 	struct sk_buff	*cur_skb;
1376 	__u8		*frag_data;
1377 	__u32		frag_off;
1378 };
1379 
1380 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1381 			  unsigned int to, struct skb_seq_state *st);
1382 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1383 			  struct skb_seq_state *st);
1384 void skb_abort_seq_read(struct skb_seq_state *st);
1385 
1386 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1387 			   unsigned int to, struct ts_config *config);
1388 
1389 /*
1390  * Packet hash types specify the type of hash in skb_set_hash.
1391  *
1392  * Hash types refer to the protocol layer addresses which are used to
1393  * construct a packet's hash. The hashes are used to differentiate or identify
1394  * flows of the protocol layer for the hash type. Hash types are either
1395  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1396  *
1397  * Properties of hashes:
1398  *
1399  * 1) Two packets in different flows have different hash values
1400  * 2) Two packets in the same flow should have the same hash value
1401  *
1402  * A hash at a higher layer is considered to be more specific. A driver should
1403  * set the most specific hash possible.
1404  *
1405  * A driver cannot indicate a more specific hash than the layer at which a hash
1406  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1407  *
1408  * A driver may indicate a hash level which is less specific than the
1409  * actual layer the hash was computed on. For instance, a hash computed
1410  * at L4 may be considered an L3 hash. This should only be done if the
1411  * driver can't unambiguously determine that the HW computed the hash at
1412  * the higher layer. Note that the "should" in the second property above
1413  * permits this.
1414  */
1415 enum pkt_hash_types {
1416 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1417 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1418 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1419 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1420 };
1421 
1422 static inline void skb_clear_hash(struct sk_buff *skb)
1423 {
1424 	skb->hash = 0;
1425 	skb->sw_hash = 0;
1426 	skb->l4_hash = 0;
1427 }
1428 
1429 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1430 {
1431 	if (!skb->l4_hash)
1432 		skb_clear_hash(skb);
1433 }
1434 
1435 static inline void
1436 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1437 {
1438 	skb->l4_hash = is_l4;
1439 	skb->sw_hash = is_sw;
1440 	skb->hash = hash;
1441 }
1442 
1443 static inline void
1444 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1445 {
1446 	/* Used by drivers to set hash from HW */
1447 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1448 }
1449 
1450 static inline void
1451 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1452 {
1453 	__skb_set_hash(skb, hash, true, is_l4);
1454 }
1455 
1456 void __skb_get_hash(struct sk_buff *skb);
1457 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1458 u32 skb_get_poff(const struct sk_buff *skb);
1459 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1460 		   const struct flow_keys_basic *keys, int hlen);
1461 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1462 			    const void *data, int hlen_proto);
1463 
1464 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1465 					int thoff, u8 ip_proto)
1466 {
1467 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1468 }
1469 
1470 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1471 			     const struct flow_dissector_key *key,
1472 			     unsigned int key_count);
1473 
1474 struct bpf_flow_dissector;
1475 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1476 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1477 
1478 bool __skb_flow_dissect(const struct net *net,
1479 			const struct sk_buff *skb,
1480 			struct flow_dissector *flow_dissector,
1481 			void *target_container, const void *data,
1482 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1483 
1484 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1485 				    struct flow_dissector *flow_dissector,
1486 				    void *target_container, unsigned int flags)
1487 {
1488 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1489 				  target_container, NULL, 0, 0, 0, flags);
1490 }
1491 
1492 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1493 					      struct flow_keys *flow,
1494 					      unsigned int flags)
1495 {
1496 	memset(flow, 0, sizeof(*flow));
1497 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1498 				  flow, NULL, 0, 0, 0, flags);
1499 }
1500 
1501 static inline bool
1502 skb_flow_dissect_flow_keys_basic(const struct net *net,
1503 				 const struct sk_buff *skb,
1504 				 struct flow_keys_basic *flow,
1505 				 const void *data, __be16 proto,
1506 				 int nhoff, int hlen, unsigned int flags)
1507 {
1508 	memset(flow, 0, sizeof(*flow));
1509 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1510 				  data, proto, nhoff, hlen, flags);
1511 }
1512 
1513 void skb_flow_dissect_meta(const struct sk_buff *skb,
1514 			   struct flow_dissector *flow_dissector,
1515 			   void *target_container);
1516 
1517 /* Gets a skb connection tracking info, ctinfo map should be a
1518  * map of mapsize to translate enum ip_conntrack_info states
1519  * to user states.
1520  */
1521 void
1522 skb_flow_dissect_ct(const struct sk_buff *skb,
1523 		    struct flow_dissector *flow_dissector,
1524 		    void *target_container,
1525 		    u16 *ctinfo_map, size_t mapsize,
1526 		    bool post_ct, u16 zone);
1527 void
1528 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1529 			     struct flow_dissector *flow_dissector,
1530 			     void *target_container);
1531 
1532 void skb_flow_dissect_hash(const struct sk_buff *skb,
1533 			   struct flow_dissector *flow_dissector,
1534 			   void *target_container);
1535 
1536 static inline __u32 skb_get_hash(struct sk_buff *skb)
1537 {
1538 	if (!skb->l4_hash && !skb->sw_hash)
1539 		__skb_get_hash(skb);
1540 
1541 	return skb->hash;
1542 }
1543 
1544 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1545 {
1546 	if (!skb->l4_hash && !skb->sw_hash) {
1547 		struct flow_keys keys;
1548 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1549 
1550 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1551 	}
1552 
1553 	return skb->hash;
1554 }
1555 
1556 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1557 			   const siphash_key_t *perturb);
1558 
1559 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1560 {
1561 	return skb->hash;
1562 }
1563 
1564 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1565 {
1566 	to->hash = from->hash;
1567 	to->sw_hash = from->sw_hash;
1568 	to->l4_hash = from->l4_hash;
1569 };
1570 
1571 static inline void skb_copy_decrypted(struct sk_buff *to,
1572 				      const struct sk_buff *from)
1573 {
1574 #ifdef CONFIG_TLS_DEVICE
1575 	to->decrypted = from->decrypted;
1576 #endif
1577 }
1578 
1579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1580 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1581 {
1582 	return skb->head + skb->end;
1583 }
1584 
1585 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1586 {
1587 	return skb->end;
1588 }
1589 
1590 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1591 {
1592 	skb->end = offset;
1593 }
1594 #else
1595 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1596 {
1597 	return skb->end;
1598 }
1599 
1600 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1601 {
1602 	return skb->end - skb->head;
1603 }
1604 
1605 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1606 {
1607 	skb->end = skb->head + offset;
1608 }
1609 #endif
1610 
1611 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1612 				       struct ubuf_info *uarg);
1613 
1614 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1615 
1616 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1617 			   bool success);
1618 
1619 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1620 			    struct sk_buff *skb, struct iov_iter *from,
1621 			    size_t length);
1622 
1623 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1624 					  struct msghdr *msg, int len)
1625 {
1626 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1627 }
1628 
1629 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1630 			     struct msghdr *msg, int len,
1631 			     struct ubuf_info *uarg);
1632 
1633 /* Internal */
1634 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1635 
1636 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1637 {
1638 	return &skb_shinfo(skb)->hwtstamps;
1639 }
1640 
1641 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1642 {
1643 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1644 
1645 	return is_zcopy ? skb_uarg(skb) : NULL;
1646 }
1647 
1648 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1649 {
1650 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1651 }
1652 
1653 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1654 {
1655 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1656 }
1657 
1658 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1659 				       const struct sk_buff *skb2)
1660 {
1661 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1662 }
1663 
1664 static inline void net_zcopy_get(struct ubuf_info *uarg)
1665 {
1666 	refcount_inc(&uarg->refcnt);
1667 }
1668 
1669 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1670 {
1671 	skb_shinfo(skb)->destructor_arg = uarg;
1672 	skb_shinfo(skb)->flags |= uarg->flags;
1673 }
1674 
1675 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1676 				 bool *have_ref)
1677 {
1678 	if (skb && uarg && !skb_zcopy(skb)) {
1679 		if (unlikely(have_ref && *have_ref))
1680 			*have_ref = false;
1681 		else
1682 			net_zcopy_get(uarg);
1683 		skb_zcopy_init(skb, uarg);
1684 	}
1685 }
1686 
1687 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1688 {
1689 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1690 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1691 }
1692 
1693 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1694 {
1695 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1696 }
1697 
1698 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1699 {
1700 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1701 }
1702 
1703 static inline void net_zcopy_put(struct ubuf_info *uarg)
1704 {
1705 	if (uarg)
1706 		uarg->callback(NULL, uarg, true);
1707 }
1708 
1709 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1710 {
1711 	if (uarg) {
1712 		if (uarg->callback == msg_zerocopy_callback)
1713 			msg_zerocopy_put_abort(uarg, have_uref);
1714 		else if (have_uref)
1715 			net_zcopy_put(uarg);
1716 	}
1717 }
1718 
1719 /* Release a reference on a zerocopy structure */
1720 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1721 {
1722 	struct ubuf_info *uarg = skb_zcopy(skb);
1723 
1724 	if (uarg) {
1725 		if (!skb_zcopy_is_nouarg(skb))
1726 			uarg->callback(skb, uarg, zerocopy_success);
1727 
1728 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1729 	}
1730 }
1731 
1732 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1733 
1734 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1735 {
1736 	if (unlikely(skb_zcopy_managed(skb)))
1737 		__skb_zcopy_downgrade_managed(skb);
1738 }
1739 
1740 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1741 {
1742 	skb->next = NULL;
1743 }
1744 
1745 /* Iterate through singly-linked GSO fragments of an skb. */
1746 #define skb_list_walk_safe(first, skb, next_skb)                               \
1747 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1748 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1749 
1750 static inline void skb_list_del_init(struct sk_buff *skb)
1751 {
1752 	__list_del_entry(&skb->list);
1753 	skb_mark_not_on_list(skb);
1754 }
1755 
1756 /**
1757  *	skb_queue_empty - check if a queue is empty
1758  *	@list: queue head
1759  *
1760  *	Returns true if the queue is empty, false otherwise.
1761  */
1762 static inline int skb_queue_empty(const struct sk_buff_head *list)
1763 {
1764 	return list->next == (const struct sk_buff *) list;
1765 }
1766 
1767 /**
1768  *	skb_queue_empty_lockless - check if a queue is empty
1769  *	@list: queue head
1770  *
1771  *	Returns true if the queue is empty, false otherwise.
1772  *	This variant can be used in lockless contexts.
1773  */
1774 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1775 {
1776 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1777 }
1778 
1779 
1780 /**
1781  *	skb_queue_is_last - check if skb is the last entry in the queue
1782  *	@list: queue head
1783  *	@skb: buffer
1784  *
1785  *	Returns true if @skb is the last buffer on the list.
1786  */
1787 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1788 				     const struct sk_buff *skb)
1789 {
1790 	return skb->next == (const struct sk_buff *) list;
1791 }
1792 
1793 /**
1794  *	skb_queue_is_first - check if skb is the first entry in the queue
1795  *	@list: queue head
1796  *	@skb: buffer
1797  *
1798  *	Returns true if @skb is the first buffer on the list.
1799  */
1800 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1801 				      const struct sk_buff *skb)
1802 {
1803 	return skb->prev == (const struct sk_buff *) list;
1804 }
1805 
1806 /**
1807  *	skb_queue_next - return the next packet in the queue
1808  *	@list: queue head
1809  *	@skb: current buffer
1810  *
1811  *	Return the next packet in @list after @skb.  It is only valid to
1812  *	call this if skb_queue_is_last() evaluates to false.
1813  */
1814 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1815 					     const struct sk_buff *skb)
1816 {
1817 	/* This BUG_ON may seem severe, but if we just return then we
1818 	 * are going to dereference garbage.
1819 	 */
1820 	BUG_ON(skb_queue_is_last(list, skb));
1821 	return skb->next;
1822 }
1823 
1824 /**
1825  *	skb_queue_prev - return the prev packet in the queue
1826  *	@list: queue head
1827  *	@skb: current buffer
1828  *
1829  *	Return the prev packet in @list before @skb.  It is only valid to
1830  *	call this if skb_queue_is_first() evaluates to false.
1831  */
1832 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1833 					     const struct sk_buff *skb)
1834 {
1835 	/* This BUG_ON may seem severe, but if we just return then we
1836 	 * are going to dereference garbage.
1837 	 */
1838 	BUG_ON(skb_queue_is_first(list, skb));
1839 	return skb->prev;
1840 }
1841 
1842 /**
1843  *	skb_get - reference buffer
1844  *	@skb: buffer to reference
1845  *
1846  *	Makes another reference to a socket buffer and returns a pointer
1847  *	to the buffer.
1848  */
1849 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1850 {
1851 	refcount_inc(&skb->users);
1852 	return skb;
1853 }
1854 
1855 /*
1856  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1857  */
1858 
1859 /**
1860  *	skb_cloned - is the buffer a clone
1861  *	@skb: buffer to check
1862  *
1863  *	Returns true if the buffer was generated with skb_clone() and is
1864  *	one of multiple shared copies of the buffer. Cloned buffers are
1865  *	shared data so must not be written to under normal circumstances.
1866  */
1867 static inline int skb_cloned(const struct sk_buff *skb)
1868 {
1869 	return skb->cloned &&
1870 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1871 }
1872 
1873 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1874 {
1875 	might_sleep_if(gfpflags_allow_blocking(pri));
1876 
1877 	if (skb_cloned(skb))
1878 		return pskb_expand_head(skb, 0, 0, pri);
1879 
1880 	return 0;
1881 }
1882 
1883 /* This variant of skb_unclone() makes sure skb->truesize
1884  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1885  *
1886  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1887  * when various debugging features are in place.
1888  */
1889 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1890 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1891 {
1892 	might_sleep_if(gfpflags_allow_blocking(pri));
1893 
1894 	if (skb_cloned(skb))
1895 		return __skb_unclone_keeptruesize(skb, pri);
1896 	return 0;
1897 }
1898 
1899 /**
1900  *	skb_header_cloned - is the header a clone
1901  *	@skb: buffer to check
1902  *
1903  *	Returns true if modifying the header part of the buffer requires
1904  *	the data to be copied.
1905  */
1906 static inline int skb_header_cloned(const struct sk_buff *skb)
1907 {
1908 	int dataref;
1909 
1910 	if (!skb->cloned)
1911 		return 0;
1912 
1913 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1914 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1915 	return dataref != 1;
1916 }
1917 
1918 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1919 {
1920 	might_sleep_if(gfpflags_allow_blocking(pri));
1921 
1922 	if (skb_header_cloned(skb))
1923 		return pskb_expand_head(skb, 0, 0, pri);
1924 
1925 	return 0;
1926 }
1927 
1928 /**
1929  * __skb_header_release() - allow clones to use the headroom
1930  * @skb: buffer to operate on
1931  *
1932  * See "DOC: dataref and headerless skbs".
1933  */
1934 static inline void __skb_header_release(struct sk_buff *skb)
1935 {
1936 	skb->nohdr = 1;
1937 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1938 }
1939 
1940 
1941 /**
1942  *	skb_shared - is the buffer shared
1943  *	@skb: buffer to check
1944  *
1945  *	Returns true if more than one person has a reference to this
1946  *	buffer.
1947  */
1948 static inline int skb_shared(const struct sk_buff *skb)
1949 {
1950 	return refcount_read(&skb->users) != 1;
1951 }
1952 
1953 /**
1954  *	skb_share_check - check if buffer is shared and if so clone it
1955  *	@skb: buffer to check
1956  *	@pri: priority for memory allocation
1957  *
1958  *	If the buffer is shared the buffer is cloned and the old copy
1959  *	drops a reference. A new clone with a single reference is returned.
1960  *	If the buffer is not shared the original buffer is returned. When
1961  *	being called from interrupt status or with spinlocks held pri must
1962  *	be GFP_ATOMIC.
1963  *
1964  *	NULL is returned on a memory allocation failure.
1965  */
1966 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1967 {
1968 	might_sleep_if(gfpflags_allow_blocking(pri));
1969 	if (skb_shared(skb)) {
1970 		struct sk_buff *nskb = skb_clone(skb, pri);
1971 
1972 		if (likely(nskb))
1973 			consume_skb(skb);
1974 		else
1975 			kfree_skb(skb);
1976 		skb = nskb;
1977 	}
1978 	return skb;
1979 }
1980 
1981 /*
1982  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1983  *	packets to handle cases where we have a local reader and forward
1984  *	and a couple of other messy ones. The normal one is tcpdumping
1985  *	a packet thats being forwarded.
1986  */
1987 
1988 /**
1989  *	skb_unshare - make a copy of a shared buffer
1990  *	@skb: buffer to check
1991  *	@pri: priority for memory allocation
1992  *
1993  *	If the socket buffer is a clone then this function creates a new
1994  *	copy of the data, drops a reference count on the old copy and returns
1995  *	the new copy with the reference count at 1. If the buffer is not a clone
1996  *	the original buffer is returned. When called with a spinlock held or
1997  *	from interrupt state @pri must be %GFP_ATOMIC
1998  *
1999  *	%NULL is returned on a memory allocation failure.
2000  */
2001 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2002 					  gfp_t pri)
2003 {
2004 	might_sleep_if(gfpflags_allow_blocking(pri));
2005 	if (skb_cloned(skb)) {
2006 		struct sk_buff *nskb = skb_copy(skb, pri);
2007 
2008 		/* Free our shared copy */
2009 		if (likely(nskb))
2010 			consume_skb(skb);
2011 		else
2012 			kfree_skb(skb);
2013 		skb = nskb;
2014 	}
2015 	return skb;
2016 }
2017 
2018 /**
2019  *	skb_peek - peek at the head of an &sk_buff_head
2020  *	@list_: list to peek at
2021  *
2022  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2023  *	be careful with this one. A peek leaves the buffer on the
2024  *	list and someone else may run off with it. You must hold
2025  *	the appropriate locks or have a private queue to do this.
2026  *
2027  *	Returns %NULL for an empty list or a pointer to the head element.
2028  *	The reference count is not incremented and the reference is therefore
2029  *	volatile. Use with caution.
2030  */
2031 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2032 {
2033 	struct sk_buff *skb = list_->next;
2034 
2035 	if (skb == (struct sk_buff *)list_)
2036 		skb = NULL;
2037 	return skb;
2038 }
2039 
2040 /**
2041  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2042  *	@list_: list to peek at
2043  *
2044  *	Like skb_peek(), but the caller knows that the list is not empty.
2045  */
2046 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2047 {
2048 	return list_->next;
2049 }
2050 
2051 /**
2052  *	skb_peek_next - peek skb following the given one from a queue
2053  *	@skb: skb to start from
2054  *	@list_: list to peek at
2055  *
2056  *	Returns %NULL when the end of the list is met or a pointer to the
2057  *	next element. The reference count is not incremented and the
2058  *	reference is therefore volatile. Use with caution.
2059  */
2060 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2061 		const struct sk_buff_head *list_)
2062 {
2063 	struct sk_buff *next = skb->next;
2064 
2065 	if (next == (struct sk_buff *)list_)
2066 		next = NULL;
2067 	return next;
2068 }
2069 
2070 /**
2071  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2072  *	@list_: list to peek at
2073  *
2074  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2075  *	be careful with this one. A peek leaves the buffer on the
2076  *	list and someone else may run off with it. You must hold
2077  *	the appropriate locks or have a private queue to do this.
2078  *
2079  *	Returns %NULL for an empty list or a pointer to the tail element.
2080  *	The reference count is not incremented and the reference is therefore
2081  *	volatile. Use with caution.
2082  */
2083 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2084 {
2085 	struct sk_buff *skb = READ_ONCE(list_->prev);
2086 
2087 	if (skb == (struct sk_buff *)list_)
2088 		skb = NULL;
2089 	return skb;
2090 
2091 }
2092 
2093 /**
2094  *	skb_queue_len	- get queue length
2095  *	@list_: list to measure
2096  *
2097  *	Return the length of an &sk_buff queue.
2098  */
2099 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2100 {
2101 	return list_->qlen;
2102 }
2103 
2104 /**
2105  *	skb_queue_len_lockless	- get queue length
2106  *	@list_: list to measure
2107  *
2108  *	Return the length of an &sk_buff queue.
2109  *	This variant can be used in lockless contexts.
2110  */
2111 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2112 {
2113 	return READ_ONCE(list_->qlen);
2114 }
2115 
2116 /**
2117  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2118  *	@list: queue to initialize
2119  *
2120  *	This initializes only the list and queue length aspects of
2121  *	an sk_buff_head object.  This allows to initialize the list
2122  *	aspects of an sk_buff_head without reinitializing things like
2123  *	the spinlock.  It can also be used for on-stack sk_buff_head
2124  *	objects where the spinlock is known to not be used.
2125  */
2126 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2127 {
2128 	list->prev = list->next = (struct sk_buff *)list;
2129 	list->qlen = 0;
2130 }
2131 
2132 /*
2133  * This function creates a split out lock class for each invocation;
2134  * this is needed for now since a whole lot of users of the skb-queue
2135  * infrastructure in drivers have different locking usage (in hardirq)
2136  * than the networking core (in softirq only). In the long run either the
2137  * network layer or drivers should need annotation to consolidate the
2138  * main types of usage into 3 classes.
2139  */
2140 static inline void skb_queue_head_init(struct sk_buff_head *list)
2141 {
2142 	spin_lock_init(&list->lock);
2143 	__skb_queue_head_init(list);
2144 }
2145 
2146 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2147 		struct lock_class_key *class)
2148 {
2149 	skb_queue_head_init(list);
2150 	lockdep_set_class(&list->lock, class);
2151 }
2152 
2153 /*
2154  *	Insert an sk_buff on a list.
2155  *
2156  *	The "__skb_xxxx()" functions are the non-atomic ones that
2157  *	can only be called with interrupts disabled.
2158  */
2159 static inline void __skb_insert(struct sk_buff *newsk,
2160 				struct sk_buff *prev, struct sk_buff *next,
2161 				struct sk_buff_head *list)
2162 {
2163 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2164 	 * for the opposite READ_ONCE()
2165 	 */
2166 	WRITE_ONCE(newsk->next, next);
2167 	WRITE_ONCE(newsk->prev, prev);
2168 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2169 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2170 	WRITE_ONCE(list->qlen, list->qlen + 1);
2171 }
2172 
2173 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2174 				      struct sk_buff *prev,
2175 				      struct sk_buff *next)
2176 {
2177 	struct sk_buff *first = list->next;
2178 	struct sk_buff *last = list->prev;
2179 
2180 	WRITE_ONCE(first->prev, prev);
2181 	WRITE_ONCE(prev->next, first);
2182 
2183 	WRITE_ONCE(last->next, next);
2184 	WRITE_ONCE(next->prev, last);
2185 }
2186 
2187 /**
2188  *	skb_queue_splice - join two skb lists, this is designed for stacks
2189  *	@list: the new list to add
2190  *	@head: the place to add it in the first list
2191  */
2192 static inline void skb_queue_splice(const struct sk_buff_head *list,
2193 				    struct sk_buff_head *head)
2194 {
2195 	if (!skb_queue_empty(list)) {
2196 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2197 		head->qlen += list->qlen;
2198 	}
2199 }
2200 
2201 /**
2202  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2203  *	@list: the new list to add
2204  *	@head: the place to add it in the first list
2205  *
2206  *	The list at @list is reinitialised
2207  */
2208 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2209 					 struct sk_buff_head *head)
2210 {
2211 	if (!skb_queue_empty(list)) {
2212 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2213 		head->qlen += list->qlen;
2214 		__skb_queue_head_init(list);
2215 	}
2216 }
2217 
2218 /**
2219  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2220  *	@list: the new list to add
2221  *	@head: the place to add it in the first list
2222  */
2223 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2224 					 struct sk_buff_head *head)
2225 {
2226 	if (!skb_queue_empty(list)) {
2227 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2228 		head->qlen += list->qlen;
2229 	}
2230 }
2231 
2232 /**
2233  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2234  *	@list: the new list to add
2235  *	@head: the place to add it in the first list
2236  *
2237  *	Each of the lists is a queue.
2238  *	The list at @list is reinitialised
2239  */
2240 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2241 					      struct sk_buff_head *head)
2242 {
2243 	if (!skb_queue_empty(list)) {
2244 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2245 		head->qlen += list->qlen;
2246 		__skb_queue_head_init(list);
2247 	}
2248 }
2249 
2250 /**
2251  *	__skb_queue_after - queue a buffer at the list head
2252  *	@list: list to use
2253  *	@prev: place after this buffer
2254  *	@newsk: buffer to queue
2255  *
2256  *	Queue a buffer int the middle of a list. This function takes no locks
2257  *	and you must therefore hold required locks before calling it.
2258  *
2259  *	A buffer cannot be placed on two lists at the same time.
2260  */
2261 static inline void __skb_queue_after(struct sk_buff_head *list,
2262 				     struct sk_buff *prev,
2263 				     struct sk_buff *newsk)
2264 {
2265 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2266 }
2267 
2268 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2269 		struct sk_buff_head *list);
2270 
2271 static inline void __skb_queue_before(struct sk_buff_head *list,
2272 				      struct sk_buff *next,
2273 				      struct sk_buff *newsk)
2274 {
2275 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2276 }
2277 
2278 /**
2279  *	__skb_queue_head - queue a buffer at the list head
2280  *	@list: list to use
2281  *	@newsk: buffer to queue
2282  *
2283  *	Queue a buffer at the start of a list. This function takes no locks
2284  *	and you must therefore hold required locks before calling it.
2285  *
2286  *	A buffer cannot be placed on two lists at the same time.
2287  */
2288 static inline void __skb_queue_head(struct sk_buff_head *list,
2289 				    struct sk_buff *newsk)
2290 {
2291 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2292 }
2293 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2294 
2295 /**
2296  *	__skb_queue_tail - queue a buffer at the list tail
2297  *	@list: list to use
2298  *	@newsk: buffer to queue
2299  *
2300  *	Queue a buffer at the end of a list. This function takes no locks
2301  *	and you must therefore hold required locks before calling it.
2302  *
2303  *	A buffer cannot be placed on two lists at the same time.
2304  */
2305 static inline void __skb_queue_tail(struct sk_buff_head *list,
2306 				   struct sk_buff *newsk)
2307 {
2308 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2309 }
2310 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2311 
2312 /*
2313  * remove sk_buff from list. _Must_ be called atomically, and with
2314  * the list known..
2315  */
2316 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2317 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2318 {
2319 	struct sk_buff *next, *prev;
2320 
2321 	WRITE_ONCE(list->qlen, list->qlen - 1);
2322 	next	   = skb->next;
2323 	prev	   = skb->prev;
2324 	skb->next  = skb->prev = NULL;
2325 	WRITE_ONCE(next->prev, prev);
2326 	WRITE_ONCE(prev->next, next);
2327 }
2328 
2329 /**
2330  *	__skb_dequeue - remove from the head of the queue
2331  *	@list: list to dequeue from
2332  *
2333  *	Remove the head of the list. This function does not take any locks
2334  *	so must be used with appropriate locks held only. The head item is
2335  *	returned or %NULL if the list is empty.
2336  */
2337 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2338 {
2339 	struct sk_buff *skb = skb_peek(list);
2340 	if (skb)
2341 		__skb_unlink(skb, list);
2342 	return skb;
2343 }
2344 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2345 
2346 /**
2347  *	__skb_dequeue_tail - remove from the tail of the queue
2348  *	@list: list to dequeue from
2349  *
2350  *	Remove the tail of the list. This function does not take any locks
2351  *	so must be used with appropriate locks held only. The tail item is
2352  *	returned or %NULL if the list is empty.
2353  */
2354 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2355 {
2356 	struct sk_buff *skb = skb_peek_tail(list);
2357 	if (skb)
2358 		__skb_unlink(skb, list);
2359 	return skb;
2360 }
2361 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2362 
2363 
2364 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2365 {
2366 	return skb->data_len;
2367 }
2368 
2369 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2370 {
2371 	return skb->len - skb->data_len;
2372 }
2373 
2374 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2375 {
2376 	unsigned int i, len = 0;
2377 
2378 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2379 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2380 	return len;
2381 }
2382 
2383 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2384 {
2385 	return skb_headlen(skb) + __skb_pagelen(skb);
2386 }
2387 
2388 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2389 					      int i, struct page *page,
2390 					      int off, int size)
2391 {
2392 	skb_frag_t *frag = &shinfo->frags[i];
2393 
2394 	/*
2395 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2396 	 * that not all callers have unique ownership of the page but rely
2397 	 * on page_is_pfmemalloc doing the right thing(tm).
2398 	 */
2399 	frag->bv_page		  = page;
2400 	frag->bv_offset		  = off;
2401 	skb_frag_size_set(frag, size);
2402 }
2403 
2404 /**
2405  * skb_len_add - adds a number to len fields of skb
2406  * @skb: buffer to add len to
2407  * @delta: number of bytes to add
2408  */
2409 static inline void skb_len_add(struct sk_buff *skb, int delta)
2410 {
2411 	skb->len += delta;
2412 	skb->data_len += delta;
2413 	skb->truesize += delta;
2414 }
2415 
2416 /**
2417  * __skb_fill_page_desc - initialise a paged fragment in an skb
2418  * @skb: buffer containing fragment to be initialised
2419  * @i: paged fragment index to initialise
2420  * @page: the page to use for this fragment
2421  * @off: the offset to the data with @page
2422  * @size: the length of the data
2423  *
2424  * Initialises the @i'th fragment of @skb to point to &size bytes at
2425  * offset @off within @page.
2426  *
2427  * Does not take any additional reference on the fragment.
2428  */
2429 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2430 					struct page *page, int off, int size)
2431 {
2432 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2433 	page = compound_head(page);
2434 	if (page_is_pfmemalloc(page))
2435 		skb->pfmemalloc	= true;
2436 }
2437 
2438 /**
2439  * skb_fill_page_desc - initialise a paged fragment in an skb
2440  * @skb: buffer containing fragment to be initialised
2441  * @i: paged fragment index to initialise
2442  * @page: the page to use for this fragment
2443  * @off: the offset to the data with @page
2444  * @size: the length of the data
2445  *
2446  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2447  * @skb to point to @size bytes at offset @off within @page. In
2448  * addition updates @skb such that @i is the last fragment.
2449  *
2450  * Does not take any additional reference on the fragment.
2451  */
2452 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2453 				      struct page *page, int off, int size)
2454 {
2455 	__skb_fill_page_desc(skb, i, page, off, size);
2456 	skb_shinfo(skb)->nr_frags = i + 1;
2457 }
2458 
2459 /**
2460  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2461  * @skb: buffer containing fragment to be initialised
2462  * @i: paged fragment index to initialise
2463  * @page: the page to use for this fragment
2464  * @off: the offset to the data with @page
2465  * @size: the length of the data
2466  *
2467  * Variant of skb_fill_page_desc() which does not deal with
2468  * pfmemalloc, if page is not owned by us.
2469  */
2470 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2471 					    struct page *page, int off,
2472 					    int size)
2473 {
2474 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2475 
2476 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2477 	shinfo->nr_frags = i + 1;
2478 }
2479 
2480 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2481 		     int size, unsigned int truesize);
2482 
2483 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2484 			  unsigned int truesize);
2485 
2486 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2487 
2488 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2489 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2490 {
2491 	return skb->head + skb->tail;
2492 }
2493 
2494 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2495 {
2496 	skb->tail = skb->data - skb->head;
2497 }
2498 
2499 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2500 {
2501 	skb_reset_tail_pointer(skb);
2502 	skb->tail += offset;
2503 }
2504 
2505 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2506 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2507 {
2508 	return skb->tail;
2509 }
2510 
2511 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2512 {
2513 	skb->tail = skb->data;
2514 }
2515 
2516 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2517 {
2518 	skb->tail = skb->data + offset;
2519 }
2520 
2521 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2522 
2523 static inline void skb_assert_len(struct sk_buff *skb)
2524 {
2525 #ifdef CONFIG_DEBUG_NET
2526 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2527 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2528 #endif /* CONFIG_DEBUG_NET */
2529 }
2530 
2531 /*
2532  *	Add data to an sk_buff
2533  */
2534 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2535 void *skb_put(struct sk_buff *skb, unsigned int len);
2536 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2537 {
2538 	void *tmp = skb_tail_pointer(skb);
2539 	SKB_LINEAR_ASSERT(skb);
2540 	skb->tail += len;
2541 	skb->len  += len;
2542 	return tmp;
2543 }
2544 
2545 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2546 {
2547 	void *tmp = __skb_put(skb, len);
2548 
2549 	memset(tmp, 0, len);
2550 	return tmp;
2551 }
2552 
2553 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2554 				   unsigned int len)
2555 {
2556 	void *tmp = __skb_put(skb, len);
2557 
2558 	memcpy(tmp, data, len);
2559 	return tmp;
2560 }
2561 
2562 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2563 {
2564 	*(u8 *)__skb_put(skb, 1) = val;
2565 }
2566 
2567 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2568 {
2569 	void *tmp = skb_put(skb, len);
2570 
2571 	memset(tmp, 0, len);
2572 
2573 	return tmp;
2574 }
2575 
2576 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2577 				 unsigned int len)
2578 {
2579 	void *tmp = skb_put(skb, len);
2580 
2581 	memcpy(tmp, data, len);
2582 
2583 	return tmp;
2584 }
2585 
2586 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2587 {
2588 	*(u8 *)skb_put(skb, 1) = val;
2589 }
2590 
2591 void *skb_push(struct sk_buff *skb, unsigned int len);
2592 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2593 {
2594 	skb->data -= len;
2595 	skb->len  += len;
2596 	return skb->data;
2597 }
2598 
2599 void *skb_pull(struct sk_buff *skb, unsigned int len);
2600 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2601 {
2602 	skb->len -= len;
2603 	if (unlikely(skb->len < skb->data_len)) {
2604 #if defined(CONFIG_DEBUG_NET)
2605 		skb->len += len;
2606 		pr_err("__skb_pull(len=%u)\n", len);
2607 		skb_dump(KERN_ERR, skb, false);
2608 #endif
2609 		BUG();
2610 	}
2611 	return skb->data += len;
2612 }
2613 
2614 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2615 {
2616 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2617 }
2618 
2619 void *skb_pull_data(struct sk_buff *skb, size_t len);
2620 
2621 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2622 
2623 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2624 {
2625 	if (likely(len <= skb_headlen(skb)))
2626 		return true;
2627 	if (unlikely(len > skb->len))
2628 		return false;
2629 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2630 }
2631 
2632 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2633 {
2634 	if (!pskb_may_pull(skb, len))
2635 		return NULL;
2636 
2637 	skb->len -= len;
2638 	return skb->data += len;
2639 }
2640 
2641 void skb_condense(struct sk_buff *skb);
2642 
2643 /**
2644  *	skb_headroom - bytes at buffer head
2645  *	@skb: buffer to check
2646  *
2647  *	Return the number of bytes of free space at the head of an &sk_buff.
2648  */
2649 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2650 {
2651 	return skb->data - skb->head;
2652 }
2653 
2654 /**
2655  *	skb_tailroom - bytes at buffer end
2656  *	@skb: buffer to check
2657  *
2658  *	Return the number of bytes of free space at the tail of an sk_buff
2659  */
2660 static inline int skb_tailroom(const struct sk_buff *skb)
2661 {
2662 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2663 }
2664 
2665 /**
2666  *	skb_availroom - bytes at buffer end
2667  *	@skb: buffer to check
2668  *
2669  *	Return the number of bytes of free space at the tail of an sk_buff
2670  *	allocated by sk_stream_alloc()
2671  */
2672 static inline int skb_availroom(const struct sk_buff *skb)
2673 {
2674 	if (skb_is_nonlinear(skb))
2675 		return 0;
2676 
2677 	return skb->end - skb->tail - skb->reserved_tailroom;
2678 }
2679 
2680 /**
2681  *	skb_reserve - adjust headroom
2682  *	@skb: buffer to alter
2683  *	@len: bytes to move
2684  *
2685  *	Increase the headroom of an empty &sk_buff by reducing the tail
2686  *	room. This is only allowed for an empty buffer.
2687  */
2688 static inline void skb_reserve(struct sk_buff *skb, int len)
2689 {
2690 	skb->data += len;
2691 	skb->tail += len;
2692 }
2693 
2694 /**
2695  *	skb_tailroom_reserve - adjust reserved_tailroom
2696  *	@skb: buffer to alter
2697  *	@mtu: maximum amount of headlen permitted
2698  *	@needed_tailroom: minimum amount of reserved_tailroom
2699  *
2700  *	Set reserved_tailroom so that headlen can be as large as possible but
2701  *	not larger than mtu and tailroom cannot be smaller than
2702  *	needed_tailroom.
2703  *	The required headroom should already have been reserved before using
2704  *	this function.
2705  */
2706 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2707 					unsigned int needed_tailroom)
2708 {
2709 	SKB_LINEAR_ASSERT(skb);
2710 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2711 		/* use at most mtu */
2712 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2713 	else
2714 		/* use up to all available space */
2715 		skb->reserved_tailroom = needed_tailroom;
2716 }
2717 
2718 #define ENCAP_TYPE_ETHER	0
2719 #define ENCAP_TYPE_IPPROTO	1
2720 
2721 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2722 					  __be16 protocol)
2723 {
2724 	skb->inner_protocol = protocol;
2725 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2726 }
2727 
2728 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2729 					 __u8 ipproto)
2730 {
2731 	skb->inner_ipproto = ipproto;
2732 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2733 }
2734 
2735 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2736 {
2737 	skb->inner_mac_header = skb->mac_header;
2738 	skb->inner_network_header = skb->network_header;
2739 	skb->inner_transport_header = skb->transport_header;
2740 }
2741 
2742 static inline void skb_reset_mac_len(struct sk_buff *skb)
2743 {
2744 	skb->mac_len = skb->network_header - skb->mac_header;
2745 }
2746 
2747 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2748 							*skb)
2749 {
2750 	return skb->head + skb->inner_transport_header;
2751 }
2752 
2753 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2754 {
2755 	return skb_inner_transport_header(skb) - skb->data;
2756 }
2757 
2758 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2759 {
2760 	skb->inner_transport_header = skb->data - skb->head;
2761 }
2762 
2763 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2764 						   const int offset)
2765 {
2766 	skb_reset_inner_transport_header(skb);
2767 	skb->inner_transport_header += offset;
2768 }
2769 
2770 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2771 {
2772 	return skb->head + skb->inner_network_header;
2773 }
2774 
2775 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2776 {
2777 	skb->inner_network_header = skb->data - skb->head;
2778 }
2779 
2780 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2781 						const int offset)
2782 {
2783 	skb_reset_inner_network_header(skb);
2784 	skb->inner_network_header += offset;
2785 }
2786 
2787 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2788 {
2789 	return skb->head + skb->inner_mac_header;
2790 }
2791 
2792 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2793 {
2794 	skb->inner_mac_header = skb->data - skb->head;
2795 }
2796 
2797 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2798 					    const int offset)
2799 {
2800 	skb_reset_inner_mac_header(skb);
2801 	skb->inner_mac_header += offset;
2802 }
2803 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2804 {
2805 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2806 }
2807 
2808 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2809 {
2810 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2811 	return skb->head + skb->transport_header;
2812 }
2813 
2814 static inline void skb_reset_transport_header(struct sk_buff *skb)
2815 {
2816 	skb->transport_header = skb->data - skb->head;
2817 }
2818 
2819 static inline void skb_set_transport_header(struct sk_buff *skb,
2820 					    const int offset)
2821 {
2822 	skb_reset_transport_header(skb);
2823 	skb->transport_header += offset;
2824 }
2825 
2826 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2827 {
2828 	return skb->head + skb->network_header;
2829 }
2830 
2831 static inline void skb_reset_network_header(struct sk_buff *skb)
2832 {
2833 	skb->network_header = skb->data - skb->head;
2834 }
2835 
2836 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2837 {
2838 	skb_reset_network_header(skb);
2839 	skb->network_header += offset;
2840 }
2841 
2842 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2843 {
2844 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2845 }
2846 
2847 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2848 {
2849 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2850 	return skb->head + skb->mac_header;
2851 }
2852 
2853 static inline int skb_mac_offset(const struct sk_buff *skb)
2854 {
2855 	return skb_mac_header(skb) - skb->data;
2856 }
2857 
2858 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2859 {
2860 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2861 	return skb->network_header - skb->mac_header;
2862 }
2863 
2864 static inline void skb_unset_mac_header(struct sk_buff *skb)
2865 {
2866 	skb->mac_header = (typeof(skb->mac_header))~0U;
2867 }
2868 
2869 static inline void skb_reset_mac_header(struct sk_buff *skb)
2870 {
2871 	skb->mac_header = skb->data - skb->head;
2872 }
2873 
2874 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2875 {
2876 	skb_reset_mac_header(skb);
2877 	skb->mac_header += offset;
2878 }
2879 
2880 static inline void skb_pop_mac_header(struct sk_buff *skb)
2881 {
2882 	skb->mac_header = skb->network_header;
2883 }
2884 
2885 static inline void skb_probe_transport_header(struct sk_buff *skb)
2886 {
2887 	struct flow_keys_basic keys;
2888 
2889 	if (skb_transport_header_was_set(skb))
2890 		return;
2891 
2892 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2893 					     NULL, 0, 0, 0, 0))
2894 		skb_set_transport_header(skb, keys.control.thoff);
2895 }
2896 
2897 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2898 {
2899 	if (skb_mac_header_was_set(skb)) {
2900 		const unsigned char *old_mac = skb_mac_header(skb);
2901 
2902 		skb_set_mac_header(skb, -skb->mac_len);
2903 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2904 	}
2905 }
2906 
2907 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2908 {
2909 	return skb->csum_start - skb_headroom(skb);
2910 }
2911 
2912 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2913 {
2914 	return skb->head + skb->csum_start;
2915 }
2916 
2917 static inline int skb_transport_offset(const struct sk_buff *skb)
2918 {
2919 	return skb_transport_header(skb) - skb->data;
2920 }
2921 
2922 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2923 {
2924 	return skb->transport_header - skb->network_header;
2925 }
2926 
2927 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2928 {
2929 	return skb->inner_transport_header - skb->inner_network_header;
2930 }
2931 
2932 static inline int skb_network_offset(const struct sk_buff *skb)
2933 {
2934 	return skb_network_header(skb) - skb->data;
2935 }
2936 
2937 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2938 {
2939 	return skb_inner_network_header(skb) - skb->data;
2940 }
2941 
2942 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2943 {
2944 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2945 }
2946 
2947 /*
2948  * CPUs often take a performance hit when accessing unaligned memory
2949  * locations. The actual performance hit varies, it can be small if the
2950  * hardware handles it or large if we have to take an exception and fix it
2951  * in software.
2952  *
2953  * Since an ethernet header is 14 bytes network drivers often end up with
2954  * the IP header at an unaligned offset. The IP header can be aligned by
2955  * shifting the start of the packet by 2 bytes. Drivers should do this
2956  * with:
2957  *
2958  * skb_reserve(skb, NET_IP_ALIGN);
2959  *
2960  * The downside to this alignment of the IP header is that the DMA is now
2961  * unaligned. On some architectures the cost of an unaligned DMA is high
2962  * and this cost outweighs the gains made by aligning the IP header.
2963  *
2964  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2965  * to be overridden.
2966  */
2967 #ifndef NET_IP_ALIGN
2968 #define NET_IP_ALIGN	2
2969 #endif
2970 
2971 /*
2972  * The networking layer reserves some headroom in skb data (via
2973  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2974  * the header has to grow. In the default case, if the header has to grow
2975  * 32 bytes or less we avoid the reallocation.
2976  *
2977  * Unfortunately this headroom changes the DMA alignment of the resulting
2978  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2979  * on some architectures. An architecture can override this value,
2980  * perhaps setting it to a cacheline in size (since that will maintain
2981  * cacheline alignment of the DMA). It must be a power of 2.
2982  *
2983  * Various parts of the networking layer expect at least 32 bytes of
2984  * headroom, you should not reduce this.
2985  *
2986  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2987  * to reduce average number of cache lines per packet.
2988  * get_rps_cpu() for example only access one 64 bytes aligned block :
2989  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2990  */
2991 #ifndef NET_SKB_PAD
2992 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2993 #endif
2994 
2995 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2996 
2997 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2998 {
2999 	if (WARN_ON(skb_is_nonlinear(skb)))
3000 		return;
3001 	skb->len = len;
3002 	skb_set_tail_pointer(skb, len);
3003 }
3004 
3005 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3006 {
3007 	__skb_set_length(skb, len);
3008 }
3009 
3010 void skb_trim(struct sk_buff *skb, unsigned int len);
3011 
3012 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3013 {
3014 	if (skb->data_len)
3015 		return ___pskb_trim(skb, len);
3016 	__skb_trim(skb, len);
3017 	return 0;
3018 }
3019 
3020 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3021 {
3022 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3023 }
3024 
3025 /**
3026  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3027  *	@skb: buffer to alter
3028  *	@len: new length
3029  *
3030  *	This is identical to pskb_trim except that the caller knows that
3031  *	the skb is not cloned so we should never get an error due to out-
3032  *	of-memory.
3033  */
3034 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3035 {
3036 	int err = pskb_trim(skb, len);
3037 	BUG_ON(err);
3038 }
3039 
3040 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3041 {
3042 	unsigned int diff = len - skb->len;
3043 
3044 	if (skb_tailroom(skb) < diff) {
3045 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3046 					   GFP_ATOMIC);
3047 		if (ret)
3048 			return ret;
3049 	}
3050 	__skb_set_length(skb, len);
3051 	return 0;
3052 }
3053 
3054 /**
3055  *	skb_orphan - orphan a buffer
3056  *	@skb: buffer to orphan
3057  *
3058  *	If a buffer currently has an owner then we call the owner's
3059  *	destructor function and make the @skb unowned. The buffer continues
3060  *	to exist but is no longer charged to its former owner.
3061  */
3062 static inline void skb_orphan(struct sk_buff *skb)
3063 {
3064 	if (skb->destructor) {
3065 		skb->destructor(skb);
3066 		skb->destructor = NULL;
3067 		skb->sk		= NULL;
3068 	} else {
3069 		BUG_ON(skb->sk);
3070 	}
3071 }
3072 
3073 /**
3074  *	skb_orphan_frags - orphan the frags contained in a buffer
3075  *	@skb: buffer to orphan frags from
3076  *	@gfp_mask: allocation mask for replacement pages
3077  *
3078  *	For each frag in the SKB which needs a destructor (i.e. has an
3079  *	owner) create a copy of that frag and release the original
3080  *	page by calling the destructor.
3081  */
3082 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3083 {
3084 	if (likely(!skb_zcopy(skb)))
3085 		return 0;
3086 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3087 		return 0;
3088 	return skb_copy_ubufs(skb, gfp_mask);
3089 }
3090 
3091 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3092 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3093 {
3094 	if (likely(!skb_zcopy(skb)))
3095 		return 0;
3096 	return skb_copy_ubufs(skb, gfp_mask);
3097 }
3098 
3099 /**
3100  *	__skb_queue_purge - empty a list
3101  *	@list: list to empty
3102  *
3103  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3104  *	the list and one reference dropped. This function does not take the
3105  *	list lock and the caller must hold the relevant locks to use it.
3106  */
3107 static inline void __skb_queue_purge(struct sk_buff_head *list)
3108 {
3109 	struct sk_buff *skb;
3110 	while ((skb = __skb_dequeue(list)) != NULL)
3111 		kfree_skb(skb);
3112 }
3113 void skb_queue_purge(struct sk_buff_head *list);
3114 
3115 unsigned int skb_rbtree_purge(struct rb_root *root);
3116 
3117 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3118 
3119 /**
3120  * netdev_alloc_frag - allocate a page fragment
3121  * @fragsz: fragment size
3122  *
3123  * Allocates a frag from a page for receive buffer.
3124  * Uses GFP_ATOMIC allocations.
3125  */
3126 static inline void *netdev_alloc_frag(unsigned int fragsz)
3127 {
3128 	return __netdev_alloc_frag_align(fragsz, ~0u);
3129 }
3130 
3131 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3132 					    unsigned int align)
3133 {
3134 	WARN_ON_ONCE(!is_power_of_2(align));
3135 	return __netdev_alloc_frag_align(fragsz, -align);
3136 }
3137 
3138 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3139 				   gfp_t gfp_mask);
3140 
3141 /**
3142  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3143  *	@dev: network device to receive on
3144  *	@length: length to allocate
3145  *
3146  *	Allocate a new &sk_buff and assign it a usage count of one. The
3147  *	buffer has unspecified headroom built in. Users should allocate
3148  *	the headroom they think they need without accounting for the
3149  *	built in space. The built in space is used for optimisations.
3150  *
3151  *	%NULL is returned if there is no free memory. Although this function
3152  *	allocates memory it can be called from an interrupt.
3153  */
3154 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3155 					       unsigned int length)
3156 {
3157 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3158 }
3159 
3160 /* legacy helper around __netdev_alloc_skb() */
3161 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3162 					      gfp_t gfp_mask)
3163 {
3164 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3165 }
3166 
3167 /* legacy helper around netdev_alloc_skb() */
3168 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3169 {
3170 	return netdev_alloc_skb(NULL, length);
3171 }
3172 
3173 
3174 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3175 		unsigned int length, gfp_t gfp)
3176 {
3177 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3178 
3179 	if (NET_IP_ALIGN && skb)
3180 		skb_reserve(skb, NET_IP_ALIGN);
3181 	return skb;
3182 }
3183 
3184 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3185 		unsigned int length)
3186 {
3187 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3188 }
3189 
3190 static inline void skb_free_frag(void *addr)
3191 {
3192 	page_frag_free(addr);
3193 }
3194 
3195 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3196 
3197 static inline void *napi_alloc_frag(unsigned int fragsz)
3198 {
3199 	return __napi_alloc_frag_align(fragsz, ~0u);
3200 }
3201 
3202 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3203 					  unsigned int align)
3204 {
3205 	WARN_ON_ONCE(!is_power_of_2(align));
3206 	return __napi_alloc_frag_align(fragsz, -align);
3207 }
3208 
3209 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3210 				 unsigned int length, gfp_t gfp_mask);
3211 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3212 					     unsigned int length)
3213 {
3214 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3215 }
3216 void napi_consume_skb(struct sk_buff *skb, int budget);
3217 
3218 void napi_skb_free_stolen_head(struct sk_buff *skb);
3219 void __kfree_skb_defer(struct sk_buff *skb);
3220 
3221 /**
3222  * __dev_alloc_pages - allocate page for network Rx
3223  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3224  * @order: size of the allocation
3225  *
3226  * Allocate a new page.
3227  *
3228  * %NULL is returned if there is no free memory.
3229 */
3230 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3231 					     unsigned int order)
3232 {
3233 	/* This piece of code contains several assumptions.
3234 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3235 	 * 2.  The expectation is the user wants a compound page.
3236 	 * 3.  If requesting a order 0 page it will not be compound
3237 	 *     due to the check to see if order has a value in prep_new_page
3238 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3239 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3240 	 */
3241 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3242 
3243 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3244 }
3245 
3246 static inline struct page *dev_alloc_pages(unsigned int order)
3247 {
3248 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3249 }
3250 
3251 /**
3252  * __dev_alloc_page - allocate a page for network Rx
3253  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3254  *
3255  * Allocate a new page.
3256  *
3257  * %NULL is returned if there is no free memory.
3258  */
3259 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3260 {
3261 	return __dev_alloc_pages(gfp_mask, 0);
3262 }
3263 
3264 static inline struct page *dev_alloc_page(void)
3265 {
3266 	return dev_alloc_pages(0);
3267 }
3268 
3269 /**
3270  * dev_page_is_reusable - check whether a page can be reused for network Rx
3271  * @page: the page to test
3272  *
3273  * A page shouldn't be considered for reusing/recycling if it was allocated
3274  * under memory pressure or at a distant memory node.
3275  *
3276  * Returns false if this page should be returned to page allocator, true
3277  * otherwise.
3278  */
3279 static inline bool dev_page_is_reusable(const struct page *page)
3280 {
3281 	return likely(page_to_nid(page) == numa_mem_id() &&
3282 		      !page_is_pfmemalloc(page));
3283 }
3284 
3285 /**
3286  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3287  *	@page: The page that was allocated from skb_alloc_page
3288  *	@skb: The skb that may need pfmemalloc set
3289  */
3290 static inline void skb_propagate_pfmemalloc(const struct page *page,
3291 					    struct sk_buff *skb)
3292 {
3293 	if (page_is_pfmemalloc(page))
3294 		skb->pfmemalloc = true;
3295 }
3296 
3297 /**
3298  * skb_frag_off() - Returns the offset of a skb fragment
3299  * @frag: the paged fragment
3300  */
3301 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3302 {
3303 	return frag->bv_offset;
3304 }
3305 
3306 /**
3307  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3308  * @frag: skb fragment
3309  * @delta: value to add
3310  */
3311 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3312 {
3313 	frag->bv_offset += delta;
3314 }
3315 
3316 /**
3317  * skb_frag_off_set() - Sets the offset of a skb fragment
3318  * @frag: skb fragment
3319  * @offset: offset of fragment
3320  */
3321 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3322 {
3323 	frag->bv_offset = offset;
3324 }
3325 
3326 /**
3327  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3328  * @fragto: skb fragment where offset is set
3329  * @fragfrom: skb fragment offset is copied from
3330  */
3331 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3332 				     const skb_frag_t *fragfrom)
3333 {
3334 	fragto->bv_offset = fragfrom->bv_offset;
3335 }
3336 
3337 /**
3338  * skb_frag_page - retrieve the page referred to by a paged fragment
3339  * @frag: the paged fragment
3340  *
3341  * Returns the &struct page associated with @frag.
3342  */
3343 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3344 {
3345 	return frag->bv_page;
3346 }
3347 
3348 /**
3349  * __skb_frag_ref - take an addition reference on a paged fragment.
3350  * @frag: the paged fragment
3351  *
3352  * Takes an additional reference on the paged fragment @frag.
3353  */
3354 static inline void __skb_frag_ref(skb_frag_t *frag)
3355 {
3356 	get_page(skb_frag_page(frag));
3357 }
3358 
3359 /**
3360  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3361  * @skb: the buffer
3362  * @f: the fragment offset.
3363  *
3364  * Takes an additional reference on the @f'th paged fragment of @skb.
3365  */
3366 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3367 {
3368 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3369 }
3370 
3371 /**
3372  * __skb_frag_unref - release a reference on a paged fragment.
3373  * @frag: the paged fragment
3374  * @recycle: recycle the page if allocated via page_pool
3375  *
3376  * Releases a reference on the paged fragment @frag
3377  * or recycles the page via the page_pool API.
3378  */
3379 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3380 {
3381 	struct page *page = skb_frag_page(frag);
3382 
3383 #ifdef CONFIG_PAGE_POOL
3384 	if (recycle && page_pool_return_skb_page(page))
3385 		return;
3386 #endif
3387 	put_page(page);
3388 }
3389 
3390 /**
3391  * skb_frag_unref - release a reference on a paged fragment of an skb.
3392  * @skb: the buffer
3393  * @f: the fragment offset
3394  *
3395  * Releases a reference on the @f'th paged fragment of @skb.
3396  */
3397 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3398 {
3399 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3400 
3401 	if (!skb_zcopy_managed(skb))
3402 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3403 }
3404 
3405 /**
3406  * skb_frag_address - gets the address of the data contained in a paged fragment
3407  * @frag: the paged fragment buffer
3408  *
3409  * Returns the address of the data within @frag. The page must already
3410  * be mapped.
3411  */
3412 static inline void *skb_frag_address(const skb_frag_t *frag)
3413 {
3414 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3415 }
3416 
3417 /**
3418  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3419  * @frag: the paged fragment buffer
3420  *
3421  * Returns the address of the data within @frag. Checks that the page
3422  * is mapped and returns %NULL otherwise.
3423  */
3424 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3425 {
3426 	void *ptr = page_address(skb_frag_page(frag));
3427 	if (unlikely(!ptr))
3428 		return NULL;
3429 
3430 	return ptr + skb_frag_off(frag);
3431 }
3432 
3433 /**
3434  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3435  * @fragto: skb fragment where page is set
3436  * @fragfrom: skb fragment page is copied from
3437  */
3438 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3439 				      const skb_frag_t *fragfrom)
3440 {
3441 	fragto->bv_page = fragfrom->bv_page;
3442 }
3443 
3444 /**
3445  * __skb_frag_set_page - sets the page contained in a paged fragment
3446  * @frag: the paged fragment
3447  * @page: the page to set
3448  *
3449  * Sets the fragment @frag to contain @page.
3450  */
3451 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3452 {
3453 	frag->bv_page = page;
3454 }
3455 
3456 /**
3457  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3458  * @skb: the buffer
3459  * @f: the fragment offset
3460  * @page: the page to set
3461  *
3462  * Sets the @f'th fragment of @skb to contain @page.
3463  */
3464 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3465 				     struct page *page)
3466 {
3467 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3468 }
3469 
3470 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3471 
3472 /**
3473  * skb_frag_dma_map - maps a paged fragment via the DMA API
3474  * @dev: the device to map the fragment to
3475  * @frag: the paged fragment to map
3476  * @offset: the offset within the fragment (starting at the
3477  *          fragment's own offset)
3478  * @size: the number of bytes to map
3479  * @dir: the direction of the mapping (``PCI_DMA_*``)
3480  *
3481  * Maps the page associated with @frag to @device.
3482  */
3483 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3484 					  const skb_frag_t *frag,
3485 					  size_t offset, size_t size,
3486 					  enum dma_data_direction dir)
3487 {
3488 	return dma_map_page(dev, skb_frag_page(frag),
3489 			    skb_frag_off(frag) + offset, size, dir);
3490 }
3491 
3492 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3493 					gfp_t gfp_mask)
3494 {
3495 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3496 }
3497 
3498 
3499 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3500 						  gfp_t gfp_mask)
3501 {
3502 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3503 }
3504 
3505 
3506 /**
3507  *	skb_clone_writable - is the header of a clone writable
3508  *	@skb: buffer to check
3509  *	@len: length up to which to write
3510  *
3511  *	Returns true if modifying the header part of the cloned buffer
3512  *	does not requires the data to be copied.
3513  */
3514 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3515 {
3516 	return !skb_header_cloned(skb) &&
3517 	       skb_headroom(skb) + len <= skb->hdr_len;
3518 }
3519 
3520 static inline int skb_try_make_writable(struct sk_buff *skb,
3521 					unsigned int write_len)
3522 {
3523 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3524 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3525 }
3526 
3527 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3528 			    int cloned)
3529 {
3530 	int delta = 0;
3531 
3532 	if (headroom > skb_headroom(skb))
3533 		delta = headroom - skb_headroom(skb);
3534 
3535 	if (delta || cloned)
3536 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3537 					GFP_ATOMIC);
3538 	return 0;
3539 }
3540 
3541 /**
3542  *	skb_cow - copy header of skb when it is required
3543  *	@skb: buffer to cow
3544  *	@headroom: needed headroom
3545  *
3546  *	If the skb passed lacks sufficient headroom or its data part
3547  *	is shared, data is reallocated. If reallocation fails, an error
3548  *	is returned and original skb is not changed.
3549  *
3550  *	The result is skb with writable area skb->head...skb->tail
3551  *	and at least @headroom of space at head.
3552  */
3553 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3554 {
3555 	return __skb_cow(skb, headroom, skb_cloned(skb));
3556 }
3557 
3558 /**
3559  *	skb_cow_head - skb_cow but only making the head writable
3560  *	@skb: buffer to cow
3561  *	@headroom: needed headroom
3562  *
3563  *	This function is identical to skb_cow except that we replace the
3564  *	skb_cloned check by skb_header_cloned.  It should be used when
3565  *	you only need to push on some header and do not need to modify
3566  *	the data.
3567  */
3568 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3569 {
3570 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3571 }
3572 
3573 /**
3574  *	skb_padto	- pad an skbuff up to a minimal size
3575  *	@skb: buffer to pad
3576  *	@len: minimal length
3577  *
3578  *	Pads up a buffer to ensure the trailing bytes exist and are
3579  *	blanked. If the buffer already contains sufficient data it
3580  *	is untouched. Otherwise it is extended. Returns zero on
3581  *	success. The skb is freed on error.
3582  */
3583 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3584 {
3585 	unsigned int size = skb->len;
3586 	if (likely(size >= len))
3587 		return 0;
3588 	return skb_pad(skb, len - size);
3589 }
3590 
3591 /**
3592  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3593  *	@skb: buffer to pad
3594  *	@len: minimal length
3595  *	@free_on_error: free buffer on error
3596  *
3597  *	Pads up a buffer to ensure the trailing bytes exist and are
3598  *	blanked. If the buffer already contains sufficient data it
3599  *	is untouched. Otherwise it is extended. Returns zero on
3600  *	success. The skb is freed on error if @free_on_error is true.
3601  */
3602 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3603 					       unsigned int len,
3604 					       bool free_on_error)
3605 {
3606 	unsigned int size = skb->len;
3607 
3608 	if (unlikely(size < len)) {
3609 		len -= size;
3610 		if (__skb_pad(skb, len, free_on_error))
3611 			return -ENOMEM;
3612 		__skb_put(skb, len);
3613 	}
3614 	return 0;
3615 }
3616 
3617 /**
3618  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3619  *	@skb: buffer to pad
3620  *	@len: minimal length
3621  *
3622  *	Pads up a buffer to ensure the trailing bytes exist and are
3623  *	blanked. If the buffer already contains sufficient data it
3624  *	is untouched. Otherwise it is extended. Returns zero on
3625  *	success. The skb is freed on error.
3626  */
3627 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3628 {
3629 	return __skb_put_padto(skb, len, true);
3630 }
3631 
3632 static inline int skb_add_data(struct sk_buff *skb,
3633 			       struct iov_iter *from, int copy)
3634 {
3635 	const int off = skb->len;
3636 
3637 	if (skb->ip_summed == CHECKSUM_NONE) {
3638 		__wsum csum = 0;
3639 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3640 					         &csum, from)) {
3641 			skb->csum = csum_block_add(skb->csum, csum, off);
3642 			return 0;
3643 		}
3644 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3645 		return 0;
3646 
3647 	__skb_trim(skb, off);
3648 	return -EFAULT;
3649 }
3650 
3651 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3652 				    const struct page *page, int off)
3653 {
3654 	if (skb_zcopy(skb))
3655 		return false;
3656 	if (i) {
3657 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3658 
3659 		return page == skb_frag_page(frag) &&
3660 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3661 	}
3662 	return false;
3663 }
3664 
3665 static inline int __skb_linearize(struct sk_buff *skb)
3666 {
3667 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3668 }
3669 
3670 /**
3671  *	skb_linearize - convert paged skb to linear one
3672  *	@skb: buffer to linarize
3673  *
3674  *	If there is no free memory -ENOMEM is returned, otherwise zero
3675  *	is returned and the old skb data released.
3676  */
3677 static inline int skb_linearize(struct sk_buff *skb)
3678 {
3679 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3680 }
3681 
3682 /**
3683  * skb_has_shared_frag - can any frag be overwritten
3684  * @skb: buffer to test
3685  *
3686  * Return true if the skb has at least one frag that might be modified
3687  * by an external entity (as in vmsplice()/sendfile())
3688  */
3689 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3690 {
3691 	return skb_is_nonlinear(skb) &&
3692 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3693 }
3694 
3695 /**
3696  *	skb_linearize_cow - make sure skb is linear and writable
3697  *	@skb: buffer to process
3698  *
3699  *	If there is no free memory -ENOMEM is returned, otherwise zero
3700  *	is returned and the old skb data released.
3701  */
3702 static inline int skb_linearize_cow(struct sk_buff *skb)
3703 {
3704 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3705 	       __skb_linearize(skb) : 0;
3706 }
3707 
3708 static __always_inline void
3709 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3710 		     unsigned int off)
3711 {
3712 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3713 		skb->csum = csum_block_sub(skb->csum,
3714 					   csum_partial(start, len, 0), off);
3715 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3716 		 skb_checksum_start_offset(skb) < 0)
3717 		skb->ip_summed = CHECKSUM_NONE;
3718 }
3719 
3720 /**
3721  *	skb_postpull_rcsum - update checksum for received skb after pull
3722  *	@skb: buffer to update
3723  *	@start: start of data before pull
3724  *	@len: length of data pulled
3725  *
3726  *	After doing a pull on a received packet, you need to call this to
3727  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3728  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3729  */
3730 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3731 				      const void *start, unsigned int len)
3732 {
3733 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3734 		skb->csum = wsum_negate(csum_partial(start, len,
3735 						     wsum_negate(skb->csum)));
3736 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3737 		 skb_checksum_start_offset(skb) < 0)
3738 		skb->ip_summed = CHECKSUM_NONE;
3739 }
3740 
3741 static __always_inline void
3742 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3743 		     unsigned int off)
3744 {
3745 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3746 		skb->csum = csum_block_add(skb->csum,
3747 					   csum_partial(start, len, 0), off);
3748 }
3749 
3750 /**
3751  *	skb_postpush_rcsum - update checksum for received skb after push
3752  *	@skb: buffer to update
3753  *	@start: start of data after push
3754  *	@len: length of data pushed
3755  *
3756  *	After doing a push on a received packet, you need to call this to
3757  *	update the CHECKSUM_COMPLETE checksum.
3758  */
3759 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3760 				      const void *start, unsigned int len)
3761 {
3762 	__skb_postpush_rcsum(skb, start, len, 0);
3763 }
3764 
3765 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3766 
3767 /**
3768  *	skb_push_rcsum - push skb and update receive checksum
3769  *	@skb: buffer to update
3770  *	@len: length of data pulled
3771  *
3772  *	This function performs an skb_push on the packet and updates
3773  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3774  *	receive path processing instead of skb_push unless you know
3775  *	that the checksum difference is zero (e.g., a valid IP header)
3776  *	or you are setting ip_summed to CHECKSUM_NONE.
3777  */
3778 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3779 {
3780 	skb_push(skb, len);
3781 	skb_postpush_rcsum(skb, skb->data, len);
3782 	return skb->data;
3783 }
3784 
3785 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3786 /**
3787  *	pskb_trim_rcsum - trim received skb and update checksum
3788  *	@skb: buffer to trim
3789  *	@len: new length
3790  *
3791  *	This is exactly the same as pskb_trim except that it ensures the
3792  *	checksum of received packets are still valid after the operation.
3793  *	It can change skb pointers.
3794  */
3795 
3796 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3797 {
3798 	if (likely(len >= skb->len))
3799 		return 0;
3800 	return pskb_trim_rcsum_slow(skb, len);
3801 }
3802 
3803 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3804 {
3805 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3806 		skb->ip_summed = CHECKSUM_NONE;
3807 	__skb_trim(skb, len);
3808 	return 0;
3809 }
3810 
3811 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3812 {
3813 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3814 		skb->ip_summed = CHECKSUM_NONE;
3815 	return __skb_grow(skb, len);
3816 }
3817 
3818 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3819 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3820 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3821 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3822 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3823 
3824 #define skb_queue_walk(queue, skb) \
3825 		for (skb = (queue)->next;					\
3826 		     skb != (struct sk_buff *)(queue);				\
3827 		     skb = skb->next)
3828 
3829 #define skb_queue_walk_safe(queue, skb, tmp)					\
3830 		for (skb = (queue)->next, tmp = skb->next;			\
3831 		     skb != (struct sk_buff *)(queue);				\
3832 		     skb = tmp, tmp = skb->next)
3833 
3834 #define skb_queue_walk_from(queue, skb)						\
3835 		for (; skb != (struct sk_buff *)(queue);			\
3836 		     skb = skb->next)
3837 
3838 #define skb_rbtree_walk(skb, root)						\
3839 		for (skb = skb_rb_first(root); skb != NULL;			\
3840 		     skb = skb_rb_next(skb))
3841 
3842 #define skb_rbtree_walk_from(skb)						\
3843 		for (; skb != NULL;						\
3844 		     skb = skb_rb_next(skb))
3845 
3846 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3847 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3848 		     skb = tmp)
3849 
3850 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3851 		for (tmp = skb->next;						\
3852 		     skb != (struct sk_buff *)(queue);				\
3853 		     skb = tmp, tmp = skb->next)
3854 
3855 #define skb_queue_reverse_walk(queue, skb) \
3856 		for (skb = (queue)->prev;					\
3857 		     skb != (struct sk_buff *)(queue);				\
3858 		     skb = skb->prev)
3859 
3860 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3861 		for (skb = (queue)->prev, tmp = skb->prev;			\
3862 		     skb != (struct sk_buff *)(queue);				\
3863 		     skb = tmp, tmp = skb->prev)
3864 
3865 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3866 		for (tmp = skb->prev;						\
3867 		     skb != (struct sk_buff *)(queue);				\
3868 		     skb = tmp, tmp = skb->prev)
3869 
3870 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3871 {
3872 	return skb_shinfo(skb)->frag_list != NULL;
3873 }
3874 
3875 static inline void skb_frag_list_init(struct sk_buff *skb)
3876 {
3877 	skb_shinfo(skb)->frag_list = NULL;
3878 }
3879 
3880 #define skb_walk_frags(skb, iter)	\
3881 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3882 
3883 
3884 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3885 				int *err, long *timeo_p,
3886 				const struct sk_buff *skb);
3887 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3888 					  struct sk_buff_head *queue,
3889 					  unsigned int flags,
3890 					  int *off, int *err,
3891 					  struct sk_buff **last);
3892 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3893 					struct sk_buff_head *queue,
3894 					unsigned int flags, int *off, int *err,
3895 					struct sk_buff **last);
3896 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3897 				    struct sk_buff_head *sk_queue,
3898 				    unsigned int flags, int *off, int *err);
3899 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3900 __poll_t datagram_poll(struct file *file, struct socket *sock,
3901 			   struct poll_table_struct *wait);
3902 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3903 			   struct iov_iter *to, int size);
3904 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3905 					struct msghdr *msg, int size)
3906 {
3907 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3908 }
3909 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3910 				   struct msghdr *msg);
3911 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3912 			   struct iov_iter *to, int len,
3913 			   struct ahash_request *hash);
3914 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3915 				 struct iov_iter *from, int len);
3916 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3917 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3918 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3919 static inline void skb_free_datagram_locked(struct sock *sk,
3920 					    struct sk_buff *skb)
3921 {
3922 	__skb_free_datagram_locked(sk, skb, 0);
3923 }
3924 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3925 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3926 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3927 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3928 			      int len);
3929 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3930 		    struct pipe_inode_info *pipe, unsigned int len,
3931 		    unsigned int flags);
3932 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3933 			 int len);
3934 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3935 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3936 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3937 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3938 		 int len, int hlen);
3939 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3940 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3941 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3942 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3943 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3944 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3945 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3946 				 unsigned int offset);
3947 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3948 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3949 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3950 int skb_vlan_pop(struct sk_buff *skb);
3951 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3952 int skb_eth_pop(struct sk_buff *skb);
3953 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3954 		 const unsigned char *src);
3955 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3956 		  int mac_len, bool ethernet);
3957 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3958 		 bool ethernet);
3959 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3960 int skb_mpls_dec_ttl(struct sk_buff *skb);
3961 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3962 			     gfp_t gfp);
3963 
3964 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3965 {
3966 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3967 }
3968 
3969 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3970 {
3971 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3972 }
3973 
3974 struct skb_checksum_ops {
3975 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3976 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3977 };
3978 
3979 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3980 
3981 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3982 		      __wsum csum, const struct skb_checksum_ops *ops);
3983 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3984 		    __wsum csum);
3985 
3986 static inline void * __must_check
3987 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3988 		     const void *data, int hlen, void *buffer)
3989 {
3990 	if (likely(hlen - offset >= len))
3991 		return (void *)data + offset;
3992 
3993 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3994 		return NULL;
3995 
3996 	return buffer;
3997 }
3998 
3999 static inline void * __must_check
4000 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4001 {
4002 	return __skb_header_pointer(skb, offset, len, skb->data,
4003 				    skb_headlen(skb), buffer);
4004 }
4005 
4006 /**
4007  *	skb_needs_linearize - check if we need to linearize a given skb
4008  *			      depending on the given device features.
4009  *	@skb: socket buffer to check
4010  *	@features: net device features
4011  *
4012  *	Returns true if either:
4013  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4014  *	2. skb is fragmented and the device does not support SG.
4015  */
4016 static inline bool skb_needs_linearize(struct sk_buff *skb,
4017 				       netdev_features_t features)
4018 {
4019 	return skb_is_nonlinear(skb) &&
4020 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4021 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4022 }
4023 
4024 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4025 					     void *to,
4026 					     const unsigned int len)
4027 {
4028 	memcpy(to, skb->data, len);
4029 }
4030 
4031 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4032 						    const int offset, void *to,
4033 						    const unsigned int len)
4034 {
4035 	memcpy(to, skb->data + offset, len);
4036 }
4037 
4038 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4039 					   const void *from,
4040 					   const unsigned int len)
4041 {
4042 	memcpy(skb->data, from, len);
4043 }
4044 
4045 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4046 						  const int offset,
4047 						  const void *from,
4048 						  const unsigned int len)
4049 {
4050 	memcpy(skb->data + offset, from, len);
4051 }
4052 
4053 void skb_init(void);
4054 
4055 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4056 {
4057 	return skb->tstamp;
4058 }
4059 
4060 /**
4061  *	skb_get_timestamp - get timestamp from a skb
4062  *	@skb: skb to get stamp from
4063  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4064  *
4065  *	Timestamps are stored in the skb as offsets to a base timestamp.
4066  *	This function converts the offset back to a struct timeval and stores
4067  *	it in stamp.
4068  */
4069 static inline void skb_get_timestamp(const struct sk_buff *skb,
4070 				     struct __kernel_old_timeval *stamp)
4071 {
4072 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4073 }
4074 
4075 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4076 					 struct __kernel_sock_timeval *stamp)
4077 {
4078 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4079 
4080 	stamp->tv_sec = ts.tv_sec;
4081 	stamp->tv_usec = ts.tv_nsec / 1000;
4082 }
4083 
4084 static inline void skb_get_timestampns(const struct sk_buff *skb,
4085 				       struct __kernel_old_timespec *stamp)
4086 {
4087 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4088 
4089 	stamp->tv_sec = ts.tv_sec;
4090 	stamp->tv_nsec = ts.tv_nsec;
4091 }
4092 
4093 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4094 					   struct __kernel_timespec *stamp)
4095 {
4096 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4097 
4098 	stamp->tv_sec = ts.tv_sec;
4099 	stamp->tv_nsec = ts.tv_nsec;
4100 }
4101 
4102 static inline void __net_timestamp(struct sk_buff *skb)
4103 {
4104 	skb->tstamp = ktime_get_real();
4105 	skb->mono_delivery_time = 0;
4106 }
4107 
4108 static inline ktime_t net_timedelta(ktime_t t)
4109 {
4110 	return ktime_sub(ktime_get_real(), t);
4111 }
4112 
4113 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4114 					 bool mono)
4115 {
4116 	skb->tstamp = kt;
4117 	skb->mono_delivery_time = kt && mono;
4118 }
4119 
4120 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4121 
4122 /* It is used in the ingress path to clear the delivery_time.
4123  * If needed, set the skb->tstamp to the (rcv) timestamp.
4124  */
4125 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4126 {
4127 	if (skb->mono_delivery_time) {
4128 		skb->mono_delivery_time = 0;
4129 		if (static_branch_unlikely(&netstamp_needed_key))
4130 			skb->tstamp = ktime_get_real();
4131 		else
4132 			skb->tstamp = 0;
4133 	}
4134 }
4135 
4136 static inline void skb_clear_tstamp(struct sk_buff *skb)
4137 {
4138 	if (skb->mono_delivery_time)
4139 		return;
4140 
4141 	skb->tstamp = 0;
4142 }
4143 
4144 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4145 {
4146 	if (skb->mono_delivery_time)
4147 		return 0;
4148 
4149 	return skb->tstamp;
4150 }
4151 
4152 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4153 {
4154 	if (!skb->mono_delivery_time && skb->tstamp)
4155 		return skb->tstamp;
4156 
4157 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4158 		return ktime_get_real();
4159 
4160 	return 0;
4161 }
4162 
4163 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4164 {
4165 	return skb_shinfo(skb)->meta_len;
4166 }
4167 
4168 static inline void *skb_metadata_end(const struct sk_buff *skb)
4169 {
4170 	return skb_mac_header(skb);
4171 }
4172 
4173 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4174 					  const struct sk_buff *skb_b,
4175 					  u8 meta_len)
4176 {
4177 	const void *a = skb_metadata_end(skb_a);
4178 	const void *b = skb_metadata_end(skb_b);
4179 	/* Using more efficient varaiant than plain call to memcmp(). */
4180 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4181 	u64 diffs = 0;
4182 
4183 	switch (meta_len) {
4184 #define __it(x, op) (x -= sizeof(u##op))
4185 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4186 	case 32: diffs |= __it_diff(a, b, 64);
4187 		fallthrough;
4188 	case 24: diffs |= __it_diff(a, b, 64);
4189 		fallthrough;
4190 	case 16: diffs |= __it_diff(a, b, 64);
4191 		fallthrough;
4192 	case  8: diffs |= __it_diff(a, b, 64);
4193 		break;
4194 	case 28: diffs |= __it_diff(a, b, 64);
4195 		fallthrough;
4196 	case 20: diffs |= __it_diff(a, b, 64);
4197 		fallthrough;
4198 	case 12: diffs |= __it_diff(a, b, 64);
4199 		fallthrough;
4200 	case  4: diffs |= __it_diff(a, b, 32);
4201 		break;
4202 	}
4203 	return diffs;
4204 #else
4205 	return memcmp(a - meta_len, b - meta_len, meta_len);
4206 #endif
4207 }
4208 
4209 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4210 					const struct sk_buff *skb_b)
4211 {
4212 	u8 len_a = skb_metadata_len(skb_a);
4213 	u8 len_b = skb_metadata_len(skb_b);
4214 
4215 	if (!(len_a | len_b))
4216 		return false;
4217 
4218 	return len_a != len_b ?
4219 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4220 }
4221 
4222 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4223 {
4224 	skb_shinfo(skb)->meta_len = meta_len;
4225 }
4226 
4227 static inline void skb_metadata_clear(struct sk_buff *skb)
4228 {
4229 	skb_metadata_set(skb, 0);
4230 }
4231 
4232 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4233 
4234 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4235 
4236 void skb_clone_tx_timestamp(struct sk_buff *skb);
4237 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4238 
4239 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4240 
4241 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4242 {
4243 }
4244 
4245 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4246 {
4247 	return false;
4248 }
4249 
4250 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4251 
4252 /**
4253  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4254  *
4255  * PHY drivers may accept clones of transmitted packets for
4256  * timestamping via their phy_driver.txtstamp method. These drivers
4257  * must call this function to return the skb back to the stack with a
4258  * timestamp.
4259  *
4260  * @skb: clone of the original outgoing packet
4261  * @hwtstamps: hardware time stamps
4262  *
4263  */
4264 void skb_complete_tx_timestamp(struct sk_buff *skb,
4265 			       struct skb_shared_hwtstamps *hwtstamps);
4266 
4267 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4268 		     struct skb_shared_hwtstamps *hwtstamps,
4269 		     struct sock *sk, int tstype);
4270 
4271 /**
4272  * skb_tstamp_tx - queue clone of skb with send time stamps
4273  * @orig_skb:	the original outgoing packet
4274  * @hwtstamps:	hardware time stamps, may be NULL if not available
4275  *
4276  * If the skb has a socket associated, then this function clones the
4277  * skb (thus sharing the actual data and optional structures), stores
4278  * the optional hardware time stamping information (if non NULL) or
4279  * generates a software time stamp (otherwise), then queues the clone
4280  * to the error queue of the socket.  Errors are silently ignored.
4281  */
4282 void skb_tstamp_tx(struct sk_buff *orig_skb,
4283 		   struct skb_shared_hwtstamps *hwtstamps);
4284 
4285 /**
4286  * skb_tx_timestamp() - Driver hook for transmit timestamping
4287  *
4288  * Ethernet MAC Drivers should call this function in their hard_xmit()
4289  * function immediately before giving the sk_buff to the MAC hardware.
4290  *
4291  * Specifically, one should make absolutely sure that this function is
4292  * called before TX completion of this packet can trigger.  Otherwise
4293  * the packet could potentially already be freed.
4294  *
4295  * @skb: A socket buffer.
4296  */
4297 static inline void skb_tx_timestamp(struct sk_buff *skb)
4298 {
4299 	skb_clone_tx_timestamp(skb);
4300 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4301 		skb_tstamp_tx(skb, NULL);
4302 }
4303 
4304 /**
4305  * skb_complete_wifi_ack - deliver skb with wifi status
4306  *
4307  * @skb: the original outgoing packet
4308  * @acked: ack status
4309  *
4310  */
4311 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4312 
4313 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4314 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4315 
4316 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4317 {
4318 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4319 		skb->csum_valid ||
4320 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4321 		 skb_checksum_start_offset(skb) >= 0));
4322 }
4323 
4324 /**
4325  *	skb_checksum_complete - Calculate checksum of an entire packet
4326  *	@skb: packet to process
4327  *
4328  *	This function calculates the checksum over the entire packet plus
4329  *	the value of skb->csum.  The latter can be used to supply the
4330  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4331  *	checksum.
4332  *
4333  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4334  *	this function can be used to verify that checksum on received
4335  *	packets.  In that case the function should return zero if the
4336  *	checksum is correct.  In particular, this function will return zero
4337  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4338  *	hardware has already verified the correctness of the checksum.
4339  */
4340 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4341 {
4342 	return skb_csum_unnecessary(skb) ?
4343 	       0 : __skb_checksum_complete(skb);
4344 }
4345 
4346 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4347 {
4348 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4349 		if (skb->csum_level == 0)
4350 			skb->ip_summed = CHECKSUM_NONE;
4351 		else
4352 			skb->csum_level--;
4353 	}
4354 }
4355 
4356 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4357 {
4358 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4359 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4360 			skb->csum_level++;
4361 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4362 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4363 		skb->csum_level = 0;
4364 	}
4365 }
4366 
4367 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4368 {
4369 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4370 		skb->ip_summed = CHECKSUM_NONE;
4371 		skb->csum_level = 0;
4372 	}
4373 }
4374 
4375 /* Check if we need to perform checksum complete validation.
4376  *
4377  * Returns true if checksum complete is needed, false otherwise
4378  * (either checksum is unnecessary or zero checksum is allowed).
4379  */
4380 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4381 						  bool zero_okay,
4382 						  __sum16 check)
4383 {
4384 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4385 		skb->csum_valid = 1;
4386 		__skb_decr_checksum_unnecessary(skb);
4387 		return false;
4388 	}
4389 
4390 	return true;
4391 }
4392 
4393 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4394  * in checksum_init.
4395  */
4396 #define CHECKSUM_BREAK 76
4397 
4398 /* Unset checksum-complete
4399  *
4400  * Unset checksum complete can be done when packet is being modified
4401  * (uncompressed for instance) and checksum-complete value is
4402  * invalidated.
4403  */
4404 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4405 {
4406 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4407 		skb->ip_summed = CHECKSUM_NONE;
4408 }
4409 
4410 /* Validate (init) checksum based on checksum complete.
4411  *
4412  * Return values:
4413  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4414  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4415  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4416  *   non-zero: value of invalid checksum
4417  *
4418  */
4419 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4420 						       bool complete,
4421 						       __wsum psum)
4422 {
4423 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4424 		if (!csum_fold(csum_add(psum, skb->csum))) {
4425 			skb->csum_valid = 1;
4426 			return 0;
4427 		}
4428 	}
4429 
4430 	skb->csum = psum;
4431 
4432 	if (complete || skb->len <= CHECKSUM_BREAK) {
4433 		__sum16 csum;
4434 
4435 		csum = __skb_checksum_complete(skb);
4436 		skb->csum_valid = !csum;
4437 		return csum;
4438 	}
4439 
4440 	return 0;
4441 }
4442 
4443 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4444 {
4445 	return 0;
4446 }
4447 
4448 /* Perform checksum validate (init). Note that this is a macro since we only
4449  * want to calculate the pseudo header which is an input function if necessary.
4450  * First we try to validate without any computation (checksum unnecessary) and
4451  * then calculate based on checksum complete calling the function to compute
4452  * pseudo header.
4453  *
4454  * Return values:
4455  *   0: checksum is validated or try to in skb_checksum_complete
4456  *   non-zero: value of invalid checksum
4457  */
4458 #define __skb_checksum_validate(skb, proto, complete,			\
4459 				zero_okay, check, compute_pseudo)	\
4460 ({									\
4461 	__sum16 __ret = 0;						\
4462 	skb->csum_valid = 0;						\
4463 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4464 		__ret = __skb_checksum_validate_complete(skb,		\
4465 				complete, compute_pseudo(skb, proto));	\
4466 	__ret;								\
4467 })
4468 
4469 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4470 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4471 
4472 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4473 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4474 
4475 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4476 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4477 
4478 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4479 					 compute_pseudo)		\
4480 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4481 
4482 #define skb_checksum_simple_validate(skb)				\
4483 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4484 
4485 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4486 {
4487 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4488 }
4489 
4490 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4491 {
4492 	skb->csum = ~pseudo;
4493 	skb->ip_summed = CHECKSUM_COMPLETE;
4494 }
4495 
4496 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4497 do {									\
4498 	if (__skb_checksum_convert_check(skb))				\
4499 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4500 } while (0)
4501 
4502 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4503 					      u16 start, u16 offset)
4504 {
4505 	skb->ip_summed = CHECKSUM_PARTIAL;
4506 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4507 	skb->csum_offset = offset - start;
4508 }
4509 
4510 /* Update skbuf and packet to reflect the remote checksum offload operation.
4511  * When called, ptr indicates the starting point for skb->csum when
4512  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4513  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4514  */
4515 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4516 				       int start, int offset, bool nopartial)
4517 {
4518 	__wsum delta;
4519 
4520 	if (!nopartial) {
4521 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4522 		return;
4523 	}
4524 
4525 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4526 		__skb_checksum_complete(skb);
4527 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4528 	}
4529 
4530 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4531 
4532 	/* Adjust skb->csum since we changed the packet */
4533 	skb->csum = csum_add(skb->csum, delta);
4534 }
4535 
4536 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4537 {
4538 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4539 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4540 #else
4541 	return NULL;
4542 #endif
4543 }
4544 
4545 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4546 {
4547 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4548 	return skb->_nfct;
4549 #else
4550 	return 0UL;
4551 #endif
4552 }
4553 
4554 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4555 {
4556 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4557 	skb->slow_gro |= !!nfct;
4558 	skb->_nfct = nfct;
4559 #endif
4560 }
4561 
4562 #ifdef CONFIG_SKB_EXTENSIONS
4563 enum skb_ext_id {
4564 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4565 	SKB_EXT_BRIDGE_NF,
4566 #endif
4567 #ifdef CONFIG_XFRM
4568 	SKB_EXT_SEC_PATH,
4569 #endif
4570 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4571 	TC_SKB_EXT,
4572 #endif
4573 #if IS_ENABLED(CONFIG_MPTCP)
4574 	SKB_EXT_MPTCP,
4575 #endif
4576 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4577 	SKB_EXT_MCTP,
4578 #endif
4579 	SKB_EXT_NUM, /* must be last */
4580 };
4581 
4582 /**
4583  *	struct skb_ext - sk_buff extensions
4584  *	@refcnt: 1 on allocation, deallocated on 0
4585  *	@offset: offset to add to @data to obtain extension address
4586  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4587  *	@data: start of extension data, variable sized
4588  *
4589  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4590  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4591  */
4592 struct skb_ext {
4593 	refcount_t refcnt;
4594 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4595 	u8 chunks;		/* same */
4596 	char data[] __aligned(8);
4597 };
4598 
4599 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4600 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4601 		    struct skb_ext *ext);
4602 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4603 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4604 void __skb_ext_put(struct skb_ext *ext);
4605 
4606 static inline void skb_ext_put(struct sk_buff *skb)
4607 {
4608 	if (skb->active_extensions)
4609 		__skb_ext_put(skb->extensions);
4610 }
4611 
4612 static inline void __skb_ext_copy(struct sk_buff *dst,
4613 				  const struct sk_buff *src)
4614 {
4615 	dst->active_extensions = src->active_extensions;
4616 
4617 	if (src->active_extensions) {
4618 		struct skb_ext *ext = src->extensions;
4619 
4620 		refcount_inc(&ext->refcnt);
4621 		dst->extensions = ext;
4622 	}
4623 }
4624 
4625 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4626 {
4627 	skb_ext_put(dst);
4628 	__skb_ext_copy(dst, src);
4629 }
4630 
4631 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4632 {
4633 	return !!ext->offset[i];
4634 }
4635 
4636 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4637 {
4638 	return skb->active_extensions & (1 << id);
4639 }
4640 
4641 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4642 {
4643 	if (skb_ext_exist(skb, id))
4644 		__skb_ext_del(skb, id);
4645 }
4646 
4647 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4648 {
4649 	if (skb_ext_exist(skb, id)) {
4650 		struct skb_ext *ext = skb->extensions;
4651 
4652 		return (void *)ext + (ext->offset[id] << 3);
4653 	}
4654 
4655 	return NULL;
4656 }
4657 
4658 static inline void skb_ext_reset(struct sk_buff *skb)
4659 {
4660 	if (unlikely(skb->active_extensions)) {
4661 		__skb_ext_put(skb->extensions);
4662 		skb->active_extensions = 0;
4663 	}
4664 }
4665 
4666 static inline bool skb_has_extensions(struct sk_buff *skb)
4667 {
4668 	return unlikely(skb->active_extensions);
4669 }
4670 #else
4671 static inline void skb_ext_put(struct sk_buff *skb) {}
4672 static inline void skb_ext_reset(struct sk_buff *skb) {}
4673 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4674 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4675 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4676 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4677 #endif /* CONFIG_SKB_EXTENSIONS */
4678 
4679 static inline void nf_reset_ct(struct sk_buff *skb)
4680 {
4681 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4682 	nf_conntrack_put(skb_nfct(skb));
4683 	skb->_nfct = 0;
4684 #endif
4685 }
4686 
4687 static inline void nf_reset_trace(struct sk_buff *skb)
4688 {
4689 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4690 	skb->nf_trace = 0;
4691 #endif
4692 }
4693 
4694 static inline void ipvs_reset(struct sk_buff *skb)
4695 {
4696 #if IS_ENABLED(CONFIG_IP_VS)
4697 	skb->ipvs_property = 0;
4698 #endif
4699 }
4700 
4701 /* Note: This doesn't put any conntrack info in dst. */
4702 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4703 			     bool copy)
4704 {
4705 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4706 	dst->_nfct = src->_nfct;
4707 	nf_conntrack_get(skb_nfct(src));
4708 #endif
4709 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4710 	if (copy)
4711 		dst->nf_trace = src->nf_trace;
4712 #endif
4713 }
4714 
4715 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4716 {
4717 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4718 	nf_conntrack_put(skb_nfct(dst));
4719 #endif
4720 	dst->slow_gro = src->slow_gro;
4721 	__nf_copy(dst, src, true);
4722 }
4723 
4724 #ifdef CONFIG_NETWORK_SECMARK
4725 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4726 {
4727 	to->secmark = from->secmark;
4728 }
4729 
4730 static inline void skb_init_secmark(struct sk_buff *skb)
4731 {
4732 	skb->secmark = 0;
4733 }
4734 #else
4735 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4736 { }
4737 
4738 static inline void skb_init_secmark(struct sk_buff *skb)
4739 { }
4740 #endif
4741 
4742 static inline int secpath_exists(const struct sk_buff *skb)
4743 {
4744 #ifdef CONFIG_XFRM
4745 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4746 #else
4747 	return 0;
4748 #endif
4749 }
4750 
4751 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4752 {
4753 	return !skb->destructor &&
4754 		!secpath_exists(skb) &&
4755 		!skb_nfct(skb) &&
4756 		!skb->_skb_refdst &&
4757 		!skb_has_frag_list(skb);
4758 }
4759 
4760 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4761 {
4762 	skb->queue_mapping = queue_mapping;
4763 }
4764 
4765 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4766 {
4767 	return skb->queue_mapping;
4768 }
4769 
4770 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4771 {
4772 	to->queue_mapping = from->queue_mapping;
4773 }
4774 
4775 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4776 {
4777 	skb->queue_mapping = rx_queue + 1;
4778 }
4779 
4780 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4781 {
4782 	return skb->queue_mapping - 1;
4783 }
4784 
4785 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4786 {
4787 	return skb->queue_mapping != 0;
4788 }
4789 
4790 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4791 {
4792 	skb->dst_pending_confirm = val;
4793 }
4794 
4795 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4796 {
4797 	return skb->dst_pending_confirm != 0;
4798 }
4799 
4800 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4801 {
4802 #ifdef CONFIG_XFRM
4803 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4804 #else
4805 	return NULL;
4806 #endif
4807 }
4808 
4809 /* Keeps track of mac header offset relative to skb->head.
4810  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4811  * For non-tunnel skb it points to skb_mac_header() and for
4812  * tunnel skb it points to outer mac header.
4813  * Keeps track of level of encapsulation of network headers.
4814  */
4815 struct skb_gso_cb {
4816 	union {
4817 		int	mac_offset;
4818 		int	data_offset;
4819 	};
4820 	int	encap_level;
4821 	__wsum	csum;
4822 	__u16	csum_start;
4823 };
4824 #define SKB_GSO_CB_OFFSET	32
4825 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4826 
4827 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4828 {
4829 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4830 		SKB_GSO_CB(inner_skb)->mac_offset;
4831 }
4832 
4833 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4834 {
4835 	int new_headroom, headroom;
4836 	int ret;
4837 
4838 	headroom = skb_headroom(skb);
4839 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4840 	if (ret)
4841 		return ret;
4842 
4843 	new_headroom = skb_headroom(skb);
4844 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4845 	return 0;
4846 }
4847 
4848 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4849 {
4850 	/* Do not update partial checksums if remote checksum is enabled. */
4851 	if (skb->remcsum_offload)
4852 		return;
4853 
4854 	SKB_GSO_CB(skb)->csum = res;
4855 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4856 }
4857 
4858 /* Compute the checksum for a gso segment. First compute the checksum value
4859  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4860  * then add in skb->csum (checksum from csum_start to end of packet).
4861  * skb->csum and csum_start are then updated to reflect the checksum of the
4862  * resultant packet starting from the transport header-- the resultant checksum
4863  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4864  * header.
4865  */
4866 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4867 {
4868 	unsigned char *csum_start = skb_transport_header(skb);
4869 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4870 	__wsum partial = SKB_GSO_CB(skb)->csum;
4871 
4872 	SKB_GSO_CB(skb)->csum = res;
4873 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4874 
4875 	return csum_fold(csum_partial(csum_start, plen, partial));
4876 }
4877 
4878 static inline bool skb_is_gso(const struct sk_buff *skb)
4879 {
4880 	return skb_shinfo(skb)->gso_size;
4881 }
4882 
4883 /* Note: Should be called only if skb_is_gso(skb) is true */
4884 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4885 {
4886 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4887 }
4888 
4889 /* Note: Should be called only if skb_is_gso(skb) is true */
4890 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4891 {
4892 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4893 }
4894 
4895 /* Note: Should be called only if skb_is_gso(skb) is true */
4896 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4897 {
4898 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4899 }
4900 
4901 static inline void skb_gso_reset(struct sk_buff *skb)
4902 {
4903 	skb_shinfo(skb)->gso_size = 0;
4904 	skb_shinfo(skb)->gso_segs = 0;
4905 	skb_shinfo(skb)->gso_type = 0;
4906 }
4907 
4908 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4909 					 u16 increment)
4910 {
4911 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4912 		return;
4913 	shinfo->gso_size += increment;
4914 }
4915 
4916 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4917 					 u16 decrement)
4918 {
4919 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4920 		return;
4921 	shinfo->gso_size -= decrement;
4922 }
4923 
4924 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4925 
4926 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4927 {
4928 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4929 	 * wanted then gso_type will be set. */
4930 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4931 
4932 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4933 	    unlikely(shinfo->gso_type == 0)) {
4934 		__skb_warn_lro_forwarding(skb);
4935 		return true;
4936 	}
4937 	return false;
4938 }
4939 
4940 static inline void skb_forward_csum(struct sk_buff *skb)
4941 {
4942 	/* Unfortunately we don't support this one.  Any brave souls? */
4943 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4944 		skb->ip_summed = CHECKSUM_NONE;
4945 }
4946 
4947 /**
4948  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4949  * @skb: skb to check
4950  *
4951  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4952  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4953  * use this helper, to document places where we make this assertion.
4954  */
4955 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4956 {
4957 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4958 }
4959 
4960 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4961 
4962 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4963 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4964 				     unsigned int transport_len,
4965 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4966 
4967 /**
4968  * skb_head_is_locked - Determine if the skb->head is locked down
4969  * @skb: skb to check
4970  *
4971  * The head on skbs build around a head frag can be removed if they are
4972  * not cloned.  This function returns true if the skb head is locked down
4973  * due to either being allocated via kmalloc, or by being a clone with
4974  * multiple references to the head.
4975  */
4976 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4977 {
4978 	return !skb->head_frag || skb_cloned(skb);
4979 }
4980 
4981 /* Local Checksum Offload.
4982  * Compute outer checksum based on the assumption that the
4983  * inner checksum will be offloaded later.
4984  * See Documentation/networking/checksum-offloads.rst for
4985  * explanation of how this works.
4986  * Fill in outer checksum adjustment (e.g. with sum of outer
4987  * pseudo-header) before calling.
4988  * Also ensure that inner checksum is in linear data area.
4989  */
4990 static inline __wsum lco_csum(struct sk_buff *skb)
4991 {
4992 	unsigned char *csum_start = skb_checksum_start(skb);
4993 	unsigned char *l4_hdr = skb_transport_header(skb);
4994 	__wsum partial;
4995 
4996 	/* Start with complement of inner checksum adjustment */
4997 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4998 						    skb->csum_offset));
4999 
5000 	/* Add in checksum of our headers (incl. outer checksum
5001 	 * adjustment filled in by caller) and return result.
5002 	 */
5003 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5004 }
5005 
5006 static inline bool skb_is_redirected(const struct sk_buff *skb)
5007 {
5008 	return skb->redirected;
5009 }
5010 
5011 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5012 {
5013 	skb->redirected = 1;
5014 #ifdef CONFIG_NET_REDIRECT
5015 	skb->from_ingress = from_ingress;
5016 	if (skb->from_ingress)
5017 		skb_clear_tstamp(skb);
5018 #endif
5019 }
5020 
5021 static inline void skb_reset_redirect(struct sk_buff *skb)
5022 {
5023 	skb->redirected = 0;
5024 }
5025 
5026 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5027 {
5028 	return skb->csum_not_inet;
5029 }
5030 
5031 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5032 				       const u64 kcov_handle)
5033 {
5034 #ifdef CONFIG_KCOV
5035 	skb->kcov_handle = kcov_handle;
5036 #endif
5037 }
5038 
5039 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5040 {
5041 #ifdef CONFIG_KCOV
5042 	return skb->kcov_handle;
5043 #else
5044 	return 0;
5045 #endif
5046 }
5047 
5048 #ifdef CONFIG_PAGE_POOL
5049 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5050 {
5051 	skb->pp_recycle = 1;
5052 }
5053 #endif
5054 
5055 #endif	/* __KERNEL__ */
5056 #endif	/* _LINUX_SKBUFF_H */
5057