xref: /linux-6.15/include/linux/skbuff.h (revision 5d4a2e29)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /**
167  * struct skb_shared_tx - instructions for time stamping of outgoing packets
168  * @hardware:		generate hardware time stamp
169  * @software:		generate software time stamp
170  * @in_progress:	device driver is going to provide
171  *			hardware time stamp
172  * @flags:		all shared_tx flags
173  *
174  * These flags are attached to packets as part of the
175  * &skb_shared_info. Use skb_tx() to get a pointer.
176  */
177 union skb_shared_tx {
178 	struct {
179 		__u8	hardware:1,
180 			software:1,
181 			in_progress:1;
182 	};
183 	__u8 flags;
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	unsigned short	nr_frags;
191 	unsigned short	gso_size;
192 	/* Warning: this field is not always filled in (UFO)! */
193 	unsigned short	gso_segs;
194 	unsigned short  gso_type;
195 	__be32          ip6_frag_id;
196 	union skb_shared_tx tx_flags;
197 	struct sk_buff	*frag_list;
198 	struct skb_shared_hwtstamps hwtstamps;
199 
200 	/*
201 	 * Warning : all fields before dataref are cleared in __alloc_skb()
202 	 */
203 	atomic_t	dataref;
204 
205 	skb_frag_t	frags[MAX_SKB_FRAGS];
206 	/* Intermediate layers must ensure that destructor_arg
207 	 * remains valid until skb destructor */
208 	void *		destructor_arg;
209 };
210 
211 /* We divide dataref into two halves.  The higher 16 bits hold references
212  * to the payload part of skb->data.  The lower 16 bits hold references to
213  * the entire skb->data.  A clone of a headerless skb holds the length of
214  * the header in skb->hdr_len.
215  *
216  * All users must obey the rule that the skb->data reference count must be
217  * greater than or equal to the payload reference count.
218  *
219  * Holding a reference to the payload part means that the user does not
220  * care about modifications to the header part of skb->data.
221  */
222 #define SKB_DATAREF_SHIFT 16
223 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
224 
225 
226 enum {
227 	SKB_FCLONE_UNAVAILABLE,
228 	SKB_FCLONE_ORIG,
229 	SKB_FCLONE_CLONE,
230 };
231 
232 enum {
233 	SKB_GSO_TCPV4 = 1 << 0,
234 	SKB_GSO_UDP = 1 << 1,
235 
236 	/* This indicates the skb is from an untrusted source. */
237 	SKB_GSO_DODGY = 1 << 2,
238 
239 	/* This indicates the tcp segment has CWR set. */
240 	SKB_GSO_TCP_ECN = 1 << 3,
241 
242 	SKB_GSO_TCPV6 = 1 << 4,
243 
244 	SKB_GSO_FCOE = 1 << 5,
245 };
246 
247 #if BITS_PER_LONG > 32
248 #define NET_SKBUFF_DATA_USES_OFFSET 1
249 #endif
250 
251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
252 typedef unsigned int sk_buff_data_t;
253 #else
254 typedef unsigned char *sk_buff_data_t;
255 #endif
256 
257 /**
258  *	struct sk_buff - socket buffer
259  *	@next: Next buffer in list
260  *	@prev: Previous buffer in list
261  *	@sk: Socket we are owned by
262  *	@tstamp: Time we arrived
263  *	@dev: Device we arrived on/are leaving by
264  *	@transport_header: Transport layer header
265  *	@network_header: Network layer header
266  *	@mac_header: Link layer header
267  *	@_skb_refdst: destination entry (with norefcount bit)
268  *	@sp: the security path, used for xfrm
269  *	@cb: Control buffer. Free for use by every layer. Put private vars here
270  *	@len: Length of actual data
271  *	@data_len: Data length
272  *	@mac_len: Length of link layer header
273  *	@hdr_len: writable header length of cloned skb
274  *	@csum: Checksum (must include start/offset pair)
275  *	@csum_start: Offset from skb->head where checksumming should start
276  *	@csum_offset: Offset from csum_start where checksum should be stored
277  *	@local_df: allow local fragmentation
278  *	@cloned: Head may be cloned (check refcnt to be sure)
279  *	@nohdr: Payload reference only, must not modify header
280  *	@pkt_type: Packet class
281  *	@fclone: skbuff clone status
282  *	@ip_summed: Driver fed us an IP checksum
283  *	@priority: Packet queueing priority
284  *	@users: User count - see {datagram,tcp}.c
285  *	@protocol: Packet protocol from driver
286  *	@truesize: Buffer size
287  *	@head: Head of buffer
288  *	@data: Data head pointer
289  *	@tail: Tail pointer
290  *	@end: End pointer
291  *	@destructor: Destruct function
292  *	@mark: Generic packet mark
293  *	@nfct: Associated connection, if any
294  *	@ipvs_property: skbuff is owned by ipvs
295  *	@peeked: this packet has been seen already, so stats have been
296  *		done for it, don't do them again
297  *	@nf_trace: netfilter packet trace flag
298  *	@nfctinfo: Relationship of this skb to the connection
299  *	@nfct_reasm: netfilter conntrack re-assembly pointer
300  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
301  *	@skb_iif: ifindex of device we arrived on
302  *	@rxhash: the packet hash computed on receive
303  *	@queue_mapping: Queue mapping for multiqueue devices
304  *	@tc_index: Traffic control index
305  *	@tc_verd: traffic control verdict
306  *	@ndisc_nodetype: router type (from link layer)
307  *	@dma_cookie: a cookie to one of several possible DMA operations
308  *		done by skb DMA functions
309  *	@secmark: security marking
310  *	@vlan_tci: vlan tag control information
311  */
312 
313 struct sk_buff {
314 	/* These two members must be first. */
315 	struct sk_buff		*next;
316 	struct sk_buff		*prev;
317 
318 	ktime_t			tstamp;
319 
320 	struct sock		*sk;
321 	struct net_device	*dev;
322 
323 	/*
324 	 * This is the control buffer. It is free to use for every
325 	 * layer. Please put your private variables there. If you
326 	 * want to keep them across layers you have to do a skb_clone()
327 	 * first. This is owned by whoever has the skb queued ATM.
328 	 */
329 	char			cb[48] __aligned(8);
330 
331 	unsigned long		_skb_refdst;
332 #ifdef CONFIG_XFRM
333 	struct	sec_path	*sp;
334 #endif
335 	unsigned int		len,
336 				data_len;
337 	__u16			mac_len,
338 				hdr_len;
339 	union {
340 		__wsum		csum;
341 		struct {
342 			__u16	csum_start;
343 			__u16	csum_offset;
344 		};
345 	};
346 	__u32			priority;
347 	kmemcheck_bitfield_begin(flags1);
348 	__u8			local_df:1,
349 				cloned:1,
350 				ip_summed:2,
351 				nohdr:1,
352 				nfctinfo:3;
353 	__u8			pkt_type:3,
354 				fclone:2,
355 				ipvs_property:1,
356 				peeked:1,
357 				nf_trace:1;
358 	kmemcheck_bitfield_end(flags1);
359 	__be16			protocol;
360 
361 	void			(*destructor)(struct sk_buff *skb);
362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
363 	struct nf_conntrack	*nfct;
364 	struct sk_buff		*nfct_reasm;
365 #endif
366 #ifdef CONFIG_BRIDGE_NETFILTER
367 	struct nf_bridge_info	*nf_bridge;
368 #endif
369 
370 	int			skb_iif;
371 #ifdef CONFIG_NET_SCHED
372 	__u16			tc_index;	/* traffic control index */
373 #ifdef CONFIG_NET_CLS_ACT
374 	__u16			tc_verd;	/* traffic control verdict */
375 #endif
376 #endif
377 
378 	__u32			rxhash;
379 
380 	kmemcheck_bitfield_begin(flags2);
381 	__u16			queue_mapping:16;
382 #ifdef CONFIG_IPV6_NDISC_NODETYPE
383 	__u8			ndisc_nodetype:2,
384 				deliver_no_wcard:1;
385 #else
386 	__u8			deliver_no_wcard:1;
387 #endif
388 	kmemcheck_bitfield_end(flags2);
389 
390 	/* 0/14 bit hole */
391 
392 #ifdef CONFIG_NET_DMA
393 	dma_cookie_t		dma_cookie;
394 #endif
395 #ifdef CONFIG_NETWORK_SECMARK
396 	__u32			secmark;
397 #endif
398 	union {
399 		__u32		mark;
400 		__u32		dropcount;
401 	};
402 
403 	__u16			vlan_tci;
404 
405 	sk_buff_data_t		transport_header;
406 	sk_buff_data_t		network_header;
407 	sk_buff_data_t		mac_header;
408 	/* These elements must be at the end, see alloc_skb() for details.  */
409 	sk_buff_data_t		tail;
410 	sk_buff_data_t		end;
411 	unsigned char		*head,
412 				*data;
413 	unsigned int		truesize;
414 	atomic_t		users;
415 };
416 
417 #ifdef __KERNEL__
418 /*
419  *	Handling routines are only of interest to the kernel
420  */
421 #include <linux/slab.h>
422 
423 #include <asm/system.h>
424 
425 /*
426  * skb might have a dst pointer attached, refcounted or not.
427  * _skb_refdst low order bit is set if refcount was _not_ taken
428  */
429 #define SKB_DST_NOREF	1UL
430 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
431 
432 /**
433  * skb_dst - returns skb dst_entry
434  * @skb: buffer
435  *
436  * Returns skb dst_entry, regardless of reference taken or not.
437  */
438 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
439 {
440 	/* If refdst was not refcounted, check we still are in a
441 	 * rcu_read_lock section
442 	 */
443 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
444 		!rcu_read_lock_held() &&
445 		!rcu_read_lock_bh_held());
446 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
447 }
448 
449 /**
450  * skb_dst_set - sets skb dst
451  * @skb: buffer
452  * @dst: dst entry
453  *
454  * Sets skb dst, assuming a reference was taken on dst and should
455  * be released by skb_dst_drop()
456  */
457 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
458 {
459 	skb->_skb_refdst = (unsigned long)dst;
460 }
461 
462 /**
463  * skb_dst_set_noref - sets skb dst, without a reference
464  * @skb: buffer
465  * @dst: dst entry
466  *
467  * Sets skb dst, assuming a reference was not taken on dst
468  * skb_dst_drop() should not dst_release() this dst
469  */
470 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
471 {
472 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
473 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
474 }
475 
476 /**
477  * skb_dst_is_noref - Test if skb dst isnt refcounted
478  * @skb: buffer
479  */
480 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
481 {
482 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
483 }
484 
485 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
486 {
487 	return (struct rtable *)skb_dst(skb);
488 }
489 
490 extern void kfree_skb(struct sk_buff *skb);
491 extern void consume_skb(struct sk_buff *skb);
492 extern void	       __kfree_skb(struct sk_buff *skb);
493 extern struct sk_buff *__alloc_skb(unsigned int size,
494 				   gfp_t priority, int fclone, int node);
495 static inline struct sk_buff *alloc_skb(unsigned int size,
496 					gfp_t priority)
497 {
498 	return __alloc_skb(size, priority, 0, -1);
499 }
500 
501 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
502 					       gfp_t priority)
503 {
504 	return __alloc_skb(size, priority, 1, -1);
505 }
506 
507 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
508 
509 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
510 extern struct sk_buff *skb_clone(struct sk_buff *skb,
511 				 gfp_t priority);
512 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
513 				gfp_t priority);
514 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
515 				 gfp_t gfp_mask);
516 extern int	       pskb_expand_head(struct sk_buff *skb,
517 					int nhead, int ntail,
518 					gfp_t gfp_mask);
519 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
520 					    unsigned int headroom);
521 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
522 				       int newheadroom, int newtailroom,
523 				       gfp_t priority);
524 extern int	       skb_to_sgvec(struct sk_buff *skb,
525 				    struct scatterlist *sg, int offset,
526 				    int len);
527 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
528 				    struct sk_buff **trailer);
529 extern int	       skb_pad(struct sk_buff *skb, int pad);
530 #define dev_kfree_skb(a)	consume_skb(a)
531 
532 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
533 			int getfrag(void *from, char *to, int offset,
534 			int len,int odd, struct sk_buff *skb),
535 			void *from, int length);
536 
537 struct skb_seq_state {
538 	__u32		lower_offset;
539 	__u32		upper_offset;
540 	__u32		frag_idx;
541 	__u32		stepped_offset;
542 	struct sk_buff	*root_skb;
543 	struct sk_buff	*cur_skb;
544 	__u8		*frag_data;
545 };
546 
547 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
548 					   unsigned int from, unsigned int to,
549 					   struct skb_seq_state *st);
550 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
551 				   struct skb_seq_state *st);
552 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
553 
554 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
555 				    unsigned int to, struct ts_config *config,
556 				    struct ts_state *state);
557 
558 #ifdef NET_SKBUFF_DATA_USES_OFFSET
559 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
560 {
561 	return skb->head + skb->end;
562 }
563 #else
564 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
565 {
566 	return skb->end;
567 }
568 #endif
569 
570 /* Internal */
571 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
572 
573 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
574 {
575 	return &skb_shinfo(skb)->hwtstamps;
576 }
577 
578 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
579 {
580 	return &skb_shinfo(skb)->tx_flags;
581 }
582 
583 /**
584  *	skb_queue_empty - check if a queue is empty
585  *	@list: queue head
586  *
587  *	Returns true if the queue is empty, false otherwise.
588  */
589 static inline int skb_queue_empty(const struct sk_buff_head *list)
590 {
591 	return list->next == (struct sk_buff *)list;
592 }
593 
594 /**
595  *	skb_queue_is_last - check if skb is the last entry in the queue
596  *	@list: queue head
597  *	@skb: buffer
598  *
599  *	Returns true if @skb is the last buffer on the list.
600  */
601 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
602 				     const struct sk_buff *skb)
603 {
604 	return (skb->next == (struct sk_buff *) list);
605 }
606 
607 /**
608  *	skb_queue_is_first - check if skb is the first entry in the queue
609  *	@list: queue head
610  *	@skb: buffer
611  *
612  *	Returns true if @skb is the first buffer on the list.
613  */
614 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
615 				      const struct sk_buff *skb)
616 {
617 	return (skb->prev == (struct sk_buff *) list);
618 }
619 
620 /**
621  *	skb_queue_next - return the next packet in the queue
622  *	@list: queue head
623  *	@skb: current buffer
624  *
625  *	Return the next packet in @list after @skb.  It is only valid to
626  *	call this if skb_queue_is_last() evaluates to false.
627  */
628 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
629 					     const struct sk_buff *skb)
630 {
631 	/* This BUG_ON may seem severe, but if we just return then we
632 	 * are going to dereference garbage.
633 	 */
634 	BUG_ON(skb_queue_is_last(list, skb));
635 	return skb->next;
636 }
637 
638 /**
639  *	skb_queue_prev - return the prev packet in the queue
640  *	@list: queue head
641  *	@skb: current buffer
642  *
643  *	Return the prev packet in @list before @skb.  It is only valid to
644  *	call this if skb_queue_is_first() evaluates to false.
645  */
646 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
647 					     const struct sk_buff *skb)
648 {
649 	/* This BUG_ON may seem severe, but if we just return then we
650 	 * are going to dereference garbage.
651 	 */
652 	BUG_ON(skb_queue_is_first(list, skb));
653 	return skb->prev;
654 }
655 
656 /**
657  *	skb_get - reference buffer
658  *	@skb: buffer to reference
659  *
660  *	Makes another reference to a socket buffer and returns a pointer
661  *	to the buffer.
662  */
663 static inline struct sk_buff *skb_get(struct sk_buff *skb)
664 {
665 	atomic_inc(&skb->users);
666 	return skb;
667 }
668 
669 /*
670  * If users == 1, we are the only owner and are can avoid redundant
671  * atomic change.
672  */
673 
674 /**
675  *	skb_cloned - is the buffer a clone
676  *	@skb: buffer to check
677  *
678  *	Returns true if the buffer was generated with skb_clone() and is
679  *	one of multiple shared copies of the buffer. Cloned buffers are
680  *	shared data so must not be written to under normal circumstances.
681  */
682 static inline int skb_cloned(const struct sk_buff *skb)
683 {
684 	return skb->cloned &&
685 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
686 }
687 
688 /**
689  *	skb_header_cloned - is the header a clone
690  *	@skb: buffer to check
691  *
692  *	Returns true if modifying the header part of the buffer requires
693  *	the data to be copied.
694  */
695 static inline int skb_header_cloned(const struct sk_buff *skb)
696 {
697 	int dataref;
698 
699 	if (!skb->cloned)
700 		return 0;
701 
702 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
703 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
704 	return dataref != 1;
705 }
706 
707 /**
708  *	skb_header_release - release reference to header
709  *	@skb: buffer to operate on
710  *
711  *	Drop a reference to the header part of the buffer.  This is done
712  *	by acquiring a payload reference.  You must not read from the header
713  *	part of skb->data after this.
714  */
715 static inline void skb_header_release(struct sk_buff *skb)
716 {
717 	BUG_ON(skb->nohdr);
718 	skb->nohdr = 1;
719 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
720 }
721 
722 /**
723  *	skb_shared - is the buffer shared
724  *	@skb: buffer to check
725  *
726  *	Returns true if more than one person has a reference to this
727  *	buffer.
728  */
729 static inline int skb_shared(const struct sk_buff *skb)
730 {
731 	return atomic_read(&skb->users) != 1;
732 }
733 
734 /**
735  *	skb_share_check - check if buffer is shared and if so clone it
736  *	@skb: buffer to check
737  *	@pri: priority for memory allocation
738  *
739  *	If the buffer is shared the buffer is cloned and the old copy
740  *	drops a reference. A new clone with a single reference is returned.
741  *	If the buffer is not shared the original buffer is returned. When
742  *	being called from interrupt status or with spinlocks held pri must
743  *	be GFP_ATOMIC.
744  *
745  *	NULL is returned on a memory allocation failure.
746  */
747 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
748 					      gfp_t pri)
749 {
750 	might_sleep_if(pri & __GFP_WAIT);
751 	if (skb_shared(skb)) {
752 		struct sk_buff *nskb = skb_clone(skb, pri);
753 		kfree_skb(skb);
754 		skb = nskb;
755 	}
756 	return skb;
757 }
758 
759 /*
760  *	Copy shared buffers into a new sk_buff. We effectively do COW on
761  *	packets to handle cases where we have a local reader and forward
762  *	and a couple of other messy ones. The normal one is tcpdumping
763  *	a packet thats being forwarded.
764  */
765 
766 /**
767  *	skb_unshare - make a copy of a shared buffer
768  *	@skb: buffer to check
769  *	@pri: priority for memory allocation
770  *
771  *	If the socket buffer is a clone then this function creates a new
772  *	copy of the data, drops a reference count on the old copy and returns
773  *	the new copy with the reference count at 1. If the buffer is not a clone
774  *	the original buffer is returned. When called with a spinlock held or
775  *	from interrupt state @pri must be %GFP_ATOMIC
776  *
777  *	%NULL is returned on a memory allocation failure.
778  */
779 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
780 					  gfp_t pri)
781 {
782 	might_sleep_if(pri & __GFP_WAIT);
783 	if (skb_cloned(skb)) {
784 		struct sk_buff *nskb = skb_copy(skb, pri);
785 		kfree_skb(skb);	/* Free our shared copy */
786 		skb = nskb;
787 	}
788 	return skb;
789 }
790 
791 /**
792  *	skb_peek - peek at the head of an &sk_buff_head
793  *	@list_: list to peek at
794  *
795  *	Peek an &sk_buff. Unlike most other operations you _MUST_
796  *	be careful with this one. A peek leaves the buffer on the
797  *	list and someone else may run off with it. You must hold
798  *	the appropriate locks or have a private queue to do this.
799  *
800  *	Returns %NULL for an empty list or a pointer to the head element.
801  *	The reference count is not incremented and the reference is therefore
802  *	volatile. Use with caution.
803  */
804 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
805 {
806 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
807 	if (list == (struct sk_buff *)list_)
808 		list = NULL;
809 	return list;
810 }
811 
812 /**
813  *	skb_peek_tail - peek at the tail of an &sk_buff_head
814  *	@list_: list to peek at
815  *
816  *	Peek an &sk_buff. Unlike most other operations you _MUST_
817  *	be careful with this one. A peek leaves the buffer on the
818  *	list and someone else may run off with it. You must hold
819  *	the appropriate locks or have a private queue to do this.
820  *
821  *	Returns %NULL for an empty list or a pointer to the tail element.
822  *	The reference count is not incremented and the reference is therefore
823  *	volatile. Use with caution.
824  */
825 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
826 {
827 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
828 	if (list == (struct sk_buff *)list_)
829 		list = NULL;
830 	return list;
831 }
832 
833 /**
834  *	skb_queue_len	- get queue length
835  *	@list_: list to measure
836  *
837  *	Return the length of an &sk_buff queue.
838  */
839 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
840 {
841 	return list_->qlen;
842 }
843 
844 /**
845  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
846  *	@list: queue to initialize
847  *
848  *	This initializes only the list and queue length aspects of
849  *	an sk_buff_head object.  This allows to initialize the list
850  *	aspects of an sk_buff_head without reinitializing things like
851  *	the spinlock.  It can also be used for on-stack sk_buff_head
852  *	objects where the spinlock is known to not be used.
853  */
854 static inline void __skb_queue_head_init(struct sk_buff_head *list)
855 {
856 	list->prev = list->next = (struct sk_buff *)list;
857 	list->qlen = 0;
858 }
859 
860 /*
861  * This function creates a split out lock class for each invocation;
862  * this is needed for now since a whole lot of users of the skb-queue
863  * infrastructure in drivers have different locking usage (in hardirq)
864  * than the networking core (in softirq only). In the long run either the
865  * network layer or drivers should need annotation to consolidate the
866  * main types of usage into 3 classes.
867  */
868 static inline void skb_queue_head_init(struct sk_buff_head *list)
869 {
870 	spin_lock_init(&list->lock);
871 	__skb_queue_head_init(list);
872 }
873 
874 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
875 		struct lock_class_key *class)
876 {
877 	skb_queue_head_init(list);
878 	lockdep_set_class(&list->lock, class);
879 }
880 
881 /*
882  *	Insert an sk_buff on a list.
883  *
884  *	The "__skb_xxxx()" functions are the non-atomic ones that
885  *	can only be called with interrupts disabled.
886  */
887 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
888 static inline void __skb_insert(struct sk_buff *newsk,
889 				struct sk_buff *prev, struct sk_buff *next,
890 				struct sk_buff_head *list)
891 {
892 	newsk->next = next;
893 	newsk->prev = prev;
894 	next->prev  = prev->next = newsk;
895 	list->qlen++;
896 }
897 
898 static inline void __skb_queue_splice(const struct sk_buff_head *list,
899 				      struct sk_buff *prev,
900 				      struct sk_buff *next)
901 {
902 	struct sk_buff *first = list->next;
903 	struct sk_buff *last = list->prev;
904 
905 	first->prev = prev;
906 	prev->next = first;
907 
908 	last->next = next;
909 	next->prev = last;
910 }
911 
912 /**
913  *	skb_queue_splice - join two skb lists, this is designed for stacks
914  *	@list: the new list to add
915  *	@head: the place to add it in the first list
916  */
917 static inline void skb_queue_splice(const struct sk_buff_head *list,
918 				    struct sk_buff_head *head)
919 {
920 	if (!skb_queue_empty(list)) {
921 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
922 		head->qlen += list->qlen;
923 	}
924 }
925 
926 /**
927  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
928  *	@list: the new list to add
929  *	@head: the place to add it in the first list
930  *
931  *	The list at @list is reinitialised
932  */
933 static inline void skb_queue_splice_init(struct sk_buff_head *list,
934 					 struct sk_buff_head *head)
935 {
936 	if (!skb_queue_empty(list)) {
937 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
938 		head->qlen += list->qlen;
939 		__skb_queue_head_init(list);
940 	}
941 }
942 
943 /**
944  *	skb_queue_splice_tail - join two skb lists, each list being a queue
945  *	@list: the new list to add
946  *	@head: the place to add it in the first list
947  */
948 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
949 					 struct sk_buff_head *head)
950 {
951 	if (!skb_queue_empty(list)) {
952 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
953 		head->qlen += list->qlen;
954 	}
955 }
956 
957 /**
958  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
959  *	@list: the new list to add
960  *	@head: the place to add it in the first list
961  *
962  *	Each of the lists is a queue.
963  *	The list at @list is reinitialised
964  */
965 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
966 					      struct sk_buff_head *head)
967 {
968 	if (!skb_queue_empty(list)) {
969 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
970 		head->qlen += list->qlen;
971 		__skb_queue_head_init(list);
972 	}
973 }
974 
975 /**
976  *	__skb_queue_after - queue a buffer at the list head
977  *	@list: list to use
978  *	@prev: place after this buffer
979  *	@newsk: buffer to queue
980  *
981  *	Queue a buffer int the middle of a list. This function takes no locks
982  *	and you must therefore hold required locks before calling it.
983  *
984  *	A buffer cannot be placed on two lists at the same time.
985  */
986 static inline void __skb_queue_after(struct sk_buff_head *list,
987 				     struct sk_buff *prev,
988 				     struct sk_buff *newsk)
989 {
990 	__skb_insert(newsk, prev, prev->next, list);
991 }
992 
993 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
994 		       struct sk_buff_head *list);
995 
996 static inline void __skb_queue_before(struct sk_buff_head *list,
997 				      struct sk_buff *next,
998 				      struct sk_buff *newsk)
999 {
1000 	__skb_insert(newsk, next->prev, next, list);
1001 }
1002 
1003 /**
1004  *	__skb_queue_head - queue a buffer at the list head
1005  *	@list: list to use
1006  *	@newsk: buffer to queue
1007  *
1008  *	Queue a buffer at the start of a list. This function takes no locks
1009  *	and you must therefore hold required locks before calling it.
1010  *
1011  *	A buffer cannot be placed on two lists at the same time.
1012  */
1013 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1014 static inline void __skb_queue_head(struct sk_buff_head *list,
1015 				    struct sk_buff *newsk)
1016 {
1017 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1018 }
1019 
1020 /**
1021  *	__skb_queue_tail - queue a buffer at the list tail
1022  *	@list: list to use
1023  *	@newsk: buffer to queue
1024  *
1025  *	Queue a buffer at the end of a list. This function takes no locks
1026  *	and you must therefore hold required locks before calling it.
1027  *
1028  *	A buffer cannot be placed on two lists at the same time.
1029  */
1030 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1031 static inline void __skb_queue_tail(struct sk_buff_head *list,
1032 				   struct sk_buff *newsk)
1033 {
1034 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1035 }
1036 
1037 /*
1038  * remove sk_buff from list. _Must_ be called atomically, and with
1039  * the list known..
1040  */
1041 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1042 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1043 {
1044 	struct sk_buff *next, *prev;
1045 
1046 	list->qlen--;
1047 	next	   = skb->next;
1048 	prev	   = skb->prev;
1049 	skb->next  = skb->prev = NULL;
1050 	next->prev = prev;
1051 	prev->next = next;
1052 }
1053 
1054 /**
1055  *	__skb_dequeue - remove from the head of the queue
1056  *	@list: list to dequeue from
1057  *
1058  *	Remove the head of the list. This function does not take any locks
1059  *	so must be used with appropriate locks held only. The head item is
1060  *	returned or %NULL if the list is empty.
1061  */
1062 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1063 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1064 {
1065 	struct sk_buff *skb = skb_peek(list);
1066 	if (skb)
1067 		__skb_unlink(skb, list);
1068 	return skb;
1069 }
1070 
1071 /**
1072  *	__skb_dequeue_tail - remove from the tail of the queue
1073  *	@list: list to dequeue from
1074  *
1075  *	Remove the tail of the list. This function does not take any locks
1076  *	so must be used with appropriate locks held only. The tail item is
1077  *	returned or %NULL if the list is empty.
1078  */
1079 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1080 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1081 {
1082 	struct sk_buff *skb = skb_peek_tail(list);
1083 	if (skb)
1084 		__skb_unlink(skb, list);
1085 	return skb;
1086 }
1087 
1088 
1089 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1090 {
1091 	return skb->data_len;
1092 }
1093 
1094 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1095 {
1096 	return skb->len - skb->data_len;
1097 }
1098 
1099 static inline int skb_pagelen(const struct sk_buff *skb)
1100 {
1101 	int i, len = 0;
1102 
1103 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1104 		len += skb_shinfo(skb)->frags[i].size;
1105 	return len + skb_headlen(skb);
1106 }
1107 
1108 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1109 				      struct page *page, int off, int size)
1110 {
1111 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1112 
1113 	frag->page		  = page;
1114 	frag->page_offset	  = off;
1115 	frag->size		  = size;
1116 	skb_shinfo(skb)->nr_frags = i + 1;
1117 }
1118 
1119 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1120 			    int off, int size);
1121 
1122 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1123 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1124 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1125 
1126 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1127 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1128 {
1129 	return skb->head + skb->tail;
1130 }
1131 
1132 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1133 {
1134 	skb->tail = skb->data - skb->head;
1135 }
1136 
1137 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1138 {
1139 	skb_reset_tail_pointer(skb);
1140 	skb->tail += offset;
1141 }
1142 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1143 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1144 {
1145 	return skb->tail;
1146 }
1147 
1148 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1149 {
1150 	skb->tail = skb->data;
1151 }
1152 
1153 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1154 {
1155 	skb->tail = skb->data + offset;
1156 }
1157 
1158 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1159 
1160 /*
1161  *	Add data to an sk_buff
1162  */
1163 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1164 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1165 {
1166 	unsigned char *tmp = skb_tail_pointer(skb);
1167 	SKB_LINEAR_ASSERT(skb);
1168 	skb->tail += len;
1169 	skb->len  += len;
1170 	return tmp;
1171 }
1172 
1173 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1174 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1175 {
1176 	skb->data -= len;
1177 	skb->len  += len;
1178 	return skb->data;
1179 }
1180 
1181 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1182 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1183 {
1184 	skb->len -= len;
1185 	BUG_ON(skb->len < skb->data_len);
1186 	return skb->data += len;
1187 }
1188 
1189 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1190 {
1191 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1192 }
1193 
1194 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1195 
1196 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1197 {
1198 	if (len > skb_headlen(skb) &&
1199 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1200 		return NULL;
1201 	skb->len -= len;
1202 	return skb->data += len;
1203 }
1204 
1205 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1206 {
1207 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1208 }
1209 
1210 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1211 {
1212 	if (likely(len <= skb_headlen(skb)))
1213 		return 1;
1214 	if (unlikely(len > skb->len))
1215 		return 0;
1216 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1217 }
1218 
1219 /**
1220  *	skb_headroom - bytes at buffer head
1221  *	@skb: buffer to check
1222  *
1223  *	Return the number of bytes of free space at the head of an &sk_buff.
1224  */
1225 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1226 {
1227 	return skb->data - skb->head;
1228 }
1229 
1230 /**
1231  *	skb_tailroom - bytes at buffer end
1232  *	@skb: buffer to check
1233  *
1234  *	Return the number of bytes of free space at the tail of an sk_buff
1235  */
1236 static inline int skb_tailroom(const struct sk_buff *skb)
1237 {
1238 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1239 }
1240 
1241 /**
1242  *	skb_reserve - adjust headroom
1243  *	@skb: buffer to alter
1244  *	@len: bytes to move
1245  *
1246  *	Increase the headroom of an empty &sk_buff by reducing the tail
1247  *	room. This is only allowed for an empty buffer.
1248  */
1249 static inline void skb_reserve(struct sk_buff *skb, int len)
1250 {
1251 	skb->data += len;
1252 	skb->tail += len;
1253 }
1254 
1255 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1256 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1257 {
1258 	return skb->head + skb->transport_header;
1259 }
1260 
1261 static inline void skb_reset_transport_header(struct sk_buff *skb)
1262 {
1263 	skb->transport_header = skb->data - skb->head;
1264 }
1265 
1266 static inline void skb_set_transport_header(struct sk_buff *skb,
1267 					    const int offset)
1268 {
1269 	skb_reset_transport_header(skb);
1270 	skb->transport_header += offset;
1271 }
1272 
1273 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1274 {
1275 	return skb->head + skb->network_header;
1276 }
1277 
1278 static inline void skb_reset_network_header(struct sk_buff *skb)
1279 {
1280 	skb->network_header = skb->data - skb->head;
1281 }
1282 
1283 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1284 {
1285 	skb_reset_network_header(skb);
1286 	skb->network_header += offset;
1287 }
1288 
1289 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1290 {
1291 	return skb->head + skb->mac_header;
1292 }
1293 
1294 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1295 {
1296 	return skb->mac_header != ~0U;
1297 }
1298 
1299 static inline void skb_reset_mac_header(struct sk_buff *skb)
1300 {
1301 	skb->mac_header = skb->data - skb->head;
1302 }
1303 
1304 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1305 {
1306 	skb_reset_mac_header(skb);
1307 	skb->mac_header += offset;
1308 }
1309 
1310 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1311 
1312 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1313 {
1314 	return skb->transport_header;
1315 }
1316 
1317 static inline void skb_reset_transport_header(struct sk_buff *skb)
1318 {
1319 	skb->transport_header = skb->data;
1320 }
1321 
1322 static inline void skb_set_transport_header(struct sk_buff *skb,
1323 					    const int offset)
1324 {
1325 	skb->transport_header = skb->data + offset;
1326 }
1327 
1328 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1329 {
1330 	return skb->network_header;
1331 }
1332 
1333 static inline void skb_reset_network_header(struct sk_buff *skb)
1334 {
1335 	skb->network_header = skb->data;
1336 }
1337 
1338 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1339 {
1340 	skb->network_header = skb->data + offset;
1341 }
1342 
1343 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1344 {
1345 	return skb->mac_header;
1346 }
1347 
1348 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1349 {
1350 	return skb->mac_header != NULL;
1351 }
1352 
1353 static inline void skb_reset_mac_header(struct sk_buff *skb)
1354 {
1355 	skb->mac_header = skb->data;
1356 }
1357 
1358 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1359 {
1360 	skb->mac_header = skb->data + offset;
1361 }
1362 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1363 
1364 static inline int skb_transport_offset(const struct sk_buff *skb)
1365 {
1366 	return skb_transport_header(skb) - skb->data;
1367 }
1368 
1369 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1370 {
1371 	return skb->transport_header - skb->network_header;
1372 }
1373 
1374 static inline int skb_network_offset(const struct sk_buff *skb)
1375 {
1376 	return skb_network_header(skb) - skb->data;
1377 }
1378 
1379 /*
1380  * CPUs often take a performance hit when accessing unaligned memory
1381  * locations. The actual performance hit varies, it can be small if the
1382  * hardware handles it or large if we have to take an exception and fix it
1383  * in software.
1384  *
1385  * Since an ethernet header is 14 bytes network drivers often end up with
1386  * the IP header at an unaligned offset. The IP header can be aligned by
1387  * shifting the start of the packet by 2 bytes. Drivers should do this
1388  * with:
1389  *
1390  * skb_reserve(skb, NET_IP_ALIGN);
1391  *
1392  * The downside to this alignment of the IP header is that the DMA is now
1393  * unaligned. On some architectures the cost of an unaligned DMA is high
1394  * and this cost outweighs the gains made by aligning the IP header.
1395  *
1396  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1397  * to be overridden.
1398  */
1399 #ifndef NET_IP_ALIGN
1400 #define NET_IP_ALIGN	2
1401 #endif
1402 
1403 /*
1404  * The networking layer reserves some headroom in skb data (via
1405  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1406  * the header has to grow. In the default case, if the header has to grow
1407  * 32 bytes or less we avoid the reallocation.
1408  *
1409  * Unfortunately this headroom changes the DMA alignment of the resulting
1410  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1411  * on some architectures. An architecture can override this value,
1412  * perhaps setting it to a cacheline in size (since that will maintain
1413  * cacheline alignment of the DMA). It must be a power of 2.
1414  *
1415  * Various parts of the networking layer expect at least 32 bytes of
1416  * headroom, you should not reduce this.
1417  * With RPS, we raised NET_SKB_PAD to 64 so that get_rps_cpus() fetches span
1418  * a 64 bytes aligned block to fit modern (>= 64 bytes) cache line sizes
1419  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1420  */
1421 #ifndef NET_SKB_PAD
1422 #define NET_SKB_PAD	64
1423 #endif
1424 
1425 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1426 
1427 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1428 {
1429 	if (unlikely(skb->data_len)) {
1430 		WARN_ON(1);
1431 		return;
1432 	}
1433 	skb->len = len;
1434 	skb_set_tail_pointer(skb, len);
1435 }
1436 
1437 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1438 
1439 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1440 {
1441 	if (skb->data_len)
1442 		return ___pskb_trim(skb, len);
1443 	__skb_trim(skb, len);
1444 	return 0;
1445 }
1446 
1447 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1448 {
1449 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1450 }
1451 
1452 /**
1453  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1454  *	@skb: buffer to alter
1455  *	@len: new length
1456  *
1457  *	This is identical to pskb_trim except that the caller knows that
1458  *	the skb is not cloned so we should never get an error due to out-
1459  *	of-memory.
1460  */
1461 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1462 {
1463 	int err = pskb_trim(skb, len);
1464 	BUG_ON(err);
1465 }
1466 
1467 /**
1468  *	skb_orphan - orphan a buffer
1469  *	@skb: buffer to orphan
1470  *
1471  *	If a buffer currently has an owner then we call the owner's
1472  *	destructor function and make the @skb unowned. The buffer continues
1473  *	to exist but is no longer charged to its former owner.
1474  */
1475 static inline void skb_orphan(struct sk_buff *skb)
1476 {
1477 	if (skb->destructor)
1478 		skb->destructor(skb);
1479 	skb->destructor = NULL;
1480 	skb->sk		= NULL;
1481 }
1482 
1483 /**
1484  *	__skb_queue_purge - empty a list
1485  *	@list: list to empty
1486  *
1487  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1488  *	the list and one reference dropped. This function does not take the
1489  *	list lock and the caller must hold the relevant locks to use it.
1490  */
1491 extern void skb_queue_purge(struct sk_buff_head *list);
1492 static inline void __skb_queue_purge(struct sk_buff_head *list)
1493 {
1494 	struct sk_buff *skb;
1495 	while ((skb = __skb_dequeue(list)) != NULL)
1496 		kfree_skb(skb);
1497 }
1498 
1499 /**
1500  *	__dev_alloc_skb - allocate an skbuff for receiving
1501  *	@length: length to allocate
1502  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1503  *
1504  *	Allocate a new &sk_buff and assign it a usage count of one. The
1505  *	buffer has unspecified headroom built in. Users should allocate
1506  *	the headroom they think they need without accounting for the
1507  *	built in space. The built in space is used for optimisations.
1508  *
1509  *	%NULL is returned if there is no free memory.
1510  */
1511 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1512 					      gfp_t gfp_mask)
1513 {
1514 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1515 	if (likely(skb))
1516 		skb_reserve(skb, NET_SKB_PAD);
1517 	return skb;
1518 }
1519 
1520 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1521 
1522 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1523 		unsigned int length, gfp_t gfp_mask);
1524 
1525 /**
1526  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1527  *	@dev: network device to receive on
1528  *	@length: length to allocate
1529  *
1530  *	Allocate a new &sk_buff and assign it a usage count of one. The
1531  *	buffer has unspecified headroom built in. Users should allocate
1532  *	the headroom they think they need without accounting for the
1533  *	built in space. The built in space is used for optimisations.
1534  *
1535  *	%NULL is returned if there is no free memory. Although this function
1536  *	allocates memory it can be called from an interrupt.
1537  */
1538 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1539 		unsigned int length)
1540 {
1541 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1542 }
1543 
1544 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1545 		unsigned int length)
1546 {
1547 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1548 
1549 	if (NET_IP_ALIGN && skb)
1550 		skb_reserve(skb, NET_IP_ALIGN);
1551 	return skb;
1552 }
1553 
1554 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1555 
1556 /**
1557  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1558  *	@dev: network device to receive on
1559  *
1560  * 	Allocate a new page node local to the specified device.
1561  *
1562  * 	%NULL is returned if there is no free memory.
1563  */
1564 static inline struct page *netdev_alloc_page(struct net_device *dev)
1565 {
1566 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1567 }
1568 
1569 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1570 {
1571 	__free_page(page);
1572 }
1573 
1574 /**
1575  *	skb_clone_writable - is the header of a clone writable
1576  *	@skb: buffer to check
1577  *	@len: length up to which to write
1578  *
1579  *	Returns true if modifying the header part of the cloned buffer
1580  *	does not requires the data to be copied.
1581  */
1582 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1583 {
1584 	return !skb_header_cloned(skb) &&
1585 	       skb_headroom(skb) + len <= skb->hdr_len;
1586 }
1587 
1588 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1589 			    int cloned)
1590 {
1591 	int delta = 0;
1592 
1593 	if (headroom < NET_SKB_PAD)
1594 		headroom = NET_SKB_PAD;
1595 	if (headroom > skb_headroom(skb))
1596 		delta = headroom - skb_headroom(skb);
1597 
1598 	if (delta || cloned)
1599 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1600 					GFP_ATOMIC);
1601 	return 0;
1602 }
1603 
1604 /**
1605  *	skb_cow - copy header of skb when it is required
1606  *	@skb: buffer to cow
1607  *	@headroom: needed headroom
1608  *
1609  *	If the skb passed lacks sufficient headroom or its data part
1610  *	is shared, data is reallocated. If reallocation fails, an error
1611  *	is returned and original skb is not changed.
1612  *
1613  *	The result is skb with writable area skb->head...skb->tail
1614  *	and at least @headroom of space at head.
1615  */
1616 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1617 {
1618 	return __skb_cow(skb, headroom, skb_cloned(skb));
1619 }
1620 
1621 /**
1622  *	skb_cow_head - skb_cow but only making the head writable
1623  *	@skb: buffer to cow
1624  *	@headroom: needed headroom
1625  *
1626  *	This function is identical to skb_cow except that we replace the
1627  *	skb_cloned check by skb_header_cloned.  It should be used when
1628  *	you only need to push on some header and do not need to modify
1629  *	the data.
1630  */
1631 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1632 {
1633 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1634 }
1635 
1636 /**
1637  *	skb_padto	- pad an skbuff up to a minimal size
1638  *	@skb: buffer to pad
1639  *	@len: minimal length
1640  *
1641  *	Pads up a buffer to ensure the trailing bytes exist and are
1642  *	blanked. If the buffer already contains sufficient data it
1643  *	is untouched. Otherwise it is extended. Returns zero on
1644  *	success. The skb is freed on error.
1645  */
1646 
1647 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1648 {
1649 	unsigned int size = skb->len;
1650 	if (likely(size >= len))
1651 		return 0;
1652 	return skb_pad(skb, len - size);
1653 }
1654 
1655 static inline int skb_add_data(struct sk_buff *skb,
1656 			       char __user *from, int copy)
1657 {
1658 	const int off = skb->len;
1659 
1660 	if (skb->ip_summed == CHECKSUM_NONE) {
1661 		int err = 0;
1662 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1663 							    copy, 0, &err);
1664 		if (!err) {
1665 			skb->csum = csum_block_add(skb->csum, csum, off);
1666 			return 0;
1667 		}
1668 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1669 		return 0;
1670 
1671 	__skb_trim(skb, off);
1672 	return -EFAULT;
1673 }
1674 
1675 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1676 				   struct page *page, int off)
1677 {
1678 	if (i) {
1679 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1680 
1681 		return page == frag->page &&
1682 		       off == frag->page_offset + frag->size;
1683 	}
1684 	return 0;
1685 }
1686 
1687 static inline int __skb_linearize(struct sk_buff *skb)
1688 {
1689 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1690 }
1691 
1692 /**
1693  *	skb_linearize - convert paged skb to linear one
1694  *	@skb: buffer to linarize
1695  *
1696  *	If there is no free memory -ENOMEM is returned, otherwise zero
1697  *	is returned and the old skb data released.
1698  */
1699 static inline int skb_linearize(struct sk_buff *skb)
1700 {
1701 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1702 }
1703 
1704 /**
1705  *	skb_linearize_cow - make sure skb is linear and writable
1706  *	@skb: buffer to process
1707  *
1708  *	If there is no free memory -ENOMEM is returned, otherwise zero
1709  *	is returned and the old skb data released.
1710  */
1711 static inline int skb_linearize_cow(struct sk_buff *skb)
1712 {
1713 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1714 	       __skb_linearize(skb) : 0;
1715 }
1716 
1717 /**
1718  *	skb_postpull_rcsum - update checksum for received skb after pull
1719  *	@skb: buffer to update
1720  *	@start: start of data before pull
1721  *	@len: length of data pulled
1722  *
1723  *	After doing a pull on a received packet, you need to call this to
1724  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1725  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1726  */
1727 
1728 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1729 				      const void *start, unsigned int len)
1730 {
1731 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1732 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1733 }
1734 
1735 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1736 
1737 /**
1738  *	pskb_trim_rcsum - trim received skb and update checksum
1739  *	@skb: buffer to trim
1740  *	@len: new length
1741  *
1742  *	This is exactly the same as pskb_trim except that it ensures the
1743  *	checksum of received packets are still valid after the operation.
1744  */
1745 
1746 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1747 {
1748 	if (likely(len >= skb->len))
1749 		return 0;
1750 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1751 		skb->ip_summed = CHECKSUM_NONE;
1752 	return __pskb_trim(skb, len);
1753 }
1754 
1755 #define skb_queue_walk(queue, skb) \
1756 		for (skb = (queue)->next;					\
1757 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1758 		     skb = skb->next)
1759 
1760 #define skb_queue_walk_safe(queue, skb, tmp)					\
1761 		for (skb = (queue)->next, tmp = skb->next;			\
1762 		     skb != (struct sk_buff *)(queue);				\
1763 		     skb = tmp, tmp = skb->next)
1764 
1765 #define skb_queue_walk_from(queue, skb)						\
1766 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1767 		     skb = skb->next)
1768 
1769 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1770 		for (tmp = skb->next;						\
1771 		     skb != (struct sk_buff *)(queue);				\
1772 		     skb = tmp, tmp = skb->next)
1773 
1774 #define skb_queue_reverse_walk(queue, skb) \
1775 		for (skb = (queue)->prev;					\
1776 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1777 		     skb = skb->prev)
1778 
1779 
1780 static inline bool skb_has_frags(const struct sk_buff *skb)
1781 {
1782 	return skb_shinfo(skb)->frag_list != NULL;
1783 }
1784 
1785 static inline void skb_frag_list_init(struct sk_buff *skb)
1786 {
1787 	skb_shinfo(skb)->frag_list = NULL;
1788 }
1789 
1790 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1791 {
1792 	frag->next = skb_shinfo(skb)->frag_list;
1793 	skb_shinfo(skb)->frag_list = frag;
1794 }
1795 
1796 #define skb_walk_frags(skb, iter)	\
1797 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1798 
1799 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1800 					   int *peeked, int *err);
1801 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1802 					 int noblock, int *err);
1803 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1804 				     struct poll_table_struct *wait);
1805 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1806 					       int offset, struct iovec *to,
1807 					       int size);
1808 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1809 							int hlen,
1810 							struct iovec *iov);
1811 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1812 						    int offset,
1813 						    const struct iovec *from,
1814 						    int from_offset,
1815 						    int len);
1816 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1817 						     int offset,
1818 						     const struct iovec *to,
1819 						     int to_offset,
1820 						     int size);
1821 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1822 extern void	       skb_free_datagram_locked(struct sock *sk,
1823 						struct sk_buff *skb);
1824 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1825 					 unsigned int flags);
1826 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1827 				    int len, __wsum csum);
1828 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1829 				     void *to, int len);
1830 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1831 				      const void *from, int len);
1832 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1833 					      int offset, u8 *to, int len,
1834 					      __wsum csum);
1835 extern int             skb_splice_bits(struct sk_buff *skb,
1836 						unsigned int offset,
1837 						struct pipe_inode_info *pipe,
1838 						unsigned int len,
1839 						unsigned int flags);
1840 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1841 extern void	       skb_split(struct sk_buff *skb,
1842 				 struct sk_buff *skb1, const u32 len);
1843 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1844 				 int shiftlen);
1845 
1846 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1847 
1848 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1849 				       int len, void *buffer)
1850 {
1851 	int hlen = skb_headlen(skb);
1852 
1853 	if (hlen - offset >= len)
1854 		return skb->data + offset;
1855 
1856 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1857 		return NULL;
1858 
1859 	return buffer;
1860 }
1861 
1862 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1863 					     void *to,
1864 					     const unsigned int len)
1865 {
1866 	memcpy(to, skb->data, len);
1867 }
1868 
1869 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1870 						    const int offset, void *to,
1871 						    const unsigned int len)
1872 {
1873 	memcpy(to, skb->data + offset, len);
1874 }
1875 
1876 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1877 					   const void *from,
1878 					   const unsigned int len)
1879 {
1880 	memcpy(skb->data, from, len);
1881 }
1882 
1883 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1884 						  const int offset,
1885 						  const void *from,
1886 						  const unsigned int len)
1887 {
1888 	memcpy(skb->data + offset, from, len);
1889 }
1890 
1891 extern void skb_init(void);
1892 
1893 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1894 {
1895 	return skb->tstamp;
1896 }
1897 
1898 /**
1899  *	skb_get_timestamp - get timestamp from a skb
1900  *	@skb: skb to get stamp from
1901  *	@stamp: pointer to struct timeval to store stamp in
1902  *
1903  *	Timestamps are stored in the skb as offsets to a base timestamp.
1904  *	This function converts the offset back to a struct timeval and stores
1905  *	it in stamp.
1906  */
1907 static inline void skb_get_timestamp(const struct sk_buff *skb,
1908 				     struct timeval *stamp)
1909 {
1910 	*stamp = ktime_to_timeval(skb->tstamp);
1911 }
1912 
1913 static inline void skb_get_timestampns(const struct sk_buff *skb,
1914 				       struct timespec *stamp)
1915 {
1916 	*stamp = ktime_to_timespec(skb->tstamp);
1917 }
1918 
1919 static inline void __net_timestamp(struct sk_buff *skb)
1920 {
1921 	skb->tstamp = ktime_get_real();
1922 }
1923 
1924 static inline ktime_t net_timedelta(ktime_t t)
1925 {
1926 	return ktime_sub(ktime_get_real(), t);
1927 }
1928 
1929 static inline ktime_t net_invalid_timestamp(void)
1930 {
1931 	return ktime_set(0, 0);
1932 }
1933 
1934 /**
1935  * skb_tstamp_tx - queue clone of skb with send time stamps
1936  * @orig_skb:	the original outgoing packet
1937  * @hwtstamps:	hardware time stamps, may be NULL if not available
1938  *
1939  * If the skb has a socket associated, then this function clones the
1940  * skb (thus sharing the actual data and optional structures), stores
1941  * the optional hardware time stamping information (if non NULL) or
1942  * generates a software time stamp (otherwise), then queues the clone
1943  * to the error queue of the socket.  Errors are silently ignored.
1944  */
1945 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1946 			struct skb_shared_hwtstamps *hwtstamps);
1947 
1948 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1949 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1950 
1951 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1952 {
1953 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1954 }
1955 
1956 /**
1957  *	skb_checksum_complete - Calculate checksum of an entire packet
1958  *	@skb: packet to process
1959  *
1960  *	This function calculates the checksum over the entire packet plus
1961  *	the value of skb->csum.  The latter can be used to supply the
1962  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1963  *	checksum.
1964  *
1965  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1966  *	this function can be used to verify that checksum on received
1967  *	packets.  In that case the function should return zero if the
1968  *	checksum is correct.  In particular, this function will return zero
1969  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1970  *	hardware has already verified the correctness of the checksum.
1971  */
1972 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1973 {
1974 	return skb_csum_unnecessary(skb) ?
1975 	       0 : __skb_checksum_complete(skb);
1976 }
1977 
1978 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1979 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1980 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1981 {
1982 	if (nfct && atomic_dec_and_test(&nfct->use))
1983 		nf_conntrack_destroy(nfct);
1984 }
1985 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1986 {
1987 	if (nfct)
1988 		atomic_inc(&nfct->use);
1989 }
1990 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1991 {
1992 	if (skb)
1993 		atomic_inc(&skb->users);
1994 }
1995 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1996 {
1997 	if (skb)
1998 		kfree_skb(skb);
1999 }
2000 #endif
2001 #ifdef CONFIG_BRIDGE_NETFILTER
2002 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2003 {
2004 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2005 		kfree(nf_bridge);
2006 }
2007 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2008 {
2009 	if (nf_bridge)
2010 		atomic_inc(&nf_bridge->use);
2011 }
2012 #endif /* CONFIG_BRIDGE_NETFILTER */
2013 static inline void nf_reset(struct sk_buff *skb)
2014 {
2015 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2016 	nf_conntrack_put(skb->nfct);
2017 	skb->nfct = NULL;
2018 	nf_conntrack_put_reasm(skb->nfct_reasm);
2019 	skb->nfct_reasm = NULL;
2020 #endif
2021 #ifdef CONFIG_BRIDGE_NETFILTER
2022 	nf_bridge_put(skb->nf_bridge);
2023 	skb->nf_bridge = NULL;
2024 #endif
2025 }
2026 
2027 /* Note: This doesn't put any conntrack and bridge info in dst. */
2028 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2029 {
2030 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2031 	dst->nfct = src->nfct;
2032 	nf_conntrack_get(src->nfct);
2033 	dst->nfctinfo = src->nfctinfo;
2034 	dst->nfct_reasm = src->nfct_reasm;
2035 	nf_conntrack_get_reasm(src->nfct_reasm);
2036 #endif
2037 #ifdef CONFIG_BRIDGE_NETFILTER
2038 	dst->nf_bridge  = src->nf_bridge;
2039 	nf_bridge_get(src->nf_bridge);
2040 #endif
2041 }
2042 
2043 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2044 {
2045 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2046 	nf_conntrack_put(dst->nfct);
2047 	nf_conntrack_put_reasm(dst->nfct_reasm);
2048 #endif
2049 #ifdef CONFIG_BRIDGE_NETFILTER
2050 	nf_bridge_put(dst->nf_bridge);
2051 #endif
2052 	__nf_copy(dst, src);
2053 }
2054 
2055 #ifdef CONFIG_NETWORK_SECMARK
2056 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2057 {
2058 	to->secmark = from->secmark;
2059 }
2060 
2061 static inline void skb_init_secmark(struct sk_buff *skb)
2062 {
2063 	skb->secmark = 0;
2064 }
2065 #else
2066 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2067 { }
2068 
2069 static inline void skb_init_secmark(struct sk_buff *skb)
2070 { }
2071 #endif
2072 
2073 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2074 {
2075 	skb->queue_mapping = queue_mapping;
2076 }
2077 
2078 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2079 {
2080 	return skb->queue_mapping;
2081 }
2082 
2083 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2084 {
2085 	to->queue_mapping = from->queue_mapping;
2086 }
2087 
2088 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2089 {
2090 	skb->queue_mapping = rx_queue + 1;
2091 }
2092 
2093 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2094 {
2095 	return skb->queue_mapping - 1;
2096 }
2097 
2098 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2099 {
2100 	return (skb->queue_mapping != 0);
2101 }
2102 
2103 extern u16 skb_tx_hash(const struct net_device *dev,
2104 		       const struct sk_buff *skb);
2105 
2106 #ifdef CONFIG_XFRM
2107 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2108 {
2109 	return skb->sp;
2110 }
2111 #else
2112 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2113 {
2114 	return NULL;
2115 }
2116 #endif
2117 
2118 static inline int skb_is_gso(const struct sk_buff *skb)
2119 {
2120 	return skb_shinfo(skb)->gso_size;
2121 }
2122 
2123 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2124 {
2125 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2126 }
2127 
2128 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2129 
2130 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2131 {
2132 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2133 	 * wanted then gso_type will be set. */
2134 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2135 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2136 		__skb_warn_lro_forwarding(skb);
2137 		return true;
2138 	}
2139 	return false;
2140 }
2141 
2142 static inline void skb_forward_csum(struct sk_buff *skb)
2143 {
2144 	/* Unfortunately we don't support this one.  Any brave souls? */
2145 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2146 		skb->ip_summed = CHECKSUM_NONE;
2147 }
2148 
2149 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2150 #endif	/* __KERNEL__ */
2151 #endif	/* _LINUX_SKBUFF_H */
2152