1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #include <net/page_pool.h> 36 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 37 #include <linux/netfilter/nf_conntrack_common.h> 38 #endif 39 #include <net/net_debug.h> 40 #include <net/dropreason.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 __u16 frag_max_size; 298 struct net_device *physindev; 299 300 /* always valid & non-NULL from FORWARD on, for physdev match */ 301 struct net_device *physoutdev; 302 union { 303 /* prerouting: detect dnat in orig/reply direction */ 304 __be32 ipv4_daddr; 305 struct in6_addr ipv6_daddr; 306 307 /* after prerouting + nat detected: store original source 308 * mac since neigh resolution overwrites it, only used while 309 * skb is out in neigh layer. 310 */ 311 char neigh_header[8]; 312 }; 313 }; 314 #endif 315 316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 317 /* Chain in tc_skb_ext will be used to share the tc chain with 318 * ovs recirc_id. It will be set to the current chain by tc 319 * and read by ovs to recirc_id. 320 */ 321 struct tc_skb_ext { 322 union { 323 u64 act_miss_cookie; 324 __u32 chain; 325 }; 326 __u16 mru; 327 __u16 zone; 328 u8 post_ct:1; 329 u8 post_ct_snat:1; 330 u8 post_ct_dnat:1; 331 u8 act_miss:1; /* Set if act_miss_cookie is used */ 332 }; 333 #endif 334 335 struct sk_buff_head { 336 /* These two members must be first to match sk_buff. */ 337 struct_group_tagged(sk_buff_list, list, 338 struct sk_buff *next; 339 struct sk_buff *prev; 340 ); 341 342 __u32 qlen; 343 spinlock_t lock; 344 }; 345 346 struct sk_buff; 347 348 /* To allow 64K frame to be packed as single skb without frag_list we 349 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 350 * buffers which do not start on a page boundary. 351 * 352 * Since GRO uses frags we allocate at least 16 regardless of page 353 * size. 354 */ 355 #if (65536/PAGE_SIZE + 1) < 16 356 #define MAX_SKB_FRAGS 16UL 357 #else 358 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 359 #endif 360 extern int sysctl_max_skb_frags; 361 362 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 363 * segment using its current segmentation instead. 364 */ 365 #define GSO_BY_FRAGS 0xFFFF 366 367 typedef struct bio_vec skb_frag_t; 368 369 /** 370 * skb_frag_size() - Returns the size of a skb fragment 371 * @frag: skb fragment 372 */ 373 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 374 { 375 return frag->bv_len; 376 } 377 378 /** 379 * skb_frag_size_set() - Sets the size of a skb fragment 380 * @frag: skb fragment 381 * @size: size of fragment 382 */ 383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 384 { 385 frag->bv_len = size; 386 } 387 388 /** 389 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 390 * @frag: skb fragment 391 * @delta: value to add 392 */ 393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 394 { 395 frag->bv_len += delta; 396 } 397 398 /** 399 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 400 * @frag: skb fragment 401 * @delta: value to subtract 402 */ 403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 404 { 405 frag->bv_len -= delta; 406 } 407 408 /** 409 * skb_frag_must_loop - Test if %p is a high memory page 410 * @p: fragment's page 411 */ 412 static inline bool skb_frag_must_loop(struct page *p) 413 { 414 #if defined(CONFIG_HIGHMEM) 415 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 416 return true; 417 #endif 418 return false; 419 } 420 421 /** 422 * skb_frag_foreach_page - loop over pages in a fragment 423 * 424 * @f: skb frag to operate on 425 * @f_off: offset from start of f->bv_page 426 * @f_len: length from f_off to loop over 427 * @p: (temp var) current page 428 * @p_off: (temp var) offset from start of current page, 429 * non-zero only on first page. 430 * @p_len: (temp var) length in current page, 431 * < PAGE_SIZE only on first and last page. 432 * @copied: (temp var) length so far, excluding current p_len. 433 * 434 * A fragment can hold a compound page, in which case per-page 435 * operations, notably kmap_atomic, must be called for each 436 * regular page. 437 */ 438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 439 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 440 p_off = (f_off) & (PAGE_SIZE - 1), \ 441 p_len = skb_frag_must_loop(p) ? \ 442 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 443 copied = 0; \ 444 copied < f_len; \ 445 copied += p_len, p++, p_off = 0, \ 446 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 447 448 #define HAVE_HW_TIME_STAMP 449 450 /** 451 * struct skb_shared_hwtstamps - hardware time stamps 452 * @hwtstamp: hardware time stamp transformed into duration 453 * since arbitrary point in time 454 * @netdev_data: address/cookie of network device driver used as 455 * reference to actual hardware time stamp 456 * 457 * Software time stamps generated by ktime_get_real() are stored in 458 * skb->tstamp. 459 * 460 * hwtstamps can only be compared against other hwtstamps from 461 * the same device. 462 * 463 * This structure is attached to packets as part of the 464 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 465 */ 466 struct skb_shared_hwtstamps { 467 union { 468 ktime_t hwtstamp; 469 void *netdev_data; 470 }; 471 }; 472 473 /* Definitions for tx_flags in struct skb_shared_info */ 474 enum { 475 /* generate hardware time stamp */ 476 SKBTX_HW_TSTAMP = 1 << 0, 477 478 /* generate software time stamp when queueing packet to NIC */ 479 SKBTX_SW_TSTAMP = 1 << 1, 480 481 /* device driver is going to provide hardware time stamp */ 482 SKBTX_IN_PROGRESS = 1 << 2, 483 484 /* generate hardware time stamp based on cycles if supported */ 485 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 486 487 /* generate wifi status information (where possible) */ 488 SKBTX_WIFI_STATUS = 1 << 4, 489 490 /* determine hardware time stamp based on time or cycles */ 491 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 492 493 /* generate software time stamp when entering packet scheduling */ 494 SKBTX_SCHED_TSTAMP = 1 << 6, 495 }; 496 497 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 498 SKBTX_SCHED_TSTAMP) 499 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 500 SKBTX_HW_TSTAMP_USE_CYCLES | \ 501 SKBTX_ANY_SW_TSTAMP) 502 503 /* Definitions for flags in struct skb_shared_info */ 504 enum { 505 /* use zcopy routines */ 506 SKBFL_ZEROCOPY_ENABLE = BIT(0), 507 508 /* This indicates at least one fragment might be overwritten 509 * (as in vmsplice(), sendfile() ...) 510 * If we need to compute a TX checksum, we'll need to copy 511 * all frags to avoid possible bad checksum 512 */ 513 SKBFL_SHARED_FRAG = BIT(1), 514 515 /* segment contains only zerocopy data and should not be 516 * charged to the kernel memory. 517 */ 518 SKBFL_PURE_ZEROCOPY = BIT(2), 519 520 SKBFL_DONT_ORPHAN = BIT(3), 521 522 /* page references are managed by the ubuf_info, so it's safe to 523 * use frags only up until ubuf_info is released 524 */ 525 SKBFL_MANAGED_FRAG_REFS = BIT(4), 526 }; 527 528 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 529 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 530 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 531 532 /* 533 * The callback notifies userspace to release buffers when skb DMA is done in 534 * lower device, the skb last reference should be 0 when calling this. 535 * The zerocopy_success argument is true if zero copy transmit occurred, 536 * false on data copy or out of memory error caused by data copy attempt. 537 * The ctx field is used to track device context. 538 * The desc field is used to track userspace buffer index. 539 */ 540 struct ubuf_info { 541 void (*callback)(struct sk_buff *, struct ubuf_info *, 542 bool zerocopy_success); 543 refcount_t refcnt; 544 u8 flags; 545 }; 546 547 struct ubuf_info_msgzc { 548 struct ubuf_info ubuf; 549 550 union { 551 struct { 552 unsigned long desc; 553 void *ctx; 554 }; 555 struct { 556 u32 id; 557 u16 len; 558 u16 zerocopy:1; 559 u32 bytelen; 560 }; 561 }; 562 563 struct mmpin { 564 struct user_struct *user; 565 unsigned int num_pg; 566 } mmp; 567 }; 568 569 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 570 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 571 ubuf) 572 573 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 574 void mm_unaccount_pinned_pages(struct mmpin *mmp); 575 576 /* This data is invariant across clones and lives at 577 * the end of the header data, ie. at skb->end. 578 */ 579 struct skb_shared_info { 580 __u8 flags; 581 __u8 meta_len; 582 __u8 nr_frags; 583 __u8 tx_flags; 584 unsigned short gso_size; 585 /* Warning: this field is not always filled in (UFO)! */ 586 unsigned short gso_segs; 587 struct sk_buff *frag_list; 588 struct skb_shared_hwtstamps hwtstamps; 589 unsigned int gso_type; 590 u32 tskey; 591 592 /* 593 * Warning : all fields before dataref are cleared in __alloc_skb() 594 */ 595 atomic_t dataref; 596 unsigned int xdp_frags_size; 597 598 /* Intermediate layers must ensure that destructor_arg 599 * remains valid until skb destructor */ 600 void * destructor_arg; 601 602 /* must be last field, see pskb_expand_head() */ 603 skb_frag_t frags[MAX_SKB_FRAGS]; 604 }; 605 606 /** 607 * DOC: dataref and headerless skbs 608 * 609 * Transport layers send out clones of payload skbs they hold for 610 * retransmissions. To allow lower layers of the stack to prepend their headers 611 * we split &skb_shared_info.dataref into two halves. 612 * The lower 16 bits count the overall number of references. 613 * The higher 16 bits indicate how many of the references are payload-only. 614 * skb_header_cloned() checks if skb is allowed to add / write the headers. 615 * 616 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 617 * (via __skb_header_release()). Any clone created from marked skb will get 618 * &sk_buff.hdr_len populated with the available headroom. 619 * If there's the only clone in existence it's able to modify the headroom 620 * at will. The sequence of calls inside the transport layer is:: 621 * 622 * <alloc skb> 623 * skb_reserve() 624 * __skb_header_release() 625 * skb_clone() 626 * // send the clone down the stack 627 * 628 * This is not a very generic construct and it depends on the transport layers 629 * doing the right thing. In practice there's usually only one payload-only skb. 630 * Having multiple payload-only skbs with different lengths of hdr_len is not 631 * possible. The payload-only skbs should never leave their owner. 632 */ 633 #define SKB_DATAREF_SHIFT 16 634 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 635 636 637 enum { 638 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 639 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 640 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 641 }; 642 643 enum { 644 SKB_GSO_TCPV4 = 1 << 0, 645 646 /* This indicates the skb is from an untrusted source. */ 647 SKB_GSO_DODGY = 1 << 1, 648 649 /* This indicates the tcp segment has CWR set. */ 650 SKB_GSO_TCP_ECN = 1 << 2, 651 652 SKB_GSO_TCP_FIXEDID = 1 << 3, 653 654 SKB_GSO_TCPV6 = 1 << 4, 655 656 SKB_GSO_FCOE = 1 << 5, 657 658 SKB_GSO_GRE = 1 << 6, 659 660 SKB_GSO_GRE_CSUM = 1 << 7, 661 662 SKB_GSO_IPXIP4 = 1 << 8, 663 664 SKB_GSO_IPXIP6 = 1 << 9, 665 666 SKB_GSO_UDP_TUNNEL = 1 << 10, 667 668 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 669 670 SKB_GSO_PARTIAL = 1 << 12, 671 672 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 673 674 SKB_GSO_SCTP = 1 << 14, 675 676 SKB_GSO_ESP = 1 << 15, 677 678 SKB_GSO_UDP = 1 << 16, 679 680 SKB_GSO_UDP_L4 = 1 << 17, 681 682 SKB_GSO_FRAGLIST = 1 << 18, 683 }; 684 685 #if BITS_PER_LONG > 32 686 #define NET_SKBUFF_DATA_USES_OFFSET 1 687 #endif 688 689 #ifdef NET_SKBUFF_DATA_USES_OFFSET 690 typedef unsigned int sk_buff_data_t; 691 #else 692 typedef unsigned char *sk_buff_data_t; 693 #endif 694 695 /** 696 * DOC: Basic sk_buff geometry 697 * 698 * struct sk_buff itself is a metadata structure and does not hold any packet 699 * data. All the data is held in associated buffers. 700 * 701 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 702 * into two parts: 703 * 704 * - data buffer, containing headers and sometimes payload; 705 * this is the part of the skb operated on by the common helpers 706 * such as skb_put() or skb_pull(); 707 * - shared info (struct skb_shared_info) which holds an array of pointers 708 * to read-only data in the (page, offset, length) format. 709 * 710 * Optionally &skb_shared_info.frag_list may point to another skb. 711 * 712 * Basic diagram may look like this:: 713 * 714 * --------------- 715 * | sk_buff | 716 * --------------- 717 * ,--------------------------- + head 718 * / ,----------------- + data 719 * / / ,----------- + tail 720 * | | | , + end 721 * | | | | 722 * v v v v 723 * ----------------------------------------------- 724 * | headroom | data | tailroom | skb_shared_info | 725 * ----------------------------------------------- 726 * + [page frag] 727 * + [page frag] 728 * + [page frag] 729 * + [page frag] --------- 730 * + frag_list --> | sk_buff | 731 * --------- 732 * 733 */ 734 735 /** 736 * struct sk_buff - socket buffer 737 * @next: Next buffer in list 738 * @prev: Previous buffer in list 739 * @tstamp: Time we arrived/left 740 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 741 * for retransmit timer 742 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 743 * @list: queue head 744 * @ll_node: anchor in an llist (eg socket defer_list) 745 * @sk: Socket we are owned by 746 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 747 * fragmentation management 748 * @dev: Device we arrived on/are leaving by 749 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 750 * @cb: Control buffer. Free for use by every layer. Put private vars here 751 * @_skb_refdst: destination entry (with norefcount bit) 752 * @sp: the security path, used for xfrm 753 * @len: Length of actual data 754 * @data_len: Data length 755 * @mac_len: Length of link layer header 756 * @hdr_len: writable header length of cloned skb 757 * @csum: Checksum (must include start/offset pair) 758 * @csum_start: Offset from skb->head where checksumming should start 759 * @csum_offset: Offset from csum_start where checksum should be stored 760 * @priority: Packet queueing priority 761 * @ignore_df: allow local fragmentation 762 * @cloned: Head may be cloned (check refcnt to be sure) 763 * @ip_summed: Driver fed us an IP checksum 764 * @nohdr: Payload reference only, must not modify header 765 * @pkt_type: Packet class 766 * @fclone: skbuff clone status 767 * @ipvs_property: skbuff is owned by ipvs 768 * @inner_protocol_type: whether the inner protocol is 769 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 770 * @remcsum_offload: remote checksum offload is enabled 771 * @offload_fwd_mark: Packet was L2-forwarded in hardware 772 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 773 * @tc_skip_classify: do not classify packet. set by IFB device 774 * @tc_at_ingress: used within tc_classify to distinguish in/egress 775 * @redirected: packet was redirected by packet classifier 776 * @from_ingress: packet was redirected from the ingress path 777 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 778 * @peeked: this packet has been seen already, so stats have been 779 * done for it, don't do them again 780 * @nf_trace: netfilter packet trace flag 781 * @protocol: Packet protocol from driver 782 * @destructor: Destruct function 783 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 784 * @_sk_redir: socket redirection information for skmsg 785 * @_nfct: Associated connection, if any (with nfctinfo bits) 786 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 787 * @skb_iif: ifindex of device we arrived on 788 * @tc_index: Traffic control index 789 * @hash: the packet hash 790 * @queue_mapping: Queue mapping for multiqueue devices 791 * @head_frag: skb was allocated from page fragments, 792 * not allocated by kmalloc() or vmalloc(). 793 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 794 * @pp_recycle: mark the packet for recycling instead of freeing (implies 795 * page_pool support on driver) 796 * @active_extensions: active extensions (skb_ext_id types) 797 * @ndisc_nodetype: router type (from link layer) 798 * @ooo_okay: allow the mapping of a socket to a queue to be changed 799 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 800 * ports. 801 * @sw_hash: indicates hash was computed in software stack 802 * @wifi_acked_valid: wifi_acked was set 803 * @wifi_acked: whether frame was acked on wifi or not 804 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 805 * @encapsulation: indicates the inner headers in the skbuff are valid 806 * @encap_hdr_csum: software checksum is needed 807 * @csum_valid: checksum is already valid 808 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 809 * @csum_complete_sw: checksum was completed by software 810 * @csum_level: indicates the number of consecutive checksums found in 811 * the packet minus one that have been verified as 812 * CHECKSUM_UNNECESSARY (max 3) 813 * @dst_pending_confirm: need to confirm neighbour 814 * @decrypted: Decrypted SKB 815 * @slow_gro: state present at GRO time, slower prepare step required 816 * @mono_delivery_time: When set, skb->tstamp has the 817 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 818 * skb->tstamp has the (rcv) timestamp at ingress and 819 * delivery_time at egress. 820 * @napi_id: id of the NAPI struct this skb came from 821 * @sender_cpu: (aka @napi_id) source CPU in XPS 822 * @alloc_cpu: CPU which did the skb allocation. 823 * @secmark: security marking 824 * @mark: Generic packet mark 825 * @reserved_tailroom: (aka @mark) number of bytes of free space available 826 * at the tail of an sk_buff 827 * @vlan_all: vlan fields (proto & tci) 828 * @vlan_proto: vlan encapsulation protocol 829 * @vlan_tci: vlan tag control information 830 * @inner_protocol: Protocol (encapsulation) 831 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 832 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 833 * @inner_transport_header: Inner transport layer header (encapsulation) 834 * @inner_network_header: Network layer header (encapsulation) 835 * @inner_mac_header: Link layer header (encapsulation) 836 * @transport_header: Transport layer header 837 * @network_header: Network layer header 838 * @mac_header: Link layer header 839 * @kcov_handle: KCOV remote handle for remote coverage collection 840 * @tail: Tail pointer 841 * @end: End pointer 842 * @head: Head of buffer 843 * @data: Data head pointer 844 * @truesize: Buffer size 845 * @users: User count - see {datagram,tcp}.c 846 * @extensions: allocated extensions, valid if active_extensions is nonzero 847 */ 848 849 struct sk_buff { 850 union { 851 struct { 852 /* These two members must be first to match sk_buff_head. */ 853 struct sk_buff *next; 854 struct sk_buff *prev; 855 856 union { 857 struct net_device *dev; 858 /* Some protocols might use this space to store information, 859 * while device pointer would be NULL. 860 * UDP receive path is one user. 861 */ 862 unsigned long dev_scratch; 863 }; 864 }; 865 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 866 struct list_head list; 867 struct llist_node ll_node; 868 }; 869 870 union { 871 struct sock *sk; 872 int ip_defrag_offset; 873 }; 874 875 union { 876 ktime_t tstamp; 877 u64 skb_mstamp_ns; /* earliest departure time */ 878 }; 879 /* 880 * This is the control buffer. It is free to use for every 881 * layer. Please put your private variables there. If you 882 * want to keep them across layers you have to do a skb_clone() 883 * first. This is owned by whoever has the skb queued ATM. 884 */ 885 char cb[48] __aligned(8); 886 887 union { 888 struct { 889 unsigned long _skb_refdst; 890 void (*destructor)(struct sk_buff *skb); 891 }; 892 struct list_head tcp_tsorted_anchor; 893 #ifdef CONFIG_NET_SOCK_MSG 894 unsigned long _sk_redir; 895 #endif 896 }; 897 898 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 899 unsigned long _nfct; 900 #endif 901 unsigned int len, 902 data_len; 903 __u16 mac_len, 904 hdr_len; 905 906 /* Following fields are _not_ copied in __copy_skb_header() 907 * Note that queue_mapping is here mostly to fill a hole. 908 */ 909 __u16 queue_mapping; 910 911 /* if you move cloned around you also must adapt those constants */ 912 #ifdef __BIG_ENDIAN_BITFIELD 913 #define CLONED_MASK (1 << 7) 914 #else 915 #define CLONED_MASK 1 916 #endif 917 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 918 919 /* private: */ 920 __u8 __cloned_offset[0]; 921 /* public: */ 922 __u8 cloned:1, 923 nohdr:1, 924 fclone:2, 925 peeked:1, 926 head_frag:1, 927 pfmemalloc:1, 928 pp_recycle:1; /* page_pool recycle indicator */ 929 #ifdef CONFIG_SKB_EXTENSIONS 930 __u8 active_extensions; 931 #endif 932 933 /* Fields enclosed in headers group are copied 934 * using a single memcpy() in __copy_skb_header() 935 */ 936 struct_group(headers, 937 938 /* private: */ 939 __u8 __pkt_type_offset[0]; 940 /* public: */ 941 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 942 __u8 ignore_df:1; 943 __u8 nf_trace:1; 944 __u8 ip_summed:2; 945 __u8 ooo_okay:1; 946 947 __u8 l4_hash:1; 948 __u8 sw_hash:1; 949 __u8 wifi_acked_valid:1; 950 __u8 wifi_acked:1; 951 __u8 no_fcs:1; 952 /* Indicates the inner headers are valid in the skbuff. */ 953 __u8 encapsulation:1; 954 __u8 encap_hdr_csum:1; 955 __u8 csum_valid:1; 956 957 /* private: */ 958 __u8 __pkt_vlan_present_offset[0]; 959 /* public: */ 960 __u8 remcsum_offload:1; 961 __u8 csum_complete_sw:1; 962 __u8 csum_level:2; 963 __u8 dst_pending_confirm:1; 964 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 965 #ifdef CONFIG_NET_CLS_ACT 966 __u8 tc_skip_classify:1; 967 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 968 #endif 969 #ifdef CONFIG_IPV6_NDISC_NODETYPE 970 __u8 ndisc_nodetype:2; 971 #endif 972 973 __u8 ipvs_property:1; 974 __u8 inner_protocol_type:1; 975 #ifdef CONFIG_NET_SWITCHDEV 976 __u8 offload_fwd_mark:1; 977 __u8 offload_l3_fwd_mark:1; 978 #endif 979 __u8 redirected:1; 980 #ifdef CONFIG_NET_REDIRECT 981 __u8 from_ingress:1; 982 #endif 983 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 984 __u8 nf_skip_egress:1; 985 #endif 986 #ifdef CONFIG_TLS_DEVICE 987 __u8 decrypted:1; 988 #endif 989 __u8 slow_gro:1; 990 __u8 csum_not_inet:1; 991 992 #ifdef CONFIG_NET_SCHED 993 __u16 tc_index; /* traffic control index */ 994 #endif 995 996 union { 997 __wsum csum; 998 struct { 999 __u16 csum_start; 1000 __u16 csum_offset; 1001 }; 1002 }; 1003 __u32 priority; 1004 int skb_iif; 1005 __u32 hash; 1006 union { 1007 u32 vlan_all; 1008 struct { 1009 __be16 vlan_proto; 1010 __u16 vlan_tci; 1011 }; 1012 }; 1013 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1014 union { 1015 unsigned int napi_id; 1016 unsigned int sender_cpu; 1017 }; 1018 #endif 1019 u16 alloc_cpu; 1020 #ifdef CONFIG_NETWORK_SECMARK 1021 __u32 secmark; 1022 #endif 1023 1024 union { 1025 __u32 mark; 1026 __u32 reserved_tailroom; 1027 }; 1028 1029 union { 1030 __be16 inner_protocol; 1031 __u8 inner_ipproto; 1032 }; 1033 1034 __u16 inner_transport_header; 1035 __u16 inner_network_header; 1036 __u16 inner_mac_header; 1037 1038 __be16 protocol; 1039 __u16 transport_header; 1040 __u16 network_header; 1041 __u16 mac_header; 1042 1043 #ifdef CONFIG_KCOV 1044 u64 kcov_handle; 1045 #endif 1046 1047 ); /* end headers group */ 1048 1049 /* These elements must be at the end, see alloc_skb() for details. */ 1050 sk_buff_data_t tail; 1051 sk_buff_data_t end; 1052 unsigned char *head, 1053 *data; 1054 unsigned int truesize; 1055 refcount_t users; 1056 1057 #ifdef CONFIG_SKB_EXTENSIONS 1058 /* only useable after checking ->active_extensions != 0 */ 1059 struct skb_ext *extensions; 1060 #endif 1061 }; 1062 1063 /* if you move pkt_type around you also must adapt those constants */ 1064 #ifdef __BIG_ENDIAN_BITFIELD 1065 #define PKT_TYPE_MAX (7 << 5) 1066 #else 1067 #define PKT_TYPE_MAX 7 1068 #endif 1069 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1070 1071 /* if you move tc_at_ingress or mono_delivery_time 1072 * around, you also must adapt these constants. 1073 */ 1074 #ifdef __BIG_ENDIAN_BITFIELD 1075 #define TC_AT_INGRESS_MASK (1 << 0) 1076 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1077 #else 1078 #define TC_AT_INGRESS_MASK (1 << 7) 1079 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1080 #endif 1081 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1082 1083 #ifdef __KERNEL__ 1084 /* 1085 * Handling routines are only of interest to the kernel 1086 */ 1087 1088 #define SKB_ALLOC_FCLONE 0x01 1089 #define SKB_ALLOC_RX 0x02 1090 #define SKB_ALLOC_NAPI 0x04 1091 1092 /** 1093 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1094 * @skb: buffer 1095 */ 1096 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1097 { 1098 return unlikely(skb->pfmemalloc); 1099 } 1100 1101 /* 1102 * skb might have a dst pointer attached, refcounted or not. 1103 * _skb_refdst low order bit is set if refcount was _not_ taken 1104 */ 1105 #define SKB_DST_NOREF 1UL 1106 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1107 1108 /** 1109 * skb_dst - returns skb dst_entry 1110 * @skb: buffer 1111 * 1112 * Returns skb dst_entry, regardless of reference taken or not. 1113 */ 1114 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1115 { 1116 /* If refdst was not refcounted, check we still are in a 1117 * rcu_read_lock section 1118 */ 1119 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1120 !rcu_read_lock_held() && 1121 !rcu_read_lock_bh_held()); 1122 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1123 } 1124 1125 /** 1126 * skb_dst_set - sets skb dst 1127 * @skb: buffer 1128 * @dst: dst entry 1129 * 1130 * Sets skb dst, assuming a reference was taken on dst and should 1131 * be released by skb_dst_drop() 1132 */ 1133 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1134 { 1135 skb->slow_gro |= !!dst; 1136 skb->_skb_refdst = (unsigned long)dst; 1137 } 1138 1139 /** 1140 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1141 * @skb: buffer 1142 * @dst: dst entry 1143 * 1144 * Sets skb dst, assuming a reference was not taken on dst. 1145 * If dst entry is cached, we do not take reference and dst_release 1146 * will be avoided by refdst_drop. If dst entry is not cached, we take 1147 * reference, so that last dst_release can destroy the dst immediately. 1148 */ 1149 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1150 { 1151 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1152 skb->slow_gro |= !!dst; 1153 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1154 } 1155 1156 /** 1157 * skb_dst_is_noref - Test if skb dst isn't refcounted 1158 * @skb: buffer 1159 */ 1160 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1161 { 1162 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1163 } 1164 1165 /** 1166 * skb_rtable - Returns the skb &rtable 1167 * @skb: buffer 1168 */ 1169 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1170 { 1171 return (struct rtable *)skb_dst(skb); 1172 } 1173 1174 /* For mangling skb->pkt_type from user space side from applications 1175 * such as nft, tc, etc, we only allow a conservative subset of 1176 * possible pkt_types to be set. 1177 */ 1178 static inline bool skb_pkt_type_ok(u32 ptype) 1179 { 1180 return ptype <= PACKET_OTHERHOST; 1181 } 1182 1183 /** 1184 * skb_napi_id - Returns the skb's NAPI id 1185 * @skb: buffer 1186 */ 1187 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1188 { 1189 #ifdef CONFIG_NET_RX_BUSY_POLL 1190 return skb->napi_id; 1191 #else 1192 return 0; 1193 #endif 1194 } 1195 1196 /** 1197 * skb_unref - decrement the skb's reference count 1198 * @skb: buffer 1199 * 1200 * Returns true if we can free the skb. 1201 */ 1202 static inline bool skb_unref(struct sk_buff *skb) 1203 { 1204 if (unlikely(!skb)) 1205 return false; 1206 if (likely(refcount_read(&skb->users) == 1)) 1207 smp_rmb(); 1208 else if (likely(!refcount_dec_and_test(&skb->users))) 1209 return false; 1210 1211 return true; 1212 } 1213 1214 void __fix_address 1215 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1216 1217 /** 1218 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1219 * @skb: buffer to free 1220 */ 1221 static inline void kfree_skb(struct sk_buff *skb) 1222 { 1223 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1224 } 1225 1226 void skb_release_head_state(struct sk_buff *skb); 1227 void kfree_skb_list_reason(struct sk_buff *segs, 1228 enum skb_drop_reason reason); 1229 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1230 void skb_tx_error(struct sk_buff *skb); 1231 1232 static inline void kfree_skb_list(struct sk_buff *segs) 1233 { 1234 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1235 } 1236 1237 #ifdef CONFIG_TRACEPOINTS 1238 void consume_skb(struct sk_buff *skb); 1239 #else 1240 static inline void consume_skb(struct sk_buff *skb) 1241 { 1242 return kfree_skb(skb); 1243 } 1244 #endif 1245 1246 void __consume_stateless_skb(struct sk_buff *skb); 1247 void __kfree_skb(struct sk_buff *skb); 1248 extern struct kmem_cache *skbuff_cache; 1249 1250 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1251 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1252 bool *fragstolen, int *delta_truesize); 1253 1254 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1255 int node); 1256 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1257 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1258 struct sk_buff *build_skb_around(struct sk_buff *skb, 1259 void *data, unsigned int frag_size); 1260 void skb_attempt_defer_free(struct sk_buff *skb); 1261 1262 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1263 struct sk_buff *slab_build_skb(void *data); 1264 1265 /** 1266 * alloc_skb - allocate a network buffer 1267 * @size: size to allocate 1268 * @priority: allocation mask 1269 * 1270 * This function is a convenient wrapper around __alloc_skb(). 1271 */ 1272 static inline struct sk_buff *alloc_skb(unsigned int size, 1273 gfp_t priority) 1274 { 1275 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1276 } 1277 1278 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1279 unsigned long data_len, 1280 int max_page_order, 1281 int *errcode, 1282 gfp_t gfp_mask); 1283 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1284 1285 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1286 struct sk_buff_fclones { 1287 struct sk_buff skb1; 1288 1289 struct sk_buff skb2; 1290 1291 refcount_t fclone_ref; 1292 }; 1293 1294 /** 1295 * skb_fclone_busy - check if fclone is busy 1296 * @sk: socket 1297 * @skb: buffer 1298 * 1299 * Returns true if skb is a fast clone, and its clone is not freed. 1300 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1301 * so we also check that this didnt happen. 1302 */ 1303 static inline bool skb_fclone_busy(const struct sock *sk, 1304 const struct sk_buff *skb) 1305 { 1306 const struct sk_buff_fclones *fclones; 1307 1308 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1309 1310 return skb->fclone == SKB_FCLONE_ORIG && 1311 refcount_read(&fclones->fclone_ref) > 1 && 1312 READ_ONCE(fclones->skb2.sk) == sk; 1313 } 1314 1315 /** 1316 * alloc_skb_fclone - allocate a network buffer from fclone cache 1317 * @size: size to allocate 1318 * @priority: allocation mask 1319 * 1320 * This function is a convenient wrapper around __alloc_skb(). 1321 */ 1322 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1323 gfp_t priority) 1324 { 1325 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1326 } 1327 1328 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1329 void skb_headers_offset_update(struct sk_buff *skb, int off); 1330 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1331 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1332 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1333 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1334 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1335 gfp_t gfp_mask, bool fclone); 1336 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1337 gfp_t gfp_mask) 1338 { 1339 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1340 } 1341 1342 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1343 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1344 unsigned int headroom); 1345 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1346 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1347 int newtailroom, gfp_t priority); 1348 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1349 int offset, int len); 1350 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1351 int offset, int len); 1352 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1353 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1354 1355 /** 1356 * skb_pad - zero pad the tail of an skb 1357 * @skb: buffer to pad 1358 * @pad: space to pad 1359 * 1360 * Ensure that a buffer is followed by a padding area that is zero 1361 * filled. Used by network drivers which may DMA or transfer data 1362 * beyond the buffer end onto the wire. 1363 * 1364 * May return error in out of memory cases. The skb is freed on error. 1365 */ 1366 static inline int skb_pad(struct sk_buff *skb, int pad) 1367 { 1368 return __skb_pad(skb, pad, true); 1369 } 1370 #define dev_kfree_skb(a) consume_skb(a) 1371 1372 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1373 int offset, size_t size); 1374 1375 struct skb_seq_state { 1376 __u32 lower_offset; 1377 __u32 upper_offset; 1378 __u32 frag_idx; 1379 __u32 stepped_offset; 1380 struct sk_buff *root_skb; 1381 struct sk_buff *cur_skb; 1382 __u8 *frag_data; 1383 __u32 frag_off; 1384 }; 1385 1386 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1387 unsigned int to, struct skb_seq_state *st); 1388 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1389 struct skb_seq_state *st); 1390 void skb_abort_seq_read(struct skb_seq_state *st); 1391 1392 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1393 unsigned int to, struct ts_config *config); 1394 1395 /* 1396 * Packet hash types specify the type of hash in skb_set_hash. 1397 * 1398 * Hash types refer to the protocol layer addresses which are used to 1399 * construct a packet's hash. The hashes are used to differentiate or identify 1400 * flows of the protocol layer for the hash type. Hash types are either 1401 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1402 * 1403 * Properties of hashes: 1404 * 1405 * 1) Two packets in different flows have different hash values 1406 * 2) Two packets in the same flow should have the same hash value 1407 * 1408 * A hash at a higher layer is considered to be more specific. A driver should 1409 * set the most specific hash possible. 1410 * 1411 * A driver cannot indicate a more specific hash than the layer at which a hash 1412 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1413 * 1414 * A driver may indicate a hash level which is less specific than the 1415 * actual layer the hash was computed on. For instance, a hash computed 1416 * at L4 may be considered an L3 hash. This should only be done if the 1417 * driver can't unambiguously determine that the HW computed the hash at 1418 * the higher layer. Note that the "should" in the second property above 1419 * permits this. 1420 */ 1421 enum pkt_hash_types { 1422 PKT_HASH_TYPE_NONE, /* Undefined type */ 1423 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1424 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1425 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1426 }; 1427 1428 static inline void skb_clear_hash(struct sk_buff *skb) 1429 { 1430 skb->hash = 0; 1431 skb->sw_hash = 0; 1432 skb->l4_hash = 0; 1433 } 1434 1435 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1436 { 1437 if (!skb->l4_hash) 1438 skb_clear_hash(skb); 1439 } 1440 1441 static inline void 1442 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1443 { 1444 skb->l4_hash = is_l4; 1445 skb->sw_hash = is_sw; 1446 skb->hash = hash; 1447 } 1448 1449 static inline void 1450 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1451 { 1452 /* Used by drivers to set hash from HW */ 1453 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1454 } 1455 1456 static inline void 1457 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1458 { 1459 __skb_set_hash(skb, hash, true, is_l4); 1460 } 1461 1462 void __skb_get_hash(struct sk_buff *skb); 1463 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1464 u32 skb_get_poff(const struct sk_buff *skb); 1465 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1466 const struct flow_keys_basic *keys, int hlen); 1467 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1468 const void *data, int hlen_proto); 1469 1470 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1471 int thoff, u8 ip_proto) 1472 { 1473 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1474 } 1475 1476 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1477 const struct flow_dissector_key *key, 1478 unsigned int key_count); 1479 1480 struct bpf_flow_dissector; 1481 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1482 __be16 proto, int nhoff, int hlen, unsigned int flags); 1483 1484 bool __skb_flow_dissect(const struct net *net, 1485 const struct sk_buff *skb, 1486 struct flow_dissector *flow_dissector, 1487 void *target_container, const void *data, 1488 __be16 proto, int nhoff, int hlen, unsigned int flags); 1489 1490 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1491 struct flow_dissector *flow_dissector, 1492 void *target_container, unsigned int flags) 1493 { 1494 return __skb_flow_dissect(NULL, skb, flow_dissector, 1495 target_container, NULL, 0, 0, 0, flags); 1496 } 1497 1498 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1499 struct flow_keys *flow, 1500 unsigned int flags) 1501 { 1502 memset(flow, 0, sizeof(*flow)); 1503 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1504 flow, NULL, 0, 0, 0, flags); 1505 } 1506 1507 static inline bool 1508 skb_flow_dissect_flow_keys_basic(const struct net *net, 1509 const struct sk_buff *skb, 1510 struct flow_keys_basic *flow, 1511 const void *data, __be16 proto, 1512 int nhoff, int hlen, unsigned int flags) 1513 { 1514 memset(flow, 0, sizeof(*flow)); 1515 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1516 data, proto, nhoff, hlen, flags); 1517 } 1518 1519 void skb_flow_dissect_meta(const struct sk_buff *skb, 1520 struct flow_dissector *flow_dissector, 1521 void *target_container); 1522 1523 /* Gets a skb connection tracking info, ctinfo map should be a 1524 * map of mapsize to translate enum ip_conntrack_info states 1525 * to user states. 1526 */ 1527 void 1528 skb_flow_dissect_ct(const struct sk_buff *skb, 1529 struct flow_dissector *flow_dissector, 1530 void *target_container, 1531 u16 *ctinfo_map, size_t mapsize, 1532 bool post_ct, u16 zone); 1533 void 1534 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1535 struct flow_dissector *flow_dissector, 1536 void *target_container); 1537 1538 void skb_flow_dissect_hash(const struct sk_buff *skb, 1539 struct flow_dissector *flow_dissector, 1540 void *target_container); 1541 1542 static inline __u32 skb_get_hash(struct sk_buff *skb) 1543 { 1544 if (!skb->l4_hash && !skb->sw_hash) 1545 __skb_get_hash(skb); 1546 1547 return skb->hash; 1548 } 1549 1550 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1551 { 1552 if (!skb->l4_hash && !skb->sw_hash) { 1553 struct flow_keys keys; 1554 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1555 1556 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1557 } 1558 1559 return skb->hash; 1560 } 1561 1562 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1563 const siphash_key_t *perturb); 1564 1565 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1566 { 1567 return skb->hash; 1568 } 1569 1570 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1571 { 1572 to->hash = from->hash; 1573 to->sw_hash = from->sw_hash; 1574 to->l4_hash = from->l4_hash; 1575 }; 1576 1577 static inline void skb_copy_decrypted(struct sk_buff *to, 1578 const struct sk_buff *from) 1579 { 1580 #ifdef CONFIG_TLS_DEVICE 1581 to->decrypted = from->decrypted; 1582 #endif 1583 } 1584 1585 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1586 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1587 { 1588 return skb->head + skb->end; 1589 } 1590 1591 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1592 { 1593 return skb->end; 1594 } 1595 1596 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1597 { 1598 skb->end = offset; 1599 } 1600 #else 1601 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1602 { 1603 return skb->end; 1604 } 1605 1606 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1607 { 1608 return skb->end - skb->head; 1609 } 1610 1611 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1612 { 1613 skb->end = skb->head + offset; 1614 } 1615 #endif 1616 1617 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1618 struct ubuf_info *uarg); 1619 1620 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1621 1622 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1623 bool success); 1624 1625 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1626 struct sk_buff *skb, struct iov_iter *from, 1627 size_t length); 1628 1629 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1630 struct msghdr *msg, int len) 1631 { 1632 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1633 } 1634 1635 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1636 struct msghdr *msg, int len, 1637 struct ubuf_info *uarg); 1638 1639 /* Internal */ 1640 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1641 1642 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1643 { 1644 return &skb_shinfo(skb)->hwtstamps; 1645 } 1646 1647 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1648 { 1649 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1650 1651 return is_zcopy ? skb_uarg(skb) : NULL; 1652 } 1653 1654 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1655 { 1656 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1657 } 1658 1659 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1660 { 1661 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1662 } 1663 1664 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1665 const struct sk_buff *skb2) 1666 { 1667 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1668 } 1669 1670 static inline void net_zcopy_get(struct ubuf_info *uarg) 1671 { 1672 refcount_inc(&uarg->refcnt); 1673 } 1674 1675 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1676 { 1677 skb_shinfo(skb)->destructor_arg = uarg; 1678 skb_shinfo(skb)->flags |= uarg->flags; 1679 } 1680 1681 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1682 bool *have_ref) 1683 { 1684 if (skb && uarg && !skb_zcopy(skb)) { 1685 if (unlikely(have_ref && *have_ref)) 1686 *have_ref = false; 1687 else 1688 net_zcopy_get(uarg); 1689 skb_zcopy_init(skb, uarg); 1690 } 1691 } 1692 1693 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1694 { 1695 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1696 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1697 } 1698 1699 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1700 { 1701 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1702 } 1703 1704 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1705 { 1706 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1707 } 1708 1709 static inline void net_zcopy_put(struct ubuf_info *uarg) 1710 { 1711 if (uarg) 1712 uarg->callback(NULL, uarg, true); 1713 } 1714 1715 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1716 { 1717 if (uarg) { 1718 if (uarg->callback == msg_zerocopy_callback) 1719 msg_zerocopy_put_abort(uarg, have_uref); 1720 else if (have_uref) 1721 net_zcopy_put(uarg); 1722 } 1723 } 1724 1725 /* Release a reference on a zerocopy structure */ 1726 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1727 { 1728 struct ubuf_info *uarg = skb_zcopy(skb); 1729 1730 if (uarg) { 1731 if (!skb_zcopy_is_nouarg(skb)) 1732 uarg->callback(skb, uarg, zerocopy_success); 1733 1734 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1735 } 1736 } 1737 1738 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1739 1740 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1741 { 1742 if (unlikely(skb_zcopy_managed(skb))) 1743 __skb_zcopy_downgrade_managed(skb); 1744 } 1745 1746 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1747 { 1748 skb->next = NULL; 1749 } 1750 1751 static inline void skb_poison_list(struct sk_buff *skb) 1752 { 1753 #ifdef CONFIG_DEBUG_NET 1754 skb->next = SKB_LIST_POISON_NEXT; 1755 #endif 1756 } 1757 1758 /* Iterate through singly-linked GSO fragments of an skb. */ 1759 #define skb_list_walk_safe(first, skb, next_skb) \ 1760 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1761 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1762 1763 static inline void skb_list_del_init(struct sk_buff *skb) 1764 { 1765 __list_del_entry(&skb->list); 1766 skb_mark_not_on_list(skb); 1767 } 1768 1769 /** 1770 * skb_queue_empty - check if a queue is empty 1771 * @list: queue head 1772 * 1773 * Returns true if the queue is empty, false otherwise. 1774 */ 1775 static inline int skb_queue_empty(const struct sk_buff_head *list) 1776 { 1777 return list->next == (const struct sk_buff *) list; 1778 } 1779 1780 /** 1781 * skb_queue_empty_lockless - check if a queue is empty 1782 * @list: queue head 1783 * 1784 * Returns true if the queue is empty, false otherwise. 1785 * This variant can be used in lockless contexts. 1786 */ 1787 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1788 { 1789 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1790 } 1791 1792 1793 /** 1794 * skb_queue_is_last - check if skb is the last entry in the queue 1795 * @list: queue head 1796 * @skb: buffer 1797 * 1798 * Returns true if @skb is the last buffer on the list. 1799 */ 1800 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1801 const struct sk_buff *skb) 1802 { 1803 return skb->next == (const struct sk_buff *) list; 1804 } 1805 1806 /** 1807 * skb_queue_is_first - check if skb is the first entry in the queue 1808 * @list: queue head 1809 * @skb: buffer 1810 * 1811 * Returns true if @skb is the first buffer on the list. 1812 */ 1813 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1814 const struct sk_buff *skb) 1815 { 1816 return skb->prev == (const struct sk_buff *) list; 1817 } 1818 1819 /** 1820 * skb_queue_next - return the next packet in the queue 1821 * @list: queue head 1822 * @skb: current buffer 1823 * 1824 * Return the next packet in @list after @skb. It is only valid to 1825 * call this if skb_queue_is_last() evaluates to false. 1826 */ 1827 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1828 const struct sk_buff *skb) 1829 { 1830 /* This BUG_ON may seem severe, but if we just return then we 1831 * are going to dereference garbage. 1832 */ 1833 BUG_ON(skb_queue_is_last(list, skb)); 1834 return skb->next; 1835 } 1836 1837 /** 1838 * skb_queue_prev - return the prev packet in the queue 1839 * @list: queue head 1840 * @skb: current buffer 1841 * 1842 * Return the prev packet in @list before @skb. It is only valid to 1843 * call this if skb_queue_is_first() evaluates to false. 1844 */ 1845 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1846 const struct sk_buff *skb) 1847 { 1848 /* This BUG_ON may seem severe, but if we just return then we 1849 * are going to dereference garbage. 1850 */ 1851 BUG_ON(skb_queue_is_first(list, skb)); 1852 return skb->prev; 1853 } 1854 1855 /** 1856 * skb_get - reference buffer 1857 * @skb: buffer to reference 1858 * 1859 * Makes another reference to a socket buffer and returns a pointer 1860 * to the buffer. 1861 */ 1862 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1863 { 1864 refcount_inc(&skb->users); 1865 return skb; 1866 } 1867 1868 /* 1869 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1870 */ 1871 1872 /** 1873 * skb_cloned - is the buffer a clone 1874 * @skb: buffer to check 1875 * 1876 * Returns true if the buffer was generated with skb_clone() and is 1877 * one of multiple shared copies of the buffer. Cloned buffers are 1878 * shared data so must not be written to under normal circumstances. 1879 */ 1880 static inline int skb_cloned(const struct sk_buff *skb) 1881 { 1882 return skb->cloned && 1883 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1884 } 1885 1886 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1887 { 1888 might_sleep_if(gfpflags_allow_blocking(pri)); 1889 1890 if (skb_cloned(skb)) 1891 return pskb_expand_head(skb, 0, 0, pri); 1892 1893 return 0; 1894 } 1895 1896 /* This variant of skb_unclone() makes sure skb->truesize 1897 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1898 * 1899 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1900 * when various debugging features are in place. 1901 */ 1902 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1903 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1904 { 1905 might_sleep_if(gfpflags_allow_blocking(pri)); 1906 1907 if (skb_cloned(skb)) 1908 return __skb_unclone_keeptruesize(skb, pri); 1909 return 0; 1910 } 1911 1912 /** 1913 * skb_header_cloned - is the header a clone 1914 * @skb: buffer to check 1915 * 1916 * Returns true if modifying the header part of the buffer requires 1917 * the data to be copied. 1918 */ 1919 static inline int skb_header_cloned(const struct sk_buff *skb) 1920 { 1921 int dataref; 1922 1923 if (!skb->cloned) 1924 return 0; 1925 1926 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1927 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1928 return dataref != 1; 1929 } 1930 1931 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1932 { 1933 might_sleep_if(gfpflags_allow_blocking(pri)); 1934 1935 if (skb_header_cloned(skb)) 1936 return pskb_expand_head(skb, 0, 0, pri); 1937 1938 return 0; 1939 } 1940 1941 /** 1942 * __skb_header_release() - allow clones to use the headroom 1943 * @skb: buffer to operate on 1944 * 1945 * See "DOC: dataref and headerless skbs". 1946 */ 1947 static inline void __skb_header_release(struct sk_buff *skb) 1948 { 1949 skb->nohdr = 1; 1950 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1951 } 1952 1953 1954 /** 1955 * skb_shared - is the buffer shared 1956 * @skb: buffer to check 1957 * 1958 * Returns true if more than one person has a reference to this 1959 * buffer. 1960 */ 1961 static inline int skb_shared(const struct sk_buff *skb) 1962 { 1963 return refcount_read(&skb->users) != 1; 1964 } 1965 1966 /** 1967 * skb_share_check - check if buffer is shared and if so clone it 1968 * @skb: buffer to check 1969 * @pri: priority for memory allocation 1970 * 1971 * If the buffer is shared the buffer is cloned and the old copy 1972 * drops a reference. A new clone with a single reference is returned. 1973 * If the buffer is not shared the original buffer is returned. When 1974 * being called from interrupt status or with spinlocks held pri must 1975 * be GFP_ATOMIC. 1976 * 1977 * NULL is returned on a memory allocation failure. 1978 */ 1979 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1980 { 1981 might_sleep_if(gfpflags_allow_blocking(pri)); 1982 if (skb_shared(skb)) { 1983 struct sk_buff *nskb = skb_clone(skb, pri); 1984 1985 if (likely(nskb)) 1986 consume_skb(skb); 1987 else 1988 kfree_skb(skb); 1989 skb = nskb; 1990 } 1991 return skb; 1992 } 1993 1994 /* 1995 * Copy shared buffers into a new sk_buff. We effectively do COW on 1996 * packets to handle cases where we have a local reader and forward 1997 * and a couple of other messy ones. The normal one is tcpdumping 1998 * a packet thats being forwarded. 1999 */ 2000 2001 /** 2002 * skb_unshare - make a copy of a shared buffer 2003 * @skb: buffer to check 2004 * @pri: priority for memory allocation 2005 * 2006 * If the socket buffer is a clone then this function creates a new 2007 * copy of the data, drops a reference count on the old copy and returns 2008 * the new copy with the reference count at 1. If the buffer is not a clone 2009 * the original buffer is returned. When called with a spinlock held or 2010 * from interrupt state @pri must be %GFP_ATOMIC 2011 * 2012 * %NULL is returned on a memory allocation failure. 2013 */ 2014 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2015 gfp_t pri) 2016 { 2017 might_sleep_if(gfpflags_allow_blocking(pri)); 2018 if (skb_cloned(skb)) { 2019 struct sk_buff *nskb = skb_copy(skb, pri); 2020 2021 /* Free our shared copy */ 2022 if (likely(nskb)) 2023 consume_skb(skb); 2024 else 2025 kfree_skb(skb); 2026 skb = nskb; 2027 } 2028 return skb; 2029 } 2030 2031 /** 2032 * skb_peek - peek at the head of an &sk_buff_head 2033 * @list_: list to peek at 2034 * 2035 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2036 * be careful with this one. A peek leaves the buffer on the 2037 * list and someone else may run off with it. You must hold 2038 * the appropriate locks or have a private queue to do this. 2039 * 2040 * Returns %NULL for an empty list or a pointer to the head element. 2041 * The reference count is not incremented and the reference is therefore 2042 * volatile. Use with caution. 2043 */ 2044 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2045 { 2046 struct sk_buff *skb = list_->next; 2047 2048 if (skb == (struct sk_buff *)list_) 2049 skb = NULL; 2050 return skb; 2051 } 2052 2053 /** 2054 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2055 * @list_: list to peek at 2056 * 2057 * Like skb_peek(), but the caller knows that the list is not empty. 2058 */ 2059 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2060 { 2061 return list_->next; 2062 } 2063 2064 /** 2065 * skb_peek_next - peek skb following the given one from a queue 2066 * @skb: skb to start from 2067 * @list_: list to peek at 2068 * 2069 * Returns %NULL when the end of the list is met or a pointer to the 2070 * next element. The reference count is not incremented and the 2071 * reference is therefore volatile. Use with caution. 2072 */ 2073 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2074 const struct sk_buff_head *list_) 2075 { 2076 struct sk_buff *next = skb->next; 2077 2078 if (next == (struct sk_buff *)list_) 2079 next = NULL; 2080 return next; 2081 } 2082 2083 /** 2084 * skb_peek_tail - peek at the tail of an &sk_buff_head 2085 * @list_: list to peek at 2086 * 2087 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2088 * be careful with this one. A peek leaves the buffer on the 2089 * list and someone else may run off with it. You must hold 2090 * the appropriate locks or have a private queue to do this. 2091 * 2092 * Returns %NULL for an empty list or a pointer to the tail element. 2093 * The reference count is not incremented and the reference is therefore 2094 * volatile. Use with caution. 2095 */ 2096 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2097 { 2098 struct sk_buff *skb = READ_ONCE(list_->prev); 2099 2100 if (skb == (struct sk_buff *)list_) 2101 skb = NULL; 2102 return skb; 2103 2104 } 2105 2106 /** 2107 * skb_queue_len - get queue length 2108 * @list_: list to measure 2109 * 2110 * Return the length of an &sk_buff queue. 2111 */ 2112 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2113 { 2114 return list_->qlen; 2115 } 2116 2117 /** 2118 * skb_queue_len_lockless - get queue length 2119 * @list_: list to measure 2120 * 2121 * Return the length of an &sk_buff queue. 2122 * This variant can be used in lockless contexts. 2123 */ 2124 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2125 { 2126 return READ_ONCE(list_->qlen); 2127 } 2128 2129 /** 2130 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2131 * @list: queue to initialize 2132 * 2133 * This initializes only the list and queue length aspects of 2134 * an sk_buff_head object. This allows to initialize the list 2135 * aspects of an sk_buff_head without reinitializing things like 2136 * the spinlock. It can also be used for on-stack sk_buff_head 2137 * objects where the spinlock is known to not be used. 2138 */ 2139 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2140 { 2141 list->prev = list->next = (struct sk_buff *)list; 2142 list->qlen = 0; 2143 } 2144 2145 /* 2146 * This function creates a split out lock class for each invocation; 2147 * this is needed for now since a whole lot of users of the skb-queue 2148 * infrastructure in drivers have different locking usage (in hardirq) 2149 * than the networking core (in softirq only). In the long run either the 2150 * network layer or drivers should need annotation to consolidate the 2151 * main types of usage into 3 classes. 2152 */ 2153 static inline void skb_queue_head_init(struct sk_buff_head *list) 2154 { 2155 spin_lock_init(&list->lock); 2156 __skb_queue_head_init(list); 2157 } 2158 2159 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2160 struct lock_class_key *class) 2161 { 2162 skb_queue_head_init(list); 2163 lockdep_set_class(&list->lock, class); 2164 } 2165 2166 /* 2167 * Insert an sk_buff on a list. 2168 * 2169 * The "__skb_xxxx()" functions are the non-atomic ones that 2170 * can only be called with interrupts disabled. 2171 */ 2172 static inline void __skb_insert(struct sk_buff *newsk, 2173 struct sk_buff *prev, struct sk_buff *next, 2174 struct sk_buff_head *list) 2175 { 2176 /* See skb_queue_empty_lockless() and skb_peek_tail() 2177 * for the opposite READ_ONCE() 2178 */ 2179 WRITE_ONCE(newsk->next, next); 2180 WRITE_ONCE(newsk->prev, prev); 2181 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2182 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2183 WRITE_ONCE(list->qlen, list->qlen + 1); 2184 } 2185 2186 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2187 struct sk_buff *prev, 2188 struct sk_buff *next) 2189 { 2190 struct sk_buff *first = list->next; 2191 struct sk_buff *last = list->prev; 2192 2193 WRITE_ONCE(first->prev, prev); 2194 WRITE_ONCE(prev->next, first); 2195 2196 WRITE_ONCE(last->next, next); 2197 WRITE_ONCE(next->prev, last); 2198 } 2199 2200 /** 2201 * skb_queue_splice - join two skb lists, this is designed for stacks 2202 * @list: the new list to add 2203 * @head: the place to add it in the first list 2204 */ 2205 static inline void skb_queue_splice(const struct sk_buff_head *list, 2206 struct sk_buff_head *head) 2207 { 2208 if (!skb_queue_empty(list)) { 2209 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2210 head->qlen += list->qlen; 2211 } 2212 } 2213 2214 /** 2215 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2216 * @list: the new list to add 2217 * @head: the place to add it in the first list 2218 * 2219 * The list at @list is reinitialised 2220 */ 2221 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2222 struct sk_buff_head *head) 2223 { 2224 if (!skb_queue_empty(list)) { 2225 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2226 head->qlen += list->qlen; 2227 __skb_queue_head_init(list); 2228 } 2229 } 2230 2231 /** 2232 * skb_queue_splice_tail - join two skb lists, each list being a queue 2233 * @list: the new list to add 2234 * @head: the place to add it in the first list 2235 */ 2236 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2237 struct sk_buff_head *head) 2238 { 2239 if (!skb_queue_empty(list)) { 2240 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2241 head->qlen += list->qlen; 2242 } 2243 } 2244 2245 /** 2246 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2247 * @list: the new list to add 2248 * @head: the place to add it in the first list 2249 * 2250 * Each of the lists is a queue. 2251 * The list at @list is reinitialised 2252 */ 2253 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2254 struct sk_buff_head *head) 2255 { 2256 if (!skb_queue_empty(list)) { 2257 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2258 head->qlen += list->qlen; 2259 __skb_queue_head_init(list); 2260 } 2261 } 2262 2263 /** 2264 * __skb_queue_after - queue a buffer at the list head 2265 * @list: list to use 2266 * @prev: place after this buffer 2267 * @newsk: buffer to queue 2268 * 2269 * Queue a buffer int the middle of a list. This function takes no locks 2270 * and you must therefore hold required locks before calling it. 2271 * 2272 * A buffer cannot be placed on two lists at the same time. 2273 */ 2274 static inline void __skb_queue_after(struct sk_buff_head *list, 2275 struct sk_buff *prev, 2276 struct sk_buff *newsk) 2277 { 2278 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2279 } 2280 2281 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2282 struct sk_buff_head *list); 2283 2284 static inline void __skb_queue_before(struct sk_buff_head *list, 2285 struct sk_buff *next, 2286 struct sk_buff *newsk) 2287 { 2288 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2289 } 2290 2291 /** 2292 * __skb_queue_head - queue a buffer at the list head 2293 * @list: list to use 2294 * @newsk: buffer to queue 2295 * 2296 * Queue a buffer at the start of a list. This function takes no locks 2297 * and you must therefore hold required locks before calling it. 2298 * 2299 * A buffer cannot be placed on two lists at the same time. 2300 */ 2301 static inline void __skb_queue_head(struct sk_buff_head *list, 2302 struct sk_buff *newsk) 2303 { 2304 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2305 } 2306 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2307 2308 /** 2309 * __skb_queue_tail - queue a buffer at the list tail 2310 * @list: list to use 2311 * @newsk: buffer to queue 2312 * 2313 * Queue a buffer at the end of a list. This function takes no locks 2314 * and you must therefore hold required locks before calling it. 2315 * 2316 * A buffer cannot be placed on two lists at the same time. 2317 */ 2318 static inline void __skb_queue_tail(struct sk_buff_head *list, 2319 struct sk_buff *newsk) 2320 { 2321 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2322 } 2323 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2324 2325 /* 2326 * remove sk_buff from list. _Must_ be called atomically, and with 2327 * the list known.. 2328 */ 2329 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2330 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2331 { 2332 struct sk_buff *next, *prev; 2333 2334 WRITE_ONCE(list->qlen, list->qlen - 1); 2335 next = skb->next; 2336 prev = skb->prev; 2337 skb->next = skb->prev = NULL; 2338 WRITE_ONCE(next->prev, prev); 2339 WRITE_ONCE(prev->next, next); 2340 } 2341 2342 /** 2343 * __skb_dequeue - remove from the head of the queue 2344 * @list: list to dequeue from 2345 * 2346 * Remove the head of the list. This function does not take any locks 2347 * so must be used with appropriate locks held only. The head item is 2348 * returned or %NULL if the list is empty. 2349 */ 2350 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2351 { 2352 struct sk_buff *skb = skb_peek(list); 2353 if (skb) 2354 __skb_unlink(skb, list); 2355 return skb; 2356 } 2357 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2358 2359 /** 2360 * __skb_dequeue_tail - remove from the tail of the queue 2361 * @list: list to dequeue from 2362 * 2363 * Remove the tail of the list. This function does not take any locks 2364 * so must be used with appropriate locks held only. The tail item is 2365 * returned or %NULL if the list is empty. 2366 */ 2367 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2368 { 2369 struct sk_buff *skb = skb_peek_tail(list); 2370 if (skb) 2371 __skb_unlink(skb, list); 2372 return skb; 2373 } 2374 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2375 2376 2377 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2378 { 2379 return skb->data_len; 2380 } 2381 2382 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2383 { 2384 return skb->len - skb->data_len; 2385 } 2386 2387 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2388 { 2389 unsigned int i, len = 0; 2390 2391 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2392 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2393 return len; 2394 } 2395 2396 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2397 { 2398 return skb_headlen(skb) + __skb_pagelen(skb); 2399 } 2400 2401 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2402 int i, struct page *page, 2403 int off, int size) 2404 { 2405 skb_frag_t *frag = &shinfo->frags[i]; 2406 2407 /* 2408 * Propagate page pfmemalloc to the skb if we can. The problem is 2409 * that not all callers have unique ownership of the page but rely 2410 * on page_is_pfmemalloc doing the right thing(tm). 2411 */ 2412 frag->bv_page = page; 2413 frag->bv_offset = off; 2414 skb_frag_size_set(frag, size); 2415 } 2416 2417 /** 2418 * skb_len_add - adds a number to len fields of skb 2419 * @skb: buffer to add len to 2420 * @delta: number of bytes to add 2421 */ 2422 static inline void skb_len_add(struct sk_buff *skb, int delta) 2423 { 2424 skb->len += delta; 2425 skb->data_len += delta; 2426 skb->truesize += delta; 2427 } 2428 2429 /** 2430 * __skb_fill_page_desc - initialise a paged fragment in an skb 2431 * @skb: buffer containing fragment to be initialised 2432 * @i: paged fragment index to initialise 2433 * @page: the page to use for this fragment 2434 * @off: the offset to the data with @page 2435 * @size: the length of the data 2436 * 2437 * Initialises the @i'th fragment of @skb to point to &size bytes at 2438 * offset @off within @page. 2439 * 2440 * Does not take any additional reference on the fragment. 2441 */ 2442 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2443 struct page *page, int off, int size) 2444 { 2445 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2446 page = compound_head(page); 2447 if (page_is_pfmemalloc(page)) 2448 skb->pfmemalloc = true; 2449 } 2450 2451 /** 2452 * skb_fill_page_desc - initialise a paged fragment in an skb 2453 * @skb: buffer containing fragment to be initialised 2454 * @i: paged fragment index to initialise 2455 * @page: the page to use for this fragment 2456 * @off: the offset to the data with @page 2457 * @size: the length of the data 2458 * 2459 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2460 * @skb to point to @size bytes at offset @off within @page. In 2461 * addition updates @skb such that @i is the last fragment. 2462 * 2463 * Does not take any additional reference on the fragment. 2464 */ 2465 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2466 struct page *page, int off, int size) 2467 { 2468 __skb_fill_page_desc(skb, i, page, off, size); 2469 skb_shinfo(skb)->nr_frags = i + 1; 2470 } 2471 2472 /** 2473 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2474 * @skb: buffer containing fragment to be initialised 2475 * @i: paged fragment index to initialise 2476 * @page: the page to use for this fragment 2477 * @off: the offset to the data with @page 2478 * @size: the length of the data 2479 * 2480 * Variant of skb_fill_page_desc() which does not deal with 2481 * pfmemalloc, if page is not owned by us. 2482 */ 2483 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2484 struct page *page, int off, 2485 int size) 2486 { 2487 struct skb_shared_info *shinfo = skb_shinfo(skb); 2488 2489 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2490 shinfo->nr_frags = i + 1; 2491 } 2492 2493 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2494 int size, unsigned int truesize); 2495 2496 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2497 unsigned int truesize); 2498 2499 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2500 2501 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2502 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2503 { 2504 return skb->head + skb->tail; 2505 } 2506 2507 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2508 { 2509 skb->tail = skb->data - skb->head; 2510 } 2511 2512 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2513 { 2514 skb_reset_tail_pointer(skb); 2515 skb->tail += offset; 2516 } 2517 2518 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2519 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2520 { 2521 return skb->tail; 2522 } 2523 2524 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2525 { 2526 skb->tail = skb->data; 2527 } 2528 2529 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2530 { 2531 skb->tail = skb->data + offset; 2532 } 2533 2534 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2535 2536 static inline void skb_assert_len(struct sk_buff *skb) 2537 { 2538 #ifdef CONFIG_DEBUG_NET 2539 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2540 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2541 #endif /* CONFIG_DEBUG_NET */ 2542 } 2543 2544 /* 2545 * Add data to an sk_buff 2546 */ 2547 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2548 void *skb_put(struct sk_buff *skb, unsigned int len); 2549 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2550 { 2551 void *tmp = skb_tail_pointer(skb); 2552 SKB_LINEAR_ASSERT(skb); 2553 skb->tail += len; 2554 skb->len += len; 2555 return tmp; 2556 } 2557 2558 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2559 { 2560 void *tmp = __skb_put(skb, len); 2561 2562 memset(tmp, 0, len); 2563 return tmp; 2564 } 2565 2566 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2567 unsigned int len) 2568 { 2569 void *tmp = __skb_put(skb, len); 2570 2571 memcpy(tmp, data, len); 2572 return tmp; 2573 } 2574 2575 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2576 { 2577 *(u8 *)__skb_put(skb, 1) = val; 2578 } 2579 2580 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2581 { 2582 void *tmp = skb_put(skb, len); 2583 2584 memset(tmp, 0, len); 2585 2586 return tmp; 2587 } 2588 2589 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2590 unsigned int len) 2591 { 2592 void *tmp = skb_put(skb, len); 2593 2594 memcpy(tmp, data, len); 2595 2596 return tmp; 2597 } 2598 2599 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2600 { 2601 *(u8 *)skb_put(skb, 1) = val; 2602 } 2603 2604 void *skb_push(struct sk_buff *skb, unsigned int len); 2605 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2606 { 2607 skb->data -= len; 2608 skb->len += len; 2609 return skb->data; 2610 } 2611 2612 void *skb_pull(struct sk_buff *skb, unsigned int len); 2613 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2614 { 2615 skb->len -= len; 2616 if (unlikely(skb->len < skb->data_len)) { 2617 #if defined(CONFIG_DEBUG_NET) 2618 skb->len += len; 2619 pr_err("__skb_pull(len=%u)\n", len); 2620 skb_dump(KERN_ERR, skb, false); 2621 #endif 2622 BUG(); 2623 } 2624 return skb->data += len; 2625 } 2626 2627 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2628 { 2629 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2630 } 2631 2632 void *skb_pull_data(struct sk_buff *skb, size_t len); 2633 2634 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2635 2636 static inline enum skb_drop_reason 2637 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2638 { 2639 if (likely(len <= skb_headlen(skb))) 2640 return SKB_NOT_DROPPED_YET; 2641 2642 if (unlikely(len > skb->len)) 2643 return SKB_DROP_REASON_PKT_TOO_SMALL; 2644 2645 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2646 return SKB_DROP_REASON_NOMEM; 2647 2648 return SKB_NOT_DROPPED_YET; 2649 } 2650 2651 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2652 { 2653 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2654 } 2655 2656 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2657 { 2658 if (!pskb_may_pull(skb, len)) 2659 return NULL; 2660 2661 skb->len -= len; 2662 return skb->data += len; 2663 } 2664 2665 void skb_condense(struct sk_buff *skb); 2666 2667 /** 2668 * skb_headroom - bytes at buffer head 2669 * @skb: buffer to check 2670 * 2671 * Return the number of bytes of free space at the head of an &sk_buff. 2672 */ 2673 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2674 { 2675 return skb->data - skb->head; 2676 } 2677 2678 /** 2679 * skb_tailroom - bytes at buffer end 2680 * @skb: buffer to check 2681 * 2682 * Return the number of bytes of free space at the tail of an sk_buff 2683 */ 2684 static inline int skb_tailroom(const struct sk_buff *skb) 2685 { 2686 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2687 } 2688 2689 /** 2690 * skb_availroom - bytes at buffer end 2691 * @skb: buffer to check 2692 * 2693 * Return the number of bytes of free space at the tail of an sk_buff 2694 * allocated by sk_stream_alloc() 2695 */ 2696 static inline int skb_availroom(const struct sk_buff *skb) 2697 { 2698 if (skb_is_nonlinear(skb)) 2699 return 0; 2700 2701 return skb->end - skb->tail - skb->reserved_tailroom; 2702 } 2703 2704 /** 2705 * skb_reserve - adjust headroom 2706 * @skb: buffer to alter 2707 * @len: bytes to move 2708 * 2709 * Increase the headroom of an empty &sk_buff by reducing the tail 2710 * room. This is only allowed for an empty buffer. 2711 */ 2712 static inline void skb_reserve(struct sk_buff *skb, int len) 2713 { 2714 skb->data += len; 2715 skb->tail += len; 2716 } 2717 2718 /** 2719 * skb_tailroom_reserve - adjust reserved_tailroom 2720 * @skb: buffer to alter 2721 * @mtu: maximum amount of headlen permitted 2722 * @needed_tailroom: minimum amount of reserved_tailroom 2723 * 2724 * Set reserved_tailroom so that headlen can be as large as possible but 2725 * not larger than mtu and tailroom cannot be smaller than 2726 * needed_tailroom. 2727 * The required headroom should already have been reserved before using 2728 * this function. 2729 */ 2730 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2731 unsigned int needed_tailroom) 2732 { 2733 SKB_LINEAR_ASSERT(skb); 2734 if (mtu < skb_tailroom(skb) - needed_tailroom) 2735 /* use at most mtu */ 2736 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2737 else 2738 /* use up to all available space */ 2739 skb->reserved_tailroom = needed_tailroom; 2740 } 2741 2742 #define ENCAP_TYPE_ETHER 0 2743 #define ENCAP_TYPE_IPPROTO 1 2744 2745 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2746 __be16 protocol) 2747 { 2748 skb->inner_protocol = protocol; 2749 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2750 } 2751 2752 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2753 __u8 ipproto) 2754 { 2755 skb->inner_ipproto = ipproto; 2756 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2757 } 2758 2759 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2760 { 2761 skb->inner_mac_header = skb->mac_header; 2762 skb->inner_network_header = skb->network_header; 2763 skb->inner_transport_header = skb->transport_header; 2764 } 2765 2766 static inline void skb_reset_mac_len(struct sk_buff *skb) 2767 { 2768 skb->mac_len = skb->network_header - skb->mac_header; 2769 } 2770 2771 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2772 *skb) 2773 { 2774 return skb->head + skb->inner_transport_header; 2775 } 2776 2777 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2778 { 2779 return skb_inner_transport_header(skb) - skb->data; 2780 } 2781 2782 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2783 { 2784 skb->inner_transport_header = skb->data - skb->head; 2785 } 2786 2787 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2788 const int offset) 2789 { 2790 skb_reset_inner_transport_header(skb); 2791 skb->inner_transport_header += offset; 2792 } 2793 2794 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2795 { 2796 return skb->head + skb->inner_network_header; 2797 } 2798 2799 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2800 { 2801 skb->inner_network_header = skb->data - skb->head; 2802 } 2803 2804 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2805 const int offset) 2806 { 2807 skb_reset_inner_network_header(skb); 2808 skb->inner_network_header += offset; 2809 } 2810 2811 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2812 { 2813 return skb->head + skb->inner_mac_header; 2814 } 2815 2816 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2817 { 2818 skb->inner_mac_header = skb->data - skb->head; 2819 } 2820 2821 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2822 const int offset) 2823 { 2824 skb_reset_inner_mac_header(skb); 2825 skb->inner_mac_header += offset; 2826 } 2827 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2828 { 2829 return skb->transport_header != (typeof(skb->transport_header))~0U; 2830 } 2831 2832 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2833 { 2834 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2835 return skb->head + skb->transport_header; 2836 } 2837 2838 static inline void skb_reset_transport_header(struct sk_buff *skb) 2839 { 2840 skb->transport_header = skb->data - skb->head; 2841 } 2842 2843 static inline void skb_set_transport_header(struct sk_buff *skb, 2844 const int offset) 2845 { 2846 skb_reset_transport_header(skb); 2847 skb->transport_header += offset; 2848 } 2849 2850 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2851 { 2852 return skb->head + skb->network_header; 2853 } 2854 2855 static inline void skb_reset_network_header(struct sk_buff *skb) 2856 { 2857 skb->network_header = skb->data - skb->head; 2858 } 2859 2860 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2861 { 2862 skb_reset_network_header(skb); 2863 skb->network_header += offset; 2864 } 2865 2866 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2867 { 2868 return skb->mac_header != (typeof(skb->mac_header))~0U; 2869 } 2870 2871 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2872 { 2873 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2874 return skb->head + skb->mac_header; 2875 } 2876 2877 static inline int skb_mac_offset(const struct sk_buff *skb) 2878 { 2879 return skb_mac_header(skb) - skb->data; 2880 } 2881 2882 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2883 { 2884 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2885 return skb->network_header - skb->mac_header; 2886 } 2887 2888 static inline void skb_unset_mac_header(struct sk_buff *skb) 2889 { 2890 skb->mac_header = (typeof(skb->mac_header))~0U; 2891 } 2892 2893 static inline void skb_reset_mac_header(struct sk_buff *skb) 2894 { 2895 skb->mac_header = skb->data - skb->head; 2896 } 2897 2898 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2899 { 2900 skb_reset_mac_header(skb); 2901 skb->mac_header += offset; 2902 } 2903 2904 static inline void skb_pop_mac_header(struct sk_buff *skb) 2905 { 2906 skb->mac_header = skb->network_header; 2907 } 2908 2909 static inline void skb_probe_transport_header(struct sk_buff *skb) 2910 { 2911 struct flow_keys_basic keys; 2912 2913 if (skb_transport_header_was_set(skb)) 2914 return; 2915 2916 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2917 NULL, 0, 0, 0, 0)) 2918 skb_set_transport_header(skb, keys.control.thoff); 2919 } 2920 2921 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2922 { 2923 if (skb_mac_header_was_set(skb)) { 2924 const unsigned char *old_mac = skb_mac_header(skb); 2925 2926 skb_set_mac_header(skb, -skb->mac_len); 2927 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2928 } 2929 } 2930 2931 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2932 { 2933 return skb->csum_start - skb_headroom(skb); 2934 } 2935 2936 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2937 { 2938 return skb->head + skb->csum_start; 2939 } 2940 2941 static inline int skb_transport_offset(const struct sk_buff *skb) 2942 { 2943 return skb_transport_header(skb) - skb->data; 2944 } 2945 2946 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2947 { 2948 return skb->transport_header - skb->network_header; 2949 } 2950 2951 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2952 { 2953 return skb->inner_transport_header - skb->inner_network_header; 2954 } 2955 2956 static inline int skb_network_offset(const struct sk_buff *skb) 2957 { 2958 return skb_network_header(skb) - skb->data; 2959 } 2960 2961 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2962 { 2963 return skb_inner_network_header(skb) - skb->data; 2964 } 2965 2966 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2967 { 2968 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2969 } 2970 2971 /* 2972 * CPUs often take a performance hit when accessing unaligned memory 2973 * locations. The actual performance hit varies, it can be small if the 2974 * hardware handles it or large if we have to take an exception and fix it 2975 * in software. 2976 * 2977 * Since an ethernet header is 14 bytes network drivers often end up with 2978 * the IP header at an unaligned offset. The IP header can be aligned by 2979 * shifting the start of the packet by 2 bytes. Drivers should do this 2980 * with: 2981 * 2982 * skb_reserve(skb, NET_IP_ALIGN); 2983 * 2984 * The downside to this alignment of the IP header is that the DMA is now 2985 * unaligned. On some architectures the cost of an unaligned DMA is high 2986 * and this cost outweighs the gains made by aligning the IP header. 2987 * 2988 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2989 * to be overridden. 2990 */ 2991 #ifndef NET_IP_ALIGN 2992 #define NET_IP_ALIGN 2 2993 #endif 2994 2995 /* 2996 * The networking layer reserves some headroom in skb data (via 2997 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2998 * the header has to grow. In the default case, if the header has to grow 2999 * 32 bytes or less we avoid the reallocation. 3000 * 3001 * Unfortunately this headroom changes the DMA alignment of the resulting 3002 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3003 * on some architectures. An architecture can override this value, 3004 * perhaps setting it to a cacheline in size (since that will maintain 3005 * cacheline alignment of the DMA). It must be a power of 2. 3006 * 3007 * Various parts of the networking layer expect at least 32 bytes of 3008 * headroom, you should not reduce this. 3009 * 3010 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3011 * to reduce average number of cache lines per packet. 3012 * get_rps_cpu() for example only access one 64 bytes aligned block : 3013 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3014 */ 3015 #ifndef NET_SKB_PAD 3016 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3017 #endif 3018 3019 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3020 3021 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3022 { 3023 if (WARN_ON(skb_is_nonlinear(skb))) 3024 return; 3025 skb->len = len; 3026 skb_set_tail_pointer(skb, len); 3027 } 3028 3029 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3030 { 3031 __skb_set_length(skb, len); 3032 } 3033 3034 void skb_trim(struct sk_buff *skb, unsigned int len); 3035 3036 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3037 { 3038 if (skb->data_len) 3039 return ___pskb_trim(skb, len); 3040 __skb_trim(skb, len); 3041 return 0; 3042 } 3043 3044 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3045 { 3046 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3047 } 3048 3049 /** 3050 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3051 * @skb: buffer to alter 3052 * @len: new length 3053 * 3054 * This is identical to pskb_trim except that the caller knows that 3055 * the skb is not cloned so we should never get an error due to out- 3056 * of-memory. 3057 */ 3058 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3059 { 3060 int err = pskb_trim(skb, len); 3061 BUG_ON(err); 3062 } 3063 3064 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3065 { 3066 unsigned int diff = len - skb->len; 3067 3068 if (skb_tailroom(skb) < diff) { 3069 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3070 GFP_ATOMIC); 3071 if (ret) 3072 return ret; 3073 } 3074 __skb_set_length(skb, len); 3075 return 0; 3076 } 3077 3078 /** 3079 * skb_orphan - orphan a buffer 3080 * @skb: buffer to orphan 3081 * 3082 * If a buffer currently has an owner then we call the owner's 3083 * destructor function and make the @skb unowned. The buffer continues 3084 * to exist but is no longer charged to its former owner. 3085 */ 3086 static inline void skb_orphan(struct sk_buff *skb) 3087 { 3088 if (skb->destructor) { 3089 skb->destructor(skb); 3090 skb->destructor = NULL; 3091 skb->sk = NULL; 3092 } else { 3093 BUG_ON(skb->sk); 3094 } 3095 } 3096 3097 /** 3098 * skb_orphan_frags - orphan the frags contained in a buffer 3099 * @skb: buffer to orphan frags from 3100 * @gfp_mask: allocation mask for replacement pages 3101 * 3102 * For each frag in the SKB which needs a destructor (i.e. has an 3103 * owner) create a copy of that frag and release the original 3104 * page by calling the destructor. 3105 */ 3106 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3107 { 3108 if (likely(!skb_zcopy(skb))) 3109 return 0; 3110 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3111 return 0; 3112 return skb_copy_ubufs(skb, gfp_mask); 3113 } 3114 3115 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3116 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3117 { 3118 if (likely(!skb_zcopy(skb))) 3119 return 0; 3120 return skb_copy_ubufs(skb, gfp_mask); 3121 } 3122 3123 /** 3124 * __skb_queue_purge - empty a list 3125 * @list: list to empty 3126 * 3127 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3128 * the list and one reference dropped. This function does not take the 3129 * list lock and the caller must hold the relevant locks to use it. 3130 */ 3131 static inline void __skb_queue_purge(struct sk_buff_head *list) 3132 { 3133 struct sk_buff *skb; 3134 while ((skb = __skb_dequeue(list)) != NULL) 3135 kfree_skb(skb); 3136 } 3137 void skb_queue_purge(struct sk_buff_head *list); 3138 3139 unsigned int skb_rbtree_purge(struct rb_root *root); 3140 3141 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3142 3143 /** 3144 * netdev_alloc_frag - allocate a page fragment 3145 * @fragsz: fragment size 3146 * 3147 * Allocates a frag from a page for receive buffer. 3148 * Uses GFP_ATOMIC allocations. 3149 */ 3150 static inline void *netdev_alloc_frag(unsigned int fragsz) 3151 { 3152 return __netdev_alloc_frag_align(fragsz, ~0u); 3153 } 3154 3155 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3156 unsigned int align) 3157 { 3158 WARN_ON_ONCE(!is_power_of_2(align)); 3159 return __netdev_alloc_frag_align(fragsz, -align); 3160 } 3161 3162 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3163 gfp_t gfp_mask); 3164 3165 /** 3166 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3167 * @dev: network device to receive on 3168 * @length: length to allocate 3169 * 3170 * Allocate a new &sk_buff and assign it a usage count of one. The 3171 * buffer has unspecified headroom built in. Users should allocate 3172 * the headroom they think they need without accounting for the 3173 * built in space. The built in space is used for optimisations. 3174 * 3175 * %NULL is returned if there is no free memory. Although this function 3176 * allocates memory it can be called from an interrupt. 3177 */ 3178 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3179 unsigned int length) 3180 { 3181 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3182 } 3183 3184 /* legacy helper around __netdev_alloc_skb() */ 3185 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3186 gfp_t gfp_mask) 3187 { 3188 return __netdev_alloc_skb(NULL, length, gfp_mask); 3189 } 3190 3191 /* legacy helper around netdev_alloc_skb() */ 3192 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3193 { 3194 return netdev_alloc_skb(NULL, length); 3195 } 3196 3197 3198 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3199 unsigned int length, gfp_t gfp) 3200 { 3201 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3202 3203 if (NET_IP_ALIGN && skb) 3204 skb_reserve(skb, NET_IP_ALIGN); 3205 return skb; 3206 } 3207 3208 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3209 unsigned int length) 3210 { 3211 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3212 } 3213 3214 static inline void skb_free_frag(void *addr) 3215 { 3216 page_frag_free(addr); 3217 } 3218 3219 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3220 3221 static inline void *napi_alloc_frag(unsigned int fragsz) 3222 { 3223 return __napi_alloc_frag_align(fragsz, ~0u); 3224 } 3225 3226 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3227 unsigned int align) 3228 { 3229 WARN_ON_ONCE(!is_power_of_2(align)); 3230 return __napi_alloc_frag_align(fragsz, -align); 3231 } 3232 3233 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3234 unsigned int length, gfp_t gfp_mask); 3235 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3236 unsigned int length) 3237 { 3238 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3239 } 3240 void napi_consume_skb(struct sk_buff *skb, int budget); 3241 3242 void napi_skb_free_stolen_head(struct sk_buff *skb); 3243 void __kfree_skb_defer(struct sk_buff *skb); 3244 3245 /** 3246 * __dev_alloc_pages - allocate page for network Rx 3247 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3248 * @order: size of the allocation 3249 * 3250 * Allocate a new page. 3251 * 3252 * %NULL is returned if there is no free memory. 3253 */ 3254 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3255 unsigned int order) 3256 { 3257 /* This piece of code contains several assumptions. 3258 * 1. This is for device Rx, therefor a cold page is preferred. 3259 * 2. The expectation is the user wants a compound page. 3260 * 3. If requesting a order 0 page it will not be compound 3261 * due to the check to see if order has a value in prep_new_page 3262 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3263 * code in gfp_to_alloc_flags that should be enforcing this. 3264 */ 3265 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3266 3267 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3268 } 3269 3270 static inline struct page *dev_alloc_pages(unsigned int order) 3271 { 3272 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3273 } 3274 3275 /** 3276 * __dev_alloc_page - allocate a page for network Rx 3277 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3278 * 3279 * Allocate a new page. 3280 * 3281 * %NULL is returned if there is no free memory. 3282 */ 3283 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3284 { 3285 return __dev_alloc_pages(gfp_mask, 0); 3286 } 3287 3288 static inline struct page *dev_alloc_page(void) 3289 { 3290 return dev_alloc_pages(0); 3291 } 3292 3293 /** 3294 * dev_page_is_reusable - check whether a page can be reused for network Rx 3295 * @page: the page to test 3296 * 3297 * A page shouldn't be considered for reusing/recycling if it was allocated 3298 * under memory pressure or at a distant memory node. 3299 * 3300 * Returns false if this page should be returned to page allocator, true 3301 * otherwise. 3302 */ 3303 static inline bool dev_page_is_reusable(const struct page *page) 3304 { 3305 return likely(page_to_nid(page) == numa_mem_id() && 3306 !page_is_pfmemalloc(page)); 3307 } 3308 3309 /** 3310 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3311 * @page: The page that was allocated from skb_alloc_page 3312 * @skb: The skb that may need pfmemalloc set 3313 */ 3314 static inline void skb_propagate_pfmemalloc(const struct page *page, 3315 struct sk_buff *skb) 3316 { 3317 if (page_is_pfmemalloc(page)) 3318 skb->pfmemalloc = true; 3319 } 3320 3321 /** 3322 * skb_frag_off() - Returns the offset of a skb fragment 3323 * @frag: the paged fragment 3324 */ 3325 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3326 { 3327 return frag->bv_offset; 3328 } 3329 3330 /** 3331 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3332 * @frag: skb fragment 3333 * @delta: value to add 3334 */ 3335 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3336 { 3337 frag->bv_offset += delta; 3338 } 3339 3340 /** 3341 * skb_frag_off_set() - Sets the offset of a skb fragment 3342 * @frag: skb fragment 3343 * @offset: offset of fragment 3344 */ 3345 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3346 { 3347 frag->bv_offset = offset; 3348 } 3349 3350 /** 3351 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3352 * @fragto: skb fragment where offset is set 3353 * @fragfrom: skb fragment offset is copied from 3354 */ 3355 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3356 const skb_frag_t *fragfrom) 3357 { 3358 fragto->bv_offset = fragfrom->bv_offset; 3359 } 3360 3361 /** 3362 * skb_frag_page - retrieve the page referred to by a paged fragment 3363 * @frag: the paged fragment 3364 * 3365 * Returns the &struct page associated with @frag. 3366 */ 3367 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3368 { 3369 return frag->bv_page; 3370 } 3371 3372 /** 3373 * __skb_frag_ref - take an addition reference on a paged fragment. 3374 * @frag: the paged fragment 3375 * 3376 * Takes an additional reference on the paged fragment @frag. 3377 */ 3378 static inline void __skb_frag_ref(skb_frag_t *frag) 3379 { 3380 get_page(skb_frag_page(frag)); 3381 } 3382 3383 /** 3384 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3385 * @skb: the buffer 3386 * @f: the fragment offset. 3387 * 3388 * Takes an additional reference on the @f'th paged fragment of @skb. 3389 */ 3390 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3391 { 3392 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3393 } 3394 3395 /** 3396 * __skb_frag_unref - release a reference on a paged fragment. 3397 * @frag: the paged fragment 3398 * @recycle: recycle the page if allocated via page_pool 3399 * 3400 * Releases a reference on the paged fragment @frag 3401 * or recycles the page via the page_pool API. 3402 */ 3403 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3404 { 3405 struct page *page = skb_frag_page(frag); 3406 3407 #ifdef CONFIG_PAGE_POOL 3408 if (recycle && page_pool_return_skb_page(page)) 3409 return; 3410 #endif 3411 put_page(page); 3412 } 3413 3414 /** 3415 * skb_frag_unref - release a reference on a paged fragment of an skb. 3416 * @skb: the buffer 3417 * @f: the fragment offset 3418 * 3419 * Releases a reference on the @f'th paged fragment of @skb. 3420 */ 3421 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3422 { 3423 struct skb_shared_info *shinfo = skb_shinfo(skb); 3424 3425 if (!skb_zcopy_managed(skb)) 3426 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3427 } 3428 3429 /** 3430 * skb_frag_address - gets the address of the data contained in a paged fragment 3431 * @frag: the paged fragment buffer 3432 * 3433 * Returns the address of the data within @frag. The page must already 3434 * be mapped. 3435 */ 3436 static inline void *skb_frag_address(const skb_frag_t *frag) 3437 { 3438 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3439 } 3440 3441 /** 3442 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3443 * @frag: the paged fragment buffer 3444 * 3445 * Returns the address of the data within @frag. Checks that the page 3446 * is mapped and returns %NULL otherwise. 3447 */ 3448 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3449 { 3450 void *ptr = page_address(skb_frag_page(frag)); 3451 if (unlikely(!ptr)) 3452 return NULL; 3453 3454 return ptr + skb_frag_off(frag); 3455 } 3456 3457 /** 3458 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3459 * @fragto: skb fragment where page is set 3460 * @fragfrom: skb fragment page is copied from 3461 */ 3462 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3463 const skb_frag_t *fragfrom) 3464 { 3465 fragto->bv_page = fragfrom->bv_page; 3466 } 3467 3468 /** 3469 * __skb_frag_set_page - sets the page contained in a paged fragment 3470 * @frag: the paged fragment 3471 * @page: the page to set 3472 * 3473 * Sets the fragment @frag to contain @page. 3474 */ 3475 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3476 { 3477 frag->bv_page = page; 3478 } 3479 3480 /** 3481 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3482 * @skb: the buffer 3483 * @f: the fragment offset 3484 * @page: the page to set 3485 * 3486 * Sets the @f'th fragment of @skb to contain @page. 3487 */ 3488 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3489 struct page *page) 3490 { 3491 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3492 } 3493 3494 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3495 3496 /** 3497 * skb_frag_dma_map - maps a paged fragment via the DMA API 3498 * @dev: the device to map the fragment to 3499 * @frag: the paged fragment to map 3500 * @offset: the offset within the fragment (starting at the 3501 * fragment's own offset) 3502 * @size: the number of bytes to map 3503 * @dir: the direction of the mapping (``PCI_DMA_*``) 3504 * 3505 * Maps the page associated with @frag to @device. 3506 */ 3507 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3508 const skb_frag_t *frag, 3509 size_t offset, size_t size, 3510 enum dma_data_direction dir) 3511 { 3512 return dma_map_page(dev, skb_frag_page(frag), 3513 skb_frag_off(frag) + offset, size, dir); 3514 } 3515 3516 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3517 gfp_t gfp_mask) 3518 { 3519 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3520 } 3521 3522 3523 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3524 gfp_t gfp_mask) 3525 { 3526 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3527 } 3528 3529 3530 /** 3531 * skb_clone_writable - is the header of a clone writable 3532 * @skb: buffer to check 3533 * @len: length up to which to write 3534 * 3535 * Returns true if modifying the header part of the cloned buffer 3536 * does not requires the data to be copied. 3537 */ 3538 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3539 { 3540 return !skb_header_cloned(skb) && 3541 skb_headroom(skb) + len <= skb->hdr_len; 3542 } 3543 3544 static inline int skb_try_make_writable(struct sk_buff *skb, 3545 unsigned int write_len) 3546 { 3547 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3548 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3549 } 3550 3551 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3552 int cloned) 3553 { 3554 int delta = 0; 3555 3556 if (headroom > skb_headroom(skb)) 3557 delta = headroom - skb_headroom(skb); 3558 3559 if (delta || cloned) 3560 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3561 GFP_ATOMIC); 3562 return 0; 3563 } 3564 3565 /** 3566 * skb_cow - copy header of skb when it is required 3567 * @skb: buffer to cow 3568 * @headroom: needed headroom 3569 * 3570 * If the skb passed lacks sufficient headroom or its data part 3571 * is shared, data is reallocated. If reallocation fails, an error 3572 * is returned and original skb is not changed. 3573 * 3574 * The result is skb with writable area skb->head...skb->tail 3575 * and at least @headroom of space at head. 3576 */ 3577 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3578 { 3579 return __skb_cow(skb, headroom, skb_cloned(skb)); 3580 } 3581 3582 /** 3583 * skb_cow_head - skb_cow but only making the head writable 3584 * @skb: buffer to cow 3585 * @headroom: needed headroom 3586 * 3587 * This function is identical to skb_cow except that we replace the 3588 * skb_cloned check by skb_header_cloned. It should be used when 3589 * you only need to push on some header and do not need to modify 3590 * the data. 3591 */ 3592 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3593 { 3594 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3595 } 3596 3597 /** 3598 * skb_padto - pad an skbuff up to a minimal size 3599 * @skb: buffer to pad 3600 * @len: minimal length 3601 * 3602 * Pads up a buffer to ensure the trailing bytes exist and are 3603 * blanked. If the buffer already contains sufficient data it 3604 * is untouched. Otherwise it is extended. Returns zero on 3605 * success. The skb is freed on error. 3606 */ 3607 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3608 { 3609 unsigned int size = skb->len; 3610 if (likely(size >= len)) 3611 return 0; 3612 return skb_pad(skb, len - size); 3613 } 3614 3615 /** 3616 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3617 * @skb: buffer to pad 3618 * @len: minimal length 3619 * @free_on_error: free buffer on error 3620 * 3621 * Pads up a buffer to ensure the trailing bytes exist and are 3622 * blanked. If the buffer already contains sufficient data it 3623 * is untouched. Otherwise it is extended. Returns zero on 3624 * success. The skb is freed on error if @free_on_error is true. 3625 */ 3626 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3627 unsigned int len, 3628 bool free_on_error) 3629 { 3630 unsigned int size = skb->len; 3631 3632 if (unlikely(size < len)) { 3633 len -= size; 3634 if (__skb_pad(skb, len, free_on_error)) 3635 return -ENOMEM; 3636 __skb_put(skb, len); 3637 } 3638 return 0; 3639 } 3640 3641 /** 3642 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3643 * @skb: buffer to pad 3644 * @len: minimal length 3645 * 3646 * Pads up a buffer to ensure the trailing bytes exist and are 3647 * blanked. If the buffer already contains sufficient data it 3648 * is untouched. Otherwise it is extended. Returns zero on 3649 * success. The skb is freed on error. 3650 */ 3651 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3652 { 3653 return __skb_put_padto(skb, len, true); 3654 } 3655 3656 static inline int skb_add_data(struct sk_buff *skb, 3657 struct iov_iter *from, int copy) 3658 { 3659 const int off = skb->len; 3660 3661 if (skb->ip_summed == CHECKSUM_NONE) { 3662 __wsum csum = 0; 3663 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3664 &csum, from)) { 3665 skb->csum = csum_block_add(skb->csum, csum, off); 3666 return 0; 3667 } 3668 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3669 return 0; 3670 3671 __skb_trim(skb, off); 3672 return -EFAULT; 3673 } 3674 3675 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3676 const struct page *page, int off) 3677 { 3678 if (skb_zcopy(skb)) 3679 return false; 3680 if (i) { 3681 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3682 3683 return page == skb_frag_page(frag) && 3684 off == skb_frag_off(frag) + skb_frag_size(frag); 3685 } 3686 return false; 3687 } 3688 3689 static inline int __skb_linearize(struct sk_buff *skb) 3690 { 3691 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3692 } 3693 3694 /** 3695 * skb_linearize - convert paged skb to linear one 3696 * @skb: buffer to linarize 3697 * 3698 * If there is no free memory -ENOMEM is returned, otherwise zero 3699 * is returned and the old skb data released. 3700 */ 3701 static inline int skb_linearize(struct sk_buff *skb) 3702 { 3703 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3704 } 3705 3706 /** 3707 * skb_has_shared_frag - can any frag be overwritten 3708 * @skb: buffer to test 3709 * 3710 * Return true if the skb has at least one frag that might be modified 3711 * by an external entity (as in vmsplice()/sendfile()) 3712 */ 3713 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3714 { 3715 return skb_is_nonlinear(skb) && 3716 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3717 } 3718 3719 /** 3720 * skb_linearize_cow - make sure skb is linear and writable 3721 * @skb: buffer to process 3722 * 3723 * If there is no free memory -ENOMEM is returned, otherwise zero 3724 * is returned and the old skb data released. 3725 */ 3726 static inline int skb_linearize_cow(struct sk_buff *skb) 3727 { 3728 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3729 __skb_linearize(skb) : 0; 3730 } 3731 3732 static __always_inline void 3733 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3734 unsigned int off) 3735 { 3736 if (skb->ip_summed == CHECKSUM_COMPLETE) 3737 skb->csum = csum_block_sub(skb->csum, 3738 csum_partial(start, len, 0), off); 3739 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3740 skb_checksum_start_offset(skb) < 0) 3741 skb->ip_summed = CHECKSUM_NONE; 3742 } 3743 3744 /** 3745 * skb_postpull_rcsum - update checksum for received skb after pull 3746 * @skb: buffer to update 3747 * @start: start of data before pull 3748 * @len: length of data pulled 3749 * 3750 * After doing a pull on a received packet, you need to call this to 3751 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3752 * CHECKSUM_NONE so that it can be recomputed from scratch. 3753 */ 3754 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3755 const void *start, unsigned int len) 3756 { 3757 if (skb->ip_summed == CHECKSUM_COMPLETE) 3758 skb->csum = wsum_negate(csum_partial(start, len, 3759 wsum_negate(skb->csum))); 3760 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3761 skb_checksum_start_offset(skb) < 0) 3762 skb->ip_summed = CHECKSUM_NONE; 3763 } 3764 3765 static __always_inline void 3766 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3767 unsigned int off) 3768 { 3769 if (skb->ip_summed == CHECKSUM_COMPLETE) 3770 skb->csum = csum_block_add(skb->csum, 3771 csum_partial(start, len, 0), off); 3772 } 3773 3774 /** 3775 * skb_postpush_rcsum - update checksum for received skb after push 3776 * @skb: buffer to update 3777 * @start: start of data after push 3778 * @len: length of data pushed 3779 * 3780 * After doing a push on a received packet, you need to call this to 3781 * update the CHECKSUM_COMPLETE checksum. 3782 */ 3783 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3784 const void *start, unsigned int len) 3785 { 3786 __skb_postpush_rcsum(skb, start, len, 0); 3787 } 3788 3789 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3790 3791 /** 3792 * skb_push_rcsum - push skb and update receive checksum 3793 * @skb: buffer to update 3794 * @len: length of data pulled 3795 * 3796 * This function performs an skb_push on the packet and updates 3797 * the CHECKSUM_COMPLETE checksum. It should be used on 3798 * receive path processing instead of skb_push unless you know 3799 * that the checksum difference is zero (e.g., a valid IP header) 3800 * or you are setting ip_summed to CHECKSUM_NONE. 3801 */ 3802 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3803 { 3804 skb_push(skb, len); 3805 skb_postpush_rcsum(skb, skb->data, len); 3806 return skb->data; 3807 } 3808 3809 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3810 /** 3811 * pskb_trim_rcsum - trim received skb and update checksum 3812 * @skb: buffer to trim 3813 * @len: new length 3814 * 3815 * This is exactly the same as pskb_trim except that it ensures the 3816 * checksum of received packets are still valid after the operation. 3817 * It can change skb pointers. 3818 */ 3819 3820 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3821 { 3822 if (likely(len >= skb->len)) 3823 return 0; 3824 return pskb_trim_rcsum_slow(skb, len); 3825 } 3826 3827 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3828 { 3829 if (skb->ip_summed == CHECKSUM_COMPLETE) 3830 skb->ip_summed = CHECKSUM_NONE; 3831 __skb_trim(skb, len); 3832 return 0; 3833 } 3834 3835 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3836 { 3837 if (skb->ip_summed == CHECKSUM_COMPLETE) 3838 skb->ip_summed = CHECKSUM_NONE; 3839 return __skb_grow(skb, len); 3840 } 3841 3842 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3843 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3844 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3845 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3846 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3847 3848 #define skb_queue_walk(queue, skb) \ 3849 for (skb = (queue)->next; \ 3850 skb != (struct sk_buff *)(queue); \ 3851 skb = skb->next) 3852 3853 #define skb_queue_walk_safe(queue, skb, tmp) \ 3854 for (skb = (queue)->next, tmp = skb->next; \ 3855 skb != (struct sk_buff *)(queue); \ 3856 skb = tmp, tmp = skb->next) 3857 3858 #define skb_queue_walk_from(queue, skb) \ 3859 for (; skb != (struct sk_buff *)(queue); \ 3860 skb = skb->next) 3861 3862 #define skb_rbtree_walk(skb, root) \ 3863 for (skb = skb_rb_first(root); skb != NULL; \ 3864 skb = skb_rb_next(skb)) 3865 3866 #define skb_rbtree_walk_from(skb) \ 3867 for (; skb != NULL; \ 3868 skb = skb_rb_next(skb)) 3869 3870 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3871 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3872 skb = tmp) 3873 3874 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3875 for (tmp = skb->next; \ 3876 skb != (struct sk_buff *)(queue); \ 3877 skb = tmp, tmp = skb->next) 3878 3879 #define skb_queue_reverse_walk(queue, skb) \ 3880 for (skb = (queue)->prev; \ 3881 skb != (struct sk_buff *)(queue); \ 3882 skb = skb->prev) 3883 3884 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3885 for (skb = (queue)->prev, tmp = skb->prev; \ 3886 skb != (struct sk_buff *)(queue); \ 3887 skb = tmp, tmp = skb->prev) 3888 3889 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3890 for (tmp = skb->prev; \ 3891 skb != (struct sk_buff *)(queue); \ 3892 skb = tmp, tmp = skb->prev) 3893 3894 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3895 { 3896 return skb_shinfo(skb)->frag_list != NULL; 3897 } 3898 3899 static inline void skb_frag_list_init(struct sk_buff *skb) 3900 { 3901 skb_shinfo(skb)->frag_list = NULL; 3902 } 3903 3904 #define skb_walk_frags(skb, iter) \ 3905 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3906 3907 3908 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3909 int *err, long *timeo_p, 3910 const struct sk_buff *skb); 3911 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3912 struct sk_buff_head *queue, 3913 unsigned int flags, 3914 int *off, int *err, 3915 struct sk_buff **last); 3916 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3917 struct sk_buff_head *queue, 3918 unsigned int flags, int *off, int *err, 3919 struct sk_buff **last); 3920 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3921 struct sk_buff_head *sk_queue, 3922 unsigned int flags, int *off, int *err); 3923 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3924 __poll_t datagram_poll(struct file *file, struct socket *sock, 3925 struct poll_table_struct *wait); 3926 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3927 struct iov_iter *to, int size); 3928 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3929 struct msghdr *msg, int size) 3930 { 3931 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3932 } 3933 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3934 struct msghdr *msg); 3935 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3936 struct iov_iter *to, int len, 3937 struct ahash_request *hash); 3938 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3939 struct iov_iter *from, int len); 3940 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3941 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3942 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3943 static inline void skb_free_datagram_locked(struct sock *sk, 3944 struct sk_buff *skb) 3945 { 3946 __skb_free_datagram_locked(sk, skb, 0); 3947 } 3948 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3949 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3950 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3951 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3952 int len); 3953 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3954 struct pipe_inode_info *pipe, unsigned int len, 3955 unsigned int flags); 3956 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3957 int len); 3958 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3959 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3960 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3961 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3962 int len, int hlen); 3963 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3964 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3965 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3966 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3967 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3968 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3969 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3970 unsigned int offset); 3971 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3972 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3973 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3974 int skb_vlan_pop(struct sk_buff *skb); 3975 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3976 int skb_eth_pop(struct sk_buff *skb); 3977 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3978 const unsigned char *src); 3979 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3980 int mac_len, bool ethernet); 3981 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3982 bool ethernet); 3983 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3984 int skb_mpls_dec_ttl(struct sk_buff *skb); 3985 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3986 gfp_t gfp); 3987 3988 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3989 { 3990 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3991 } 3992 3993 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3994 { 3995 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3996 } 3997 3998 struct skb_checksum_ops { 3999 __wsum (*update)(const void *mem, int len, __wsum wsum); 4000 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4001 }; 4002 4003 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4004 4005 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4006 __wsum csum, const struct skb_checksum_ops *ops); 4007 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4008 __wsum csum); 4009 4010 static inline void * __must_check 4011 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4012 const void *data, int hlen, void *buffer) 4013 { 4014 if (likely(hlen - offset >= len)) 4015 return (void *)data + offset; 4016 4017 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4018 return NULL; 4019 4020 return buffer; 4021 } 4022 4023 static inline void * __must_check 4024 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4025 { 4026 return __skb_header_pointer(skb, offset, len, skb->data, 4027 skb_headlen(skb), buffer); 4028 } 4029 4030 /** 4031 * skb_needs_linearize - check if we need to linearize a given skb 4032 * depending on the given device features. 4033 * @skb: socket buffer to check 4034 * @features: net device features 4035 * 4036 * Returns true if either: 4037 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4038 * 2. skb is fragmented and the device does not support SG. 4039 */ 4040 static inline bool skb_needs_linearize(struct sk_buff *skb, 4041 netdev_features_t features) 4042 { 4043 return skb_is_nonlinear(skb) && 4044 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4045 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4046 } 4047 4048 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4049 void *to, 4050 const unsigned int len) 4051 { 4052 memcpy(to, skb->data, len); 4053 } 4054 4055 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4056 const int offset, void *to, 4057 const unsigned int len) 4058 { 4059 memcpy(to, skb->data + offset, len); 4060 } 4061 4062 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4063 const void *from, 4064 const unsigned int len) 4065 { 4066 memcpy(skb->data, from, len); 4067 } 4068 4069 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4070 const int offset, 4071 const void *from, 4072 const unsigned int len) 4073 { 4074 memcpy(skb->data + offset, from, len); 4075 } 4076 4077 void skb_init(void); 4078 4079 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4080 { 4081 return skb->tstamp; 4082 } 4083 4084 /** 4085 * skb_get_timestamp - get timestamp from a skb 4086 * @skb: skb to get stamp from 4087 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4088 * 4089 * Timestamps are stored in the skb as offsets to a base timestamp. 4090 * This function converts the offset back to a struct timeval and stores 4091 * it in stamp. 4092 */ 4093 static inline void skb_get_timestamp(const struct sk_buff *skb, 4094 struct __kernel_old_timeval *stamp) 4095 { 4096 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4097 } 4098 4099 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4100 struct __kernel_sock_timeval *stamp) 4101 { 4102 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4103 4104 stamp->tv_sec = ts.tv_sec; 4105 stamp->tv_usec = ts.tv_nsec / 1000; 4106 } 4107 4108 static inline void skb_get_timestampns(const struct sk_buff *skb, 4109 struct __kernel_old_timespec *stamp) 4110 { 4111 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4112 4113 stamp->tv_sec = ts.tv_sec; 4114 stamp->tv_nsec = ts.tv_nsec; 4115 } 4116 4117 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4118 struct __kernel_timespec *stamp) 4119 { 4120 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4121 4122 stamp->tv_sec = ts.tv_sec; 4123 stamp->tv_nsec = ts.tv_nsec; 4124 } 4125 4126 static inline void __net_timestamp(struct sk_buff *skb) 4127 { 4128 skb->tstamp = ktime_get_real(); 4129 skb->mono_delivery_time = 0; 4130 } 4131 4132 static inline ktime_t net_timedelta(ktime_t t) 4133 { 4134 return ktime_sub(ktime_get_real(), t); 4135 } 4136 4137 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4138 bool mono) 4139 { 4140 skb->tstamp = kt; 4141 skb->mono_delivery_time = kt && mono; 4142 } 4143 4144 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4145 4146 /* It is used in the ingress path to clear the delivery_time. 4147 * If needed, set the skb->tstamp to the (rcv) timestamp. 4148 */ 4149 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4150 { 4151 if (skb->mono_delivery_time) { 4152 skb->mono_delivery_time = 0; 4153 if (static_branch_unlikely(&netstamp_needed_key)) 4154 skb->tstamp = ktime_get_real(); 4155 else 4156 skb->tstamp = 0; 4157 } 4158 } 4159 4160 static inline void skb_clear_tstamp(struct sk_buff *skb) 4161 { 4162 if (skb->mono_delivery_time) 4163 return; 4164 4165 skb->tstamp = 0; 4166 } 4167 4168 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4169 { 4170 if (skb->mono_delivery_time) 4171 return 0; 4172 4173 return skb->tstamp; 4174 } 4175 4176 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4177 { 4178 if (!skb->mono_delivery_time && skb->tstamp) 4179 return skb->tstamp; 4180 4181 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4182 return ktime_get_real(); 4183 4184 return 0; 4185 } 4186 4187 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4188 { 4189 return skb_shinfo(skb)->meta_len; 4190 } 4191 4192 static inline void *skb_metadata_end(const struct sk_buff *skb) 4193 { 4194 return skb_mac_header(skb); 4195 } 4196 4197 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4198 const struct sk_buff *skb_b, 4199 u8 meta_len) 4200 { 4201 const void *a = skb_metadata_end(skb_a); 4202 const void *b = skb_metadata_end(skb_b); 4203 /* Using more efficient varaiant than plain call to memcmp(). */ 4204 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4205 u64 diffs = 0; 4206 4207 switch (meta_len) { 4208 #define __it(x, op) (x -= sizeof(u##op)) 4209 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4210 case 32: diffs |= __it_diff(a, b, 64); 4211 fallthrough; 4212 case 24: diffs |= __it_diff(a, b, 64); 4213 fallthrough; 4214 case 16: diffs |= __it_diff(a, b, 64); 4215 fallthrough; 4216 case 8: diffs |= __it_diff(a, b, 64); 4217 break; 4218 case 28: diffs |= __it_diff(a, b, 64); 4219 fallthrough; 4220 case 20: diffs |= __it_diff(a, b, 64); 4221 fallthrough; 4222 case 12: diffs |= __it_diff(a, b, 64); 4223 fallthrough; 4224 case 4: diffs |= __it_diff(a, b, 32); 4225 break; 4226 } 4227 return diffs; 4228 #else 4229 return memcmp(a - meta_len, b - meta_len, meta_len); 4230 #endif 4231 } 4232 4233 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4234 const struct sk_buff *skb_b) 4235 { 4236 u8 len_a = skb_metadata_len(skb_a); 4237 u8 len_b = skb_metadata_len(skb_b); 4238 4239 if (!(len_a | len_b)) 4240 return false; 4241 4242 return len_a != len_b ? 4243 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4244 } 4245 4246 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4247 { 4248 skb_shinfo(skb)->meta_len = meta_len; 4249 } 4250 4251 static inline void skb_metadata_clear(struct sk_buff *skb) 4252 { 4253 skb_metadata_set(skb, 0); 4254 } 4255 4256 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4257 4258 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4259 4260 void skb_clone_tx_timestamp(struct sk_buff *skb); 4261 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4262 4263 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4264 4265 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4266 { 4267 } 4268 4269 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4270 { 4271 return false; 4272 } 4273 4274 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4275 4276 /** 4277 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4278 * 4279 * PHY drivers may accept clones of transmitted packets for 4280 * timestamping via their phy_driver.txtstamp method. These drivers 4281 * must call this function to return the skb back to the stack with a 4282 * timestamp. 4283 * 4284 * @skb: clone of the original outgoing packet 4285 * @hwtstamps: hardware time stamps 4286 * 4287 */ 4288 void skb_complete_tx_timestamp(struct sk_buff *skb, 4289 struct skb_shared_hwtstamps *hwtstamps); 4290 4291 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4292 struct skb_shared_hwtstamps *hwtstamps, 4293 struct sock *sk, int tstype); 4294 4295 /** 4296 * skb_tstamp_tx - queue clone of skb with send time stamps 4297 * @orig_skb: the original outgoing packet 4298 * @hwtstamps: hardware time stamps, may be NULL if not available 4299 * 4300 * If the skb has a socket associated, then this function clones the 4301 * skb (thus sharing the actual data and optional structures), stores 4302 * the optional hardware time stamping information (if non NULL) or 4303 * generates a software time stamp (otherwise), then queues the clone 4304 * to the error queue of the socket. Errors are silently ignored. 4305 */ 4306 void skb_tstamp_tx(struct sk_buff *orig_skb, 4307 struct skb_shared_hwtstamps *hwtstamps); 4308 4309 /** 4310 * skb_tx_timestamp() - Driver hook for transmit timestamping 4311 * 4312 * Ethernet MAC Drivers should call this function in their hard_xmit() 4313 * function immediately before giving the sk_buff to the MAC hardware. 4314 * 4315 * Specifically, one should make absolutely sure that this function is 4316 * called before TX completion of this packet can trigger. Otherwise 4317 * the packet could potentially already be freed. 4318 * 4319 * @skb: A socket buffer. 4320 */ 4321 static inline void skb_tx_timestamp(struct sk_buff *skb) 4322 { 4323 skb_clone_tx_timestamp(skb); 4324 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4325 skb_tstamp_tx(skb, NULL); 4326 } 4327 4328 /** 4329 * skb_complete_wifi_ack - deliver skb with wifi status 4330 * 4331 * @skb: the original outgoing packet 4332 * @acked: ack status 4333 * 4334 */ 4335 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4336 4337 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4338 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4339 4340 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4341 { 4342 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4343 skb->csum_valid || 4344 (skb->ip_summed == CHECKSUM_PARTIAL && 4345 skb_checksum_start_offset(skb) >= 0)); 4346 } 4347 4348 /** 4349 * skb_checksum_complete - Calculate checksum of an entire packet 4350 * @skb: packet to process 4351 * 4352 * This function calculates the checksum over the entire packet plus 4353 * the value of skb->csum. The latter can be used to supply the 4354 * checksum of a pseudo header as used by TCP/UDP. It returns the 4355 * checksum. 4356 * 4357 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4358 * this function can be used to verify that checksum on received 4359 * packets. In that case the function should return zero if the 4360 * checksum is correct. In particular, this function will return zero 4361 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4362 * hardware has already verified the correctness of the checksum. 4363 */ 4364 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4365 { 4366 return skb_csum_unnecessary(skb) ? 4367 0 : __skb_checksum_complete(skb); 4368 } 4369 4370 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4371 { 4372 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4373 if (skb->csum_level == 0) 4374 skb->ip_summed = CHECKSUM_NONE; 4375 else 4376 skb->csum_level--; 4377 } 4378 } 4379 4380 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4381 { 4382 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4383 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4384 skb->csum_level++; 4385 } else if (skb->ip_summed == CHECKSUM_NONE) { 4386 skb->ip_summed = CHECKSUM_UNNECESSARY; 4387 skb->csum_level = 0; 4388 } 4389 } 4390 4391 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4392 { 4393 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4394 skb->ip_summed = CHECKSUM_NONE; 4395 skb->csum_level = 0; 4396 } 4397 } 4398 4399 /* Check if we need to perform checksum complete validation. 4400 * 4401 * Returns true if checksum complete is needed, false otherwise 4402 * (either checksum is unnecessary or zero checksum is allowed). 4403 */ 4404 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4405 bool zero_okay, 4406 __sum16 check) 4407 { 4408 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4409 skb->csum_valid = 1; 4410 __skb_decr_checksum_unnecessary(skb); 4411 return false; 4412 } 4413 4414 return true; 4415 } 4416 4417 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4418 * in checksum_init. 4419 */ 4420 #define CHECKSUM_BREAK 76 4421 4422 /* Unset checksum-complete 4423 * 4424 * Unset checksum complete can be done when packet is being modified 4425 * (uncompressed for instance) and checksum-complete value is 4426 * invalidated. 4427 */ 4428 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4429 { 4430 if (skb->ip_summed == CHECKSUM_COMPLETE) 4431 skb->ip_summed = CHECKSUM_NONE; 4432 } 4433 4434 /* Validate (init) checksum based on checksum complete. 4435 * 4436 * Return values: 4437 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4438 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4439 * checksum is stored in skb->csum for use in __skb_checksum_complete 4440 * non-zero: value of invalid checksum 4441 * 4442 */ 4443 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4444 bool complete, 4445 __wsum psum) 4446 { 4447 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4448 if (!csum_fold(csum_add(psum, skb->csum))) { 4449 skb->csum_valid = 1; 4450 return 0; 4451 } 4452 } 4453 4454 skb->csum = psum; 4455 4456 if (complete || skb->len <= CHECKSUM_BREAK) { 4457 __sum16 csum; 4458 4459 csum = __skb_checksum_complete(skb); 4460 skb->csum_valid = !csum; 4461 return csum; 4462 } 4463 4464 return 0; 4465 } 4466 4467 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4468 { 4469 return 0; 4470 } 4471 4472 /* Perform checksum validate (init). Note that this is a macro since we only 4473 * want to calculate the pseudo header which is an input function if necessary. 4474 * First we try to validate without any computation (checksum unnecessary) and 4475 * then calculate based on checksum complete calling the function to compute 4476 * pseudo header. 4477 * 4478 * Return values: 4479 * 0: checksum is validated or try to in skb_checksum_complete 4480 * non-zero: value of invalid checksum 4481 */ 4482 #define __skb_checksum_validate(skb, proto, complete, \ 4483 zero_okay, check, compute_pseudo) \ 4484 ({ \ 4485 __sum16 __ret = 0; \ 4486 skb->csum_valid = 0; \ 4487 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4488 __ret = __skb_checksum_validate_complete(skb, \ 4489 complete, compute_pseudo(skb, proto)); \ 4490 __ret; \ 4491 }) 4492 4493 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4494 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4495 4496 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4497 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4498 4499 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4500 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4501 4502 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4503 compute_pseudo) \ 4504 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4505 4506 #define skb_checksum_simple_validate(skb) \ 4507 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4508 4509 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4510 { 4511 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4512 } 4513 4514 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4515 { 4516 skb->csum = ~pseudo; 4517 skb->ip_summed = CHECKSUM_COMPLETE; 4518 } 4519 4520 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4521 do { \ 4522 if (__skb_checksum_convert_check(skb)) \ 4523 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4524 } while (0) 4525 4526 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4527 u16 start, u16 offset) 4528 { 4529 skb->ip_summed = CHECKSUM_PARTIAL; 4530 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4531 skb->csum_offset = offset - start; 4532 } 4533 4534 /* Update skbuf and packet to reflect the remote checksum offload operation. 4535 * When called, ptr indicates the starting point for skb->csum when 4536 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4537 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4538 */ 4539 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4540 int start, int offset, bool nopartial) 4541 { 4542 __wsum delta; 4543 4544 if (!nopartial) { 4545 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4546 return; 4547 } 4548 4549 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4550 __skb_checksum_complete(skb); 4551 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4552 } 4553 4554 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4555 4556 /* Adjust skb->csum since we changed the packet */ 4557 skb->csum = csum_add(skb->csum, delta); 4558 } 4559 4560 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4561 { 4562 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4563 return (void *)(skb->_nfct & NFCT_PTRMASK); 4564 #else 4565 return NULL; 4566 #endif 4567 } 4568 4569 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4570 { 4571 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4572 return skb->_nfct; 4573 #else 4574 return 0UL; 4575 #endif 4576 } 4577 4578 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4579 { 4580 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4581 skb->slow_gro |= !!nfct; 4582 skb->_nfct = nfct; 4583 #endif 4584 } 4585 4586 #ifdef CONFIG_SKB_EXTENSIONS 4587 enum skb_ext_id { 4588 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4589 SKB_EXT_BRIDGE_NF, 4590 #endif 4591 #ifdef CONFIG_XFRM 4592 SKB_EXT_SEC_PATH, 4593 #endif 4594 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4595 TC_SKB_EXT, 4596 #endif 4597 #if IS_ENABLED(CONFIG_MPTCP) 4598 SKB_EXT_MPTCP, 4599 #endif 4600 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4601 SKB_EXT_MCTP, 4602 #endif 4603 SKB_EXT_NUM, /* must be last */ 4604 }; 4605 4606 /** 4607 * struct skb_ext - sk_buff extensions 4608 * @refcnt: 1 on allocation, deallocated on 0 4609 * @offset: offset to add to @data to obtain extension address 4610 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4611 * @data: start of extension data, variable sized 4612 * 4613 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4614 * to use 'u8' types while allowing up to 2kb worth of extension data. 4615 */ 4616 struct skb_ext { 4617 refcount_t refcnt; 4618 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4619 u8 chunks; /* same */ 4620 char data[] __aligned(8); 4621 }; 4622 4623 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4624 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4625 struct skb_ext *ext); 4626 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4627 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4628 void __skb_ext_put(struct skb_ext *ext); 4629 4630 static inline void skb_ext_put(struct sk_buff *skb) 4631 { 4632 if (skb->active_extensions) 4633 __skb_ext_put(skb->extensions); 4634 } 4635 4636 static inline void __skb_ext_copy(struct sk_buff *dst, 4637 const struct sk_buff *src) 4638 { 4639 dst->active_extensions = src->active_extensions; 4640 4641 if (src->active_extensions) { 4642 struct skb_ext *ext = src->extensions; 4643 4644 refcount_inc(&ext->refcnt); 4645 dst->extensions = ext; 4646 } 4647 } 4648 4649 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4650 { 4651 skb_ext_put(dst); 4652 __skb_ext_copy(dst, src); 4653 } 4654 4655 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4656 { 4657 return !!ext->offset[i]; 4658 } 4659 4660 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4661 { 4662 return skb->active_extensions & (1 << id); 4663 } 4664 4665 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4666 { 4667 if (skb_ext_exist(skb, id)) 4668 __skb_ext_del(skb, id); 4669 } 4670 4671 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4672 { 4673 if (skb_ext_exist(skb, id)) { 4674 struct skb_ext *ext = skb->extensions; 4675 4676 return (void *)ext + (ext->offset[id] << 3); 4677 } 4678 4679 return NULL; 4680 } 4681 4682 static inline void skb_ext_reset(struct sk_buff *skb) 4683 { 4684 if (unlikely(skb->active_extensions)) { 4685 __skb_ext_put(skb->extensions); 4686 skb->active_extensions = 0; 4687 } 4688 } 4689 4690 static inline bool skb_has_extensions(struct sk_buff *skb) 4691 { 4692 return unlikely(skb->active_extensions); 4693 } 4694 #else 4695 static inline void skb_ext_put(struct sk_buff *skb) {} 4696 static inline void skb_ext_reset(struct sk_buff *skb) {} 4697 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4698 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4699 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4700 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4701 #endif /* CONFIG_SKB_EXTENSIONS */ 4702 4703 static inline void nf_reset_ct(struct sk_buff *skb) 4704 { 4705 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4706 nf_conntrack_put(skb_nfct(skb)); 4707 skb->_nfct = 0; 4708 #endif 4709 } 4710 4711 static inline void nf_reset_trace(struct sk_buff *skb) 4712 { 4713 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4714 skb->nf_trace = 0; 4715 #endif 4716 } 4717 4718 static inline void ipvs_reset(struct sk_buff *skb) 4719 { 4720 #if IS_ENABLED(CONFIG_IP_VS) 4721 skb->ipvs_property = 0; 4722 #endif 4723 } 4724 4725 /* Note: This doesn't put any conntrack info in dst. */ 4726 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4727 bool copy) 4728 { 4729 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4730 dst->_nfct = src->_nfct; 4731 nf_conntrack_get(skb_nfct(src)); 4732 #endif 4733 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4734 if (copy) 4735 dst->nf_trace = src->nf_trace; 4736 #endif 4737 } 4738 4739 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4740 { 4741 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4742 nf_conntrack_put(skb_nfct(dst)); 4743 #endif 4744 dst->slow_gro = src->slow_gro; 4745 __nf_copy(dst, src, true); 4746 } 4747 4748 #ifdef CONFIG_NETWORK_SECMARK 4749 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4750 { 4751 to->secmark = from->secmark; 4752 } 4753 4754 static inline void skb_init_secmark(struct sk_buff *skb) 4755 { 4756 skb->secmark = 0; 4757 } 4758 #else 4759 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4760 { } 4761 4762 static inline void skb_init_secmark(struct sk_buff *skb) 4763 { } 4764 #endif 4765 4766 static inline int secpath_exists(const struct sk_buff *skb) 4767 { 4768 #ifdef CONFIG_XFRM 4769 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4770 #else 4771 return 0; 4772 #endif 4773 } 4774 4775 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4776 { 4777 return !skb->destructor && 4778 !secpath_exists(skb) && 4779 !skb_nfct(skb) && 4780 !skb->_skb_refdst && 4781 !skb_has_frag_list(skb); 4782 } 4783 4784 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4785 { 4786 skb->queue_mapping = queue_mapping; 4787 } 4788 4789 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4790 { 4791 return skb->queue_mapping; 4792 } 4793 4794 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4795 { 4796 to->queue_mapping = from->queue_mapping; 4797 } 4798 4799 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4800 { 4801 skb->queue_mapping = rx_queue + 1; 4802 } 4803 4804 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4805 { 4806 return skb->queue_mapping - 1; 4807 } 4808 4809 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4810 { 4811 return skb->queue_mapping != 0; 4812 } 4813 4814 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4815 { 4816 skb->dst_pending_confirm = val; 4817 } 4818 4819 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4820 { 4821 return skb->dst_pending_confirm != 0; 4822 } 4823 4824 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4825 { 4826 #ifdef CONFIG_XFRM 4827 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4828 #else 4829 return NULL; 4830 #endif 4831 } 4832 4833 /* Keeps track of mac header offset relative to skb->head. 4834 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4835 * For non-tunnel skb it points to skb_mac_header() and for 4836 * tunnel skb it points to outer mac header. 4837 * Keeps track of level of encapsulation of network headers. 4838 */ 4839 struct skb_gso_cb { 4840 union { 4841 int mac_offset; 4842 int data_offset; 4843 }; 4844 int encap_level; 4845 __wsum csum; 4846 __u16 csum_start; 4847 }; 4848 #define SKB_GSO_CB_OFFSET 32 4849 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4850 4851 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4852 { 4853 return (skb_mac_header(inner_skb) - inner_skb->head) - 4854 SKB_GSO_CB(inner_skb)->mac_offset; 4855 } 4856 4857 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4858 { 4859 int new_headroom, headroom; 4860 int ret; 4861 4862 headroom = skb_headroom(skb); 4863 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4864 if (ret) 4865 return ret; 4866 4867 new_headroom = skb_headroom(skb); 4868 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4869 return 0; 4870 } 4871 4872 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4873 { 4874 /* Do not update partial checksums if remote checksum is enabled. */ 4875 if (skb->remcsum_offload) 4876 return; 4877 4878 SKB_GSO_CB(skb)->csum = res; 4879 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4880 } 4881 4882 /* Compute the checksum for a gso segment. First compute the checksum value 4883 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4884 * then add in skb->csum (checksum from csum_start to end of packet). 4885 * skb->csum and csum_start are then updated to reflect the checksum of the 4886 * resultant packet starting from the transport header-- the resultant checksum 4887 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4888 * header. 4889 */ 4890 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4891 { 4892 unsigned char *csum_start = skb_transport_header(skb); 4893 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4894 __wsum partial = SKB_GSO_CB(skb)->csum; 4895 4896 SKB_GSO_CB(skb)->csum = res; 4897 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4898 4899 return csum_fold(csum_partial(csum_start, plen, partial)); 4900 } 4901 4902 static inline bool skb_is_gso(const struct sk_buff *skb) 4903 { 4904 return skb_shinfo(skb)->gso_size; 4905 } 4906 4907 /* Note: Should be called only if skb_is_gso(skb) is true */ 4908 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4909 { 4910 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4911 } 4912 4913 /* Note: Should be called only if skb_is_gso(skb) is true */ 4914 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4915 { 4916 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4917 } 4918 4919 /* Note: Should be called only if skb_is_gso(skb) is true */ 4920 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4921 { 4922 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4923 } 4924 4925 static inline void skb_gso_reset(struct sk_buff *skb) 4926 { 4927 skb_shinfo(skb)->gso_size = 0; 4928 skb_shinfo(skb)->gso_segs = 0; 4929 skb_shinfo(skb)->gso_type = 0; 4930 } 4931 4932 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4933 u16 increment) 4934 { 4935 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4936 return; 4937 shinfo->gso_size += increment; 4938 } 4939 4940 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4941 u16 decrement) 4942 { 4943 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4944 return; 4945 shinfo->gso_size -= decrement; 4946 } 4947 4948 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4949 4950 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4951 { 4952 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4953 * wanted then gso_type will be set. */ 4954 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4955 4956 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4957 unlikely(shinfo->gso_type == 0)) { 4958 __skb_warn_lro_forwarding(skb); 4959 return true; 4960 } 4961 return false; 4962 } 4963 4964 static inline void skb_forward_csum(struct sk_buff *skb) 4965 { 4966 /* Unfortunately we don't support this one. Any brave souls? */ 4967 if (skb->ip_summed == CHECKSUM_COMPLETE) 4968 skb->ip_summed = CHECKSUM_NONE; 4969 } 4970 4971 /** 4972 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4973 * @skb: skb to check 4974 * 4975 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4976 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4977 * use this helper, to document places where we make this assertion. 4978 */ 4979 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4980 { 4981 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4982 } 4983 4984 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4985 4986 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4987 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4988 unsigned int transport_len, 4989 __sum16(*skb_chkf)(struct sk_buff *skb)); 4990 4991 /** 4992 * skb_head_is_locked - Determine if the skb->head is locked down 4993 * @skb: skb to check 4994 * 4995 * The head on skbs build around a head frag can be removed if they are 4996 * not cloned. This function returns true if the skb head is locked down 4997 * due to either being allocated via kmalloc, or by being a clone with 4998 * multiple references to the head. 4999 */ 5000 static inline bool skb_head_is_locked(const struct sk_buff *skb) 5001 { 5002 return !skb->head_frag || skb_cloned(skb); 5003 } 5004 5005 /* Local Checksum Offload. 5006 * Compute outer checksum based on the assumption that the 5007 * inner checksum will be offloaded later. 5008 * See Documentation/networking/checksum-offloads.rst for 5009 * explanation of how this works. 5010 * Fill in outer checksum adjustment (e.g. with sum of outer 5011 * pseudo-header) before calling. 5012 * Also ensure that inner checksum is in linear data area. 5013 */ 5014 static inline __wsum lco_csum(struct sk_buff *skb) 5015 { 5016 unsigned char *csum_start = skb_checksum_start(skb); 5017 unsigned char *l4_hdr = skb_transport_header(skb); 5018 __wsum partial; 5019 5020 /* Start with complement of inner checksum adjustment */ 5021 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5022 skb->csum_offset)); 5023 5024 /* Add in checksum of our headers (incl. outer checksum 5025 * adjustment filled in by caller) and return result. 5026 */ 5027 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5028 } 5029 5030 static inline bool skb_is_redirected(const struct sk_buff *skb) 5031 { 5032 return skb->redirected; 5033 } 5034 5035 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5036 { 5037 skb->redirected = 1; 5038 #ifdef CONFIG_NET_REDIRECT 5039 skb->from_ingress = from_ingress; 5040 if (skb->from_ingress) 5041 skb_clear_tstamp(skb); 5042 #endif 5043 } 5044 5045 static inline void skb_reset_redirect(struct sk_buff *skb) 5046 { 5047 skb->redirected = 0; 5048 } 5049 5050 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5051 { 5052 return skb->csum_not_inet; 5053 } 5054 5055 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5056 const u64 kcov_handle) 5057 { 5058 #ifdef CONFIG_KCOV 5059 skb->kcov_handle = kcov_handle; 5060 #endif 5061 } 5062 5063 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5064 { 5065 #ifdef CONFIG_KCOV 5066 return skb->kcov_handle; 5067 #else 5068 return 0; 5069 #endif 5070 } 5071 5072 #ifdef CONFIG_PAGE_POOL 5073 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5074 { 5075 skb->pp_recycle = 1; 5076 } 5077 #endif 5078 5079 #endif /* __KERNEL__ */ 5080 #endif /* _LINUX_SKBUFF_H */ 5081