xref: /linux-6.15/include/linux/skbuff.h (revision 6482f554)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /* Definitions for tx_flags in struct skb_shared_info */
167 enum {
168 	/* generate hardware time stamp */
169 	SKBTX_HW_TSTAMP = 1 << 0,
170 
171 	/* generate software time stamp */
172 	SKBTX_SW_TSTAMP = 1 << 1,
173 
174 	/* device driver is going to provide hardware time stamp */
175 	SKBTX_IN_PROGRESS = 1 << 2,
176 
177 	/* ensure the originating sk reference is available on driver level */
178 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
179 };
180 
181 /* This data is invariant across clones and lives at
182  * the end of the header data, ie. at skb->end.
183  */
184 struct skb_shared_info {
185 	unsigned short	nr_frags;
186 	unsigned short	gso_size;
187 	/* Warning: this field is not always filled in (UFO)! */
188 	unsigned short	gso_segs;
189 	unsigned short  gso_type;
190 	__be32          ip6_frag_id;
191 	__u8		tx_flags;
192 	struct sk_buff	*frag_list;
193 	struct skb_shared_hwtstamps hwtstamps;
194 
195 	/*
196 	 * Warning : all fields before dataref are cleared in __alloc_skb()
197 	 */
198 	atomic_t	dataref;
199 
200 	/* Intermediate layers must ensure that destructor_arg
201 	 * remains valid until skb destructor */
202 	void *		destructor_arg;
203 	/* must be last field, see pskb_expand_head() */
204 	skb_frag_t	frags[MAX_SKB_FRAGS];
205 };
206 
207 /* We divide dataref into two halves.  The higher 16 bits hold references
208  * to the payload part of skb->data.  The lower 16 bits hold references to
209  * the entire skb->data.  A clone of a headerless skb holds the length of
210  * the header in skb->hdr_len.
211  *
212  * All users must obey the rule that the skb->data reference count must be
213  * greater than or equal to the payload reference count.
214  *
215  * Holding a reference to the payload part means that the user does not
216  * care about modifications to the header part of skb->data.
217  */
218 #define SKB_DATAREF_SHIFT 16
219 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
220 
221 
222 enum {
223 	SKB_FCLONE_UNAVAILABLE,
224 	SKB_FCLONE_ORIG,
225 	SKB_FCLONE_CLONE,
226 };
227 
228 enum {
229 	SKB_GSO_TCPV4 = 1 << 0,
230 	SKB_GSO_UDP = 1 << 1,
231 
232 	/* This indicates the skb is from an untrusted source. */
233 	SKB_GSO_DODGY = 1 << 2,
234 
235 	/* This indicates the tcp segment has CWR set. */
236 	SKB_GSO_TCP_ECN = 1 << 3,
237 
238 	SKB_GSO_TCPV6 = 1 << 4,
239 
240 	SKB_GSO_FCOE = 1 << 5,
241 };
242 
243 #if BITS_PER_LONG > 32
244 #define NET_SKBUFF_DATA_USES_OFFSET 1
245 #endif
246 
247 #ifdef NET_SKBUFF_DATA_USES_OFFSET
248 typedef unsigned int sk_buff_data_t;
249 #else
250 typedef unsigned char *sk_buff_data_t;
251 #endif
252 
253 /**
254  *	struct sk_buff - socket buffer
255  *	@next: Next buffer in list
256  *	@prev: Previous buffer in list
257  *	@sk: Socket we are owned by
258  *	@tstamp: Time we arrived
259  *	@dev: Device we arrived on/are leaving by
260  *	@transport_header: Transport layer header
261  *	@network_header: Network layer header
262  *	@mac_header: Link layer header
263  *	@_skb_refdst: destination entry (with norefcount bit)
264  *	@sp: the security path, used for xfrm
265  *	@cb: Control buffer. Free for use by every layer. Put private vars here
266  *	@len: Length of actual data
267  *	@data_len: Data length
268  *	@mac_len: Length of link layer header
269  *	@hdr_len: writable header length of cloned skb
270  *	@csum: Checksum (must include start/offset pair)
271  *	@csum_start: Offset from skb->head where checksumming should start
272  *	@csum_offset: Offset from csum_start where checksum should be stored
273  *	@local_df: allow local fragmentation
274  *	@cloned: Head may be cloned (check refcnt to be sure)
275  *	@nohdr: Payload reference only, must not modify header
276  *	@pkt_type: Packet class
277  *	@fclone: skbuff clone status
278  *	@ip_summed: Driver fed us an IP checksum
279  *	@priority: Packet queueing priority
280  *	@users: User count - see {datagram,tcp}.c
281  *	@protocol: Packet protocol from driver
282  *	@truesize: Buffer size
283  *	@head: Head of buffer
284  *	@data: Data head pointer
285  *	@tail: Tail pointer
286  *	@end: End pointer
287  *	@destructor: Destruct function
288  *	@mark: Generic packet mark
289  *	@nfct: Associated connection, if any
290  *	@ipvs_property: skbuff is owned by ipvs
291  *	@peeked: this packet has been seen already, so stats have been
292  *		done for it, don't do them again
293  *	@nf_trace: netfilter packet trace flag
294  *	@nfctinfo: Relationship of this skb to the connection
295  *	@nfct_reasm: netfilter conntrack re-assembly pointer
296  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
297  *	@skb_iif: ifindex of device we arrived on
298  *	@rxhash: the packet hash computed on receive
299  *	@queue_mapping: Queue mapping for multiqueue devices
300  *	@tc_index: Traffic control index
301  *	@tc_verd: traffic control verdict
302  *	@ndisc_nodetype: router type (from link layer)
303  *	@dma_cookie: a cookie to one of several possible DMA operations
304  *		done by skb DMA functions
305  *	@secmark: security marking
306  *	@vlan_tci: vlan tag control information
307  */
308 
309 struct sk_buff {
310 	/* These two members must be first. */
311 	struct sk_buff		*next;
312 	struct sk_buff		*prev;
313 
314 	ktime_t			tstamp;
315 
316 	struct sock		*sk;
317 	struct net_device	*dev;
318 
319 	/*
320 	 * This is the control buffer. It is free to use for every
321 	 * layer. Please put your private variables there. If you
322 	 * want to keep them across layers you have to do a skb_clone()
323 	 * first. This is owned by whoever has the skb queued ATM.
324 	 */
325 	char			cb[48] __aligned(8);
326 
327 	unsigned long		_skb_refdst;
328 #ifdef CONFIG_XFRM
329 	struct	sec_path	*sp;
330 #endif
331 	unsigned int		len,
332 				data_len;
333 	__u16			mac_len,
334 				hdr_len;
335 	union {
336 		__wsum		csum;
337 		struct {
338 			__u16	csum_start;
339 			__u16	csum_offset;
340 		};
341 	};
342 	__u32			priority;
343 	kmemcheck_bitfield_begin(flags1);
344 	__u8			local_df:1,
345 				cloned:1,
346 				ip_summed:2,
347 				nohdr:1,
348 				nfctinfo:3;
349 	__u8			pkt_type:3,
350 				fclone:2,
351 				ipvs_property:1,
352 				peeked:1,
353 				nf_trace:1;
354 	kmemcheck_bitfield_end(flags1);
355 	__be16			protocol;
356 
357 	void			(*destructor)(struct sk_buff *skb);
358 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
359 	struct nf_conntrack	*nfct;
360 	struct sk_buff		*nfct_reasm;
361 #endif
362 #ifdef CONFIG_BRIDGE_NETFILTER
363 	struct nf_bridge_info	*nf_bridge;
364 #endif
365 
366 	int			skb_iif;
367 #ifdef CONFIG_NET_SCHED
368 	__u16			tc_index;	/* traffic control index */
369 #ifdef CONFIG_NET_CLS_ACT
370 	__u16			tc_verd;	/* traffic control verdict */
371 #endif
372 #endif
373 
374 	__u32			rxhash;
375 
376 	kmemcheck_bitfield_begin(flags2);
377 	__u16			queue_mapping:16;
378 #ifdef CONFIG_IPV6_NDISC_NODETYPE
379 	__u8			ndisc_nodetype:2,
380 				deliver_no_wcard:1;
381 #else
382 	__u8			deliver_no_wcard:1;
383 #endif
384 	kmemcheck_bitfield_end(flags2);
385 
386 	/* 0/14 bit hole */
387 
388 #ifdef CONFIG_NET_DMA
389 	dma_cookie_t		dma_cookie;
390 #endif
391 #ifdef CONFIG_NETWORK_SECMARK
392 	__u32			secmark;
393 #endif
394 	union {
395 		__u32		mark;
396 		__u32		dropcount;
397 	};
398 
399 	__u16			vlan_tci;
400 
401 	sk_buff_data_t		transport_header;
402 	sk_buff_data_t		network_header;
403 	sk_buff_data_t		mac_header;
404 	/* These elements must be at the end, see alloc_skb() for details.  */
405 	sk_buff_data_t		tail;
406 	sk_buff_data_t		end;
407 	unsigned char		*head,
408 				*data;
409 	unsigned int		truesize;
410 	atomic_t		users;
411 };
412 
413 #ifdef __KERNEL__
414 /*
415  *	Handling routines are only of interest to the kernel
416  */
417 #include <linux/slab.h>
418 
419 #include <asm/system.h>
420 
421 /*
422  * skb might have a dst pointer attached, refcounted or not.
423  * _skb_refdst low order bit is set if refcount was _not_ taken
424  */
425 #define SKB_DST_NOREF	1UL
426 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
427 
428 /**
429  * skb_dst - returns skb dst_entry
430  * @skb: buffer
431  *
432  * Returns skb dst_entry, regardless of reference taken or not.
433  */
434 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
435 {
436 	/* If refdst was not refcounted, check we still are in a
437 	 * rcu_read_lock section
438 	 */
439 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
440 		!rcu_read_lock_held() &&
441 		!rcu_read_lock_bh_held());
442 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
443 }
444 
445 /**
446  * skb_dst_set - sets skb dst
447  * @skb: buffer
448  * @dst: dst entry
449  *
450  * Sets skb dst, assuming a reference was taken on dst and should
451  * be released by skb_dst_drop()
452  */
453 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
454 {
455 	skb->_skb_refdst = (unsigned long)dst;
456 }
457 
458 /**
459  * skb_dst_set_noref - sets skb dst, without a reference
460  * @skb: buffer
461  * @dst: dst entry
462  *
463  * Sets skb dst, assuming a reference was not taken on dst
464  * skb_dst_drop() should not dst_release() this dst
465  */
466 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
467 {
468 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
469 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
470 }
471 
472 /**
473  * skb_dst_is_noref - Test if skb dst isnt refcounted
474  * @skb: buffer
475  */
476 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
477 {
478 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
479 }
480 
481 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
482 {
483 	return (struct rtable *)skb_dst(skb);
484 }
485 
486 extern void kfree_skb(struct sk_buff *skb);
487 extern void consume_skb(struct sk_buff *skb);
488 extern void	       __kfree_skb(struct sk_buff *skb);
489 extern struct sk_buff *__alloc_skb(unsigned int size,
490 				   gfp_t priority, int fclone, int node);
491 static inline struct sk_buff *alloc_skb(unsigned int size,
492 					gfp_t priority)
493 {
494 	return __alloc_skb(size, priority, 0, -1);
495 }
496 
497 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
498 					       gfp_t priority)
499 {
500 	return __alloc_skb(size, priority, 1, -1);
501 }
502 
503 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
504 
505 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
506 extern struct sk_buff *skb_clone(struct sk_buff *skb,
507 				 gfp_t priority);
508 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
509 				gfp_t priority);
510 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
511 				 gfp_t gfp_mask);
512 extern int	       pskb_expand_head(struct sk_buff *skb,
513 					int nhead, int ntail,
514 					gfp_t gfp_mask);
515 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
516 					    unsigned int headroom);
517 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
518 				       int newheadroom, int newtailroom,
519 				       gfp_t priority);
520 extern int	       skb_to_sgvec(struct sk_buff *skb,
521 				    struct scatterlist *sg, int offset,
522 				    int len);
523 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
524 				    struct sk_buff **trailer);
525 extern int	       skb_pad(struct sk_buff *skb, int pad);
526 #define dev_kfree_skb(a)	consume_skb(a)
527 
528 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
529 			int getfrag(void *from, char *to, int offset,
530 			int len,int odd, struct sk_buff *skb),
531 			void *from, int length);
532 
533 struct skb_seq_state {
534 	__u32		lower_offset;
535 	__u32		upper_offset;
536 	__u32		frag_idx;
537 	__u32		stepped_offset;
538 	struct sk_buff	*root_skb;
539 	struct sk_buff	*cur_skb;
540 	__u8		*frag_data;
541 };
542 
543 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
544 					   unsigned int from, unsigned int to,
545 					   struct skb_seq_state *st);
546 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
547 				   struct skb_seq_state *st);
548 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
549 
550 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
551 				    unsigned int to, struct ts_config *config,
552 				    struct ts_state *state);
553 
554 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
555 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
556 {
557 	if (!skb->rxhash)
558 		skb->rxhash = __skb_get_rxhash(skb);
559 
560 	return skb->rxhash;
561 }
562 
563 #ifdef NET_SKBUFF_DATA_USES_OFFSET
564 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
565 {
566 	return skb->head + skb->end;
567 }
568 #else
569 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
570 {
571 	return skb->end;
572 }
573 #endif
574 
575 /* Internal */
576 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
577 
578 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
579 {
580 	return &skb_shinfo(skb)->hwtstamps;
581 }
582 
583 /**
584  *	skb_queue_empty - check if a queue is empty
585  *	@list: queue head
586  *
587  *	Returns true if the queue is empty, false otherwise.
588  */
589 static inline int skb_queue_empty(const struct sk_buff_head *list)
590 {
591 	return list->next == (struct sk_buff *)list;
592 }
593 
594 /**
595  *	skb_queue_is_last - check if skb is the last entry in the queue
596  *	@list: queue head
597  *	@skb: buffer
598  *
599  *	Returns true if @skb is the last buffer on the list.
600  */
601 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
602 				     const struct sk_buff *skb)
603 {
604 	return (skb->next == (struct sk_buff *) list);
605 }
606 
607 /**
608  *	skb_queue_is_first - check if skb is the first entry in the queue
609  *	@list: queue head
610  *	@skb: buffer
611  *
612  *	Returns true if @skb is the first buffer on the list.
613  */
614 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
615 				      const struct sk_buff *skb)
616 {
617 	return (skb->prev == (struct sk_buff *) list);
618 }
619 
620 /**
621  *	skb_queue_next - return the next packet in the queue
622  *	@list: queue head
623  *	@skb: current buffer
624  *
625  *	Return the next packet in @list after @skb.  It is only valid to
626  *	call this if skb_queue_is_last() evaluates to false.
627  */
628 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
629 					     const struct sk_buff *skb)
630 {
631 	/* This BUG_ON may seem severe, but if we just return then we
632 	 * are going to dereference garbage.
633 	 */
634 	BUG_ON(skb_queue_is_last(list, skb));
635 	return skb->next;
636 }
637 
638 /**
639  *	skb_queue_prev - return the prev packet in the queue
640  *	@list: queue head
641  *	@skb: current buffer
642  *
643  *	Return the prev packet in @list before @skb.  It is only valid to
644  *	call this if skb_queue_is_first() evaluates to false.
645  */
646 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
647 					     const struct sk_buff *skb)
648 {
649 	/* This BUG_ON may seem severe, but if we just return then we
650 	 * are going to dereference garbage.
651 	 */
652 	BUG_ON(skb_queue_is_first(list, skb));
653 	return skb->prev;
654 }
655 
656 /**
657  *	skb_get - reference buffer
658  *	@skb: buffer to reference
659  *
660  *	Makes another reference to a socket buffer and returns a pointer
661  *	to the buffer.
662  */
663 static inline struct sk_buff *skb_get(struct sk_buff *skb)
664 {
665 	atomic_inc(&skb->users);
666 	return skb;
667 }
668 
669 /*
670  * If users == 1, we are the only owner and are can avoid redundant
671  * atomic change.
672  */
673 
674 /**
675  *	skb_cloned - is the buffer a clone
676  *	@skb: buffer to check
677  *
678  *	Returns true if the buffer was generated with skb_clone() and is
679  *	one of multiple shared copies of the buffer. Cloned buffers are
680  *	shared data so must not be written to under normal circumstances.
681  */
682 static inline int skb_cloned(const struct sk_buff *skb)
683 {
684 	return skb->cloned &&
685 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
686 }
687 
688 /**
689  *	skb_header_cloned - is the header a clone
690  *	@skb: buffer to check
691  *
692  *	Returns true if modifying the header part of the buffer requires
693  *	the data to be copied.
694  */
695 static inline int skb_header_cloned(const struct sk_buff *skb)
696 {
697 	int dataref;
698 
699 	if (!skb->cloned)
700 		return 0;
701 
702 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
703 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
704 	return dataref != 1;
705 }
706 
707 /**
708  *	skb_header_release - release reference to header
709  *	@skb: buffer to operate on
710  *
711  *	Drop a reference to the header part of the buffer.  This is done
712  *	by acquiring a payload reference.  You must not read from the header
713  *	part of skb->data after this.
714  */
715 static inline void skb_header_release(struct sk_buff *skb)
716 {
717 	BUG_ON(skb->nohdr);
718 	skb->nohdr = 1;
719 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
720 }
721 
722 /**
723  *	skb_shared - is the buffer shared
724  *	@skb: buffer to check
725  *
726  *	Returns true if more than one person has a reference to this
727  *	buffer.
728  */
729 static inline int skb_shared(const struct sk_buff *skb)
730 {
731 	return atomic_read(&skb->users) != 1;
732 }
733 
734 /**
735  *	skb_share_check - check if buffer is shared and if so clone it
736  *	@skb: buffer to check
737  *	@pri: priority for memory allocation
738  *
739  *	If the buffer is shared the buffer is cloned and the old copy
740  *	drops a reference. A new clone with a single reference is returned.
741  *	If the buffer is not shared the original buffer is returned. When
742  *	being called from interrupt status or with spinlocks held pri must
743  *	be GFP_ATOMIC.
744  *
745  *	NULL is returned on a memory allocation failure.
746  */
747 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
748 					      gfp_t pri)
749 {
750 	might_sleep_if(pri & __GFP_WAIT);
751 	if (skb_shared(skb)) {
752 		struct sk_buff *nskb = skb_clone(skb, pri);
753 		kfree_skb(skb);
754 		skb = nskb;
755 	}
756 	return skb;
757 }
758 
759 /*
760  *	Copy shared buffers into a new sk_buff. We effectively do COW on
761  *	packets to handle cases where we have a local reader and forward
762  *	and a couple of other messy ones. The normal one is tcpdumping
763  *	a packet thats being forwarded.
764  */
765 
766 /**
767  *	skb_unshare - make a copy of a shared buffer
768  *	@skb: buffer to check
769  *	@pri: priority for memory allocation
770  *
771  *	If the socket buffer is a clone then this function creates a new
772  *	copy of the data, drops a reference count on the old copy and returns
773  *	the new copy with the reference count at 1. If the buffer is not a clone
774  *	the original buffer is returned. When called with a spinlock held or
775  *	from interrupt state @pri must be %GFP_ATOMIC
776  *
777  *	%NULL is returned on a memory allocation failure.
778  */
779 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
780 					  gfp_t pri)
781 {
782 	might_sleep_if(pri & __GFP_WAIT);
783 	if (skb_cloned(skb)) {
784 		struct sk_buff *nskb = skb_copy(skb, pri);
785 		kfree_skb(skb);	/* Free our shared copy */
786 		skb = nskb;
787 	}
788 	return skb;
789 }
790 
791 /**
792  *	skb_peek - peek at the head of an &sk_buff_head
793  *	@list_: list to peek at
794  *
795  *	Peek an &sk_buff. Unlike most other operations you _MUST_
796  *	be careful with this one. A peek leaves the buffer on the
797  *	list and someone else may run off with it. You must hold
798  *	the appropriate locks or have a private queue to do this.
799  *
800  *	Returns %NULL for an empty list or a pointer to the head element.
801  *	The reference count is not incremented and the reference is therefore
802  *	volatile. Use with caution.
803  */
804 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
805 {
806 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
807 	if (list == (struct sk_buff *)list_)
808 		list = NULL;
809 	return list;
810 }
811 
812 /**
813  *	skb_peek_tail - peek at the tail of an &sk_buff_head
814  *	@list_: list to peek at
815  *
816  *	Peek an &sk_buff. Unlike most other operations you _MUST_
817  *	be careful with this one. A peek leaves the buffer on the
818  *	list and someone else may run off with it. You must hold
819  *	the appropriate locks or have a private queue to do this.
820  *
821  *	Returns %NULL for an empty list or a pointer to the tail element.
822  *	The reference count is not incremented and the reference is therefore
823  *	volatile. Use with caution.
824  */
825 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
826 {
827 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
828 	if (list == (struct sk_buff *)list_)
829 		list = NULL;
830 	return list;
831 }
832 
833 /**
834  *	skb_queue_len	- get queue length
835  *	@list_: list to measure
836  *
837  *	Return the length of an &sk_buff queue.
838  */
839 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
840 {
841 	return list_->qlen;
842 }
843 
844 /**
845  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
846  *	@list: queue to initialize
847  *
848  *	This initializes only the list and queue length aspects of
849  *	an sk_buff_head object.  This allows to initialize the list
850  *	aspects of an sk_buff_head without reinitializing things like
851  *	the spinlock.  It can also be used for on-stack sk_buff_head
852  *	objects where the spinlock is known to not be used.
853  */
854 static inline void __skb_queue_head_init(struct sk_buff_head *list)
855 {
856 	list->prev = list->next = (struct sk_buff *)list;
857 	list->qlen = 0;
858 }
859 
860 /*
861  * This function creates a split out lock class for each invocation;
862  * this is needed for now since a whole lot of users of the skb-queue
863  * infrastructure in drivers have different locking usage (in hardirq)
864  * than the networking core (in softirq only). In the long run either the
865  * network layer or drivers should need annotation to consolidate the
866  * main types of usage into 3 classes.
867  */
868 static inline void skb_queue_head_init(struct sk_buff_head *list)
869 {
870 	spin_lock_init(&list->lock);
871 	__skb_queue_head_init(list);
872 }
873 
874 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
875 		struct lock_class_key *class)
876 {
877 	skb_queue_head_init(list);
878 	lockdep_set_class(&list->lock, class);
879 }
880 
881 /*
882  *	Insert an sk_buff on a list.
883  *
884  *	The "__skb_xxxx()" functions are the non-atomic ones that
885  *	can only be called with interrupts disabled.
886  */
887 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
888 static inline void __skb_insert(struct sk_buff *newsk,
889 				struct sk_buff *prev, struct sk_buff *next,
890 				struct sk_buff_head *list)
891 {
892 	newsk->next = next;
893 	newsk->prev = prev;
894 	next->prev  = prev->next = newsk;
895 	list->qlen++;
896 }
897 
898 static inline void __skb_queue_splice(const struct sk_buff_head *list,
899 				      struct sk_buff *prev,
900 				      struct sk_buff *next)
901 {
902 	struct sk_buff *first = list->next;
903 	struct sk_buff *last = list->prev;
904 
905 	first->prev = prev;
906 	prev->next = first;
907 
908 	last->next = next;
909 	next->prev = last;
910 }
911 
912 /**
913  *	skb_queue_splice - join two skb lists, this is designed for stacks
914  *	@list: the new list to add
915  *	@head: the place to add it in the first list
916  */
917 static inline void skb_queue_splice(const struct sk_buff_head *list,
918 				    struct sk_buff_head *head)
919 {
920 	if (!skb_queue_empty(list)) {
921 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
922 		head->qlen += list->qlen;
923 	}
924 }
925 
926 /**
927  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
928  *	@list: the new list to add
929  *	@head: the place to add it in the first list
930  *
931  *	The list at @list is reinitialised
932  */
933 static inline void skb_queue_splice_init(struct sk_buff_head *list,
934 					 struct sk_buff_head *head)
935 {
936 	if (!skb_queue_empty(list)) {
937 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
938 		head->qlen += list->qlen;
939 		__skb_queue_head_init(list);
940 	}
941 }
942 
943 /**
944  *	skb_queue_splice_tail - join two skb lists, each list being a queue
945  *	@list: the new list to add
946  *	@head: the place to add it in the first list
947  */
948 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
949 					 struct sk_buff_head *head)
950 {
951 	if (!skb_queue_empty(list)) {
952 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
953 		head->qlen += list->qlen;
954 	}
955 }
956 
957 /**
958  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
959  *	@list: the new list to add
960  *	@head: the place to add it in the first list
961  *
962  *	Each of the lists is a queue.
963  *	The list at @list is reinitialised
964  */
965 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
966 					      struct sk_buff_head *head)
967 {
968 	if (!skb_queue_empty(list)) {
969 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
970 		head->qlen += list->qlen;
971 		__skb_queue_head_init(list);
972 	}
973 }
974 
975 /**
976  *	__skb_queue_after - queue a buffer at the list head
977  *	@list: list to use
978  *	@prev: place after this buffer
979  *	@newsk: buffer to queue
980  *
981  *	Queue a buffer int the middle of a list. This function takes no locks
982  *	and you must therefore hold required locks before calling it.
983  *
984  *	A buffer cannot be placed on two lists at the same time.
985  */
986 static inline void __skb_queue_after(struct sk_buff_head *list,
987 				     struct sk_buff *prev,
988 				     struct sk_buff *newsk)
989 {
990 	__skb_insert(newsk, prev, prev->next, list);
991 }
992 
993 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
994 		       struct sk_buff_head *list);
995 
996 static inline void __skb_queue_before(struct sk_buff_head *list,
997 				      struct sk_buff *next,
998 				      struct sk_buff *newsk)
999 {
1000 	__skb_insert(newsk, next->prev, next, list);
1001 }
1002 
1003 /**
1004  *	__skb_queue_head - queue a buffer at the list head
1005  *	@list: list to use
1006  *	@newsk: buffer to queue
1007  *
1008  *	Queue a buffer at the start of a list. This function takes no locks
1009  *	and you must therefore hold required locks before calling it.
1010  *
1011  *	A buffer cannot be placed on two lists at the same time.
1012  */
1013 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1014 static inline void __skb_queue_head(struct sk_buff_head *list,
1015 				    struct sk_buff *newsk)
1016 {
1017 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1018 }
1019 
1020 /**
1021  *	__skb_queue_tail - queue a buffer at the list tail
1022  *	@list: list to use
1023  *	@newsk: buffer to queue
1024  *
1025  *	Queue a buffer at the end of a list. This function takes no locks
1026  *	and you must therefore hold required locks before calling it.
1027  *
1028  *	A buffer cannot be placed on two lists at the same time.
1029  */
1030 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1031 static inline void __skb_queue_tail(struct sk_buff_head *list,
1032 				   struct sk_buff *newsk)
1033 {
1034 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1035 }
1036 
1037 /*
1038  * remove sk_buff from list. _Must_ be called atomically, and with
1039  * the list known..
1040  */
1041 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1042 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1043 {
1044 	struct sk_buff *next, *prev;
1045 
1046 	list->qlen--;
1047 	next	   = skb->next;
1048 	prev	   = skb->prev;
1049 	skb->next  = skb->prev = NULL;
1050 	next->prev = prev;
1051 	prev->next = next;
1052 }
1053 
1054 /**
1055  *	__skb_dequeue - remove from the head of the queue
1056  *	@list: list to dequeue from
1057  *
1058  *	Remove the head of the list. This function does not take any locks
1059  *	so must be used with appropriate locks held only. The head item is
1060  *	returned or %NULL if the list is empty.
1061  */
1062 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1063 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1064 {
1065 	struct sk_buff *skb = skb_peek(list);
1066 	if (skb)
1067 		__skb_unlink(skb, list);
1068 	return skb;
1069 }
1070 
1071 /**
1072  *	__skb_dequeue_tail - remove from the tail of the queue
1073  *	@list: list to dequeue from
1074  *
1075  *	Remove the tail of the list. This function does not take any locks
1076  *	so must be used with appropriate locks held only. The tail item is
1077  *	returned or %NULL if the list is empty.
1078  */
1079 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1080 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1081 {
1082 	struct sk_buff *skb = skb_peek_tail(list);
1083 	if (skb)
1084 		__skb_unlink(skb, list);
1085 	return skb;
1086 }
1087 
1088 
1089 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1090 {
1091 	return skb->data_len;
1092 }
1093 
1094 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1095 {
1096 	return skb->len - skb->data_len;
1097 }
1098 
1099 static inline int skb_pagelen(const struct sk_buff *skb)
1100 {
1101 	int i, len = 0;
1102 
1103 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1104 		len += skb_shinfo(skb)->frags[i].size;
1105 	return len + skb_headlen(skb);
1106 }
1107 
1108 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1109 				      struct page *page, int off, int size)
1110 {
1111 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1112 
1113 	frag->page		  = page;
1114 	frag->page_offset	  = off;
1115 	frag->size		  = size;
1116 	skb_shinfo(skb)->nr_frags = i + 1;
1117 }
1118 
1119 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1120 			    int off, int size);
1121 
1122 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1123 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1124 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1125 
1126 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1127 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1128 {
1129 	return skb->head + skb->tail;
1130 }
1131 
1132 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1133 {
1134 	skb->tail = skb->data - skb->head;
1135 }
1136 
1137 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1138 {
1139 	skb_reset_tail_pointer(skb);
1140 	skb->tail += offset;
1141 }
1142 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1143 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1144 {
1145 	return skb->tail;
1146 }
1147 
1148 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1149 {
1150 	skb->tail = skb->data;
1151 }
1152 
1153 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1154 {
1155 	skb->tail = skb->data + offset;
1156 }
1157 
1158 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1159 
1160 /*
1161  *	Add data to an sk_buff
1162  */
1163 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1164 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1165 {
1166 	unsigned char *tmp = skb_tail_pointer(skb);
1167 	SKB_LINEAR_ASSERT(skb);
1168 	skb->tail += len;
1169 	skb->len  += len;
1170 	return tmp;
1171 }
1172 
1173 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1174 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1175 {
1176 	skb->data -= len;
1177 	skb->len  += len;
1178 	return skb->data;
1179 }
1180 
1181 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1182 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1183 {
1184 	skb->len -= len;
1185 	BUG_ON(skb->len < skb->data_len);
1186 	return skb->data += len;
1187 }
1188 
1189 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1190 {
1191 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1192 }
1193 
1194 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1195 
1196 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1197 {
1198 	if (len > skb_headlen(skb) &&
1199 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1200 		return NULL;
1201 	skb->len -= len;
1202 	return skb->data += len;
1203 }
1204 
1205 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1206 {
1207 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1208 }
1209 
1210 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1211 {
1212 	if (likely(len <= skb_headlen(skb)))
1213 		return 1;
1214 	if (unlikely(len > skb->len))
1215 		return 0;
1216 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1217 }
1218 
1219 /**
1220  *	skb_headroom - bytes at buffer head
1221  *	@skb: buffer to check
1222  *
1223  *	Return the number of bytes of free space at the head of an &sk_buff.
1224  */
1225 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1226 {
1227 	return skb->data - skb->head;
1228 }
1229 
1230 /**
1231  *	skb_tailroom - bytes at buffer end
1232  *	@skb: buffer to check
1233  *
1234  *	Return the number of bytes of free space at the tail of an sk_buff
1235  */
1236 static inline int skb_tailroom(const struct sk_buff *skb)
1237 {
1238 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1239 }
1240 
1241 /**
1242  *	skb_reserve - adjust headroom
1243  *	@skb: buffer to alter
1244  *	@len: bytes to move
1245  *
1246  *	Increase the headroom of an empty &sk_buff by reducing the tail
1247  *	room. This is only allowed for an empty buffer.
1248  */
1249 static inline void skb_reserve(struct sk_buff *skb, int len)
1250 {
1251 	skb->data += len;
1252 	skb->tail += len;
1253 }
1254 
1255 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1256 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1257 {
1258 	return skb->head + skb->transport_header;
1259 }
1260 
1261 static inline void skb_reset_transport_header(struct sk_buff *skb)
1262 {
1263 	skb->transport_header = skb->data - skb->head;
1264 }
1265 
1266 static inline void skb_set_transport_header(struct sk_buff *skb,
1267 					    const int offset)
1268 {
1269 	skb_reset_transport_header(skb);
1270 	skb->transport_header += offset;
1271 }
1272 
1273 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1274 {
1275 	return skb->head + skb->network_header;
1276 }
1277 
1278 static inline void skb_reset_network_header(struct sk_buff *skb)
1279 {
1280 	skb->network_header = skb->data - skb->head;
1281 }
1282 
1283 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1284 {
1285 	skb_reset_network_header(skb);
1286 	skb->network_header += offset;
1287 }
1288 
1289 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1290 {
1291 	return skb->head + skb->mac_header;
1292 }
1293 
1294 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1295 {
1296 	return skb->mac_header != ~0U;
1297 }
1298 
1299 static inline void skb_reset_mac_header(struct sk_buff *skb)
1300 {
1301 	skb->mac_header = skb->data - skb->head;
1302 }
1303 
1304 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1305 {
1306 	skb_reset_mac_header(skb);
1307 	skb->mac_header += offset;
1308 }
1309 
1310 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1311 
1312 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1313 {
1314 	return skb->transport_header;
1315 }
1316 
1317 static inline void skb_reset_transport_header(struct sk_buff *skb)
1318 {
1319 	skb->transport_header = skb->data;
1320 }
1321 
1322 static inline void skb_set_transport_header(struct sk_buff *skb,
1323 					    const int offset)
1324 {
1325 	skb->transport_header = skb->data + offset;
1326 }
1327 
1328 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1329 {
1330 	return skb->network_header;
1331 }
1332 
1333 static inline void skb_reset_network_header(struct sk_buff *skb)
1334 {
1335 	skb->network_header = skb->data;
1336 }
1337 
1338 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1339 {
1340 	skb->network_header = skb->data + offset;
1341 }
1342 
1343 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1344 {
1345 	return skb->mac_header;
1346 }
1347 
1348 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1349 {
1350 	return skb->mac_header != NULL;
1351 }
1352 
1353 static inline void skb_reset_mac_header(struct sk_buff *skb)
1354 {
1355 	skb->mac_header = skb->data;
1356 }
1357 
1358 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1359 {
1360 	skb->mac_header = skb->data + offset;
1361 }
1362 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1363 
1364 static inline int skb_transport_offset(const struct sk_buff *skb)
1365 {
1366 	return skb_transport_header(skb) - skb->data;
1367 }
1368 
1369 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1370 {
1371 	return skb->transport_header - skb->network_header;
1372 }
1373 
1374 static inline int skb_network_offset(const struct sk_buff *skb)
1375 {
1376 	return skb_network_header(skb) - skb->data;
1377 }
1378 
1379 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1380 {
1381 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1382 }
1383 
1384 /*
1385  * CPUs often take a performance hit when accessing unaligned memory
1386  * locations. The actual performance hit varies, it can be small if the
1387  * hardware handles it or large if we have to take an exception and fix it
1388  * in software.
1389  *
1390  * Since an ethernet header is 14 bytes network drivers often end up with
1391  * the IP header at an unaligned offset. The IP header can be aligned by
1392  * shifting the start of the packet by 2 bytes. Drivers should do this
1393  * with:
1394  *
1395  * skb_reserve(skb, NET_IP_ALIGN);
1396  *
1397  * The downside to this alignment of the IP header is that the DMA is now
1398  * unaligned. On some architectures the cost of an unaligned DMA is high
1399  * and this cost outweighs the gains made by aligning the IP header.
1400  *
1401  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1402  * to be overridden.
1403  */
1404 #ifndef NET_IP_ALIGN
1405 #define NET_IP_ALIGN	2
1406 #endif
1407 
1408 /*
1409  * The networking layer reserves some headroom in skb data (via
1410  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1411  * the header has to grow. In the default case, if the header has to grow
1412  * 32 bytes or less we avoid the reallocation.
1413  *
1414  * Unfortunately this headroom changes the DMA alignment of the resulting
1415  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1416  * on some architectures. An architecture can override this value,
1417  * perhaps setting it to a cacheline in size (since that will maintain
1418  * cacheline alignment of the DMA). It must be a power of 2.
1419  *
1420  * Various parts of the networking layer expect at least 32 bytes of
1421  * headroom, you should not reduce this.
1422  *
1423  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1424  * to reduce average number of cache lines per packet.
1425  * get_rps_cpus() for example only access one 64 bytes aligned block :
1426  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1427  */
1428 #ifndef NET_SKB_PAD
1429 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1430 #endif
1431 
1432 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1433 
1434 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1435 {
1436 	if (unlikely(skb->data_len)) {
1437 		WARN_ON(1);
1438 		return;
1439 	}
1440 	skb->len = len;
1441 	skb_set_tail_pointer(skb, len);
1442 }
1443 
1444 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1445 
1446 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1447 {
1448 	if (skb->data_len)
1449 		return ___pskb_trim(skb, len);
1450 	__skb_trim(skb, len);
1451 	return 0;
1452 }
1453 
1454 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1455 {
1456 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1457 }
1458 
1459 /**
1460  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1461  *	@skb: buffer to alter
1462  *	@len: new length
1463  *
1464  *	This is identical to pskb_trim except that the caller knows that
1465  *	the skb is not cloned so we should never get an error due to out-
1466  *	of-memory.
1467  */
1468 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1469 {
1470 	int err = pskb_trim(skb, len);
1471 	BUG_ON(err);
1472 }
1473 
1474 /**
1475  *	skb_orphan - orphan a buffer
1476  *	@skb: buffer to orphan
1477  *
1478  *	If a buffer currently has an owner then we call the owner's
1479  *	destructor function and make the @skb unowned. The buffer continues
1480  *	to exist but is no longer charged to its former owner.
1481  */
1482 static inline void skb_orphan(struct sk_buff *skb)
1483 {
1484 	if (skb->destructor)
1485 		skb->destructor(skb);
1486 	skb->destructor = NULL;
1487 	skb->sk		= NULL;
1488 }
1489 
1490 /**
1491  *	__skb_queue_purge - empty a list
1492  *	@list: list to empty
1493  *
1494  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1495  *	the list and one reference dropped. This function does not take the
1496  *	list lock and the caller must hold the relevant locks to use it.
1497  */
1498 extern void skb_queue_purge(struct sk_buff_head *list);
1499 static inline void __skb_queue_purge(struct sk_buff_head *list)
1500 {
1501 	struct sk_buff *skb;
1502 	while ((skb = __skb_dequeue(list)) != NULL)
1503 		kfree_skb(skb);
1504 }
1505 
1506 /**
1507  *	__dev_alloc_skb - allocate an skbuff for receiving
1508  *	@length: length to allocate
1509  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1510  *
1511  *	Allocate a new &sk_buff and assign it a usage count of one. The
1512  *	buffer has unspecified headroom built in. Users should allocate
1513  *	the headroom they think they need without accounting for the
1514  *	built in space. The built in space is used for optimisations.
1515  *
1516  *	%NULL is returned if there is no free memory.
1517  */
1518 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1519 					      gfp_t gfp_mask)
1520 {
1521 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1522 	if (likely(skb))
1523 		skb_reserve(skb, NET_SKB_PAD);
1524 	return skb;
1525 }
1526 
1527 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1528 
1529 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1530 		unsigned int length, gfp_t gfp_mask);
1531 
1532 /**
1533  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1534  *	@dev: network device to receive on
1535  *	@length: length to allocate
1536  *
1537  *	Allocate a new &sk_buff and assign it a usage count of one. The
1538  *	buffer has unspecified headroom built in. Users should allocate
1539  *	the headroom they think they need without accounting for the
1540  *	built in space. The built in space is used for optimisations.
1541  *
1542  *	%NULL is returned if there is no free memory. Although this function
1543  *	allocates memory it can be called from an interrupt.
1544  */
1545 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1546 		unsigned int length)
1547 {
1548 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1549 }
1550 
1551 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1552 		unsigned int length)
1553 {
1554 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1555 
1556 	if (NET_IP_ALIGN && skb)
1557 		skb_reserve(skb, NET_IP_ALIGN);
1558 	return skb;
1559 }
1560 
1561 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1562 
1563 /**
1564  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1565  *	@dev: network device to receive on
1566  *
1567  * 	Allocate a new page node local to the specified device.
1568  *
1569  * 	%NULL is returned if there is no free memory.
1570  */
1571 static inline struct page *netdev_alloc_page(struct net_device *dev)
1572 {
1573 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1574 }
1575 
1576 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1577 {
1578 	__free_page(page);
1579 }
1580 
1581 /**
1582  *	skb_clone_writable - is the header of a clone writable
1583  *	@skb: buffer to check
1584  *	@len: length up to which to write
1585  *
1586  *	Returns true if modifying the header part of the cloned buffer
1587  *	does not requires the data to be copied.
1588  */
1589 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1590 {
1591 	return !skb_header_cloned(skb) &&
1592 	       skb_headroom(skb) + len <= skb->hdr_len;
1593 }
1594 
1595 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1596 			    int cloned)
1597 {
1598 	int delta = 0;
1599 
1600 	if (headroom < NET_SKB_PAD)
1601 		headroom = NET_SKB_PAD;
1602 	if (headroom > skb_headroom(skb))
1603 		delta = headroom - skb_headroom(skb);
1604 
1605 	if (delta || cloned)
1606 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1607 					GFP_ATOMIC);
1608 	return 0;
1609 }
1610 
1611 /**
1612  *	skb_cow - copy header of skb when it is required
1613  *	@skb: buffer to cow
1614  *	@headroom: needed headroom
1615  *
1616  *	If the skb passed lacks sufficient headroom or its data part
1617  *	is shared, data is reallocated. If reallocation fails, an error
1618  *	is returned and original skb is not changed.
1619  *
1620  *	The result is skb with writable area skb->head...skb->tail
1621  *	and at least @headroom of space at head.
1622  */
1623 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1624 {
1625 	return __skb_cow(skb, headroom, skb_cloned(skb));
1626 }
1627 
1628 /**
1629  *	skb_cow_head - skb_cow but only making the head writable
1630  *	@skb: buffer to cow
1631  *	@headroom: needed headroom
1632  *
1633  *	This function is identical to skb_cow except that we replace the
1634  *	skb_cloned check by skb_header_cloned.  It should be used when
1635  *	you only need to push on some header and do not need to modify
1636  *	the data.
1637  */
1638 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1639 {
1640 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1641 }
1642 
1643 /**
1644  *	skb_padto	- pad an skbuff up to a minimal size
1645  *	@skb: buffer to pad
1646  *	@len: minimal length
1647  *
1648  *	Pads up a buffer to ensure the trailing bytes exist and are
1649  *	blanked. If the buffer already contains sufficient data it
1650  *	is untouched. Otherwise it is extended. Returns zero on
1651  *	success. The skb is freed on error.
1652  */
1653 
1654 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1655 {
1656 	unsigned int size = skb->len;
1657 	if (likely(size >= len))
1658 		return 0;
1659 	return skb_pad(skb, len - size);
1660 }
1661 
1662 static inline int skb_add_data(struct sk_buff *skb,
1663 			       char __user *from, int copy)
1664 {
1665 	const int off = skb->len;
1666 
1667 	if (skb->ip_summed == CHECKSUM_NONE) {
1668 		int err = 0;
1669 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1670 							    copy, 0, &err);
1671 		if (!err) {
1672 			skb->csum = csum_block_add(skb->csum, csum, off);
1673 			return 0;
1674 		}
1675 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1676 		return 0;
1677 
1678 	__skb_trim(skb, off);
1679 	return -EFAULT;
1680 }
1681 
1682 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1683 				   struct page *page, int off)
1684 {
1685 	if (i) {
1686 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1687 
1688 		return page == frag->page &&
1689 		       off == frag->page_offset + frag->size;
1690 	}
1691 	return 0;
1692 }
1693 
1694 static inline int __skb_linearize(struct sk_buff *skb)
1695 {
1696 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1697 }
1698 
1699 /**
1700  *	skb_linearize - convert paged skb to linear one
1701  *	@skb: buffer to linarize
1702  *
1703  *	If there is no free memory -ENOMEM is returned, otherwise zero
1704  *	is returned and the old skb data released.
1705  */
1706 static inline int skb_linearize(struct sk_buff *skb)
1707 {
1708 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1709 }
1710 
1711 /**
1712  *	skb_linearize_cow - make sure skb is linear and writable
1713  *	@skb: buffer to process
1714  *
1715  *	If there is no free memory -ENOMEM is returned, otherwise zero
1716  *	is returned and the old skb data released.
1717  */
1718 static inline int skb_linearize_cow(struct sk_buff *skb)
1719 {
1720 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1721 	       __skb_linearize(skb) : 0;
1722 }
1723 
1724 /**
1725  *	skb_postpull_rcsum - update checksum for received skb after pull
1726  *	@skb: buffer to update
1727  *	@start: start of data before pull
1728  *	@len: length of data pulled
1729  *
1730  *	After doing a pull on a received packet, you need to call this to
1731  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1732  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1733  */
1734 
1735 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1736 				      const void *start, unsigned int len)
1737 {
1738 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1739 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1740 }
1741 
1742 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1743 
1744 /**
1745  *	pskb_trim_rcsum - trim received skb and update checksum
1746  *	@skb: buffer to trim
1747  *	@len: new length
1748  *
1749  *	This is exactly the same as pskb_trim except that it ensures the
1750  *	checksum of received packets are still valid after the operation.
1751  */
1752 
1753 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1754 {
1755 	if (likely(len >= skb->len))
1756 		return 0;
1757 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1758 		skb->ip_summed = CHECKSUM_NONE;
1759 	return __pskb_trim(skb, len);
1760 }
1761 
1762 #define skb_queue_walk(queue, skb) \
1763 		for (skb = (queue)->next;					\
1764 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1765 		     skb = skb->next)
1766 
1767 #define skb_queue_walk_safe(queue, skb, tmp)					\
1768 		for (skb = (queue)->next, tmp = skb->next;			\
1769 		     skb != (struct sk_buff *)(queue);				\
1770 		     skb = tmp, tmp = skb->next)
1771 
1772 #define skb_queue_walk_from(queue, skb)						\
1773 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1774 		     skb = skb->next)
1775 
1776 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1777 		for (tmp = skb->next;						\
1778 		     skb != (struct sk_buff *)(queue);				\
1779 		     skb = tmp, tmp = skb->next)
1780 
1781 #define skb_queue_reverse_walk(queue, skb) \
1782 		for (skb = (queue)->prev;					\
1783 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1784 		     skb = skb->prev)
1785 
1786 
1787 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1788 {
1789 	return skb_shinfo(skb)->frag_list != NULL;
1790 }
1791 
1792 static inline void skb_frag_list_init(struct sk_buff *skb)
1793 {
1794 	skb_shinfo(skb)->frag_list = NULL;
1795 }
1796 
1797 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1798 {
1799 	frag->next = skb_shinfo(skb)->frag_list;
1800 	skb_shinfo(skb)->frag_list = frag;
1801 }
1802 
1803 #define skb_walk_frags(skb, iter)	\
1804 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1805 
1806 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1807 					   int *peeked, int *err);
1808 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1809 					 int noblock, int *err);
1810 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1811 				     struct poll_table_struct *wait);
1812 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1813 					       int offset, struct iovec *to,
1814 					       int size);
1815 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1816 							int hlen,
1817 							struct iovec *iov);
1818 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1819 						    int offset,
1820 						    const struct iovec *from,
1821 						    int from_offset,
1822 						    int len);
1823 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1824 						     int offset,
1825 						     const struct iovec *to,
1826 						     int to_offset,
1827 						     int size);
1828 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1829 extern void	       skb_free_datagram_locked(struct sock *sk,
1830 						struct sk_buff *skb);
1831 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1832 					 unsigned int flags);
1833 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1834 				    int len, __wsum csum);
1835 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1836 				     void *to, int len);
1837 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1838 				      const void *from, int len);
1839 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1840 					      int offset, u8 *to, int len,
1841 					      __wsum csum);
1842 extern int             skb_splice_bits(struct sk_buff *skb,
1843 						unsigned int offset,
1844 						struct pipe_inode_info *pipe,
1845 						unsigned int len,
1846 						unsigned int flags);
1847 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1848 extern void	       skb_split(struct sk_buff *skb,
1849 				 struct sk_buff *skb1, const u32 len);
1850 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1851 				 int shiftlen);
1852 
1853 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1854 
1855 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1856 				       int len, void *buffer)
1857 {
1858 	int hlen = skb_headlen(skb);
1859 
1860 	if (hlen - offset >= len)
1861 		return skb->data + offset;
1862 
1863 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1864 		return NULL;
1865 
1866 	return buffer;
1867 }
1868 
1869 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1870 					     void *to,
1871 					     const unsigned int len)
1872 {
1873 	memcpy(to, skb->data, len);
1874 }
1875 
1876 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1877 						    const int offset, void *to,
1878 						    const unsigned int len)
1879 {
1880 	memcpy(to, skb->data + offset, len);
1881 }
1882 
1883 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1884 					   const void *from,
1885 					   const unsigned int len)
1886 {
1887 	memcpy(skb->data, from, len);
1888 }
1889 
1890 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1891 						  const int offset,
1892 						  const void *from,
1893 						  const unsigned int len)
1894 {
1895 	memcpy(skb->data + offset, from, len);
1896 }
1897 
1898 extern void skb_init(void);
1899 
1900 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1901 {
1902 	return skb->tstamp;
1903 }
1904 
1905 /**
1906  *	skb_get_timestamp - get timestamp from a skb
1907  *	@skb: skb to get stamp from
1908  *	@stamp: pointer to struct timeval to store stamp in
1909  *
1910  *	Timestamps are stored in the skb as offsets to a base timestamp.
1911  *	This function converts the offset back to a struct timeval and stores
1912  *	it in stamp.
1913  */
1914 static inline void skb_get_timestamp(const struct sk_buff *skb,
1915 				     struct timeval *stamp)
1916 {
1917 	*stamp = ktime_to_timeval(skb->tstamp);
1918 }
1919 
1920 static inline void skb_get_timestampns(const struct sk_buff *skb,
1921 				       struct timespec *stamp)
1922 {
1923 	*stamp = ktime_to_timespec(skb->tstamp);
1924 }
1925 
1926 static inline void __net_timestamp(struct sk_buff *skb)
1927 {
1928 	skb->tstamp = ktime_get_real();
1929 }
1930 
1931 static inline ktime_t net_timedelta(ktime_t t)
1932 {
1933 	return ktime_sub(ktime_get_real(), t);
1934 }
1935 
1936 static inline ktime_t net_invalid_timestamp(void)
1937 {
1938 	return ktime_set(0, 0);
1939 }
1940 
1941 extern void skb_timestamping_init(void);
1942 
1943 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1944 
1945 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1946 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1947 
1948 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1949 
1950 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1951 {
1952 }
1953 
1954 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1955 {
1956 	return false;
1957 }
1958 
1959 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1960 
1961 /**
1962  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1963  *
1964  * @skb: clone of the the original outgoing packet
1965  * @hwtstamps: hardware time stamps
1966  *
1967  */
1968 void skb_complete_tx_timestamp(struct sk_buff *skb,
1969 			       struct skb_shared_hwtstamps *hwtstamps);
1970 
1971 /**
1972  * skb_tstamp_tx - queue clone of skb with send time stamps
1973  * @orig_skb:	the original outgoing packet
1974  * @hwtstamps:	hardware time stamps, may be NULL if not available
1975  *
1976  * If the skb has a socket associated, then this function clones the
1977  * skb (thus sharing the actual data and optional structures), stores
1978  * the optional hardware time stamping information (if non NULL) or
1979  * generates a software time stamp (otherwise), then queues the clone
1980  * to the error queue of the socket.  Errors are silently ignored.
1981  */
1982 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1983 			struct skb_shared_hwtstamps *hwtstamps);
1984 
1985 static inline void sw_tx_timestamp(struct sk_buff *skb)
1986 {
1987 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
1988 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
1989 		skb_tstamp_tx(skb, NULL);
1990 }
1991 
1992 /**
1993  * skb_tx_timestamp() - Driver hook for transmit timestamping
1994  *
1995  * Ethernet MAC Drivers should call this function in their hard_xmit()
1996  * function as soon as possible after giving the sk_buff to the MAC
1997  * hardware, but before freeing the sk_buff.
1998  *
1999  * @skb: A socket buffer.
2000  */
2001 static inline void skb_tx_timestamp(struct sk_buff *skb)
2002 {
2003 	skb_clone_tx_timestamp(skb);
2004 	sw_tx_timestamp(skb);
2005 }
2006 
2007 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2008 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2009 
2010 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2011 {
2012 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2013 }
2014 
2015 /**
2016  *	skb_checksum_complete - Calculate checksum of an entire packet
2017  *	@skb: packet to process
2018  *
2019  *	This function calculates the checksum over the entire packet plus
2020  *	the value of skb->csum.  The latter can be used to supply the
2021  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2022  *	checksum.
2023  *
2024  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2025  *	this function can be used to verify that checksum on received
2026  *	packets.  In that case the function should return zero if the
2027  *	checksum is correct.  In particular, this function will return zero
2028  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2029  *	hardware has already verified the correctness of the checksum.
2030  */
2031 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2032 {
2033 	return skb_csum_unnecessary(skb) ?
2034 	       0 : __skb_checksum_complete(skb);
2035 }
2036 
2037 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2038 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2039 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2040 {
2041 	if (nfct && atomic_dec_and_test(&nfct->use))
2042 		nf_conntrack_destroy(nfct);
2043 }
2044 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2045 {
2046 	if (nfct)
2047 		atomic_inc(&nfct->use);
2048 }
2049 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2050 {
2051 	if (skb)
2052 		atomic_inc(&skb->users);
2053 }
2054 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2055 {
2056 	if (skb)
2057 		kfree_skb(skb);
2058 }
2059 #endif
2060 #ifdef CONFIG_BRIDGE_NETFILTER
2061 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2062 {
2063 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2064 		kfree(nf_bridge);
2065 }
2066 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2067 {
2068 	if (nf_bridge)
2069 		atomic_inc(&nf_bridge->use);
2070 }
2071 #endif /* CONFIG_BRIDGE_NETFILTER */
2072 static inline void nf_reset(struct sk_buff *skb)
2073 {
2074 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2075 	nf_conntrack_put(skb->nfct);
2076 	skb->nfct = NULL;
2077 	nf_conntrack_put_reasm(skb->nfct_reasm);
2078 	skb->nfct_reasm = NULL;
2079 #endif
2080 #ifdef CONFIG_BRIDGE_NETFILTER
2081 	nf_bridge_put(skb->nf_bridge);
2082 	skb->nf_bridge = NULL;
2083 #endif
2084 }
2085 
2086 /* Note: This doesn't put any conntrack and bridge info in dst. */
2087 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2088 {
2089 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2090 	dst->nfct = src->nfct;
2091 	nf_conntrack_get(src->nfct);
2092 	dst->nfctinfo = src->nfctinfo;
2093 	dst->nfct_reasm = src->nfct_reasm;
2094 	nf_conntrack_get_reasm(src->nfct_reasm);
2095 #endif
2096 #ifdef CONFIG_BRIDGE_NETFILTER
2097 	dst->nf_bridge  = src->nf_bridge;
2098 	nf_bridge_get(src->nf_bridge);
2099 #endif
2100 }
2101 
2102 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2103 {
2104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2105 	nf_conntrack_put(dst->nfct);
2106 	nf_conntrack_put_reasm(dst->nfct_reasm);
2107 #endif
2108 #ifdef CONFIG_BRIDGE_NETFILTER
2109 	nf_bridge_put(dst->nf_bridge);
2110 #endif
2111 	__nf_copy(dst, src);
2112 }
2113 
2114 #ifdef CONFIG_NETWORK_SECMARK
2115 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2116 {
2117 	to->secmark = from->secmark;
2118 }
2119 
2120 static inline void skb_init_secmark(struct sk_buff *skb)
2121 {
2122 	skb->secmark = 0;
2123 }
2124 #else
2125 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2126 { }
2127 
2128 static inline void skb_init_secmark(struct sk_buff *skb)
2129 { }
2130 #endif
2131 
2132 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2133 {
2134 	skb->queue_mapping = queue_mapping;
2135 }
2136 
2137 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2138 {
2139 	return skb->queue_mapping;
2140 }
2141 
2142 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2143 {
2144 	to->queue_mapping = from->queue_mapping;
2145 }
2146 
2147 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2148 {
2149 	skb->queue_mapping = rx_queue + 1;
2150 }
2151 
2152 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2153 {
2154 	return skb->queue_mapping - 1;
2155 }
2156 
2157 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2158 {
2159 	return (skb->queue_mapping != 0);
2160 }
2161 
2162 extern u16 skb_tx_hash(const struct net_device *dev,
2163 		       const struct sk_buff *skb);
2164 
2165 #ifdef CONFIG_XFRM
2166 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2167 {
2168 	return skb->sp;
2169 }
2170 #else
2171 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2172 {
2173 	return NULL;
2174 }
2175 #endif
2176 
2177 static inline int skb_is_gso(const struct sk_buff *skb)
2178 {
2179 	return skb_shinfo(skb)->gso_size;
2180 }
2181 
2182 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2183 {
2184 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2185 }
2186 
2187 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2188 
2189 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2190 {
2191 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2192 	 * wanted then gso_type will be set. */
2193 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2194 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2195 	    unlikely(shinfo->gso_type == 0)) {
2196 		__skb_warn_lro_forwarding(skb);
2197 		return true;
2198 	}
2199 	return false;
2200 }
2201 
2202 static inline void skb_forward_csum(struct sk_buff *skb)
2203 {
2204 	/* Unfortunately we don't support this one.  Any brave souls? */
2205 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2206 		skb->ip_summed = CHECKSUM_NONE;
2207 }
2208 
2209 /**
2210  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2211  * @skb: skb to check
2212  *
2213  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2214  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2215  * use this helper, to document places where we make this assertion.
2216  */
2217 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2218 {
2219 #ifdef DEBUG
2220 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2221 #endif
2222 }
2223 
2224 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2225 #endif	/* __KERNEL__ */
2226 #endif	/* _LINUX_SKBUFF_H */
2227