1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 36 #include <linux/netfilter/nf_conntrack_common.h> 37 #endif 38 #include <net/net_debug.h> 39 #include <net/dropreason-core.h> 40 41 /** 42 * DOC: skb checksums 43 * 44 * The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * IP checksum related features 48 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 49 * 50 * Drivers advertise checksum offload capabilities in the features of a device. 51 * From the stack's point of view these are capabilities offered by the driver. 52 * A driver typically only advertises features that it is capable of offloading 53 * to its device. 54 * 55 * .. flat-table:: Checksum related device features 56 * :widths: 1 10 57 * 58 * * - %NETIF_F_HW_CSUM 59 * - The driver (or its device) is able to compute one 60 * IP (one's complement) checksum for any combination 61 * of protocols or protocol layering. The checksum is 62 * computed and set in a packet per the CHECKSUM_PARTIAL 63 * interface (see below). 64 * 65 * * - %NETIF_F_IP_CSUM 66 * - Driver (device) is only able to checksum plain 67 * TCP or UDP packets over IPv4. These are specifically 68 * unencapsulated packets of the form IPv4|TCP or 69 * IPv4|UDP where the Protocol field in the IPv4 header 70 * is TCP or UDP. The IPv4 header may contain IP options. 71 * This feature cannot be set in features for a device 72 * with NETIF_F_HW_CSUM also set. This feature is being 73 * DEPRECATED (see below). 74 * 75 * * - %NETIF_F_IPV6_CSUM 76 * - Driver (device) is only able to checksum plain 77 * TCP or UDP packets over IPv6. These are specifically 78 * unencapsulated packets of the form IPv6|TCP or 79 * IPv6|UDP where the Next Header field in the IPv6 80 * header is either TCP or UDP. IPv6 extension headers 81 * are not supported with this feature. This feature 82 * cannot be set in features for a device with 83 * NETIF_F_HW_CSUM also set. This feature is being 84 * DEPRECATED (see below). 85 * 86 * * - %NETIF_F_RXCSUM 87 * - Driver (device) performs receive checksum offload. 88 * This flag is only used to disable the RX checksum 89 * feature for a device. The stack will accept receive 90 * checksum indication in packets received on a device 91 * regardless of whether NETIF_F_RXCSUM is set. 92 * 93 * Checksumming of received packets by device 94 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 95 * 96 * Indication of checksum verification is set in &sk_buff.ip_summed. 97 * Possible values are: 98 * 99 * - %CHECKSUM_NONE 100 * 101 * Device did not checksum this packet e.g. due to lack of capabilities. 102 * The packet contains full (though not verified) checksum in packet but 103 * not in skb->csum. Thus, skb->csum is undefined in this case. 104 * 105 * - %CHECKSUM_UNNECESSARY 106 * 107 * The hardware you're dealing with doesn't calculate the full checksum 108 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 109 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 110 * if their checksums are okay. &sk_buff.csum is still undefined in this case 111 * though. A driver or device must never modify the checksum field in the 112 * packet even if checksum is verified. 113 * 114 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 115 * 116 * - TCP: IPv6 and IPv4. 117 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 118 * zero UDP checksum for either IPv4 or IPv6, the networking stack 119 * may perform further validation in this case. 120 * - GRE: only if the checksum is present in the header. 121 * - SCTP: indicates the CRC in SCTP header has been validated. 122 * - FCOE: indicates the CRC in FC frame has been validated. 123 * 124 * &sk_buff.csum_level indicates the number of consecutive checksums found in 125 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 126 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 127 * and a device is able to verify the checksums for UDP (possibly zero), 128 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 129 * two. If the device were only able to verify the UDP checksum and not 130 * GRE, either because it doesn't support GRE checksum or because GRE 131 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 132 * not considered in this case). 133 * 134 * - %CHECKSUM_COMPLETE 135 * 136 * This is the most generic way. The device supplied checksum of the _whole_ 137 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 138 * hardware doesn't need to parse L3/L4 headers to implement this. 139 * 140 * Notes: 141 * 142 * - Even if device supports only some protocols, but is able to produce 143 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 144 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 145 * 146 * - %CHECKSUM_PARTIAL 147 * 148 * A checksum is set up to be offloaded to a device as described in the 149 * output description for CHECKSUM_PARTIAL. This may occur on a packet 150 * received directly from another Linux OS, e.g., a virtualized Linux kernel 151 * on the same host, or it may be set in the input path in GRO or remote 152 * checksum offload. For the purposes of checksum verification, the checksum 153 * referred to by skb->csum_start + skb->csum_offset and any preceding 154 * checksums in the packet are considered verified. Any checksums in the 155 * packet that are after the checksum being offloaded are not considered to 156 * be verified. 157 * 158 * Checksumming on transmit for non-GSO 159 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 160 * 161 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 162 * Values are: 163 * 164 * - %CHECKSUM_PARTIAL 165 * 166 * The driver is required to checksum the packet as seen by hard_start_xmit() 167 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 168 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 169 * A driver may verify that the 170 * csum_start and csum_offset values are valid values given the length and 171 * offset of the packet, but it should not attempt to validate that the 172 * checksum refers to a legitimate transport layer checksum -- it is the 173 * purview of the stack to validate that csum_start and csum_offset are set 174 * correctly. 175 * 176 * When the stack requests checksum offload for a packet, the driver MUST 177 * ensure that the checksum is set correctly. A driver can either offload the 178 * checksum calculation to the device, or call skb_checksum_help (in the case 179 * that the device does not support offload for a particular checksum). 180 * 181 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 182 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 183 * checksum offload capability. 184 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 185 * on network device checksumming capabilities: if a packet does not match 186 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 187 * &sk_buff.csum_not_inet, see :ref:`crc`) 188 * is called to resolve the checksum. 189 * 190 * - %CHECKSUM_NONE 191 * 192 * The skb was already checksummed by the protocol, or a checksum is not 193 * required. 194 * 195 * - %CHECKSUM_UNNECESSARY 196 * 197 * This has the same meaning as CHECKSUM_NONE for checksum offload on 198 * output. 199 * 200 * - %CHECKSUM_COMPLETE 201 * 202 * Not used in checksum output. If a driver observes a packet with this value 203 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 204 * 205 * .. _crc: 206 * 207 * Non-IP checksum (CRC) offloads 208 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 209 * 210 * .. flat-table:: 211 * :widths: 1 10 212 * 213 * * - %NETIF_F_SCTP_CRC 214 * - This feature indicates that a device is capable of 215 * offloading the SCTP CRC in a packet. To perform this offload the stack 216 * will set csum_start and csum_offset accordingly, set ip_summed to 217 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 218 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 219 * A driver that supports both IP checksum offload and SCTP CRC32c offload 220 * must verify which offload is configured for a packet by testing the 221 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 222 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 223 * 224 * * - %NETIF_F_FCOE_CRC 225 * - This feature indicates that a device is capable of offloading the FCOE 226 * CRC in a packet. To perform this offload the stack will set ip_summed 227 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 228 * accordingly. Note that there is no indication in the skbuff that the 229 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 230 * both IP checksum offload and FCOE CRC offload must verify which offload 231 * is configured for a packet, presumably by inspecting packet headers. 232 * 233 * Checksumming on output with GSO 234 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 235 * 236 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 237 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 238 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 239 * part of the GSO operation is implied. If a checksum is being offloaded 240 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 241 * csum_offset are set to refer to the outermost checksum being offloaded 242 * (two offloaded checksums are possible with UDP encapsulation). 243 */ 244 245 /* Don't change this without changing skb_csum_unnecessary! */ 246 #define CHECKSUM_NONE 0 247 #define CHECKSUM_UNNECESSARY 1 248 #define CHECKSUM_COMPLETE 2 249 #define CHECKSUM_PARTIAL 3 250 251 /* Maximum value in skb->csum_level */ 252 #define SKB_MAX_CSUM_LEVEL 3 253 254 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 255 #define SKB_WITH_OVERHEAD(X) \ 256 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 257 258 /* For X bytes available in skb->head, what is the minimal 259 * allocation needed, knowing struct skb_shared_info needs 260 * to be aligned. 261 */ 262 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 263 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 264 265 #define SKB_MAX_ORDER(X, ORDER) \ 266 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 267 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 268 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 269 270 /* return minimum truesize of one skb containing X bytes of data */ 271 #define SKB_TRUESIZE(X) ((X) + \ 272 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 273 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 274 275 struct ahash_request; 276 struct net_device; 277 struct scatterlist; 278 struct pipe_inode_info; 279 struct iov_iter; 280 struct napi_struct; 281 struct bpf_prog; 282 union bpf_attr; 283 struct skb_ext; 284 struct ts_config; 285 286 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 287 struct nf_bridge_info { 288 enum { 289 BRNF_PROTO_UNCHANGED, 290 BRNF_PROTO_8021Q, 291 BRNF_PROTO_PPPOE 292 } orig_proto:8; 293 u8 pkt_otherhost:1; 294 u8 in_prerouting:1; 295 u8 bridged_dnat:1; 296 u8 sabotage_in_done:1; 297 __u16 frag_max_size; 298 struct net_device *physindev; 299 300 /* always valid & non-NULL from FORWARD on, for physdev match */ 301 struct net_device *physoutdev; 302 union { 303 /* prerouting: detect dnat in orig/reply direction */ 304 __be32 ipv4_daddr; 305 struct in6_addr ipv6_daddr; 306 307 /* after prerouting + nat detected: store original source 308 * mac since neigh resolution overwrites it, only used while 309 * skb is out in neigh layer. 310 */ 311 char neigh_header[8]; 312 }; 313 }; 314 #endif 315 316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 317 /* Chain in tc_skb_ext will be used to share the tc chain with 318 * ovs recirc_id. It will be set to the current chain by tc 319 * and read by ovs to recirc_id. 320 */ 321 struct tc_skb_ext { 322 union { 323 u64 act_miss_cookie; 324 __u32 chain; 325 }; 326 __u16 mru; 327 __u16 zone; 328 u8 post_ct:1; 329 u8 post_ct_snat:1; 330 u8 post_ct_dnat:1; 331 u8 act_miss:1; /* Set if act_miss_cookie is used */ 332 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 333 }; 334 #endif 335 336 struct sk_buff_head { 337 /* These two members must be first to match sk_buff. */ 338 struct_group_tagged(sk_buff_list, list, 339 struct sk_buff *next; 340 struct sk_buff *prev; 341 ); 342 343 __u32 qlen; 344 spinlock_t lock; 345 }; 346 347 struct sk_buff; 348 349 #ifndef CONFIG_MAX_SKB_FRAGS 350 # define CONFIG_MAX_SKB_FRAGS 17 351 #endif 352 353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 354 355 extern int sysctl_max_skb_frags; 356 357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 358 * segment using its current segmentation instead. 359 */ 360 #define GSO_BY_FRAGS 0xFFFF 361 362 typedef struct bio_vec skb_frag_t; 363 364 /** 365 * skb_frag_size() - Returns the size of a skb fragment 366 * @frag: skb fragment 367 */ 368 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 369 { 370 return frag->bv_len; 371 } 372 373 /** 374 * skb_frag_size_set() - Sets the size of a skb fragment 375 * @frag: skb fragment 376 * @size: size of fragment 377 */ 378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 379 { 380 frag->bv_len = size; 381 } 382 383 /** 384 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 385 * @frag: skb fragment 386 * @delta: value to add 387 */ 388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 389 { 390 frag->bv_len += delta; 391 } 392 393 /** 394 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 395 * @frag: skb fragment 396 * @delta: value to subtract 397 */ 398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 399 { 400 frag->bv_len -= delta; 401 } 402 403 /** 404 * skb_frag_must_loop - Test if %p is a high memory page 405 * @p: fragment's page 406 */ 407 static inline bool skb_frag_must_loop(struct page *p) 408 { 409 #if defined(CONFIG_HIGHMEM) 410 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 411 return true; 412 #endif 413 return false; 414 } 415 416 /** 417 * skb_frag_foreach_page - loop over pages in a fragment 418 * 419 * @f: skb frag to operate on 420 * @f_off: offset from start of f->bv_page 421 * @f_len: length from f_off to loop over 422 * @p: (temp var) current page 423 * @p_off: (temp var) offset from start of current page, 424 * non-zero only on first page. 425 * @p_len: (temp var) length in current page, 426 * < PAGE_SIZE only on first and last page. 427 * @copied: (temp var) length so far, excluding current p_len. 428 * 429 * A fragment can hold a compound page, in which case per-page 430 * operations, notably kmap_atomic, must be called for each 431 * regular page. 432 */ 433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 434 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 435 p_off = (f_off) & (PAGE_SIZE - 1), \ 436 p_len = skb_frag_must_loop(p) ? \ 437 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 438 copied = 0; \ 439 copied < f_len; \ 440 copied += p_len, p++, p_off = 0, \ 441 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 442 443 /** 444 * struct skb_shared_hwtstamps - hardware time stamps 445 * @hwtstamp: hardware time stamp transformed into duration 446 * since arbitrary point in time 447 * @netdev_data: address/cookie of network device driver used as 448 * reference to actual hardware time stamp 449 * 450 * Software time stamps generated by ktime_get_real() are stored in 451 * skb->tstamp. 452 * 453 * hwtstamps can only be compared against other hwtstamps from 454 * the same device. 455 * 456 * This structure is attached to packets as part of the 457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 458 */ 459 struct skb_shared_hwtstamps { 460 union { 461 ktime_t hwtstamp; 462 void *netdev_data; 463 }; 464 }; 465 466 /* Definitions for tx_flags in struct skb_shared_info */ 467 enum { 468 /* generate hardware time stamp */ 469 SKBTX_HW_TSTAMP = 1 << 0, 470 471 /* generate software time stamp when queueing packet to NIC */ 472 SKBTX_SW_TSTAMP = 1 << 1, 473 474 /* device driver is going to provide hardware time stamp */ 475 SKBTX_IN_PROGRESS = 1 << 2, 476 477 /* generate hardware time stamp based on cycles if supported */ 478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 479 480 /* generate wifi status information (where possible) */ 481 SKBTX_WIFI_STATUS = 1 << 4, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488 }; 489 490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 491 SKBTX_SCHED_TSTAMP) 492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 493 SKBTX_HW_TSTAMP_USE_CYCLES | \ 494 SKBTX_ANY_SW_TSTAMP) 495 496 /* Definitions for flags in struct skb_shared_info */ 497 enum { 498 /* use zcopy routines */ 499 SKBFL_ZEROCOPY_ENABLE = BIT(0), 500 501 /* This indicates at least one fragment might be overwritten 502 * (as in vmsplice(), sendfile() ...) 503 * If we need to compute a TX checksum, we'll need to copy 504 * all frags to avoid possible bad checksum 505 */ 506 SKBFL_SHARED_FRAG = BIT(1), 507 508 /* segment contains only zerocopy data and should not be 509 * charged to the kernel memory. 510 */ 511 SKBFL_PURE_ZEROCOPY = BIT(2), 512 513 SKBFL_DONT_ORPHAN = BIT(3), 514 515 /* page references are managed by the ubuf_info, so it's safe to 516 * use frags only up until ubuf_info is released 517 */ 518 SKBFL_MANAGED_FRAG_REFS = BIT(4), 519 }; 520 521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 524 525 /* 526 * The callback notifies userspace to release buffers when skb DMA is done in 527 * lower device, the skb last reference should be 0 when calling this. 528 * The zerocopy_success argument is true if zero copy transmit occurred, 529 * false on data copy or out of memory error caused by data copy attempt. 530 * The ctx field is used to track device context. 531 * The desc field is used to track userspace buffer index. 532 */ 533 struct ubuf_info { 534 void (*callback)(struct sk_buff *, struct ubuf_info *, 535 bool zerocopy_success); 536 refcount_t refcnt; 537 u8 flags; 538 }; 539 540 struct ubuf_info_msgzc { 541 struct ubuf_info ubuf; 542 543 union { 544 struct { 545 unsigned long desc; 546 void *ctx; 547 }; 548 struct { 549 u32 id; 550 u16 len; 551 u16 zerocopy:1; 552 u32 bytelen; 553 }; 554 }; 555 556 struct mmpin { 557 struct user_struct *user; 558 unsigned int num_pg; 559 } mmp; 560 }; 561 562 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 563 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 564 ubuf) 565 566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 567 void mm_unaccount_pinned_pages(struct mmpin *mmp); 568 569 /* Preserve some data across TX submission and completion. 570 * 571 * Note, this state is stored in the driver. Extending the layout 572 * might need some special care. 573 */ 574 struct xsk_tx_metadata_compl { 575 __u64 *tx_timestamp; 576 }; 577 578 /* This data is invariant across clones and lives at 579 * the end of the header data, ie. at skb->end. 580 */ 581 struct skb_shared_info { 582 __u8 flags; 583 __u8 meta_len; 584 __u8 nr_frags; 585 __u8 tx_flags; 586 unsigned short gso_size; 587 /* Warning: this field is not always filled in (UFO)! */ 588 unsigned short gso_segs; 589 struct sk_buff *frag_list; 590 union { 591 struct skb_shared_hwtstamps hwtstamps; 592 struct xsk_tx_metadata_compl xsk_meta; 593 }; 594 unsigned int gso_type; 595 u32 tskey; 596 597 /* 598 * Warning : all fields before dataref are cleared in __alloc_skb() 599 */ 600 atomic_t dataref; 601 unsigned int xdp_frags_size; 602 603 /* Intermediate layers must ensure that destructor_arg 604 * remains valid until skb destructor */ 605 void * destructor_arg; 606 607 /* must be last field, see pskb_expand_head() */ 608 skb_frag_t frags[MAX_SKB_FRAGS]; 609 }; 610 611 /** 612 * DOC: dataref and headerless skbs 613 * 614 * Transport layers send out clones of payload skbs they hold for 615 * retransmissions. To allow lower layers of the stack to prepend their headers 616 * we split &skb_shared_info.dataref into two halves. 617 * The lower 16 bits count the overall number of references. 618 * The higher 16 bits indicate how many of the references are payload-only. 619 * skb_header_cloned() checks if skb is allowed to add / write the headers. 620 * 621 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 622 * (via __skb_header_release()). Any clone created from marked skb will get 623 * &sk_buff.hdr_len populated with the available headroom. 624 * If there's the only clone in existence it's able to modify the headroom 625 * at will. The sequence of calls inside the transport layer is:: 626 * 627 * <alloc skb> 628 * skb_reserve() 629 * __skb_header_release() 630 * skb_clone() 631 * // send the clone down the stack 632 * 633 * This is not a very generic construct and it depends on the transport layers 634 * doing the right thing. In practice there's usually only one payload-only skb. 635 * Having multiple payload-only skbs with different lengths of hdr_len is not 636 * possible. The payload-only skbs should never leave their owner. 637 */ 638 #define SKB_DATAREF_SHIFT 16 639 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 640 641 642 enum { 643 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 644 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 645 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 646 }; 647 648 enum { 649 SKB_GSO_TCPV4 = 1 << 0, 650 651 /* This indicates the skb is from an untrusted source. */ 652 SKB_GSO_DODGY = 1 << 1, 653 654 /* This indicates the tcp segment has CWR set. */ 655 SKB_GSO_TCP_ECN = 1 << 2, 656 657 SKB_GSO_TCP_FIXEDID = 1 << 3, 658 659 SKB_GSO_TCPV6 = 1 << 4, 660 661 SKB_GSO_FCOE = 1 << 5, 662 663 SKB_GSO_GRE = 1 << 6, 664 665 SKB_GSO_GRE_CSUM = 1 << 7, 666 667 SKB_GSO_IPXIP4 = 1 << 8, 668 669 SKB_GSO_IPXIP6 = 1 << 9, 670 671 SKB_GSO_UDP_TUNNEL = 1 << 10, 672 673 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 674 675 SKB_GSO_PARTIAL = 1 << 12, 676 677 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 678 679 SKB_GSO_SCTP = 1 << 14, 680 681 SKB_GSO_ESP = 1 << 15, 682 683 SKB_GSO_UDP = 1 << 16, 684 685 SKB_GSO_UDP_L4 = 1 << 17, 686 687 SKB_GSO_FRAGLIST = 1 << 18, 688 }; 689 690 #if BITS_PER_LONG > 32 691 #define NET_SKBUFF_DATA_USES_OFFSET 1 692 #endif 693 694 #ifdef NET_SKBUFF_DATA_USES_OFFSET 695 typedef unsigned int sk_buff_data_t; 696 #else 697 typedef unsigned char *sk_buff_data_t; 698 #endif 699 700 /** 701 * DOC: Basic sk_buff geometry 702 * 703 * struct sk_buff itself is a metadata structure and does not hold any packet 704 * data. All the data is held in associated buffers. 705 * 706 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 707 * into two parts: 708 * 709 * - data buffer, containing headers and sometimes payload; 710 * this is the part of the skb operated on by the common helpers 711 * such as skb_put() or skb_pull(); 712 * - shared info (struct skb_shared_info) which holds an array of pointers 713 * to read-only data in the (page, offset, length) format. 714 * 715 * Optionally &skb_shared_info.frag_list may point to another skb. 716 * 717 * Basic diagram may look like this:: 718 * 719 * --------------- 720 * | sk_buff | 721 * --------------- 722 * ,--------------------------- + head 723 * / ,----------------- + data 724 * / / ,----------- + tail 725 * | | | , + end 726 * | | | | 727 * v v v v 728 * ----------------------------------------------- 729 * | headroom | data | tailroom | skb_shared_info | 730 * ----------------------------------------------- 731 * + [page frag] 732 * + [page frag] 733 * + [page frag] 734 * + [page frag] --------- 735 * + frag_list --> | sk_buff | 736 * --------- 737 * 738 */ 739 740 /** 741 * struct sk_buff - socket buffer 742 * @next: Next buffer in list 743 * @prev: Previous buffer in list 744 * @tstamp: Time we arrived/left 745 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 746 * for retransmit timer 747 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 748 * @list: queue head 749 * @ll_node: anchor in an llist (eg socket defer_list) 750 * @sk: Socket we are owned by 751 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 752 * fragmentation management 753 * @dev: Device we arrived on/are leaving by 754 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 755 * @cb: Control buffer. Free for use by every layer. Put private vars here 756 * @_skb_refdst: destination entry (with norefcount bit) 757 * @sp: the security path, used for xfrm 758 * @len: Length of actual data 759 * @data_len: Data length 760 * @mac_len: Length of link layer header 761 * @hdr_len: writable header length of cloned skb 762 * @csum: Checksum (must include start/offset pair) 763 * @csum_start: Offset from skb->head where checksumming should start 764 * @csum_offset: Offset from csum_start where checksum should be stored 765 * @priority: Packet queueing priority 766 * @ignore_df: allow local fragmentation 767 * @cloned: Head may be cloned (check refcnt to be sure) 768 * @ip_summed: Driver fed us an IP checksum 769 * @nohdr: Payload reference only, must not modify header 770 * @pkt_type: Packet class 771 * @fclone: skbuff clone status 772 * @ipvs_property: skbuff is owned by ipvs 773 * @inner_protocol_type: whether the inner protocol is 774 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 775 * @remcsum_offload: remote checksum offload is enabled 776 * @offload_fwd_mark: Packet was L2-forwarded in hardware 777 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 778 * @tc_skip_classify: do not classify packet. set by IFB device 779 * @tc_at_ingress: used within tc_classify to distinguish in/egress 780 * @redirected: packet was redirected by packet classifier 781 * @from_ingress: packet was redirected from the ingress path 782 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 783 * @peeked: this packet has been seen already, so stats have been 784 * done for it, don't do them again 785 * @nf_trace: netfilter packet trace flag 786 * @protocol: Packet protocol from driver 787 * @destructor: Destruct function 788 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 789 * @_sk_redir: socket redirection information for skmsg 790 * @_nfct: Associated connection, if any (with nfctinfo bits) 791 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 792 * @skb_iif: ifindex of device we arrived on 793 * @tc_index: Traffic control index 794 * @hash: the packet hash 795 * @queue_mapping: Queue mapping for multiqueue devices 796 * @head_frag: skb was allocated from page fragments, 797 * not allocated by kmalloc() or vmalloc(). 798 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 799 * @pp_recycle: mark the packet for recycling instead of freeing (implies 800 * page_pool support on driver) 801 * @active_extensions: active extensions (skb_ext_id types) 802 * @ndisc_nodetype: router type (from link layer) 803 * @ooo_okay: allow the mapping of a socket to a queue to be changed 804 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 805 * ports. 806 * @sw_hash: indicates hash was computed in software stack 807 * @wifi_acked_valid: wifi_acked was set 808 * @wifi_acked: whether frame was acked on wifi or not 809 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 810 * @encapsulation: indicates the inner headers in the skbuff are valid 811 * @encap_hdr_csum: software checksum is needed 812 * @csum_valid: checksum is already valid 813 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 814 * @csum_complete_sw: checksum was completed by software 815 * @csum_level: indicates the number of consecutive checksums found in 816 * the packet minus one that have been verified as 817 * CHECKSUM_UNNECESSARY (max 3) 818 * @dst_pending_confirm: need to confirm neighbour 819 * @decrypted: Decrypted SKB 820 * @slow_gro: state present at GRO time, slower prepare step required 821 * @mono_delivery_time: When set, skb->tstamp has the 822 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 823 * skb->tstamp has the (rcv) timestamp at ingress and 824 * delivery_time at egress. 825 * @napi_id: id of the NAPI struct this skb came from 826 * @sender_cpu: (aka @napi_id) source CPU in XPS 827 * @alloc_cpu: CPU which did the skb allocation. 828 * @secmark: security marking 829 * @mark: Generic packet mark 830 * @reserved_tailroom: (aka @mark) number of bytes of free space available 831 * at the tail of an sk_buff 832 * @vlan_all: vlan fields (proto & tci) 833 * @vlan_proto: vlan encapsulation protocol 834 * @vlan_tci: vlan tag control information 835 * @inner_protocol: Protocol (encapsulation) 836 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 837 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 838 * @inner_transport_header: Inner transport layer header (encapsulation) 839 * @inner_network_header: Network layer header (encapsulation) 840 * @inner_mac_header: Link layer header (encapsulation) 841 * @transport_header: Transport layer header 842 * @network_header: Network layer header 843 * @mac_header: Link layer header 844 * @kcov_handle: KCOV remote handle for remote coverage collection 845 * @tail: Tail pointer 846 * @end: End pointer 847 * @head: Head of buffer 848 * @data: Data head pointer 849 * @truesize: Buffer size 850 * @users: User count - see {datagram,tcp}.c 851 * @extensions: allocated extensions, valid if active_extensions is nonzero 852 */ 853 854 struct sk_buff { 855 union { 856 struct { 857 /* These two members must be first to match sk_buff_head. */ 858 struct sk_buff *next; 859 struct sk_buff *prev; 860 861 union { 862 struct net_device *dev; 863 /* Some protocols might use this space to store information, 864 * while device pointer would be NULL. 865 * UDP receive path is one user. 866 */ 867 unsigned long dev_scratch; 868 }; 869 }; 870 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 871 struct list_head list; 872 struct llist_node ll_node; 873 }; 874 875 union { 876 struct sock *sk; 877 int ip_defrag_offset; 878 }; 879 880 union { 881 ktime_t tstamp; 882 u64 skb_mstamp_ns; /* earliest departure time */ 883 }; 884 /* 885 * This is the control buffer. It is free to use for every 886 * layer. Please put your private variables there. If you 887 * want to keep them across layers you have to do a skb_clone() 888 * first. This is owned by whoever has the skb queued ATM. 889 */ 890 char cb[48] __aligned(8); 891 892 union { 893 struct { 894 unsigned long _skb_refdst; 895 void (*destructor)(struct sk_buff *skb); 896 }; 897 struct list_head tcp_tsorted_anchor; 898 #ifdef CONFIG_NET_SOCK_MSG 899 unsigned long _sk_redir; 900 #endif 901 }; 902 903 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 904 unsigned long _nfct; 905 #endif 906 unsigned int len, 907 data_len; 908 __u16 mac_len, 909 hdr_len; 910 911 /* Following fields are _not_ copied in __copy_skb_header() 912 * Note that queue_mapping is here mostly to fill a hole. 913 */ 914 __u16 queue_mapping; 915 916 /* if you move cloned around you also must adapt those constants */ 917 #ifdef __BIG_ENDIAN_BITFIELD 918 #define CLONED_MASK (1 << 7) 919 #else 920 #define CLONED_MASK 1 921 #endif 922 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 923 924 /* private: */ 925 __u8 __cloned_offset[0]; 926 /* public: */ 927 __u8 cloned:1, 928 nohdr:1, 929 fclone:2, 930 peeked:1, 931 head_frag:1, 932 pfmemalloc:1, 933 pp_recycle:1; /* page_pool recycle indicator */ 934 #ifdef CONFIG_SKB_EXTENSIONS 935 __u8 active_extensions; 936 #endif 937 938 /* Fields enclosed in headers group are copied 939 * using a single memcpy() in __copy_skb_header() 940 */ 941 struct_group(headers, 942 943 /* private: */ 944 __u8 __pkt_type_offset[0]; 945 /* public: */ 946 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 947 __u8 ignore_df:1; 948 __u8 dst_pending_confirm:1; 949 __u8 ip_summed:2; 950 __u8 ooo_okay:1; 951 952 /* private: */ 953 __u8 __mono_tc_offset[0]; 954 /* public: */ 955 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 956 #ifdef CONFIG_NET_XGRESS 957 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 958 __u8 tc_skip_classify:1; 959 #endif 960 __u8 remcsum_offload:1; 961 __u8 csum_complete_sw:1; 962 __u8 csum_level:2; 963 __u8 inner_protocol_type:1; 964 965 __u8 l4_hash:1; 966 __u8 sw_hash:1; 967 #ifdef CONFIG_WIRELESS 968 __u8 wifi_acked_valid:1; 969 __u8 wifi_acked:1; 970 #endif 971 __u8 no_fcs:1; 972 /* Indicates the inner headers are valid in the skbuff. */ 973 __u8 encapsulation:1; 974 __u8 encap_hdr_csum:1; 975 __u8 csum_valid:1; 976 #ifdef CONFIG_IPV6_NDISC_NODETYPE 977 __u8 ndisc_nodetype:2; 978 #endif 979 980 #if IS_ENABLED(CONFIG_IP_VS) 981 __u8 ipvs_property:1; 982 #endif 983 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 984 __u8 nf_trace:1; 985 #endif 986 #ifdef CONFIG_NET_SWITCHDEV 987 __u8 offload_fwd_mark:1; 988 __u8 offload_l3_fwd_mark:1; 989 #endif 990 __u8 redirected:1; 991 #ifdef CONFIG_NET_REDIRECT 992 __u8 from_ingress:1; 993 #endif 994 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 995 __u8 nf_skip_egress:1; 996 #endif 997 #ifdef CONFIG_TLS_DEVICE 998 __u8 decrypted:1; 999 #endif 1000 __u8 slow_gro:1; 1001 #if IS_ENABLED(CONFIG_IP_SCTP) 1002 __u8 csum_not_inet:1; 1003 #endif 1004 1005 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1006 __u16 tc_index; /* traffic control index */ 1007 #endif 1008 1009 u16 alloc_cpu; 1010 1011 union { 1012 __wsum csum; 1013 struct { 1014 __u16 csum_start; 1015 __u16 csum_offset; 1016 }; 1017 }; 1018 __u32 priority; 1019 int skb_iif; 1020 __u32 hash; 1021 union { 1022 u32 vlan_all; 1023 struct { 1024 __be16 vlan_proto; 1025 __u16 vlan_tci; 1026 }; 1027 }; 1028 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1029 union { 1030 unsigned int napi_id; 1031 unsigned int sender_cpu; 1032 }; 1033 #endif 1034 #ifdef CONFIG_NETWORK_SECMARK 1035 __u32 secmark; 1036 #endif 1037 1038 union { 1039 __u32 mark; 1040 __u32 reserved_tailroom; 1041 }; 1042 1043 union { 1044 __be16 inner_protocol; 1045 __u8 inner_ipproto; 1046 }; 1047 1048 __u16 inner_transport_header; 1049 __u16 inner_network_header; 1050 __u16 inner_mac_header; 1051 1052 __be16 protocol; 1053 __u16 transport_header; 1054 __u16 network_header; 1055 __u16 mac_header; 1056 1057 #ifdef CONFIG_KCOV 1058 u64 kcov_handle; 1059 #endif 1060 1061 ); /* end headers group */ 1062 1063 /* These elements must be at the end, see alloc_skb() for details. */ 1064 sk_buff_data_t tail; 1065 sk_buff_data_t end; 1066 unsigned char *head, 1067 *data; 1068 unsigned int truesize; 1069 refcount_t users; 1070 1071 #ifdef CONFIG_SKB_EXTENSIONS 1072 /* only usable after checking ->active_extensions != 0 */ 1073 struct skb_ext *extensions; 1074 #endif 1075 }; 1076 1077 /* if you move pkt_type around you also must adapt those constants */ 1078 #ifdef __BIG_ENDIAN_BITFIELD 1079 #define PKT_TYPE_MAX (7 << 5) 1080 #else 1081 #define PKT_TYPE_MAX 7 1082 #endif 1083 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1084 1085 /* if you move tc_at_ingress or mono_delivery_time 1086 * around, you also must adapt these constants. 1087 */ 1088 #ifdef __BIG_ENDIAN_BITFIELD 1089 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7) 1090 #define TC_AT_INGRESS_MASK (1 << 6) 1091 #else 1092 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0) 1093 #define TC_AT_INGRESS_MASK (1 << 1) 1094 #endif 1095 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1096 1097 #ifdef __KERNEL__ 1098 /* 1099 * Handling routines are only of interest to the kernel 1100 */ 1101 1102 #define SKB_ALLOC_FCLONE 0x01 1103 #define SKB_ALLOC_RX 0x02 1104 #define SKB_ALLOC_NAPI 0x04 1105 1106 /** 1107 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1108 * @skb: buffer 1109 */ 1110 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1111 { 1112 return unlikely(skb->pfmemalloc); 1113 } 1114 1115 /* 1116 * skb might have a dst pointer attached, refcounted or not. 1117 * _skb_refdst low order bit is set if refcount was _not_ taken 1118 */ 1119 #define SKB_DST_NOREF 1UL 1120 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1121 1122 /** 1123 * skb_dst - returns skb dst_entry 1124 * @skb: buffer 1125 * 1126 * Returns skb dst_entry, regardless of reference taken or not. 1127 */ 1128 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1129 { 1130 /* If refdst was not refcounted, check we still are in a 1131 * rcu_read_lock section 1132 */ 1133 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1134 !rcu_read_lock_held() && 1135 !rcu_read_lock_bh_held()); 1136 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1137 } 1138 1139 /** 1140 * skb_dst_set - sets skb dst 1141 * @skb: buffer 1142 * @dst: dst entry 1143 * 1144 * Sets skb dst, assuming a reference was taken on dst and should 1145 * be released by skb_dst_drop() 1146 */ 1147 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1148 { 1149 skb->slow_gro |= !!dst; 1150 skb->_skb_refdst = (unsigned long)dst; 1151 } 1152 1153 /** 1154 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1155 * @skb: buffer 1156 * @dst: dst entry 1157 * 1158 * Sets skb dst, assuming a reference was not taken on dst. 1159 * If dst entry is cached, we do not take reference and dst_release 1160 * will be avoided by refdst_drop. If dst entry is not cached, we take 1161 * reference, so that last dst_release can destroy the dst immediately. 1162 */ 1163 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1164 { 1165 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1166 skb->slow_gro |= !!dst; 1167 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1168 } 1169 1170 /** 1171 * skb_dst_is_noref - Test if skb dst isn't refcounted 1172 * @skb: buffer 1173 */ 1174 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1175 { 1176 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1177 } 1178 1179 /** 1180 * skb_rtable - Returns the skb &rtable 1181 * @skb: buffer 1182 */ 1183 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1184 { 1185 return (struct rtable *)skb_dst(skb); 1186 } 1187 1188 /* For mangling skb->pkt_type from user space side from applications 1189 * such as nft, tc, etc, we only allow a conservative subset of 1190 * possible pkt_types to be set. 1191 */ 1192 static inline bool skb_pkt_type_ok(u32 ptype) 1193 { 1194 return ptype <= PACKET_OTHERHOST; 1195 } 1196 1197 /** 1198 * skb_napi_id - Returns the skb's NAPI id 1199 * @skb: buffer 1200 */ 1201 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1202 { 1203 #ifdef CONFIG_NET_RX_BUSY_POLL 1204 return skb->napi_id; 1205 #else 1206 return 0; 1207 #endif 1208 } 1209 1210 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1211 { 1212 #ifdef CONFIG_WIRELESS 1213 return skb->wifi_acked_valid; 1214 #else 1215 return 0; 1216 #endif 1217 } 1218 1219 /** 1220 * skb_unref - decrement the skb's reference count 1221 * @skb: buffer 1222 * 1223 * Returns true if we can free the skb. 1224 */ 1225 static inline bool skb_unref(struct sk_buff *skb) 1226 { 1227 if (unlikely(!skb)) 1228 return false; 1229 if (likely(refcount_read(&skb->users) == 1)) 1230 smp_rmb(); 1231 else if (likely(!refcount_dec_and_test(&skb->users))) 1232 return false; 1233 1234 return true; 1235 } 1236 1237 void __fix_address 1238 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1239 1240 /** 1241 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1242 * @skb: buffer to free 1243 */ 1244 static inline void kfree_skb(struct sk_buff *skb) 1245 { 1246 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1247 } 1248 1249 void skb_release_head_state(struct sk_buff *skb); 1250 void kfree_skb_list_reason(struct sk_buff *segs, 1251 enum skb_drop_reason reason); 1252 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1253 void skb_tx_error(struct sk_buff *skb); 1254 1255 static inline void kfree_skb_list(struct sk_buff *segs) 1256 { 1257 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1258 } 1259 1260 #ifdef CONFIG_TRACEPOINTS 1261 void consume_skb(struct sk_buff *skb); 1262 #else 1263 static inline void consume_skb(struct sk_buff *skb) 1264 { 1265 return kfree_skb(skb); 1266 } 1267 #endif 1268 1269 void __consume_stateless_skb(struct sk_buff *skb); 1270 void __kfree_skb(struct sk_buff *skb); 1271 extern struct kmem_cache *skbuff_cache; 1272 1273 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1274 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1275 bool *fragstolen, int *delta_truesize); 1276 1277 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1278 int node); 1279 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1280 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1281 struct sk_buff *build_skb_around(struct sk_buff *skb, 1282 void *data, unsigned int frag_size); 1283 void skb_attempt_defer_free(struct sk_buff *skb); 1284 1285 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1286 struct sk_buff *slab_build_skb(void *data); 1287 1288 /** 1289 * alloc_skb - allocate a network buffer 1290 * @size: size to allocate 1291 * @priority: allocation mask 1292 * 1293 * This function is a convenient wrapper around __alloc_skb(). 1294 */ 1295 static inline struct sk_buff *alloc_skb(unsigned int size, 1296 gfp_t priority) 1297 { 1298 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1299 } 1300 1301 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1302 unsigned long data_len, 1303 int max_page_order, 1304 int *errcode, 1305 gfp_t gfp_mask); 1306 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1307 1308 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1309 struct sk_buff_fclones { 1310 struct sk_buff skb1; 1311 1312 struct sk_buff skb2; 1313 1314 refcount_t fclone_ref; 1315 }; 1316 1317 /** 1318 * skb_fclone_busy - check if fclone is busy 1319 * @sk: socket 1320 * @skb: buffer 1321 * 1322 * Returns true if skb is a fast clone, and its clone is not freed. 1323 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1324 * so we also check that didn't happen. 1325 */ 1326 static inline bool skb_fclone_busy(const struct sock *sk, 1327 const struct sk_buff *skb) 1328 { 1329 const struct sk_buff_fclones *fclones; 1330 1331 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1332 1333 return skb->fclone == SKB_FCLONE_ORIG && 1334 refcount_read(&fclones->fclone_ref) > 1 && 1335 READ_ONCE(fclones->skb2.sk) == sk; 1336 } 1337 1338 /** 1339 * alloc_skb_fclone - allocate a network buffer from fclone cache 1340 * @size: size to allocate 1341 * @priority: allocation mask 1342 * 1343 * This function is a convenient wrapper around __alloc_skb(). 1344 */ 1345 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1346 gfp_t priority) 1347 { 1348 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1349 } 1350 1351 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1352 void skb_headers_offset_update(struct sk_buff *skb, int off); 1353 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1354 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1355 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1356 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1357 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1358 gfp_t gfp_mask, bool fclone); 1359 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1360 gfp_t gfp_mask) 1361 { 1362 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1363 } 1364 1365 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1366 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1367 unsigned int headroom); 1368 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1369 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1370 int newtailroom, gfp_t priority); 1371 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1372 int offset, int len); 1373 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1374 int offset, int len); 1375 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1376 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1377 1378 /** 1379 * skb_pad - zero pad the tail of an skb 1380 * @skb: buffer to pad 1381 * @pad: space to pad 1382 * 1383 * Ensure that a buffer is followed by a padding area that is zero 1384 * filled. Used by network drivers which may DMA or transfer data 1385 * beyond the buffer end onto the wire. 1386 * 1387 * May return error in out of memory cases. The skb is freed on error. 1388 */ 1389 static inline int skb_pad(struct sk_buff *skb, int pad) 1390 { 1391 return __skb_pad(skb, pad, true); 1392 } 1393 #define dev_kfree_skb(a) consume_skb(a) 1394 1395 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1396 int offset, size_t size, size_t max_frags); 1397 1398 struct skb_seq_state { 1399 __u32 lower_offset; 1400 __u32 upper_offset; 1401 __u32 frag_idx; 1402 __u32 stepped_offset; 1403 struct sk_buff *root_skb; 1404 struct sk_buff *cur_skb; 1405 __u8 *frag_data; 1406 __u32 frag_off; 1407 }; 1408 1409 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1410 unsigned int to, struct skb_seq_state *st); 1411 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1412 struct skb_seq_state *st); 1413 void skb_abort_seq_read(struct skb_seq_state *st); 1414 1415 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1416 unsigned int to, struct ts_config *config); 1417 1418 /* 1419 * Packet hash types specify the type of hash in skb_set_hash. 1420 * 1421 * Hash types refer to the protocol layer addresses which are used to 1422 * construct a packet's hash. The hashes are used to differentiate or identify 1423 * flows of the protocol layer for the hash type. Hash types are either 1424 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1425 * 1426 * Properties of hashes: 1427 * 1428 * 1) Two packets in different flows have different hash values 1429 * 2) Two packets in the same flow should have the same hash value 1430 * 1431 * A hash at a higher layer is considered to be more specific. A driver should 1432 * set the most specific hash possible. 1433 * 1434 * A driver cannot indicate a more specific hash than the layer at which a hash 1435 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1436 * 1437 * A driver may indicate a hash level which is less specific than the 1438 * actual layer the hash was computed on. For instance, a hash computed 1439 * at L4 may be considered an L3 hash. This should only be done if the 1440 * driver can't unambiguously determine that the HW computed the hash at 1441 * the higher layer. Note that the "should" in the second property above 1442 * permits this. 1443 */ 1444 enum pkt_hash_types { 1445 PKT_HASH_TYPE_NONE, /* Undefined type */ 1446 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1447 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1448 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1449 }; 1450 1451 static inline void skb_clear_hash(struct sk_buff *skb) 1452 { 1453 skb->hash = 0; 1454 skb->sw_hash = 0; 1455 skb->l4_hash = 0; 1456 } 1457 1458 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1459 { 1460 if (!skb->l4_hash) 1461 skb_clear_hash(skb); 1462 } 1463 1464 static inline void 1465 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1466 { 1467 skb->l4_hash = is_l4; 1468 skb->sw_hash = is_sw; 1469 skb->hash = hash; 1470 } 1471 1472 static inline void 1473 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1474 { 1475 /* Used by drivers to set hash from HW */ 1476 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1477 } 1478 1479 static inline void 1480 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1481 { 1482 __skb_set_hash(skb, hash, true, is_l4); 1483 } 1484 1485 void __skb_get_hash(struct sk_buff *skb); 1486 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1487 u32 skb_get_poff(const struct sk_buff *skb); 1488 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1489 const struct flow_keys_basic *keys, int hlen); 1490 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1491 const void *data, int hlen_proto); 1492 1493 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1494 int thoff, u8 ip_proto) 1495 { 1496 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1497 } 1498 1499 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1500 const struct flow_dissector_key *key, 1501 unsigned int key_count); 1502 1503 struct bpf_flow_dissector; 1504 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1505 __be16 proto, int nhoff, int hlen, unsigned int flags); 1506 1507 bool __skb_flow_dissect(const struct net *net, 1508 const struct sk_buff *skb, 1509 struct flow_dissector *flow_dissector, 1510 void *target_container, const void *data, 1511 __be16 proto, int nhoff, int hlen, unsigned int flags); 1512 1513 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1514 struct flow_dissector *flow_dissector, 1515 void *target_container, unsigned int flags) 1516 { 1517 return __skb_flow_dissect(NULL, skb, flow_dissector, 1518 target_container, NULL, 0, 0, 0, flags); 1519 } 1520 1521 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1522 struct flow_keys *flow, 1523 unsigned int flags) 1524 { 1525 memset(flow, 0, sizeof(*flow)); 1526 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1527 flow, NULL, 0, 0, 0, flags); 1528 } 1529 1530 static inline bool 1531 skb_flow_dissect_flow_keys_basic(const struct net *net, 1532 const struct sk_buff *skb, 1533 struct flow_keys_basic *flow, 1534 const void *data, __be16 proto, 1535 int nhoff, int hlen, unsigned int flags) 1536 { 1537 memset(flow, 0, sizeof(*flow)); 1538 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1539 data, proto, nhoff, hlen, flags); 1540 } 1541 1542 void skb_flow_dissect_meta(const struct sk_buff *skb, 1543 struct flow_dissector *flow_dissector, 1544 void *target_container); 1545 1546 /* Gets a skb connection tracking info, ctinfo map should be a 1547 * map of mapsize to translate enum ip_conntrack_info states 1548 * to user states. 1549 */ 1550 void 1551 skb_flow_dissect_ct(const struct sk_buff *skb, 1552 struct flow_dissector *flow_dissector, 1553 void *target_container, 1554 u16 *ctinfo_map, size_t mapsize, 1555 bool post_ct, u16 zone); 1556 void 1557 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1558 struct flow_dissector *flow_dissector, 1559 void *target_container); 1560 1561 void skb_flow_dissect_hash(const struct sk_buff *skb, 1562 struct flow_dissector *flow_dissector, 1563 void *target_container); 1564 1565 static inline __u32 skb_get_hash(struct sk_buff *skb) 1566 { 1567 if (!skb->l4_hash && !skb->sw_hash) 1568 __skb_get_hash(skb); 1569 1570 return skb->hash; 1571 } 1572 1573 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1574 { 1575 if (!skb->l4_hash && !skb->sw_hash) { 1576 struct flow_keys keys; 1577 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1578 1579 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1580 } 1581 1582 return skb->hash; 1583 } 1584 1585 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1586 const siphash_key_t *perturb); 1587 1588 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1589 { 1590 return skb->hash; 1591 } 1592 1593 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1594 { 1595 to->hash = from->hash; 1596 to->sw_hash = from->sw_hash; 1597 to->l4_hash = from->l4_hash; 1598 }; 1599 1600 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1601 const struct sk_buff *skb2) 1602 { 1603 #ifdef CONFIG_TLS_DEVICE 1604 return skb2->decrypted - skb1->decrypted; 1605 #else 1606 return 0; 1607 #endif 1608 } 1609 1610 static inline void skb_copy_decrypted(struct sk_buff *to, 1611 const struct sk_buff *from) 1612 { 1613 #ifdef CONFIG_TLS_DEVICE 1614 to->decrypted = from->decrypted; 1615 #endif 1616 } 1617 1618 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1619 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1620 { 1621 return skb->head + skb->end; 1622 } 1623 1624 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1625 { 1626 return skb->end; 1627 } 1628 1629 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1630 { 1631 skb->end = offset; 1632 } 1633 #else 1634 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1635 { 1636 return skb->end; 1637 } 1638 1639 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1640 { 1641 return skb->end - skb->head; 1642 } 1643 1644 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1645 { 1646 skb->end = skb->head + offset; 1647 } 1648 #endif 1649 1650 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1651 struct ubuf_info *uarg); 1652 1653 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1654 1655 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1656 bool success); 1657 1658 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1659 struct sk_buff *skb, struct iov_iter *from, 1660 size_t length); 1661 1662 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1663 struct msghdr *msg, int len) 1664 { 1665 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1666 } 1667 1668 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1669 struct msghdr *msg, int len, 1670 struct ubuf_info *uarg); 1671 1672 /* Internal */ 1673 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1674 1675 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1676 { 1677 return &skb_shinfo(skb)->hwtstamps; 1678 } 1679 1680 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1681 { 1682 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1683 1684 return is_zcopy ? skb_uarg(skb) : NULL; 1685 } 1686 1687 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1688 { 1689 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1690 } 1691 1692 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1693 { 1694 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1695 } 1696 1697 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1698 const struct sk_buff *skb2) 1699 { 1700 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1701 } 1702 1703 static inline void net_zcopy_get(struct ubuf_info *uarg) 1704 { 1705 refcount_inc(&uarg->refcnt); 1706 } 1707 1708 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1709 { 1710 skb_shinfo(skb)->destructor_arg = uarg; 1711 skb_shinfo(skb)->flags |= uarg->flags; 1712 } 1713 1714 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1715 bool *have_ref) 1716 { 1717 if (skb && uarg && !skb_zcopy(skb)) { 1718 if (unlikely(have_ref && *have_ref)) 1719 *have_ref = false; 1720 else 1721 net_zcopy_get(uarg); 1722 skb_zcopy_init(skb, uarg); 1723 } 1724 } 1725 1726 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1727 { 1728 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1729 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1730 } 1731 1732 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1733 { 1734 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1735 } 1736 1737 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1738 { 1739 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1740 } 1741 1742 static inline void net_zcopy_put(struct ubuf_info *uarg) 1743 { 1744 if (uarg) 1745 uarg->callback(NULL, uarg, true); 1746 } 1747 1748 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1749 { 1750 if (uarg) { 1751 if (uarg->callback == msg_zerocopy_callback) 1752 msg_zerocopy_put_abort(uarg, have_uref); 1753 else if (have_uref) 1754 net_zcopy_put(uarg); 1755 } 1756 } 1757 1758 /* Release a reference on a zerocopy structure */ 1759 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1760 { 1761 struct ubuf_info *uarg = skb_zcopy(skb); 1762 1763 if (uarg) { 1764 if (!skb_zcopy_is_nouarg(skb)) 1765 uarg->callback(skb, uarg, zerocopy_success); 1766 1767 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1768 } 1769 } 1770 1771 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1772 1773 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1774 { 1775 if (unlikely(skb_zcopy_managed(skb))) 1776 __skb_zcopy_downgrade_managed(skb); 1777 } 1778 1779 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1780 { 1781 skb->next = NULL; 1782 } 1783 1784 static inline void skb_poison_list(struct sk_buff *skb) 1785 { 1786 #ifdef CONFIG_DEBUG_NET 1787 skb->next = SKB_LIST_POISON_NEXT; 1788 #endif 1789 } 1790 1791 /* Iterate through singly-linked GSO fragments of an skb. */ 1792 #define skb_list_walk_safe(first, skb, next_skb) \ 1793 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1794 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1795 1796 static inline void skb_list_del_init(struct sk_buff *skb) 1797 { 1798 __list_del_entry(&skb->list); 1799 skb_mark_not_on_list(skb); 1800 } 1801 1802 /** 1803 * skb_queue_empty - check if a queue is empty 1804 * @list: queue head 1805 * 1806 * Returns true if the queue is empty, false otherwise. 1807 */ 1808 static inline int skb_queue_empty(const struct sk_buff_head *list) 1809 { 1810 return list->next == (const struct sk_buff *) list; 1811 } 1812 1813 /** 1814 * skb_queue_empty_lockless - check if a queue is empty 1815 * @list: queue head 1816 * 1817 * Returns true if the queue is empty, false otherwise. 1818 * This variant can be used in lockless contexts. 1819 */ 1820 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1821 { 1822 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1823 } 1824 1825 1826 /** 1827 * skb_queue_is_last - check if skb is the last entry in the queue 1828 * @list: queue head 1829 * @skb: buffer 1830 * 1831 * Returns true if @skb is the last buffer on the list. 1832 */ 1833 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1834 const struct sk_buff *skb) 1835 { 1836 return skb->next == (const struct sk_buff *) list; 1837 } 1838 1839 /** 1840 * skb_queue_is_first - check if skb is the first entry in the queue 1841 * @list: queue head 1842 * @skb: buffer 1843 * 1844 * Returns true if @skb is the first buffer on the list. 1845 */ 1846 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1847 const struct sk_buff *skb) 1848 { 1849 return skb->prev == (const struct sk_buff *) list; 1850 } 1851 1852 /** 1853 * skb_queue_next - return the next packet in the queue 1854 * @list: queue head 1855 * @skb: current buffer 1856 * 1857 * Return the next packet in @list after @skb. It is only valid to 1858 * call this if skb_queue_is_last() evaluates to false. 1859 */ 1860 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1861 const struct sk_buff *skb) 1862 { 1863 /* This BUG_ON may seem severe, but if we just return then we 1864 * are going to dereference garbage. 1865 */ 1866 BUG_ON(skb_queue_is_last(list, skb)); 1867 return skb->next; 1868 } 1869 1870 /** 1871 * skb_queue_prev - return the prev packet in the queue 1872 * @list: queue head 1873 * @skb: current buffer 1874 * 1875 * Return the prev packet in @list before @skb. It is only valid to 1876 * call this if skb_queue_is_first() evaluates to false. 1877 */ 1878 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1879 const struct sk_buff *skb) 1880 { 1881 /* This BUG_ON may seem severe, but if we just return then we 1882 * are going to dereference garbage. 1883 */ 1884 BUG_ON(skb_queue_is_first(list, skb)); 1885 return skb->prev; 1886 } 1887 1888 /** 1889 * skb_get - reference buffer 1890 * @skb: buffer to reference 1891 * 1892 * Makes another reference to a socket buffer and returns a pointer 1893 * to the buffer. 1894 */ 1895 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1896 { 1897 refcount_inc(&skb->users); 1898 return skb; 1899 } 1900 1901 /* 1902 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1903 */ 1904 1905 /** 1906 * skb_cloned - is the buffer a clone 1907 * @skb: buffer to check 1908 * 1909 * Returns true if the buffer was generated with skb_clone() and is 1910 * one of multiple shared copies of the buffer. Cloned buffers are 1911 * shared data so must not be written to under normal circumstances. 1912 */ 1913 static inline int skb_cloned(const struct sk_buff *skb) 1914 { 1915 return skb->cloned && 1916 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1917 } 1918 1919 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1920 { 1921 might_sleep_if(gfpflags_allow_blocking(pri)); 1922 1923 if (skb_cloned(skb)) 1924 return pskb_expand_head(skb, 0, 0, pri); 1925 1926 return 0; 1927 } 1928 1929 /* This variant of skb_unclone() makes sure skb->truesize 1930 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1931 * 1932 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1933 * when various debugging features are in place. 1934 */ 1935 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1936 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1937 { 1938 might_sleep_if(gfpflags_allow_blocking(pri)); 1939 1940 if (skb_cloned(skb)) 1941 return __skb_unclone_keeptruesize(skb, pri); 1942 return 0; 1943 } 1944 1945 /** 1946 * skb_header_cloned - is the header a clone 1947 * @skb: buffer to check 1948 * 1949 * Returns true if modifying the header part of the buffer requires 1950 * the data to be copied. 1951 */ 1952 static inline int skb_header_cloned(const struct sk_buff *skb) 1953 { 1954 int dataref; 1955 1956 if (!skb->cloned) 1957 return 0; 1958 1959 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1960 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1961 return dataref != 1; 1962 } 1963 1964 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1965 { 1966 might_sleep_if(gfpflags_allow_blocking(pri)); 1967 1968 if (skb_header_cloned(skb)) 1969 return pskb_expand_head(skb, 0, 0, pri); 1970 1971 return 0; 1972 } 1973 1974 /** 1975 * __skb_header_release() - allow clones to use the headroom 1976 * @skb: buffer to operate on 1977 * 1978 * See "DOC: dataref and headerless skbs". 1979 */ 1980 static inline void __skb_header_release(struct sk_buff *skb) 1981 { 1982 skb->nohdr = 1; 1983 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1984 } 1985 1986 1987 /** 1988 * skb_shared - is the buffer shared 1989 * @skb: buffer to check 1990 * 1991 * Returns true if more than one person has a reference to this 1992 * buffer. 1993 */ 1994 static inline int skb_shared(const struct sk_buff *skb) 1995 { 1996 return refcount_read(&skb->users) != 1; 1997 } 1998 1999 /** 2000 * skb_share_check - check if buffer is shared and if so clone it 2001 * @skb: buffer to check 2002 * @pri: priority for memory allocation 2003 * 2004 * If the buffer is shared the buffer is cloned and the old copy 2005 * drops a reference. A new clone with a single reference is returned. 2006 * If the buffer is not shared the original buffer is returned. When 2007 * being called from interrupt status or with spinlocks held pri must 2008 * be GFP_ATOMIC. 2009 * 2010 * NULL is returned on a memory allocation failure. 2011 */ 2012 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2013 { 2014 might_sleep_if(gfpflags_allow_blocking(pri)); 2015 if (skb_shared(skb)) { 2016 struct sk_buff *nskb = skb_clone(skb, pri); 2017 2018 if (likely(nskb)) 2019 consume_skb(skb); 2020 else 2021 kfree_skb(skb); 2022 skb = nskb; 2023 } 2024 return skb; 2025 } 2026 2027 /* 2028 * Copy shared buffers into a new sk_buff. We effectively do COW on 2029 * packets to handle cases where we have a local reader and forward 2030 * and a couple of other messy ones. The normal one is tcpdumping 2031 * a packet that's being forwarded. 2032 */ 2033 2034 /** 2035 * skb_unshare - make a copy of a shared buffer 2036 * @skb: buffer to check 2037 * @pri: priority for memory allocation 2038 * 2039 * If the socket buffer is a clone then this function creates a new 2040 * copy of the data, drops a reference count on the old copy and returns 2041 * the new copy with the reference count at 1. If the buffer is not a clone 2042 * the original buffer is returned. When called with a spinlock held or 2043 * from interrupt state @pri must be %GFP_ATOMIC 2044 * 2045 * %NULL is returned on a memory allocation failure. 2046 */ 2047 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2048 gfp_t pri) 2049 { 2050 might_sleep_if(gfpflags_allow_blocking(pri)); 2051 if (skb_cloned(skb)) { 2052 struct sk_buff *nskb = skb_copy(skb, pri); 2053 2054 /* Free our shared copy */ 2055 if (likely(nskb)) 2056 consume_skb(skb); 2057 else 2058 kfree_skb(skb); 2059 skb = nskb; 2060 } 2061 return skb; 2062 } 2063 2064 /** 2065 * skb_peek - peek at the head of an &sk_buff_head 2066 * @list_: list to peek at 2067 * 2068 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2069 * be careful with this one. A peek leaves the buffer on the 2070 * list and someone else may run off with it. You must hold 2071 * the appropriate locks or have a private queue to do this. 2072 * 2073 * Returns %NULL for an empty list or a pointer to the head element. 2074 * The reference count is not incremented and the reference is therefore 2075 * volatile. Use with caution. 2076 */ 2077 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2078 { 2079 struct sk_buff *skb = list_->next; 2080 2081 if (skb == (struct sk_buff *)list_) 2082 skb = NULL; 2083 return skb; 2084 } 2085 2086 /** 2087 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2088 * @list_: list to peek at 2089 * 2090 * Like skb_peek(), but the caller knows that the list is not empty. 2091 */ 2092 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2093 { 2094 return list_->next; 2095 } 2096 2097 /** 2098 * skb_peek_next - peek skb following the given one from a queue 2099 * @skb: skb to start from 2100 * @list_: list to peek at 2101 * 2102 * Returns %NULL when the end of the list is met or a pointer to the 2103 * next element. The reference count is not incremented and the 2104 * reference is therefore volatile. Use with caution. 2105 */ 2106 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2107 const struct sk_buff_head *list_) 2108 { 2109 struct sk_buff *next = skb->next; 2110 2111 if (next == (struct sk_buff *)list_) 2112 next = NULL; 2113 return next; 2114 } 2115 2116 /** 2117 * skb_peek_tail - peek at the tail of an &sk_buff_head 2118 * @list_: list to peek at 2119 * 2120 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2121 * be careful with this one. A peek leaves the buffer on the 2122 * list and someone else may run off with it. You must hold 2123 * the appropriate locks or have a private queue to do this. 2124 * 2125 * Returns %NULL for an empty list or a pointer to the tail element. 2126 * The reference count is not incremented and the reference is therefore 2127 * volatile. Use with caution. 2128 */ 2129 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2130 { 2131 struct sk_buff *skb = READ_ONCE(list_->prev); 2132 2133 if (skb == (struct sk_buff *)list_) 2134 skb = NULL; 2135 return skb; 2136 2137 } 2138 2139 /** 2140 * skb_queue_len - get queue length 2141 * @list_: list to measure 2142 * 2143 * Return the length of an &sk_buff queue. 2144 */ 2145 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2146 { 2147 return list_->qlen; 2148 } 2149 2150 /** 2151 * skb_queue_len_lockless - get queue length 2152 * @list_: list to measure 2153 * 2154 * Return the length of an &sk_buff queue. 2155 * This variant can be used in lockless contexts. 2156 */ 2157 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2158 { 2159 return READ_ONCE(list_->qlen); 2160 } 2161 2162 /** 2163 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2164 * @list: queue to initialize 2165 * 2166 * This initializes only the list and queue length aspects of 2167 * an sk_buff_head object. This allows to initialize the list 2168 * aspects of an sk_buff_head without reinitializing things like 2169 * the spinlock. It can also be used for on-stack sk_buff_head 2170 * objects where the spinlock is known to not be used. 2171 */ 2172 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2173 { 2174 list->prev = list->next = (struct sk_buff *)list; 2175 list->qlen = 0; 2176 } 2177 2178 /* 2179 * This function creates a split out lock class for each invocation; 2180 * this is needed for now since a whole lot of users of the skb-queue 2181 * infrastructure in drivers have different locking usage (in hardirq) 2182 * than the networking core (in softirq only). In the long run either the 2183 * network layer or drivers should need annotation to consolidate the 2184 * main types of usage into 3 classes. 2185 */ 2186 static inline void skb_queue_head_init(struct sk_buff_head *list) 2187 { 2188 spin_lock_init(&list->lock); 2189 __skb_queue_head_init(list); 2190 } 2191 2192 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2193 struct lock_class_key *class) 2194 { 2195 skb_queue_head_init(list); 2196 lockdep_set_class(&list->lock, class); 2197 } 2198 2199 /* 2200 * Insert an sk_buff on a list. 2201 * 2202 * The "__skb_xxxx()" functions are the non-atomic ones that 2203 * can only be called with interrupts disabled. 2204 */ 2205 static inline void __skb_insert(struct sk_buff *newsk, 2206 struct sk_buff *prev, struct sk_buff *next, 2207 struct sk_buff_head *list) 2208 { 2209 /* See skb_queue_empty_lockless() and skb_peek_tail() 2210 * for the opposite READ_ONCE() 2211 */ 2212 WRITE_ONCE(newsk->next, next); 2213 WRITE_ONCE(newsk->prev, prev); 2214 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2215 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2216 WRITE_ONCE(list->qlen, list->qlen + 1); 2217 } 2218 2219 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2220 struct sk_buff *prev, 2221 struct sk_buff *next) 2222 { 2223 struct sk_buff *first = list->next; 2224 struct sk_buff *last = list->prev; 2225 2226 WRITE_ONCE(first->prev, prev); 2227 WRITE_ONCE(prev->next, first); 2228 2229 WRITE_ONCE(last->next, next); 2230 WRITE_ONCE(next->prev, last); 2231 } 2232 2233 /** 2234 * skb_queue_splice - join two skb lists, this is designed for stacks 2235 * @list: the new list to add 2236 * @head: the place to add it in the first list 2237 */ 2238 static inline void skb_queue_splice(const struct sk_buff_head *list, 2239 struct sk_buff_head *head) 2240 { 2241 if (!skb_queue_empty(list)) { 2242 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2243 head->qlen += list->qlen; 2244 } 2245 } 2246 2247 /** 2248 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2249 * @list: the new list to add 2250 * @head: the place to add it in the first list 2251 * 2252 * The list at @list is reinitialised 2253 */ 2254 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2255 struct sk_buff_head *head) 2256 { 2257 if (!skb_queue_empty(list)) { 2258 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2259 head->qlen += list->qlen; 2260 __skb_queue_head_init(list); 2261 } 2262 } 2263 2264 /** 2265 * skb_queue_splice_tail - join two skb lists, each list being a queue 2266 * @list: the new list to add 2267 * @head: the place to add it in the first list 2268 */ 2269 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2270 struct sk_buff_head *head) 2271 { 2272 if (!skb_queue_empty(list)) { 2273 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2274 head->qlen += list->qlen; 2275 } 2276 } 2277 2278 /** 2279 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2280 * @list: the new list to add 2281 * @head: the place to add it in the first list 2282 * 2283 * Each of the lists is a queue. 2284 * The list at @list is reinitialised 2285 */ 2286 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2287 struct sk_buff_head *head) 2288 { 2289 if (!skb_queue_empty(list)) { 2290 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2291 head->qlen += list->qlen; 2292 __skb_queue_head_init(list); 2293 } 2294 } 2295 2296 /** 2297 * __skb_queue_after - queue a buffer at the list head 2298 * @list: list to use 2299 * @prev: place after this buffer 2300 * @newsk: buffer to queue 2301 * 2302 * Queue a buffer int the middle of a list. This function takes no locks 2303 * and you must therefore hold required locks before calling it. 2304 * 2305 * A buffer cannot be placed on two lists at the same time. 2306 */ 2307 static inline void __skb_queue_after(struct sk_buff_head *list, 2308 struct sk_buff *prev, 2309 struct sk_buff *newsk) 2310 { 2311 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2312 } 2313 2314 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2315 struct sk_buff_head *list); 2316 2317 static inline void __skb_queue_before(struct sk_buff_head *list, 2318 struct sk_buff *next, 2319 struct sk_buff *newsk) 2320 { 2321 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2322 } 2323 2324 /** 2325 * __skb_queue_head - queue a buffer at the list head 2326 * @list: list to use 2327 * @newsk: buffer to queue 2328 * 2329 * Queue a buffer at the start of a list. This function takes no locks 2330 * and you must therefore hold required locks before calling it. 2331 * 2332 * A buffer cannot be placed on two lists at the same time. 2333 */ 2334 static inline void __skb_queue_head(struct sk_buff_head *list, 2335 struct sk_buff *newsk) 2336 { 2337 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2338 } 2339 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2340 2341 /** 2342 * __skb_queue_tail - queue a buffer at the list tail 2343 * @list: list to use 2344 * @newsk: buffer to queue 2345 * 2346 * Queue a buffer at the end of a list. This function takes no locks 2347 * and you must therefore hold required locks before calling it. 2348 * 2349 * A buffer cannot be placed on two lists at the same time. 2350 */ 2351 static inline void __skb_queue_tail(struct sk_buff_head *list, 2352 struct sk_buff *newsk) 2353 { 2354 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2355 } 2356 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2357 2358 /* 2359 * remove sk_buff from list. _Must_ be called atomically, and with 2360 * the list known.. 2361 */ 2362 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2363 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2364 { 2365 struct sk_buff *next, *prev; 2366 2367 WRITE_ONCE(list->qlen, list->qlen - 1); 2368 next = skb->next; 2369 prev = skb->prev; 2370 skb->next = skb->prev = NULL; 2371 WRITE_ONCE(next->prev, prev); 2372 WRITE_ONCE(prev->next, next); 2373 } 2374 2375 /** 2376 * __skb_dequeue - remove from the head of the queue 2377 * @list: list to dequeue from 2378 * 2379 * Remove the head of the list. This function does not take any locks 2380 * so must be used with appropriate locks held only. The head item is 2381 * returned or %NULL if the list is empty. 2382 */ 2383 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2384 { 2385 struct sk_buff *skb = skb_peek(list); 2386 if (skb) 2387 __skb_unlink(skb, list); 2388 return skb; 2389 } 2390 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2391 2392 /** 2393 * __skb_dequeue_tail - remove from the tail of the queue 2394 * @list: list to dequeue from 2395 * 2396 * Remove the tail of the list. This function does not take any locks 2397 * so must be used with appropriate locks held only. The tail item is 2398 * returned or %NULL if the list is empty. 2399 */ 2400 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2401 { 2402 struct sk_buff *skb = skb_peek_tail(list); 2403 if (skb) 2404 __skb_unlink(skb, list); 2405 return skb; 2406 } 2407 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2408 2409 2410 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2411 { 2412 return skb->data_len; 2413 } 2414 2415 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2416 { 2417 return skb->len - skb->data_len; 2418 } 2419 2420 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2421 { 2422 unsigned int i, len = 0; 2423 2424 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2425 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2426 return len; 2427 } 2428 2429 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2430 { 2431 return skb_headlen(skb) + __skb_pagelen(skb); 2432 } 2433 2434 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2435 struct page *page, 2436 int off, int size) 2437 { 2438 frag->bv_page = page; 2439 frag->bv_offset = off; 2440 skb_frag_size_set(frag, size); 2441 } 2442 2443 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2444 int i, struct page *page, 2445 int off, int size) 2446 { 2447 skb_frag_t *frag = &shinfo->frags[i]; 2448 2449 skb_frag_fill_page_desc(frag, page, off, size); 2450 } 2451 2452 /** 2453 * skb_len_add - adds a number to len fields of skb 2454 * @skb: buffer to add len to 2455 * @delta: number of bytes to add 2456 */ 2457 static inline void skb_len_add(struct sk_buff *skb, int delta) 2458 { 2459 skb->len += delta; 2460 skb->data_len += delta; 2461 skb->truesize += delta; 2462 } 2463 2464 /** 2465 * __skb_fill_page_desc - initialise a paged fragment in an skb 2466 * @skb: buffer containing fragment to be initialised 2467 * @i: paged fragment index to initialise 2468 * @page: the page to use for this fragment 2469 * @off: the offset to the data with @page 2470 * @size: the length of the data 2471 * 2472 * Initialises the @i'th fragment of @skb to point to &size bytes at 2473 * offset @off within @page. 2474 * 2475 * Does not take any additional reference on the fragment. 2476 */ 2477 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2478 struct page *page, int off, int size) 2479 { 2480 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2481 2482 /* Propagate page pfmemalloc to the skb if we can. The problem is 2483 * that not all callers have unique ownership of the page but rely 2484 * on page_is_pfmemalloc doing the right thing(tm). 2485 */ 2486 page = compound_head(page); 2487 if (page_is_pfmemalloc(page)) 2488 skb->pfmemalloc = true; 2489 } 2490 2491 /** 2492 * skb_fill_page_desc - initialise a paged fragment in an skb 2493 * @skb: buffer containing fragment to be initialised 2494 * @i: paged fragment index to initialise 2495 * @page: the page to use for this fragment 2496 * @off: the offset to the data with @page 2497 * @size: the length of the data 2498 * 2499 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2500 * @skb to point to @size bytes at offset @off within @page. In 2501 * addition updates @skb such that @i is the last fragment. 2502 * 2503 * Does not take any additional reference on the fragment. 2504 */ 2505 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2506 struct page *page, int off, int size) 2507 { 2508 __skb_fill_page_desc(skb, i, page, off, size); 2509 skb_shinfo(skb)->nr_frags = i + 1; 2510 } 2511 2512 /** 2513 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2514 * @skb: buffer containing fragment to be initialised 2515 * @i: paged fragment index to initialise 2516 * @page: the page to use for this fragment 2517 * @off: the offset to the data with @page 2518 * @size: the length of the data 2519 * 2520 * Variant of skb_fill_page_desc() which does not deal with 2521 * pfmemalloc, if page is not owned by us. 2522 */ 2523 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2524 struct page *page, int off, 2525 int size) 2526 { 2527 struct skb_shared_info *shinfo = skb_shinfo(skb); 2528 2529 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2530 shinfo->nr_frags = i + 1; 2531 } 2532 2533 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2534 int size, unsigned int truesize); 2535 2536 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2537 unsigned int truesize); 2538 2539 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2540 2541 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2542 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2543 { 2544 return skb->head + skb->tail; 2545 } 2546 2547 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2548 { 2549 skb->tail = skb->data - skb->head; 2550 } 2551 2552 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2553 { 2554 skb_reset_tail_pointer(skb); 2555 skb->tail += offset; 2556 } 2557 2558 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2559 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2560 { 2561 return skb->tail; 2562 } 2563 2564 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2565 { 2566 skb->tail = skb->data; 2567 } 2568 2569 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2570 { 2571 skb->tail = skb->data + offset; 2572 } 2573 2574 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2575 2576 static inline void skb_assert_len(struct sk_buff *skb) 2577 { 2578 #ifdef CONFIG_DEBUG_NET 2579 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2580 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2581 #endif /* CONFIG_DEBUG_NET */ 2582 } 2583 2584 /* 2585 * Add data to an sk_buff 2586 */ 2587 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2588 void *skb_put(struct sk_buff *skb, unsigned int len); 2589 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2590 { 2591 void *tmp = skb_tail_pointer(skb); 2592 SKB_LINEAR_ASSERT(skb); 2593 skb->tail += len; 2594 skb->len += len; 2595 return tmp; 2596 } 2597 2598 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2599 { 2600 void *tmp = __skb_put(skb, len); 2601 2602 memset(tmp, 0, len); 2603 return tmp; 2604 } 2605 2606 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2607 unsigned int len) 2608 { 2609 void *tmp = __skb_put(skb, len); 2610 2611 memcpy(tmp, data, len); 2612 return tmp; 2613 } 2614 2615 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2616 { 2617 *(u8 *)__skb_put(skb, 1) = val; 2618 } 2619 2620 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2621 { 2622 void *tmp = skb_put(skb, len); 2623 2624 memset(tmp, 0, len); 2625 2626 return tmp; 2627 } 2628 2629 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2630 unsigned int len) 2631 { 2632 void *tmp = skb_put(skb, len); 2633 2634 memcpy(tmp, data, len); 2635 2636 return tmp; 2637 } 2638 2639 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2640 { 2641 *(u8 *)skb_put(skb, 1) = val; 2642 } 2643 2644 void *skb_push(struct sk_buff *skb, unsigned int len); 2645 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2646 { 2647 skb->data -= len; 2648 skb->len += len; 2649 return skb->data; 2650 } 2651 2652 void *skb_pull(struct sk_buff *skb, unsigned int len); 2653 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2654 { 2655 skb->len -= len; 2656 if (unlikely(skb->len < skb->data_len)) { 2657 #if defined(CONFIG_DEBUG_NET) 2658 skb->len += len; 2659 pr_err("__skb_pull(len=%u)\n", len); 2660 skb_dump(KERN_ERR, skb, false); 2661 #endif 2662 BUG(); 2663 } 2664 return skb->data += len; 2665 } 2666 2667 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2668 { 2669 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2670 } 2671 2672 void *skb_pull_data(struct sk_buff *skb, size_t len); 2673 2674 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2675 2676 static inline enum skb_drop_reason 2677 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2678 { 2679 if (likely(len <= skb_headlen(skb))) 2680 return SKB_NOT_DROPPED_YET; 2681 2682 if (unlikely(len > skb->len)) 2683 return SKB_DROP_REASON_PKT_TOO_SMALL; 2684 2685 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2686 return SKB_DROP_REASON_NOMEM; 2687 2688 return SKB_NOT_DROPPED_YET; 2689 } 2690 2691 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2692 { 2693 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2694 } 2695 2696 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2697 { 2698 if (!pskb_may_pull(skb, len)) 2699 return NULL; 2700 2701 skb->len -= len; 2702 return skb->data += len; 2703 } 2704 2705 void skb_condense(struct sk_buff *skb); 2706 2707 /** 2708 * skb_headroom - bytes at buffer head 2709 * @skb: buffer to check 2710 * 2711 * Return the number of bytes of free space at the head of an &sk_buff. 2712 */ 2713 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2714 { 2715 return skb->data - skb->head; 2716 } 2717 2718 /** 2719 * skb_tailroom - bytes at buffer end 2720 * @skb: buffer to check 2721 * 2722 * Return the number of bytes of free space at the tail of an sk_buff 2723 */ 2724 static inline int skb_tailroom(const struct sk_buff *skb) 2725 { 2726 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2727 } 2728 2729 /** 2730 * skb_availroom - bytes at buffer end 2731 * @skb: buffer to check 2732 * 2733 * Return the number of bytes of free space at the tail of an sk_buff 2734 * allocated by sk_stream_alloc() 2735 */ 2736 static inline int skb_availroom(const struct sk_buff *skb) 2737 { 2738 if (skb_is_nonlinear(skb)) 2739 return 0; 2740 2741 return skb->end - skb->tail - skb->reserved_tailroom; 2742 } 2743 2744 /** 2745 * skb_reserve - adjust headroom 2746 * @skb: buffer to alter 2747 * @len: bytes to move 2748 * 2749 * Increase the headroom of an empty &sk_buff by reducing the tail 2750 * room. This is only allowed for an empty buffer. 2751 */ 2752 static inline void skb_reserve(struct sk_buff *skb, int len) 2753 { 2754 skb->data += len; 2755 skb->tail += len; 2756 } 2757 2758 /** 2759 * skb_tailroom_reserve - adjust reserved_tailroom 2760 * @skb: buffer to alter 2761 * @mtu: maximum amount of headlen permitted 2762 * @needed_tailroom: minimum amount of reserved_tailroom 2763 * 2764 * Set reserved_tailroom so that headlen can be as large as possible but 2765 * not larger than mtu and tailroom cannot be smaller than 2766 * needed_tailroom. 2767 * The required headroom should already have been reserved before using 2768 * this function. 2769 */ 2770 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2771 unsigned int needed_tailroom) 2772 { 2773 SKB_LINEAR_ASSERT(skb); 2774 if (mtu < skb_tailroom(skb) - needed_tailroom) 2775 /* use at most mtu */ 2776 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2777 else 2778 /* use up to all available space */ 2779 skb->reserved_tailroom = needed_tailroom; 2780 } 2781 2782 #define ENCAP_TYPE_ETHER 0 2783 #define ENCAP_TYPE_IPPROTO 1 2784 2785 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2786 __be16 protocol) 2787 { 2788 skb->inner_protocol = protocol; 2789 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2790 } 2791 2792 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2793 __u8 ipproto) 2794 { 2795 skb->inner_ipproto = ipproto; 2796 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2797 } 2798 2799 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2800 { 2801 skb->inner_mac_header = skb->mac_header; 2802 skb->inner_network_header = skb->network_header; 2803 skb->inner_transport_header = skb->transport_header; 2804 } 2805 2806 static inline void skb_reset_mac_len(struct sk_buff *skb) 2807 { 2808 skb->mac_len = skb->network_header - skb->mac_header; 2809 } 2810 2811 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2812 *skb) 2813 { 2814 return skb->head + skb->inner_transport_header; 2815 } 2816 2817 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2818 { 2819 return skb_inner_transport_header(skb) - skb->data; 2820 } 2821 2822 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2823 { 2824 skb->inner_transport_header = skb->data - skb->head; 2825 } 2826 2827 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2828 const int offset) 2829 { 2830 skb_reset_inner_transport_header(skb); 2831 skb->inner_transport_header += offset; 2832 } 2833 2834 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2835 { 2836 return skb->head + skb->inner_network_header; 2837 } 2838 2839 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2840 { 2841 skb->inner_network_header = skb->data - skb->head; 2842 } 2843 2844 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2845 const int offset) 2846 { 2847 skb_reset_inner_network_header(skb); 2848 skb->inner_network_header += offset; 2849 } 2850 2851 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2852 { 2853 return skb->head + skb->inner_mac_header; 2854 } 2855 2856 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2857 { 2858 skb->inner_mac_header = skb->data - skb->head; 2859 } 2860 2861 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2862 const int offset) 2863 { 2864 skb_reset_inner_mac_header(skb); 2865 skb->inner_mac_header += offset; 2866 } 2867 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2868 { 2869 return skb->transport_header != (typeof(skb->transport_header))~0U; 2870 } 2871 2872 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2873 { 2874 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2875 return skb->head + skb->transport_header; 2876 } 2877 2878 static inline void skb_reset_transport_header(struct sk_buff *skb) 2879 { 2880 skb->transport_header = skb->data - skb->head; 2881 } 2882 2883 static inline void skb_set_transport_header(struct sk_buff *skb, 2884 const int offset) 2885 { 2886 skb_reset_transport_header(skb); 2887 skb->transport_header += offset; 2888 } 2889 2890 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2891 { 2892 return skb->head + skb->network_header; 2893 } 2894 2895 static inline void skb_reset_network_header(struct sk_buff *skb) 2896 { 2897 skb->network_header = skb->data - skb->head; 2898 } 2899 2900 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2901 { 2902 skb_reset_network_header(skb); 2903 skb->network_header += offset; 2904 } 2905 2906 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2907 { 2908 return skb->mac_header != (typeof(skb->mac_header))~0U; 2909 } 2910 2911 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2912 { 2913 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2914 return skb->head + skb->mac_header; 2915 } 2916 2917 static inline int skb_mac_offset(const struct sk_buff *skb) 2918 { 2919 return skb_mac_header(skb) - skb->data; 2920 } 2921 2922 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2923 { 2924 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2925 return skb->network_header - skb->mac_header; 2926 } 2927 2928 static inline void skb_unset_mac_header(struct sk_buff *skb) 2929 { 2930 skb->mac_header = (typeof(skb->mac_header))~0U; 2931 } 2932 2933 static inline void skb_reset_mac_header(struct sk_buff *skb) 2934 { 2935 skb->mac_header = skb->data - skb->head; 2936 } 2937 2938 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2939 { 2940 skb_reset_mac_header(skb); 2941 skb->mac_header += offset; 2942 } 2943 2944 static inline void skb_pop_mac_header(struct sk_buff *skb) 2945 { 2946 skb->mac_header = skb->network_header; 2947 } 2948 2949 static inline void skb_probe_transport_header(struct sk_buff *skb) 2950 { 2951 struct flow_keys_basic keys; 2952 2953 if (skb_transport_header_was_set(skb)) 2954 return; 2955 2956 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2957 NULL, 0, 0, 0, 0)) 2958 skb_set_transport_header(skb, keys.control.thoff); 2959 } 2960 2961 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2962 { 2963 if (skb_mac_header_was_set(skb)) { 2964 const unsigned char *old_mac = skb_mac_header(skb); 2965 2966 skb_set_mac_header(skb, -skb->mac_len); 2967 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2968 } 2969 } 2970 2971 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2972 { 2973 return skb->csum_start - skb_headroom(skb); 2974 } 2975 2976 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2977 { 2978 return skb->head + skb->csum_start; 2979 } 2980 2981 static inline int skb_transport_offset(const struct sk_buff *skb) 2982 { 2983 return skb_transport_header(skb) - skb->data; 2984 } 2985 2986 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2987 { 2988 return skb->transport_header - skb->network_header; 2989 } 2990 2991 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2992 { 2993 return skb->inner_transport_header - skb->inner_network_header; 2994 } 2995 2996 static inline int skb_network_offset(const struct sk_buff *skb) 2997 { 2998 return skb_network_header(skb) - skb->data; 2999 } 3000 3001 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3002 { 3003 return skb_inner_network_header(skb) - skb->data; 3004 } 3005 3006 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3007 { 3008 return pskb_may_pull(skb, skb_network_offset(skb) + len); 3009 } 3010 3011 /* 3012 * CPUs often take a performance hit when accessing unaligned memory 3013 * locations. The actual performance hit varies, it can be small if the 3014 * hardware handles it or large if we have to take an exception and fix it 3015 * in software. 3016 * 3017 * Since an ethernet header is 14 bytes network drivers often end up with 3018 * the IP header at an unaligned offset. The IP header can be aligned by 3019 * shifting the start of the packet by 2 bytes. Drivers should do this 3020 * with: 3021 * 3022 * skb_reserve(skb, NET_IP_ALIGN); 3023 * 3024 * The downside to this alignment of the IP header is that the DMA is now 3025 * unaligned. On some architectures the cost of an unaligned DMA is high 3026 * and this cost outweighs the gains made by aligning the IP header. 3027 * 3028 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3029 * to be overridden. 3030 */ 3031 #ifndef NET_IP_ALIGN 3032 #define NET_IP_ALIGN 2 3033 #endif 3034 3035 /* 3036 * The networking layer reserves some headroom in skb data (via 3037 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3038 * the header has to grow. In the default case, if the header has to grow 3039 * 32 bytes or less we avoid the reallocation. 3040 * 3041 * Unfortunately this headroom changes the DMA alignment of the resulting 3042 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3043 * on some architectures. An architecture can override this value, 3044 * perhaps setting it to a cacheline in size (since that will maintain 3045 * cacheline alignment of the DMA). It must be a power of 2. 3046 * 3047 * Various parts of the networking layer expect at least 32 bytes of 3048 * headroom, you should not reduce this. 3049 * 3050 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3051 * to reduce average number of cache lines per packet. 3052 * get_rps_cpu() for example only access one 64 bytes aligned block : 3053 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3054 */ 3055 #ifndef NET_SKB_PAD 3056 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3057 #endif 3058 3059 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3060 3061 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3062 { 3063 if (WARN_ON(skb_is_nonlinear(skb))) 3064 return; 3065 skb->len = len; 3066 skb_set_tail_pointer(skb, len); 3067 } 3068 3069 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3070 { 3071 __skb_set_length(skb, len); 3072 } 3073 3074 void skb_trim(struct sk_buff *skb, unsigned int len); 3075 3076 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3077 { 3078 if (skb->data_len) 3079 return ___pskb_trim(skb, len); 3080 __skb_trim(skb, len); 3081 return 0; 3082 } 3083 3084 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3085 { 3086 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3087 } 3088 3089 /** 3090 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3091 * @skb: buffer to alter 3092 * @len: new length 3093 * 3094 * This is identical to pskb_trim except that the caller knows that 3095 * the skb is not cloned so we should never get an error due to out- 3096 * of-memory. 3097 */ 3098 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3099 { 3100 int err = pskb_trim(skb, len); 3101 BUG_ON(err); 3102 } 3103 3104 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3105 { 3106 unsigned int diff = len - skb->len; 3107 3108 if (skb_tailroom(skb) < diff) { 3109 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3110 GFP_ATOMIC); 3111 if (ret) 3112 return ret; 3113 } 3114 __skb_set_length(skb, len); 3115 return 0; 3116 } 3117 3118 /** 3119 * skb_orphan - orphan a buffer 3120 * @skb: buffer to orphan 3121 * 3122 * If a buffer currently has an owner then we call the owner's 3123 * destructor function and make the @skb unowned. The buffer continues 3124 * to exist but is no longer charged to its former owner. 3125 */ 3126 static inline void skb_orphan(struct sk_buff *skb) 3127 { 3128 if (skb->destructor) { 3129 skb->destructor(skb); 3130 skb->destructor = NULL; 3131 skb->sk = NULL; 3132 } else { 3133 BUG_ON(skb->sk); 3134 } 3135 } 3136 3137 /** 3138 * skb_orphan_frags - orphan the frags contained in a buffer 3139 * @skb: buffer to orphan frags from 3140 * @gfp_mask: allocation mask for replacement pages 3141 * 3142 * For each frag in the SKB which needs a destructor (i.e. has an 3143 * owner) create a copy of that frag and release the original 3144 * page by calling the destructor. 3145 */ 3146 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3147 { 3148 if (likely(!skb_zcopy(skb))) 3149 return 0; 3150 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3151 return 0; 3152 return skb_copy_ubufs(skb, gfp_mask); 3153 } 3154 3155 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3156 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3157 { 3158 if (likely(!skb_zcopy(skb))) 3159 return 0; 3160 return skb_copy_ubufs(skb, gfp_mask); 3161 } 3162 3163 /** 3164 * __skb_queue_purge_reason - empty a list 3165 * @list: list to empty 3166 * @reason: drop reason 3167 * 3168 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3169 * the list and one reference dropped. This function does not take the 3170 * list lock and the caller must hold the relevant locks to use it. 3171 */ 3172 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3173 enum skb_drop_reason reason) 3174 { 3175 struct sk_buff *skb; 3176 3177 while ((skb = __skb_dequeue(list)) != NULL) 3178 kfree_skb_reason(skb, reason); 3179 } 3180 3181 static inline void __skb_queue_purge(struct sk_buff_head *list) 3182 { 3183 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3184 } 3185 3186 void skb_queue_purge_reason(struct sk_buff_head *list, 3187 enum skb_drop_reason reason); 3188 3189 static inline void skb_queue_purge(struct sk_buff_head *list) 3190 { 3191 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3192 } 3193 3194 unsigned int skb_rbtree_purge(struct rb_root *root); 3195 void skb_errqueue_purge(struct sk_buff_head *list); 3196 3197 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3198 3199 /** 3200 * netdev_alloc_frag - allocate a page fragment 3201 * @fragsz: fragment size 3202 * 3203 * Allocates a frag from a page for receive buffer. 3204 * Uses GFP_ATOMIC allocations. 3205 */ 3206 static inline void *netdev_alloc_frag(unsigned int fragsz) 3207 { 3208 return __netdev_alloc_frag_align(fragsz, ~0u); 3209 } 3210 3211 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3212 unsigned int align) 3213 { 3214 WARN_ON_ONCE(!is_power_of_2(align)); 3215 return __netdev_alloc_frag_align(fragsz, -align); 3216 } 3217 3218 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3219 gfp_t gfp_mask); 3220 3221 /** 3222 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3223 * @dev: network device to receive on 3224 * @length: length to allocate 3225 * 3226 * Allocate a new &sk_buff and assign it a usage count of one. The 3227 * buffer has unspecified headroom built in. Users should allocate 3228 * the headroom they think they need without accounting for the 3229 * built in space. The built in space is used for optimisations. 3230 * 3231 * %NULL is returned if there is no free memory. Although this function 3232 * allocates memory it can be called from an interrupt. 3233 */ 3234 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3235 unsigned int length) 3236 { 3237 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3238 } 3239 3240 /* legacy helper around __netdev_alloc_skb() */ 3241 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3242 gfp_t gfp_mask) 3243 { 3244 return __netdev_alloc_skb(NULL, length, gfp_mask); 3245 } 3246 3247 /* legacy helper around netdev_alloc_skb() */ 3248 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3249 { 3250 return netdev_alloc_skb(NULL, length); 3251 } 3252 3253 3254 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3255 unsigned int length, gfp_t gfp) 3256 { 3257 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3258 3259 if (NET_IP_ALIGN && skb) 3260 skb_reserve(skb, NET_IP_ALIGN); 3261 return skb; 3262 } 3263 3264 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3265 unsigned int length) 3266 { 3267 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3268 } 3269 3270 static inline void skb_free_frag(void *addr) 3271 { 3272 page_frag_free(addr); 3273 } 3274 3275 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3276 3277 static inline void *napi_alloc_frag(unsigned int fragsz) 3278 { 3279 return __napi_alloc_frag_align(fragsz, ~0u); 3280 } 3281 3282 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3283 unsigned int align) 3284 { 3285 WARN_ON_ONCE(!is_power_of_2(align)); 3286 return __napi_alloc_frag_align(fragsz, -align); 3287 } 3288 3289 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3290 unsigned int length, gfp_t gfp_mask); 3291 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3292 unsigned int length) 3293 { 3294 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3295 } 3296 void napi_consume_skb(struct sk_buff *skb, int budget); 3297 3298 void napi_skb_free_stolen_head(struct sk_buff *skb); 3299 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3300 3301 /** 3302 * __dev_alloc_pages - allocate page for network Rx 3303 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3304 * @order: size of the allocation 3305 * 3306 * Allocate a new page. 3307 * 3308 * %NULL is returned if there is no free memory. 3309 */ 3310 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3311 unsigned int order) 3312 { 3313 /* This piece of code contains several assumptions. 3314 * 1. This is for device Rx, therefore a cold page is preferred. 3315 * 2. The expectation is the user wants a compound page. 3316 * 3. If requesting a order 0 page it will not be compound 3317 * due to the check to see if order has a value in prep_new_page 3318 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3319 * code in gfp_to_alloc_flags that should be enforcing this. 3320 */ 3321 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3322 3323 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3324 } 3325 3326 static inline struct page *dev_alloc_pages(unsigned int order) 3327 { 3328 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3329 } 3330 3331 /** 3332 * __dev_alloc_page - allocate a page for network Rx 3333 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3334 * 3335 * Allocate a new page. 3336 * 3337 * %NULL is returned if there is no free memory. 3338 */ 3339 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3340 { 3341 return __dev_alloc_pages(gfp_mask, 0); 3342 } 3343 3344 static inline struct page *dev_alloc_page(void) 3345 { 3346 return dev_alloc_pages(0); 3347 } 3348 3349 /** 3350 * dev_page_is_reusable - check whether a page can be reused for network Rx 3351 * @page: the page to test 3352 * 3353 * A page shouldn't be considered for reusing/recycling if it was allocated 3354 * under memory pressure or at a distant memory node. 3355 * 3356 * Returns false if this page should be returned to page allocator, true 3357 * otherwise. 3358 */ 3359 static inline bool dev_page_is_reusable(const struct page *page) 3360 { 3361 return likely(page_to_nid(page) == numa_mem_id() && 3362 !page_is_pfmemalloc(page)); 3363 } 3364 3365 /** 3366 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3367 * @page: The page that was allocated from skb_alloc_page 3368 * @skb: The skb that may need pfmemalloc set 3369 */ 3370 static inline void skb_propagate_pfmemalloc(const struct page *page, 3371 struct sk_buff *skb) 3372 { 3373 if (page_is_pfmemalloc(page)) 3374 skb->pfmemalloc = true; 3375 } 3376 3377 /** 3378 * skb_frag_off() - Returns the offset of a skb fragment 3379 * @frag: the paged fragment 3380 */ 3381 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3382 { 3383 return frag->bv_offset; 3384 } 3385 3386 /** 3387 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3388 * @frag: skb fragment 3389 * @delta: value to add 3390 */ 3391 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3392 { 3393 frag->bv_offset += delta; 3394 } 3395 3396 /** 3397 * skb_frag_off_set() - Sets the offset of a skb fragment 3398 * @frag: skb fragment 3399 * @offset: offset of fragment 3400 */ 3401 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3402 { 3403 frag->bv_offset = offset; 3404 } 3405 3406 /** 3407 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3408 * @fragto: skb fragment where offset is set 3409 * @fragfrom: skb fragment offset is copied from 3410 */ 3411 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3412 const skb_frag_t *fragfrom) 3413 { 3414 fragto->bv_offset = fragfrom->bv_offset; 3415 } 3416 3417 /** 3418 * skb_frag_page - retrieve the page referred to by a paged fragment 3419 * @frag: the paged fragment 3420 * 3421 * Returns the &struct page associated with @frag. 3422 */ 3423 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3424 { 3425 return frag->bv_page; 3426 } 3427 3428 /** 3429 * __skb_frag_ref - take an addition reference on a paged fragment. 3430 * @frag: the paged fragment 3431 * 3432 * Takes an additional reference on the paged fragment @frag. 3433 */ 3434 static inline void __skb_frag_ref(skb_frag_t *frag) 3435 { 3436 get_page(skb_frag_page(frag)); 3437 } 3438 3439 /** 3440 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3441 * @skb: the buffer 3442 * @f: the fragment offset. 3443 * 3444 * Takes an additional reference on the @f'th paged fragment of @skb. 3445 */ 3446 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3447 { 3448 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3449 } 3450 3451 bool napi_pp_put_page(struct page *page, bool napi_safe); 3452 3453 static inline void 3454 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe) 3455 { 3456 struct page *page = skb_frag_page(frag); 3457 3458 #ifdef CONFIG_PAGE_POOL 3459 if (recycle && napi_pp_put_page(page, napi_safe)) 3460 return; 3461 #endif 3462 put_page(page); 3463 } 3464 3465 /** 3466 * __skb_frag_unref - release a reference on a paged fragment. 3467 * @frag: the paged fragment 3468 * @recycle: recycle the page if allocated via page_pool 3469 * 3470 * Releases a reference on the paged fragment @frag 3471 * or recycles the page via the page_pool API. 3472 */ 3473 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3474 { 3475 napi_frag_unref(frag, recycle, false); 3476 } 3477 3478 /** 3479 * skb_frag_unref - release a reference on a paged fragment of an skb. 3480 * @skb: the buffer 3481 * @f: the fragment offset 3482 * 3483 * Releases a reference on the @f'th paged fragment of @skb. 3484 */ 3485 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3486 { 3487 struct skb_shared_info *shinfo = skb_shinfo(skb); 3488 3489 if (!skb_zcopy_managed(skb)) 3490 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3491 } 3492 3493 /** 3494 * skb_frag_address - gets the address of the data contained in a paged fragment 3495 * @frag: the paged fragment buffer 3496 * 3497 * Returns the address of the data within @frag. The page must already 3498 * be mapped. 3499 */ 3500 static inline void *skb_frag_address(const skb_frag_t *frag) 3501 { 3502 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3503 } 3504 3505 /** 3506 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3507 * @frag: the paged fragment buffer 3508 * 3509 * Returns the address of the data within @frag. Checks that the page 3510 * is mapped and returns %NULL otherwise. 3511 */ 3512 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3513 { 3514 void *ptr = page_address(skb_frag_page(frag)); 3515 if (unlikely(!ptr)) 3516 return NULL; 3517 3518 return ptr + skb_frag_off(frag); 3519 } 3520 3521 /** 3522 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3523 * @fragto: skb fragment where page is set 3524 * @fragfrom: skb fragment page is copied from 3525 */ 3526 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3527 const skb_frag_t *fragfrom) 3528 { 3529 fragto->bv_page = fragfrom->bv_page; 3530 } 3531 3532 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3533 3534 /** 3535 * skb_frag_dma_map - maps a paged fragment via the DMA API 3536 * @dev: the device to map the fragment to 3537 * @frag: the paged fragment to map 3538 * @offset: the offset within the fragment (starting at the 3539 * fragment's own offset) 3540 * @size: the number of bytes to map 3541 * @dir: the direction of the mapping (``PCI_DMA_*``) 3542 * 3543 * Maps the page associated with @frag to @device. 3544 */ 3545 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3546 const skb_frag_t *frag, 3547 size_t offset, size_t size, 3548 enum dma_data_direction dir) 3549 { 3550 return dma_map_page(dev, skb_frag_page(frag), 3551 skb_frag_off(frag) + offset, size, dir); 3552 } 3553 3554 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3555 gfp_t gfp_mask) 3556 { 3557 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3558 } 3559 3560 3561 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3562 gfp_t gfp_mask) 3563 { 3564 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3565 } 3566 3567 3568 /** 3569 * skb_clone_writable - is the header of a clone writable 3570 * @skb: buffer to check 3571 * @len: length up to which to write 3572 * 3573 * Returns true if modifying the header part of the cloned buffer 3574 * does not requires the data to be copied. 3575 */ 3576 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3577 { 3578 return !skb_header_cloned(skb) && 3579 skb_headroom(skb) + len <= skb->hdr_len; 3580 } 3581 3582 static inline int skb_try_make_writable(struct sk_buff *skb, 3583 unsigned int write_len) 3584 { 3585 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3586 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3587 } 3588 3589 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3590 int cloned) 3591 { 3592 int delta = 0; 3593 3594 if (headroom > skb_headroom(skb)) 3595 delta = headroom - skb_headroom(skb); 3596 3597 if (delta || cloned) 3598 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3599 GFP_ATOMIC); 3600 return 0; 3601 } 3602 3603 /** 3604 * skb_cow - copy header of skb when it is required 3605 * @skb: buffer to cow 3606 * @headroom: needed headroom 3607 * 3608 * If the skb passed lacks sufficient headroom or its data part 3609 * is shared, data is reallocated. If reallocation fails, an error 3610 * is returned and original skb is not changed. 3611 * 3612 * The result is skb with writable area skb->head...skb->tail 3613 * and at least @headroom of space at head. 3614 */ 3615 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3616 { 3617 return __skb_cow(skb, headroom, skb_cloned(skb)); 3618 } 3619 3620 /** 3621 * skb_cow_head - skb_cow but only making the head writable 3622 * @skb: buffer to cow 3623 * @headroom: needed headroom 3624 * 3625 * This function is identical to skb_cow except that we replace the 3626 * skb_cloned check by skb_header_cloned. It should be used when 3627 * you only need to push on some header and do not need to modify 3628 * the data. 3629 */ 3630 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3631 { 3632 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3633 } 3634 3635 /** 3636 * skb_padto - pad an skbuff up to a minimal size 3637 * @skb: buffer to pad 3638 * @len: minimal length 3639 * 3640 * Pads up a buffer to ensure the trailing bytes exist and are 3641 * blanked. If the buffer already contains sufficient data it 3642 * is untouched. Otherwise it is extended. Returns zero on 3643 * success. The skb is freed on error. 3644 */ 3645 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3646 { 3647 unsigned int size = skb->len; 3648 if (likely(size >= len)) 3649 return 0; 3650 return skb_pad(skb, len - size); 3651 } 3652 3653 /** 3654 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3655 * @skb: buffer to pad 3656 * @len: minimal length 3657 * @free_on_error: free buffer on error 3658 * 3659 * Pads up a buffer to ensure the trailing bytes exist and are 3660 * blanked. If the buffer already contains sufficient data it 3661 * is untouched. Otherwise it is extended. Returns zero on 3662 * success. The skb is freed on error if @free_on_error is true. 3663 */ 3664 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3665 unsigned int len, 3666 bool free_on_error) 3667 { 3668 unsigned int size = skb->len; 3669 3670 if (unlikely(size < len)) { 3671 len -= size; 3672 if (__skb_pad(skb, len, free_on_error)) 3673 return -ENOMEM; 3674 __skb_put(skb, len); 3675 } 3676 return 0; 3677 } 3678 3679 /** 3680 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3681 * @skb: buffer to pad 3682 * @len: minimal length 3683 * 3684 * Pads up a buffer to ensure the trailing bytes exist and are 3685 * blanked. If the buffer already contains sufficient data it 3686 * is untouched. Otherwise it is extended. Returns zero on 3687 * success. The skb is freed on error. 3688 */ 3689 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3690 { 3691 return __skb_put_padto(skb, len, true); 3692 } 3693 3694 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3695 __must_check; 3696 3697 static inline int skb_add_data(struct sk_buff *skb, 3698 struct iov_iter *from, int copy) 3699 { 3700 const int off = skb->len; 3701 3702 if (skb->ip_summed == CHECKSUM_NONE) { 3703 __wsum csum = 0; 3704 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3705 &csum, from)) { 3706 skb->csum = csum_block_add(skb->csum, csum, off); 3707 return 0; 3708 } 3709 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3710 return 0; 3711 3712 __skb_trim(skb, off); 3713 return -EFAULT; 3714 } 3715 3716 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3717 const struct page *page, int off) 3718 { 3719 if (skb_zcopy(skb)) 3720 return false; 3721 if (i) { 3722 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3723 3724 return page == skb_frag_page(frag) && 3725 off == skb_frag_off(frag) + skb_frag_size(frag); 3726 } 3727 return false; 3728 } 3729 3730 static inline int __skb_linearize(struct sk_buff *skb) 3731 { 3732 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3733 } 3734 3735 /** 3736 * skb_linearize - convert paged skb to linear one 3737 * @skb: buffer to linarize 3738 * 3739 * If there is no free memory -ENOMEM is returned, otherwise zero 3740 * is returned and the old skb data released. 3741 */ 3742 static inline int skb_linearize(struct sk_buff *skb) 3743 { 3744 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3745 } 3746 3747 /** 3748 * skb_has_shared_frag - can any frag be overwritten 3749 * @skb: buffer to test 3750 * 3751 * Return true if the skb has at least one frag that might be modified 3752 * by an external entity (as in vmsplice()/sendfile()) 3753 */ 3754 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3755 { 3756 return skb_is_nonlinear(skb) && 3757 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3758 } 3759 3760 /** 3761 * skb_linearize_cow - make sure skb is linear and writable 3762 * @skb: buffer to process 3763 * 3764 * If there is no free memory -ENOMEM is returned, otherwise zero 3765 * is returned and the old skb data released. 3766 */ 3767 static inline int skb_linearize_cow(struct sk_buff *skb) 3768 { 3769 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3770 __skb_linearize(skb) : 0; 3771 } 3772 3773 static __always_inline void 3774 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3775 unsigned int off) 3776 { 3777 if (skb->ip_summed == CHECKSUM_COMPLETE) 3778 skb->csum = csum_block_sub(skb->csum, 3779 csum_partial(start, len, 0), off); 3780 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3781 skb_checksum_start_offset(skb) < 0) 3782 skb->ip_summed = CHECKSUM_NONE; 3783 } 3784 3785 /** 3786 * skb_postpull_rcsum - update checksum for received skb after pull 3787 * @skb: buffer to update 3788 * @start: start of data before pull 3789 * @len: length of data pulled 3790 * 3791 * After doing a pull on a received packet, you need to call this to 3792 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3793 * CHECKSUM_NONE so that it can be recomputed from scratch. 3794 */ 3795 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3796 const void *start, unsigned int len) 3797 { 3798 if (skb->ip_summed == CHECKSUM_COMPLETE) 3799 skb->csum = wsum_negate(csum_partial(start, len, 3800 wsum_negate(skb->csum))); 3801 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3802 skb_checksum_start_offset(skb) < 0) 3803 skb->ip_summed = CHECKSUM_NONE; 3804 } 3805 3806 static __always_inline void 3807 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3808 unsigned int off) 3809 { 3810 if (skb->ip_summed == CHECKSUM_COMPLETE) 3811 skb->csum = csum_block_add(skb->csum, 3812 csum_partial(start, len, 0), off); 3813 } 3814 3815 /** 3816 * skb_postpush_rcsum - update checksum for received skb after push 3817 * @skb: buffer to update 3818 * @start: start of data after push 3819 * @len: length of data pushed 3820 * 3821 * After doing a push on a received packet, you need to call this to 3822 * update the CHECKSUM_COMPLETE checksum. 3823 */ 3824 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3825 const void *start, unsigned int len) 3826 { 3827 __skb_postpush_rcsum(skb, start, len, 0); 3828 } 3829 3830 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3831 3832 /** 3833 * skb_push_rcsum - push skb and update receive checksum 3834 * @skb: buffer to update 3835 * @len: length of data pulled 3836 * 3837 * This function performs an skb_push on the packet and updates 3838 * the CHECKSUM_COMPLETE checksum. It should be used on 3839 * receive path processing instead of skb_push unless you know 3840 * that the checksum difference is zero (e.g., a valid IP header) 3841 * or you are setting ip_summed to CHECKSUM_NONE. 3842 */ 3843 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3844 { 3845 skb_push(skb, len); 3846 skb_postpush_rcsum(skb, skb->data, len); 3847 return skb->data; 3848 } 3849 3850 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3851 /** 3852 * pskb_trim_rcsum - trim received skb and update checksum 3853 * @skb: buffer to trim 3854 * @len: new length 3855 * 3856 * This is exactly the same as pskb_trim except that it ensures the 3857 * checksum of received packets are still valid after the operation. 3858 * It can change skb pointers. 3859 */ 3860 3861 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3862 { 3863 if (likely(len >= skb->len)) 3864 return 0; 3865 return pskb_trim_rcsum_slow(skb, len); 3866 } 3867 3868 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3869 { 3870 if (skb->ip_summed == CHECKSUM_COMPLETE) 3871 skb->ip_summed = CHECKSUM_NONE; 3872 __skb_trim(skb, len); 3873 return 0; 3874 } 3875 3876 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3877 { 3878 if (skb->ip_summed == CHECKSUM_COMPLETE) 3879 skb->ip_summed = CHECKSUM_NONE; 3880 return __skb_grow(skb, len); 3881 } 3882 3883 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3884 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3885 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3886 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3887 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3888 3889 #define skb_queue_walk(queue, skb) \ 3890 for (skb = (queue)->next; \ 3891 skb != (struct sk_buff *)(queue); \ 3892 skb = skb->next) 3893 3894 #define skb_queue_walk_safe(queue, skb, tmp) \ 3895 for (skb = (queue)->next, tmp = skb->next; \ 3896 skb != (struct sk_buff *)(queue); \ 3897 skb = tmp, tmp = skb->next) 3898 3899 #define skb_queue_walk_from(queue, skb) \ 3900 for (; skb != (struct sk_buff *)(queue); \ 3901 skb = skb->next) 3902 3903 #define skb_rbtree_walk(skb, root) \ 3904 for (skb = skb_rb_first(root); skb != NULL; \ 3905 skb = skb_rb_next(skb)) 3906 3907 #define skb_rbtree_walk_from(skb) \ 3908 for (; skb != NULL; \ 3909 skb = skb_rb_next(skb)) 3910 3911 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3912 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3913 skb = tmp) 3914 3915 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3916 for (tmp = skb->next; \ 3917 skb != (struct sk_buff *)(queue); \ 3918 skb = tmp, tmp = skb->next) 3919 3920 #define skb_queue_reverse_walk(queue, skb) \ 3921 for (skb = (queue)->prev; \ 3922 skb != (struct sk_buff *)(queue); \ 3923 skb = skb->prev) 3924 3925 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3926 for (skb = (queue)->prev, tmp = skb->prev; \ 3927 skb != (struct sk_buff *)(queue); \ 3928 skb = tmp, tmp = skb->prev) 3929 3930 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3931 for (tmp = skb->prev; \ 3932 skb != (struct sk_buff *)(queue); \ 3933 skb = tmp, tmp = skb->prev) 3934 3935 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3936 { 3937 return skb_shinfo(skb)->frag_list != NULL; 3938 } 3939 3940 static inline void skb_frag_list_init(struct sk_buff *skb) 3941 { 3942 skb_shinfo(skb)->frag_list = NULL; 3943 } 3944 3945 #define skb_walk_frags(skb, iter) \ 3946 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3947 3948 3949 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3950 int *err, long *timeo_p, 3951 const struct sk_buff *skb); 3952 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3953 struct sk_buff_head *queue, 3954 unsigned int flags, 3955 int *off, int *err, 3956 struct sk_buff **last); 3957 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3958 struct sk_buff_head *queue, 3959 unsigned int flags, int *off, int *err, 3960 struct sk_buff **last); 3961 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3962 struct sk_buff_head *sk_queue, 3963 unsigned int flags, int *off, int *err); 3964 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3965 __poll_t datagram_poll(struct file *file, struct socket *sock, 3966 struct poll_table_struct *wait); 3967 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3968 struct iov_iter *to, int size); 3969 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3970 struct msghdr *msg, int size) 3971 { 3972 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3973 } 3974 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3975 struct msghdr *msg); 3976 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3977 struct iov_iter *to, int len, 3978 struct ahash_request *hash); 3979 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3980 struct iov_iter *from, int len); 3981 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3982 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3983 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3984 static inline void skb_free_datagram_locked(struct sock *sk, 3985 struct sk_buff *skb) 3986 { 3987 __skb_free_datagram_locked(sk, skb, 0); 3988 } 3989 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3990 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3991 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3993 int len); 3994 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3995 struct pipe_inode_info *pipe, unsigned int len, 3996 unsigned int flags); 3997 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3998 int len); 3999 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4000 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4001 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4002 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4003 int len, int hlen); 4004 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4005 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4006 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4007 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4008 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4009 unsigned int offset); 4010 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4011 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4012 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4013 int skb_vlan_pop(struct sk_buff *skb); 4014 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4015 int skb_eth_pop(struct sk_buff *skb); 4016 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4017 const unsigned char *src); 4018 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4019 int mac_len, bool ethernet); 4020 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4021 bool ethernet); 4022 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4023 int skb_mpls_dec_ttl(struct sk_buff *skb); 4024 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4025 gfp_t gfp); 4026 4027 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4028 { 4029 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4030 } 4031 4032 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4033 { 4034 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4035 } 4036 4037 struct skb_checksum_ops { 4038 __wsum (*update)(const void *mem, int len, __wsum wsum); 4039 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4040 }; 4041 4042 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4043 4044 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4045 __wsum csum, const struct skb_checksum_ops *ops); 4046 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4047 __wsum csum); 4048 4049 static inline void * __must_check 4050 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4051 const void *data, int hlen, void *buffer) 4052 { 4053 if (likely(hlen - offset >= len)) 4054 return (void *)data + offset; 4055 4056 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4057 return NULL; 4058 4059 return buffer; 4060 } 4061 4062 static inline void * __must_check 4063 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4064 { 4065 return __skb_header_pointer(skb, offset, len, skb->data, 4066 skb_headlen(skb), buffer); 4067 } 4068 4069 static inline void * __must_check 4070 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4071 { 4072 if (likely(skb_headlen(skb) - offset >= len)) 4073 return skb->data + offset; 4074 return NULL; 4075 } 4076 4077 /** 4078 * skb_needs_linearize - check if we need to linearize a given skb 4079 * depending on the given device features. 4080 * @skb: socket buffer to check 4081 * @features: net device features 4082 * 4083 * Returns true if either: 4084 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4085 * 2. skb is fragmented and the device does not support SG. 4086 */ 4087 static inline bool skb_needs_linearize(struct sk_buff *skb, 4088 netdev_features_t features) 4089 { 4090 return skb_is_nonlinear(skb) && 4091 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4092 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4093 } 4094 4095 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4096 void *to, 4097 const unsigned int len) 4098 { 4099 memcpy(to, skb->data, len); 4100 } 4101 4102 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4103 const int offset, void *to, 4104 const unsigned int len) 4105 { 4106 memcpy(to, skb->data + offset, len); 4107 } 4108 4109 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4110 const void *from, 4111 const unsigned int len) 4112 { 4113 memcpy(skb->data, from, len); 4114 } 4115 4116 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4117 const int offset, 4118 const void *from, 4119 const unsigned int len) 4120 { 4121 memcpy(skb->data + offset, from, len); 4122 } 4123 4124 void skb_init(void); 4125 4126 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4127 { 4128 return skb->tstamp; 4129 } 4130 4131 /** 4132 * skb_get_timestamp - get timestamp from a skb 4133 * @skb: skb to get stamp from 4134 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4135 * 4136 * Timestamps are stored in the skb as offsets to a base timestamp. 4137 * This function converts the offset back to a struct timeval and stores 4138 * it in stamp. 4139 */ 4140 static inline void skb_get_timestamp(const struct sk_buff *skb, 4141 struct __kernel_old_timeval *stamp) 4142 { 4143 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4144 } 4145 4146 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4147 struct __kernel_sock_timeval *stamp) 4148 { 4149 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4150 4151 stamp->tv_sec = ts.tv_sec; 4152 stamp->tv_usec = ts.tv_nsec / 1000; 4153 } 4154 4155 static inline void skb_get_timestampns(const struct sk_buff *skb, 4156 struct __kernel_old_timespec *stamp) 4157 { 4158 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4159 4160 stamp->tv_sec = ts.tv_sec; 4161 stamp->tv_nsec = ts.tv_nsec; 4162 } 4163 4164 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4165 struct __kernel_timespec *stamp) 4166 { 4167 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4168 4169 stamp->tv_sec = ts.tv_sec; 4170 stamp->tv_nsec = ts.tv_nsec; 4171 } 4172 4173 static inline void __net_timestamp(struct sk_buff *skb) 4174 { 4175 skb->tstamp = ktime_get_real(); 4176 skb->mono_delivery_time = 0; 4177 } 4178 4179 static inline ktime_t net_timedelta(ktime_t t) 4180 { 4181 return ktime_sub(ktime_get_real(), t); 4182 } 4183 4184 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4185 bool mono) 4186 { 4187 skb->tstamp = kt; 4188 skb->mono_delivery_time = kt && mono; 4189 } 4190 4191 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4192 4193 /* It is used in the ingress path to clear the delivery_time. 4194 * If needed, set the skb->tstamp to the (rcv) timestamp. 4195 */ 4196 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4197 { 4198 if (skb->mono_delivery_time) { 4199 skb->mono_delivery_time = 0; 4200 if (static_branch_unlikely(&netstamp_needed_key)) 4201 skb->tstamp = ktime_get_real(); 4202 else 4203 skb->tstamp = 0; 4204 } 4205 } 4206 4207 static inline void skb_clear_tstamp(struct sk_buff *skb) 4208 { 4209 if (skb->mono_delivery_time) 4210 return; 4211 4212 skb->tstamp = 0; 4213 } 4214 4215 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4216 { 4217 if (skb->mono_delivery_time) 4218 return 0; 4219 4220 return skb->tstamp; 4221 } 4222 4223 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4224 { 4225 if (!skb->mono_delivery_time && skb->tstamp) 4226 return skb->tstamp; 4227 4228 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4229 return ktime_get_real(); 4230 4231 return 0; 4232 } 4233 4234 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4235 { 4236 return skb_shinfo(skb)->meta_len; 4237 } 4238 4239 static inline void *skb_metadata_end(const struct sk_buff *skb) 4240 { 4241 return skb_mac_header(skb); 4242 } 4243 4244 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4245 const struct sk_buff *skb_b, 4246 u8 meta_len) 4247 { 4248 const void *a = skb_metadata_end(skb_a); 4249 const void *b = skb_metadata_end(skb_b); 4250 /* Using more efficient variant than plain call to memcmp(). */ 4251 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4252 u64 diffs = 0; 4253 4254 switch (meta_len) { 4255 #define __it(x, op) (x -= sizeof(u##op)) 4256 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4257 case 32: diffs |= __it_diff(a, b, 64); 4258 fallthrough; 4259 case 24: diffs |= __it_diff(a, b, 64); 4260 fallthrough; 4261 case 16: diffs |= __it_diff(a, b, 64); 4262 fallthrough; 4263 case 8: diffs |= __it_diff(a, b, 64); 4264 break; 4265 case 28: diffs |= __it_diff(a, b, 64); 4266 fallthrough; 4267 case 20: diffs |= __it_diff(a, b, 64); 4268 fallthrough; 4269 case 12: diffs |= __it_diff(a, b, 64); 4270 fallthrough; 4271 case 4: diffs |= __it_diff(a, b, 32); 4272 break; 4273 } 4274 return diffs; 4275 #else 4276 return memcmp(a - meta_len, b - meta_len, meta_len); 4277 #endif 4278 } 4279 4280 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4281 const struct sk_buff *skb_b) 4282 { 4283 u8 len_a = skb_metadata_len(skb_a); 4284 u8 len_b = skb_metadata_len(skb_b); 4285 4286 if (!(len_a | len_b)) 4287 return false; 4288 4289 return len_a != len_b ? 4290 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4291 } 4292 4293 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4294 { 4295 skb_shinfo(skb)->meta_len = meta_len; 4296 } 4297 4298 static inline void skb_metadata_clear(struct sk_buff *skb) 4299 { 4300 skb_metadata_set(skb, 0); 4301 } 4302 4303 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4304 4305 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4306 4307 void skb_clone_tx_timestamp(struct sk_buff *skb); 4308 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4309 4310 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4311 4312 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4313 { 4314 } 4315 4316 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4317 { 4318 return false; 4319 } 4320 4321 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4322 4323 /** 4324 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4325 * 4326 * PHY drivers may accept clones of transmitted packets for 4327 * timestamping via their phy_driver.txtstamp method. These drivers 4328 * must call this function to return the skb back to the stack with a 4329 * timestamp. 4330 * 4331 * @skb: clone of the original outgoing packet 4332 * @hwtstamps: hardware time stamps 4333 * 4334 */ 4335 void skb_complete_tx_timestamp(struct sk_buff *skb, 4336 struct skb_shared_hwtstamps *hwtstamps); 4337 4338 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4339 struct skb_shared_hwtstamps *hwtstamps, 4340 struct sock *sk, int tstype); 4341 4342 /** 4343 * skb_tstamp_tx - queue clone of skb with send time stamps 4344 * @orig_skb: the original outgoing packet 4345 * @hwtstamps: hardware time stamps, may be NULL if not available 4346 * 4347 * If the skb has a socket associated, then this function clones the 4348 * skb (thus sharing the actual data and optional structures), stores 4349 * the optional hardware time stamping information (if non NULL) or 4350 * generates a software time stamp (otherwise), then queues the clone 4351 * to the error queue of the socket. Errors are silently ignored. 4352 */ 4353 void skb_tstamp_tx(struct sk_buff *orig_skb, 4354 struct skb_shared_hwtstamps *hwtstamps); 4355 4356 /** 4357 * skb_tx_timestamp() - Driver hook for transmit timestamping 4358 * 4359 * Ethernet MAC Drivers should call this function in their hard_xmit() 4360 * function immediately before giving the sk_buff to the MAC hardware. 4361 * 4362 * Specifically, one should make absolutely sure that this function is 4363 * called before TX completion of this packet can trigger. Otherwise 4364 * the packet could potentially already be freed. 4365 * 4366 * @skb: A socket buffer. 4367 */ 4368 static inline void skb_tx_timestamp(struct sk_buff *skb) 4369 { 4370 skb_clone_tx_timestamp(skb); 4371 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4372 skb_tstamp_tx(skb, NULL); 4373 } 4374 4375 /** 4376 * skb_complete_wifi_ack - deliver skb with wifi status 4377 * 4378 * @skb: the original outgoing packet 4379 * @acked: ack status 4380 * 4381 */ 4382 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4383 4384 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4385 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4386 4387 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4388 { 4389 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4390 skb->csum_valid || 4391 (skb->ip_summed == CHECKSUM_PARTIAL && 4392 skb_checksum_start_offset(skb) >= 0)); 4393 } 4394 4395 /** 4396 * skb_checksum_complete - Calculate checksum of an entire packet 4397 * @skb: packet to process 4398 * 4399 * This function calculates the checksum over the entire packet plus 4400 * the value of skb->csum. The latter can be used to supply the 4401 * checksum of a pseudo header as used by TCP/UDP. It returns the 4402 * checksum. 4403 * 4404 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4405 * this function can be used to verify that checksum on received 4406 * packets. In that case the function should return zero if the 4407 * checksum is correct. In particular, this function will return zero 4408 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4409 * hardware has already verified the correctness of the checksum. 4410 */ 4411 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4412 { 4413 return skb_csum_unnecessary(skb) ? 4414 0 : __skb_checksum_complete(skb); 4415 } 4416 4417 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4418 { 4419 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4420 if (skb->csum_level == 0) 4421 skb->ip_summed = CHECKSUM_NONE; 4422 else 4423 skb->csum_level--; 4424 } 4425 } 4426 4427 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4428 { 4429 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4430 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4431 skb->csum_level++; 4432 } else if (skb->ip_summed == CHECKSUM_NONE) { 4433 skb->ip_summed = CHECKSUM_UNNECESSARY; 4434 skb->csum_level = 0; 4435 } 4436 } 4437 4438 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4439 { 4440 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4441 skb->ip_summed = CHECKSUM_NONE; 4442 skb->csum_level = 0; 4443 } 4444 } 4445 4446 /* Check if we need to perform checksum complete validation. 4447 * 4448 * Returns true if checksum complete is needed, false otherwise 4449 * (either checksum is unnecessary or zero checksum is allowed). 4450 */ 4451 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4452 bool zero_okay, 4453 __sum16 check) 4454 { 4455 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4456 skb->csum_valid = 1; 4457 __skb_decr_checksum_unnecessary(skb); 4458 return false; 4459 } 4460 4461 return true; 4462 } 4463 4464 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4465 * in checksum_init. 4466 */ 4467 #define CHECKSUM_BREAK 76 4468 4469 /* Unset checksum-complete 4470 * 4471 * Unset checksum complete can be done when packet is being modified 4472 * (uncompressed for instance) and checksum-complete value is 4473 * invalidated. 4474 */ 4475 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4476 { 4477 if (skb->ip_summed == CHECKSUM_COMPLETE) 4478 skb->ip_summed = CHECKSUM_NONE; 4479 } 4480 4481 /* Validate (init) checksum based on checksum complete. 4482 * 4483 * Return values: 4484 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4485 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4486 * checksum is stored in skb->csum for use in __skb_checksum_complete 4487 * non-zero: value of invalid checksum 4488 * 4489 */ 4490 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4491 bool complete, 4492 __wsum psum) 4493 { 4494 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4495 if (!csum_fold(csum_add(psum, skb->csum))) { 4496 skb->csum_valid = 1; 4497 return 0; 4498 } 4499 } 4500 4501 skb->csum = psum; 4502 4503 if (complete || skb->len <= CHECKSUM_BREAK) { 4504 __sum16 csum; 4505 4506 csum = __skb_checksum_complete(skb); 4507 skb->csum_valid = !csum; 4508 return csum; 4509 } 4510 4511 return 0; 4512 } 4513 4514 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4515 { 4516 return 0; 4517 } 4518 4519 /* Perform checksum validate (init). Note that this is a macro since we only 4520 * want to calculate the pseudo header which is an input function if necessary. 4521 * First we try to validate without any computation (checksum unnecessary) and 4522 * then calculate based on checksum complete calling the function to compute 4523 * pseudo header. 4524 * 4525 * Return values: 4526 * 0: checksum is validated or try to in skb_checksum_complete 4527 * non-zero: value of invalid checksum 4528 */ 4529 #define __skb_checksum_validate(skb, proto, complete, \ 4530 zero_okay, check, compute_pseudo) \ 4531 ({ \ 4532 __sum16 __ret = 0; \ 4533 skb->csum_valid = 0; \ 4534 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4535 __ret = __skb_checksum_validate_complete(skb, \ 4536 complete, compute_pseudo(skb, proto)); \ 4537 __ret; \ 4538 }) 4539 4540 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4541 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4542 4543 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4544 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4545 4546 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4547 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4548 4549 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4550 compute_pseudo) \ 4551 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4552 4553 #define skb_checksum_simple_validate(skb) \ 4554 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4555 4556 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4557 { 4558 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4559 } 4560 4561 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4562 { 4563 skb->csum = ~pseudo; 4564 skb->ip_summed = CHECKSUM_COMPLETE; 4565 } 4566 4567 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4568 do { \ 4569 if (__skb_checksum_convert_check(skb)) \ 4570 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4571 } while (0) 4572 4573 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4574 u16 start, u16 offset) 4575 { 4576 skb->ip_summed = CHECKSUM_PARTIAL; 4577 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4578 skb->csum_offset = offset - start; 4579 } 4580 4581 /* Update skbuf and packet to reflect the remote checksum offload operation. 4582 * When called, ptr indicates the starting point for skb->csum when 4583 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4584 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4585 */ 4586 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4587 int start, int offset, bool nopartial) 4588 { 4589 __wsum delta; 4590 4591 if (!nopartial) { 4592 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4593 return; 4594 } 4595 4596 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4597 __skb_checksum_complete(skb); 4598 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4599 } 4600 4601 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4602 4603 /* Adjust skb->csum since we changed the packet */ 4604 skb->csum = csum_add(skb->csum, delta); 4605 } 4606 4607 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4608 { 4609 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4610 return (void *)(skb->_nfct & NFCT_PTRMASK); 4611 #else 4612 return NULL; 4613 #endif 4614 } 4615 4616 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4617 { 4618 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4619 return skb->_nfct; 4620 #else 4621 return 0UL; 4622 #endif 4623 } 4624 4625 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4626 { 4627 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4628 skb->slow_gro |= !!nfct; 4629 skb->_nfct = nfct; 4630 #endif 4631 } 4632 4633 #ifdef CONFIG_SKB_EXTENSIONS 4634 enum skb_ext_id { 4635 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4636 SKB_EXT_BRIDGE_NF, 4637 #endif 4638 #ifdef CONFIG_XFRM 4639 SKB_EXT_SEC_PATH, 4640 #endif 4641 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4642 TC_SKB_EXT, 4643 #endif 4644 #if IS_ENABLED(CONFIG_MPTCP) 4645 SKB_EXT_MPTCP, 4646 #endif 4647 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4648 SKB_EXT_MCTP, 4649 #endif 4650 SKB_EXT_NUM, /* must be last */ 4651 }; 4652 4653 /** 4654 * struct skb_ext - sk_buff extensions 4655 * @refcnt: 1 on allocation, deallocated on 0 4656 * @offset: offset to add to @data to obtain extension address 4657 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4658 * @data: start of extension data, variable sized 4659 * 4660 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4661 * to use 'u8' types while allowing up to 2kb worth of extension data. 4662 */ 4663 struct skb_ext { 4664 refcount_t refcnt; 4665 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4666 u8 chunks; /* same */ 4667 char data[] __aligned(8); 4668 }; 4669 4670 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4671 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4672 struct skb_ext *ext); 4673 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4674 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4675 void __skb_ext_put(struct skb_ext *ext); 4676 4677 static inline void skb_ext_put(struct sk_buff *skb) 4678 { 4679 if (skb->active_extensions) 4680 __skb_ext_put(skb->extensions); 4681 } 4682 4683 static inline void __skb_ext_copy(struct sk_buff *dst, 4684 const struct sk_buff *src) 4685 { 4686 dst->active_extensions = src->active_extensions; 4687 4688 if (src->active_extensions) { 4689 struct skb_ext *ext = src->extensions; 4690 4691 refcount_inc(&ext->refcnt); 4692 dst->extensions = ext; 4693 } 4694 } 4695 4696 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4697 { 4698 skb_ext_put(dst); 4699 __skb_ext_copy(dst, src); 4700 } 4701 4702 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4703 { 4704 return !!ext->offset[i]; 4705 } 4706 4707 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4708 { 4709 return skb->active_extensions & (1 << id); 4710 } 4711 4712 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4713 { 4714 if (skb_ext_exist(skb, id)) 4715 __skb_ext_del(skb, id); 4716 } 4717 4718 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4719 { 4720 if (skb_ext_exist(skb, id)) { 4721 struct skb_ext *ext = skb->extensions; 4722 4723 return (void *)ext + (ext->offset[id] << 3); 4724 } 4725 4726 return NULL; 4727 } 4728 4729 static inline void skb_ext_reset(struct sk_buff *skb) 4730 { 4731 if (unlikely(skb->active_extensions)) { 4732 __skb_ext_put(skb->extensions); 4733 skb->active_extensions = 0; 4734 } 4735 } 4736 4737 static inline bool skb_has_extensions(struct sk_buff *skb) 4738 { 4739 return unlikely(skb->active_extensions); 4740 } 4741 #else 4742 static inline void skb_ext_put(struct sk_buff *skb) {} 4743 static inline void skb_ext_reset(struct sk_buff *skb) {} 4744 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4745 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4746 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4747 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4748 #endif /* CONFIG_SKB_EXTENSIONS */ 4749 4750 static inline void nf_reset_ct(struct sk_buff *skb) 4751 { 4752 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4753 nf_conntrack_put(skb_nfct(skb)); 4754 skb->_nfct = 0; 4755 #endif 4756 } 4757 4758 static inline void nf_reset_trace(struct sk_buff *skb) 4759 { 4760 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4761 skb->nf_trace = 0; 4762 #endif 4763 } 4764 4765 static inline void ipvs_reset(struct sk_buff *skb) 4766 { 4767 #if IS_ENABLED(CONFIG_IP_VS) 4768 skb->ipvs_property = 0; 4769 #endif 4770 } 4771 4772 /* Note: This doesn't put any conntrack info in dst. */ 4773 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4774 bool copy) 4775 { 4776 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4777 dst->_nfct = src->_nfct; 4778 nf_conntrack_get(skb_nfct(src)); 4779 #endif 4780 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4781 if (copy) 4782 dst->nf_trace = src->nf_trace; 4783 #endif 4784 } 4785 4786 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4787 { 4788 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4789 nf_conntrack_put(skb_nfct(dst)); 4790 #endif 4791 dst->slow_gro = src->slow_gro; 4792 __nf_copy(dst, src, true); 4793 } 4794 4795 #ifdef CONFIG_NETWORK_SECMARK 4796 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4797 { 4798 to->secmark = from->secmark; 4799 } 4800 4801 static inline void skb_init_secmark(struct sk_buff *skb) 4802 { 4803 skb->secmark = 0; 4804 } 4805 #else 4806 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4807 { } 4808 4809 static inline void skb_init_secmark(struct sk_buff *skb) 4810 { } 4811 #endif 4812 4813 static inline int secpath_exists(const struct sk_buff *skb) 4814 { 4815 #ifdef CONFIG_XFRM 4816 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4817 #else 4818 return 0; 4819 #endif 4820 } 4821 4822 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4823 { 4824 return !skb->destructor && 4825 !secpath_exists(skb) && 4826 !skb_nfct(skb) && 4827 !skb->_skb_refdst && 4828 !skb_has_frag_list(skb); 4829 } 4830 4831 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4832 { 4833 skb->queue_mapping = queue_mapping; 4834 } 4835 4836 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4837 { 4838 return skb->queue_mapping; 4839 } 4840 4841 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4842 { 4843 to->queue_mapping = from->queue_mapping; 4844 } 4845 4846 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4847 { 4848 skb->queue_mapping = rx_queue + 1; 4849 } 4850 4851 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4852 { 4853 return skb->queue_mapping - 1; 4854 } 4855 4856 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4857 { 4858 return skb->queue_mapping != 0; 4859 } 4860 4861 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4862 { 4863 skb->dst_pending_confirm = val; 4864 } 4865 4866 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4867 { 4868 return skb->dst_pending_confirm != 0; 4869 } 4870 4871 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4872 { 4873 #ifdef CONFIG_XFRM 4874 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4875 #else 4876 return NULL; 4877 #endif 4878 } 4879 4880 static inline bool skb_is_gso(const struct sk_buff *skb) 4881 { 4882 return skb_shinfo(skb)->gso_size; 4883 } 4884 4885 /* Note: Should be called only if skb_is_gso(skb) is true */ 4886 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4887 { 4888 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4889 } 4890 4891 /* Note: Should be called only if skb_is_gso(skb) is true */ 4892 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4893 { 4894 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4895 } 4896 4897 /* Note: Should be called only if skb_is_gso(skb) is true */ 4898 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4899 { 4900 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4901 } 4902 4903 static inline void skb_gso_reset(struct sk_buff *skb) 4904 { 4905 skb_shinfo(skb)->gso_size = 0; 4906 skb_shinfo(skb)->gso_segs = 0; 4907 skb_shinfo(skb)->gso_type = 0; 4908 } 4909 4910 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4911 u16 increment) 4912 { 4913 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4914 return; 4915 shinfo->gso_size += increment; 4916 } 4917 4918 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4919 u16 decrement) 4920 { 4921 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4922 return; 4923 shinfo->gso_size -= decrement; 4924 } 4925 4926 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4927 4928 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4929 { 4930 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4931 * wanted then gso_type will be set. */ 4932 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4933 4934 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4935 unlikely(shinfo->gso_type == 0)) { 4936 __skb_warn_lro_forwarding(skb); 4937 return true; 4938 } 4939 return false; 4940 } 4941 4942 static inline void skb_forward_csum(struct sk_buff *skb) 4943 { 4944 /* Unfortunately we don't support this one. Any brave souls? */ 4945 if (skb->ip_summed == CHECKSUM_COMPLETE) 4946 skb->ip_summed = CHECKSUM_NONE; 4947 } 4948 4949 /** 4950 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4951 * @skb: skb to check 4952 * 4953 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4954 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4955 * use this helper, to document places where we make this assertion. 4956 */ 4957 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4958 { 4959 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4960 } 4961 4962 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4963 4964 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4965 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4966 unsigned int transport_len, 4967 __sum16(*skb_chkf)(struct sk_buff *skb)); 4968 4969 /** 4970 * skb_head_is_locked - Determine if the skb->head is locked down 4971 * @skb: skb to check 4972 * 4973 * The head on skbs build around a head frag can be removed if they are 4974 * not cloned. This function returns true if the skb head is locked down 4975 * due to either being allocated via kmalloc, or by being a clone with 4976 * multiple references to the head. 4977 */ 4978 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4979 { 4980 return !skb->head_frag || skb_cloned(skb); 4981 } 4982 4983 /* Local Checksum Offload. 4984 * Compute outer checksum based on the assumption that the 4985 * inner checksum will be offloaded later. 4986 * See Documentation/networking/checksum-offloads.rst for 4987 * explanation of how this works. 4988 * Fill in outer checksum adjustment (e.g. with sum of outer 4989 * pseudo-header) before calling. 4990 * Also ensure that inner checksum is in linear data area. 4991 */ 4992 static inline __wsum lco_csum(struct sk_buff *skb) 4993 { 4994 unsigned char *csum_start = skb_checksum_start(skb); 4995 unsigned char *l4_hdr = skb_transport_header(skb); 4996 __wsum partial; 4997 4998 /* Start with complement of inner checksum adjustment */ 4999 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5000 skb->csum_offset)); 5001 5002 /* Add in checksum of our headers (incl. outer checksum 5003 * adjustment filled in by caller) and return result. 5004 */ 5005 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5006 } 5007 5008 static inline bool skb_is_redirected(const struct sk_buff *skb) 5009 { 5010 return skb->redirected; 5011 } 5012 5013 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5014 { 5015 skb->redirected = 1; 5016 #ifdef CONFIG_NET_REDIRECT 5017 skb->from_ingress = from_ingress; 5018 if (skb->from_ingress) 5019 skb_clear_tstamp(skb); 5020 #endif 5021 } 5022 5023 static inline void skb_reset_redirect(struct sk_buff *skb) 5024 { 5025 skb->redirected = 0; 5026 } 5027 5028 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5029 bool from_ingress) 5030 { 5031 skb->redirected = 1; 5032 #ifdef CONFIG_NET_REDIRECT 5033 skb->from_ingress = from_ingress; 5034 #endif 5035 } 5036 5037 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5038 { 5039 #if IS_ENABLED(CONFIG_IP_SCTP) 5040 return skb->csum_not_inet; 5041 #else 5042 return 0; 5043 #endif 5044 } 5045 5046 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5047 { 5048 skb->ip_summed = CHECKSUM_NONE; 5049 #if IS_ENABLED(CONFIG_IP_SCTP) 5050 skb->csum_not_inet = 0; 5051 #endif 5052 } 5053 5054 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5055 const u64 kcov_handle) 5056 { 5057 #ifdef CONFIG_KCOV 5058 skb->kcov_handle = kcov_handle; 5059 #endif 5060 } 5061 5062 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5063 { 5064 #ifdef CONFIG_KCOV 5065 return skb->kcov_handle; 5066 #else 5067 return 0; 5068 #endif 5069 } 5070 5071 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5072 { 5073 #ifdef CONFIG_PAGE_POOL 5074 skb->pp_recycle = 1; 5075 #endif 5076 } 5077 5078 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5079 ssize_t maxsize, gfp_t gfp); 5080 5081 #endif /* __KERNEL__ */ 5082 #endif /* _LINUX_SKBUFF_H */ 5083