1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list */ 126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128 typedef struct skb_frag_struct skb_frag_t; 129 130 struct skb_frag_struct { 131 struct page *page; 132 __u32 page_offset; 133 __u32 size; 134 }; 135 136 #define HAVE_HW_TIME_STAMP 137 138 /** 139 * struct skb_shared_hwtstamps - hardware time stamps 140 * @hwtstamp: hardware time stamp transformed into duration 141 * since arbitrary point in time 142 * @syststamp: hwtstamp transformed to system time base 143 * 144 * Software time stamps generated by ktime_get_real() are stored in 145 * skb->tstamp. The relation between the different kinds of time 146 * stamps is as follows: 147 * 148 * syststamp and tstamp can be compared against each other in 149 * arbitrary combinations. The accuracy of a 150 * syststamp/tstamp/"syststamp from other device" comparison is 151 * limited by the accuracy of the transformation into system time 152 * base. This depends on the device driver and its underlying 153 * hardware. 154 * 155 * hwtstamps can only be compared against other hwtstamps from 156 * the same device. 157 * 158 * This structure is attached to packets as part of the 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 160 */ 161 struct skb_shared_hwtstamps { 162 ktime_t hwtstamp; 163 ktime_t syststamp; 164 }; 165 166 /* Definitions for tx_flags in struct skb_shared_info */ 167 enum { 168 /* generate hardware time stamp */ 169 SKBTX_HW_TSTAMP = 1 << 0, 170 171 /* generate software time stamp */ 172 SKBTX_SW_TSTAMP = 1 << 1, 173 174 /* device driver is going to provide hardware time stamp */ 175 SKBTX_IN_PROGRESS = 1 << 2, 176 177 /* ensure the originating sk reference is available on driver level */ 178 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 179 }; 180 181 /* This data is invariant across clones and lives at 182 * the end of the header data, ie. at skb->end. 183 */ 184 struct skb_shared_info { 185 unsigned short nr_frags; 186 unsigned short gso_size; 187 /* Warning: this field is not always filled in (UFO)! */ 188 unsigned short gso_segs; 189 unsigned short gso_type; 190 __be32 ip6_frag_id; 191 __u8 tx_flags; 192 struct sk_buff *frag_list; 193 struct skb_shared_hwtstamps hwtstamps; 194 195 /* 196 * Warning : all fields before dataref are cleared in __alloc_skb() 197 */ 198 atomic_t dataref; 199 200 /* Intermediate layers must ensure that destructor_arg 201 * remains valid until skb destructor */ 202 void * destructor_arg; 203 /* must be last field, see pskb_expand_head() */ 204 skb_frag_t frags[MAX_SKB_FRAGS]; 205 }; 206 207 /* We divide dataref into two halves. The higher 16 bits hold references 208 * to the payload part of skb->data. The lower 16 bits hold references to 209 * the entire skb->data. A clone of a headerless skb holds the length of 210 * the header in skb->hdr_len. 211 * 212 * All users must obey the rule that the skb->data reference count must be 213 * greater than or equal to the payload reference count. 214 * 215 * Holding a reference to the payload part means that the user does not 216 * care about modifications to the header part of skb->data. 217 */ 218 #define SKB_DATAREF_SHIFT 16 219 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 220 221 222 enum { 223 SKB_FCLONE_UNAVAILABLE, 224 SKB_FCLONE_ORIG, 225 SKB_FCLONE_CLONE, 226 }; 227 228 enum { 229 SKB_GSO_TCPV4 = 1 << 0, 230 SKB_GSO_UDP = 1 << 1, 231 232 /* This indicates the skb is from an untrusted source. */ 233 SKB_GSO_DODGY = 1 << 2, 234 235 /* This indicates the tcp segment has CWR set. */ 236 SKB_GSO_TCP_ECN = 1 << 3, 237 238 SKB_GSO_TCPV6 = 1 << 4, 239 240 SKB_GSO_FCOE = 1 << 5, 241 }; 242 243 #if BITS_PER_LONG > 32 244 #define NET_SKBUFF_DATA_USES_OFFSET 1 245 #endif 246 247 #ifdef NET_SKBUFF_DATA_USES_OFFSET 248 typedef unsigned int sk_buff_data_t; 249 #else 250 typedef unsigned char *sk_buff_data_t; 251 #endif 252 253 /** 254 * struct sk_buff - socket buffer 255 * @next: Next buffer in list 256 * @prev: Previous buffer in list 257 * @sk: Socket we are owned by 258 * @tstamp: Time we arrived 259 * @dev: Device we arrived on/are leaving by 260 * @transport_header: Transport layer header 261 * @network_header: Network layer header 262 * @mac_header: Link layer header 263 * @_skb_refdst: destination entry (with norefcount bit) 264 * @sp: the security path, used for xfrm 265 * @cb: Control buffer. Free for use by every layer. Put private vars here 266 * @len: Length of actual data 267 * @data_len: Data length 268 * @mac_len: Length of link layer header 269 * @hdr_len: writable header length of cloned skb 270 * @csum: Checksum (must include start/offset pair) 271 * @csum_start: Offset from skb->head where checksumming should start 272 * @csum_offset: Offset from csum_start where checksum should be stored 273 * @local_df: allow local fragmentation 274 * @cloned: Head may be cloned (check refcnt to be sure) 275 * @nohdr: Payload reference only, must not modify header 276 * @pkt_type: Packet class 277 * @fclone: skbuff clone status 278 * @ip_summed: Driver fed us an IP checksum 279 * @priority: Packet queueing priority 280 * @users: User count - see {datagram,tcp}.c 281 * @protocol: Packet protocol from driver 282 * @truesize: Buffer size 283 * @head: Head of buffer 284 * @data: Data head pointer 285 * @tail: Tail pointer 286 * @end: End pointer 287 * @destructor: Destruct function 288 * @mark: Generic packet mark 289 * @nfct: Associated connection, if any 290 * @ipvs_property: skbuff is owned by ipvs 291 * @peeked: this packet has been seen already, so stats have been 292 * done for it, don't do them again 293 * @nf_trace: netfilter packet trace flag 294 * @nfctinfo: Relationship of this skb to the connection 295 * @nfct_reasm: netfilter conntrack re-assembly pointer 296 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 297 * @skb_iif: ifindex of device we arrived on 298 * @rxhash: the packet hash computed on receive 299 * @queue_mapping: Queue mapping for multiqueue devices 300 * @tc_index: Traffic control index 301 * @tc_verd: traffic control verdict 302 * @ndisc_nodetype: router type (from link layer) 303 * @dma_cookie: a cookie to one of several possible DMA operations 304 * done by skb DMA functions 305 * @secmark: security marking 306 * @vlan_tci: vlan tag control information 307 */ 308 309 struct sk_buff { 310 /* These two members must be first. */ 311 struct sk_buff *next; 312 struct sk_buff *prev; 313 314 ktime_t tstamp; 315 316 struct sock *sk; 317 struct net_device *dev; 318 319 /* 320 * This is the control buffer. It is free to use for every 321 * layer. Please put your private variables there. If you 322 * want to keep them across layers you have to do a skb_clone() 323 * first. This is owned by whoever has the skb queued ATM. 324 */ 325 char cb[48] __aligned(8); 326 327 unsigned long _skb_refdst; 328 #ifdef CONFIG_XFRM 329 struct sec_path *sp; 330 #endif 331 unsigned int len, 332 data_len; 333 __u16 mac_len, 334 hdr_len; 335 union { 336 __wsum csum; 337 struct { 338 __u16 csum_start; 339 __u16 csum_offset; 340 }; 341 }; 342 __u32 priority; 343 kmemcheck_bitfield_begin(flags1); 344 __u8 local_df:1, 345 cloned:1, 346 ip_summed:2, 347 nohdr:1, 348 nfctinfo:3; 349 __u8 pkt_type:3, 350 fclone:2, 351 ipvs_property:1, 352 peeked:1, 353 nf_trace:1; 354 kmemcheck_bitfield_end(flags1); 355 __be16 protocol; 356 357 void (*destructor)(struct sk_buff *skb); 358 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 359 struct nf_conntrack *nfct; 360 struct sk_buff *nfct_reasm; 361 #endif 362 #ifdef CONFIG_BRIDGE_NETFILTER 363 struct nf_bridge_info *nf_bridge; 364 #endif 365 366 int skb_iif; 367 #ifdef CONFIG_NET_SCHED 368 __u16 tc_index; /* traffic control index */ 369 #ifdef CONFIG_NET_CLS_ACT 370 __u16 tc_verd; /* traffic control verdict */ 371 #endif 372 #endif 373 374 __u32 rxhash; 375 376 kmemcheck_bitfield_begin(flags2); 377 __u16 queue_mapping:16; 378 #ifdef CONFIG_IPV6_NDISC_NODETYPE 379 __u8 ndisc_nodetype:2, 380 deliver_no_wcard:1; 381 #else 382 __u8 deliver_no_wcard:1; 383 #endif 384 kmemcheck_bitfield_end(flags2); 385 386 /* 0/14 bit hole */ 387 388 #ifdef CONFIG_NET_DMA 389 dma_cookie_t dma_cookie; 390 #endif 391 #ifdef CONFIG_NETWORK_SECMARK 392 __u32 secmark; 393 #endif 394 union { 395 __u32 mark; 396 __u32 dropcount; 397 }; 398 399 __u16 vlan_tci; 400 401 sk_buff_data_t transport_header; 402 sk_buff_data_t network_header; 403 sk_buff_data_t mac_header; 404 /* These elements must be at the end, see alloc_skb() for details. */ 405 sk_buff_data_t tail; 406 sk_buff_data_t end; 407 unsigned char *head, 408 *data; 409 unsigned int truesize; 410 atomic_t users; 411 }; 412 413 #ifdef __KERNEL__ 414 /* 415 * Handling routines are only of interest to the kernel 416 */ 417 #include <linux/slab.h> 418 419 #include <asm/system.h> 420 421 /* 422 * skb might have a dst pointer attached, refcounted or not. 423 * _skb_refdst low order bit is set if refcount was _not_ taken 424 */ 425 #define SKB_DST_NOREF 1UL 426 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 427 428 /** 429 * skb_dst - returns skb dst_entry 430 * @skb: buffer 431 * 432 * Returns skb dst_entry, regardless of reference taken or not. 433 */ 434 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 435 { 436 /* If refdst was not refcounted, check we still are in a 437 * rcu_read_lock section 438 */ 439 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 440 !rcu_read_lock_held() && 441 !rcu_read_lock_bh_held()); 442 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 443 } 444 445 /** 446 * skb_dst_set - sets skb dst 447 * @skb: buffer 448 * @dst: dst entry 449 * 450 * Sets skb dst, assuming a reference was taken on dst and should 451 * be released by skb_dst_drop() 452 */ 453 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 454 { 455 skb->_skb_refdst = (unsigned long)dst; 456 } 457 458 /** 459 * skb_dst_set_noref - sets skb dst, without a reference 460 * @skb: buffer 461 * @dst: dst entry 462 * 463 * Sets skb dst, assuming a reference was not taken on dst 464 * skb_dst_drop() should not dst_release() this dst 465 */ 466 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 467 { 468 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 469 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 470 } 471 472 /** 473 * skb_dst_is_noref - Test if skb dst isnt refcounted 474 * @skb: buffer 475 */ 476 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 477 { 478 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 479 } 480 481 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 482 { 483 return (struct rtable *)skb_dst(skb); 484 } 485 486 extern void kfree_skb(struct sk_buff *skb); 487 extern void consume_skb(struct sk_buff *skb); 488 extern void __kfree_skb(struct sk_buff *skb); 489 extern struct sk_buff *__alloc_skb(unsigned int size, 490 gfp_t priority, int fclone, int node); 491 static inline struct sk_buff *alloc_skb(unsigned int size, 492 gfp_t priority) 493 { 494 return __alloc_skb(size, priority, 0, -1); 495 } 496 497 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 498 gfp_t priority) 499 { 500 return __alloc_skb(size, priority, 1, -1); 501 } 502 503 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 504 505 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 506 extern struct sk_buff *skb_clone(struct sk_buff *skb, 507 gfp_t priority); 508 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 509 gfp_t priority); 510 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 511 gfp_t gfp_mask); 512 extern int pskb_expand_head(struct sk_buff *skb, 513 int nhead, int ntail, 514 gfp_t gfp_mask); 515 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 516 unsigned int headroom); 517 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 518 int newheadroom, int newtailroom, 519 gfp_t priority); 520 extern int skb_to_sgvec(struct sk_buff *skb, 521 struct scatterlist *sg, int offset, 522 int len); 523 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 524 struct sk_buff **trailer); 525 extern int skb_pad(struct sk_buff *skb, int pad); 526 #define dev_kfree_skb(a) consume_skb(a) 527 528 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 529 int getfrag(void *from, char *to, int offset, 530 int len,int odd, struct sk_buff *skb), 531 void *from, int length); 532 533 struct skb_seq_state { 534 __u32 lower_offset; 535 __u32 upper_offset; 536 __u32 frag_idx; 537 __u32 stepped_offset; 538 struct sk_buff *root_skb; 539 struct sk_buff *cur_skb; 540 __u8 *frag_data; 541 }; 542 543 extern void skb_prepare_seq_read(struct sk_buff *skb, 544 unsigned int from, unsigned int to, 545 struct skb_seq_state *st); 546 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 547 struct skb_seq_state *st); 548 extern void skb_abort_seq_read(struct skb_seq_state *st); 549 550 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 551 unsigned int to, struct ts_config *config, 552 struct ts_state *state); 553 554 extern __u32 __skb_get_rxhash(struct sk_buff *skb); 555 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 556 { 557 if (!skb->rxhash) 558 skb->rxhash = __skb_get_rxhash(skb); 559 560 return skb->rxhash; 561 } 562 563 #ifdef NET_SKBUFF_DATA_USES_OFFSET 564 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 565 { 566 return skb->head + skb->end; 567 } 568 #else 569 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 570 { 571 return skb->end; 572 } 573 #endif 574 575 /* Internal */ 576 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 577 578 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 579 { 580 return &skb_shinfo(skb)->hwtstamps; 581 } 582 583 /** 584 * skb_queue_empty - check if a queue is empty 585 * @list: queue head 586 * 587 * Returns true if the queue is empty, false otherwise. 588 */ 589 static inline int skb_queue_empty(const struct sk_buff_head *list) 590 { 591 return list->next == (struct sk_buff *)list; 592 } 593 594 /** 595 * skb_queue_is_last - check if skb is the last entry in the queue 596 * @list: queue head 597 * @skb: buffer 598 * 599 * Returns true if @skb is the last buffer on the list. 600 */ 601 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 602 const struct sk_buff *skb) 603 { 604 return (skb->next == (struct sk_buff *) list); 605 } 606 607 /** 608 * skb_queue_is_first - check if skb is the first entry in the queue 609 * @list: queue head 610 * @skb: buffer 611 * 612 * Returns true if @skb is the first buffer on the list. 613 */ 614 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 615 const struct sk_buff *skb) 616 { 617 return (skb->prev == (struct sk_buff *) list); 618 } 619 620 /** 621 * skb_queue_next - return the next packet in the queue 622 * @list: queue head 623 * @skb: current buffer 624 * 625 * Return the next packet in @list after @skb. It is only valid to 626 * call this if skb_queue_is_last() evaluates to false. 627 */ 628 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 629 const struct sk_buff *skb) 630 { 631 /* This BUG_ON may seem severe, but if we just return then we 632 * are going to dereference garbage. 633 */ 634 BUG_ON(skb_queue_is_last(list, skb)); 635 return skb->next; 636 } 637 638 /** 639 * skb_queue_prev - return the prev packet in the queue 640 * @list: queue head 641 * @skb: current buffer 642 * 643 * Return the prev packet in @list before @skb. It is only valid to 644 * call this if skb_queue_is_first() evaluates to false. 645 */ 646 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 647 const struct sk_buff *skb) 648 { 649 /* This BUG_ON may seem severe, but if we just return then we 650 * are going to dereference garbage. 651 */ 652 BUG_ON(skb_queue_is_first(list, skb)); 653 return skb->prev; 654 } 655 656 /** 657 * skb_get - reference buffer 658 * @skb: buffer to reference 659 * 660 * Makes another reference to a socket buffer and returns a pointer 661 * to the buffer. 662 */ 663 static inline struct sk_buff *skb_get(struct sk_buff *skb) 664 { 665 atomic_inc(&skb->users); 666 return skb; 667 } 668 669 /* 670 * If users == 1, we are the only owner and are can avoid redundant 671 * atomic change. 672 */ 673 674 /** 675 * skb_cloned - is the buffer a clone 676 * @skb: buffer to check 677 * 678 * Returns true if the buffer was generated with skb_clone() and is 679 * one of multiple shared copies of the buffer. Cloned buffers are 680 * shared data so must not be written to under normal circumstances. 681 */ 682 static inline int skb_cloned(const struct sk_buff *skb) 683 { 684 return skb->cloned && 685 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 686 } 687 688 /** 689 * skb_header_cloned - is the header a clone 690 * @skb: buffer to check 691 * 692 * Returns true if modifying the header part of the buffer requires 693 * the data to be copied. 694 */ 695 static inline int skb_header_cloned(const struct sk_buff *skb) 696 { 697 int dataref; 698 699 if (!skb->cloned) 700 return 0; 701 702 dataref = atomic_read(&skb_shinfo(skb)->dataref); 703 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 704 return dataref != 1; 705 } 706 707 /** 708 * skb_header_release - release reference to header 709 * @skb: buffer to operate on 710 * 711 * Drop a reference to the header part of the buffer. This is done 712 * by acquiring a payload reference. You must not read from the header 713 * part of skb->data after this. 714 */ 715 static inline void skb_header_release(struct sk_buff *skb) 716 { 717 BUG_ON(skb->nohdr); 718 skb->nohdr = 1; 719 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 720 } 721 722 /** 723 * skb_shared - is the buffer shared 724 * @skb: buffer to check 725 * 726 * Returns true if more than one person has a reference to this 727 * buffer. 728 */ 729 static inline int skb_shared(const struct sk_buff *skb) 730 { 731 return atomic_read(&skb->users) != 1; 732 } 733 734 /** 735 * skb_share_check - check if buffer is shared and if so clone it 736 * @skb: buffer to check 737 * @pri: priority for memory allocation 738 * 739 * If the buffer is shared the buffer is cloned and the old copy 740 * drops a reference. A new clone with a single reference is returned. 741 * If the buffer is not shared the original buffer is returned. When 742 * being called from interrupt status or with spinlocks held pri must 743 * be GFP_ATOMIC. 744 * 745 * NULL is returned on a memory allocation failure. 746 */ 747 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 748 gfp_t pri) 749 { 750 might_sleep_if(pri & __GFP_WAIT); 751 if (skb_shared(skb)) { 752 struct sk_buff *nskb = skb_clone(skb, pri); 753 kfree_skb(skb); 754 skb = nskb; 755 } 756 return skb; 757 } 758 759 /* 760 * Copy shared buffers into a new sk_buff. We effectively do COW on 761 * packets to handle cases where we have a local reader and forward 762 * and a couple of other messy ones. The normal one is tcpdumping 763 * a packet thats being forwarded. 764 */ 765 766 /** 767 * skb_unshare - make a copy of a shared buffer 768 * @skb: buffer to check 769 * @pri: priority for memory allocation 770 * 771 * If the socket buffer is a clone then this function creates a new 772 * copy of the data, drops a reference count on the old copy and returns 773 * the new copy with the reference count at 1. If the buffer is not a clone 774 * the original buffer is returned. When called with a spinlock held or 775 * from interrupt state @pri must be %GFP_ATOMIC 776 * 777 * %NULL is returned on a memory allocation failure. 778 */ 779 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 780 gfp_t pri) 781 { 782 might_sleep_if(pri & __GFP_WAIT); 783 if (skb_cloned(skb)) { 784 struct sk_buff *nskb = skb_copy(skb, pri); 785 kfree_skb(skb); /* Free our shared copy */ 786 skb = nskb; 787 } 788 return skb; 789 } 790 791 /** 792 * skb_peek - peek at the head of an &sk_buff_head 793 * @list_: list to peek at 794 * 795 * Peek an &sk_buff. Unlike most other operations you _MUST_ 796 * be careful with this one. A peek leaves the buffer on the 797 * list and someone else may run off with it. You must hold 798 * the appropriate locks or have a private queue to do this. 799 * 800 * Returns %NULL for an empty list or a pointer to the head element. 801 * The reference count is not incremented and the reference is therefore 802 * volatile. Use with caution. 803 */ 804 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 805 { 806 struct sk_buff *list = ((struct sk_buff *)list_)->next; 807 if (list == (struct sk_buff *)list_) 808 list = NULL; 809 return list; 810 } 811 812 /** 813 * skb_peek_tail - peek at the tail of an &sk_buff_head 814 * @list_: list to peek at 815 * 816 * Peek an &sk_buff. Unlike most other operations you _MUST_ 817 * be careful with this one. A peek leaves the buffer on the 818 * list and someone else may run off with it. You must hold 819 * the appropriate locks or have a private queue to do this. 820 * 821 * Returns %NULL for an empty list or a pointer to the tail element. 822 * The reference count is not incremented and the reference is therefore 823 * volatile. Use with caution. 824 */ 825 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 826 { 827 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 828 if (list == (struct sk_buff *)list_) 829 list = NULL; 830 return list; 831 } 832 833 /** 834 * skb_queue_len - get queue length 835 * @list_: list to measure 836 * 837 * Return the length of an &sk_buff queue. 838 */ 839 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 840 { 841 return list_->qlen; 842 } 843 844 /** 845 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 846 * @list: queue to initialize 847 * 848 * This initializes only the list and queue length aspects of 849 * an sk_buff_head object. This allows to initialize the list 850 * aspects of an sk_buff_head without reinitializing things like 851 * the spinlock. It can also be used for on-stack sk_buff_head 852 * objects where the spinlock is known to not be used. 853 */ 854 static inline void __skb_queue_head_init(struct sk_buff_head *list) 855 { 856 list->prev = list->next = (struct sk_buff *)list; 857 list->qlen = 0; 858 } 859 860 /* 861 * This function creates a split out lock class for each invocation; 862 * this is needed for now since a whole lot of users of the skb-queue 863 * infrastructure in drivers have different locking usage (in hardirq) 864 * than the networking core (in softirq only). In the long run either the 865 * network layer or drivers should need annotation to consolidate the 866 * main types of usage into 3 classes. 867 */ 868 static inline void skb_queue_head_init(struct sk_buff_head *list) 869 { 870 spin_lock_init(&list->lock); 871 __skb_queue_head_init(list); 872 } 873 874 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 875 struct lock_class_key *class) 876 { 877 skb_queue_head_init(list); 878 lockdep_set_class(&list->lock, class); 879 } 880 881 /* 882 * Insert an sk_buff on a list. 883 * 884 * The "__skb_xxxx()" functions are the non-atomic ones that 885 * can only be called with interrupts disabled. 886 */ 887 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 888 static inline void __skb_insert(struct sk_buff *newsk, 889 struct sk_buff *prev, struct sk_buff *next, 890 struct sk_buff_head *list) 891 { 892 newsk->next = next; 893 newsk->prev = prev; 894 next->prev = prev->next = newsk; 895 list->qlen++; 896 } 897 898 static inline void __skb_queue_splice(const struct sk_buff_head *list, 899 struct sk_buff *prev, 900 struct sk_buff *next) 901 { 902 struct sk_buff *first = list->next; 903 struct sk_buff *last = list->prev; 904 905 first->prev = prev; 906 prev->next = first; 907 908 last->next = next; 909 next->prev = last; 910 } 911 912 /** 913 * skb_queue_splice - join two skb lists, this is designed for stacks 914 * @list: the new list to add 915 * @head: the place to add it in the first list 916 */ 917 static inline void skb_queue_splice(const struct sk_buff_head *list, 918 struct sk_buff_head *head) 919 { 920 if (!skb_queue_empty(list)) { 921 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 922 head->qlen += list->qlen; 923 } 924 } 925 926 /** 927 * skb_queue_splice - join two skb lists and reinitialise the emptied list 928 * @list: the new list to add 929 * @head: the place to add it in the first list 930 * 931 * The list at @list is reinitialised 932 */ 933 static inline void skb_queue_splice_init(struct sk_buff_head *list, 934 struct sk_buff_head *head) 935 { 936 if (!skb_queue_empty(list)) { 937 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 938 head->qlen += list->qlen; 939 __skb_queue_head_init(list); 940 } 941 } 942 943 /** 944 * skb_queue_splice_tail - join two skb lists, each list being a queue 945 * @list: the new list to add 946 * @head: the place to add it in the first list 947 */ 948 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 949 struct sk_buff_head *head) 950 { 951 if (!skb_queue_empty(list)) { 952 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 953 head->qlen += list->qlen; 954 } 955 } 956 957 /** 958 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 959 * @list: the new list to add 960 * @head: the place to add it in the first list 961 * 962 * Each of the lists is a queue. 963 * The list at @list is reinitialised 964 */ 965 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 966 struct sk_buff_head *head) 967 { 968 if (!skb_queue_empty(list)) { 969 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 970 head->qlen += list->qlen; 971 __skb_queue_head_init(list); 972 } 973 } 974 975 /** 976 * __skb_queue_after - queue a buffer at the list head 977 * @list: list to use 978 * @prev: place after this buffer 979 * @newsk: buffer to queue 980 * 981 * Queue a buffer int the middle of a list. This function takes no locks 982 * and you must therefore hold required locks before calling it. 983 * 984 * A buffer cannot be placed on two lists at the same time. 985 */ 986 static inline void __skb_queue_after(struct sk_buff_head *list, 987 struct sk_buff *prev, 988 struct sk_buff *newsk) 989 { 990 __skb_insert(newsk, prev, prev->next, list); 991 } 992 993 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 994 struct sk_buff_head *list); 995 996 static inline void __skb_queue_before(struct sk_buff_head *list, 997 struct sk_buff *next, 998 struct sk_buff *newsk) 999 { 1000 __skb_insert(newsk, next->prev, next, list); 1001 } 1002 1003 /** 1004 * __skb_queue_head - queue a buffer at the list head 1005 * @list: list to use 1006 * @newsk: buffer to queue 1007 * 1008 * Queue a buffer at the start of a list. This function takes no locks 1009 * and you must therefore hold required locks before calling it. 1010 * 1011 * A buffer cannot be placed on two lists at the same time. 1012 */ 1013 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1014 static inline void __skb_queue_head(struct sk_buff_head *list, 1015 struct sk_buff *newsk) 1016 { 1017 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1018 } 1019 1020 /** 1021 * __skb_queue_tail - queue a buffer at the list tail 1022 * @list: list to use 1023 * @newsk: buffer to queue 1024 * 1025 * Queue a buffer at the end of a list. This function takes no locks 1026 * and you must therefore hold required locks before calling it. 1027 * 1028 * A buffer cannot be placed on two lists at the same time. 1029 */ 1030 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1031 static inline void __skb_queue_tail(struct sk_buff_head *list, 1032 struct sk_buff *newsk) 1033 { 1034 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1035 } 1036 1037 /* 1038 * remove sk_buff from list. _Must_ be called atomically, and with 1039 * the list known.. 1040 */ 1041 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1042 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1043 { 1044 struct sk_buff *next, *prev; 1045 1046 list->qlen--; 1047 next = skb->next; 1048 prev = skb->prev; 1049 skb->next = skb->prev = NULL; 1050 next->prev = prev; 1051 prev->next = next; 1052 } 1053 1054 /** 1055 * __skb_dequeue - remove from the head of the queue 1056 * @list: list to dequeue from 1057 * 1058 * Remove the head of the list. This function does not take any locks 1059 * so must be used with appropriate locks held only. The head item is 1060 * returned or %NULL if the list is empty. 1061 */ 1062 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1063 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1064 { 1065 struct sk_buff *skb = skb_peek(list); 1066 if (skb) 1067 __skb_unlink(skb, list); 1068 return skb; 1069 } 1070 1071 /** 1072 * __skb_dequeue_tail - remove from the tail of the queue 1073 * @list: list to dequeue from 1074 * 1075 * Remove the tail of the list. This function does not take any locks 1076 * so must be used with appropriate locks held only. The tail item is 1077 * returned or %NULL if the list is empty. 1078 */ 1079 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1080 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1081 { 1082 struct sk_buff *skb = skb_peek_tail(list); 1083 if (skb) 1084 __skb_unlink(skb, list); 1085 return skb; 1086 } 1087 1088 1089 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1090 { 1091 return skb->data_len; 1092 } 1093 1094 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1095 { 1096 return skb->len - skb->data_len; 1097 } 1098 1099 static inline int skb_pagelen(const struct sk_buff *skb) 1100 { 1101 int i, len = 0; 1102 1103 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1104 len += skb_shinfo(skb)->frags[i].size; 1105 return len + skb_headlen(skb); 1106 } 1107 1108 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1109 struct page *page, int off, int size) 1110 { 1111 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1112 1113 frag->page = page; 1114 frag->page_offset = off; 1115 frag->size = size; 1116 skb_shinfo(skb)->nr_frags = i + 1; 1117 } 1118 1119 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1120 int off, int size); 1121 1122 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1123 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1124 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1125 1126 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1127 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1128 { 1129 return skb->head + skb->tail; 1130 } 1131 1132 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1133 { 1134 skb->tail = skb->data - skb->head; 1135 } 1136 1137 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1138 { 1139 skb_reset_tail_pointer(skb); 1140 skb->tail += offset; 1141 } 1142 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1143 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1144 { 1145 return skb->tail; 1146 } 1147 1148 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1149 { 1150 skb->tail = skb->data; 1151 } 1152 1153 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1154 { 1155 skb->tail = skb->data + offset; 1156 } 1157 1158 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1159 1160 /* 1161 * Add data to an sk_buff 1162 */ 1163 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1164 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1165 { 1166 unsigned char *tmp = skb_tail_pointer(skb); 1167 SKB_LINEAR_ASSERT(skb); 1168 skb->tail += len; 1169 skb->len += len; 1170 return tmp; 1171 } 1172 1173 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1174 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1175 { 1176 skb->data -= len; 1177 skb->len += len; 1178 return skb->data; 1179 } 1180 1181 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1182 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1183 { 1184 skb->len -= len; 1185 BUG_ON(skb->len < skb->data_len); 1186 return skb->data += len; 1187 } 1188 1189 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1190 { 1191 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1192 } 1193 1194 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1195 1196 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1197 { 1198 if (len > skb_headlen(skb) && 1199 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1200 return NULL; 1201 skb->len -= len; 1202 return skb->data += len; 1203 } 1204 1205 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1206 { 1207 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1208 } 1209 1210 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1211 { 1212 if (likely(len <= skb_headlen(skb))) 1213 return 1; 1214 if (unlikely(len > skb->len)) 1215 return 0; 1216 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1217 } 1218 1219 /** 1220 * skb_headroom - bytes at buffer head 1221 * @skb: buffer to check 1222 * 1223 * Return the number of bytes of free space at the head of an &sk_buff. 1224 */ 1225 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1226 { 1227 return skb->data - skb->head; 1228 } 1229 1230 /** 1231 * skb_tailroom - bytes at buffer end 1232 * @skb: buffer to check 1233 * 1234 * Return the number of bytes of free space at the tail of an sk_buff 1235 */ 1236 static inline int skb_tailroom(const struct sk_buff *skb) 1237 { 1238 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1239 } 1240 1241 /** 1242 * skb_reserve - adjust headroom 1243 * @skb: buffer to alter 1244 * @len: bytes to move 1245 * 1246 * Increase the headroom of an empty &sk_buff by reducing the tail 1247 * room. This is only allowed for an empty buffer. 1248 */ 1249 static inline void skb_reserve(struct sk_buff *skb, int len) 1250 { 1251 skb->data += len; 1252 skb->tail += len; 1253 } 1254 1255 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1256 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1257 { 1258 return skb->head + skb->transport_header; 1259 } 1260 1261 static inline void skb_reset_transport_header(struct sk_buff *skb) 1262 { 1263 skb->transport_header = skb->data - skb->head; 1264 } 1265 1266 static inline void skb_set_transport_header(struct sk_buff *skb, 1267 const int offset) 1268 { 1269 skb_reset_transport_header(skb); 1270 skb->transport_header += offset; 1271 } 1272 1273 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1274 { 1275 return skb->head + skb->network_header; 1276 } 1277 1278 static inline void skb_reset_network_header(struct sk_buff *skb) 1279 { 1280 skb->network_header = skb->data - skb->head; 1281 } 1282 1283 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1284 { 1285 skb_reset_network_header(skb); 1286 skb->network_header += offset; 1287 } 1288 1289 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1290 { 1291 return skb->head + skb->mac_header; 1292 } 1293 1294 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1295 { 1296 return skb->mac_header != ~0U; 1297 } 1298 1299 static inline void skb_reset_mac_header(struct sk_buff *skb) 1300 { 1301 skb->mac_header = skb->data - skb->head; 1302 } 1303 1304 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1305 { 1306 skb_reset_mac_header(skb); 1307 skb->mac_header += offset; 1308 } 1309 1310 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1311 1312 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1313 { 1314 return skb->transport_header; 1315 } 1316 1317 static inline void skb_reset_transport_header(struct sk_buff *skb) 1318 { 1319 skb->transport_header = skb->data; 1320 } 1321 1322 static inline void skb_set_transport_header(struct sk_buff *skb, 1323 const int offset) 1324 { 1325 skb->transport_header = skb->data + offset; 1326 } 1327 1328 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1329 { 1330 return skb->network_header; 1331 } 1332 1333 static inline void skb_reset_network_header(struct sk_buff *skb) 1334 { 1335 skb->network_header = skb->data; 1336 } 1337 1338 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1339 { 1340 skb->network_header = skb->data + offset; 1341 } 1342 1343 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1344 { 1345 return skb->mac_header; 1346 } 1347 1348 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1349 { 1350 return skb->mac_header != NULL; 1351 } 1352 1353 static inline void skb_reset_mac_header(struct sk_buff *skb) 1354 { 1355 skb->mac_header = skb->data; 1356 } 1357 1358 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1359 { 1360 skb->mac_header = skb->data + offset; 1361 } 1362 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1363 1364 static inline int skb_transport_offset(const struct sk_buff *skb) 1365 { 1366 return skb_transport_header(skb) - skb->data; 1367 } 1368 1369 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1370 { 1371 return skb->transport_header - skb->network_header; 1372 } 1373 1374 static inline int skb_network_offset(const struct sk_buff *skb) 1375 { 1376 return skb_network_header(skb) - skb->data; 1377 } 1378 1379 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1380 { 1381 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1382 } 1383 1384 /* 1385 * CPUs often take a performance hit when accessing unaligned memory 1386 * locations. The actual performance hit varies, it can be small if the 1387 * hardware handles it or large if we have to take an exception and fix it 1388 * in software. 1389 * 1390 * Since an ethernet header is 14 bytes network drivers often end up with 1391 * the IP header at an unaligned offset. The IP header can be aligned by 1392 * shifting the start of the packet by 2 bytes. Drivers should do this 1393 * with: 1394 * 1395 * skb_reserve(skb, NET_IP_ALIGN); 1396 * 1397 * The downside to this alignment of the IP header is that the DMA is now 1398 * unaligned. On some architectures the cost of an unaligned DMA is high 1399 * and this cost outweighs the gains made by aligning the IP header. 1400 * 1401 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1402 * to be overridden. 1403 */ 1404 #ifndef NET_IP_ALIGN 1405 #define NET_IP_ALIGN 2 1406 #endif 1407 1408 /* 1409 * The networking layer reserves some headroom in skb data (via 1410 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1411 * the header has to grow. In the default case, if the header has to grow 1412 * 32 bytes or less we avoid the reallocation. 1413 * 1414 * Unfortunately this headroom changes the DMA alignment of the resulting 1415 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1416 * on some architectures. An architecture can override this value, 1417 * perhaps setting it to a cacheline in size (since that will maintain 1418 * cacheline alignment of the DMA). It must be a power of 2. 1419 * 1420 * Various parts of the networking layer expect at least 32 bytes of 1421 * headroom, you should not reduce this. 1422 * 1423 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1424 * to reduce average number of cache lines per packet. 1425 * get_rps_cpus() for example only access one 64 bytes aligned block : 1426 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1427 */ 1428 #ifndef NET_SKB_PAD 1429 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1430 #endif 1431 1432 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1433 1434 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1435 { 1436 if (unlikely(skb->data_len)) { 1437 WARN_ON(1); 1438 return; 1439 } 1440 skb->len = len; 1441 skb_set_tail_pointer(skb, len); 1442 } 1443 1444 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1445 1446 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1447 { 1448 if (skb->data_len) 1449 return ___pskb_trim(skb, len); 1450 __skb_trim(skb, len); 1451 return 0; 1452 } 1453 1454 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1455 { 1456 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1457 } 1458 1459 /** 1460 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1461 * @skb: buffer to alter 1462 * @len: new length 1463 * 1464 * This is identical to pskb_trim except that the caller knows that 1465 * the skb is not cloned so we should never get an error due to out- 1466 * of-memory. 1467 */ 1468 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1469 { 1470 int err = pskb_trim(skb, len); 1471 BUG_ON(err); 1472 } 1473 1474 /** 1475 * skb_orphan - orphan a buffer 1476 * @skb: buffer to orphan 1477 * 1478 * If a buffer currently has an owner then we call the owner's 1479 * destructor function and make the @skb unowned. The buffer continues 1480 * to exist but is no longer charged to its former owner. 1481 */ 1482 static inline void skb_orphan(struct sk_buff *skb) 1483 { 1484 if (skb->destructor) 1485 skb->destructor(skb); 1486 skb->destructor = NULL; 1487 skb->sk = NULL; 1488 } 1489 1490 /** 1491 * __skb_queue_purge - empty a list 1492 * @list: list to empty 1493 * 1494 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1495 * the list and one reference dropped. This function does not take the 1496 * list lock and the caller must hold the relevant locks to use it. 1497 */ 1498 extern void skb_queue_purge(struct sk_buff_head *list); 1499 static inline void __skb_queue_purge(struct sk_buff_head *list) 1500 { 1501 struct sk_buff *skb; 1502 while ((skb = __skb_dequeue(list)) != NULL) 1503 kfree_skb(skb); 1504 } 1505 1506 /** 1507 * __dev_alloc_skb - allocate an skbuff for receiving 1508 * @length: length to allocate 1509 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1510 * 1511 * Allocate a new &sk_buff and assign it a usage count of one. The 1512 * buffer has unspecified headroom built in. Users should allocate 1513 * the headroom they think they need without accounting for the 1514 * built in space. The built in space is used for optimisations. 1515 * 1516 * %NULL is returned if there is no free memory. 1517 */ 1518 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1519 gfp_t gfp_mask) 1520 { 1521 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1522 if (likely(skb)) 1523 skb_reserve(skb, NET_SKB_PAD); 1524 return skb; 1525 } 1526 1527 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1528 1529 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1530 unsigned int length, gfp_t gfp_mask); 1531 1532 /** 1533 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1534 * @dev: network device to receive on 1535 * @length: length to allocate 1536 * 1537 * Allocate a new &sk_buff and assign it a usage count of one. The 1538 * buffer has unspecified headroom built in. Users should allocate 1539 * the headroom they think they need without accounting for the 1540 * built in space. The built in space is used for optimisations. 1541 * 1542 * %NULL is returned if there is no free memory. Although this function 1543 * allocates memory it can be called from an interrupt. 1544 */ 1545 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1546 unsigned int length) 1547 { 1548 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1549 } 1550 1551 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1552 unsigned int length) 1553 { 1554 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1555 1556 if (NET_IP_ALIGN && skb) 1557 skb_reserve(skb, NET_IP_ALIGN); 1558 return skb; 1559 } 1560 1561 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1562 1563 /** 1564 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1565 * @dev: network device to receive on 1566 * 1567 * Allocate a new page node local to the specified device. 1568 * 1569 * %NULL is returned if there is no free memory. 1570 */ 1571 static inline struct page *netdev_alloc_page(struct net_device *dev) 1572 { 1573 return __netdev_alloc_page(dev, GFP_ATOMIC); 1574 } 1575 1576 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1577 { 1578 __free_page(page); 1579 } 1580 1581 /** 1582 * skb_clone_writable - is the header of a clone writable 1583 * @skb: buffer to check 1584 * @len: length up to which to write 1585 * 1586 * Returns true if modifying the header part of the cloned buffer 1587 * does not requires the data to be copied. 1588 */ 1589 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1590 { 1591 return !skb_header_cloned(skb) && 1592 skb_headroom(skb) + len <= skb->hdr_len; 1593 } 1594 1595 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1596 int cloned) 1597 { 1598 int delta = 0; 1599 1600 if (headroom < NET_SKB_PAD) 1601 headroom = NET_SKB_PAD; 1602 if (headroom > skb_headroom(skb)) 1603 delta = headroom - skb_headroom(skb); 1604 1605 if (delta || cloned) 1606 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1607 GFP_ATOMIC); 1608 return 0; 1609 } 1610 1611 /** 1612 * skb_cow - copy header of skb when it is required 1613 * @skb: buffer to cow 1614 * @headroom: needed headroom 1615 * 1616 * If the skb passed lacks sufficient headroom or its data part 1617 * is shared, data is reallocated. If reallocation fails, an error 1618 * is returned and original skb is not changed. 1619 * 1620 * The result is skb with writable area skb->head...skb->tail 1621 * and at least @headroom of space at head. 1622 */ 1623 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1624 { 1625 return __skb_cow(skb, headroom, skb_cloned(skb)); 1626 } 1627 1628 /** 1629 * skb_cow_head - skb_cow but only making the head writable 1630 * @skb: buffer to cow 1631 * @headroom: needed headroom 1632 * 1633 * This function is identical to skb_cow except that we replace the 1634 * skb_cloned check by skb_header_cloned. It should be used when 1635 * you only need to push on some header and do not need to modify 1636 * the data. 1637 */ 1638 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1639 { 1640 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1641 } 1642 1643 /** 1644 * skb_padto - pad an skbuff up to a minimal size 1645 * @skb: buffer to pad 1646 * @len: minimal length 1647 * 1648 * Pads up a buffer to ensure the trailing bytes exist and are 1649 * blanked. If the buffer already contains sufficient data it 1650 * is untouched. Otherwise it is extended. Returns zero on 1651 * success. The skb is freed on error. 1652 */ 1653 1654 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1655 { 1656 unsigned int size = skb->len; 1657 if (likely(size >= len)) 1658 return 0; 1659 return skb_pad(skb, len - size); 1660 } 1661 1662 static inline int skb_add_data(struct sk_buff *skb, 1663 char __user *from, int copy) 1664 { 1665 const int off = skb->len; 1666 1667 if (skb->ip_summed == CHECKSUM_NONE) { 1668 int err = 0; 1669 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1670 copy, 0, &err); 1671 if (!err) { 1672 skb->csum = csum_block_add(skb->csum, csum, off); 1673 return 0; 1674 } 1675 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1676 return 0; 1677 1678 __skb_trim(skb, off); 1679 return -EFAULT; 1680 } 1681 1682 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1683 struct page *page, int off) 1684 { 1685 if (i) { 1686 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1687 1688 return page == frag->page && 1689 off == frag->page_offset + frag->size; 1690 } 1691 return 0; 1692 } 1693 1694 static inline int __skb_linearize(struct sk_buff *skb) 1695 { 1696 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1697 } 1698 1699 /** 1700 * skb_linearize - convert paged skb to linear one 1701 * @skb: buffer to linarize 1702 * 1703 * If there is no free memory -ENOMEM is returned, otherwise zero 1704 * is returned and the old skb data released. 1705 */ 1706 static inline int skb_linearize(struct sk_buff *skb) 1707 { 1708 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1709 } 1710 1711 /** 1712 * skb_linearize_cow - make sure skb is linear and writable 1713 * @skb: buffer to process 1714 * 1715 * If there is no free memory -ENOMEM is returned, otherwise zero 1716 * is returned and the old skb data released. 1717 */ 1718 static inline int skb_linearize_cow(struct sk_buff *skb) 1719 { 1720 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1721 __skb_linearize(skb) : 0; 1722 } 1723 1724 /** 1725 * skb_postpull_rcsum - update checksum for received skb after pull 1726 * @skb: buffer to update 1727 * @start: start of data before pull 1728 * @len: length of data pulled 1729 * 1730 * After doing a pull on a received packet, you need to call this to 1731 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1732 * CHECKSUM_NONE so that it can be recomputed from scratch. 1733 */ 1734 1735 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1736 const void *start, unsigned int len) 1737 { 1738 if (skb->ip_summed == CHECKSUM_COMPLETE) 1739 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1740 } 1741 1742 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1743 1744 /** 1745 * pskb_trim_rcsum - trim received skb and update checksum 1746 * @skb: buffer to trim 1747 * @len: new length 1748 * 1749 * This is exactly the same as pskb_trim except that it ensures the 1750 * checksum of received packets are still valid after the operation. 1751 */ 1752 1753 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1754 { 1755 if (likely(len >= skb->len)) 1756 return 0; 1757 if (skb->ip_summed == CHECKSUM_COMPLETE) 1758 skb->ip_summed = CHECKSUM_NONE; 1759 return __pskb_trim(skb, len); 1760 } 1761 1762 #define skb_queue_walk(queue, skb) \ 1763 for (skb = (queue)->next; \ 1764 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1765 skb = skb->next) 1766 1767 #define skb_queue_walk_safe(queue, skb, tmp) \ 1768 for (skb = (queue)->next, tmp = skb->next; \ 1769 skb != (struct sk_buff *)(queue); \ 1770 skb = tmp, tmp = skb->next) 1771 1772 #define skb_queue_walk_from(queue, skb) \ 1773 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1774 skb = skb->next) 1775 1776 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1777 for (tmp = skb->next; \ 1778 skb != (struct sk_buff *)(queue); \ 1779 skb = tmp, tmp = skb->next) 1780 1781 #define skb_queue_reverse_walk(queue, skb) \ 1782 for (skb = (queue)->prev; \ 1783 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1784 skb = skb->prev) 1785 1786 1787 static inline bool skb_has_frag_list(const struct sk_buff *skb) 1788 { 1789 return skb_shinfo(skb)->frag_list != NULL; 1790 } 1791 1792 static inline void skb_frag_list_init(struct sk_buff *skb) 1793 { 1794 skb_shinfo(skb)->frag_list = NULL; 1795 } 1796 1797 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1798 { 1799 frag->next = skb_shinfo(skb)->frag_list; 1800 skb_shinfo(skb)->frag_list = frag; 1801 } 1802 1803 #define skb_walk_frags(skb, iter) \ 1804 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1805 1806 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1807 int *peeked, int *err); 1808 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1809 int noblock, int *err); 1810 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1811 struct poll_table_struct *wait); 1812 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1813 int offset, struct iovec *to, 1814 int size); 1815 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1816 int hlen, 1817 struct iovec *iov); 1818 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1819 int offset, 1820 const struct iovec *from, 1821 int from_offset, 1822 int len); 1823 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1824 int offset, 1825 const struct iovec *to, 1826 int to_offset, 1827 int size); 1828 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1829 extern void skb_free_datagram_locked(struct sock *sk, 1830 struct sk_buff *skb); 1831 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1832 unsigned int flags); 1833 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1834 int len, __wsum csum); 1835 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1836 void *to, int len); 1837 extern int skb_store_bits(struct sk_buff *skb, int offset, 1838 const void *from, int len); 1839 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1840 int offset, u8 *to, int len, 1841 __wsum csum); 1842 extern int skb_splice_bits(struct sk_buff *skb, 1843 unsigned int offset, 1844 struct pipe_inode_info *pipe, 1845 unsigned int len, 1846 unsigned int flags); 1847 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1848 extern void skb_split(struct sk_buff *skb, 1849 struct sk_buff *skb1, const u32 len); 1850 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1851 int shiftlen); 1852 1853 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1854 1855 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1856 int len, void *buffer) 1857 { 1858 int hlen = skb_headlen(skb); 1859 1860 if (hlen - offset >= len) 1861 return skb->data + offset; 1862 1863 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1864 return NULL; 1865 1866 return buffer; 1867 } 1868 1869 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1870 void *to, 1871 const unsigned int len) 1872 { 1873 memcpy(to, skb->data, len); 1874 } 1875 1876 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1877 const int offset, void *to, 1878 const unsigned int len) 1879 { 1880 memcpy(to, skb->data + offset, len); 1881 } 1882 1883 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1884 const void *from, 1885 const unsigned int len) 1886 { 1887 memcpy(skb->data, from, len); 1888 } 1889 1890 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1891 const int offset, 1892 const void *from, 1893 const unsigned int len) 1894 { 1895 memcpy(skb->data + offset, from, len); 1896 } 1897 1898 extern void skb_init(void); 1899 1900 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1901 { 1902 return skb->tstamp; 1903 } 1904 1905 /** 1906 * skb_get_timestamp - get timestamp from a skb 1907 * @skb: skb to get stamp from 1908 * @stamp: pointer to struct timeval to store stamp in 1909 * 1910 * Timestamps are stored in the skb as offsets to a base timestamp. 1911 * This function converts the offset back to a struct timeval and stores 1912 * it in stamp. 1913 */ 1914 static inline void skb_get_timestamp(const struct sk_buff *skb, 1915 struct timeval *stamp) 1916 { 1917 *stamp = ktime_to_timeval(skb->tstamp); 1918 } 1919 1920 static inline void skb_get_timestampns(const struct sk_buff *skb, 1921 struct timespec *stamp) 1922 { 1923 *stamp = ktime_to_timespec(skb->tstamp); 1924 } 1925 1926 static inline void __net_timestamp(struct sk_buff *skb) 1927 { 1928 skb->tstamp = ktime_get_real(); 1929 } 1930 1931 static inline ktime_t net_timedelta(ktime_t t) 1932 { 1933 return ktime_sub(ktime_get_real(), t); 1934 } 1935 1936 static inline ktime_t net_invalid_timestamp(void) 1937 { 1938 return ktime_set(0, 0); 1939 } 1940 1941 extern void skb_timestamping_init(void); 1942 1943 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 1944 1945 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 1946 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 1947 1948 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 1949 1950 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 1951 { 1952 } 1953 1954 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 1955 { 1956 return false; 1957 } 1958 1959 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 1960 1961 /** 1962 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 1963 * 1964 * @skb: clone of the the original outgoing packet 1965 * @hwtstamps: hardware time stamps 1966 * 1967 */ 1968 void skb_complete_tx_timestamp(struct sk_buff *skb, 1969 struct skb_shared_hwtstamps *hwtstamps); 1970 1971 /** 1972 * skb_tstamp_tx - queue clone of skb with send time stamps 1973 * @orig_skb: the original outgoing packet 1974 * @hwtstamps: hardware time stamps, may be NULL if not available 1975 * 1976 * If the skb has a socket associated, then this function clones the 1977 * skb (thus sharing the actual data and optional structures), stores 1978 * the optional hardware time stamping information (if non NULL) or 1979 * generates a software time stamp (otherwise), then queues the clone 1980 * to the error queue of the socket. Errors are silently ignored. 1981 */ 1982 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1983 struct skb_shared_hwtstamps *hwtstamps); 1984 1985 static inline void sw_tx_timestamp(struct sk_buff *skb) 1986 { 1987 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 1988 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 1989 skb_tstamp_tx(skb, NULL); 1990 } 1991 1992 /** 1993 * skb_tx_timestamp() - Driver hook for transmit timestamping 1994 * 1995 * Ethernet MAC Drivers should call this function in their hard_xmit() 1996 * function as soon as possible after giving the sk_buff to the MAC 1997 * hardware, but before freeing the sk_buff. 1998 * 1999 * @skb: A socket buffer. 2000 */ 2001 static inline void skb_tx_timestamp(struct sk_buff *skb) 2002 { 2003 skb_clone_tx_timestamp(skb); 2004 sw_tx_timestamp(skb); 2005 } 2006 2007 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2008 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2009 2010 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2011 { 2012 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2013 } 2014 2015 /** 2016 * skb_checksum_complete - Calculate checksum of an entire packet 2017 * @skb: packet to process 2018 * 2019 * This function calculates the checksum over the entire packet plus 2020 * the value of skb->csum. The latter can be used to supply the 2021 * checksum of a pseudo header as used by TCP/UDP. It returns the 2022 * checksum. 2023 * 2024 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2025 * this function can be used to verify that checksum on received 2026 * packets. In that case the function should return zero if the 2027 * checksum is correct. In particular, this function will return zero 2028 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2029 * hardware has already verified the correctness of the checksum. 2030 */ 2031 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2032 { 2033 return skb_csum_unnecessary(skb) ? 2034 0 : __skb_checksum_complete(skb); 2035 } 2036 2037 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2038 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2039 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2040 { 2041 if (nfct && atomic_dec_and_test(&nfct->use)) 2042 nf_conntrack_destroy(nfct); 2043 } 2044 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2045 { 2046 if (nfct) 2047 atomic_inc(&nfct->use); 2048 } 2049 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2050 { 2051 if (skb) 2052 atomic_inc(&skb->users); 2053 } 2054 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2055 { 2056 if (skb) 2057 kfree_skb(skb); 2058 } 2059 #endif 2060 #ifdef CONFIG_BRIDGE_NETFILTER 2061 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2062 { 2063 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2064 kfree(nf_bridge); 2065 } 2066 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2067 { 2068 if (nf_bridge) 2069 atomic_inc(&nf_bridge->use); 2070 } 2071 #endif /* CONFIG_BRIDGE_NETFILTER */ 2072 static inline void nf_reset(struct sk_buff *skb) 2073 { 2074 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2075 nf_conntrack_put(skb->nfct); 2076 skb->nfct = NULL; 2077 nf_conntrack_put_reasm(skb->nfct_reasm); 2078 skb->nfct_reasm = NULL; 2079 #endif 2080 #ifdef CONFIG_BRIDGE_NETFILTER 2081 nf_bridge_put(skb->nf_bridge); 2082 skb->nf_bridge = NULL; 2083 #endif 2084 } 2085 2086 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2087 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2088 { 2089 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2090 dst->nfct = src->nfct; 2091 nf_conntrack_get(src->nfct); 2092 dst->nfctinfo = src->nfctinfo; 2093 dst->nfct_reasm = src->nfct_reasm; 2094 nf_conntrack_get_reasm(src->nfct_reasm); 2095 #endif 2096 #ifdef CONFIG_BRIDGE_NETFILTER 2097 dst->nf_bridge = src->nf_bridge; 2098 nf_bridge_get(src->nf_bridge); 2099 #endif 2100 } 2101 2102 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2103 { 2104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2105 nf_conntrack_put(dst->nfct); 2106 nf_conntrack_put_reasm(dst->nfct_reasm); 2107 #endif 2108 #ifdef CONFIG_BRIDGE_NETFILTER 2109 nf_bridge_put(dst->nf_bridge); 2110 #endif 2111 __nf_copy(dst, src); 2112 } 2113 2114 #ifdef CONFIG_NETWORK_SECMARK 2115 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2116 { 2117 to->secmark = from->secmark; 2118 } 2119 2120 static inline void skb_init_secmark(struct sk_buff *skb) 2121 { 2122 skb->secmark = 0; 2123 } 2124 #else 2125 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2126 { } 2127 2128 static inline void skb_init_secmark(struct sk_buff *skb) 2129 { } 2130 #endif 2131 2132 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2133 { 2134 skb->queue_mapping = queue_mapping; 2135 } 2136 2137 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2138 { 2139 return skb->queue_mapping; 2140 } 2141 2142 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2143 { 2144 to->queue_mapping = from->queue_mapping; 2145 } 2146 2147 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2148 { 2149 skb->queue_mapping = rx_queue + 1; 2150 } 2151 2152 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2153 { 2154 return skb->queue_mapping - 1; 2155 } 2156 2157 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2158 { 2159 return (skb->queue_mapping != 0); 2160 } 2161 2162 extern u16 skb_tx_hash(const struct net_device *dev, 2163 const struct sk_buff *skb); 2164 2165 #ifdef CONFIG_XFRM 2166 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2167 { 2168 return skb->sp; 2169 } 2170 #else 2171 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2172 { 2173 return NULL; 2174 } 2175 #endif 2176 2177 static inline int skb_is_gso(const struct sk_buff *skb) 2178 { 2179 return skb_shinfo(skb)->gso_size; 2180 } 2181 2182 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2183 { 2184 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2185 } 2186 2187 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2188 2189 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2190 { 2191 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2192 * wanted then gso_type will be set. */ 2193 struct skb_shared_info *shinfo = skb_shinfo(skb); 2194 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2195 unlikely(shinfo->gso_type == 0)) { 2196 __skb_warn_lro_forwarding(skb); 2197 return true; 2198 } 2199 return false; 2200 } 2201 2202 static inline void skb_forward_csum(struct sk_buff *skb) 2203 { 2204 /* Unfortunately we don't support this one. Any brave souls? */ 2205 if (skb->ip_summed == CHECKSUM_COMPLETE) 2206 skb->ip_summed = CHECKSUM_NONE; 2207 } 2208 2209 /** 2210 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2211 * @skb: skb to check 2212 * 2213 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2214 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2215 * use this helper, to document places where we make this assertion. 2216 */ 2217 static inline void skb_checksum_none_assert(struct sk_buff *skb) 2218 { 2219 #ifdef DEBUG 2220 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2221 #endif 2222 } 2223 2224 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2225 #endif /* __KERNEL__ */ 2226 #endif /* _LINUX_SKBUFF_H */ 2227