xref: /linux-6.15/include/linux/skbuff.h (revision 56aecc0a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	__u16			frag_max_size;
298 	struct net_device	*physindev;
299 
300 	/* always valid & non-NULL from FORWARD on, for physdev match */
301 	struct net_device	*physoutdev;
302 	union {
303 		/* prerouting: detect dnat in orig/reply direction */
304 		__be32          ipv4_daddr;
305 		struct in6_addr ipv6_daddr;
306 
307 		/* after prerouting + nat detected: store original source
308 		 * mac since neigh resolution overwrites it, only used while
309 		 * skb is out in neigh layer.
310 		 */
311 		char neigh_header[8];
312 	};
313 };
314 #endif
315 
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318  * ovs recirc_id. It will be set to the current chain by tc
319  * and read by ovs to recirc_id.
320  */
321 struct tc_skb_ext {
322 	union {
323 		u64 act_miss_cookie;
324 		__u32 chain;
325 	};
326 	__u16 mru;
327 	__u16 zone;
328 	u8 post_ct:1;
329 	u8 post_ct_snat:1;
330 	u8 post_ct_dnat:1;
331 	u8 act_miss:1; /* Set if act_miss_cookie is used */
332 };
333 #endif
334 
335 struct sk_buff_head {
336 	/* These two members must be first to match sk_buff. */
337 	struct_group_tagged(sk_buff_list, list,
338 		struct sk_buff	*next;
339 		struct sk_buff	*prev;
340 	);
341 
342 	__u32		qlen;
343 	spinlock_t	lock;
344 };
345 
346 struct sk_buff;
347 
348 /* To allow 64K frame to be packed as single skb without frag_list we
349  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
350  * buffers which do not start on a page boundary.
351  *
352  * Since GRO uses frags we allocate at least 16 regardless of page
353  * size.
354  */
355 #if (65536/PAGE_SIZE + 1) < 16
356 #define MAX_SKB_FRAGS 16UL
357 #else
358 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
359 #endif
360 extern int sysctl_max_skb_frags;
361 
362 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
363  * segment using its current segmentation instead.
364  */
365 #define GSO_BY_FRAGS	0xFFFF
366 
367 typedef struct bio_vec skb_frag_t;
368 
369 /**
370  * skb_frag_size() - Returns the size of a skb fragment
371  * @frag: skb fragment
372  */
373 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374 {
375 	return frag->bv_len;
376 }
377 
378 /**
379  * skb_frag_size_set() - Sets the size of a skb fragment
380  * @frag: skb fragment
381  * @size: size of fragment
382  */
383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384 {
385 	frag->bv_len = size;
386 }
387 
388 /**
389  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
390  * @frag: skb fragment
391  * @delta: value to add
392  */
393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
394 {
395 	frag->bv_len += delta;
396 }
397 
398 /**
399  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
400  * @frag: skb fragment
401  * @delta: value to subtract
402  */
403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
404 {
405 	frag->bv_len -= delta;
406 }
407 
408 /**
409  * skb_frag_must_loop - Test if %p is a high memory page
410  * @p: fragment's page
411  */
412 static inline bool skb_frag_must_loop(struct page *p)
413 {
414 #if defined(CONFIG_HIGHMEM)
415 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
416 		return true;
417 #endif
418 	return false;
419 }
420 
421 /**
422  *	skb_frag_foreach_page - loop over pages in a fragment
423  *
424  *	@f:		skb frag to operate on
425  *	@f_off:		offset from start of f->bv_page
426  *	@f_len:		length from f_off to loop over
427  *	@p:		(temp var) current page
428  *	@p_off:		(temp var) offset from start of current page,
429  *	                           non-zero only on first page.
430  *	@p_len:		(temp var) length in current page,
431  *				   < PAGE_SIZE only on first and last page.
432  *	@copied:	(temp var) length so far, excluding current p_len.
433  *
434  *	A fragment can hold a compound page, in which case per-page
435  *	operations, notably kmap_atomic, must be called for each
436  *	regular page.
437  */
438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
439 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
440 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
441 	     p_len = skb_frag_must_loop(p) ?				\
442 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
443 	     copied = 0;						\
444 	     copied < f_len;						\
445 	     copied += p_len, p++, p_off = 0,				\
446 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
447 
448 #define HAVE_HW_TIME_STAMP
449 
450 /**
451  * struct skb_shared_hwtstamps - hardware time stamps
452  * @hwtstamp:		hardware time stamp transformed into duration
453  *			since arbitrary point in time
454  * @netdev_data:	address/cookie of network device driver used as
455  *			reference to actual hardware time stamp
456  *
457  * Software time stamps generated by ktime_get_real() are stored in
458  * skb->tstamp.
459  *
460  * hwtstamps can only be compared against other hwtstamps from
461  * the same device.
462  *
463  * This structure is attached to packets as part of the
464  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
465  */
466 struct skb_shared_hwtstamps {
467 	union {
468 		ktime_t	hwtstamp;
469 		void *netdev_data;
470 	};
471 };
472 
473 /* Definitions for tx_flags in struct skb_shared_info */
474 enum {
475 	/* generate hardware time stamp */
476 	SKBTX_HW_TSTAMP = 1 << 0,
477 
478 	/* generate software time stamp when queueing packet to NIC */
479 	SKBTX_SW_TSTAMP = 1 << 1,
480 
481 	/* device driver is going to provide hardware time stamp */
482 	SKBTX_IN_PROGRESS = 1 << 2,
483 
484 	/* generate hardware time stamp based on cycles if supported */
485 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
486 
487 	/* generate wifi status information (where possible) */
488 	SKBTX_WIFI_STATUS = 1 << 4,
489 
490 	/* determine hardware time stamp based on time or cycles */
491 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
492 
493 	/* generate software time stamp when entering packet scheduling */
494 	SKBTX_SCHED_TSTAMP = 1 << 6,
495 };
496 
497 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
498 				 SKBTX_SCHED_TSTAMP)
499 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
500 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
501 				 SKBTX_ANY_SW_TSTAMP)
502 
503 /* Definitions for flags in struct skb_shared_info */
504 enum {
505 	/* use zcopy routines */
506 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
507 
508 	/* This indicates at least one fragment might be overwritten
509 	 * (as in vmsplice(), sendfile() ...)
510 	 * If we need to compute a TX checksum, we'll need to copy
511 	 * all frags to avoid possible bad checksum
512 	 */
513 	SKBFL_SHARED_FRAG = BIT(1),
514 
515 	/* segment contains only zerocopy data and should not be
516 	 * charged to the kernel memory.
517 	 */
518 	SKBFL_PURE_ZEROCOPY = BIT(2),
519 
520 	SKBFL_DONT_ORPHAN = BIT(3),
521 
522 	/* page references are managed by the ubuf_info, so it's safe to
523 	 * use frags only up until ubuf_info is released
524 	 */
525 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
526 };
527 
528 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
529 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
530 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
531 
532 /*
533  * The callback notifies userspace to release buffers when skb DMA is done in
534  * lower device, the skb last reference should be 0 when calling this.
535  * The zerocopy_success argument is true if zero copy transmit occurred,
536  * false on data copy or out of memory error caused by data copy attempt.
537  * The ctx field is used to track device context.
538  * The desc field is used to track userspace buffer index.
539  */
540 struct ubuf_info {
541 	void (*callback)(struct sk_buff *, struct ubuf_info *,
542 			 bool zerocopy_success);
543 	refcount_t refcnt;
544 	u8 flags;
545 };
546 
547 struct ubuf_info_msgzc {
548 	struct ubuf_info ubuf;
549 
550 	union {
551 		struct {
552 			unsigned long desc;
553 			void *ctx;
554 		};
555 		struct {
556 			u32 id;
557 			u16 len;
558 			u16 zerocopy:1;
559 			u32 bytelen;
560 		};
561 	};
562 
563 	struct mmpin {
564 		struct user_struct *user;
565 		unsigned int num_pg;
566 	} mmp;
567 };
568 
569 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
570 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
571 					     ubuf)
572 
573 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
574 void mm_unaccount_pinned_pages(struct mmpin *mmp);
575 
576 /* This data is invariant across clones and lives at
577  * the end of the header data, ie. at skb->end.
578  */
579 struct skb_shared_info {
580 	__u8		flags;
581 	__u8		meta_len;
582 	__u8		nr_frags;
583 	__u8		tx_flags;
584 	unsigned short	gso_size;
585 	/* Warning: this field is not always filled in (UFO)! */
586 	unsigned short	gso_segs;
587 	struct sk_buff	*frag_list;
588 	struct skb_shared_hwtstamps hwtstamps;
589 	unsigned int	gso_type;
590 	u32		tskey;
591 
592 	/*
593 	 * Warning : all fields before dataref are cleared in __alloc_skb()
594 	 */
595 	atomic_t	dataref;
596 	unsigned int	xdp_frags_size;
597 
598 	/* Intermediate layers must ensure that destructor_arg
599 	 * remains valid until skb destructor */
600 	void *		destructor_arg;
601 
602 	/* must be last field, see pskb_expand_head() */
603 	skb_frag_t	frags[MAX_SKB_FRAGS];
604 };
605 
606 /**
607  * DOC: dataref and headerless skbs
608  *
609  * Transport layers send out clones of payload skbs they hold for
610  * retransmissions. To allow lower layers of the stack to prepend their headers
611  * we split &skb_shared_info.dataref into two halves.
612  * The lower 16 bits count the overall number of references.
613  * The higher 16 bits indicate how many of the references are payload-only.
614  * skb_header_cloned() checks if skb is allowed to add / write the headers.
615  *
616  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
617  * (via __skb_header_release()). Any clone created from marked skb will get
618  * &sk_buff.hdr_len populated with the available headroom.
619  * If there's the only clone in existence it's able to modify the headroom
620  * at will. The sequence of calls inside the transport layer is::
621  *
622  *  <alloc skb>
623  *  skb_reserve()
624  *  __skb_header_release()
625  *  skb_clone()
626  *  // send the clone down the stack
627  *
628  * This is not a very generic construct and it depends on the transport layers
629  * doing the right thing. In practice there's usually only one payload-only skb.
630  * Having multiple payload-only skbs with different lengths of hdr_len is not
631  * possible. The payload-only skbs should never leave their owner.
632  */
633 #define SKB_DATAREF_SHIFT 16
634 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
635 
636 
637 enum {
638 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
639 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
640 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
641 };
642 
643 enum {
644 	SKB_GSO_TCPV4 = 1 << 0,
645 
646 	/* This indicates the skb is from an untrusted source. */
647 	SKB_GSO_DODGY = 1 << 1,
648 
649 	/* This indicates the tcp segment has CWR set. */
650 	SKB_GSO_TCP_ECN = 1 << 2,
651 
652 	SKB_GSO_TCP_FIXEDID = 1 << 3,
653 
654 	SKB_GSO_TCPV6 = 1 << 4,
655 
656 	SKB_GSO_FCOE = 1 << 5,
657 
658 	SKB_GSO_GRE = 1 << 6,
659 
660 	SKB_GSO_GRE_CSUM = 1 << 7,
661 
662 	SKB_GSO_IPXIP4 = 1 << 8,
663 
664 	SKB_GSO_IPXIP6 = 1 << 9,
665 
666 	SKB_GSO_UDP_TUNNEL = 1 << 10,
667 
668 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
669 
670 	SKB_GSO_PARTIAL = 1 << 12,
671 
672 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
673 
674 	SKB_GSO_SCTP = 1 << 14,
675 
676 	SKB_GSO_ESP = 1 << 15,
677 
678 	SKB_GSO_UDP = 1 << 16,
679 
680 	SKB_GSO_UDP_L4 = 1 << 17,
681 
682 	SKB_GSO_FRAGLIST = 1 << 18,
683 };
684 
685 #if BITS_PER_LONG > 32
686 #define NET_SKBUFF_DATA_USES_OFFSET 1
687 #endif
688 
689 #ifdef NET_SKBUFF_DATA_USES_OFFSET
690 typedef unsigned int sk_buff_data_t;
691 #else
692 typedef unsigned char *sk_buff_data_t;
693 #endif
694 
695 /**
696  * DOC: Basic sk_buff geometry
697  *
698  * struct sk_buff itself is a metadata structure and does not hold any packet
699  * data. All the data is held in associated buffers.
700  *
701  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
702  * into two parts:
703  *
704  *  - data buffer, containing headers and sometimes payload;
705  *    this is the part of the skb operated on by the common helpers
706  *    such as skb_put() or skb_pull();
707  *  - shared info (struct skb_shared_info) which holds an array of pointers
708  *    to read-only data in the (page, offset, length) format.
709  *
710  * Optionally &skb_shared_info.frag_list may point to another skb.
711  *
712  * Basic diagram may look like this::
713  *
714  *                                  ---------------
715  *                                 | sk_buff       |
716  *                                  ---------------
717  *     ,---------------------------  + head
718  *    /          ,-----------------  + data
719  *   /          /      ,-----------  + tail
720  *  |          |      |            , + end
721  *  |          |      |           |
722  *  v          v      v           v
723  *   -----------------------------------------------
724  *  | headroom | data |  tailroom | skb_shared_info |
725  *   -----------------------------------------------
726  *                                 + [page frag]
727  *                                 + [page frag]
728  *                                 + [page frag]
729  *                                 + [page frag]       ---------
730  *                                 + frag_list    --> | sk_buff |
731  *                                                     ---------
732  *
733  */
734 
735 /**
736  *	struct sk_buff - socket buffer
737  *	@next: Next buffer in list
738  *	@prev: Previous buffer in list
739  *	@tstamp: Time we arrived/left
740  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
741  *		for retransmit timer
742  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
743  *	@list: queue head
744  *	@ll_node: anchor in an llist (eg socket defer_list)
745  *	@sk: Socket we are owned by
746  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
747  *		fragmentation management
748  *	@dev: Device we arrived on/are leaving by
749  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
750  *	@cb: Control buffer. Free for use by every layer. Put private vars here
751  *	@_skb_refdst: destination entry (with norefcount bit)
752  *	@sp: the security path, used for xfrm
753  *	@len: Length of actual data
754  *	@data_len: Data length
755  *	@mac_len: Length of link layer header
756  *	@hdr_len: writable header length of cloned skb
757  *	@csum: Checksum (must include start/offset pair)
758  *	@csum_start: Offset from skb->head where checksumming should start
759  *	@csum_offset: Offset from csum_start where checksum should be stored
760  *	@priority: Packet queueing priority
761  *	@ignore_df: allow local fragmentation
762  *	@cloned: Head may be cloned (check refcnt to be sure)
763  *	@ip_summed: Driver fed us an IP checksum
764  *	@nohdr: Payload reference only, must not modify header
765  *	@pkt_type: Packet class
766  *	@fclone: skbuff clone status
767  *	@ipvs_property: skbuff is owned by ipvs
768  *	@inner_protocol_type: whether the inner protocol is
769  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
770  *	@remcsum_offload: remote checksum offload is enabled
771  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
772  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
773  *	@tc_skip_classify: do not classify packet. set by IFB device
774  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
775  *	@redirected: packet was redirected by packet classifier
776  *	@from_ingress: packet was redirected from the ingress path
777  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
778  *	@peeked: this packet has been seen already, so stats have been
779  *		done for it, don't do them again
780  *	@nf_trace: netfilter packet trace flag
781  *	@protocol: Packet protocol from driver
782  *	@destructor: Destruct function
783  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
784  *	@_sk_redir: socket redirection information for skmsg
785  *	@_nfct: Associated connection, if any (with nfctinfo bits)
786  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
787  *	@skb_iif: ifindex of device we arrived on
788  *	@tc_index: Traffic control index
789  *	@hash: the packet hash
790  *	@queue_mapping: Queue mapping for multiqueue devices
791  *	@head_frag: skb was allocated from page fragments,
792  *		not allocated by kmalloc() or vmalloc().
793  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
794  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
795  *		page_pool support on driver)
796  *	@active_extensions: active extensions (skb_ext_id types)
797  *	@ndisc_nodetype: router type (from link layer)
798  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
799  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
800  *		ports.
801  *	@sw_hash: indicates hash was computed in software stack
802  *	@wifi_acked_valid: wifi_acked was set
803  *	@wifi_acked: whether frame was acked on wifi or not
804  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
805  *	@encapsulation: indicates the inner headers in the skbuff are valid
806  *	@encap_hdr_csum: software checksum is needed
807  *	@csum_valid: checksum is already valid
808  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
809  *	@csum_complete_sw: checksum was completed by software
810  *	@csum_level: indicates the number of consecutive checksums found in
811  *		the packet minus one that have been verified as
812  *		CHECKSUM_UNNECESSARY (max 3)
813  *	@dst_pending_confirm: need to confirm neighbour
814  *	@decrypted: Decrypted SKB
815  *	@slow_gro: state present at GRO time, slower prepare step required
816  *	@mono_delivery_time: When set, skb->tstamp has the
817  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
818  *		skb->tstamp has the (rcv) timestamp at ingress and
819  *		delivery_time at egress.
820  *	@napi_id: id of the NAPI struct this skb came from
821  *	@sender_cpu: (aka @napi_id) source CPU in XPS
822  *	@alloc_cpu: CPU which did the skb allocation.
823  *	@secmark: security marking
824  *	@mark: Generic packet mark
825  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
826  *		at the tail of an sk_buff
827  *	@vlan_all: vlan fields (proto & tci)
828  *	@vlan_proto: vlan encapsulation protocol
829  *	@vlan_tci: vlan tag control information
830  *	@inner_protocol: Protocol (encapsulation)
831  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
832  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
833  *	@inner_transport_header: Inner transport layer header (encapsulation)
834  *	@inner_network_header: Network layer header (encapsulation)
835  *	@inner_mac_header: Link layer header (encapsulation)
836  *	@transport_header: Transport layer header
837  *	@network_header: Network layer header
838  *	@mac_header: Link layer header
839  *	@kcov_handle: KCOV remote handle for remote coverage collection
840  *	@tail: Tail pointer
841  *	@end: End pointer
842  *	@head: Head of buffer
843  *	@data: Data head pointer
844  *	@truesize: Buffer size
845  *	@users: User count - see {datagram,tcp}.c
846  *	@extensions: allocated extensions, valid if active_extensions is nonzero
847  */
848 
849 struct sk_buff {
850 	union {
851 		struct {
852 			/* These two members must be first to match sk_buff_head. */
853 			struct sk_buff		*next;
854 			struct sk_buff		*prev;
855 
856 			union {
857 				struct net_device	*dev;
858 				/* Some protocols might use this space to store information,
859 				 * while device pointer would be NULL.
860 				 * UDP receive path is one user.
861 				 */
862 				unsigned long		dev_scratch;
863 			};
864 		};
865 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
866 		struct list_head	list;
867 		struct llist_node	ll_node;
868 	};
869 
870 	union {
871 		struct sock		*sk;
872 		int			ip_defrag_offset;
873 	};
874 
875 	union {
876 		ktime_t		tstamp;
877 		u64		skb_mstamp_ns; /* earliest departure time */
878 	};
879 	/*
880 	 * This is the control buffer. It is free to use for every
881 	 * layer. Please put your private variables there. If you
882 	 * want to keep them across layers you have to do a skb_clone()
883 	 * first. This is owned by whoever has the skb queued ATM.
884 	 */
885 	char			cb[48] __aligned(8);
886 
887 	union {
888 		struct {
889 			unsigned long	_skb_refdst;
890 			void		(*destructor)(struct sk_buff *skb);
891 		};
892 		struct list_head	tcp_tsorted_anchor;
893 #ifdef CONFIG_NET_SOCK_MSG
894 		unsigned long		_sk_redir;
895 #endif
896 	};
897 
898 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
899 	unsigned long		 _nfct;
900 #endif
901 	unsigned int		len,
902 				data_len;
903 	__u16			mac_len,
904 				hdr_len;
905 
906 	/* Following fields are _not_ copied in __copy_skb_header()
907 	 * Note that queue_mapping is here mostly to fill a hole.
908 	 */
909 	__u16			queue_mapping;
910 
911 /* if you move cloned around you also must adapt those constants */
912 #ifdef __BIG_ENDIAN_BITFIELD
913 #define CLONED_MASK	(1 << 7)
914 #else
915 #define CLONED_MASK	1
916 #endif
917 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
918 
919 	/* private: */
920 	__u8			__cloned_offset[0];
921 	/* public: */
922 	__u8			cloned:1,
923 				nohdr:1,
924 				fclone:2,
925 				peeked:1,
926 				head_frag:1,
927 				pfmemalloc:1,
928 				pp_recycle:1; /* page_pool recycle indicator */
929 #ifdef CONFIG_SKB_EXTENSIONS
930 	__u8			active_extensions;
931 #endif
932 
933 	/* Fields enclosed in headers group are copied
934 	 * using a single memcpy() in __copy_skb_header()
935 	 */
936 	struct_group(headers,
937 
938 	/* private: */
939 	__u8			__pkt_type_offset[0];
940 	/* public: */
941 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
942 	__u8			ignore_df:1;
943 	__u8			nf_trace:1;
944 	__u8			ip_summed:2;
945 	__u8			ooo_okay:1;
946 
947 	__u8			l4_hash:1;
948 	__u8			sw_hash:1;
949 	__u8			wifi_acked_valid:1;
950 	__u8			wifi_acked:1;
951 	__u8			no_fcs:1;
952 	/* Indicates the inner headers are valid in the skbuff. */
953 	__u8			encapsulation:1;
954 	__u8			encap_hdr_csum:1;
955 	__u8			csum_valid:1;
956 
957 	/* private: */
958 	__u8			__pkt_vlan_present_offset[0];
959 	/* public: */
960 	__u8			remcsum_offload:1;
961 	__u8			csum_complete_sw:1;
962 	__u8			csum_level:2;
963 	__u8			dst_pending_confirm:1;
964 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
965 #ifdef CONFIG_NET_CLS_ACT
966 	__u8			tc_skip_classify:1;
967 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
968 #endif
969 #ifdef CONFIG_IPV6_NDISC_NODETYPE
970 	__u8			ndisc_nodetype:2;
971 #endif
972 
973 	__u8			ipvs_property:1;
974 	__u8			inner_protocol_type:1;
975 #ifdef CONFIG_NET_SWITCHDEV
976 	__u8			offload_fwd_mark:1;
977 	__u8			offload_l3_fwd_mark:1;
978 #endif
979 	__u8			redirected:1;
980 #ifdef CONFIG_NET_REDIRECT
981 	__u8			from_ingress:1;
982 #endif
983 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
984 	__u8			nf_skip_egress:1;
985 #endif
986 #ifdef CONFIG_TLS_DEVICE
987 	__u8			decrypted:1;
988 #endif
989 	__u8			slow_gro:1;
990 	__u8			csum_not_inet:1;
991 
992 #ifdef CONFIG_NET_SCHED
993 	__u16			tc_index;	/* traffic control index */
994 #endif
995 
996 	union {
997 		__wsum		csum;
998 		struct {
999 			__u16	csum_start;
1000 			__u16	csum_offset;
1001 		};
1002 	};
1003 	__u32			priority;
1004 	int			skb_iif;
1005 	__u32			hash;
1006 	union {
1007 		u32		vlan_all;
1008 		struct {
1009 			__be16	vlan_proto;
1010 			__u16	vlan_tci;
1011 		};
1012 	};
1013 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1014 	union {
1015 		unsigned int	napi_id;
1016 		unsigned int	sender_cpu;
1017 	};
1018 #endif
1019 	u16			alloc_cpu;
1020 #ifdef CONFIG_NETWORK_SECMARK
1021 	__u32		secmark;
1022 #endif
1023 
1024 	union {
1025 		__u32		mark;
1026 		__u32		reserved_tailroom;
1027 	};
1028 
1029 	union {
1030 		__be16		inner_protocol;
1031 		__u8		inner_ipproto;
1032 	};
1033 
1034 	__u16			inner_transport_header;
1035 	__u16			inner_network_header;
1036 	__u16			inner_mac_header;
1037 
1038 	__be16			protocol;
1039 	__u16			transport_header;
1040 	__u16			network_header;
1041 	__u16			mac_header;
1042 
1043 #ifdef CONFIG_KCOV
1044 	u64			kcov_handle;
1045 #endif
1046 
1047 	); /* end headers group */
1048 
1049 	/* These elements must be at the end, see alloc_skb() for details.  */
1050 	sk_buff_data_t		tail;
1051 	sk_buff_data_t		end;
1052 	unsigned char		*head,
1053 				*data;
1054 	unsigned int		truesize;
1055 	refcount_t		users;
1056 
1057 #ifdef CONFIG_SKB_EXTENSIONS
1058 	/* only useable after checking ->active_extensions != 0 */
1059 	struct skb_ext		*extensions;
1060 #endif
1061 };
1062 
1063 /* if you move pkt_type around you also must adapt those constants */
1064 #ifdef __BIG_ENDIAN_BITFIELD
1065 #define PKT_TYPE_MAX	(7 << 5)
1066 #else
1067 #define PKT_TYPE_MAX	7
1068 #endif
1069 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1070 
1071 /* if you move tc_at_ingress or mono_delivery_time
1072  * around, you also must adapt these constants.
1073  */
1074 #ifdef __BIG_ENDIAN_BITFIELD
1075 #define TC_AT_INGRESS_MASK		(1 << 0)
1076 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1077 #else
1078 #define TC_AT_INGRESS_MASK		(1 << 7)
1079 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1080 #endif
1081 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1082 
1083 #ifdef __KERNEL__
1084 /*
1085  *	Handling routines are only of interest to the kernel
1086  */
1087 
1088 #define SKB_ALLOC_FCLONE	0x01
1089 #define SKB_ALLOC_RX		0x02
1090 #define SKB_ALLOC_NAPI		0x04
1091 
1092 /**
1093  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1094  * @skb: buffer
1095  */
1096 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1097 {
1098 	return unlikely(skb->pfmemalloc);
1099 }
1100 
1101 /*
1102  * skb might have a dst pointer attached, refcounted or not.
1103  * _skb_refdst low order bit is set if refcount was _not_ taken
1104  */
1105 #define SKB_DST_NOREF	1UL
1106 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1107 
1108 /**
1109  * skb_dst - returns skb dst_entry
1110  * @skb: buffer
1111  *
1112  * Returns skb dst_entry, regardless of reference taken or not.
1113  */
1114 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1115 {
1116 	/* If refdst was not refcounted, check we still are in a
1117 	 * rcu_read_lock section
1118 	 */
1119 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1120 		!rcu_read_lock_held() &&
1121 		!rcu_read_lock_bh_held());
1122 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1123 }
1124 
1125 /**
1126  * skb_dst_set - sets skb dst
1127  * @skb: buffer
1128  * @dst: dst entry
1129  *
1130  * Sets skb dst, assuming a reference was taken on dst and should
1131  * be released by skb_dst_drop()
1132  */
1133 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1134 {
1135 	skb->slow_gro |= !!dst;
1136 	skb->_skb_refdst = (unsigned long)dst;
1137 }
1138 
1139 /**
1140  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1141  * @skb: buffer
1142  * @dst: dst entry
1143  *
1144  * Sets skb dst, assuming a reference was not taken on dst.
1145  * If dst entry is cached, we do not take reference and dst_release
1146  * will be avoided by refdst_drop. If dst entry is not cached, we take
1147  * reference, so that last dst_release can destroy the dst immediately.
1148  */
1149 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1150 {
1151 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1152 	skb->slow_gro |= !!dst;
1153 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1154 }
1155 
1156 /**
1157  * skb_dst_is_noref - Test if skb dst isn't refcounted
1158  * @skb: buffer
1159  */
1160 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1161 {
1162 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1163 }
1164 
1165 /**
1166  * skb_rtable - Returns the skb &rtable
1167  * @skb: buffer
1168  */
1169 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1170 {
1171 	return (struct rtable *)skb_dst(skb);
1172 }
1173 
1174 /* For mangling skb->pkt_type from user space side from applications
1175  * such as nft, tc, etc, we only allow a conservative subset of
1176  * possible pkt_types to be set.
1177 */
1178 static inline bool skb_pkt_type_ok(u32 ptype)
1179 {
1180 	return ptype <= PACKET_OTHERHOST;
1181 }
1182 
1183 /**
1184  * skb_napi_id - Returns the skb's NAPI id
1185  * @skb: buffer
1186  */
1187 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1188 {
1189 #ifdef CONFIG_NET_RX_BUSY_POLL
1190 	return skb->napi_id;
1191 #else
1192 	return 0;
1193 #endif
1194 }
1195 
1196 /**
1197  * skb_unref - decrement the skb's reference count
1198  * @skb: buffer
1199  *
1200  * Returns true if we can free the skb.
1201  */
1202 static inline bool skb_unref(struct sk_buff *skb)
1203 {
1204 	if (unlikely(!skb))
1205 		return false;
1206 	if (likely(refcount_read(&skb->users) == 1))
1207 		smp_rmb();
1208 	else if (likely(!refcount_dec_and_test(&skb->users)))
1209 		return false;
1210 
1211 	return true;
1212 }
1213 
1214 void __fix_address
1215 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1216 
1217 /**
1218  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1219  *	@skb: buffer to free
1220  */
1221 static inline void kfree_skb(struct sk_buff *skb)
1222 {
1223 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1224 }
1225 
1226 void skb_release_head_state(struct sk_buff *skb);
1227 void kfree_skb_list_reason(struct sk_buff *segs,
1228 			   enum skb_drop_reason reason);
1229 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1230 void skb_tx_error(struct sk_buff *skb);
1231 
1232 static inline void kfree_skb_list(struct sk_buff *segs)
1233 {
1234 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1235 }
1236 
1237 #ifdef CONFIG_TRACEPOINTS
1238 void consume_skb(struct sk_buff *skb);
1239 #else
1240 static inline void consume_skb(struct sk_buff *skb)
1241 {
1242 	return kfree_skb(skb);
1243 }
1244 #endif
1245 
1246 void __consume_stateless_skb(struct sk_buff *skb);
1247 void  __kfree_skb(struct sk_buff *skb);
1248 extern struct kmem_cache *skbuff_cache;
1249 
1250 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1251 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1252 		      bool *fragstolen, int *delta_truesize);
1253 
1254 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1255 			    int node);
1256 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1257 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1258 struct sk_buff *build_skb_around(struct sk_buff *skb,
1259 				 void *data, unsigned int frag_size);
1260 void skb_attempt_defer_free(struct sk_buff *skb);
1261 
1262 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1263 struct sk_buff *slab_build_skb(void *data);
1264 
1265 /**
1266  * alloc_skb - allocate a network buffer
1267  * @size: size to allocate
1268  * @priority: allocation mask
1269  *
1270  * This function is a convenient wrapper around __alloc_skb().
1271  */
1272 static inline struct sk_buff *alloc_skb(unsigned int size,
1273 					gfp_t priority)
1274 {
1275 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1276 }
1277 
1278 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1279 				     unsigned long data_len,
1280 				     int max_page_order,
1281 				     int *errcode,
1282 				     gfp_t gfp_mask);
1283 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1284 
1285 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1286 struct sk_buff_fclones {
1287 	struct sk_buff	skb1;
1288 
1289 	struct sk_buff	skb2;
1290 
1291 	refcount_t	fclone_ref;
1292 };
1293 
1294 /**
1295  *	skb_fclone_busy - check if fclone is busy
1296  *	@sk: socket
1297  *	@skb: buffer
1298  *
1299  * Returns true if skb is a fast clone, and its clone is not freed.
1300  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1301  * so we also check that this didnt happen.
1302  */
1303 static inline bool skb_fclone_busy(const struct sock *sk,
1304 				   const struct sk_buff *skb)
1305 {
1306 	const struct sk_buff_fclones *fclones;
1307 
1308 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1309 
1310 	return skb->fclone == SKB_FCLONE_ORIG &&
1311 	       refcount_read(&fclones->fclone_ref) > 1 &&
1312 	       READ_ONCE(fclones->skb2.sk) == sk;
1313 }
1314 
1315 /**
1316  * alloc_skb_fclone - allocate a network buffer from fclone cache
1317  * @size: size to allocate
1318  * @priority: allocation mask
1319  *
1320  * This function is a convenient wrapper around __alloc_skb().
1321  */
1322 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1323 					       gfp_t priority)
1324 {
1325 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1326 }
1327 
1328 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1329 void skb_headers_offset_update(struct sk_buff *skb, int off);
1330 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1331 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1332 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1333 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1334 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1335 				   gfp_t gfp_mask, bool fclone);
1336 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1337 					  gfp_t gfp_mask)
1338 {
1339 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1340 }
1341 
1342 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1343 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1344 				     unsigned int headroom);
1345 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1346 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1347 				int newtailroom, gfp_t priority);
1348 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1349 				     int offset, int len);
1350 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1351 			      int offset, int len);
1352 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1353 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1354 
1355 /**
1356  *	skb_pad			-	zero pad the tail of an skb
1357  *	@skb: buffer to pad
1358  *	@pad: space to pad
1359  *
1360  *	Ensure that a buffer is followed by a padding area that is zero
1361  *	filled. Used by network drivers which may DMA or transfer data
1362  *	beyond the buffer end onto the wire.
1363  *
1364  *	May return error in out of memory cases. The skb is freed on error.
1365  */
1366 static inline int skb_pad(struct sk_buff *skb, int pad)
1367 {
1368 	return __skb_pad(skb, pad, true);
1369 }
1370 #define dev_kfree_skb(a)	consume_skb(a)
1371 
1372 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1373 			 int offset, size_t size);
1374 
1375 struct skb_seq_state {
1376 	__u32		lower_offset;
1377 	__u32		upper_offset;
1378 	__u32		frag_idx;
1379 	__u32		stepped_offset;
1380 	struct sk_buff	*root_skb;
1381 	struct sk_buff	*cur_skb;
1382 	__u8		*frag_data;
1383 	__u32		frag_off;
1384 };
1385 
1386 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1387 			  unsigned int to, struct skb_seq_state *st);
1388 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1389 			  struct skb_seq_state *st);
1390 void skb_abort_seq_read(struct skb_seq_state *st);
1391 
1392 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1393 			   unsigned int to, struct ts_config *config);
1394 
1395 /*
1396  * Packet hash types specify the type of hash in skb_set_hash.
1397  *
1398  * Hash types refer to the protocol layer addresses which are used to
1399  * construct a packet's hash. The hashes are used to differentiate or identify
1400  * flows of the protocol layer for the hash type. Hash types are either
1401  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1402  *
1403  * Properties of hashes:
1404  *
1405  * 1) Two packets in different flows have different hash values
1406  * 2) Two packets in the same flow should have the same hash value
1407  *
1408  * A hash at a higher layer is considered to be more specific. A driver should
1409  * set the most specific hash possible.
1410  *
1411  * A driver cannot indicate a more specific hash than the layer at which a hash
1412  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1413  *
1414  * A driver may indicate a hash level which is less specific than the
1415  * actual layer the hash was computed on. For instance, a hash computed
1416  * at L4 may be considered an L3 hash. This should only be done if the
1417  * driver can't unambiguously determine that the HW computed the hash at
1418  * the higher layer. Note that the "should" in the second property above
1419  * permits this.
1420  */
1421 enum pkt_hash_types {
1422 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1423 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1424 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1425 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1426 };
1427 
1428 static inline void skb_clear_hash(struct sk_buff *skb)
1429 {
1430 	skb->hash = 0;
1431 	skb->sw_hash = 0;
1432 	skb->l4_hash = 0;
1433 }
1434 
1435 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1436 {
1437 	if (!skb->l4_hash)
1438 		skb_clear_hash(skb);
1439 }
1440 
1441 static inline void
1442 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1443 {
1444 	skb->l4_hash = is_l4;
1445 	skb->sw_hash = is_sw;
1446 	skb->hash = hash;
1447 }
1448 
1449 static inline void
1450 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1451 {
1452 	/* Used by drivers to set hash from HW */
1453 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1454 }
1455 
1456 static inline void
1457 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1458 {
1459 	__skb_set_hash(skb, hash, true, is_l4);
1460 }
1461 
1462 void __skb_get_hash(struct sk_buff *skb);
1463 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1464 u32 skb_get_poff(const struct sk_buff *skb);
1465 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1466 		   const struct flow_keys_basic *keys, int hlen);
1467 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1468 			    const void *data, int hlen_proto);
1469 
1470 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1471 					int thoff, u8 ip_proto)
1472 {
1473 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1474 }
1475 
1476 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1477 			     const struct flow_dissector_key *key,
1478 			     unsigned int key_count);
1479 
1480 struct bpf_flow_dissector;
1481 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1482 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1483 
1484 bool __skb_flow_dissect(const struct net *net,
1485 			const struct sk_buff *skb,
1486 			struct flow_dissector *flow_dissector,
1487 			void *target_container, const void *data,
1488 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1489 
1490 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1491 				    struct flow_dissector *flow_dissector,
1492 				    void *target_container, unsigned int flags)
1493 {
1494 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1495 				  target_container, NULL, 0, 0, 0, flags);
1496 }
1497 
1498 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1499 					      struct flow_keys *flow,
1500 					      unsigned int flags)
1501 {
1502 	memset(flow, 0, sizeof(*flow));
1503 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1504 				  flow, NULL, 0, 0, 0, flags);
1505 }
1506 
1507 static inline bool
1508 skb_flow_dissect_flow_keys_basic(const struct net *net,
1509 				 const struct sk_buff *skb,
1510 				 struct flow_keys_basic *flow,
1511 				 const void *data, __be16 proto,
1512 				 int nhoff, int hlen, unsigned int flags)
1513 {
1514 	memset(flow, 0, sizeof(*flow));
1515 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1516 				  data, proto, nhoff, hlen, flags);
1517 }
1518 
1519 void skb_flow_dissect_meta(const struct sk_buff *skb,
1520 			   struct flow_dissector *flow_dissector,
1521 			   void *target_container);
1522 
1523 /* Gets a skb connection tracking info, ctinfo map should be a
1524  * map of mapsize to translate enum ip_conntrack_info states
1525  * to user states.
1526  */
1527 void
1528 skb_flow_dissect_ct(const struct sk_buff *skb,
1529 		    struct flow_dissector *flow_dissector,
1530 		    void *target_container,
1531 		    u16 *ctinfo_map, size_t mapsize,
1532 		    bool post_ct, u16 zone);
1533 void
1534 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1535 			     struct flow_dissector *flow_dissector,
1536 			     void *target_container);
1537 
1538 void skb_flow_dissect_hash(const struct sk_buff *skb,
1539 			   struct flow_dissector *flow_dissector,
1540 			   void *target_container);
1541 
1542 static inline __u32 skb_get_hash(struct sk_buff *skb)
1543 {
1544 	if (!skb->l4_hash && !skb->sw_hash)
1545 		__skb_get_hash(skb);
1546 
1547 	return skb->hash;
1548 }
1549 
1550 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1551 {
1552 	if (!skb->l4_hash && !skb->sw_hash) {
1553 		struct flow_keys keys;
1554 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1555 
1556 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1557 	}
1558 
1559 	return skb->hash;
1560 }
1561 
1562 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1563 			   const siphash_key_t *perturb);
1564 
1565 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1566 {
1567 	return skb->hash;
1568 }
1569 
1570 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1571 {
1572 	to->hash = from->hash;
1573 	to->sw_hash = from->sw_hash;
1574 	to->l4_hash = from->l4_hash;
1575 };
1576 
1577 static inline void skb_copy_decrypted(struct sk_buff *to,
1578 				      const struct sk_buff *from)
1579 {
1580 #ifdef CONFIG_TLS_DEVICE
1581 	to->decrypted = from->decrypted;
1582 #endif
1583 }
1584 
1585 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1586 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1587 {
1588 	return skb->head + skb->end;
1589 }
1590 
1591 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1592 {
1593 	return skb->end;
1594 }
1595 
1596 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1597 {
1598 	skb->end = offset;
1599 }
1600 #else
1601 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1602 {
1603 	return skb->end;
1604 }
1605 
1606 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1607 {
1608 	return skb->end - skb->head;
1609 }
1610 
1611 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1612 {
1613 	skb->end = skb->head + offset;
1614 }
1615 #endif
1616 
1617 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1618 				       struct ubuf_info *uarg);
1619 
1620 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1621 
1622 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1623 			   bool success);
1624 
1625 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1626 			    struct sk_buff *skb, struct iov_iter *from,
1627 			    size_t length);
1628 
1629 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1630 					  struct msghdr *msg, int len)
1631 {
1632 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1633 }
1634 
1635 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1636 			     struct msghdr *msg, int len,
1637 			     struct ubuf_info *uarg);
1638 
1639 /* Internal */
1640 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1641 
1642 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1643 {
1644 	return &skb_shinfo(skb)->hwtstamps;
1645 }
1646 
1647 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1648 {
1649 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1650 
1651 	return is_zcopy ? skb_uarg(skb) : NULL;
1652 }
1653 
1654 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1655 {
1656 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1657 }
1658 
1659 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1660 {
1661 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1662 }
1663 
1664 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1665 				       const struct sk_buff *skb2)
1666 {
1667 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1668 }
1669 
1670 static inline void net_zcopy_get(struct ubuf_info *uarg)
1671 {
1672 	refcount_inc(&uarg->refcnt);
1673 }
1674 
1675 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1676 {
1677 	skb_shinfo(skb)->destructor_arg = uarg;
1678 	skb_shinfo(skb)->flags |= uarg->flags;
1679 }
1680 
1681 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1682 				 bool *have_ref)
1683 {
1684 	if (skb && uarg && !skb_zcopy(skb)) {
1685 		if (unlikely(have_ref && *have_ref))
1686 			*have_ref = false;
1687 		else
1688 			net_zcopy_get(uarg);
1689 		skb_zcopy_init(skb, uarg);
1690 	}
1691 }
1692 
1693 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1694 {
1695 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1696 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1697 }
1698 
1699 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1700 {
1701 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1702 }
1703 
1704 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1705 {
1706 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1707 }
1708 
1709 static inline void net_zcopy_put(struct ubuf_info *uarg)
1710 {
1711 	if (uarg)
1712 		uarg->callback(NULL, uarg, true);
1713 }
1714 
1715 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1716 {
1717 	if (uarg) {
1718 		if (uarg->callback == msg_zerocopy_callback)
1719 			msg_zerocopy_put_abort(uarg, have_uref);
1720 		else if (have_uref)
1721 			net_zcopy_put(uarg);
1722 	}
1723 }
1724 
1725 /* Release a reference on a zerocopy structure */
1726 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1727 {
1728 	struct ubuf_info *uarg = skb_zcopy(skb);
1729 
1730 	if (uarg) {
1731 		if (!skb_zcopy_is_nouarg(skb))
1732 			uarg->callback(skb, uarg, zerocopy_success);
1733 
1734 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1735 	}
1736 }
1737 
1738 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1739 
1740 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1741 {
1742 	if (unlikely(skb_zcopy_managed(skb)))
1743 		__skb_zcopy_downgrade_managed(skb);
1744 }
1745 
1746 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1747 {
1748 	skb->next = NULL;
1749 }
1750 
1751 static inline void skb_poison_list(struct sk_buff *skb)
1752 {
1753 #ifdef CONFIG_DEBUG_NET
1754 	skb->next = SKB_LIST_POISON_NEXT;
1755 #endif
1756 }
1757 
1758 /* Iterate through singly-linked GSO fragments of an skb. */
1759 #define skb_list_walk_safe(first, skb, next_skb)                               \
1760 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1761 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1762 
1763 static inline void skb_list_del_init(struct sk_buff *skb)
1764 {
1765 	__list_del_entry(&skb->list);
1766 	skb_mark_not_on_list(skb);
1767 }
1768 
1769 /**
1770  *	skb_queue_empty - check if a queue is empty
1771  *	@list: queue head
1772  *
1773  *	Returns true if the queue is empty, false otherwise.
1774  */
1775 static inline int skb_queue_empty(const struct sk_buff_head *list)
1776 {
1777 	return list->next == (const struct sk_buff *) list;
1778 }
1779 
1780 /**
1781  *	skb_queue_empty_lockless - check if a queue is empty
1782  *	@list: queue head
1783  *
1784  *	Returns true if the queue is empty, false otherwise.
1785  *	This variant can be used in lockless contexts.
1786  */
1787 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1788 {
1789 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1790 }
1791 
1792 
1793 /**
1794  *	skb_queue_is_last - check if skb is the last entry in the queue
1795  *	@list: queue head
1796  *	@skb: buffer
1797  *
1798  *	Returns true if @skb is the last buffer on the list.
1799  */
1800 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1801 				     const struct sk_buff *skb)
1802 {
1803 	return skb->next == (const struct sk_buff *) list;
1804 }
1805 
1806 /**
1807  *	skb_queue_is_first - check if skb is the first entry in the queue
1808  *	@list: queue head
1809  *	@skb: buffer
1810  *
1811  *	Returns true if @skb is the first buffer on the list.
1812  */
1813 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1814 				      const struct sk_buff *skb)
1815 {
1816 	return skb->prev == (const struct sk_buff *) list;
1817 }
1818 
1819 /**
1820  *	skb_queue_next - return the next packet in the queue
1821  *	@list: queue head
1822  *	@skb: current buffer
1823  *
1824  *	Return the next packet in @list after @skb.  It is only valid to
1825  *	call this if skb_queue_is_last() evaluates to false.
1826  */
1827 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1828 					     const struct sk_buff *skb)
1829 {
1830 	/* This BUG_ON may seem severe, but if we just return then we
1831 	 * are going to dereference garbage.
1832 	 */
1833 	BUG_ON(skb_queue_is_last(list, skb));
1834 	return skb->next;
1835 }
1836 
1837 /**
1838  *	skb_queue_prev - return the prev packet in the queue
1839  *	@list: queue head
1840  *	@skb: current buffer
1841  *
1842  *	Return the prev packet in @list before @skb.  It is only valid to
1843  *	call this if skb_queue_is_first() evaluates to false.
1844  */
1845 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1846 					     const struct sk_buff *skb)
1847 {
1848 	/* This BUG_ON may seem severe, but if we just return then we
1849 	 * are going to dereference garbage.
1850 	 */
1851 	BUG_ON(skb_queue_is_first(list, skb));
1852 	return skb->prev;
1853 }
1854 
1855 /**
1856  *	skb_get - reference buffer
1857  *	@skb: buffer to reference
1858  *
1859  *	Makes another reference to a socket buffer and returns a pointer
1860  *	to the buffer.
1861  */
1862 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1863 {
1864 	refcount_inc(&skb->users);
1865 	return skb;
1866 }
1867 
1868 /*
1869  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1870  */
1871 
1872 /**
1873  *	skb_cloned - is the buffer a clone
1874  *	@skb: buffer to check
1875  *
1876  *	Returns true if the buffer was generated with skb_clone() and is
1877  *	one of multiple shared copies of the buffer. Cloned buffers are
1878  *	shared data so must not be written to under normal circumstances.
1879  */
1880 static inline int skb_cloned(const struct sk_buff *skb)
1881 {
1882 	return skb->cloned &&
1883 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1884 }
1885 
1886 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1887 {
1888 	might_sleep_if(gfpflags_allow_blocking(pri));
1889 
1890 	if (skb_cloned(skb))
1891 		return pskb_expand_head(skb, 0, 0, pri);
1892 
1893 	return 0;
1894 }
1895 
1896 /* This variant of skb_unclone() makes sure skb->truesize
1897  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1898  *
1899  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1900  * when various debugging features are in place.
1901  */
1902 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1903 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1904 {
1905 	might_sleep_if(gfpflags_allow_blocking(pri));
1906 
1907 	if (skb_cloned(skb))
1908 		return __skb_unclone_keeptruesize(skb, pri);
1909 	return 0;
1910 }
1911 
1912 /**
1913  *	skb_header_cloned - is the header a clone
1914  *	@skb: buffer to check
1915  *
1916  *	Returns true if modifying the header part of the buffer requires
1917  *	the data to be copied.
1918  */
1919 static inline int skb_header_cloned(const struct sk_buff *skb)
1920 {
1921 	int dataref;
1922 
1923 	if (!skb->cloned)
1924 		return 0;
1925 
1926 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1927 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1928 	return dataref != 1;
1929 }
1930 
1931 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1932 {
1933 	might_sleep_if(gfpflags_allow_blocking(pri));
1934 
1935 	if (skb_header_cloned(skb))
1936 		return pskb_expand_head(skb, 0, 0, pri);
1937 
1938 	return 0;
1939 }
1940 
1941 /**
1942  * __skb_header_release() - allow clones to use the headroom
1943  * @skb: buffer to operate on
1944  *
1945  * See "DOC: dataref and headerless skbs".
1946  */
1947 static inline void __skb_header_release(struct sk_buff *skb)
1948 {
1949 	skb->nohdr = 1;
1950 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1951 }
1952 
1953 
1954 /**
1955  *	skb_shared - is the buffer shared
1956  *	@skb: buffer to check
1957  *
1958  *	Returns true if more than one person has a reference to this
1959  *	buffer.
1960  */
1961 static inline int skb_shared(const struct sk_buff *skb)
1962 {
1963 	return refcount_read(&skb->users) != 1;
1964 }
1965 
1966 /**
1967  *	skb_share_check - check if buffer is shared and if so clone it
1968  *	@skb: buffer to check
1969  *	@pri: priority for memory allocation
1970  *
1971  *	If the buffer is shared the buffer is cloned and the old copy
1972  *	drops a reference. A new clone with a single reference is returned.
1973  *	If the buffer is not shared the original buffer is returned. When
1974  *	being called from interrupt status or with spinlocks held pri must
1975  *	be GFP_ATOMIC.
1976  *
1977  *	NULL is returned on a memory allocation failure.
1978  */
1979 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1980 {
1981 	might_sleep_if(gfpflags_allow_blocking(pri));
1982 	if (skb_shared(skb)) {
1983 		struct sk_buff *nskb = skb_clone(skb, pri);
1984 
1985 		if (likely(nskb))
1986 			consume_skb(skb);
1987 		else
1988 			kfree_skb(skb);
1989 		skb = nskb;
1990 	}
1991 	return skb;
1992 }
1993 
1994 /*
1995  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1996  *	packets to handle cases where we have a local reader and forward
1997  *	and a couple of other messy ones. The normal one is tcpdumping
1998  *	a packet thats being forwarded.
1999  */
2000 
2001 /**
2002  *	skb_unshare - make a copy of a shared buffer
2003  *	@skb: buffer to check
2004  *	@pri: priority for memory allocation
2005  *
2006  *	If the socket buffer is a clone then this function creates a new
2007  *	copy of the data, drops a reference count on the old copy and returns
2008  *	the new copy with the reference count at 1. If the buffer is not a clone
2009  *	the original buffer is returned. When called with a spinlock held or
2010  *	from interrupt state @pri must be %GFP_ATOMIC
2011  *
2012  *	%NULL is returned on a memory allocation failure.
2013  */
2014 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2015 					  gfp_t pri)
2016 {
2017 	might_sleep_if(gfpflags_allow_blocking(pri));
2018 	if (skb_cloned(skb)) {
2019 		struct sk_buff *nskb = skb_copy(skb, pri);
2020 
2021 		/* Free our shared copy */
2022 		if (likely(nskb))
2023 			consume_skb(skb);
2024 		else
2025 			kfree_skb(skb);
2026 		skb = nskb;
2027 	}
2028 	return skb;
2029 }
2030 
2031 /**
2032  *	skb_peek - peek at the head of an &sk_buff_head
2033  *	@list_: list to peek at
2034  *
2035  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2036  *	be careful with this one. A peek leaves the buffer on the
2037  *	list and someone else may run off with it. You must hold
2038  *	the appropriate locks or have a private queue to do this.
2039  *
2040  *	Returns %NULL for an empty list or a pointer to the head element.
2041  *	The reference count is not incremented and the reference is therefore
2042  *	volatile. Use with caution.
2043  */
2044 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2045 {
2046 	struct sk_buff *skb = list_->next;
2047 
2048 	if (skb == (struct sk_buff *)list_)
2049 		skb = NULL;
2050 	return skb;
2051 }
2052 
2053 /**
2054  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2055  *	@list_: list to peek at
2056  *
2057  *	Like skb_peek(), but the caller knows that the list is not empty.
2058  */
2059 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2060 {
2061 	return list_->next;
2062 }
2063 
2064 /**
2065  *	skb_peek_next - peek skb following the given one from a queue
2066  *	@skb: skb to start from
2067  *	@list_: list to peek at
2068  *
2069  *	Returns %NULL when the end of the list is met or a pointer to the
2070  *	next element. The reference count is not incremented and the
2071  *	reference is therefore volatile. Use with caution.
2072  */
2073 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2074 		const struct sk_buff_head *list_)
2075 {
2076 	struct sk_buff *next = skb->next;
2077 
2078 	if (next == (struct sk_buff *)list_)
2079 		next = NULL;
2080 	return next;
2081 }
2082 
2083 /**
2084  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2085  *	@list_: list to peek at
2086  *
2087  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2088  *	be careful with this one. A peek leaves the buffer on the
2089  *	list and someone else may run off with it. You must hold
2090  *	the appropriate locks or have a private queue to do this.
2091  *
2092  *	Returns %NULL for an empty list or a pointer to the tail element.
2093  *	The reference count is not incremented and the reference is therefore
2094  *	volatile. Use with caution.
2095  */
2096 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2097 {
2098 	struct sk_buff *skb = READ_ONCE(list_->prev);
2099 
2100 	if (skb == (struct sk_buff *)list_)
2101 		skb = NULL;
2102 	return skb;
2103 
2104 }
2105 
2106 /**
2107  *	skb_queue_len	- get queue length
2108  *	@list_: list to measure
2109  *
2110  *	Return the length of an &sk_buff queue.
2111  */
2112 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2113 {
2114 	return list_->qlen;
2115 }
2116 
2117 /**
2118  *	skb_queue_len_lockless	- get queue length
2119  *	@list_: list to measure
2120  *
2121  *	Return the length of an &sk_buff queue.
2122  *	This variant can be used in lockless contexts.
2123  */
2124 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2125 {
2126 	return READ_ONCE(list_->qlen);
2127 }
2128 
2129 /**
2130  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2131  *	@list: queue to initialize
2132  *
2133  *	This initializes only the list and queue length aspects of
2134  *	an sk_buff_head object.  This allows to initialize the list
2135  *	aspects of an sk_buff_head without reinitializing things like
2136  *	the spinlock.  It can also be used for on-stack sk_buff_head
2137  *	objects where the spinlock is known to not be used.
2138  */
2139 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2140 {
2141 	list->prev = list->next = (struct sk_buff *)list;
2142 	list->qlen = 0;
2143 }
2144 
2145 /*
2146  * This function creates a split out lock class for each invocation;
2147  * this is needed for now since a whole lot of users of the skb-queue
2148  * infrastructure in drivers have different locking usage (in hardirq)
2149  * than the networking core (in softirq only). In the long run either the
2150  * network layer or drivers should need annotation to consolidate the
2151  * main types of usage into 3 classes.
2152  */
2153 static inline void skb_queue_head_init(struct sk_buff_head *list)
2154 {
2155 	spin_lock_init(&list->lock);
2156 	__skb_queue_head_init(list);
2157 }
2158 
2159 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2160 		struct lock_class_key *class)
2161 {
2162 	skb_queue_head_init(list);
2163 	lockdep_set_class(&list->lock, class);
2164 }
2165 
2166 /*
2167  *	Insert an sk_buff on a list.
2168  *
2169  *	The "__skb_xxxx()" functions are the non-atomic ones that
2170  *	can only be called with interrupts disabled.
2171  */
2172 static inline void __skb_insert(struct sk_buff *newsk,
2173 				struct sk_buff *prev, struct sk_buff *next,
2174 				struct sk_buff_head *list)
2175 {
2176 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2177 	 * for the opposite READ_ONCE()
2178 	 */
2179 	WRITE_ONCE(newsk->next, next);
2180 	WRITE_ONCE(newsk->prev, prev);
2181 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2182 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2183 	WRITE_ONCE(list->qlen, list->qlen + 1);
2184 }
2185 
2186 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2187 				      struct sk_buff *prev,
2188 				      struct sk_buff *next)
2189 {
2190 	struct sk_buff *first = list->next;
2191 	struct sk_buff *last = list->prev;
2192 
2193 	WRITE_ONCE(first->prev, prev);
2194 	WRITE_ONCE(prev->next, first);
2195 
2196 	WRITE_ONCE(last->next, next);
2197 	WRITE_ONCE(next->prev, last);
2198 }
2199 
2200 /**
2201  *	skb_queue_splice - join two skb lists, this is designed for stacks
2202  *	@list: the new list to add
2203  *	@head: the place to add it in the first list
2204  */
2205 static inline void skb_queue_splice(const struct sk_buff_head *list,
2206 				    struct sk_buff_head *head)
2207 {
2208 	if (!skb_queue_empty(list)) {
2209 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2210 		head->qlen += list->qlen;
2211 	}
2212 }
2213 
2214 /**
2215  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2216  *	@list: the new list to add
2217  *	@head: the place to add it in the first list
2218  *
2219  *	The list at @list is reinitialised
2220  */
2221 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2222 					 struct sk_buff_head *head)
2223 {
2224 	if (!skb_queue_empty(list)) {
2225 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2226 		head->qlen += list->qlen;
2227 		__skb_queue_head_init(list);
2228 	}
2229 }
2230 
2231 /**
2232  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2233  *	@list: the new list to add
2234  *	@head: the place to add it in the first list
2235  */
2236 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2237 					 struct sk_buff_head *head)
2238 {
2239 	if (!skb_queue_empty(list)) {
2240 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2241 		head->qlen += list->qlen;
2242 	}
2243 }
2244 
2245 /**
2246  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2247  *	@list: the new list to add
2248  *	@head: the place to add it in the first list
2249  *
2250  *	Each of the lists is a queue.
2251  *	The list at @list is reinitialised
2252  */
2253 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2254 					      struct sk_buff_head *head)
2255 {
2256 	if (!skb_queue_empty(list)) {
2257 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2258 		head->qlen += list->qlen;
2259 		__skb_queue_head_init(list);
2260 	}
2261 }
2262 
2263 /**
2264  *	__skb_queue_after - queue a buffer at the list head
2265  *	@list: list to use
2266  *	@prev: place after this buffer
2267  *	@newsk: buffer to queue
2268  *
2269  *	Queue a buffer int the middle of a list. This function takes no locks
2270  *	and you must therefore hold required locks before calling it.
2271  *
2272  *	A buffer cannot be placed on two lists at the same time.
2273  */
2274 static inline void __skb_queue_after(struct sk_buff_head *list,
2275 				     struct sk_buff *prev,
2276 				     struct sk_buff *newsk)
2277 {
2278 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2279 }
2280 
2281 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2282 		struct sk_buff_head *list);
2283 
2284 static inline void __skb_queue_before(struct sk_buff_head *list,
2285 				      struct sk_buff *next,
2286 				      struct sk_buff *newsk)
2287 {
2288 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2289 }
2290 
2291 /**
2292  *	__skb_queue_head - queue a buffer at the list head
2293  *	@list: list to use
2294  *	@newsk: buffer to queue
2295  *
2296  *	Queue a buffer at the start of a list. This function takes no locks
2297  *	and you must therefore hold required locks before calling it.
2298  *
2299  *	A buffer cannot be placed on two lists at the same time.
2300  */
2301 static inline void __skb_queue_head(struct sk_buff_head *list,
2302 				    struct sk_buff *newsk)
2303 {
2304 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2305 }
2306 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2307 
2308 /**
2309  *	__skb_queue_tail - queue a buffer at the list tail
2310  *	@list: list to use
2311  *	@newsk: buffer to queue
2312  *
2313  *	Queue a buffer at the end of a list. This function takes no locks
2314  *	and you must therefore hold required locks before calling it.
2315  *
2316  *	A buffer cannot be placed on two lists at the same time.
2317  */
2318 static inline void __skb_queue_tail(struct sk_buff_head *list,
2319 				   struct sk_buff *newsk)
2320 {
2321 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2322 }
2323 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2324 
2325 /*
2326  * remove sk_buff from list. _Must_ be called atomically, and with
2327  * the list known..
2328  */
2329 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2330 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2331 {
2332 	struct sk_buff *next, *prev;
2333 
2334 	WRITE_ONCE(list->qlen, list->qlen - 1);
2335 	next	   = skb->next;
2336 	prev	   = skb->prev;
2337 	skb->next  = skb->prev = NULL;
2338 	WRITE_ONCE(next->prev, prev);
2339 	WRITE_ONCE(prev->next, next);
2340 }
2341 
2342 /**
2343  *	__skb_dequeue - remove from the head of the queue
2344  *	@list: list to dequeue from
2345  *
2346  *	Remove the head of the list. This function does not take any locks
2347  *	so must be used with appropriate locks held only. The head item is
2348  *	returned or %NULL if the list is empty.
2349  */
2350 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2351 {
2352 	struct sk_buff *skb = skb_peek(list);
2353 	if (skb)
2354 		__skb_unlink(skb, list);
2355 	return skb;
2356 }
2357 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2358 
2359 /**
2360  *	__skb_dequeue_tail - remove from the tail of the queue
2361  *	@list: list to dequeue from
2362  *
2363  *	Remove the tail of the list. This function does not take any locks
2364  *	so must be used with appropriate locks held only. The tail item is
2365  *	returned or %NULL if the list is empty.
2366  */
2367 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2368 {
2369 	struct sk_buff *skb = skb_peek_tail(list);
2370 	if (skb)
2371 		__skb_unlink(skb, list);
2372 	return skb;
2373 }
2374 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2375 
2376 
2377 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2378 {
2379 	return skb->data_len;
2380 }
2381 
2382 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2383 {
2384 	return skb->len - skb->data_len;
2385 }
2386 
2387 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2388 {
2389 	unsigned int i, len = 0;
2390 
2391 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2392 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2393 	return len;
2394 }
2395 
2396 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2397 {
2398 	return skb_headlen(skb) + __skb_pagelen(skb);
2399 }
2400 
2401 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2402 					      int i, struct page *page,
2403 					      int off, int size)
2404 {
2405 	skb_frag_t *frag = &shinfo->frags[i];
2406 
2407 	/*
2408 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2409 	 * that not all callers have unique ownership of the page but rely
2410 	 * on page_is_pfmemalloc doing the right thing(tm).
2411 	 */
2412 	frag->bv_page		  = page;
2413 	frag->bv_offset		  = off;
2414 	skb_frag_size_set(frag, size);
2415 }
2416 
2417 /**
2418  * skb_len_add - adds a number to len fields of skb
2419  * @skb: buffer to add len to
2420  * @delta: number of bytes to add
2421  */
2422 static inline void skb_len_add(struct sk_buff *skb, int delta)
2423 {
2424 	skb->len += delta;
2425 	skb->data_len += delta;
2426 	skb->truesize += delta;
2427 }
2428 
2429 /**
2430  * __skb_fill_page_desc - initialise a paged fragment in an skb
2431  * @skb: buffer containing fragment to be initialised
2432  * @i: paged fragment index to initialise
2433  * @page: the page to use for this fragment
2434  * @off: the offset to the data with @page
2435  * @size: the length of the data
2436  *
2437  * Initialises the @i'th fragment of @skb to point to &size bytes at
2438  * offset @off within @page.
2439  *
2440  * Does not take any additional reference on the fragment.
2441  */
2442 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2443 					struct page *page, int off, int size)
2444 {
2445 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2446 	page = compound_head(page);
2447 	if (page_is_pfmemalloc(page))
2448 		skb->pfmemalloc	= true;
2449 }
2450 
2451 /**
2452  * skb_fill_page_desc - initialise a paged fragment in an skb
2453  * @skb: buffer containing fragment to be initialised
2454  * @i: paged fragment index to initialise
2455  * @page: the page to use for this fragment
2456  * @off: the offset to the data with @page
2457  * @size: the length of the data
2458  *
2459  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2460  * @skb to point to @size bytes at offset @off within @page. In
2461  * addition updates @skb such that @i is the last fragment.
2462  *
2463  * Does not take any additional reference on the fragment.
2464  */
2465 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2466 				      struct page *page, int off, int size)
2467 {
2468 	__skb_fill_page_desc(skb, i, page, off, size);
2469 	skb_shinfo(skb)->nr_frags = i + 1;
2470 }
2471 
2472 /**
2473  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2474  * @skb: buffer containing fragment to be initialised
2475  * @i: paged fragment index to initialise
2476  * @page: the page to use for this fragment
2477  * @off: the offset to the data with @page
2478  * @size: the length of the data
2479  *
2480  * Variant of skb_fill_page_desc() which does not deal with
2481  * pfmemalloc, if page is not owned by us.
2482  */
2483 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2484 					    struct page *page, int off,
2485 					    int size)
2486 {
2487 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2488 
2489 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2490 	shinfo->nr_frags = i + 1;
2491 }
2492 
2493 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2494 		     int size, unsigned int truesize);
2495 
2496 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2497 			  unsigned int truesize);
2498 
2499 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2500 
2501 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2502 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2503 {
2504 	return skb->head + skb->tail;
2505 }
2506 
2507 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2508 {
2509 	skb->tail = skb->data - skb->head;
2510 }
2511 
2512 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2513 {
2514 	skb_reset_tail_pointer(skb);
2515 	skb->tail += offset;
2516 }
2517 
2518 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2519 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2520 {
2521 	return skb->tail;
2522 }
2523 
2524 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2525 {
2526 	skb->tail = skb->data;
2527 }
2528 
2529 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2530 {
2531 	skb->tail = skb->data + offset;
2532 }
2533 
2534 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2535 
2536 static inline void skb_assert_len(struct sk_buff *skb)
2537 {
2538 #ifdef CONFIG_DEBUG_NET
2539 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2540 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2541 #endif /* CONFIG_DEBUG_NET */
2542 }
2543 
2544 /*
2545  *	Add data to an sk_buff
2546  */
2547 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2548 void *skb_put(struct sk_buff *skb, unsigned int len);
2549 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2550 {
2551 	void *tmp = skb_tail_pointer(skb);
2552 	SKB_LINEAR_ASSERT(skb);
2553 	skb->tail += len;
2554 	skb->len  += len;
2555 	return tmp;
2556 }
2557 
2558 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2559 {
2560 	void *tmp = __skb_put(skb, len);
2561 
2562 	memset(tmp, 0, len);
2563 	return tmp;
2564 }
2565 
2566 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2567 				   unsigned int len)
2568 {
2569 	void *tmp = __skb_put(skb, len);
2570 
2571 	memcpy(tmp, data, len);
2572 	return tmp;
2573 }
2574 
2575 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2576 {
2577 	*(u8 *)__skb_put(skb, 1) = val;
2578 }
2579 
2580 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2581 {
2582 	void *tmp = skb_put(skb, len);
2583 
2584 	memset(tmp, 0, len);
2585 
2586 	return tmp;
2587 }
2588 
2589 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2590 				 unsigned int len)
2591 {
2592 	void *tmp = skb_put(skb, len);
2593 
2594 	memcpy(tmp, data, len);
2595 
2596 	return tmp;
2597 }
2598 
2599 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2600 {
2601 	*(u8 *)skb_put(skb, 1) = val;
2602 }
2603 
2604 void *skb_push(struct sk_buff *skb, unsigned int len);
2605 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2606 {
2607 	skb->data -= len;
2608 	skb->len  += len;
2609 	return skb->data;
2610 }
2611 
2612 void *skb_pull(struct sk_buff *skb, unsigned int len);
2613 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2614 {
2615 	skb->len -= len;
2616 	if (unlikely(skb->len < skb->data_len)) {
2617 #if defined(CONFIG_DEBUG_NET)
2618 		skb->len += len;
2619 		pr_err("__skb_pull(len=%u)\n", len);
2620 		skb_dump(KERN_ERR, skb, false);
2621 #endif
2622 		BUG();
2623 	}
2624 	return skb->data += len;
2625 }
2626 
2627 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2628 {
2629 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2630 }
2631 
2632 void *skb_pull_data(struct sk_buff *skb, size_t len);
2633 
2634 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2635 
2636 static inline enum skb_drop_reason
2637 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2638 {
2639 	if (likely(len <= skb_headlen(skb)))
2640 		return SKB_NOT_DROPPED_YET;
2641 
2642 	if (unlikely(len > skb->len))
2643 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2644 
2645 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2646 		return SKB_DROP_REASON_NOMEM;
2647 
2648 	return SKB_NOT_DROPPED_YET;
2649 }
2650 
2651 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2652 {
2653 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2654 }
2655 
2656 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2657 {
2658 	if (!pskb_may_pull(skb, len))
2659 		return NULL;
2660 
2661 	skb->len -= len;
2662 	return skb->data += len;
2663 }
2664 
2665 void skb_condense(struct sk_buff *skb);
2666 
2667 /**
2668  *	skb_headroom - bytes at buffer head
2669  *	@skb: buffer to check
2670  *
2671  *	Return the number of bytes of free space at the head of an &sk_buff.
2672  */
2673 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2674 {
2675 	return skb->data - skb->head;
2676 }
2677 
2678 /**
2679  *	skb_tailroom - bytes at buffer end
2680  *	@skb: buffer to check
2681  *
2682  *	Return the number of bytes of free space at the tail of an sk_buff
2683  */
2684 static inline int skb_tailroom(const struct sk_buff *skb)
2685 {
2686 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2687 }
2688 
2689 /**
2690  *	skb_availroom - bytes at buffer end
2691  *	@skb: buffer to check
2692  *
2693  *	Return the number of bytes of free space at the tail of an sk_buff
2694  *	allocated by sk_stream_alloc()
2695  */
2696 static inline int skb_availroom(const struct sk_buff *skb)
2697 {
2698 	if (skb_is_nonlinear(skb))
2699 		return 0;
2700 
2701 	return skb->end - skb->tail - skb->reserved_tailroom;
2702 }
2703 
2704 /**
2705  *	skb_reserve - adjust headroom
2706  *	@skb: buffer to alter
2707  *	@len: bytes to move
2708  *
2709  *	Increase the headroom of an empty &sk_buff by reducing the tail
2710  *	room. This is only allowed for an empty buffer.
2711  */
2712 static inline void skb_reserve(struct sk_buff *skb, int len)
2713 {
2714 	skb->data += len;
2715 	skb->tail += len;
2716 }
2717 
2718 /**
2719  *	skb_tailroom_reserve - adjust reserved_tailroom
2720  *	@skb: buffer to alter
2721  *	@mtu: maximum amount of headlen permitted
2722  *	@needed_tailroom: minimum amount of reserved_tailroom
2723  *
2724  *	Set reserved_tailroom so that headlen can be as large as possible but
2725  *	not larger than mtu and tailroom cannot be smaller than
2726  *	needed_tailroom.
2727  *	The required headroom should already have been reserved before using
2728  *	this function.
2729  */
2730 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2731 					unsigned int needed_tailroom)
2732 {
2733 	SKB_LINEAR_ASSERT(skb);
2734 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2735 		/* use at most mtu */
2736 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2737 	else
2738 		/* use up to all available space */
2739 		skb->reserved_tailroom = needed_tailroom;
2740 }
2741 
2742 #define ENCAP_TYPE_ETHER	0
2743 #define ENCAP_TYPE_IPPROTO	1
2744 
2745 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2746 					  __be16 protocol)
2747 {
2748 	skb->inner_protocol = protocol;
2749 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2750 }
2751 
2752 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2753 					 __u8 ipproto)
2754 {
2755 	skb->inner_ipproto = ipproto;
2756 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2757 }
2758 
2759 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2760 {
2761 	skb->inner_mac_header = skb->mac_header;
2762 	skb->inner_network_header = skb->network_header;
2763 	skb->inner_transport_header = skb->transport_header;
2764 }
2765 
2766 static inline void skb_reset_mac_len(struct sk_buff *skb)
2767 {
2768 	skb->mac_len = skb->network_header - skb->mac_header;
2769 }
2770 
2771 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2772 							*skb)
2773 {
2774 	return skb->head + skb->inner_transport_header;
2775 }
2776 
2777 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2778 {
2779 	return skb_inner_transport_header(skb) - skb->data;
2780 }
2781 
2782 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2783 {
2784 	skb->inner_transport_header = skb->data - skb->head;
2785 }
2786 
2787 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2788 						   const int offset)
2789 {
2790 	skb_reset_inner_transport_header(skb);
2791 	skb->inner_transport_header += offset;
2792 }
2793 
2794 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2795 {
2796 	return skb->head + skb->inner_network_header;
2797 }
2798 
2799 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2800 {
2801 	skb->inner_network_header = skb->data - skb->head;
2802 }
2803 
2804 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2805 						const int offset)
2806 {
2807 	skb_reset_inner_network_header(skb);
2808 	skb->inner_network_header += offset;
2809 }
2810 
2811 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2812 {
2813 	return skb->head + skb->inner_mac_header;
2814 }
2815 
2816 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2817 {
2818 	skb->inner_mac_header = skb->data - skb->head;
2819 }
2820 
2821 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2822 					    const int offset)
2823 {
2824 	skb_reset_inner_mac_header(skb);
2825 	skb->inner_mac_header += offset;
2826 }
2827 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2828 {
2829 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2830 }
2831 
2832 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2833 {
2834 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2835 	return skb->head + skb->transport_header;
2836 }
2837 
2838 static inline void skb_reset_transport_header(struct sk_buff *skb)
2839 {
2840 	skb->transport_header = skb->data - skb->head;
2841 }
2842 
2843 static inline void skb_set_transport_header(struct sk_buff *skb,
2844 					    const int offset)
2845 {
2846 	skb_reset_transport_header(skb);
2847 	skb->transport_header += offset;
2848 }
2849 
2850 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2851 {
2852 	return skb->head + skb->network_header;
2853 }
2854 
2855 static inline void skb_reset_network_header(struct sk_buff *skb)
2856 {
2857 	skb->network_header = skb->data - skb->head;
2858 }
2859 
2860 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2861 {
2862 	skb_reset_network_header(skb);
2863 	skb->network_header += offset;
2864 }
2865 
2866 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2867 {
2868 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2869 }
2870 
2871 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2872 {
2873 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2874 	return skb->head + skb->mac_header;
2875 }
2876 
2877 static inline int skb_mac_offset(const struct sk_buff *skb)
2878 {
2879 	return skb_mac_header(skb) - skb->data;
2880 }
2881 
2882 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2883 {
2884 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2885 	return skb->network_header - skb->mac_header;
2886 }
2887 
2888 static inline void skb_unset_mac_header(struct sk_buff *skb)
2889 {
2890 	skb->mac_header = (typeof(skb->mac_header))~0U;
2891 }
2892 
2893 static inline void skb_reset_mac_header(struct sk_buff *skb)
2894 {
2895 	skb->mac_header = skb->data - skb->head;
2896 }
2897 
2898 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2899 {
2900 	skb_reset_mac_header(skb);
2901 	skb->mac_header += offset;
2902 }
2903 
2904 static inline void skb_pop_mac_header(struct sk_buff *skb)
2905 {
2906 	skb->mac_header = skb->network_header;
2907 }
2908 
2909 static inline void skb_probe_transport_header(struct sk_buff *skb)
2910 {
2911 	struct flow_keys_basic keys;
2912 
2913 	if (skb_transport_header_was_set(skb))
2914 		return;
2915 
2916 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2917 					     NULL, 0, 0, 0, 0))
2918 		skb_set_transport_header(skb, keys.control.thoff);
2919 }
2920 
2921 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2922 {
2923 	if (skb_mac_header_was_set(skb)) {
2924 		const unsigned char *old_mac = skb_mac_header(skb);
2925 
2926 		skb_set_mac_header(skb, -skb->mac_len);
2927 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2928 	}
2929 }
2930 
2931 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2932 {
2933 	return skb->csum_start - skb_headroom(skb);
2934 }
2935 
2936 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2937 {
2938 	return skb->head + skb->csum_start;
2939 }
2940 
2941 static inline int skb_transport_offset(const struct sk_buff *skb)
2942 {
2943 	return skb_transport_header(skb) - skb->data;
2944 }
2945 
2946 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2947 {
2948 	return skb->transport_header - skb->network_header;
2949 }
2950 
2951 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2952 {
2953 	return skb->inner_transport_header - skb->inner_network_header;
2954 }
2955 
2956 static inline int skb_network_offset(const struct sk_buff *skb)
2957 {
2958 	return skb_network_header(skb) - skb->data;
2959 }
2960 
2961 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2962 {
2963 	return skb_inner_network_header(skb) - skb->data;
2964 }
2965 
2966 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2967 {
2968 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2969 }
2970 
2971 /*
2972  * CPUs often take a performance hit when accessing unaligned memory
2973  * locations. The actual performance hit varies, it can be small if the
2974  * hardware handles it or large if we have to take an exception and fix it
2975  * in software.
2976  *
2977  * Since an ethernet header is 14 bytes network drivers often end up with
2978  * the IP header at an unaligned offset. The IP header can be aligned by
2979  * shifting the start of the packet by 2 bytes. Drivers should do this
2980  * with:
2981  *
2982  * skb_reserve(skb, NET_IP_ALIGN);
2983  *
2984  * The downside to this alignment of the IP header is that the DMA is now
2985  * unaligned. On some architectures the cost of an unaligned DMA is high
2986  * and this cost outweighs the gains made by aligning the IP header.
2987  *
2988  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2989  * to be overridden.
2990  */
2991 #ifndef NET_IP_ALIGN
2992 #define NET_IP_ALIGN	2
2993 #endif
2994 
2995 /*
2996  * The networking layer reserves some headroom in skb data (via
2997  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2998  * the header has to grow. In the default case, if the header has to grow
2999  * 32 bytes or less we avoid the reallocation.
3000  *
3001  * Unfortunately this headroom changes the DMA alignment of the resulting
3002  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3003  * on some architectures. An architecture can override this value,
3004  * perhaps setting it to a cacheline in size (since that will maintain
3005  * cacheline alignment of the DMA). It must be a power of 2.
3006  *
3007  * Various parts of the networking layer expect at least 32 bytes of
3008  * headroom, you should not reduce this.
3009  *
3010  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3011  * to reduce average number of cache lines per packet.
3012  * get_rps_cpu() for example only access one 64 bytes aligned block :
3013  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3014  */
3015 #ifndef NET_SKB_PAD
3016 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3017 #endif
3018 
3019 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3020 
3021 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3022 {
3023 	if (WARN_ON(skb_is_nonlinear(skb)))
3024 		return;
3025 	skb->len = len;
3026 	skb_set_tail_pointer(skb, len);
3027 }
3028 
3029 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3030 {
3031 	__skb_set_length(skb, len);
3032 }
3033 
3034 void skb_trim(struct sk_buff *skb, unsigned int len);
3035 
3036 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3037 {
3038 	if (skb->data_len)
3039 		return ___pskb_trim(skb, len);
3040 	__skb_trim(skb, len);
3041 	return 0;
3042 }
3043 
3044 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3045 {
3046 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3047 }
3048 
3049 /**
3050  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3051  *	@skb: buffer to alter
3052  *	@len: new length
3053  *
3054  *	This is identical to pskb_trim except that the caller knows that
3055  *	the skb is not cloned so we should never get an error due to out-
3056  *	of-memory.
3057  */
3058 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3059 {
3060 	int err = pskb_trim(skb, len);
3061 	BUG_ON(err);
3062 }
3063 
3064 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3065 {
3066 	unsigned int diff = len - skb->len;
3067 
3068 	if (skb_tailroom(skb) < diff) {
3069 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3070 					   GFP_ATOMIC);
3071 		if (ret)
3072 			return ret;
3073 	}
3074 	__skb_set_length(skb, len);
3075 	return 0;
3076 }
3077 
3078 /**
3079  *	skb_orphan - orphan a buffer
3080  *	@skb: buffer to orphan
3081  *
3082  *	If a buffer currently has an owner then we call the owner's
3083  *	destructor function and make the @skb unowned. The buffer continues
3084  *	to exist but is no longer charged to its former owner.
3085  */
3086 static inline void skb_orphan(struct sk_buff *skb)
3087 {
3088 	if (skb->destructor) {
3089 		skb->destructor(skb);
3090 		skb->destructor = NULL;
3091 		skb->sk		= NULL;
3092 	} else {
3093 		BUG_ON(skb->sk);
3094 	}
3095 }
3096 
3097 /**
3098  *	skb_orphan_frags - orphan the frags contained in a buffer
3099  *	@skb: buffer to orphan frags from
3100  *	@gfp_mask: allocation mask for replacement pages
3101  *
3102  *	For each frag in the SKB which needs a destructor (i.e. has an
3103  *	owner) create a copy of that frag and release the original
3104  *	page by calling the destructor.
3105  */
3106 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3107 {
3108 	if (likely(!skb_zcopy(skb)))
3109 		return 0;
3110 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3111 		return 0;
3112 	return skb_copy_ubufs(skb, gfp_mask);
3113 }
3114 
3115 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3116 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3117 {
3118 	if (likely(!skb_zcopy(skb)))
3119 		return 0;
3120 	return skb_copy_ubufs(skb, gfp_mask);
3121 }
3122 
3123 /**
3124  *	__skb_queue_purge - empty a list
3125  *	@list: list to empty
3126  *
3127  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3128  *	the list and one reference dropped. This function does not take the
3129  *	list lock and the caller must hold the relevant locks to use it.
3130  */
3131 static inline void __skb_queue_purge(struct sk_buff_head *list)
3132 {
3133 	struct sk_buff *skb;
3134 	while ((skb = __skb_dequeue(list)) != NULL)
3135 		kfree_skb(skb);
3136 }
3137 void skb_queue_purge(struct sk_buff_head *list);
3138 
3139 unsigned int skb_rbtree_purge(struct rb_root *root);
3140 
3141 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3142 
3143 /**
3144  * netdev_alloc_frag - allocate a page fragment
3145  * @fragsz: fragment size
3146  *
3147  * Allocates a frag from a page for receive buffer.
3148  * Uses GFP_ATOMIC allocations.
3149  */
3150 static inline void *netdev_alloc_frag(unsigned int fragsz)
3151 {
3152 	return __netdev_alloc_frag_align(fragsz, ~0u);
3153 }
3154 
3155 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3156 					    unsigned int align)
3157 {
3158 	WARN_ON_ONCE(!is_power_of_2(align));
3159 	return __netdev_alloc_frag_align(fragsz, -align);
3160 }
3161 
3162 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3163 				   gfp_t gfp_mask);
3164 
3165 /**
3166  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3167  *	@dev: network device to receive on
3168  *	@length: length to allocate
3169  *
3170  *	Allocate a new &sk_buff and assign it a usage count of one. The
3171  *	buffer has unspecified headroom built in. Users should allocate
3172  *	the headroom they think they need without accounting for the
3173  *	built in space. The built in space is used for optimisations.
3174  *
3175  *	%NULL is returned if there is no free memory. Although this function
3176  *	allocates memory it can be called from an interrupt.
3177  */
3178 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3179 					       unsigned int length)
3180 {
3181 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3182 }
3183 
3184 /* legacy helper around __netdev_alloc_skb() */
3185 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3186 					      gfp_t gfp_mask)
3187 {
3188 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3189 }
3190 
3191 /* legacy helper around netdev_alloc_skb() */
3192 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3193 {
3194 	return netdev_alloc_skb(NULL, length);
3195 }
3196 
3197 
3198 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3199 		unsigned int length, gfp_t gfp)
3200 {
3201 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3202 
3203 	if (NET_IP_ALIGN && skb)
3204 		skb_reserve(skb, NET_IP_ALIGN);
3205 	return skb;
3206 }
3207 
3208 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3209 		unsigned int length)
3210 {
3211 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3212 }
3213 
3214 static inline void skb_free_frag(void *addr)
3215 {
3216 	page_frag_free(addr);
3217 }
3218 
3219 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3220 
3221 static inline void *napi_alloc_frag(unsigned int fragsz)
3222 {
3223 	return __napi_alloc_frag_align(fragsz, ~0u);
3224 }
3225 
3226 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3227 					  unsigned int align)
3228 {
3229 	WARN_ON_ONCE(!is_power_of_2(align));
3230 	return __napi_alloc_frag_align(fragsz, -align);
3231 }
3232 
3233 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3234 				 unsigned int length, gfp_t gfp_mask);
3235 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3236 					     unsigned int length)
3237 {
3238 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3239 }
3240 void napi_consume_skb(struct sk_buff *skb, int budget);
3241 
3242 void napi_skb_free_stolen_head(struct sk_buff *skb);
3243 void __kfree_skb_defer(struct sk_buff *skb);
3244 
3245 /**
3246  * __dev_alloc_pages - allocate page for network Rx
3247  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3248  * @order: size of the allocation
3249  *
3250  * Allocate a new page.
3251  *
3252  * %NULL is returned if there is no free memory.
3253 */
3254 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3255 					     unsigned int order)
3256 {
3257 	/* This piece of code contains several assumptions.
3258 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3259 	 * 2.  The expectation is the user wants a compound page.
3260 	 * 3.  If requesting a order 0 page it will not be compound
3261 	 *     due to the check to see if order has a value in prep_new_page
3262 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3263 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3264 	 */
3265 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3266 
3267 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3268 }
3269 
3270 static inline struct page *dev_alloc_pages(unsigned int order)
3271 {
3272 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3273 }
3274 
3275 /**
3276  * __dev_alloc_page - allocate a page for network Rx
3277  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3278  *
3279  * Allocate a new page.
3280  *
3281  * %NULL is returned if there is no free memory.
3282  */
3283 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3284 {
3285 	return __dev_alloc_pages(gfp_mask, 0);
3286 }
3287 
3288 static inline struct page *dev_alloc_page(void)
3289 {
3290 	return dev_alloc_pages(0);
3291 }
3292 
3293 /**
3294  * dev_page_is_reusable - check whether a page can be reused for network Rx
3295  * @page: the page to test
3296  *
3297  * A page shouldn't be considered for reusing/recycling if it was allocated
3298  * under memory pressure or at a distant memory node.
3299  *
3300  * Returns false if this page should be returned to page allocator, true
3301  * otherwise.
3302  */
3303 static inline bool dev_page_is_reusable(const struct page *page)
3304 {
3305 	return likely(page_to_nid(page) == numa_mem_id() &&
3306 		      !page_is_pfmemalloc(page));
3307 }
3308 
3309 /**
3310  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3311  *	@page: The page that was allocated from skb_alloc_page
3312  *	@skb: The skb that may need pfmemalloc set
3313  */
3314 static inline void skb_propagate_pfmemalloc(const struct page *page,
3315 					    struct sk_buff *skb)
3316 {
3317 	if (page_is_pfmemalloc(page))
3318 		skb->pfmemalloc = true;
3319 }
3320 
3321 /**
3322  * skb_frag_off() - Returns the offset of a skb fragment
3323  * @frag: the paged fragment
3324  */
3325 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3326 {
3327 	return frag->bv_offset;
3328 }
3329 
3330 /**
3331  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3332  * @frag: skb fragment
3333  * @delta: value to add
3334  */
3335 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3336 {
3337 	frag->bv_offset += delta;
3338 }
3339 
3340 /**
3341  * skb_frag_off_set() - Sets the offset of a skb fragment
3342  * @frag: skb fragment
3343  * @offset: offset of fragment
3344  */
3345 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3346 {
3347 	frag->bv_offset = offset;
3348 }
3349 
3350 /**
3351  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3352  * @fragto: skb fragment where offset is set
3353  * @fragfrom: skb fragment offset is copied from
3354  */
3355 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3356 				     const skb_frag_t *fragfrom)
3357 {
3358 	fragto->bv_offset = fragfrom->bv_offset;
3359 }
3360 
3361 /**
3362  * skb_frag_page - retrieve the page referred to by a paged fragment
3363  * @frag: the paged fragment
3364  *
3365  * Returns the &struct page associated with @frag.
3366  */
3367 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3368 {
3369 	return frag->bv_page;
3370 }
3371 
3372 /**
3373  * __skb_frag_ref - take an addition reference on a paged fragment.
3374  * @frag: the paged fragment
3375  *
3376  * Takes an additional reference on the paged fragment @frag.
3377  */
3378 static inline void __skb_frag_ref(skb_frag_t *frag)
3379 {
3380 	get_page(skb_frag_page(frag));
3381 }
3382 
3383 /**
3384  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3385  * @skb: the buffer
3386  * @f: the fragment offset.
3387  *
3388  * Takes an additional reference on the @f'th paged fragment of @skb.
3389  */
3390 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3391 {
3392 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3393 }
3394 
3395 /**
3396  * __skb_frag_unref - release a reference on a paged fragment.
3397  * @frag: the paged fragment
3398  * @recycle: recycle the page if allocated via page_pool
3399  *
3400  * Releases a reference on the paged fragment @frag
3401  * or recycles the page via the page_pool API.
3402  */
3403 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3404 {
3405 	struct page *page = skb_frag_page(frag);
3406 
3407 #ifdef CONFIG_PAGE_POOL
3408 	if (recycle && page_pool_return_skb_page(page))
3409 		return;
3410 #endif
3411 	put_page(page);
3412 }
3413 
3414 /**
3415  * skb_frag_unref - release a reference on a paged fragment of an skb.
3416  * @skb: the buffer
3417  * @f: the fragment offset
3418  *
3419  * Releases a reference on the @f'th paged fragment of @skb.
3420  */
3421 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3422 {
3423 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3424 
3425 	if (!skb_zcopy_managed(skb))
3426 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3427 }
3428 
3429 /**
3430  * skb_frag_address - gets the address of the data contained in a paged fragment
3431  * @frag: the paged fragment buffer
3432  *
3433  * Returns the address of the data within @frag. The page must already
3434  * be mapped.
3435  */
3436 static inline void *skb_frag_address(const skb_frag_t *frag)
3437 {
3438 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3439 }
3440 
3441 /**
3442  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3443  * @frag: the paged fragment buffer
3444  *
3445  * Returns the address of the data within @frag. Checks that the page
3446  * is mapped and returns %NULL otherwise.
3447  */
3448 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3449 {
3450 	void *ptr = page_address(skb_frag_page(frag));
3451 	if (unlikely(!ptr))
3452 		return NULL;
3453 
3454 	return ptr + skb_frag_off(frag);
3455 }
3456 
3457 /**
3458  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3459  * @fragto: skb fragment where page is set
3460  * @fragfrom: skb fragment page is copied from
3461  */
3462 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3463 				      const skb_frag_t *fragfrom)
3464 {
3465 	fragto->bv_page = fragfrom->bv_page;
3466 }
3467 
3468 /**
3469  * __skb_frag_set_page - sets the page contained in a paged fragment
3470  * @frag: the paged fragment
3471  * @page: the page to set
3472  *
3473  * Sets the fragment @frag to contain @page.
3474  */
3475 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3476 {
3477 	frag->bv_page = page;
3478 }
3479 
3480 /**
3481  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3482  * @skb: the buffer
3483  * @f: the fragment offset
3484  * @page: the page to set
3485  *
3486  * Sets the @f'th fragment of @skb to contain @page.
3487  */
3488 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3489 				     struct page *page)
3490 {
3491 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3492 }
3493 
3494 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3495 
3496 /**
3497  * skb_frag_dma_map - maps a paged fragment via the DMA API
3498  * @dev: the device to map the fragment to
3499  * @frag: the paged fragment to map
3500  * @offset: the offset within the fragment (starting at the
3501  *          fragment's own offset)
3502  * @size: the number of bytes to map
3503  * @dir: the direction of the mapping (``PCI_DMA_*``)
3504  *
3505  * Maps the page associated with @frag to @device.
3506  */
3507 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3508 					  const skb_frag_t *frag,
3509 					  size_t offset, size_t size,
3510 					  enum dma_data_direction dir)
3511 {
3512 	return dma_map_page(dev, skb_frag_page(frag),
3513 			    skb_frag_off(frag) + offset, size, dir);
3514 }
3515 
3516 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3517 					gfp_t gfp_mask)
3518 {
3519 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3520 }
3521 
3522 
3523 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3524 						  gfp_t gfp_mask)
3525 {
3526 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3527 }
3528 
3529 
3530 /**
3531  *	skb_clone_writable - is the header of a clone writable
3532  *	@skb: buffer to check
3533  *	@len: length up to which to write
3534  *
3535  *	Returns true if modifying the header part of the cloned buffer
3536  *	does not requires the data to be copied.
3537  */
3538 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3539 {
3540 	return !skb_header_cloned(skb) &&
3541 	       skb_headroom(skb) + len <= skb->hdr_len;
3542 }
3543 
3544 static inline int skb_try_make_writable(struct sk_buff *skb,
3545 					unsigned int write_len)
3546 {
3547 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3548 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3549 }
3550 
3551 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3552 			    int cloned)
3553 {
3554 	int delta = 0;
3555 
3556 	if (headroom > skb_headroom(skb))
3557 		delta = headroom - skb_headroom(skb);
3558 
3559 	if (delta || cloned)
3560 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3561 					GFP_ATOMIC);
3562 	return 0;
3563 }
3564 
3565 /**
3566  *	skb_cow - copy header of skb when it is required
3567  *	@skb: buffer to cow
3568  *	@headroom: needed headroom
3569  *
3570  *	If the skb passed lacks sufficient headroom or its data part
3571  *	is shared, data is reallocated. If reallocation fails, an error
3572  *	is returned and original skb is not changed.
3573  *
3574  *	The result is skb with writable area skb->head...skb->tail
3575  *	and at least @headroom of space at head.
3576  */
3577 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3578 {
3579 	return __skb_cow(skb, headroom, skb_cloned(skb));
3580 }
3581 
3582 /**
3583  *	skb_cow_head - skb_cow but only making the head writable
3584  *	@skb: buffer to cow
3585  *	@headroom: needed headroom
3586  *
3587  *	This function is identical to skb_cow except that we replace the
3588  *	skb_cloned check by skb_header_cloned.  It should be used when
3589  *	you only need to push on some header and do not need to modify
3590  *	the data.
3591  */
3592 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3593 {
3594 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3595 }
3596 
3597 /**
3598  *	skb_padto	- pad an skbuff up to a minimal size
3599  *	@skb: buffer to pad
3600  *	@len: minimal length
3601  *
3602  *	Pads up a buffer to ensure the trailing bytes exist and are
3603  *	blanked. If the buffer already contains sufficient data it
3604  *	is untouched. Otherwise it is extended. Returns zero on
3605  *	success. The skb is freed on error.
3606  */
3607 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3608 {
3609 	unsigned int size = skb->len;
3610 	if (likely(size >= len))
3611 		return 0;
3612 	return skb_pad(skb, len - size);
3613 }
3614 
3615 /**
3616  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3617  *	@skb: buffer to pad
3618  *	@len: minimal length
3619  *	@free_on_error: free buffer on error
3620  *
3621  *	Pads up a buffer to ensure the trailing bytes exist and are
3622  *	blanked. If the buffer already contains sufficient data it
3623  *	is untouched. Otherwise it is extended. Returns zero on
3624  *	success. The skb is freed on error if @free_on_error is true.
3625  */
3626 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3627 					       unsigned int len,
3628 					       bool free_on_error)
3629 {
3630 	unsigned int size = skb->len;
3631 
3632 	if (unlikely(size < len)) {
3633 		len -= size;
3634 		if (__skb_pad(skb, len, free_on_error))
3635 			return -ENOMEM;
3636 		__skb_put(skb, len);
3637 	}
3638 	return 0;
3639 }
3640 
3641 /**
3642  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3643  *	@skb: buffer to pad
3644  *	@len: minimal length
3645  *
3646  *	Pads up a buffer to ensure the trailing bytes exist and are
3647  *	blanked. If the buffer already contains sufficient data it
3648  *	is untouched. Otherwise it is extended. Returns zero on
3649  *	success. The skb is freed on error.
3650  */
3651 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3652 {
3653 	return __skb_put_padto(skb, len, true);
3654 }
3655 
3656 static inline int skb_add_data(struct sk_buff *skb,
3657 			       struct iov_iter *from, int copy)
3658 {
3659 	const int off = skb->len;
3660 
3661 	if (skb->ip_summed == CHECKSUM_NONE) {
3662 		__wsum csum = 0;
3663 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3664 					         &csum, from)) {
3665 			skb->csum = csum_block_add(skb->csum, csum, off);
3666 			return 0;
3667 		}
3668 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3669 		return 0;
3670 
3671 	__skb_trim(skb, off);
3672 	return -EFAULT;
3673 }
3674 
3675 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3676 				    const struct page *page, int off)
3677 {
3678 	if (skb_zcopy(skb))
3679 		return false;
3680 	if (i) {
3681 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3682 
3683 		return page == skb_frag_page(frag) &&
3684 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3685 	}
3686 	return false;
3687 }
3688 
3689 static inline int __skb_linearize(struct sk_buff *skb)
3690 {
3691 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3692 }
3693 
3694 /**
3695  *	skb_linearize - convert paged skb to linear one
3696  *	@skb: buffer to linarize
3697  *
3698  *	If there is no free memory -ENOMEM is returned, otherwise zero
3699  *	is returned and the old skb data released.
3700  */
3701 static inline int skb_linearize(struct sk_buff *skb)
3702 {
3703 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3704 }
3705 
3706 /**
3707  * skb_has_shared_frag - can any frag be overwritten
3708  * @skb: buffer to test
3709  *
3710  * Return true if the skb has at least one frag that might be modified
3711  * by an external entity (as in vmsplice()/sendfile())
3712  */
3713 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3714 {
3715 	return skb_is_nonlinear(skb) &&
3716 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3717 }
3718 
3719 /**
3720  *	skb_linearize_cow - make sure skb is linear and writable
3721  *	@skb: buffer to process
3722  *
3723  *	If there is no free memory -ENOMEM is returned, otherwise zero
3724  *	is returned and the old skb data released.
3725  */
3726 static inline int skb_linearize_cow(struct sk_buff *skb)
3727 {
3728 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3729 	       __skb_linearize(skb) : 0;
3730 }
3731 
3732 static __always_inline void
3733 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3734 		     unsigned int off)
3735 {
3736 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3737 		skb->csum = csum_block_sub(skb->csum,
3738 					   csum_partial(start, len, 0), off);
3739 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3740 		 skb_checksum_start_offset(skb) < 0)
3741 		skb->ip_summed = CHECKSUM_NONE;
3742 }
3743 
3744 /**
3745  *	skb_postpull_rcsum - update checksum for received skb after pull
3746  *	@skb: buffer to update
3747  *	@start: start of data before pull
3748  *	@len: length of data pulled
3749  *
3750  *	After doing a pull on a received packet, you need to call this to
3751  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3752  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3753  */
3754 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3755 				      const void *start, unsigned int len)
3756 {
3757 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3758 		skb->csum = wsum_negate(csum_partial(start, len,
3759 						     wsum_negate(skb->csum)));
3760 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3761 		 skb_checksum_start_offset(skb) < 0)
3762 		skb->ip_summed = CHECKSUM_NONE;
3763 }
3764 
3765 static __always_inline void
3766 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3767 		     unsigned int off)
3768 {
3769 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3770 		skb->csum = csum_block_add(skb->csum,
3771 					   csum_partial(start, len, 0), off);
3772 }
3773 
3774 /**
3775  *	skb_postpush_rcsum - update checksum for received skb after push
3776  *	@skb: buffer to update
3777  *	@start: start of data after push
3778  *	@len: length of data pushed
3779  *
3780  *	After doing a push on a received packet, you need to call this to
3781  *	update the CHECKSUM_COMPLETE checksum.
3782  */
3783 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3784 				      const void *start, unsigned int len)
3785 {
3786 	__skb_postpush_rcsum(skb, start, len, 0);
3787 }
3788 
3789 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3790 
3791 /**
3792  *	skb_push_rcsum - push skb and update receive checksum
3793  *	@skb: buffer to update
3794  *	@len: length of data pulled
3795  *
3796  *	This function performs an skb_push on the packet and updates
3797  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3798  *	receive path processing instead of skb_push unless you know
3799  *	that the checksum difference is zero (e.g., a valid IP header)
3800  *	or you are setting ip_summed to CHECKSUM_NONE.
3801  */
3802 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3803 {
3804 	skb_push(skb, len);
3805 	skb_postpush_rcsum(skb, skb->data, len);
3806 	return skb->data;
3807 }
3808 
3809 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3810 /**
3811  *	pskb_trim_rcsum - trim received skb and update checksum
3812  *	@skb: buffer to trim
3813  *	@len: new length
3814  *
3815  *	This is exactly the same as pskb_trim except that it ensures the
3816  *	checksum of received packets are still valid after the operation.
3817  *	It can change skb pointers.
3818  */
3819 
3820 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3821 {
3822 	if (likely(len >= skb->len))
3823 		return 0;
3824 	return pskb_trim_rcsum_slow(skb, len);
3825 }
3826 
3827 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3828 {
3829 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3830 		skb->ip_summed = CHECKSUM_NONE;
3831 	__skb_trim(skb, len);
3832 	return 0;
3833 }
3834 
3835 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3836 {
3837 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3838 		skb->ip_summed = CHECKSUM_NONE;
3839 	return __skb_grow(skb, len);
3840 }
3841 
3842 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3843 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3844 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3845 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3846 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3847 
3848 #define skb_queue_walk(queue, skb) \
3849 		for (skb = (queue)->next;					\
3850 		     skb != (struct sk_buff *)(queue);				\
3851 		     skb = skb->next)
3852 
3853 #define skb_queue_walk_safe(queue, skb, tmp)					\
3854 		for (skb = (queue)->next, tmp = skb->next;			\
3855 		     skb != (struct sk_buff *)(queue);				\
3856 		     skb = tmp, tmp = skb->next)
3857 
3858 #define skb_queue_walk_from(queue, skb)						\
3859 		for (; skb != (struct sk_buff *)(queue);			\
3860 		     skb = skb->next)
3861 
3862 #define skb_rbtree_walk(skb, root)						\
3863 		for (skb = skb_rb_first(root); skb != NULL;			\
3864 		     skb = skb_rb_next(skb))
3865 
3866 #define skb_rbtree_walk_from(skb)						\
3867 		for (; skb != NULL;						\
3868 		     skb = skb_rb_next(skb))
3869 
3870 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3871 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3872 		     skb = tmp)
3873 
3874 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3875 		for (tmp = skb->next;						\
3876 		     skb != (struct sk_buff *)(queue);				\
3877 		     skb = tmp, tmp = skb->next)
3878 
3879 #define skb_queue_reverse_walk(queue, skb) \
3880 		for (skb = (queue)->prev;					\
3881 		     skb != (struct sk_buff *)(queue);				\
3882 		     skb = skb->prev)
3883 
3884 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3885 		for (skb = (queue)->prev, tmp = skb->prev;			\
3886 		     skb != (struct sk_buff *)(queue);				\
3887 		     skb = tmp, tmp = skb->prev)
3888 
3889 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3890 		for (tmp = skb->prev;						\
3891 		     skb != (struct sk_buff *)(queue);				\
3892 		     skb = tmp, tmp = skb->prev)
3893 
3894 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3895 {
3896 	return skb_shinfo(skb)->frag_list != NULL;
3897 }
3898 
3899 static inline void skb_frag_list_init(struct sk_buff *skb)
3900 {
3901 	skb_shinfo(skb)->frag_list = NULL;
3902 }
3903 
3904 #define skb_walk_frags(skb, iter)	\
3905 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3906 
3907 
3908 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3909 				int *err, long *timeo_p,
3910 				const struct sk_buff *skb);
3911 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3912 					  struct sk_buff_head *queue,
3913 					  unsigned int flags,
3914 					  int *off, int *err,
3915 					  struct sk_buff **last);
3916 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3917 					struct sk_buff_head *queue,
3918 					unsigned int flags, int *off, int *err,
3919 					struct sk_buff **last);
3920 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3921 				    struct sk_buff_head *sk_queue,
3922 				    unsigned int flags, int *off, int *err);
3923 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3924 __poll_t datagram_poll(struct file *file, struct socket *sock,
3925 			   struct poll_table_struct *wait);
3926 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3927 			   struct iov_iter *to, int size);
3928 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3929 					struct msghdr *msg, int size)
3930 {
3931 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3932 }
3933 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3934 				   struct msghdr *msg);
3935 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3936 			   struct iov_iter *to, int len,
3937 			   struct ahash_request *hash);
3938 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3939 				 struct iov_iter *from, int len);
3940 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3941 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3942 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3943 static inline void skb_free_datagram_locked(struct sock *sk,
3944 					    struct sk_buff *skb)
3945 {
3946 	__skb_free_datagram_locked(sk, skb, 0);
3947 }
3948 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3949 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3950 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3951 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3952 			      int len);
3953 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3954 		    struct pipe_inode_info *pipe, unsigned int len,
3955 		    unsigned int flags);
3956 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3957 			 int len);
3958 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3959 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3960 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3961 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3962 		 int len, int hlen);
3963 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3964 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3965 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3966 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3967 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3968 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3969 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3970 				 unsigned int offset);
3971 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3972 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3973 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3974 int skb_vlan_pop(struct sk_buff *skb);
3975 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3976 int skb_eth_pop(struct sk_buff *skb);
3977 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3978 		 const unsigned char *src);
3979 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3980 		  int mac_len, bool ethernet);
3981 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3982 		 bool ethernet);
3983 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3984 int skb_mpls_dec_ttl(struct sk_buff *skb);
3985 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3986 			     gfp_t gfp);
3987 
3988 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3989 {
3990 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3991 }
3992 
3993 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3994 {
3995 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3996 }
3997 
3998 struct skb_checksum_ops {
3999 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4000 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4001 };
4002 
4003 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4004 
4005 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4006 		      __wsum csum, const struct skb_checksum_ops *ops);
4007 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4008 		    __wsum csum);
4009 
4010 static inline void * __must_check
4011 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4012 		     const void *data, int hlen, void *buffer)
4013 {
4014 	if (likely(hlen - offset >= len))
4015 		return (void *)data + offset;
4016 
4017 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4018 		return NULL;
4019 
4020 	return buffer;
4021 }
4022 
4023 static inline void * __must_check
4024 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4025 {
4026 	return __skb_header_pointer(skb, offset, len, skb->data,
4027 				    skb_headlen(skb), buffer);
4028 }
4029 
4030 /**
4031  *	skb_needs_linearize - check if we need to linearize a given skb
4032  *			      depending on the given device features.
4033  *	@skb: socket buffer to check
4034  *	@features: net device features
4035  *
4036  *	Returns true if either:
4037  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4038  *	2. skb is fragmented and the device does not support SG.
4039  */
4040 static inline bool skb_needs_linearize(struct sk_buff *skb,
4041 				       netdev_features_t features)
4042 {
4043 	return skb_is_nonlinear(skb) &&
4044 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4045 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4046 }
4047 
4048 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4049 					     void *to,
4050 					     const unsigned int len)
4051 {
4052 	memcpy(to, skb->data, len);
4053 }
4054 
4055 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4056 						    const int offset, void *to,
4057 						    const unsigned int len)
4058 {
4059 	memcpy(to, skb->data + offset, len);
4060 }
4061 
4062 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4063 					   const void *from,
4064 					   const unsigned int len)
4065 {
4066 	memcpy(skb->data, from, len);
4067 }
4068 
4069 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4070 						  const int offset,
4071 						  const void *from,
4072 						  const unsigned int len)
4073 {
4074 	memcpy(skb->data + offset, from, len);
4075 }
4076 
4077 void skb_init(void);
4078 
4079 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4080 {
4081 	return skb->tstamp;
4082 }
4083 
4084 /**
4085  *	skb_get_timestamp - get timestamp from a skb
4086  *	@skb: skb to get stamp from
4087  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4088  *
4089  *	Timestamps are stored in the skb as offsets to a base timestamp.
4090  *	This function converts the offset back to a struct timeval and stores
4091  *	it in stamp.
4092  */
4093 static inline void skb_get_timestamp(const struct sk_buff *skb,
4094 				     struct __kernel_old_timeval *stamp)
4095 {
4096 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4097 }
4098 
4099 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4100 					 struct __kernel_sock_timeval *stamp)
4101 {
4102 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4103 
4104 	stamp->tv_sec = ts.tv_sec;
4105 	stamp->tv_usec = ts.tv_nsec / 1000;
4106 }
4107 
4108 static inline void skb_get_timestampns(const struct sk_buff *skb,
4109 				       struct __kernel_old_timespec *stamp)
4110 {
4111 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4112 
4113 	stamp->tv_sec = ts.tv_sec;
4114 	stamp->tv_nsec = ts.tv_nsec;
4115 }
4116 
4117 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4118 					   struct __kernel_timespec *stamp)
4119 {
4120 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4121 
4122 	stamp->tv_sec = ts.tv_sec;
4123 	stamp->tv_nsec = ts.tv_nsec;
4124 }
4125 
4126 static inline void __net_timestamp(struct sk_buff *skb)
4127 {
4128 	skb->tstamp = ktime_get_real();
4129 	skb->mono_delivery_time = 0;
4130 }
4131 
4132 static inline ktime_t net_timedelta(ktime_t t)
4133 {
4134 	return ktime_sub(ktime_get_real(), t);
4135 }
4136 
4137 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4138 					 bool mono)
4139 {
4140 	skb->tstamp = kt;
4141 	skb->mono_delivery_time = kt && mono;
4142 }
4143 
4144 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4145 
4146 /* It is used in the ingress path to clear the delivery_time.
4147  * If needed, set the skb->tstamp to the (rcv) timestamp.
4148  */
4149 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4150 {
4151 	if (skb->mono_delivery_time) {
4152 		skb->mono_delivery_time = 0;
4153 		if (static_branch_unlikely(&netstamp_needed_key))
4154 			skb->tstamp = ktime_get_real();
4155 		else
4156 			skb->tstamp = 0;
4157 	}
4158 }
4159 
4160 static inline void skb_clear_tstamp(struct sk_buff *skb)
4161 {
4162 	if (skb->mono_delivery_time)
4163 		return;
4164 
4165 	skb->tstamp = 0;
4166 }
4167 
4168 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4169 {
4170 	if (skb->mono_delivery_time)
4171 		return 0;
4172 
4173 	return skb->tstamp;
4174 }
4175 
4176 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4177 {
4178 	if (!skb->mono_delivery_time && skb->tstamp)
4179 		return skb->tstamp;
4180 
4181 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4182 		return ktime_get_real();
4183 
4184 	return 0;
4185 }
4186 
4187 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4188 {
4189 	return skb_shinfo(skb)->meta_len;
4190 }
4191 
4192 static inline void *skb_metadata_end(const struct sk_buff *skb)
4193 {
4194 	return skb_mac_header(skb);
4195 }
4196 
4197 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4198 					  const struct sk_buff *skb_b,
4199 					  u8 meta_len)
4200 {
4201 	const void *a = skb_metadata_end(skb_a);
4202 	const void *b = skb_metadata_end(skb_b);
4203 	/* Using more efficient varaiant than plain call to memcmp(). */
4204 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4205 	u64 diffs = 0;
4206 
4207 	switch (meta_len) {
4208 #define __it(x, op) (x -= sizeof(u##op))
4209 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4210 	case 32: diffs |= __it_diff(a, b, 64);
4211 		fallthrough;
4212 	case 24: diffs |= __it_diff(a, b, 64);
4213 		fallthrough;
4214 	case 16: diffs |= __it_diff(a, b, 64);
4215 		fallthrough;
4216 	case  8: diffs |= __it_diff(a, b, 64);
4217 		break;
4218 	case 28: diffs |= __it_diff(a, b, 64);
4219 		fallthrough;
4220 	case 20: diffs |= __it_diff(a, b, 64);
4221 		fallthrough;
4222 	case 12: diffs |= __it_diff(a, b, 64);
4223 		fallthrough;
4224 	case  4: diffs |= __it_diff(a, b, 32);
4225 		break;
4226 	}
4227 	return diffs;
4228 #else
4229 	return memcmp(a - meta_len, b - meta_len, meta_len);
4230 #endif
4231 }
4232 
4233 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4234 					const struct sk_buff *skb_b)
4235 {
4236 	u8 len_a = skb_metadata_len(skb_a);
4237 	u8 len_b = skb_metadata_len(skb_b);
4238 
4239 	if (!(len_a | len_b))
4240 		return false;
4241 
4242 	return len_a != len_b ?
4243 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4244 }
4245 
4246 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4247 {
4248 	skb_shinfo(skb)->meta_len = meta_len;
4249 }
4250 
4251 static inline void skb_metadata_clear(struct sk_buff *skb)
4252 {
4253 	skb_metadata_set(skb, 0);
4254 }
4255 
4256 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4257 
4258 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4259 
4260 void skb_clone_tx_timestamp(struct sk_buff *skb);
4261 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4262 
4263 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4264 
4265 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4266 {
4267 }
4268 
4269 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4270 {
4271 	return false;
4272 }
4273 
4274 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4275 
4276 /**
4277  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4278  *
4279  * PHY drivers may accept clones of transmitted packets for
4280  * timestamping via their phy_driver.txtstamp method. These drivers
4281  * must call this function to return the skb back to the stack with a
4282  * timestamp.
4283  *
4284  * @skb: clone of the original outgoing packet
4285  * @hwtstamps: hardware time stamps
4286  *
4287  */
4288 void skb_complete_tx_timestamp(struct sk_buff *skb,
4289 			       struct skb_shared_hwtstamps *hwtstamps);
4290 
4291 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4292 		     struct skb_shared_hwtstamps *hwtstamps,
4293 		     struct sock *sk, int tstype);
4294 
4295 /**
4296  * skb_tstamp_tx - queue clone of skb with send time stamps
4297  * @orig_skb:	the original outgoing packet
4298  * @hwtstamps:	hardware time stamps, may be NULL if not available
4299  *
4300  * If the skb has a socket associated, then this function clones the
4301  * skb (thus sharing the actual data and optional structures), stores
4302  * the optional hardware time stamping information (if non NULL) or
4303  * generates a software time stamp (otherwise), then queues the clone
4304  * to the error queue of the socket.  Errors are silently ignored.
4305  */
4306 void skb_tstamp_tx(struct sk_buff *orig_skb,
4307 		   struct skb_shared_hwtstamps *hwtstamps);
4308 
4309 /**
4310  * skb_tx_timestamp() - Driver hook for transmit timestamping
4311  *
4312  * Ethernet MAC Drivers should call this function in their hard_xmit()
4313  * function immediately before giving the sk_buff to the MAC hardware.
4314  *
4315  * Specifically, one should make absolutely sure that this function is
4316  * called before TX completion of this packet can trigger.  Otherwise
4317  * the packet could potentially already be freed.
4318  *
4319  * @skb: A socket buffer.
4320  */
4321 static inline void skb_tx_timestamp(struct sk_buff *skb)
4322 {
4323 	skb_clone_tx_timestamp(skb);
4324 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4325 		skb_tstamp_tx(skb, NULL);
4326 }
4327 
4328 /**
4329  * skb_complete_wifi_ack - deliver skb with wifi status
4330  *
4331  * @skb: the original outgoing packet
4332  * @acked: ack status
4333  *
4334  */
4335 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4336 
4337 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4338 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4339 
4340 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4341 {
4342 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4343 		skb->csum_valid ||
4344 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4345 		 skb_checksum_start_offset(skb) >= 0));
4346 }
4347 
4348 /**
4349  *	skb_checksum_complete - Calculate checksum of an entire packet
4350  *	@skb: packet to process
4351  *
4352  *	This function calculates the checksum over the entire packet plus
4353  *	the value of skb->csum.  The latter can be used to supply the
4354  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4355  *	checksum.
4356  *
4357  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4358  *	this function can be used to verify that checksum on received
4359  *	packets.  In that case the function should return zero if the
4360  *	checksum is correct.  In particular, this function will return zero
4361  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4362  *	hardware has already verified the correctness of the checksum.
4363  */
4364 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4365 {
4366 	return skb_csum_unnecessary(skb) ?
4367 	       0 : __skb_checksum_complete(skb);
4368 }
4369 
4370 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4371 {
4372 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4373 		if (skb->csum_level == 0)
4374 			skb->ip_summed = CHECKSUM_NONE;
4375 		else
4376 			skb->csum_level--;
4377 	}
4378 }
4379 
4380 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4381 {
4382 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4383 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4384 			skb->csum_level++;
4385 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4386 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4387 		skb->csum_level = 0;
4388 	}
4389 }
4390 
4391 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4392 {
4393 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4394 		skb->ip_summed = CHECKSUM_NONE;
4395 		skb->csum_level = 0;
4396 	}
4397 }
4398 
4399 /* Check if we need to perform checksum complete validation.
4400  *
4401  * Returns true if checksum complete is needed, false otherwise
4402  * (either checksum is unnecessary or zero checksum is allowed).
4403  */
4404 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4405 						  bool zero_okay,
4406 						  __sum16 check)
4407 {
4408 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4409 		skb->csum_valid = 1;
4410 		__skb_decr_checksum_unnecessary(skb);
4411 		return false;
4412 	}
4413 
4414 	return true;
4415 }
4416 
4417 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4418  * in checksum_init.
4419  */
4420 #define CHECKSUM_BREAK 76
4421 
4422 /* Unset checksum-complete
4423  *
4424  * Unset checksum complete can be done when packet is being modified
4425  * (uncompressed for instance) and checksum-complete value is
4426  * invalidated.
4427  */
4428 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4429 {
4430 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4431 		skb->ip_summed = CHECKSUM_NONE;
4432 }
4433 
4434 /* Validate (init) checksum based on checksum complete.
4435  *
4436  * Return values:
4437  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4438  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4439  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4440  *   non-zero: value of invalid checksum
4441  *
4442  */
4443 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4444 						       bool complete,
4445 						       __wsum psum)
4446 {
4447 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4448 		if (!csum_fold(csum_add(psum, skb->csum))) {
4449 			skb->csum_valid = 1;
4450 			return 0;
4451 		}
4452 	}
4453 
4454 	skb->csum = psum;
4455 
4456 	if (complete || skb->len <= CHECKSUM_BREAK) {
4457 		__sum16 csum;
4458 
4459 		csum = __skb_checksum_complete(skb);
4460 		skb->csum_valid = !csum;
4461 		return csum;
4462 	}
4463 
4464 	return 0;
4465 }
4466 
4467 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4468 {
4469 	return 0;
4470 }
4471 
4472 /* Perform checksum validate (init). Note that this is a macro since we only
4473  * want to calculate the pseudo header which is an input function if necessary.
4474  * First we try to validate without any computation (checksum unnecessary) and
4475  * then calculate based on checksum complete calling the function to compute
4476  * pseudo header.
4477  *
4478  * Return values:
4479  *   0: checksum is validated or try to in skb_checksum_complete
4480  *   non-zero: value of invalid checksum
4481  */
4482 #define __skb_checksum_validate(skb, proto, complete,			\
4483 				zero_okay, check, compute_pseudo)	\
4484 ({									\
4485 	__sum16 __ret = 0;						\
4486 	skb->csum_valid = 0;						\
4487 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4488 		__ret = __skb_checksum_validate_complete(skb,		\
4489 				complete, compute_pseudo(skb, proto));	\
4490 	__ret;								\
4491 })
4492 
4493 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4494 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4495 
4496 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4497 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4498 
4499 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4500 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4501 
4502 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4503 					 compute_pseudo)		\
4504 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4505 
4506 #define skb_checksum_simple_validate(skb)				\
4507 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4508 
4509 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4510 {
4511 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4512 }
4513 
4514 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4515 {
4516 	skb->csum = ~pseudo;
4517 	skb->ip_summed = CHECKSUM_COMPLETE;
4518 }
4519 
4520 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4521 do {									\
4522 	if (__skb_checksum_convert_check(skb))				\
4523 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4524 } while (0)
4525 
4526 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4527 					      u16 start, u16 offset)
4528 {
4529 	skb->ip_summed = CHECKSUM_PARTIAL;
4530 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4531 	skb->csum_offset = offset - start;
4532 }
4533 
4534 /* Update skbuf and packet to reflect the remote checksum offload operation.
4535  * When called, ptr indicates the starting point for skb->csum when
4536  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4537  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4538  */
4539 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4540 				       int start, int offset, bool nopartial)
4541 {
4542 	__wsum delta;
4543 
4544 	if (!nopartial) {
4545 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4546 		return;
4547 	}
4548 
4549 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4550 		__skb_checksum_complete(skb);
4551 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4552 	}
4553 
4554 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4555 
4556 	/* Adjust skb->csum since we changed the packet */
4557 	skb->csum = csum_add(skb->csum, delta);
4558 }
4559 
4560 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4561 {
4562 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4563 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4564 #else
4565 	return NULL;
4566 #endif
4567 }
4568 
4569 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4570 {
4571 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4572 	return skb->_nfct;
4573 #else
4574 	return 0UL;
4575 #endif
4576 }
4577 
4578 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4579 {
4580 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4581 	skb->slow_gro |= !!nfct;
4582 	skb->_nfct = nfct;
4583 #endif
4584 }
4585 
4586 #ifdef CONFIG_SKB_EXTENSIONS
4587 enum skb_ext_id {
4588 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4589 	SKB_EXT_BRIDGE_NF,
4590 #endif
4591 #ifdef CONFIG_XFRM
4592 	SKB_EXT_SEC_PATH,
4593 #endif
4594 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4595 	TC_SKB_EXT,
4596 #endif
4597 #if IS_ENABLED(CONFIG_MPTCP)
4598 	SKB_EXT_MPTCP,
4599 #endif
4600 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4601 	SKB_EXT_MCTP,
4602 #endif
4603 	SKB_EXT_NUM, /* must be last */
4604 };
4605 
4606 /**
4607  *	struct skb_ext - sk_buff extensions
4608  *	@refcnt: 1 on allocation, deallocated on 0
4609  *	@offset: offset to add to @data to obtain extension address
4610  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4611  *	@data: start of extension data, variable sized
4612  *
4613  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4614  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4615  */
4616 struct skb_ext {
4617 	refcount_t refcnt;
4618 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4619 	u8 chunks;		/* same */
4620 	char data[] __aligned(8);
4621 };
4622 
4623 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4624 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4625 		    struct skb_ext *ext);
4626 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4627 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4628 void __skb_ext_put(struct skb_ext *ext);
4629 
4630 static inline void skb_ext_put(struct sk_buff *skb)
4631 {
4632 	if (skb->active_extensions)
4633 		__skb_ext_put(skb->extensions);
4634 }
4635 
4636 static inline void __skb_ext_copy(struct sk_buff *dst,
4637 				  const struct sk_buff *src)
4638 {
4639 	dst->active_extensions = src->active_extensions;
4640 
4641 	if (src->active_extensions) {
4642 		struct skb_ext *ext = src->extensions;
4643 
4644 		refcount_inc(&ext->refcnt);
4645 		dst->extensions = ext;
4646 	}
4647 }
4648 
4649 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4650 {
4651 	skb_ext_put(dst);
4652 	__skb_ext_copy(dst, src);
4653 }
4654 
4655 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4656 {
4657 	return !!ext->offset[i];
4658 }
4659 
4660 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4661 {
4662 	return skb->active_extensions & (1 << id);
4663 }
4664 
4665 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4666 {
4667 	if (skb_ext_exist(skb, id))
4668 		__skb_ext_del(skb, id);
4669 }
4670 
4671 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4672 {
4673 	if (skb_ext_exist(skb, id)) {
4674 		struct skb_ext *ext = skb->extensions;
4675 
4676 		return (void *)ext + (ext->offset[id] << 3);
4677 	}
4678 
4679 	return NULL;
4680 }
4681 
4682 static inline void skb_ext_reset(struct sk_buff *skb)
4683 {
4684 	if (unlikely(skb->active_extensions)) {
4685 		__skb_ext_put(skb->extensions);
4686 		skb->active_extensions = 0;
4687 	}
4688 }
4689 
4690 static inline bool skb_has_extensions(struct sk_buff *skb)
4691 {
4692 	return unlikely(skb->active_extensions);
4693 }
4694 #else
4695 static inline void skb_ext_put(struct sk_buff *skb) {}
4696 static inline void skb_ext_reset(struct sk_buff *skb) {}
4697 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4698 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4699 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4700 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4701 #endif /* CONFIG_SKB_EXTENSIONS */
4702 
4703 static inline void nf_reset_ct(struct sk_buff *skb)
4704 {
4705 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4706 	nf_conntrack_put(skb_nfct(skb));
4707 	skb->_nfct = 0;
4708 #endif
4709 }
4710 
4711 static inline void nf_reset_trace(struct sk_buff *skb)
4712 {
4713 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4714 	skb->nf_trace = 0;
4715 #endif
4716 }
4717 
4718 static inline void ipvs_reset(struct sk_buff *skb)
4719 {
4720 #if IS_ENABLED(CONFIG_IP_VS)
4721 	skb->ipvs_property = 0;
4722 #endif
4723 }
4724 
4725 /* Note: This doesn't put any conntrack info in dst. */
4726 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4727 			     bool copy)
4728 {
4729 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4730 	dst->_nfct = src->_nfct;
4731 	nf_conntrack_get(skb_nfct(src));
4732 #endif
4733 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4734 	if (copy)
4735 		dst->nf_trace = src->nf_trace;
4736 #endif
4737 }
4738 
4739 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4740 {
4741 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4742 	nf_conntrack_put(skb_nfct(dst));
4743 #endif
4744 	dst->slow_gro = src->slow_gro;
4745 	__nf_copy(dst, src, true);
4746 }
4747 
4748 #ifdef CONFIG_NETWORK_SECMARK
4749 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4750 {
4751 	to->secmark = from->secmark;
4752 }
4753 
4754 static inline void skb_init_secmark(struct sk_buff *skb)
4755 {
4756 	skb->secmark = 0;
4757 }
4758 #else
4759 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4760 { }
4761 
4762 static inline void skb_init_secmark(struct sk_buff *skb)
4763 { }
4764 #endif
4765 
4766 static inline int secpath_exists(const struct sk_buff *skb)
4767 {
4768 #ifdef CONFIG_XFRM
4769 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4770 #else
4771 	return 0;
4772 #endif
4773 }
4774 
4775 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4776 {
4777 	return !skb->destructor &&
4778 		!secpath_exists(skb) &&
4779 		!skb_nfct(skb) &&
4780 		!skb->_skb_refdst &&
4781 		!skb_has_frag_list(skb);
4782 }
4783 
4784 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4785 {
4786 	skb->queue_mapping = queue_mapping;
4787 }
4788 
4789 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4790 {
4791 	return skb->queue_mapping;
4792 }
4793 
4794 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4795 {
4796 	to->queue_mapping = from->queue_mapping;
4797 }
4798 
4799 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4800 {
4801 	skb->queue_mapping = rx_queue + 1;
4802 }
4803 
4804 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4805 {
4806 	return skb->queue_mapping - 1;
4807 }
4808 
4809 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4810 {
4811 	return skb->queue_mapping != 0;
4812 }
4813 
4814 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4815 {
4816 	skb->dst_pending_confirm = val;
4817 }
4818 
4819 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4820 {
4821 	return skb->dst_pending_confirm != 0;
4822 }
4823 
4824 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4825 {
4826 #ifdef CONFIG_XFRM
4827 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4828 #else
4829 	return NULL;
4830 #endif
4831 }
4832 
4833 /* Keeps track of mac header offset relative to skb->head.
4834  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4835  * For non-tunnel skb it points to skb_mac_header() and for
4836  * tunnel skb it points to outer mac header.
4837  * Keeps track of level of encapsulation of network headers.
4838  */
4839 struct skb_gso_cb {
4840 	union {
4841 		int	mac_offset;
4842 		int	data_offset;
4843 	};
4844 	int	encap_level;
4845 	__wsum	csum;
4846 	__u16	csum_start;
4847 };
4848 #define SKB_GSO_CB_OFFSET	32
4849 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4850 
4851 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4852 {
4853 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4854 		SKB_GSO_CB(inner_skb)->mac_offset;
4855 }
4856 
4857 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4858 {
4859 	int new_headroom, headroom;
4860 	int ret;
4861 
4862 	headroom = skb_headroom(skb);
4863 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4864 	if (ret)
4865 		return ret;
4866 
4867 	new_headroom = skb_headroom(skb);
4868 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4869 	return 0;
4870 }
4871 
4872 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4873 {
4874 	/* Do not update partial checksums if remote checksum is enabled. */
4875 	if (skb->remcsum_offload)
4876 		return;
4877 
4878 	SKB_GSO_CB(skb)->csum = res;
4879 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4880 }
4881 
4882 /* Compute the checksum for a gso segment. First compute the checksum value
4883  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4884  * then add in skb->csum (checksum from csum_start to end of packet).
4885  * skb->csum and csum_start are then updated to reflect the checksum of the
4886  * resultant packet starting from the transport header-- the resultant checksum
4887  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4888  * header.
4889  */
4890 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4891 {
4892 	unsigned char *csum_start = skb_transport_header(skb);
4893 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4894 	__wsum partial = SKB_GSO_CB(skb)->csum;
4895 
4896 	SKB_GSO_CB(skb)->csum = res;
4897 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4898 
4899 	return csum_fold(csum_partial(csum_start, plen, partial));
4900 }
4901 
4902 static inline bool skb_is_gso(const struct sk_buff *skb)
4903 {
4904 	return skb_shinfo(skb)->gso_size;
4905 }
4906 
4907 /* Note: Should be called only if skb_is_gso(skb) is true */
4908 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4909 {
4910 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4911 }
4912 
4913 /* Note: Should be called only if skb_is_gso(skb) is true */
4914 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4915 {
4916 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4917 }
4918 
4919 /* Note: Should be called only if skb_is_gso(skb) is true */
4920 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4921 {
4922 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4923 }
4924 
4925 static inline void skb_gso_reset(struct sk_buff *skb)
4926 {
4927 	skb_shinfo(skb)->gso_size = 0;
4928 	skb_shinfo(skb)->gso_segs = 0;
4929 	skb_shinfo(skb)->gso_type = 0;
4930 }
4931 
4932 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4933 					 u16 increment)
4934 {
4935 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4936 		return;
4937 	shinfo->gso_size += increment;
4938 }
4939 
4940 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4941 					 u16 decrement)
4942 {
4943 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4944 		return;
4945 	shinfo->gso_size -= decrement;
4946 }
4947 
4948 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4949 
4950 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4951 {
4952 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4953 	 * wanted then gso_type will be set. */
4954 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4955 
4956 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4957 	    unlikely(shinfo->gso_type == 0)) {
4958 		__skb_warn_lro_forwarding(skb);
4959 		return true;
4960 	}
4961 	return false;
4962 }
4963 
4964 static inline void skb_forward_csum(struct sk_buff *skb)
4965 {
4966 	/* Unfortunately we don't support this one.  Any brave souls? */
4967 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4968 		skb->ip_summed = CHECKSUM_NONE;
4969 }
4970 
4971 /**
4972  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4973  * @skb: skb to check
4974  *
4975  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4976  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4977  * use this helper, to document places where we make this assertion.
4978  */
4979 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4980 {
4981 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4982 }
4983 
4984 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4985 
4986 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4987 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4988 				     unsigned int transport_len,
4989 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4990 
4991 /**
4992  * skb_head_is_locked - Determine if the skb->head is locked down
4993  * @skb: skb to check
4994  *
4995  * The head on skbs build around a head frag can be removed if they are
4996  * not cloned.  This function returns true if the skb head is locked down
4997  * due to either being allocated via kmalloc, or by being a clone with
4998  * multiple references to the head.
4999  */
5000 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5001 {
5002 	return !skb->head_frag || skb_cloned(skb);
5003 }
5004 
5005 /* Local Checksum Offload.
5006  * Compute outer checksum based on the assumption that the
5007  * inner checksum will be offloaded later.
5008  * See Documentation/networking/checksum-offloads.rst for
5009  * explanation of how this works.
5010  * Fill in outer checksum adjustment (e.g. with sum of outer
5011  * pseudo-header) before calling.
5012  * Also ensure that inner checksum is in linear data area.
5013  */
5014 static inline __wsum lco_csum(struct sk_buff *skb)
5015 {
5016 	unsigned char *csum_start = skb_checksum_start(skb);
5017 	unsigned char *l4_hdr = skb_transport_header(skb);
5018 	__wsum partial;
5019 
5020 	/* Start with complement of inner checksum adjustment */
5021 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5022 						    skb->csum_offset));
5023 
5024 	/* Add in checksum of our headers (incl. outer checksum
5025 	 * adjustment filled in by caller) and return result.
5026 	 */
5027 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5028 }
5029 
5030 static inline bool skb_is_redirected(const struct sk_buff *skb)
5031 {
5032 	return skb->redirected;
5033 }
5034 
5035 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5036 {
5037 	skb->redirected = 1;
5038 #ifdef CONFIG_NET_REDIRECT
5039 	skb->from_ingress = from_ingress;
5040 	if (skb->from_ingress)
5041 		skb_clear_tstamp(skb);
5042 #endif
5043 }
5044 
5045 static inline void skb_reset_redirect(struct sk_buff *skb)
5046 {
5047 	skb->redirected = 0;
5048 }
5049 
5050 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5051 {
5052 	return skb->csum_not_inet;
5053 }
5054 
5055 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5056 				       const u64 kcov_handle)
5057 {
5058 #ifdef CONFIG_KCOV
5059 	skb->kcov_handle = kcov_handle;
5060 #endif
5061 }
5062 
5063 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5064 {
5065 #ifdef CONFIG_KCOV
5066 	return skb->kcov_handle;
5067 #else
5068 	return 0;
5069 #endif
5070 }
5071 
5072 #ifdef CONFIG_PAGE_POOL
5073 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5074 {
5075 	skb->pp_recycle = 1;
5076 }
5077 #endif
5078 
5079 #endif	/* __KERNEL__ */
5080 #endif	/* _LINUX_SKBUFF_H */
5081