xref: /linux-6.15/include/linux/skbuff.h (revision 5e8d780d)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/poll.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/dmaengine.h>
32 
33 #define HAVE_ALLOC_SKB		/* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35 
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_HW 1
38 #define CHECKSUM_UNNECESSARY 2
39 
40 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
41 				 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
43 				  sizeof(struct skb_shared_info)) & \
44 				  ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	HW: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use HW,
63  *	    not UNNECESSARY.
64  *
65  * B. Checksumming on output.
66  *
67  *	NONE: skb is checksummed by protocol or csum is not required.
68  *
69  *	HW: device is required to csum packet as seen by hard_start_xmit
70  *	from skb->h.raw to the end and to record the checksum
71  *	at skb->h.raw+skb->csum.
72  *
73  *	Device must show its capabilities in dev->features, set
74  *	at device setup time.
75  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
76  *			  everything.
77  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
78  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79  *			  TCP/UDP over IPv4. Sigh. Vendors like this
80  *			  way by an unknown reason. Though, see comment above
81  *			  about CHECKSUM_UNNECESSARY. 8)
82  *
83  *	Any questions? No questions, good. 		--ANK
84  */
85 
86 struct net_device;
87 
88 #ifdef CONFIG_NETFILTER
89 struct nf_conntrack {
90 	atomic_t use;
91 	void (*destroy)(struct nf_conntrack *);
92 };
93 
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
96 	atomic_t use;
97 	struct net_device *physindev;
98 	struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 	struct net_device *netoutdev;
101 #endif
102 	unsigned int mask;
103 	unsigned long data[32 / sizeof(unsigned long)];
104 };
105 #endif
106 
107 #endif
108 
109 struct sk_buff_head {
110 	/* These two members must be first. */
111 	struct sk_buff	*next;
112 	struct sk_buff	*prev;
113 
114 	__u32		qlen;
115 	spinlock_t	lock;
116 };
117 
118 struct sk_buff;
119 
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122 
123 typedef struct skb_frag_struct skb_frag_t;
124 
125 struct skb_frag_struct {
126 	struct page *page;
127 	__u16 page_offset;
128 	__u16 size;
129 };
130 
131 /* This data is invariant across clones and lives at
132  * the end of the header data, ie. at skb->end.
133  */
134 struct skb_shared_info {
135 	atomic_t	dataref;
136 	unsigned short	nr_frags;
137 	unsigned short	gso_size;
138 	/* Warning: this field is not always filled in (UFO)! */
139 	unsigned short	gso_segs;
140 	unsigned short  gso_type;
141 	unsigned int    ip6_frag_id;
142 	struct sk_buff	*frag_list;
143 	skb_frag_t	frags[MAX_SKB_FRAGS];
144 };
145 
146 /* We divide dataref into two halves.  The higher 16 bits hold references
147  * to the payload part of skb->data.  The lower 16 bits hold references to
148  * the entire skb->data.  It is up to the users of the skb to agree on
149  * where the payload starts.
150  *
151  * All users must obey the rule that the skb->data reference count must be
152  * greater than or equal to the payload reference count.
153  *
154  * Holding a reference to the payload part means that the user does not
155  * care about modifications to the header part of skb->data.
156  */
157 #define SKB_DATAREF_SHIFT 16
158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
159 
160 struct skb_timeval {
161 	u32	off_sec;
162 	u32	off_usec;
163 };
164 
165 
166 enum {
167 	SKB_FCLONE_UNAVAILABLE,
168 	SKB_FCLONE_ORIG,
169 	SKB_FCLONE_CLONE,
170 };
171 
172 enum {
173 	SKB_GSO_TCPV4 = 1 << 0,
174 	SKB_GSO_UDPV4 = 1 << 1,
175 
176 	/* This indicates the skb is from an untrusted source. */
177 	SKB_GSO_DODGY = 1 << 2,
178 
179 	/* This indicates the tcp segment has CWR set. */
180 	SKB_GSO_TCPV4_ECN = 1 << 3,
181 };
182 
183 /**
184  *	struct sk_buff - socket buffer
185  *	@next: Next buffer in list
186  *	@prev: Previous buffer in list
187  *	@sk: Socket we are owned by
188  *	@tstamp: Time we arrived
189  *	@dev: Device we arrived on/are leaving by
190  *	@input_dev: Device we arrived on
191  *	@h: Transport layer header
192  *	@nh: Network layer header
193  *	@mac: Link layer header
194  *	@dst: destination entry
195  *	@sp: the security path, used for xfrm
196  *	@cb: Control buffer. Free for use by every layer. Put private vars here
197  *	@len: Length of actual data
198  *	@data_len: Data length
199  *	@mac_len: Length of link layer header
200  *	@csum: Checksum
201  *	@local_df: allow local fragmentation
202  *	@cloned: Head may be cloned (check refcnt to be sure)
203  *	@nohdr: Payload reference only, must not modify header
204  *	@pkt_type: Packet class
205  *	@fclone: skbuff clone status
206  *	@ip_summed: Driver fed us an IP checksum
207  *	@priority: Packet queueing priority
208  *	@users: User count - see {datagram,tcp}.c
209  *	@protocol: Packet protocol from driver
210  *	@truesize: Buffer size
211  *	@head: Head of buffer
212  *	@data: Data head pointer
213  *	@tail: Tail pointer
214  *	@end: End pointer
215  *	@destructor: Destruct function
216  *	@nfmark: Can be used for communication between hooks
217  *	@nfct: Associated connection, if any
218  *	@ipvs_property: skbuff is owned by ipvs
219  *	@nfctinfo: Relationship of this skb to the connection
220  *	@nfct_reasm: netfilter conntrack re-assembly pointer
221  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
222  *	@tc_index: Traffic control index
223  *	@tc_verd: traffic control verdict
224  *	@dma_cookie: a cookie to one of several possible DMA operations
225  *		done by skb DMA functions
226  *	@secmark: security marking
227  */
228 
229 struct sk_buff {
230 	/* These two members must be first. */
231 	struct sk_buff		*next;
232 	struct sk_buff		*prev;
233 
234 	struct sock		*sk;
235 	struct skb_timeval	tstamp;
236 	struct net_device	*dev;
237 	struct net_device	*input_dev;
238 
239 	union {
240 		struct tcphdr	*th;
241 		struct udphdr	*uh;
242 		struct icmphdr	*icmph;
243 		struct igmphdr	*igmph;
244 		struct iphdr	*ipiph;
245 		struct ipv6hdr	*ipv6h;
246 		unsigned char	*raw;
247 	} h;
248 
249 	union {
250 		struct iphdr	*iph;
251 		struct ipv6hdr	*ipv6h;
252 		struct arphdr	*arph;
253 		unsigned char	*raw;
254 	} nh;
255 
256 	union {
257 	  	unsigned char 	*raw;
258 	} mac;
259 
260 	struct  dst_entry	*dst;
261 	struct	sec_path	*sp;
262 
263 	/*
264 	 * This is the control buffer. It is free to use for every
265 	 * layer. Please put your private variables there. If you
266 	 * want to keep them across layers you have to do a skb_clone()
267 	 * first. This is owned by whoever has the skb queued ATM.
268 	 */
269 	char			cb[48];
270 
271 	unsigned int		len,
272 				data_len,
273 				mac_len,
274 				csum;
275 	__u32			priority;
276 	__u8			local_df:1,
277 				cloned:1,
278 				ip_summed:2,
279 				nohdr:1,
280 				nfctinfo:3;
281 	__u8			pkt_type:3,
282 				fclone:2,
283 				ipvs_property:1;
284 	__be16			protocol;
285 
286 	void			(*destructor)(struct sk_buff *skb);
287 #ifdef CONFIG_NETFILTER
288 	struct nf_conntrack	*nfct;
289 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
290 	struct sk_buff		*nfct_reasm;
291 #endif
292 #ifdef CONFIG_BRIDGE_NETFILTER
293 	struct nf_bridge_info	*nf_bridge;
294 #endif
295 	__u32			nfmark;
296 #endif /* CONFIG_NETFILTER */
297 #ifdef CONFIG_NET_SCHED
298 	__u16			tc_index;	/* traffic control index */
299 #ifdef CONFIG_NET_CLS_ACT
300 	__u16			tc_verd;	/* traffic control verdict */
301 #endif
302 #endif
303 #ifdef CONFIG_NET_DMA
304 	dma_cookie_t		dma_cookie;
305 #endif
306 #ifdef CONFIG_NETWORK_SECMARK
307 	__u32			secmark;
308 #endif
309 
310 
311 	/* These elements must be at the end, see alloc_skb() for details.  */
312 	unsigned int		truesize;
313 	atomic_t		users;
314 	unsigned char		*head,
315 				*data,
316 				*tail,
317 				*end;
318 };
319 
320 #ifdef __KERNEL__
321 /*
322  *	Handling routines are only of interest to the kernel
323  */
324 #include <linux/slab.h>
325 
326 #include <asm/system.h>
327 
328 extern void kfree_skb(struct sk_buff *skb);
329 extern void	       __kfree_skb(struct sk_buff *skb);
330 extern struct sk_buff *__alloc_skb(unsigned int size,
331 				   gfp_t priority, int fclone);
332 static inline struct sk_buff *alloc_skb(unsigned int size,
333 					gfp_t priority)
334 {
335 	return __alloc_skb(size, priority, 0);
336 }
337 
338 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
339 					       gfp_t priority)
340 {
341 	return __alloc_skb(size, priority, 1);
342 }
343 
344 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
345 					    unsigned int size,
346 					    gfp_t priority);
347 extern void	       kfree_skbmem(struct sk_buff *skb);
348 extern struct sk_buff *skb_clone(struct sk_buff *skb,
349 				 gfp_t priority);
350 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
351 				gfp_t priority);
352 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
353 				 gfp_t gfp_mask);
354 extern int	       pskb_expand_head(struct sk_buff *skb,
355 					int nhead, int ntail,
356 					gfp_t gfp_mask);
357 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
358 					    unsigned int headroom);
359 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
360 				       int newheadroom, int newtailroom,
361 				       gfp_t priority);
362 extern int	       skb_pad(struct sk_buff *skb, int pad);
363 #define dev_kfree_skb(a)	kfree_skb(a)
364 extern void	      skb_over_panic(struct sk_buff *skb, int len,
365 				     void *here);
366 extern void	      skb_under_panic(struct sk_buff *skb, int len,
367 				      void *here);
368 extern void	      skb_truesize_bug(struct sk_buff *skb);
369 
370 static inline void skb_truesize_check(struct sk_buff *skb)
371 {
372 	if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
373 		skb_truesize_bug(skb);
374 }
375 
376 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
377 			int getfrag(void *from, char *to, int offset,
378 			int len,int odd, struct sk_buff *skb),
379 			void *from, int length);
380 
381 struct skb_seq_state
382 {
383 	__u32		lower_offset;
384 	__u32		upper_offset;
385 	__u32		frag_idx;
386 	__u32		stepped_offset;
387 	struct sk_buff	*root_skb;
388 	struct sk_buff	*cur_skb;
389 	__u8		*frag_data;
390 };
391 
392 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
393 					   unsigned int from, unsigned int to,
394 					   struct skb_seq_state *st);
395 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
396 				   struct skb_seq_state *st);
397 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
398 
399 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
400 				    unsigned int to, struct ts_config *config,
401 				    struct ts_state *state);
402 
403 /* Internal */
404 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
405 
406 /**
407  *	skb_queue_empty - check if a queue is empty
408  *	@list: queue head
409  *
410  *	Returns true if the queue is empty, false otherwise.
411  */
412 static inline int skb_queue_empty(const struct sk_buff_head *list)
413 {
414 	return list->next == (struct sk_buff *)list;
415 }
416 
417 /**
418  *	skb_get - reference buffer
419  *	@skb: buffer to reference
420  *
421  *	Makes another reference to a socket buffer and returns a pointer
422  *	to the buffer.
423  */
424 static inline struct sk_buff *skb_get(struct sk_buff *skb)
425 {
426 	atomic_inc(&skb->users);
427 	return skb;
428 }
429 
430 /*
431  * If users == 1, we are the only owner and are can avoid redundant
432  * atomic change.
433  */
434 
435 /**
436  *	skb_cloned - is the buffer a clone
437  *	@skb: buffer to check
438  *
439  *	Returns true if the buffer was generated with skb_clone() and is
440  *	one of multiple shared copies of the buffer. Cloned buffers are
441  *	shared data so must not be written to under normal circumstances.
442  */
443 static inline int skb_cloned(const struct sk_buff *skb)
444 {
445 	return skb->cloned &&
446 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
447 }
448 
449 /**
450  *	skb_header_cloned - is the header a clone
451  *	@skb: buffer to check
452  *
453  *	Returns true if modifying the header part of the buffer requires
454  *	the data to be copied.
455  */
456 static inline int skb_header_cloned(const struct sk_buff *skb)
457 {
458 	int dataref;
459 
460 	if (!skb->cloned)
461 		return 0;
462 
463 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
464 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
465 	return dataref != 1;
466 }
467 
468 /**
469  *	skb_header_release - release reference to header
470  *	@skb: buffer to operate on
471  *
472  *	Drop a reference to the header part of the buffer.  This is done
473  *	by acquiring a payload reference.  You must not read from the header
474  *	part of skb->data after this.
475  */
476 static inline void skb_header_release(struct sk_buff *skb)
477 {
478 	BUG_ON(skb->nohdr);
479 	skb->nohdr = 1;
480 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
481 }
482 
483 /**
484  *	skb_shared - is the buffer shared
485  *	@skb: buffer to check
486  *
487  *	Returns true if more than one person has a reference to this
488  *	buffer.
489  */
490 static inline int skb_shared(const struct sk_buff *skb)
491 {
492 	return atomic_read(&skb->users) != 1;
493 }
494 
495 /**
496  *	skb_share_check - check if buffer is shared and if so clone it
497  *	@skb: buffer to check
498  *	@pri: priority for memory allocation
499  *
500  *	If the buffer is shared the buffer is cloned and the old copy
501  *	drops a reference. A new clone with a single reference is returned.
502  *	If the buffer is not shared the original buffer is returned. When
503  *	being called from interrupt status or with spinlocks held pri must
504  *	be GFP_ATOMIC.
505  *
506  *	NULL is returned on a memory allocation failure.
507  */
508 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
509 					      gfp_t pri)
510 {
511 	might_sleep_if(pri & __GFP_WAIT);
512 	if (skb_shared(skb)) {
513 		struct sk_buff *nskb = skb_clone(skb, pri);
514 		kfree_skb(skb);
515 		skb = nskb;
516 	}
517 	return skb;
518 }
519 
520 /*
521  *	Copy shared buffers into a new sk_buff. We effectively do COW on
522  *	packets to handle cases where we have a local reader and forward
523  *	and a couple of other messy ones. The normal one is tcpdumping
524  *	a packet thats being forwarded.
525  */
526 
527 /**
528  *	skb_unshare - make a copy of a shared buffer
529  *	@skb: buffer to check
530  *	@pri: priority for memory allocation
531  *
532  *	If the socket buffer is a clone then this function creates a new
533  *	copy of the data, drops a reference count on the old copy and returns
534  *	the new copy with the reference count at 1. If the buffer is not a clone
535  *	the original buffer is returned. When called with a spinlock held or
536  *	from interrupt state @pri must be %GFP_ATOMIC
537  *
538  *	%NULL is returned on a memory allocation failure.
539  */
540 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
541 					  gfp_t pri)
542 {
543 	might_sleep_if(pri & __GFP_WAIT);
544 	if (skb_cloned(skb)) {
545 		struct sk_buff *nskb = skb_copy(skb, pri);
546 		kfree_skb(skb);	/* Free our shared copy */
547 		skb = nskb;
548 	}
549 	return skb;
550 }
551 
552 /**
553  *	skb_peek
554  *	@list_: list to peek at
555  *
556  *	Peek an &sk_buff. Unlike most other operations you _MUST_
557  *	be careful with this one. A peek leaves the buffer on the
558  *	list and someone else may run off with it. You must hold
559  *	the appropriate locks or have a private queue to do this.
560  *
561  *	Returns %NULL for an empty list or a pointer to the head element.
562  *	The reference count is not incremented and the reference is therefore
563  *	volatile. Use with caution.
564  */
565 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
566 {
567 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
568 	if (list == (struct sk_buff *)list_)
569 		list = NULL;
570 	return list;
571 }
572 
573 /**
574  *	skb_peek_tail
575  *	@list_: list to peek at
576  *
577  *	Peek an &sk_buff. Unlike most other operations you _MUST_
578  *	be careful with this one. A peek leaves the buffer on the
579  *	list and someone else may run off with it. You must hold
580  *	the appropriate locks or have a private queue to do this.
581  *
582  *	Returns %NULL for an empty list or a pointer to the tail element.
583  *	The reference count is not incremented and the reference is therefore
584  *	volatile. Use with caution.
585  */
586 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
587 {
588 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
589 	if (list == (struct sk_buff *)list_)
590 		list = NULL;
591 	return list;
592 }
593 
594 /**
595  *	skb_queue_len	- get queue length
596  *	@list_: list to measure
597  *
598  *	Return the length of an &sk_buff queue.
599  */
600 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
601 {
602 	return list_->qlen;
603 }
604 
605 static inline void skb_queue_head_init(struct sk_buff_head *list)
606 {
607 	spin_lock_init(&list->lock);
608 	list->prev = list->next = (struct sk_buff *)list;
609 	list->qlen = 0;
610 }
611 
612 /*
613  *	Insert an sk_buff at the start of a list.
614  *
615  *	The "__skb_xxxx()" functions are the non-atomic ones that
616  *	can only be called with interrupts disabled.
617  */
618 
619 /**
620  *	__skb_queue_after - queue a buffer at the list head
621  *	@list: list to use
622  *	@prev: place after this buffer
623  *	@newsk: buffer to queue
624  *
625  *	Queue a buffer int the middle of a list. This function takes no locks
626  *	and you must therefore hold required locks before calling it.
627  *
628  *	A buffer cannot be placed on two lists at the same time.
629  */
630 static inline void __skb_queue_after(struct sk_buff_head *list,
631 				     struct sk_buff *prev,
632 				     struct sk_buff *newsk)
633 {
634 	struct sk_buff *next;
635 	list->qlen++;
636 
637 	next = prev->next;
638 	newsk->next = next;
639 	newsk->prev = prev;
640 	next->prev  = prev->next = newsk;
641 }
642 
643 /**
644  *	__skb_queue_head - queue a buffer at the list head
645  *	@list: list to use
646  *	@newsk: buffer to queue
647  *
648  *	Queue a buffer at the start of a list. This function takes no locks
649  *	and you must therefore hold required locks before calling it.
650  *
651  *	A buffer cannot be placed on two lists at the same time.
652  */
653 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
654 static inline void __skb_queue_head(struct sk_buff_head *list,
655 				    struct sk_buff *newsk)
656 {
657 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
658 }
659 
660 /**
661  *	__skb_queue_tail - queue a buffer at the list tail
662  *	@list: list to use
663  *	@newsk: buffer to queue
664  *
665  *	Queue a buffer at the end of a list. This function takes no locks
666  *	and you must therefore hold required locks before calling it.
667  *
668  *	A buffer cannot be placed on two lists at the same time.
669  */
670 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
671 static inline void __skb_queue_tail(struct sk_buff_head *list,
672 				   struct sk_buff *newsk)
673 {
674 	struct sk_buff *prev, *next;
675 
676 	list->qlen++;
677 	next = (struct sk_buff *)list;
678 	prev = next->prev;
679 	newsk->next = next;
680 	newsk->prev = prev;
681 	next->prev  = prev->next = newsk;
682 }
683 
684 
685 /**
686  *	__skb_dequeue - remove from the head of the queue
687  *	@list: list to dequeue from
688  *
689  *	Remove the head of the list. This function does not take any locks
690  *	so must be used with appropriate locks held only. The head item is
691  *	returned or %NULL if the list is empty.
692  */
693 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
694 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
695 {
696 	struct sk_buff *next, *prev, *result;
697 
698 	prev = (struct sk_buff *) list;
699 	next = prev->next;
700 	result = NULL;
701 	if (next != prev) {
702 		result	     = next;
703 		next	     = next->next;
704 		list->qlen--;
705 		next->prev   = prev;
706 		prev->next   = next;
707 		result->next = result->prev = NULL;
708 	}
709 	return result;
710 }
711 
712 
713 /*
714  *	Insert a packet on a list.
715  */
716 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
717 static inline void __skb_insert(struct sk_buff *newsk,
718 				struct sk_buff *prev, struct sk_buff *next,
719 				struct sk_buff_head *list)
720 {
721 	newsk->next = next;
722 	newsk->prev = prev;
723 	next->prev  = prev->next = newsk;
724 	list->qlen++;
725 }
726 
727 /*
728  *	Place a packet after a given packet in a list.
729  */
730 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
731 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
732 {
733 	__skb_insert(newsk, old, old->next, list);
734 }
735 
736 /*
737  * remove sk_buff from list. _Must_ be called atomically, and with
738  * the list known..
739  */
740 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
741 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
742 {
743 	struct sk_buff *next, *prev;
744 
745 	list->qlen--;
746 	next	   = skb->next;
747 	prev	   = skb->prev;
748 	skb->next  = skb->prev = NULL;
749 	next->prev = prev;
750 	prev->next = next;
751 }
752 
753 
754 /* XXX: more streamlined implementation */
755 
756 /**
757  *	__skb_dequeue_tail - remove from the tail of the queue
758  *	@list: list to dequeue from
759  *
760  *	Remove the tail of the list. This function does not take any locks
761  *	so must be used with appropriate locks held only. The tail item is
762  *	returned or %NULL if the list is empty.
763  */
764 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
765 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
766 {
767 	struct sk_buff *skb = skb_peek_tail(list);
768 	if (skb)
769 		__skb_unlink(skb, list);
770 	return skb;
771 }
772 
773 
774 static inline int skb_is_nonlinear(const struct sk_buff *skb)
775 {
776 	return skb->data_len;
777 }
778 
779 static inline unsigned int skb_headlen(const struct sk_buff *skb)
780 {
781 	return skb->len - skb->data_len;
782 }
783 
784 static inline int skb_pagelen(const struct sk_buff *skb)
785 {
786 	int i, len = 0;
787 
788 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
789 		len += skb_shinfo(skb)->frags[i].size;
790 	return len + skb_headlen(skb);
791 }
792 
793 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
794 				      struct page *page, int off, int size)
795 {
796 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
797 
798 	frag->page		  = page;
799 	frag->page_offset	  = off;
800 	frag->size		  = size;
801 	skb_shinfo(skb)->nr_frags = i + 1;
802 }
803 
804 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
805 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
806 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
807 
808 /*
809  *	Add data to an sk_buff
810  */
811 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
812 {
813 	unsigned char *tmp = skb->tail;
814 	SKB_LINEAR_ASSERT(skb);
815 	skb->tail += len;
816 	skb->len  += len;
817 	return tmp;
818 }
819 
820 /**
821  *	skb_put - add data to a buffer
822  *	@skb: buffer to use
823  *	@len: amount of data to add
824  *
825  *	This function extends the used data area of the buffer. If this would
826  *	exceed the total buffer size the kernel will panic. A pointer to the
827  *	first byte of the extra data is returned.
828  */
829 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
830 {
831 	unsigned char *tmp = skb->tail;
832 	SKB_LINEAR_ASSERT(skb);
833 	skb->tail += len;
834 	skb->len  += len;
835 	if (unlikely(skb->tail>skb->end))
836 		skb_over_panic(skb, len, current_text_addr());
837 	return tmp;
838 }
839 
840 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
841 {
842 	skb->data -= len;
843 	skb->len  += len;
844 	return skb->data;
845 }
846 
847 /**
848  *	skb_push - add data to the start of a buffer
849  *	@skb: buffer to use
850  *	@len: amount of data to add
851  *
852  *	This function extends the used data area of the buffer at the buffer
853  *	start. If this would exceed the total buffer headroom the kernel will
854  *	panic. A pointer to the first byte of the extra data is returned.
855  */
856 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
857 {
858 	skb->data -= len;
859 	skb->len  += len;
860 	if (unlikely(skb->data<skb->head))
861 		skb_under_panic(skb, len, current_text_addr());
862 	return skb->data;
863 }
864 
865 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
866 {
867 	skb->len -= len;
868 	BUG_ON(skb->len < skb->data_len);
869 	return skb->data += len;
870 }
871 
872 /**
873  *	skb_pull - remove data from the start of a buffer
874  *	@skb: buffer to use
875  *	@len: amount of data to remove
876  *
877  *	This function removes data from the start of a buffer, returning
878  *	the memory to the headroom. A pointer to the next data in the buffer
879  *	is returned. Once the data has been pulled future pushes will overwrite
880  *	the old data.
881  */
882 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
883 {
884 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
885 }
886 
887 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
888 
889 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
890 {
891 	if (len > skb_headlen(skb) &&
892 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
893 		return NULL;
894 	skb->len -= len;
895 	return skb->data += len;
896 }
897 
898 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
899 {
900 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
901 }
902 
903 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
904 {
905 	if (likely(len <= skb_headlen(skb)))
906 		return 1;
907 	if (unlikely(len > skb->len))
908 		return 0;
909 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
910 }
911 
912 /**
913  *	skb_headroom - bytes at buffer head
914  *	@skb: buffer to check
915  *
916  *	Return the number of bytes of free space at the head of an &sk_buff.
917  */
918 static inline int skb_headroom(const struct sk_buff *skb)
919 {
920 	return skb->data - skb->head;
921 }
922 
923 /**
924  *	skb_tailroom - bytes at buffer end
925  *	@skb: buffer to check
926  *
927  *	Return the number of bytes of free space at the tail of an sk_buff
928  */
929 static inline int skb_tailroom(const struct sk_buff *skb)
930 {
931 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
932 }
933 
934 /**
935  *	skb_reserve - adjust headroom
936  *	@skb: buffer to alter
937  *	@len: bytes to move
938  *
939  *	Increase the headroom of an empty &sk_buff by reducing the tail
940  *	room. This is only allowed for an empty buffer.
941  */
942 static inline void skb_reserve(struct sk_buff *skb, int len)
943 {
944 	skb->data += len;
945 	skb->tail += len;
946 }
947 
948 /*
949  * CPUs often take a performance hit when accessing unaligned memory
950  * locations. The actual performance hit varies, it can be small if the
951  * hardware handles it or large if we have to take an exception and fix it
952  * in software.
953  *
954  * Since an ethernet header is 14 bytes network drivers often end up with
955  * the IP header at an unaligned offset. The IP header can be aligned by
956  * shifting the start of the packet by 2 bytes. Drivers should do this
957  * with:
958  *
959  * skb_reserve(NET_IP_ALIGN);
960  *
961  * The downside to this alignment of the IP header is that the DMA is now
962  * unaligned. On some architectures the cost of an unaligned DMA is high
963  * and this cost outweighs the gains made by aligning the IP header.
964  *
965  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
966  * to be overridden.
967  */
968 #ifndef NET_IP_ALIGN
969 #define NET_IP_ALIGN	2
970 #endif
971 
972 /*
973  * The networking layer reserves some headroom in skb data (via
974  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
975  * the header has to grow. In the default case, if the header has to grow
976  * 16 bytes or less we avoid the reallocation.
977  *
978  * Unfortunately this headroom changes the DMA alignment of the resulting
979  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
980  * on some architectures. An architecture can override this value,
981  * perhaps setting it to a cacheline in size (since that will maintain
982  * cacheline alignment of the DMA). It must be a power of 2.
983  *
984  * Various parts of the networking layer expect at least 16 bytes of
985  * headroom, you should not reduce this.
986  */
987 #ifndef NET_SKB_PAD
988 #define NET_SKB_PAD	16
989 #endif
990 
991 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
992 
993 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
994 {
995 	if (unlikely(skb->data_len)) {
996 		WARN_ON(1);
997 		return;
998 	}
999 	skb->len  = len;
1000 	skb->tail = skb->data + len;
1001 }
1002 
1003 /**
1004  *	skb_trim - remove end from a buffer
1005  *	@skb: buffer to alter
1006  *	@len: new length
1007  *
1008  *	Cut the length of a buffer down by removing data from the tail. If
1009  *	the buffer is already under the length specified it is not modified.
1010  *	The skb must be linear.
1011  */
1012 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1013 {
1014 	if (skb->len > len)
1015 		__skb_trim(skb, len);
1016 }
1017 
1018 
1019 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1020 {
1021 	if (skb->data_len)
1022 		return ___pskb_trim(skb, len);
1023 	__skb_trim(skb, len);
1024 	return 0;
1025 }
1026 
1027 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1028 {
1029 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1030 }
1031 
1032 /**
1033  *	skb_orphan - orphan a buffer
1034  *	@skb: buffer to orphan
1035  *
1036  *	If a buffer currently has an owner then we call the owner's
1037  *	destructor function and make the @skb unowned. The buffer continues
1038  *	to exist but is no longer charged to its former owner.
1039  */
1040 static inline void skb_orphan(struct sk_buff *skb)
1041 {
1042 	if (skb->destructor)
1043 		skb->destructor(skb);
1044 	skb->destructor = NULL;
1045 	skb->sk		= NULL;
1046 }
1047 
1048 /**
1049  *	__skb_queue_purge - empty a list
1050  *	@list: list to empty
1051  *
1052  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1053  *	the list and one reference dropped. This function does not take the
1054  *	list lock and the caller must hold the relevant locks to use it.
1055  */
1056 extern void skb_queue_purge(struct sk_buff_head *list);
1057 static inline void __skb_queue_purge(struct sk_buff_head *list)
1058 {
1059 	struct sk_buff *skb;
1060 	while ((skb = __skb_dequeue(list)) != NULL)
1061 		kfree_skb(skb);
1062 }
1063 
1064 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1065 /**
1066  *	__dev_alloc_skb - allocate an skbuff for sending
1067  *	@length: length to allocate
1068  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1069  *
1070  *	Allocate a new &sk_buff and assign it a usage count of one. The
1071  *	buffer has unspecified headroom built in. Users should allocate
1072  *	the headroom they think they need without accounting for the
1073  *	built in space. The built in space is used for optimisations.
1074  *
1075  *	%NULL is returned in there is no free memory.
1076  */
1077 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1078 					      gfp_t gfp_mask)
1079 {
1080 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1081 	if (likely(skb))
1082 		skb_reserve(skb, NET_SKB_PAD);
1083 	return skb;
1084 }
1085 #else
1086 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1087 #endif
1088 
1089 /**
1090  *	dev_alloc_skb - allocate an skbuff for sending
1091  *	@length: length to allocate
1092  *
1093  *	Allocate a new &sk_buff and assign it a usage count of one. The
1094  *	buffer has unspecified headroom built in. Users should allocate
1095  *	the headroom they think they need without accounting for the
1096  *	built in space. The built in space is used for optimisations.
1097  *
1098  *	%NULL is returned in there is no free memory. Although this function
1099  *	allocates memory it can be called from an interrupt.
1100  */
1101 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1102 {
1103 	return __dev_alloc_skb(length, GFP_ATOMIC);
1104 }
1105 
1106 /**
1107  *	skb_cow - copy header of skb when it is required
1108  *	@skb: buffer to cow
1109  *	@headroom: needed headroom
1110  *
1111  *	If the skb passed lacks sufficient headroom or its data part
1112  *	is shared, data is reallocated. If reallocation fails, an error
1113  *	is returned and original skb is not changed.
1114  *
1115  *	The result is skb with writable area skb->head...skb->tail
1116  *	and at least @headroom of space at head.
1117  */
1118 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1119 {
1120 	int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1121 			skb_headroom(skb);
1122 
1123 	if (delta < 0)
1124 		delta = 0;
1125 
1126 	if (delta || skb_cloned(skb))
1127 		return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1128 				~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1129 	return 0;
1130 }
1131 
1132 /**
1133  *	skb_padto	- pad an skbuff up to a minimal size
1134  *	@skb: buffer to pad
1135  *	@len: minimal length
1136  *
1137  *	Pads up a buffer to ensure the trailing bytes exist and are
1138  *	blanked. If the buffer already contains sufficient data it
1139  *	is untouched. Otherwise it is extended. Returns zero on
1140  *	success. The skb is freed on error.
1141  */
1142 
1143 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1144 {
1145 	unsigned int size = skb->len;
1146 	if (likely(size >= len))
1147 		return 0;
1148 	return skb_pad(skb, len-size);
1149 }
1150 
1151 static inline int skb_add_data(struct sk_buff *skb,
1152 			       char __user *from, int copy)
1153 {
1154 	const int off = skb->len;
1155 
1156 	if (skb->ip_summed == CHECKSUM_NONE) {
1157 		int err = 0;
1158 		unsigned int csum = csum_and_copy_from_user(from,
1159 							    skb_put(skb, copy),
1160 							    copy, 0, &err);
1161 		if (!err) {
1162 			skb->csum = csum_block_add(skb->csum, csum, off);
1163 			return 0;
1164 		}
1165 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1166 		return 0;
1167 
1168 	__skb_trim(skb, off);
1169 	return -EFAULT;
1170 }
1171 
1172 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1173 				   struct page *page, int off)
1174 {
1175 	if (i) {
1176 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1177 
1178 		return page == frag->page &&
1179 		       off == frag->page_offset + frag->size;
1180 	}
1181 	return 0;
1182 }
1183 
1184 static inline int __skb_linearize(struct sk_buff *skb)
1185 {
1186 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1187 }
1188 
1189 /**
1190  *	skb_linearize - convert paged skb to linear one
1191  *	@skb: buffer to linarize
1192  *
1193  *	If there is no free memory -ENOMEM is returned, otherwise zero
1194  *	is returned and the old skb data released.
1195  */
1196 static inline int skb_linearize(struct sk_buff *skb)
1197 {
1198 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1199 }
1200 
1201 /**
1202  *	skb_linearize_cow - make sure skb is linear and writable
1203  *	@skb: buffer to process
1204  *
1205  *	If there is no free memory -ENOMEM is returned, otherwise zero
1206  *	is returned and the old skb data released.
1207  */
1208 static inline int skb_linearize_cow(struct sk_buff *skb)
1209 {
1210 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1211 	       __skb_linearize(skb) : 0;
1212 }
1213 
1214 /**
1215  *	skb_postpull_rcsum - update checksum for received skb after pull
1216  *	@skb: buffer to update
1217  *	@start: start of data before pull
1218  *	@len: length of data pulled
1219  *
1220  *	After doing a pull on a received packet, you need to call this to
1221  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1222  *	so that it can be recomputed from scratch.
1223  */
1224 
1225 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1226 				      const void *start, unsigned int len)
1227 {
1228 	if (skb->ip_summed == CHECKSUM_HW)
1229 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1230 }
1231 
1232 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1233 
1234 /**
1235  *	pskb_trim_rcsum - trim received skb and update checksum
1236  *	@skb: buffer to trim
1237  *	@len: new length
1238  *
1239  *	This is exactly the same as pskb_trim except that it ensures the
1240  *	checksum of received packets are still valid after the operation.
1241  */
1242 
1243 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1244 {
1245 	if (likely(len >= skb->len))
1246 		return 0;
1247 	if (skb->ip_summed == CHECKSUM_HW)
1248 		skb->ip_summed = CHECKSUM_NONE;
1249 	return __pskb_trim(skb, len);
1250 }
1251 
1252 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1253 {
1254 #ifdef CONFIG_HIGHMEM
1255 	BUG_ON(in_irq());
1256 
1257 	local_bh_disable();
1258 #endif
1259 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1260 }
1261 
1262 static inline void kunmap_skb_frag(void *vaddr)
1263 {
1264 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1265 #ifdef CONFIG_HIGHMEM
1266 	local_bh_enable();
1267 #endif
1268 }
1269 
1270 #define skb_queue_walk(queue, skb) \
1271 		for (skb = (queue)->next;					\
1272 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1273 		     skb = skb->next)
1274 
1275 #define skb_queue_reverse_walk(queue, skb) \
1276 		for (skb = (queue)->prev;					\
1277 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1278 		     skb = skb->prev)
1279 
1280 
1281 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1282 					 int noblock, int *err);
1283 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1284 				     struct poll_table_struct *wait);
1285 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1286 					       int offset, struct iovec *to,
1287 					       int size);
1288 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1289 							int hlen,
1290 							struct iovec *iov);
1291 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1292 extern void	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1293 					 unsigned int flags);
1294 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1295 				    int len, unsigned int csum);
1296 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1297 				     void *to, int len);
1298 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1299 				      void *from, int len);
1300 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1301 					      int offset, u8 *to, int len,
1302 					      unsigned int csum);
1303 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1304 extern void	       skb_split(struct sk_buff *skb,
1305 				 struct sk_buff *skb1, const u32 len);
1306 
1307 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1308 
1309 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1310 				       int len, void *buffer)
1311 {
1312 	int hlen = skb_headlen(skb);
1313 
1314 	if (hlen - offset >= len)
1315 		return skb->data + offset;
1316 
1317 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1318 		return NULL;
1319 
1320 	return buffer;
1321 }
1322 
1323 extern void skb_init(void);
1324 extern void skb_add_mtu(int mtu);
1325 
1326 /**
1327  *	skb_get_timestamp - get timestamp from a skb
1328  *	@skb: skb to get stamp from
1329  *	@stamp: pointer to struct timeval to store stamp in
1330  *
1331  *	Timestamps are stored in the skb as offsets to a base timestamp.
1332  *	This function converts the offset back to a struct timeval and stores
1333  *	it in stamp.
1334  */
1335 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1336 {
1337 	stamp->tv_sec  = skb->tstamp.off_sec;
1338 	stamp->tv_usec = skb->tstamp.off_usec;
1339 }
1340 
1341 /**
1342  * 	skb_set_timestamp - set timestamp of a skb
1343  *	@skb: skb to set stamp of
1344  *	@stamp: pointer to struct timeval to get stamp from
1345  *
1346  *	Timestamps are stored in the skb as offsets to a base timestamp.
1347  *	This function converts a struct timeval to an offset and stores
1348  *	it in the skb.
1349  */
1350 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1351 {
1352 	skb->tstamp.off_sec  = stamp->tv_sec;
1353 	skb->tstamp.off_usec = stamp->tv_usec;
1354 }
1355 
1356 extern void __net_timestamp(struct sk_buff *skb);
1357 
1358 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1359 
1360 /**
1361  *	skb_checksum_complete - Calculate checksum of an entire packet
1362  *	@skb: packet to process
1363  *
1364  *	This function calculates the checksum over the entire packet plus
1365  *	the value of skb->csum.  The latter can be used to supply the
1366  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1367  *	checksum.
1368  *
1369  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1370  *	this function can be used to verify that checksum on received
1371  *	packets.  In that case the function should return zero if the
1372  *	checksum is correct.  In particular, this function will return zero
1373  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1374  *	hardware has already verified the correctness of the checksum.
1375  */
1376 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1377 {
1378 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1379 		__skb_checksum_complete(skb);
1380 }
1381 
1382 #ifdef CONFIG_NETFILTER
1383 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1384 {
1385 	if (nfct && atomic_dec_and_test(&nfct->use))
1386 		nfct->destroy(nfct);
1387 }
1388 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1389 {
1390 	if (nfct)
1391 		atomic_inc(&nfct->use);
1392 }
1393 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1394 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1395 {
1396 	if (skb)
1397 		atomic_inc(&skb->users);
1398 }
1399 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1400 {
1401 	if (skb)
1402 		kfree_skb(skb);
1403 }
1404 #endif
1405 #ifdef CONFIG_BRIDGE_NETFILTER
1406 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1407 {
1408 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1409 		kfree(nf_bridge);
1410 }
1411 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1412 {
1413 	if (nf_bridge)
1414 		atomic_inc(&nf_bridge->use);
1415 }
1416 #endif /* CONFIG_BRIDGE_NETFILTER */
1417 static inline void nf_reset(struct sk_buff *skb)
1418 {
1419 	nf_conntrack_put(skb->nfct);
1420 	skb->nfct = NULL;
1421 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1422 	nf_conntrack_put_reasm(skb->nfct_reasm);
1423 	skb->nfct_reasm = NULL;
1424 #endif
1425 #ifdef CONFIG_BRIDGE_NETFILTER
1426 	nf_bridge_put(skb->nf_bridge);
1427 	skb->nf_bridge = NULL;
1428 #endif
1429 }
1430 
1431 #else /* CONFIG_NETFILTER */
1432 static inline void nf_reset(struct sk_buff *skb) {}
1433 #endif /* CONFIG_NETFILTER */
1434 
1435 #ifdef CONFIG_NETWORK_SECMARK
1436 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1437 {
1438 	to->secmark = from->secmark;
1439 }
1440 
1441 static inline void skb_init_secmark(struct sk_buff *skb)
1442 {
1443 	skb->secmark = 0;
1444 }
1445 #else
1446 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1447 { }
1448 
1449 static inline void skb_init_secmark(struct sk_buff *skb)
1450 { }
1451 #endif
1452 
1453 #endif	/* __KERNEL__ */
1454 #endif	/* _LINUX_SKBUFF_H */
1455