xref: /linux-6.15/include/linux/skbuff.h (revision 542e893f)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 
41 /**
42  * DOC: skb checksums
43  *
44  * The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * IP checksum related features
48  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * .. flat-table:: Checksum related device features
56  *   :widths: 1 10
57  *
58  *   * - %NETIF_F_HW_CSUM
59  *     - The driver (or its device) is able to compute one
60  *	 IP (one's complement) checksum for any combination
61  *	 of protocols or protocol layering. The checksum is
62  *	 computed and set in a packet per the CHECKSUM_PARTIAL
63  *	 interface (see below).
64  *
65  *   * - %NETIF_F_IP_CSUM
66  *     - Driver (device) is only able to checksum plain
67  *	 TCP or UDP packets over IPv4. These are specifically
68  *	 unencapsulated packets of the form IPv4|TCP or
69  *	 IPv4|UDP where the Protocol field in the IPv4 header
70  *	 is TCP or UDP. The IPv4 header may contain IP options.
71  *	 This feature cannot be set in features for a device
72  *	 with NETIF_F_HW_CSUM also set. This feature is being
73  *	 DEPRECATED (see below).
74  *
75  *   * - %NETIF_F_IPV6_CSUM
76  *     - Driver (device) is only able to checksum plain
77  *	 TCP or UDP packets over IPv6. These are specifically
78  *	 unencapsulated packets of the form IPv6|TCP or
79  *	 IPv6|UDP where the Next Header field in the IPv6
80  *	 header is either TCP or UDP. IPv6 extension headers
81  *	 are not supported with this feature. This feature
82  *	 cannot be set in features for a device with
83  *	 NETIF_F_HW_CSUM also set. This feature is being
84  *	 DEPRECATED (see below).
85  *
86  *   * - %NETIF_F_RXCSUM
87  *     - Driver (device) performs receive checksum offload.
88  *	 This flag is only used to disable the RX checksum
89  *	 feature for a device. The stack will accept receive
90  *	 checksum indication in packets received on a device
91  *	 regardless of whether NETIF_F_RXCSUM is set.
92  *
93  * Checksumming of received packets by device
94  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95  *
96  * Indication of checksum verification is set in &sk_buff.ip_summed.
97  * Possible values are:
98  *
99  * - %CHECKSUM_NONE
100  *
101  *   Device did not checksum this packet e.g. due to lack of capabilities.
102  *   The packet contains full (though not verified) checksum in packet but
103  *   not in skb->csum. Thus, skb->csum is undefined in this case.
104  *
105  * - %CHECKSUM_UNNECESSARY
106  *
107  *   The hardware you're dealing with doesn't calculate the full checksum
108  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
109  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
110  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
111  *   though. A driver or device must never modify the checksum field in the
112  *   packet even if checksum is verified.
113  *
114  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
115  *
116  *     - TCP: IPv6 and IPv4.
117  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
118  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
119  *       may perform further validation in this case.
120  *     - GRE: only if the checksum is present in the header.
121  *     - SCTP: indicates the CRC in SCTP header has been validated.
122  *     - FCOE: indicates the CRC in FC frame has been validated.
123  *
124  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
125  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
126  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
127  *   and a device is able to verify the checksums for UDP (possibly zero),
128  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
129  *   two. If the device were only able to verify the UDP checksum and not
130  *   GRE, either because it doesn't support GRE checksum or because GRE
131  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
132  *   not considered in this case).
133  *
134  * - %CHECKSUM_COMPLETE
135  *
136  *   This is the most generic way. The device supplied checksum of the _whole_
137  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
138  *   hardware doesn't need to parse L3/L4 headers to implement this.
139  *
140  *   Notes:
141  *
142  *   - Even if device supports only some protocols, but is able to produce
143  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
144  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
145  *
146  * - %CHECKSUM_PARTIAL
147  *
148  *   A checksum is set up to be offloaded to a device as described in the
149  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
150  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
151  *   on the same host, or it may be set in the input path in GRO or remote
152  *   checksum offload. For the purposes of checksum verification, the checksum
153  *   referred to by skb->csum_start + skb->csum_offset and any preceding
154  *   checksums in the packet are considered verified. Any checksums in the
155  *   packet that are after the checksum being offloaded are not considered to
156  *   be verified.
157  *
158  * Checksumming on transmit for non-GSO
159  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160  *
161  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
162  * Values are:
163  *
164  * - %CHECKSUM_PARTIAL
165  *
166  *   The driver is required to checksum the packet as seen by hard_start_xmit()
167  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
168  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
169  *   A driver may verify that the
170  *   csum_start and csum_offset values are valid values given the length and
171  *   offset of the packet, but it should not attempt to validate that the
172  *   checksum refers to a legitimate transport layer checksum -- it is the
173  *   purview of the stack to validate that csum_start and csum_offset are set
174  *   correctly.
175  *
176  *   When the stack requests checksum offload for a packet, the driver MUST
177  *   ensure that the checksum is set correctly. A driver can either offload the
178  *   checksum calculation to the device, or call skb_checksum_help (in the case
179  *   that the device does not support offload for a particular checksum).
180  *
181  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
182  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
183  *   checksum offload capability.
184  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
185  *   on network device checksumming capabilities: if a packet does not match
186  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
187  *   &sk_buff.csum_not_inet, see :ref:`crc`)
188  *   is called to resolve the checksum.
189  *
190  * - %CHECKSUM_NONE
191  *
192  *   The skb was already checksummed by the protocol, or a checksum is not
193  *   required.
194  *
195  * - %CHECKSUM_UNNECESSARY
196  *
197  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
198  *   output.
199  *
200  * - %CHECKSUM_COMPLETE
201  *
202  *   Not used in checksum output. If a driver observes a packet with this value
203  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
204  *
205  * .. _crc:
206  *
207  * Non-IP checksum (CRC) offloads
208  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
209  *
210  * .. flat-table::
211  *   :widths: 1 10
212  *
213  *   * - %NETIF_F_SCTP_CRC
214  *     - This feature indicates that a device is capable of
215  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
216  *	 will set csum_start and csum_offset accordingly, set ip_summed to
217  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
218  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
219  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
220  *	 must verify which offload is configured for a packet by testing the
221  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
222  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
223  *
224  *   * - %NETIF_F_FCOE_CRC
225  *     - This feature indicates that a device is capable of offloading the FCOE
226  *	 CRC in a packet. To perform this offload the stack will set ip_summed
227  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
228  *	 accordingly. Note that there is no indication in the skbuff that the
229  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
230  *	 both IP checksum offload and FCOE CRC offload must verify which offload
231  *	 is configured for a packet, presumably by inspecting packet headers.
232  *
233  * Checksumming on output with GSO
234  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
235  *
236  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
237  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
238  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
239  * part of the GSO operation is implied. If a checksum is being offloaded
240  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
241  * csum_offset are set to refer to the outermost checksum being offloaded
242  * (two offloaded checksums are possible with UDP encapsulation).
243  */
244 
245 /* Don't change this without changing skb_csum_unnecessary! */
246 #define CHECKSUM_NONE		0
247 #define CHECKSUM_UNNECESSARY	1
248 #define CHECKSUM_COMPLETE	2
249 #define CHECKSUM_PARTIAL	3
250 
251 /* Maximum value in skb->csum_level */
252 #define SKB_MAX_CSUM_LEVEL	3
253 
254 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
255 #define SKB_WITH_OVERHEAD(X)	\
256 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
257 
258 /* For X bytes available in skb->head, what is the minimal
259  * allocation needed, knowing struct skb_shared_info needs
260  * to be aligned.
261  */
262 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
263 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 
265 #define SKB_MAX_ORDER(X, ORDER) \
266 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
267 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
268 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
269 
270 /* return minimum truesize of one skb containing X bytes of data */
271 #define SKB_TRUESIZE(X) ((X) +						\
272 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
273 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
274 
275 struct ahash_request;
276 struct net_device;
277 struct scatterlist;
278 struct pipe_inode_info;
279 struct iov_iter;
280 struct napi_struct;
281 struct bpf_prog;
282 union bpf_attr;
283 struct skb_ext;
284 struct ts_config;
285 
286 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
287 struct nf_bridge_info {
288 	enum {
289 		BRNF_PROTO_UNCHANGED,
290 		BRNF_PROTO_8021Q,
291 		BRNF_PROTO_PPPOE
292 	} orig_proto:8;
293 	u8			pkt_otherhost:1;
294 	u8			in_prerouting:1;
295 	u8			bridged_dnat:1;
296 	u8			sabotage_in_done:1;
297 	__u16			frag_max_size;
298 	struct net_device	*physindev;
299 
300 	/* always valid & non-NULL from FORWARD on, for physdev match */
301 	struct net_device	*physoutdev;
302 	union {
303 		/* prerouting: detect dnat in orig/reply direction */
304 		__be32          ipv4_daddr;
305 		struct in6_addr ipv6_daddr;
306 
307 		/* after prerouting + nat detected: store original source
308 		 * mac since neigh resolution overwrites it, only used while
309 		 * skb is out in neigh layer.
310 		 */
311 		char neigh_header[8];
312 	};
313 };
314 #endif
315 
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318  * ovs recirc_id. It will be set to the current chain by tc
319  * and read by ovs to recirc_id.
320  */
321 struct tc_skb_ext {
322 	union {
323 		u64 act_miss_cookie;
324 		__u32 chain;
325 	};
326 	__u16 mru;
327 	__u16 zone;
328 	u8 post_ct:1;
329 	u8 post_ct_snat:1;
330 	u8 post_ct_dnat:1;
331 	u8 act_miss:1; /* Set if act_miss_cookie is used */
332 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
333 };
334 #endif
335 
336 struct sk_buff_head {
337 	/* These two members must be first to match sk_buff. */
338 	struct_group_tagged(sk_buff_list, list,
339 		struct sk_buff	*next;
340 		struct sk_buff	*prev;
341 	);
342 
343 	__u32		qlen;
344 	spinlock_t	lock;
345 };
346 
347 struct sk_buff;
348 
349 #ifndef CONFIG_MAX_SKB_FRAGS
350 # define CONFIG_MAX_SKB_FRAGS 17
351 #endif
352 
353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
354 
355 extern int sysctl_max_skb_frags;
356 
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS	0xFFFF
361 
362 typedef struct bio_vec skb_frag_t;
363 
364 /**
365  * skb_frag_size() - Returns the size of a skb fragment
366  * @frag: skb fragment
367  */
368 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
369 {
370 	return frag->bv_len;
371 }
372 
373 /**
374  * skb_frag_size_set() - Sets the size of a skb fragment
375  * @frag: skb fragment
376  * @size: size of fragment
377  */
378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
379 {
380 	frag->bv_len = size;
381 }
382 
383 /**
384  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385  * @frag: skb fragment
386  * @delta: value to add
387  */
388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
389 {
390 	frag->bv_len += delta;
391 }
392 
393 /**
394  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395  * @frag: skb fragment
396  * @delta: value to subtract
397  */
398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
399 {
400 	frag->bv_len -= delta;
401 }
402 
403 /**
404  * skb_frag_must_loop - Test if %p is a high memory page
405  * @p: fragment's page
406  */
407 static inline bool skb_frag_must_loop(struct page *p)
408 {
409 #if defined(CONFIG_HIGHMEM)
410 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
411 		return true;
412 #endif
413 	return false;
414 }
415 
416 /**
417  *	skb_frag_foreach_page - loop over pages in a fragment
418  *
419  *	@f:		skb frag to operate on
420  *	@f_off:		offset from start of f->bv_page
421  *	@f_len:		length from f_off to loop over
422  *	@p:		(temp var) current page
423  *	@p_off:		(temp var) offset from start of current page,
424  *	                           non-zero only on first page.
425  *	@p_len:		(temp var) length in current page,
426  *				   < PAGE_SIZE only on first and last page.
427  *	@copied:	(temp var) length so far, excluding current p_len.
428  *
429  *	A fragment can hold a compound page, in which case per-page
430  *	operations, notably kmap_atomic, must be called for each
431  *	regular page.
432  */
433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
434 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
435 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
436 	     p_len = skb_frag_must_loop(p) ?				\
437 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
438 	     copied = 0;						\
439 	     copied < f_len;						\
440 	     copied += p_len, p++, p_off = 0,				\
441 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 
513 	SKBFL_DONT_ORPHAN = BIT(3),
514 
515 	/* page references are managed by the ubuf_info, so it's safe to
516 	 * use frags only up until ubuf_info is released
517 	 */
518 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520 
521 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524 
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534 	void (*callback)(struct sk_buff *, struct ubuf_info *,
535 			 bool zerocopy_success);
536 	refcount_t refcnt;
537 	u8 flags;
538 };
539 
540 struct ubuf_info_msgzc {
541 	struct ubuf_info ubuf;
542 
543 	union {
544 		struct {
545 			unsigned long desc;
546 			void *ctx;
547 		};
548 		struct {
549 			u32 id;
550 			u16 len;
551 			u16 zerocopy:1;
552 			u32 bytelen;
553 		};
554 	};
555 
556 	struct mmpin {
557 		struct user_struct *user;
558 		unsigned int num_pg;
559 	} mmp;
560 };
561 
562 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 					     ubuf)
565 
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568 
569 /* Preserve some data across TX submission and completion.
570  *
571  * Note, this state is stored in the driver. Extending the layout
572  * might need some special care.
573  */
574 struct xsk_tx_metadata_compl {
575 	__u64 *tx_timestamp;
576 };
577 
578 /* This data is invariant across clones and lives at
579  * the end of the header data, ie. at skb->end.
580  */
581 struct skb_shared_info {
582 	__u8		flags;
583 	__u8		meta_len;
584 	__u8		nr_frags;
585 	__u8		tx_flags;
586 	unsigned short	gso_size;
587 	/* Warning: this field is not always filled in (UFO)! */
588 	unsigned short	gso_segs;
589 	struct sk_buff	*frag_list;
590 	union {
591 		struct skb_shared_hwtstamps hwtstamps;
592 		struct xsk_tx_metadata_compl xsk_meta;
593 	};
594 	unsigned int	gso_type;
595 	u32		tskey;
596 
597 	/*
598 	 * Warning : all fields before dataref are cleared in __alloc_skb()
599 	 */
600 	atomic_t	dataref;
601 	unsigned int	xdp_frags_size;
602 
603 	/* Intermediate layers must ensure that destructor_arg
604 	 * remains valid until skb destructor */
605 	void *		destructor_arg;
606 
607 	/* must be last field, see pskb_expand_head() */
608 	skb_frag_t	frags[MAX_SKB_FRAGS];
609 };
610 
611 /**
612  * DOC: dataref and headerless skbs
613  *
614  * Transport layers send out clones of payload skbs they hold for
615  * retransmissions. To allow lower layers of the stack to prepend their headers
616  * we split &skb_shared_info.dataref into two halves.
617  * The lower 16 bits count the overall number of references.
618  * The higher 16 bits indicate how many of the references are payload-only.
619  * skb_header_cloned() checks if skb is allowed to add / write the headers.
620  *
621  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
622  * (via __skb_header_release()). Any clone created from marked skb will get
623  * &sk_buff.hdr_len populated with the available headroom.
624  * If there's the only clone in existence it's able to modify the headroom
625  * at will. The sequence of calls inside the transport layer is::
626  *
627  *  <alloc skb>
628  *  skb_reserve()
629  *  __skb_header_release()
630  *  skb_clone()
631  *  // send the clone down the stack
632  *
633  * This is not a very generic construct and it depends on the transport layers
634  * doing the right thing. In practice there's usually only one payload-only skb.
635  * Having multiple payload-only skbs with different lengths of hdr_len is not
636  * possible. The payload-only skbs should never leave their owner.
637  */
638 #define SKB_DATAREF_SHIFT 16
639 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
640 
641 
642 enum {
643 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
644 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
645 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
646 };
647 
648 enum {
649 	SKB_GSO_TCPV4 = 1 << 0,
650 
651 	/* This indicates the skb is from an untrusted source. */
652 	SKB_GSO_DODGY = 1 << 1,
653 
654 	/* This indicates the tcp segment has CWR set. */
655 	SKB_GSO_TCP_ECN = 1 << 2,
656 
657 	SKB_GSO_TCP_FIXEDID = 1 << 3,
658 
659 	SKB_GSO_TCPV6 = 1 << 4,
660 
661 	SKB_GSO_FCOE = 1 << 5,
662 
663 	SKB_GSO_GRE = 1 << 6,
664 
665 	SKB_GSO_GRE_CSUM = 1 << 7,
666 
667 	SKB_GSO_IPXIP4 = 1 << 8,
668 
669 	SKB_GSO_IPXIP6 = 1 << 9,
670 
671 	SKB_GSO_UDP_TUNNEL = 1 << 10,
672 
673 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
674 
675 	SKB_GSO_PARTIAL = 1 << 12,
676 
677 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
678 
679 	SKB_GSO_SCTP = 1 << 14,
680 
681 	SKB_GSO_ESP = 1 << 15,
682 
683 	SKB_GSO_UDP = 1 << 16,
684 
685 	SKB_GSO_UDP_L4 = 1 << 17,
686 
687 	SKB_GSO_FRAGLIST = 1 << 18,
688 };
689 
690 #if BITS_PER_LONG > 32
691 #define NET_SKBUFF_DATA_USES_OFFSET 1
692 #endif
693 
694 #ifdef NET_SKBUFF_DATA_USES_OFFSET
695 typedef unsigned int sk_buff_data_t;
696 #else
697 typedef unsigned char *sk_buff_data_t;
698 #endif
699 
700 /**
701  * DOC: Basic sk_buff geometry
702  *
703  * struct sk_buff itself is a metadata structure and does not hold any packet
704  * data. All the data is held in associated buffers.
705  *
706  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
707  * into two parts:
708  *
709  *  - data buffer, containing headers and sometimes payload;
710  *    this is the part of the skb operated on by the common helpers
711  *    such as skb_put() or skb_pull();
712  *  - shared info (struct skb_shared_info) which holds an array of pointers
713  *    to read-only data in the (page, offset, length) format.
714  *
715  * Optionally &skb_shared_info.frag_list may point to another skb.
716  *
717  * Basic diagram may look like this::
718  *
719  *                                  ---------------
720  *                                 | sk_buff       |
721  *                                  ---------------
722  *     ,---------------------------  + head
723  *    /          ,-----------------  + data
724  *   /          /      ,-----------  + tail
725  *  |          |      |            , + end
726  *  |          |      |           |
727  *  v          v      v           v
728  *   -----------------------------------------------
729  *  | headroom | data |  tailroom | skb_shared_info |
730  *   -----------------------------------------------
731  *                                 + [page frag]
732  *                                 + [page frag]
733  *                                 + [page frag]
734  *                                 + [page frag]       ---------
735  *                                 + frag_list    --> | sk_buff |
736  *                                                     ---------
737  *
738  */
739 
740 /**
741  *	struct sk_buff - socket buffer
742  *	@next: Next buffer in list
743  *	@prev: Previous buffer in list
744  *	@tstamp: Time we arrived/left
745  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
746  *		for retransmit timer
747  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
748  *	@list: queue head
749  *	@ll_node: anchor in an llist (eg socket defer_list)
750  *	@sk: Socket we are owned by
751  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
752  *		fragmentation management
753  *	@dev: Device we arrived on/are leaving by
754  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
755  *	@cb: Control buffer. Free for use by every layer. Put private vars here
756  *	@_skb_refdst: destination entry (with norefcount bit)
757  *	@sp: the security path, used for xfrm
758  *	@len: Length of actual data
759  *	@data_len: Data length
760  *	@mac_len: Length of link layer header
761  *	@hdr_len: writable header length of cloned skb
762  *	@csum: Checksum (must include start/offset pair)
763  *	@csum_start: Offset from skb->head where checksumming should start
764  *	@csum_offset: Offset from csum_start where checksum should be stored
765  *	@priority: Packet queueing priority
766  *	@ignore_df: allow local fragmentation
767  *	@cloned: Head may be cloned (check refcnt to be sure)
768  *	@ip_summed: Driver fed us an IP checksum
769  *	@nohdr: Payload reference only, must not modify header
770  *	@pkt_type: Packet class
771  *	@fclone: skbuff clone status
772  *	@ipvs_property: skbuff is owned by ipvs
773  *	@inner_protocol_type: whether the inner protocol is
774  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
775  *	@remcsum_offload: remote checksum offload is enabled
776  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
777  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
778  *	@tc_skip_classify: do not classify packet. set by IFB device
779  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
780  *	@redirected: packet was redirected by packet classifier
781  *	@from_ingress: packet was redirected from the ingress path
782  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
783  *	@peeked: this packet has been seen already, so stats have been
784  *		done for it, don't do them again
785  *	@nf_trace: netfilter packet trace flag
786  *	@protocol: Packet protocol from driver
787  *	@destructor: Destruct function
788  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
789  *	@_sk_redir: socket redirection information for skmsg
790  *	@_nfct: Associated connection, if any (with nfctinfo bits)
791  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
792  *	@skb_iif: ifindex of device we arrived on
793  *	@tc_index: Traffic control index
794  *	@hash: the packet hash
795  *	@queue_mapping: Queue mapping for multiqueue devices
796  *	@head_frag: skb was allocated from page fragments,
797  *		not allocated by kmalloc() or vmalloc().
798  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
799  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
800  *		page_pool support on driver)
801  *	@active_extensions: active extensions (skb_ext_id types)
802  *	@ndisc_nodetype: router type (from link layer)
803  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
804  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
805  *		ports.
806  *	@sw_hash: indicates hash was computed in software stack
807  *	@wifi_acked_valid: wifi_acked was set
808  *	@wifi_acked: whether frame was acked on wifi or not
809  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
810  *	@encapsulation: indicates the inner headers in the skbuff are valid
811  *	@encap_hdr_csum: software checksum is needed
812  *	@csum_valid: checksum is already valid
813  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
814  *	@csum_complete_sw: checksum was completed by software
815  *	@csum_level: indicates the number of consecutive checksums found in
816  *		the packet minus one that have been verified as
817  *		CHECKSUM_UNNECESSARY (max 3)
818  *	@dst_pending_confirm: need to confirm neighbour
819  *	@decrypted: Decrypted SKB
820  *	@slow_gro: state present at GRO time, slower prepare step required
821  *	@mono_delivery_time: When set, skb->tstamp has the
822  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
823  *		skb->tstamp has the (rcv) timestamp at ingress and
824  *		delivery_time at egress.
825  *	@napi_id: id of the NAPI struct this skb came from
826  *	@sender_cpu: (aka @napi_id) source CPU in XPS
827  *	@alloc_cpu: CPU which did the skb allocation.
828  *	@secmark: security marking
829  *	@mark: Generic packet mark
830  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
831  *		at the tail of an sk_buff
832  *	@vlan_all: vlan fields (proto & tci)
833  *	@vlan_proto: vlan encapsulation protocol
834  *	@vlan_tci: vlan tag control information
835  *	@inner_protocol: Protocol (encapsulation)
836  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
837  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
838  *	@inner_transport_header: Inner transport layer header (encapsulation)
839  *	@inner_network_header: Network layer header (encapsulation)
840  *	@inner_mac_header: Link layer header (encapsulation)
841  *	@transport_header: Transport layer header
842  *	@network_header: Network layer header
843  *	@mac_header: Link layer header
844  *	@kcov_handle: KCOV remote handle for remote coverage collection
845  *	@tail: Tail pointer
846  *	@end: End pointer
847  *	@head: Head of buffer
848  *	@data: Data head pointer
849  *	@truesize: Buffer size
850  *	@users: User count - see {datagram,tcp}.c
851  *	@extensions: allocated extensions, valid if active_extensions is nonzero
852  */
853 
854 struct sk_buff {
855 	union {
856 		struct {
857 			/* These two members must be first to match sk_buff_head. */
858 			struct sk_buff		*next;
859 			struct sk_buff		*prev;
860 
861 			union {
862 				struct net_device	*dev;
863 				/* Some protocols might use this space to store information,
864 				 * while device pointer would be NULL.
865 				 * UDP receive path is one user.
866 				 */
867 				unsigned long		dev_scratch;
868 			};
869 		};
870 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
871 		struct list_head	list;
872 		struct llist_node	ll_node;
873 	};
874 
875 	union {
876 		struct sock		*sk;
877 		int			ip_defrag_offset;
878 	};
879 
880 	union {
881 		ktime_t		tstamp;
882 		u64		skb_mstamp_ns; /* earliest departure time */
883 	};
884 	/*
885 	 * This is the control buffer. It is free to use for every
886 	 * layer. Please put your private variables there. If you
887 	 * want to keep them across layers you have to do a skb_clone()
888 	 * first. This is owned by whoever has the skb queued ATM.
889 	 */
890 	char			cb[48] __aligned(8);
891 
892 	union {
893 		struct {
894 			unsigned long	_skb_refdst;
895 			void		(*destructor)(struct sk_buff *skb);
896 		};
897 		struct list_head	tcp_tsorted_anchor;
898 #ifdef CONFIG_NET_SOCK_MSG
899 		unsigned long		_sk_redir;
900 #endif
901 	};
902 
903 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
904 	unsigned long		 _nfct;
905 #endif
906 	unsigned int		len,
907 				data_len;
908 	__u16			mac_len,
909 				hdr_len;
910 
911 	/* Following fields are _not_ copied in __copy_skb_header()
912 	 * Note that queue_mapping is here mostly to fill a hole.
913 	 */
914 	__u16			queue_mapping;
915 
916 /* if you move cloned around you also must adapt those constants */
917 #ifdef __BIG_ENDIAN_BITFIELD
918 #define CLONED_MASK	(1 << 7)
919 #else
920 #define CLONED_MASK	1
921 #endif
922 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
923 
924 	/* private: */
925 	__u8			__cloned_offset[0];
926 	/* public: */
927 	__u8			cloned:1,
928 				nohdr:1,
929 				fclone:2,
930 				peeked:1,
931 				head_frag:1,
932 				pfmemalloc:1,
933 				pp_recycle:1; /* page_pool recycle indicator */
934 #ifdef CONFIG_SKB_EXTENSIONS
935 	__u8			active_extensions;
936 #endif
937 
938 	/* Fields enclosed in headers group are copied
939 	 * using a single memcpy() in __copy_skb_header()
940 	 */
941 	struct_group(headers,
942 
943 	/* private: */
944 	__u8			__pkt_type_offset[0];
945 	/* public: */
946 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
947 	__u8			ignore_df:1;
948 	__u8			dst_pending_confirm:1;
949 	__u8			ip_summed:2;
950 	__u8			ooo_okay:1;
951 
952 	/* private: */
953 	__u8			__mono_tc_offset[0];
954 	/* public: */
955 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
956 #ifdef CONFIG_NET_XGRESS
957 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
958 	__u8			tc_skip_classify:1;
959 #endif
960 	__u8			remcsum_offload:1;
961 	__u8			csum_complete_sw:1;
962 	__u8			csum_level:2;
963 	__u8			inner_protocol_type:1;
964 
965 	__u8			l4_hash:1;
966 	__u8			sw_hash:1;
967 #ifdef CONFIG_WIRELESS
968 	__u8			wifi_acked_valid:1;
969 	__u8			wifi_acked:1;
970 #endif
971 	__u8			no_fcs:1;
972 	/* Indicates the inner headers are valid in the skbuff. */
973 	__u8			encapsulation:1;
974 	__u8			encap_hdr_csum:1;
975 	__u8			csum_valid:1;
976 #ifdef CONFIG_IPV6_NDISC_NODETYPE
977 	__u8			ndisc_nodetype:2;
978 #endif
979 
980 #if IS_ENABLED(CONFIG_IP_VS)
981 	__u8			ipvs_property:1;
982 #endif
983 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
984 	__u8			nf_trace:1;
985 #endif
986 #ifdef CONFIG_NET_SWITCHDEV
987 	__u8			offload_fwd_mark:1;
988 	__u8			offload_l3_fwd_mark:1;
989 #endif
990 	__u8			redirected:1;
991 #ifdef CONFIG_NET_REDIRECT
992 	__u8			from_ingress:1;
993 #endif
994 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
995 	__u8			nf_skip_egress:1;
996 #endif
997 #ifdef CONFIG_TLS_DEVICE
998 	__u8			decrypted:1;
999 #endif
1000 	__u8			slow_gro:1;
1001 #if IS_ENABLED(CONFIG_IP_SCTP)
1002 	__u8			csum_not_inet:1;
1003 #endif
1004 
1005 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1006 	__u16			tc_index;	/* traffic control index */
1007 #endif
1008 
1009 	u16			alloc_cpu;
1010 
1011 	union {
1012 		__wsum		csum;
1013 		struct {
1014 			__u16	csum_start;
1015 			__u16	csum_offset;
1016 		};
1017 	};
1018 	__u32			priority;
1019 	int			skb_iif;
1020 	__u32			hash;
1021 	union {
1022 		u32		vlan_all;
1023 		struct {
1024 			__be16	vlan_proto;
1025 			__u16	vlan_tci;
1026 		};
1027 	};
1028 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1029 	union {
1030 		unsigned int	napi_id;
1031 		unsigned int	sender_cpu;
1032 	};
1033 #endif
1034 #ifdef CONFIG_NETWORK_SECMARK
1035 	__u32		secmark;
1036 #endif
1037 
1038 	union {
1039 		__u32		mark;
1040 		__u32		reserved_tailroom;
1041 	};
1042 
1043 	union {
1044 		__be16		inner_protocol;
1045 		__u8		inner_ipproto;
1046 	};
1047 
1048 	__u16			inner_transport_header;
1049 	__u16			inner_network_header;
1050 	__u16			inner_mac_header;
1051 
1052 	__be16			protocol;
1053 	__u16			transport_header;
1054 	__u16			network_header;
1055 	__u16			mac_header;
1056 
1057 #ifdef CONFIG_KCOV
1058 	u64			kcov_handle;
1059 #endif
1060 
1061 	); /* end headers group */
1062 
1063 	/* These elements must be at the end, see alloc_skb() for details.  */
1064 	sk_buff_data_t		tail;
1065 	sk_buff_data_t		end;
1066 	unsigned char		*head,
1067 				*data;
1068 	unsigned int		truesize;
1069 	refcount_t		users;
1070 
1071 #ifdef CONFIG_SKB_EXTENSIONS
1072 	/* only usable after checking ->active_extensions != 0 */
1073 	struct skb_ext		*extensions;
1074 #endif
1075 };
1076 
1077 /* if you move pkt_type around you also must adapt those constants */
1078 #ifdef __BIG_ENDIAN_BITFIELD
1079 #define PKT_TYPE_MAX	(7 << 5)
1080 #else
1081 #define PKT_TYPE_MAX	7
1082 #endif
1083 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1084 
1085 /* if you move tc_at_ingress or mono_delivery_time
1086  * around, you also must adapt these constants.
1087  */
1088 #ifdef __BIG_ENDIAN_BITFIELD
1089 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1090 #define TC_AT_INGRESS_MASK		(1 << 6)
1091 #else
1092 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1093 #define TC_AT_INGRESS_MASK		(1 << 1)
1094 #endif
1095 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1096 
1097 #ifdef __KERNEL__
1098 /*
1099  *	Handling routines are only of interest to the kernel
1100  */
1101 
1102 #define SKB_ALLOC_FCLONE	0x01
1103 #define SKB_ALLOC_RX		0x02
1104 #define SKB_ALLOC_NAPI		0x04
1105 
1106 /**
1107  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1108  * @skb: buffer
1109  */
1110 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1111 {
1112 	return unlikely(skb->pfmemalloc);
1113 }
1114 
1115 /*
1116  * skb might have a dst pointer attached, refcounted or not.
1117  * _skb_refdst low order bit is set if refcount was _not_ taken
1118  */
1119 #define SKB_DST_NOREF	1UL
1120 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1121 
1122 /**
1123  * skb_dst - returns skb dst_entry
1124  * @skb: buffer
1125  *
1126  * Returns skb dst_entry, regardless of reference taken or not.
1127  */
1128 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1129 {
1130 	/* If refdst was not refcounted, check we still are in a
1131 	 * rcu_read_lock section
1132 	 */
1133 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1134 		!rcu_read_lock_held() &&
1135 		!rcu_read_lock_bh_held());
1136 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1137 }
1138 
1139 /**
1140  * skb_dst_set - sets skb dst
1141  * @skb: buffer
1142  * @dst: dst entry
1143  *
1144  * Sets skb dst, assuming a reference was taken on dst and should
1145  * be released by skb_dst_drop()
1146  */
1147 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1148 {
1149 	skb->slow_gro |= !!dst;
1150 	skb->_skb_refdst = (unsigned long)dst;
1151 }
1152 
1153 /**
1154  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1155  * @skb: buffer
1156  * @dst: dst entry
1157  *
1158  * Sets skb dst, assuming a reference was not taken on dst.
1159  * If dst entry is cached, we do not take reference and dst_release
1160  * will be avoided by refdst_drop. If dst entry is not cached, we take
1161  * reference, so that last dst_release can destroy the dst immediately.
1162  */
1163 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1164 {
1165 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1166 	skb->slow_gro |= !!dst;
1167 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1168 }
1169 
1170 /**
1171  * skb_dst_is_noref - Test if skb dst isn't refcounted
1172  * @skb: buffer
1173  */
1174 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1175 {
1176 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1177 }
1178 
1179 /**
1180  * skb_rtable - Returns the skb &rtable
1181  * @skb: buffer
1182  */
1183 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1184 {
1185 	return (struct rtable *)skb_dst(skb);
1186 }
1187 
1188 /* For mangling skb->pkt_type from user space side from applications
1189  * such as nft, tc, etc, we only allow a conservative subset of
1190  * possible pkt_types to be set.
1191 */
1192 static inline bool skb_pkt_type_ok(u32 ptype)
1193 {
1194 	return ptype <= PACKET_OTHERHOST;
1195 }
1196 
1197 /**
1198  * skb_napi_id - Returns the skb's NAPI id
1199  * @skb: buffer
1200  */
1201 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1202 {
1203 #ifdef CONFIG_NET_RX_BUSY_POLL
1204 	return skb->napi_id;
1205 #else
1206 	return 0;
1207 #endif
1208 }
1209 
1210 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1211 {
1212 #ifdef CONFIG_WIRELESS
1213 	return skb->wifi_acked_valid;
1214 #else
1215 	return 0;
1216 #endif
1217 }
1218 
1219 /**
1220  * skb_unref - decrement the skb's reference count
1221  * @skb: buffer
1222  *
1223  * Returns true if we can free the skb.
1224  */
1225 static inline bool skb_unref(struct sk_buff *skb)
1226 {
1227 	if (unlikely(!skb))
1228 		return false;
1229 	if (likely(refcount_read(&skb->users) == 1))
1230 		smp_rmb();
1231 	else if (likely(!refcount_dec_and_test(&skb->users)))
1232 		return false;
1233 
1234 	return true;
1235 }
1236 
1237 void __fix_address
1238 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1239 
1240 /**
1241  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1242  *	@skb: buffer to free
1243  */
1244 static inline void kfree_skb(struct sk_buff *skb)
1245 {
1246 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1247 }
1248 
1249 void skb_release_head_state(struct sk_buff *skb);
1250 void kfree_skb_list_reason(struct sk_buff *segs,
1251 			   enum skb_drop_reason reason);
1252 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1253 void skb_tx_error(struct sk_buff *skb);
1254 
1255 static inline void kfree_skb_list(struct sk_buff *segs)
1256 {
1257 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1258 }
1259 
1260 #ifdef CONFIG_TRACEPOINTS
1261 void consume_skb(struct sk_buff *skb);
1262 #else
1263 static inline void consume_skb(struct sk_buff *skb)
1264 {
1265 	return kfree_skb(skb);
1266 }
1267 #endif
1268 
1269 void __consume_stateless_skb(struct sk_buff *skb);
1270 void  __kfree_skb(struct sk_buff *skb);
1271 extern struct kmem_cache *skbuff_cache;
1272 
1273 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1274 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1275 		      bool *fragstolen, int *delta_truesize);
1276 
1277 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1278 			    int node);
1279 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1280 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1281 struct sk_buff *build_skb_around(struct sk_buff *skb,
1282 				 void *data, unsigned int frag_size);
1283 void skb_attempt_defer_free(struct sk_buff *skb);
1284 
1285 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1286 struct sk_buff *slab_build_skb(void *data);
1287 
1288 /**
1289  * alloc_skb - allocate a network buffer
1290  * @size: size to allocate
1291  * @priority: allocation mask
1292  *
1293  * This function is a convenient wrapper around __alloc_skb().
1294  */
1295 static inline struct sk_buff *alloc_skb(unsigned int size,
1296 					gfp_t priority)
1297 {
1298 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1299 }
1300 
1301 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1302 				     unsigned long data_len,
1303 				     int max_page_order,
1304 				     int *errcode,
1305 				     gfp_t gfp_mask);
1306 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1307 
1308 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1309 struct sk_buff_fclones {
1310 	struct sk_buff	skb1;
1311 
1312 	struct sk_buff	skb2;
1313 
1314 	refcount_t	fclone_ref;
1315 };
1316 
1317 /**
1318  *	skb_fclone_busy - check if fclone is busy
1319  *	@sk: socket
1320  *	@skb: buffer
1321  *
1322  * Returns true if skb is a fast clone, and its clone is not freed.
1323  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1324  * so we also check that didn't happen.
1325  */
1326 static inline bool skb_fclone_busy(const struct sock *sk,
1327 				   const struct sk_buff *skb)
1328 {
1329 	const struct sk_buff_fclones *fclones;
1330 
1331 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1332 
1333 	return skb->fclone == SKB_FCLONE_ORIG &&
1334 	       refcount_read(&fclones->fclone_ref) > 1 &&
1335 	       READ_ONCE(fclones->skb2.sk) == sk;
1336 }
1337 
1338 /**
1339  * alloc_skb_fclone - allocate a network buffer from fclone cache
1340  * @size: size to allocate
1341  * @priority: allocation mask
1342  *
1343  * This function is a convenient wrapper around __alloc_skb().
1344  */
1345 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1346 					       gfp_t priority)
1347 {
1348 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1349 }
1350 
1351 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1352 void skb_headers_offset_update(struct sk_buff *skb, int off);
1353 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1354 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1355 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1356 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1357 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1358 				   gfp_t gfp_mask, bool fclone);
1359 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1360 					  gfp_t gfp_mask)
1361 {
1362 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1363 }
1364 
1365 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1366 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1367 				     unsigned int headroom);
1368 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1369 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1370 				int newtailroom, gfp_t priority);
1371 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1372 				     int offset, int len);
1373 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1374 			      int offset, int len);
1375 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1376 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1377 
1378 /**
1379  *	skb_pad			-	zero pad the tail of an skb
1380  *	@skb: buffer to pad
1381  *	@pad: space to pad
1382  *
1383  *	Ensure that a buffer is followed by a padding area that is zero
1384  *	filled. Used by network drivers which may DMA or transfer data
1385  *	beyond the buffer end onto the wire.
1386  *
1387  *	May return error in out of memory cases. The skb is freed on error.
1388  */
1389 static inline int skb_pad(struct sk_buff *skb, int pad)
1390 {
1391 	return __skb_pad(skb, pad, true);
1392 }
1393 #define dev_kfree_skb(a)	consume_skb(a)
1394 
1395 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1396 			 int offset, size_t size, size_t max_frags);
1397 
1398 struct skb_seq_state {
1399 	__u32		lower_offset;
1400 	__u32		upper_offset;
1401 	__u32		frag_idx;
1402 	__u32		stepped_offset;
1403 	struct sk_buff	*root_skb;
1404 	struct sk_buff	*cur_skb;
1405 	__u8		*frag_data;
1406 	__u32		frag_off;
1407 };
1408 
1409 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1410 			  unsigned int to, struct skb_seq_state *st);
1411 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1412 			  struct skb_seq_state *st);
1413 void skb_abort_seq_read(struct skb_seq_state *st);
1414 
1415 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1416 			   unsigned int to, struct ts_config *config);
1417 
1418 /*
1419  * Packet hash types specify the type of hash in skb_set_hash.
1420  *
1421  * Hash types refer to the protocol layer addresses which are used to
1422  * construct a packet's hash. The hashes are used to differentiate or identify
1423  * flows of the protocol layer for the hash type. Hash types are either
1424  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1425  *
1426  * Properties of hashes:
1427  *
1428  * 1) Two packets in different flows have different hash values
1429  * 2) Two packets in the same flow should have the same hash value
1430  *
1431  * A hash at a higher layer is considered to be more specific. A driver should
1432  * set the most specific hash possible.
1433  *
1434  * A driver cannot indicate a more specific hash than the layer at which a hash
1435  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1436  *
1437  * A driver may indicate a hash level which is less specific than the
1438  * actual layer the hash was computed on. For instance, a hash computed
1439  * at L4 may be considered an L3 hash. This should only be done if the
1440  * driver can't unambiguously determine that the HW computed the hash at
1441  * the higher layer. Note that the "should" in the second property above
1442  * permits this.
1443  */
1444 enum pkt_hash_types {
1445 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1446 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1447 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1448 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1449 };
1450 
1451 static inline void skb_clear_hash(struct sk_buff *skb)
1452 {
1453 	skb->hash = 0;
1454 	skb->sw_hash = 0;
1455 	skb->l4_hash = 0;
1456 }
1457 
1458 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1459 {
1460 	if (!skb->l4_hash)
1461 		skb_clear_hash(skb);
1462 }
1463 
1464 static inline void
1465 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1466 {
1467 	skb->l4_hash = is_l4;
1468 	skb->sw_hash = is_sw;
1469 	skb->hash = hash;
1470 }
1471 
1472 static inline void
1473 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1474 {
1475 	/* Used by drivers to set hash from HW */
1476 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1477 }
1478 
1479 static inline void
1480 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1481 {
1482 	__skb_set_hash(skb, hash, true, is_l4);
1483 }
1484 
1485 void __skb_get_hash(struct sk_buff *skb);
1486 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1487 u32 skb_get_poff(const struct sk_buff *skb);
1488 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1489 		   const struct flow_keys_basic *keys, int hlen);
1490 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1491 			    const void *data, int hlen_proto);
1492 
1493 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1494 					int thoff, u8 ip_proto)
1495 {
1496 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1497 }
1498 
1499 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1500 			     const struct flow_dissector_key *key,
1501 			     unsigned int key_count);
1502 
1503 struct bpf_flow_dissector;
1504 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1505 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1506 
1507 bool __skb_flow_dissect(const struct net *net,
1508 			const struct sk_buff *skb,
1509 			struct flow_dissector *flow_dissector,
1510 			void *target_container, const void *data,
1511 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1512 
1513 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1514 				    struct flow_dissector *flow_dissector,
1515 				    void *target_container, unsigned int flags)
1516 {
1517 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1518 				  target_container, NULL, 0, 0, 0, flags);
1519 }
1520 
1521 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1522 					      struct flow_keys *flow,
1523 					      unsigned int flags)
1524 {
1525 	memset(flow, 0, sizeof(*flow));
1526 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1527 				  flow, NULL, 0, 0, 0, flags);
1528 }
1529 
1530 static inline bool
1531 skb_flow_dissect_flow_keys_basic(const struct net *net,
1532 				 const struct sk_buff *skb,
1533 				 struct flow_keys_basic *flow,
1534 				 const void *data, __be16 proto,
1535 				 int nhoff, int hlen, unsigned int flags)
1536 {
1537 	memset(flow, 0, sizeof(*flow));
1538 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1539 				  data, proto, nhoff, hlen, flags);
1540 }
1541 
1542 void skb_flow_dissect_meta(const struct sk_buff *skb,
1543 			   struct flow_dissector *flow_dissector,
1544 			   void *target_container);
1545 
1546 /* Gets a skb connection tracking info, ctinfo map should be a
1547  * map of mapsize to translate enum ip_conntrack_info states
1548  * to user states.
1549  */
1550 void
1551 skb_flow_dissect_ct(const struct sk_buff *skb,
1552 		    struct flow_dissector *flow_dissector,
1553 		    void *target_container,
1554 		    u16 *ctinfo_map, size_t mapsize,
1555 		    bool post_ct, u16 zone);
1556 void
1557 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1558 			     struct flow_dissector *flow_dissector,
1559 			     void *target_container);
1560 
1561 void skb_flow_dissect_hash(const struct sk_buff *skb,
1562 			   struct flow_dissector *flow_dissector,
1563 			   void *target_container);
1564 
1565 static inline __u32 skb_get_hash(struct sk_buff *skb)
1566 {
1567 	if (!skb->l4_hash && !skb->sw_hash)
1568 		__skb_get_hash(skb);
1569 
1570 	return skb->hash;
1571 }
1572 
1573 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1574 {
1575 	if (!skb->l4_hash && !skb->sw_hash) {
1576 		struct flow_keys keys;
1577 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1578 
1579 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1580 	}
1581 
1582 	return skb->hash;
1583 }
1584 
1585 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1586 			   const siphash_key_t *perturb);
1587 
1588 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1589 {
1590 	return skb->hash;
1591 }
1592 
1593 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1594 {
1595 	to->hash = from->hash;
1596 	to->sw_hash = from->sw_hash;
1597 	to->l4_hash = from->l4_hash;
1598 };
1599 
1600 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1601 				    const struct sk_buff *skb2)
1602 {
1603 #ifdef CONFIG_TLS_DEVICE
1604 	return skb2->decrypted - skb1->decrypted;
1605 #else
1606 	return 0;
1607 #endif
1608 }
1609 
1610 static inline void skb_copy_decrypted(struct sk_buff *to,
1611 				      const struct sk_buff *from)
1612 {
1613 #ifdef CONFIG_TLS_DEVICE
1614 	to->decrypted = from->decrypted;
1615 #endif
1616 }
1617 
1618 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1619 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1620 {
1621 	return skb->head + skb->end;
1622 }
1623 
1624 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1625 {
1626 	return skb->end;
1627 }
1628 
1629 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1630 {
1631 	skb->end = offset;
1632 }
1633 #else
1634 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1635 {
1636 	return skb->end;
1637 }
1638 
1639 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1640 {
1641 	return skb->end - skb->head;
1642 }
1643 
1644 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1645 {
1646 	skb->end = skb->head + offset;
1647 }
1648 #endif
1649 
1650 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1651 				       struct ubuf_info *uarg);
1652 
1653 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1654 
1655 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1656 			   bool success);
1657 
1658 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1659 			    struct sk_buff *skb, struct iov_iter *from,
1660 			    size_t length);
1661 
1662 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1663 					  struct msghdr *msg, int len)
1664 {
1665 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1666 }
1667 
1668 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1669 			     struct msghdr *msg, int len,
1670 			     struct ubuf_info *uarg);
1671 
1672 /* Internal */
1673 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1674 
1675 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1676 {
1677 	return &skb_shinfo(skb)->hwtstamps;
1678 }
1679 
1680 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1681 {
1682 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1683 
1684 	return is_zcopy ? skb_uarg(skb) : NULL;
1685 }
1686 
1687 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1688 {
1689 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1690 }
1691 
1692 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1693 {
1694 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1695 }
1696 
1697 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1698 				       const struct sk_buff *skb2)
1699 {
1700 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1701 }
1702 
1703 static inline void net_zcopy_get(struct ubuf_info *uarg)
1704 {
1705 	refcount_inc(&uarg->refcnt);
1706 }
1707 
1708 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1709 {
1710 	skb_shinfo(skb)->destructor_arg = uarg;
1711 	skb_shinfo(skb)->flags |= uarg->flags;
1712 }
1713 
1714 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1715 				 bool *have_ref)
1716 {
1717 	if (skb && uarg && !skb_zcopy(skb)) {
1718 		if (unlikely(have_ref && *have_ref))
1719 			*have_ref = false;
1720 		else
1721 			net_zcopy_get(uarg);
1722 		skb_zcopy_init(skb, uarg);
1723 	}
1724 }
1725 
1726 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1727 {
1728 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1729 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1730 }
1731 
1732 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1733 {
1734 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1735 }
1736 
1737 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1738 {
1739 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1740 }
1741 
1742 static inline void net_zcopy_put(struct ubuf_info *uarg)
1743 {
1744 	if (uarg)
1745 		uarg->callback(NULL, uarg, true);
1746 }
1747 
1748 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1749 {
1750 	if (uarg) {
1751 		if (uarg->callback == msg_zerocopy_callback)
1752 			msg_zerocopy_put_abort(uarg, have_uref);
1753 		else if (have_uref)
1754 			net_zcopy_put(uarg);
1755 	}
1756 }
1757 
1758 /* Release a reference on a zerocopy structure */
1759 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1760 {
1761 	struct ubuf_info *uarg = skb_zcopy(skb);
1762 
1763 	if (uarg) {
1764 		if (!skb_zcopy_is_nouarg(skb))
1765 			uarg->callback(skb, uarg, zerocopy_success);
1766 
1767 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1768 	}
1769 }
1770 
1771 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1772 
1773 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1774 {
1775 	if (unlikely(skb_zcopy_managed(skb)))
1776 		__skb_zcopy_downgrade_managed(skb);
1777 }
1778 
1779 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1780 {
1781 	skb->next = NULL;
1782 }
1783 
1784 static inline void skb_poison_list(struct sk_buff *skb)
1785 {
1786 #ifdef CONFIG_DEBUG_NET
1787 	skb->next = SKB_LIST_POISON_NEXT;
1788 #endif
1789 }
1790 
1791 /* Iterate through singly-linked GSO fragments of an skb. */
1792 #define skb_list_walk_safe(first, skb, next_skb)                               \
1793 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1794 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1795 
1796 static inline void skb_list_del_init(struct sk_buff *skb)
1797 {
1798 	__list_del_entry(&skb->list);
1799 	skb_mark_not_on_list(skb);
1800 }
1801 
1802 /**
1803  *	skb_queue_empty - check if a queue is empty
1804  *	@list: queue head
1805  *
1806  *	Returns true if the queue is empty, false otherwise.
1807  */
1808 static inline int skb_queue_empty(const struct sk_buff_head *list)
1809 {
1810 	return list->next == (const struct sk_buff *) list;
1811 }
1812 
1813 /**
1814  *	skb_queue_empty_lockless - check if a queue is empty
1815  *	@list: queue head
1816  *
1817  *	Returns true if the queue is empty, false otherwise.
1818  *	This variant can be used in lockless contexts.
1819  */
1820 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1821 {
1822 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1823 }
1824 
1825 
1826 /**
1827  *	skb_queue_is_last - check if skb is the last entry in the queue
1828  *	@list: queue head
1829  *	@skb: buffer
1830  *
1831  *	Returns true if @skb is the last buffer on the list.
1832  */
1833 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1834 				     const struct sk_buff *skb)
1835 {
1836 	return skb->next == (const struct sk_buff *) list;
1837 }
1838 
1839 /**
1840  *	skb_queue_is_first - check if skb is the first entry in the queue
1841  *	@list: queue head
1842  *	@skb: buffer
1843  *
1844  *	Returns true if @skb is the first buffer on the list.
1845  */
1846 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1847 				      const struct sk_buff *skb)
1848 {
1849 	return skb->prev == (const struct sk_buff *) list;
1850 }
1851 
1852 /**
1853  *	skb_queue_next - return the next packet in the queue
1854  *	@list: queue head
1855  *	@skb: current buffer
1856  *
1857  *	Return the next packet in @list after @skb.  It is only valid to
1858  *	call this if skb_queue_is_last() evaluates to false.
1859  */
1860 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1861 					     const struct sk_buff *skb)
1862 {
1863 	/* This BUG_ON may seem severe, but if we just return then we
1864 	 * are going to dereference garbage.
1865 	 */
1866 	BUG_ON(skb_queue_is_last(list, skb));
1867 	return skb->next;
1868 }
1869 
1870 /**
1871  *	skb_queue_prev - return the prev packet in the queue
1872  *	@list: queue head
1873  *	@skb: current buffer
1874  *
1875  *	Return the prev packet in @list before @skb.  It is only valid to
1876  *	call this if skb_queue_is_first() evaluates to false.
1877  */
1878 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1879 					     const struct sk_buff *skb)
1880 {
1881 	/* This BUG_ON may seem severe, but if we just return then we
1882 	 * are going to dereference garbage.
1883 	 */
1884 	BUG_ON(skb_queue_is_first(list, skb));
1885 	return skb->prev;
1886 }
1887 
1888 /**
1889  *	skb_get - reference buffer
1890  *	@skb: buffer to reference
1891  *
1892  *	Makes another reference to a socket buffer and returns a pointer
1893  *	to the buffer.
1894  */
1895 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1896 {
1897 	refcount_inc(&skb->users);
1898 	return skb;
1899 }
1900 
1901 /*
1902  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1903  */
1904 
1905 /**
1906  *	skb_cloned - is the buffer a clone
1907  *	@skb: buffer to check
1908  *
1909  *	Returns true if the buffer was generated with skb_clone() and is
1910  *	one of multiple shared copies of the buffer. Cloned buffers are
1911  *	shared data so must not be written to under normal circumstances.
1912  */
1913 static inline int skb_cloned(const struct sk_buff *skb)
1914 {
1915 	return skb->cloned &&
1916 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1917 }
1918 
1919 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1920 {
1921 	might_sleep_if(gfpflags_allow_blocking(pri));
1922 
1923 	if (skb_cloned(skb))
1924 		return pskb_expand_head(skb, 0, 0, pri);
1925 
1926 	return 0;
1927 }
1928 
1929 /* This variant of skb_unclone() makes sure skb->truesize
1930  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1931  *
1932  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1933  * when various debugging features are in place.
1934  */
1935 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1936 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1937 {
1938 	might_sleep_if(gfpflags_allow_blocking(pri));
1939 
1940 	if (skb_cloned(skb))
1941 		return __skb_unclone_keeptruesize(skb, pri);
1942 	return 0;
1943 }
1944 
1945 /**
1946  *	skb_header_cloned - is the header a clone
1947  *	@skb: buffer to check
1948  *
1949  *	Returns true if modifying the header part of the buffer requires
1950  *	the data to be copied.
1951  */
1952 static inline int skb_header_cloned(const struct sk_buff *skb)
1953 {
1954 	int dataref;
1955 
1956 	if (!skb->cloned)
1957 		return 0;
1958 
1959 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1960 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1961 	return dataref != 1;
1962 }
1963 
1964 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1965 {
1966 	might_sleep_if(gfpflags_allow_blocking(pri));
1967 
1968 	if (skb_header_cloned(skb))
1969 		return pskb_expand_head(skb, 0, 0, pri);
1970 
1971 	return 0;
1972 }
1973 
1974 /**
1975  * __skb_header_release() - allow clones to use the headroom
1976  * @skb: buffer to operate on
1977  *
1978  * See "DOC: dataref and headerless skbs".
1979  */
1980 static inline void __skb_header_release(struct sk_buff *skb)
1981 {
1982 	skb->nohdr = 1;
1983 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1984 }
1985 
1986 
1987 /**
1988  *	skb_shared - is the buffer shared
1989  *	@skb: buffer to check
1990  *
1991  *	Returns true if more than one person has a reference to this
1992  *	buffer.
1993  */
1994 static inline int skb_shared(const struct sk_buff *skb)
1995 {
1996 	return refcount_read(&skb->users) != 1;
1997 }
1998 
1999 /**
2000  *	skb_share_check - check if buffer is shared and if so clone it
2001  *	@skb: buffer to check
2002  *	@pri: priority for memory allocation
2003  *
2004  *	If the buffer is shared the buffer is cloned and the old copy
2005  *	drops a reference. A new clone with a single reference is returned.
2006  *	If the buffer is not shared the original buffer is returned. When
2007  *	being called from interrupt status or with spinlocks held pri must
2008  *	be GFP_ATOMIC.
2009  *
2010  *	NULL is returned on a memory allocation failure.
2011  */
2012 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2013 {
2014 	might_sleep_if(gfpflags_allow_blocking(pri));
2015 	if (skb_shared(skb)) {
2016 		struct sk_buff *nskb = skb_clone(skb, pri);
2017 
2018 		if (likely(nskb))
2019 			consume_skb(skb);
2020 		else
2021 			kfree_skb(skb);
2022 		skb = nskb;
2023 	}
2024 	return skb;
2025 }
2026 
2027 /*
2028  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2029  *	packets to handle cases where we have a local reader and forward
2030  *	and a couple of other messy ones. The normal one is tcpdumping
2031  *	a packet that's being forwarded.
2032  */
2033 
2034 /**
2035  *	skb_unshare - make a copy of a shared buffer
2036  *	@skb: buffer to check
2037  *	@pri: priority for memory allocation
2038  *
2039  *	If the socket buffer is a clone then this function creates a new
2040  *	copy of the data, drops a reference count on the old copy and returns
2041  *	the new copy with the reference count at 1. If the buffer is not a clone
2042  *	the original buffer is returned. When called with a spinlock held or
2043  *	from interrupt state @pri must be %GFP_ATOMIC
2044  *
2045  *	%NULL is returned on a memory allocation failure.
2046  */
2047 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2048 					  gfp_t pri)
2049 {
2050 	might_sleep_if(gfpflags_allow_blocking(pri));
2051 	if (skb_cloned(skb)) {
2052 		struct sk_buff *nskb = skb_copy(skb, pri);
2053 
2054 		/* Free our shared copy */
2055 		if (likely(nskb))
2056 			consume_skb(skb);
2057 		else
2058 			kfree_skb(skb);
2059 		skb = nskb;
2060 	}
2061 	return skb;
2062 }
2063 
2064 /**
2065  *	skb_peek - peek at the head of an &sk_buff_head
2066  *	@list_: list to peek at
2067  *
2068  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2069  *	be careful with this one. A peek leaves the buffer on the
2070  *	list and someone else may run off with it. You must hold
2071  *	the appropriate locks or have a private queue to do this.
2072  *
2073  *	Returns %NULL for an empty list or a pointer to the head element.
2074  *	The reference count is not incremented and the reference is therefore
2075  *	volatile. Use with caution.
2076  */
2077 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2078 {
2079 	struct sk_buff *skb = list_->next;
2080 
2081 	if (skb == (struct sk_buff *)list_)
2082 		skb = NULL;
2083 	return skb;
2084 }
2085 
2086 /**
2087  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2088  *	@list_: list to peek at
2089  *
2090  *	Like skb_peek(), but the caller knows that the list is not empty.
2091  */
2092 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2093 {
2094 	return list_->next;
2095 }
2096 
2097 /**
2098  *	skb_peek_next - peek skb following the given one from a queue
2099  *	@skb: skb to start from
2100  *	@list_: list to peek at
2101  *
2102  *	Returns %NULL when the end of the list is met or a pointer to the
2103  *	next element. The reference count is not incremented and the
2104  *	reference is therefore volatile. Use with caution.
2105  */
2106 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2107 		const struct sk_buff_head *list_)
2108 {
2109 	struct sk_buff *next = skb->next;
2110 
2111 	if (next == (struct sk_buff *)list_)
2112 		next = NULL;
2113 	return next;
2114 }
2115 
2116 /**
2117  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2118  *	@list_: list to peek at
2119  *
2120  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2121  *	be careful with this one. A peek leaves the buffer on the
2122  *	list and someone else may run off with it. You must hold
2123  *	the appropriate locks or have a private queue to do this.
2124  *
2125  *	Returns %NULL for an empty list or a pointer to the tail element.
2126  *	The reference count is not incremented and the reference is therefore
2127  *	volatile. Use with caution.
2128  */
2129 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2130 {
2131 	struct sk_buff *skb = READ_ONCE(list_->prev);
2132 
2133 	if (skb == (struct sk_buff *)list_)
2134 		skb = NULL;
2135 	return skb;
2136 
2137 }
2138 
2139 /**
2140  *	skb_queue_len	- get queue length
2141  *	@list_: list to measure
2142  *
2143  *	Return the length of an &sk_buff queue.
2144  */
2145 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2146 {
2147 	return list_->qlen;
2148 }
2149 
2150 /**
2151  *	skb_queue_len_lockless	- get queue length
2152  *	@list_: list to measure
2153  *
2154  *	Return the length of an &sk_buff queue.
2155  *	This variant can be used in lockless contexts.
2156  */
2157 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2158 {
2159 	return READ_ONCE(list_->qlen);
2160 }
2161 
2162 /**
2163  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2164  *	@list: queue to initialize
2165  *
2166  *	This initializes only the list and queue length aspects of
2167  *	an sk_buff_head object.  This allows to initialize the list
2168  *	aspects of an sk_buff_head without reinitializing things like
2169  *	the spinlock.  It can also be used for on-stack sk_buff_head
2170  *	objects where the spinlock is known to not be used.
2171  */
2172 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2173 {
2174 	list->prev = list->next = (struct sk_buff *)list;
2175 	list->qlen = 0;
2176 }
2177 
2178 /*
2179  * This function creates a split out lock class for each invocation;
2180  * this is needed for now since a whole lot of users of the skb-queue
2181  * infrastructure in drivers have different locking usage (in hardirq)
2182  * than the networking core (in softirq only). In the long run either the
2183  * network layer or drivers should need annotation to consolidate the
2184  * main types of usage into 3 classes.
2185  */
2186 static inline void skb_queue_head_init(struct sk_buff_head *list)
2187 {
2188 	spin_lock_init(&list->lock);
2189 	__skb_queue_head_init(list);
2190 }
2191 
2192 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2193 		struct lock_class_key *class)
2194 {
2195 	skb_queue_head_init(list);
2196 	lockdep_set_class(&list->lock, class);
2197 }
2198 
2199 /*
2200  *	Insert an sk_buff on a list.
2201  *
2202  *	The "__skb_xxxx()" functions are the non-atomic ones that
2203  *	can only be called with interrupts disabled.
2204  */
2205 static inline void __skb_insert(struct sk_buff *newsk,
2206 				struct sk_buff *prev, struct sk_buff *next,
2207 				struct sk_buff_head *list)
2208 {
2209 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2210 	 * for the opposite READ_ONCE()
2211 	 */
2212 	WRITE_ONCE(newsk->next, next);
2213 	WRITE_ONCE(newsk->prev, prev);
2214 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2215 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2216 	WRITE_ONCE(list->qlen, list->qlen + 1);
2217 }
2218 
2219 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2220 				      struct sk_buff *prev,
2221 				      struct sk_buff *next)
2222 {
2223 	struct sk_buff *first = list->next;
2224 	struct sk_buff *last = list->prev;
2225 
2226 	WRITE_ONCE(first->prev, prev);
2227 	WRITE_ONCE(prev->next, first);
2228 
2229 	WRITE_ONCE(last->next, next);
2230 	WRITE_ONCE(next->prev, last);
2231 }
2232 
2233 /**
2234  *	skb_queue_splice - join two skb lists, this is designed for stacks
2235  *	@list: the new list to add
2236  *	@head: the place to add it in the first list
2237  */
2238 static inline void skb_queue_splice(const struct sk_buff_head *list,
2239 				    struct sk_buff_head *head)
2240 {
2241 	if (!skb_queue_empty(list)) {
2242 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2243 		head->qlen += list->qlen;
2244 	}
2245 }
2246 
2247 /**
2248  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2249  *	@list: the new list to add
2250  *	@head: the place to add it in the first list
2251  *
2252  *	The list at @list is reinitialised
2253  */
2254 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2255 					 struct sk_buff_head *head)
2256 {
2257 	if (!skb_queue_empty(list)) {
2258 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2259 		head->qlen += list->qlen;
2260 		__skb_queue_head_init(list);
2261 	}
2262 }
2263 
2264 /**
2265  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2266  *	@list: the new list to add
2267  *	@head: the place to add it in the first list
2268  */
2269 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2270 					 struct sk_buff_head *head)
2271 {
2272 	if (!skb_queue_empty(list)) {
2273 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2274 		head->qlen += list->qlen;
2275 	}
2276 }
2277 
2278 /**
2279  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2280  *	@list: the new list to add
2281  *	@head: the place to add it in the first list
2282  *
2283  *	Each of the lists is a queue.
2284  *	The list at @list is reinitialised
2285  */
2286 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2287 					      struct sk_buff_head *head)
2288 {
2289 	if (!skb_queue_empty(list)) {
2290 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2291 		head->qlen += list->qlen;
2292 		__skb_queue_head_init(list);
2293 	}
2294 }
2295 
2296 /**
2297  *	__skb_queue_after - queue a buffer at the list head
2298  *	@list: list to use
2299  *	@prev: place after this buffer
2300  *	@newsk: buffer to queue
2301  *
2302  *	Queue a buffer int the middle of a list. This function takes no locks
2303  *	and you must therefore hold required locks before calling it.
2304  *
2305  *	A buffer cannot be placed on two lists at the same time.
2306  */
2307 static inline void __skb_queue_after(struct sk_buff_head *list,
2308 				     struct sk_buff *prev,
2309 				     struct sk_buff *newsk)
2310 {
2311 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2312 }
2313 
2314 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2315 		struct sk_buff_head *list);
2316 
2317 static inline void __skb_queue_before(struct sk_buff_head *list,
2318 				      struct sk_buff *next,
2319 				      struct sk_buff *newsk)
2320 {
2321 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2322 }
2323 
2324 /**
2325  *	__skb_queue_head - queue a buffer at the list head
2326  *	@list: list to use
2327  *	@newsk: buffer to queue
2328  *
2329  *	Queue a buffer at the start of a list. This function takes no locks
2330  *	and you must therefore hold required locks before calling it.
2331  *
2332  *	A buffer cannot be placed on two lists at the same time.
2333  */
2334 static inline void __skb_queue_head(struct sk_buff_head *list,
2335 				    struct sk_buff *newsk)
2336 {
2337 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2338 }
2339 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2340 
2341 /**
2342  *	__skb_queue_tail - queue a buffer at the list tail
2343  *	@list: list to use
2344  *	@newsk: buffer to queue
2345  *
2346  *	Queue a buffer at the end of a list. This function takes no locks
2347  *	and you must therefore hold required locks before calling it.
2348  *
2349  *	A buffer cannot be placed on two lists at the same time.
2350  */
2351 static inline void __skb_queue_tail(struct sk_buff_head *list,
2352 				   struct sk_buff *newsk)
2353 {
2354 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2355 }
2356 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2357 
2358 /*
2359  * remove sk_buff from list. _Must_ be called atomically, and with
2360  * the list known..
2361  */
2362 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2363 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2364 {
2365 	struct sk_buff *next, *prev;
2366 
2367 	WRITE_ONCE(list->qlen, list->qlen - 1);
2368 	next	   = skb->next;
2369 	prev	   = skb->prev;
2370 	skb->next  = skb->prev = NULL;
2371 	WRITE_ONCE(next->prev, prev);
2372 	WRITE_ONCE(prev->next, next);
2373 }
2374 
2375 /**
2376  *	__skb_dequeue - remove from the head of the queue
2377  *	@list: list to dequeue from
2378  *
2379  *	Remove the head of the list. This function does not take any locks
2380  *	so must be used with appropriate locks held only. The head item is
2381  *	returned or %NULL if the list is empty.
2382  */
2383 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2384 {
2385 	struct sk_buff *skb = skb_peek(list);
2386 	if (skb)
2387 		__skb_unlink(skb, list);
2388 	return skb;
2389 }
2390 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2391 
2392 /**
2393  *	__skb_dequeue_tail - remove from the tail of the queue
2394  *	@list: list to dequeue from
2395  *
2396  *	Remove the tail of the list. This function does not take any locks
2397  *	so must be used with appropriate locks held only. The tail item is
2398  *	returned or %NULL if the list is empty.
2399  */
2400 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2401 {
2402 	struct sk_buff *skb = skb_peek_tail(list);
2403 	if (skb)
2404 		__skb_unlink(skb, list);
2405 	return skb;
2406 }
2407 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2408 
2409 
2410 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2411 {
2412 	return skb->data_len;
2413 }
2414 
2415 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2416 {
2417 	return skb->len - skb->data_len;
2418 }
2419 
2420 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2421 {
2422 	unsigned int i, len = 0;
2423 
2424 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2425 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2426 	return len;
2427 }
2428 
2429 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2430 {
2431 	return skb_headlen(skb) + __skb_pagelen(skb);
2432 }
2433 
2434 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2435 					   struct page *page,
2436 					   int off, int size)
2437 {
2438 	frag->bv_page = page;
2439 	frag->bv_offset = off;
2440 	skb_frag_size_set(frag, size);
2441 }
2442 
2443 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2444 					      int i, struct page *page,
2445 					      int off, int size)
2446 {
2447 	skb_frag_t *frag = &shinfo->frags[i];
2448 
2449 	skb_frag_fill_page_desc(frag, page, off, size);
2450 }
2451 
2452 /**
2453  * skb_len_add - adds a number to len fields of skb
2454  * @skb: buffer to add len to
2455  * @delta: number of bytes to add
2456  */
2457 static inline void skb_len_add(struct sk_buff *skb, int delta)
2458 {
2459 	skb->len += delta;
2460 	skb->data_len += delta;
2461 	skb->truesize += delta;
2462 }
2463 
2464 /**
2465  * __skb_fill_page_desc - initialise a paged fragment in an skb
2466  * @skb: buffer containing fragment to be initialised
2467  * @i: paged fragment index to initialise
2468  * @page: the page to use for this fragment
2469  * @off: the offset to the data with @page
2470  * @size: the length of the data
2471  *
2472  * Initialises the @i'th fragment of @skb to point to &size bytes at
2473  * offset @off within @page.
2474  *
2475  * Does not take any additional reference on the fragment.
2476  */
2477 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2478 					struct page *page, int off, int size)
2479 {
2480 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2481 
2482 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2483 	 * that not all callers have unique ownership of the page but rely
2484 	 * on page_is_pfmemalloc doing the right thing(tm).
2485 	 */
2486 	page = compound_head(page);
2487 	if (page_is_pfmemalloc(page))
2488 		skb->pfmemalloc	= true;
2489 }
2490 
2491 /**
2492  * skb_fill_page_desc - initialise a paged fragment in an skb
2493  * @skb: buffer containing fragment to be initialised
2494  * @i: paged fragment index to initialise
2495  * @page: the page to use for this fragment
2496  * @off: the offset to the data with @page
2497  * @size: the length of the data
2498  *
2499  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2500  * @skb to point to @size bytes at offset @off within @page. In
2501  * addition updates @skb such that @i is the last fragment.
2502  *
2503  * Does not take any additional reference on the fragment.
2504  */
2505 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2506 				      struct page *page, int off, int size)
2507 {
2508 	__skb_fill_page_desc(skb, i, page, off, size);
2509 	skb_shinfo(skb)->nr_frags = i + 1;
2510 }
2511 
2512 /**
2513  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2514  * @skb: buffer containing fragment to be initialised
2515  * @i: paged fragment index to initialise
2516  * @page: the page to use for this fragment
2517  * @off: the offset to the data with @page
2518  * @size: the length of the data
2519  *
2520  * Variant of skb_fill_page_desc() which does not deal with
2521  * pfmemalloc, if page is not owned by us.
2522  */
2523 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2524 					    struct page *page, int off,
2525 					    int size)
2526 {
2527 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2528 
2529 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2530 	shinfo->nr_frags = i + 1;
2531 }
2532 
2533 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2534 		     int size, unsigned int truesize);
2535 
2536 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2537 			  unsigned int truesize);
2538 
2539 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2540 
2541 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2542 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2543 {
2544 	return skb->head + skb->tail;
2545 }
2546 
2547 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2548 {
2549 	skb->tail = skb->data - skb->head;
2550 }
2551 
2552 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2553 {
2554 	skb_reset_tail_pointer(skb);
2555 	skb->tail += offset;
2556 }
2557 
2558 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2559 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2560 {
2561 	return skb->tail;
2562 }
2563 
2564 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2565 {
2566 	skb->tail = skb->data;
2567 }
2568 
2569 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2570 {
2571 	skb->tail = skb->data + offset;
2572 }
2573 
2574 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2575 
2576 static inline void skb_assert_len(struct sk_buff *skb)
2577 {
2578 #ifdef CONFIG_DEBUG_NET
2579 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2580 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2581 #endif /* CONFIG_DEBUG_NET */
2582 }
2583 
2584 /*
2585  *	Add data to an sk_buff
2586  */
2587 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2588 void *skb_put(struct sk_buff *skb, unsigned int len);
2589 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2590 {
2591 	void *tmp = skb_tail_pointer(skb);
2592 	SKB_LINEAR_ASSERT(skb);
2593 	skb->tail += len;
2594 	skb->len  += len;
2595 	return tmp;
2596 }
2597 
2598 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2599 {
2600 	void *tmp = __skb_put(skb, len);
2601 
2602 	memset(tmp, 0, len);
2603 	return tmp;
2604 }
2605 
2606 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2607 				   unsigned int len)
2608 {
2609 	void *tmp = __skb_put(skb, len);
2610 
2611 	memcpy(tmp, data, len);
2612 	return tmp;
2613 }
2614 
2615 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2616 {
2617 	*(u8 *)__skb_put(skb, 1) = val;
2618 }
2619 
2620 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2621 {
2622 	void *tmp = skb_put(skb, len);
2623 
2624 	memset(tmp, 0, len);
2625 
2626 	return tmp;
2627 }
2628 
2629 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2630 				 unsigned int len)
2631 {
2632 	void *tmp = skb_put(skb, len);
2633 
2634 	memcpy(tmp, data, len);
2635 
2636 	return tmp;
2637 }
2638 
2639 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2640 {
2641 	*(u8 *)skb_put(skb, 1) = val;
2642 }
2643 
2644 void *skb_push(struct sk_buff *skb, unsigned int len);
2645 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2646 {
2647 	skb->data -= len;
2648 	skb->len  += len;
2649 	return skb->data;
2650 }
2651 
2652 void *skb_pull(struct sk_buff *skb, unsigned int len);
2653 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2654 {
2655 	skb->len -= len;
2656 	if (unlikely(skb->len < skb->data_len)) {
2657 #if defined(CONFIG_DEBUG_NET)
2658 		skb->len += len;
2659 		pr_err("__skb_pull(len=%u)\n", len);
2660 		skb_dump(KERN_ERR, skb, false);
2661 #endif
2662 		BUG();
2663 	}
2664 	return skb->data += len;
2665 }
2666 
2667 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2668 {
2669 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2670 }
2671 
2672 void *skb_pull_data(struct sk_buff *skb, size_t len);
2673 
2674 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2675 
2676 static inline enum skb_drop_reason
2677 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2678 {
2679 	if (likely(len <= skb_headlen(skb)))
2680 		return SKB_NOT_DROPPED_YET;
2681 
2682 	if (unlikely(len > skb->len))
2683 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2684 
2685 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2686 		return SKB_DROP_REASON_NOMEM;
2687 
2688 	return SKB_NOT_DROPPED_YET;
2689 }
2690 
2691 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2692 {
2693 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2694 }
2695 
2696 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2697 {
2698 	if (!pskb_may_pull(skb, len))
2699 		return NULL;
2700 
2701 	skb->len -= len;
2702 	return skb->data += len;
2703 }
2704 
2705 void skb_condense(struct sk_buff *skb);
2706 
2707 /**
2708  *	skb_headroom - bytes at buffer head
2709  *	@skb: buffer to check
2710  *
2711  *	Return the number of bytes of free space at the head of an &sk_buff.
2712  */
2713 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2714 {
2715 	return skb->data - skb->head;
2716 }
2717 
2718 /**
2719  *	skb_tailroom - bytes at buffer end
2720  *	@skb: buffer to check
2721  *
2722  *	Return the number of bytes of free space at the tail of an sk_buff
2723  */
2724 static inline int skb_tailroom(const struct sk_buff *skb)
2725 {
2726 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2727 }
2728 
2729 /**
2730  *	skb_availroom - bytes at buffer end
2731  *	@skb: buffer to check
2732  *
2733  *	Return the number of bytes of free space at the tail of an sk_buff
2734  *	allocated by sk_stream_alloc()
2735  */
2736 static inline int skb_availroom(const struct sk_buff *skb)
2737 {
2738 	if (skb_is_nonlinear(skb))
2739 		return 0;
2740 
2741 	return skb->end - skb->tail - skb->reserved_tailroom;
2742 }
2743 
2744 /**
2745  *	skb_reserve - adjust headroom
2746  *	@skb: buffer to alter
2747  *	@len: bytes to move
2748  *
2749  *	Increase the headroom of an empty &sk_buff by reducing the tail
2750  *	room. This is only allowed for an empty buffer.
2751  */
2752 static inline void skb_reserve(struct sk_buff *skb, int len)
2753 {
2754 	skb->data += len;
2755 	skb->tail += len;
2756 }
2757 
2758 /**
2759  *	skb_tailroom_reserve - adjust reserved_tailroom
2760  *	@skb: buffer to alter
2761  *	@mtu: maximum amount of headlen permitted
2762  *	@needed_tailroom: minimum amount of reserved_tailroom
2763  *
2764  *	Set reserved_tailroom so that headlen can be as large as possible but
2765  *	not larger than mtu and tailroom cannot be smaller than
2766  *	needed_tailroom.
2767  *	The required headroom should already have been reserved before using
2768  *	this function.
2769  */
2770 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2771 					unsigned int needed_tailroom)
2772 {
2773 	SKB_LINEAR_ASSERT(skb);
2774 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2775 		/* use at most mtu */
2776 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2777 	else
2778 		/* use up to all available space */
2779 		skb->reserved_tailroom = needed_tailroom;
2780 }
2781 
2782 #define ENCAP_TYPE_ETHER	0
2783 #define ENCAP_TYPE_IPPROTO	1
2784 
2785 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2786 					  __be16 protocol)
2787 {
2788 	skb->inner_protocol = protocol;
2789 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2790 }
2791 
2792 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2793 					 __u8 ipproto)
2794 {
2795 	skb->inner_ipproto = ipproto;
2796 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2797 }
2798 
2799 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2800 {
2801 	skb->inner_mac_header = skb->mac_header;
2802 	skb->inner_network_header = skb->network_header;
2803 	skb->inner_transport_header = skb->transport_header;
2804 }
2805 
2806 static inline void skb_reset_mac_len(struct sk_buff *skb)
2807 {
2808 	skb->mac_len = skb->network_header - skb->mac_header;
2809 }
2810 
2811 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2812 							*skb)
2813 {
2814 	return skb->head + skb->inner_transport_header;
2815 }
2816 
2817 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2818 {
2819 	return skb_inner_transport_header(skb) - skb->data;
2820 }
2821 
2822 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2823 {
2824 	skb->inner_transport_header = skb->data - skb->head;
2825 }
2826 
2827 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2828 						   const int offset)
2829 {
2830 	skb_reset_inner_transport_header(skb);
2831 	skb->inner_transport_header += offset;
2832 }
2833 
2834 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2835 {
2836 	return skb->head + skb->inner_network_header;
2837 }
2838 
2839 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2840 {
2841 	skb->inner_network_header = skb->data - skb->head;
2842 }
2843 
2844 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2845 						const int offset)
2846 {
2847 	skb_reset_inner_network_header(skb);
2848 	skb->inner_network_header += offset;
2849 }
2850 
2851 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2852 {
2853 	return skb->head + skb->inner_mac_header;
2854 }
2855 
2856 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2857 {
2858 	skb->inner_mac_header = skb->data - skb->head;
2859 }
2860 
2861 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2862 					    const int offset)
2863 {
2864 	skb_reset_inner_mac_header(skb);
2865 	skb->inner_mac_header += offset;
2866 }
2867 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2868 {
2869 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2870 }
2871 
2872 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2873 {
2874 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2875 	return skb->head + skb->transport_header;
2876 }
2877 
2878 static inline void skb_reset_transport_header(struct sk_buff *skb)
2879 {
2880 	skb->transport_header = skb->data - skb->head;
2881 }
2882 
2883 static inline void skb_set_transport_header(struct sk_buff *skb,
2884 					    const int offset)
2885 {
2886 	skb_reset_transport_header(skb);
2887 	skb->transport_header += offset;
2888 }
2889 
2890 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2891 {
2892 	return skb->head + skb->network_header;
2893 }
2894 
2895 static inline void skb_reset_network_header(struct sk_buff *skb)
2896 {
2897 	skb->network_header = skb->data - skb->head;
2898 }
2899 
2900 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2901 {
2902 	skb_reset_network_header(skb);
2903 	skb->network_header += offset;
2904 }
2905 
2906 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2907 {
2908 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2909 }
2910 
2911 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2912 {
2913 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2914 	return skb->head + skb->mac_header;
2915 }
2916 
2917 static inline int skb_mac_offset(const struct sk_buff *skb)
2918 {
2919 	return skb_mac_header(skb) - skb->data;
2920 }
2921 
2922 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2923 {
2924 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2925 	return skb->network_header - skb->mac_header;
2926 }
2927 
2928 static inline void skb_unset_mac_header(struct sk_buff *skb)
2929 {
2930 	skb->mac_header = (typeof(skb->mac_header))~0U;
2931 }
2932 
2933 static inline void skb_reset_mac_header(struct sk_buff *skb)
2934 {
2935 	skb->mac_header = skb->data - skb->head;
2936 }
2937 
2938 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2939 {
2940 	skb_reset_mac_header(skb);
2941 	skb->mac_header += offset;
2942 }
2943 
2944 static inline void skb_pop_mac_header(struct sk_buff *skb)
2945 {
2946 	skb->mac_header = skb->network_header;
2947 }
2948 
2949 static inline void skb_probe_transport_header(struct sk_buff *skb)
2950 {
2951 	struct flow_keys_basic keys;
2952 
2953 	if (skb_transport_header_was_set(skb))
2954 		return;
2955 
2956 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2957 					     NULL, 0, 0, 0, 0))
2958 		skb_set_transport_header(skb, keys.control.thoff);
2959 }
2960 
2961 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2962 {
2963 	if (skb_mac_header_was_set(skb)) {
2964 		const unsigned char *old_mac = skb_mac_header(skb);
2965 
2966 		skb_set_mac_header(skb, -skb->mac_len);
2967 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2968 	}
2969 }
2970 
2971 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2972 {
2973 	return skb->csum_start - skb_headroom(skb);
2974 }
2975 
2976 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2977 {
2978 	return skb->head + skb->csum_start;
2979 }
2980 
2981 static inline int skb_transport_offset(const struct sk_buff *skb)
2982 {
2983 	return skb_transport_header(skb) - skb->data;
2984 }
2985 
2986 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2987 {
2988 	return skb->transport_header - skb->network_header;
2989 }
2990 
2991 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2992 {
2993 	return skb->inner_transport_header - skb->inner_network_header;
2994 }
2995 
2996 static inline int skb_network_offset(const struct sk_buff *skb)
2997 {
2998 	return skb_network_header(skb) - skb->data;
2999 }
3000 
3001 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3002 {
3003 	return skb_inner_network_header(skb) - skb->data;
3004 }
3005 
3006 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3007 {
3008 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3009 }
3010 
3011 /*
3012  * CPUs often take a performance hit when accessing unaligned memory
3013  * locations. The actual performance hit varies, it can be small if the
3014  * hardware handles it or large if we have to take an exception and fix it
3015  * in software.
3016  *
3017  * Since an ethernet header is 14 bytes network drivers often end up with
3018  * the IP header at an unaligned offset. The IP header can be aligned by
3019  * shifting the start of the packet by 2 bytes. Drivers should do this
3020  * with:
3021  *
3022  * skb_reserve(skb, NET_IP_ALIGN);
3023  *
3024  * The downside to this alignment of the IP header is that the DMA is now
3025  * unaligned. On some architectures the cost of an unaligned DMA is high
3026  * and this cost outweighs the gains made by aligning the IP header.
3027  *
3028  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3029  * to be overridden.
3030  */
3031 #ifndef NET_IP_ALIGN
3032 #define NET_IP_ALIGN	2
3033 #endif
3034 
3035 /*
3036  * The networking layer reserves some headroom in skb data (via
3037  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3038  * the header has to grow. In the default case, if the header has to grow
3039  * 32 bytes or less we avoid the reallocation.
3040  *
3041  * Unfortunately this headroom changes the DMA alignment of the resulting
3042  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3043  * on some architectures. An architecture can override this value,
3044  * perhaps setting it to a cacheline in size (since that will maintain
3045  * cacheline alignment of the DMA). It must be a power of 2.
3046  *
3047  * Various parts of the networking layer expect at least 32 bytes of
3048  * headroom, you should not reduce this.
3049  *
3050  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3051  * to reduce average number of cache lines per packet.
3052  * get_rps_cpu() for example only access one 64 bytes aligned block :
3053  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3054  */
3055 #ifndef NET_SKB_PAD
3056 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3057 #endif
3058 
3059 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3060 
3061 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3062 {
3063 	if (WARN_ON(skb_is_nonlinear(skb)))
3064 		return;
3065 	skb->len = len;
3066 	skb_set_tail_pointer(skb, len);
3067 }
3068 
3069 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3070 {
3071 	__skb_set_length(skb, len);
3072 }
3073 
3074 void skb_trim(struct sk_buff *skb, unsigned int len);
3075 
3076 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3077 {
3078 	if (skb->data_len)
3079 		return ___pskb_trim(skb, len);
3080 	__skb_trim(skb, len);
3081 	return 0;
3082 }
3083 
3084 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3085 {
3086 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3087 }
3088 
3089 /**
3090  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3091  *	@skb: buffer to alter
3092  *	@len: new length
3093  *
3094  *	This is identical to pskb_trim except that the caller knows that
3095  *	the skb is not cloned so we should never get an error due to out-
3096  *	of-memory.
3097  */
3098 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3099 {
3100 	int err = pskb_trim(skb, len);
3101 	BUG_ON(err);
3102 }
3103 
3104 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3105 {
3106 	unsigned int diff = len - skb->len;
3107 
3108 	if (skb_tailroom(skb) < diff) {
3109 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3110 					   GFP_ATOMIC);
3111 		if (ret)
3112 			return ret;
3113 	}
3114 	__skb_set_length(skb, len);
3115 	return 0;
3116 }
3117 
3118 /**
3119  *	skb_orphan - orphan a buffer
3120  *	@skb: buffer to orphan
3121  *
3122  *	If a buffer currently has an owner then we call the owner's
3123  *	destructor function and make the @skb unowned. The buffer continues
3124  *	to exist but is no longer charged to its former owner.
3125  */
3126 static inline void skb_orphan(struct sk_buff *skb)
3127 {
3128 	if (skb->destructor) {
3129 		skb->destructor(skb);
3130 		skb->destructor = NULL;
3131 		skb->sk		= NULL;
3132 	} else {
3133 		BUG_ON(skb->sk);
3134 	}
3135 }
3136 
3137 /**
3138  *	skb_orphan_frags - orphan the frags contained in a buffer
3139  *	@skb: buffer to orphan frags from
3140  *	@gfp_mask: allocation mask for replacement pages
3141  *
3142  *	For each frag in the SKB which needs a destructor (i.e. has an
3143  *	owner) create a copy of that frag and release the original
3144  *	page by calling the destructor.
3145  */
3146 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3147 {
3148 	if (likely(!skb_zcopy(skb)))
3149 		return 0;
3150 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3151 		return 0;
3152 	return skb_copy_ubufs(skb, gfp_mask);
3153 }
3154 
3155 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3156 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3157 {
3158 	if (likely(!skb_zcopy(skb)))
3159 		return 0;
3160 	return skb_copy_ubufs(skb, gfp_mask);
3161 }
3162 
3163 /**
3164  *	__skb_queue_purge_reason - empty a list
3165  *	@list: list to empty
3166  *	@reason: drop reason
3167  *
3168  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3169  *	the list and one reference dropped. This function does not take the
3170  *	list lock and the caller must hold the relevant locks to use it.
3171  */
3172 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3173 					    enum skb_drop_reason reason)
3174 {
3175 	struct sk_buff *skb;
3176 
3177 	while ((skb = __skb_dequeue(list)) != NULL)
3178 		kfree_skb_reason(skb, reason);
3179 }
3180 
3181 static inline void __skb_queue_purge(struct sk_buff_head *list)
3182 {
3183 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3184 }
3185 
3186 void skb_queue_purge_reason(struct sk_buff_head *list,
3187 			    enum skb_drop_reason reason);
3188 
3189 static inline void skb_queue_purge(struct sk_buff_head *list)
3190 {
3191 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3192 }
3193 
3194 unsigned int skb_rbtree_purge(struct rb_root *root);
3195 void skb_errqueue_purge(struct sk_buff_head *list);
3196 
3197 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3198 
3199 /**
3200  * netdev_alloc_frag - allocate a page fragment
3201  * @fragsz: fragment size
3202  *
3203  * Allocates a frag from a page for receive buffer.
3204  * Uses GFP_ATOMIC allocations.
3205  */
3206 static inline void *netdev_alloc_frag(unsigned int fragsz)
3207 {
3208 	return __netdev_alloc_frag_align(fragsz, ~0u);
3209 }
3210 
3211 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3212 					    unsigned int align)
3213 {
3214 	WARN_ON_ONCE(!is_power_of_2(align));
3215 	return __netdev_alloc_frag_align(fragsz, -align);
3216 }
3217 
3218 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3219 				   gfp_t gfp_mask);
3220 
3221 /**
3222  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3223  *	@dev: network device to receive on
3224  *	@length: length to allocate
3225  *
3226  *	Allocate a new &sk_buff and assign it a usage count of one. The
3227  *	buffer has unspecified headroom built in. Users should allocate
3228  *	the headroom they think they need without accounting for the
3229  *	built in space. The built in space is used for optimisations.
3230  *
3231  *	%NULL is returned if there is no free memory. Although this function
3232  *	allocates memory it can be called from an interrupt.
3233  */
3234 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3235 					       unsigned int length)
3236 {
3237 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3238 }
3239 
3240 /* legacy helper around __netdev_alloc_skb() */
3241 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3242 					      gfp_t gfp_mask)
3243 {
3244 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3245 }
3246 
3247 /* legacy helper around netdev_alloc_skb() */
3248 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3249 {
3250 	return netdev_alloc_skb(NULL, length);
3251 }
3252 
3253 
3254 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3255 		unsigned int length, gfp_t gfp)
3256 {
3257 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3258 
3259 	if (NET_IP_ALIGN && skb)
3260 		skb_reserve(skb, NET_IP_ALIGN);
3261 	return skb;
3262 }
3263 
3264 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3265 		unsigned int length)
3266 {
3267 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3268 }
3269 
3270 static inline void skb_free_frag(void *addr)
3271 {
3272 	page_frag_free(addr);
3273 }
3274 
3275 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3276 
3277 static inline void *napi_alloc_frag(unsigned int fragsz)
3278 {
3279 	return __napi_alloc_frag_align(fragsz, ~0u);
3280 }
3281 
3282 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3283 					  unsigned int align)
3284 {
3285 	WARN_ON_ONCE(!is_power_of_2(align));
3286 	return __napi_alloc_frag_align(fragsz, -align);
3287 }
3288 
3289 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3290 				 unsigned int length, gfp_t gfp_mask);
3291 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3292 					     unsigned int length)
3293 {
3294 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3295 }
3296 void napi_consume_skb(struct sk_buff *skb, int budget);
3297 
3298 void napi_skb_free_stolen_head(struct sk_buff *skb);
3299 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3300 
3301 /**
3302  * __dev_alloc_pages - allocate page for network Rx
3303  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3304  * @order: size of the allocation
3305  *
3306  * Allocate a new page.
3307  *
3308  * %NULL is returned if there is no free memory.
3309 */
3310 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3311 					     unsigned int order)
3312 {
3313 	/* This piece of code contains several assumptions.
3314 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3315 	 * 2.  The expectation is the user wants a compound page.
3316 	 * 3.  If requesting a order 0 page it will not be compound
3317 	 *     due to the check to see if order has a value in prep_new_page
3318 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3319 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3320 	 */
3321 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3322 
3323 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3324 }
3325 
3326 static inline struct page *dev_alloc_pages(unsigned int order)
3327 {
3328 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3329 }
3330 
3331 /**
3332  * __dev_alloc_page - allocate a page for network Rx
3333  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3334  *
3335  * Allocate a new page.
3336  *
3337  * %NULL is returned if there is no free memory.
3338  */
3339 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3340 {
3341 	return __dev_alloc_pages(gfp_mask, 0);
3342 }
3343 
3344 static inline struct page *dev_alloc_page(void)
3345 {
3346 	return dev_alloc_pages(0);
3347 }
3348 
3349 /**
3350  * dev_page_is_reusable - check whether a page can be reused for network Rx
3351  * @page: the page to test
3352  *
3353  * A page shouldn't be considered for reusing/recycling if it was allocated
3354  * under memory pressure or at a distant memory node.
3355  *
3356  * Returns false if this page should be returned to page allocator, true
3357  * otherwise.
3358  */
3359 static inline bool dev_page_is_reusable(const struct page *page)
3360 {
3361 	return likely(page_to_nid(page) == numa_mem_id() &&
3362 		      !page_is_pfmemalloc(page));
3363 }
3364 
3365 /**
3366  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3367  *	@page: The page that was allocated from skb_alloc_page
3368  *	@skb: The skb that may need pfmemalloc set
3369  */
3370 static inline void skb_propagate_pfmemalloc(const struct page *page,
3371 					    struct sk_buff *skb)
3372 {
3373 	if (page_is_pfmemalloc(page))
3374 		skb->pfmemalloc = true;
3375 }
3376 
3377 /**
3378  * skb_frag_off() - Returns the offset of a skb fragment
3379  * @frag: the paged fragment
3380  */
3381 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3382 {
3383 	return frag->bv_offset;
3384 }
3385 
3386 /**
3387  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3388  * @frag: skb fragment
3389  * @delta: value to add
3390  */
3391 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3392 {
3393 	frag->bv_offset += delta;
3394 }
3395 
3396 /**
3397  * skb_frag_off_set() - Sets the offset of a skb fragment
3398  * @frag: skb fragment
3399  * @offset: offset of fragment
3400  */
3401 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3402 {
3403 	frag->bv_offset = offset;
3404 }
3405 
3406 /**
3407  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3408  * @fragto: skb fragment where offset is set
3409  * @fragfrom: skb fragment offset is copied from
3410  */
3411 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3412 				     const skb_frag_t *fragfrom)
3413 {
3414 	fragto->bv_offset = fragfrom->bv_offset;
3415 }
3416 
3417 /**
3418  * skb_frag_page - retrieve the page referred to by a paged fragment
3419  * @frag: the paged fragment
3420  *
3421  * Returns the &struct page associated with @frag.
3422  */
3423 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3424 {
3425 	return frag->bv_page;
3426 }
3427 
3428 /**
3429  * __skb_frag_ref - take an addition reference on a paged fragment.
3430  * @frag: the paged fragment
3431  *
3432  * Takes an additional reference on the paged fragment @frag.
3433  */
3434 static inline void __skb_frag_ref(skb_frag_t *frag)
3435 {
3436 	get_page(skb_frag_page(frag));
3437 }
3438 
3439 /**
3440  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3441  * @skb: the buffer
3442  * @f: the fragment offset.
3443  *
3444  * Takes an additional reference on the @f'th paged fragment of @skb.
3445  */
3446 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3447 {
3448 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3449 }
3450 
3451 bool napi_pp_put_page(struct page *page, bool napi_safe);
3452 
3453 static inline void
3454 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3455 {
3456 	struct page *page = skb_frag_page(frag);
3457 
3458 #ifdef CONFIG_PAGE_POOL
3459 	if (recycle && napi_pp_put_page(page, napi_safe))
3460 		return;
3461 #endif
3462 	put_page(page);
3463 }
3464 
3465 /**
3466  * __skb_frag_unref - release a reference on a paged fragment.
3467  * @frag: the paged fragment
3468  * @recycle: recycle the page if allocated via page_pool
3469  *
3470  * Releases a reference on the paged fragment @frag
3471  * or recycles the page via the page_pool API.
3472  */
3473 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3474 {
3475 	napi_frag_unref(frag, recycle, false);
3476 }
3477 
3478 /**
3479  * skb_frag_unref - release a reference on a paged fragment of an skb.
3480  * @skb: the buffer
3481  * @f: the fragment offset
3482  *
3483  * Releases a reference on the @f'th paged fragment of @skb.
3484  */
3485 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3486 {
3487 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3488 
3489 	if (!skb_zcopy_managed(skb))
3490 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3491 }
3492 
3493 /**
3494  * skb_frag_address - gets the address of the data contained in a paged fragment
3495  * @frag: the paged fragment buffer
3496  *
3497  * Returns the address of the data within @frag. The page must already
3498  * be mapped.
3499  */
3500 static inline void *skb_frag_address(const skb_frag_t *frag)
3501 {
3502 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3503 }
3504 
3505 /**
3506  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3507  * @frag: the paged fragment buffer
3508  *
3509  * Returns the address of the data within @frag. Checks that the page
3510  * is mapped and returns %NULL otherwise.
3511  */
3512 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3513 {
3514 	void *ptr = page_address(skb_frag_page(frag));
3515 	if (unlikely(!ptr))
3516 		return NULL;
3517 
3518 	return ptr + skb_frag_off(frag);
3519 }
3520 
3521 /**
3522  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3523  * @fragto: skb fragment where page is set
3524  * @fragfrom: skb fragment page is copied from
3525  */
3526 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3527 				      const skb_frag_t *fragfrom)
3528 {
3529 	fragto->bv_page = fragfrom->bv_page;
3530 }
3531 
3532 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3533 
3534 /**
3535  * skb_frag_dma_map - maps a paged fragment via the DMA API
3536  * @dev: the device to map the fragment to
3537  * @frag: the paged fragment to map
3538  * @offset: the offset within the fragment (starting at the
3539  *          fragment's own offset)
3540  * @size: the number of bytes to map
3541  * @dir: the direction of the mapping (``PCI_DMA_*``)
3542  *
3543  * Maps the page associated with @frag to @device.
3544  */
3545 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3546 					  const skb_frag_t *frag,
3547 					  size_t offset, size_t size,
3548 					  enum dma_data_direction dir)
3549 {
3550 	return dma_map_page(dev, skb_frag_page(frag),
3551 			    skb_frag_off(frag) + offset, size, dir);
3552 }
3553 
3554 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3555 					gfp_t gfp_mask)
3556 {
3557 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3558 }
3559 
3560 
3561 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3562 						  gfp_t gfp_mask)
3563 {
3564 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3565 }
3566 
3567 
3568 /**
3569  *	skb_clone_writable - is the header of a clone writable
3570  *	@skb: buffer to check
3571  *	@len: length up to which to write
3572  *
3573  *	Returns true if modifying the header part of the cloned buffer
3574  *	does not requires the data to be copied.
3575  */
3576 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3577 {
3578 	return !skb_header_cloned(skb) &&
3579 	       skb_headroom(skb) + len <= skb->hdr_len;
3580 }
3581 
3582 static inline int skb_try_make_writable(struct sk_buff *skb,
3583 					unsigned int write_len)
3584 {
3585 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3586 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3587 }
3588 
3589 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3590 			    int cloned)
3591 {
3592 	int delta = 0;
3593 
3594 	if (headroom > skb_headroom(skb))
3595 		delta = headroom - skb_headroom(skb);
3596 
3597 	if (delta || cloned)
3598 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3599 					GFP_ATOMIC);
3600 	return 0;
3601 }
3602 
3603 /**
3604  *	skb_cow - copy header of skb when it is required
3605  *	@skb: buffer to cow
3606  *	@headroom: needed headroom
3607  *
3608  *	If the skb passed lacks sufficient headroom or its data part
3609  *	is shared, data is reallocated. If reallocation fails, an error
3610  *	is returned and original skb is not changed.
3611  *
3612  *	The result is skb with writable area skb->head...skb->tail
3613  *	and at least @headroom of space at head.
3614  */
3615 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3616 {
3617 	return __skb_cow(skb, headroom, skb_cloned(skb));
3618 }
3619 
3620 /**
3621  *	skb_cow_head - skb_cow but only making the head writable
3622  *	@skb: buffer to cow
3623  *	@headroom: needed headroom
3624  *
3625  *	This function is identical to skb_cow except that we replace the
3626  *	skb_cloned check by skb_header_cloned.  It should be used when
3627  *	you only need to push on some header and do not need to modify
3628  *	the data.
3629  */
3630 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3631 {
3632 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3633 }
3634 
3635 /**
3636  *	skb_padto	- pad an skbuff up to a minimal size
3637  *	@skb: buffer to pad
3638  *	@len: minimal length
3639  *
3640  *	Pads up a buffer to ensure the trailing bytes exist and are
3641  *	blanked. If the buffer already contains sufficient data it
3642  *	is untouched. Otherwise it is extended. Returns zero on
3643  *	success. The skb is freed on error.
3644  */
3645 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3646 {
3647 	unsigned int size = skb->len;
3648 	if (likely(size >= len))
3649 		return 0;
3650 	return skb_pad(skb, len - size);
3651 }
3652 
3653 /**
3654  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3655  *	@skb: buffer to pad
3656  *	@len: minimal length
3657  *	@free_on_error: free buffer on error
3658  *
3659  *	Pads up a buffer to ensure the trailing bytes exist and are
3660  *	blanked. If the buffer already contains sufficient data it
3661  *	is untouched. Otherwise it is extended. Returns zero on
3662  *	success. The skb is freed on error if @free_on_error is true.
3663  */
3664 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3665 					       unsigned int len,
3666 					       bool free_on_error)
3667 {
3668 	unsigned int size = skb->len;
3669 
3670 	if (unlikely(size < len)) {
3671 		len -= size;
3672 		if (__skb_pad(skb, len, free_on_error))
3673 			return -ENOMEM;
3674 		__skb_put(skb, len);
3675 	}
3676 	return 0;
3677 }
3678 
3679 /**
3680  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3681  *	@skb: buffer to pad
3682  *	@len: minimal length
3683  *
3684  *	Pads up a buffer to ensure the trailing bytes exist and are
3685  *	blanked. If the buffer already contains sufficient data it
3686  *	is untouched. Otherwise it is extended. Returns zero on
3687  *	success. The skb is freed on error.
3688  */
3689 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3690 {
3691 	return __skb_put_padto(skb, len, true);
3692 }
3693 
3694 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3695 	__must_check;
3696 
3697 static inline int skb_add_data(struct sk_buff *skb,
3698 			       struct iov_iter *from, int copy)
3699 {
3700 	const int off = skb->len;
3701 
3702 	if (skb->ip_summed == CHECKSUM_NONE) {
3703 		__wsum csum = 0;
3704 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3705 					         &csum, from)) {
3706 			skb->csum = csum_block_add(skb->csum, csum, off);
3707 			return 0;
3708 		}
3709 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3710 		return 0;
3711 
3712 	__skb_trim(skb, off);
3713 	return -EFAULT;
3714 }
3715 
3716 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3717 				    const struct page *page, int off)
3718 {
3719 	if (skb_zcopy(skb))
3720 		return false;
3721 	if (i) {
3722 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3723 
3724 		return page == skb_frag_page(frag) &&
3725 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3726 	}
3727 	return false;
3728 }
3729 
3730 static inline int __skb_linearize(struct sk_buff *skb)
3731 {
3732 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3733 }
3734 
3735 /**
3736  *	skb_linearize - convert paged skb to linear one
3737  *	@skb: buffer to linarize
3738  *
3739  *	If there is no free memory -ENOMEM is returned, otherwise zero
3740  *	is returned and the old skb data released.
3741  */
3742 static inline int skb_linearize(struct sk_buff *skb)
3743 {
3744 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3745 }
3746 
3747 /**
3748  * skb_has_shared_frag - can any frag be overwritten
3749  * @skb: buffer to test
3750  *
3751  * Return true if the skb has at least one frag that might be modified
3752  * by an external entity (as in vmsplice()/sendfile())
3753  */
3754 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3755 {
3756 	return skb_is_nonlinear(skb) &&
3757 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3758 }
3759 
3760 /**
3761  *	skb_linearize_cow - make sure skb is linear and writable
3762  *	@skb: buffer to process
3763  *
3764  *	If there is no free memory -ENOMEM is returned, otherwise zero
3765  *	is returned and the old skb data released.
3766  */
3767 static inline int skb_linearize_cow(struct sk_buff *skb)
3768 {
3769 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3770 	       __skb_linearize(skb) : 0;
3771 }
3772 
3773 static __always_inline void
3774 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3775 		     unsigned int off)
3776 {
3777 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3778 		skb->csum = csum_block_sub(skb->csum,
3779 					   csum_partial(start, len, 0), off);
3780 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3781 		 skb_checksum_start_offset(skb) < 0)
3782 		skb->ip_summed = CHECKSUM_NONE;
3783 }
3784 
3785 /**
3786  *	skb_postpull_rcsum - update checksum for received skb after pull
3787  *	@skb: buffer to update
3788  *	@start: start of data before pull
3789  *	@len: length of data pulled
3790  *
3791  *	After doing a pull on a received packet, you need to call this to
3792  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3793  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3794  */
3795 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3796 				      const void *start, unsigned int len)
3797 {
3798 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3799 		skb->csum = wsum_negate(csum_partial(start, len,
3800 						     wsum_negate(skb->csum)));
3801 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3802 		 skb_checksum_start_offset(skb) < 0)
3803 		skb->ip_summed = CHECKSUM_NONE;
3804 }
3805 
3806 static __always_inline void
3807 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3808 		     unsigned int off)
3809 {
3810 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3811 		skb->csum = csum_block_add(skb->csum,
3812 					   csum_partial(start, len, 0), off);
3813 }
3814 
3815 /**
3816  *	skb_postpush_rcsum - update checksum for received skb after push
3817  *	@skb: buffer to update
3818  *	@start: start of data after push
3819  *	@len: length of data pushed
3820  *
3821  *	After doing a push on a received packet, you need to call this to
3822  *	update the CHECKSUM_COMPLETE checksum.
3823  */
3824 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3825 				      const void *start, unsigned int len)
3826 {
3827 	__skb_postpush_rcsum(skb, start, len, 0);
3828 }
3829 
3830 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3831 
3832 /**
3833  *	skb_push_rcsum - push skb and update receive checksum
3834  *	@skb: buffer to update
3835  *	@len: length of data pulled
3836  *
3837  *	This function performs an skb_push on the packet and updates
3838  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3839  *	receive path processing instead of skb_push unless you know
3840  *	that the checksum difference is zero (e.g., a valid IP header)
3841  *	or you are setting ip_summed to CHECKSUM_NONE.
3842  */
3843 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3844 {
3845 	skb_push(skb, len);
3846 	skb_postpush_rcsum(skb, skb->data, len);
3847 	return skb->data;
3848 }
3849 
3850 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3851 /**
3852  *	pskb_trim_rcsum - trim received skb and update checksum
3853  *	@skb: buffer to trim
3854  *	@len: new length
3855  *
3856  *	This is exactly the same as pskb_trim except that it ensures the
3857  *	checksum of received packets are still valid after the operation.
3858  *	It can change skb pointers.
3859  */
3860 
3861 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3862 {
3863 	if (likely(len >= skb->len))
3864 		return 0;
3865 	return pskb_trim_rcsum_slow(skb, len);
3866 }
3867 
3868 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3869 {
3870 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3871 		skb->ip_summed = CHECKSUM_NONE;
3872 	__skb_trim(skb, len);
3873 	return 0;
3874 }
3875 
3876 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3877 {
3878 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3879 		skb->ip_summed = CHECKSUM_NONE;
3880 	return __skb_grow(skb, len);
3881 }
3882 
3883 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3884 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3885 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3886 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3887 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3888 
3889 #define skb_queue_walk(queue, skb) \
3890 		for (skb = (queue)->next;					\
3891 		     skb != (struct sk_buff *)(queue);				\
3892 		     skb = skb->next)
3893 
3894 #define skb_queue_walk_safe(queue, skb, tmp)					\
3895 		for (skb = (queue)->next, tmp = skb->next;			\
3896 		     skb != (struct sk_buff *)(queue);				\
3897 		     skb = tmp, tmp = skb->next)
3898 
3899 #define skb_queue_walk_from(queue, skb)						\
3900 		for (; skb != (struct sk_buff *)(queue);			\
3901 		     skb = skb->next)
3902 
3903 #define skb_rbtree_walk(skb, root)						\
3904 		for (skb = skb_rb_first(root); skb != NULL;			\
3905 		     skb = skb_rb_next(skb))
3906 
3907 #define skb_rbtree_walk_from(skb)						\
3908 		for (; skb != NULL;						\
3909 		     skb = skb_rb_next(skb))
3910 
3911 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3912 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3913 		     skb = tmp)
3914 
3915 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3916 		for (tmp = skb->next;						\
3917 		     skb != (struct sk_buff *)(queue);				\
3918 		     skb = tmp, tmp = skb->next)
3919 
3920 #define skb_queue_reverse_walk(queue, skb) \
3921 		for (skb = (queue)->prev;					\
3922 		     skb != (struct sk_buff *)(queue);				\
3923 		     skb = skb->prev)
3924 
3925 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3926 		for (skb = (queue)->prev, tmp = skb->prev;			\
3927 		     skb != (struct sk_buff *)(queue);				\
3928 		     skb = tmp, tmp = skb->prev)
3929 
3930 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3931 		for (tmp = skb->prev;						\
3932 		     skb != (struct sk_buff *)(queue);				\
3933 		     skb = tmp, tmp = skb->prev)
3934 
3935 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3936 {
3937 	return skb_shinfo(skb)->frag_list != NULL;
3938 }
3939 
3940 static inline void skb_frag_list_init(struct sk_buff *skb)
3941 {
3942 	skb_shinfo(skb)->frag_list = NULL;
3943 }
3944 
3945 #define skb_walk_frags(skb, iter)	\
3946 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3947 
3948 
3949 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3950 				int *err, long *timeo_p,
3951 				const struct sk_buff *skb);
3952 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3953 					  struct sk_buff_head *queue,
3954 					  unsigned int flags,
3955 					  int *off, int *err,
3956 					  struct sk_buff **last);
3957 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3958 					struct sk_buff_head *queue,
3959 					unsigned int flags, int *off, int *err,
3960 					struct sk_buff **last);
3961 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3962 				    struct sk_buff_head *sk_queue,
3963 				    unsigned int flags, int *off, int *err);
3964 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3965 __poll_t datagram_poll(struct file *file, struct socket *sock,
3966 			   struct poll_table_struct *wait);
3967 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3968 			   struct iov_iter *to, int size);
3969 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3970 					struct msghdr *msg, int size)
3971 {
3972 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3973 }
3974 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3975 				   struct msghdr *msg);
3976 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3977 			   struct iov_iter *to, int len,
3978 			   struct ahash_request *hash);
3979 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3980 				 struct iov_iter *from, int len);
3981 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3982 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3983 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3984 static inline void skb_free_datagram_locked(struct sock *sk,
3985 					    struct sk_buff *skb)
3986 {
3987 	__skb_free_datagram_locked(sk, skb, 0);
3988 }
3989 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3990 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3991 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3993 			      int len);
3994 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3995 		    struct pipe_inode_info *pipe, unsigned int len,
3996 		    unsigned int flags);
3997 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3998 			 int len);
3999 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4000 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4001 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4002 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4003 		 int len, int hlen);
4004 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4005 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4006 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4007 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4008 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4009 				 unsigned int offset);
4010 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4011 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4012 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4013 int skb_vlan_pop(struct sk_buff *skb);
4014 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4015 int skb_eth_pop(struct sk_buff *skb);
4016 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4017 		 const unsigned char *src);
4018 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4019 		  int mac_len, bool ethernet);
4020 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4021 		 bool ethernet);
4022 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4023 int skb_mpls_dec_ttl(struct sk_buff *skb);
4024 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4025 			     gfp_t gfp);
4026 
4027 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4028 {
4029 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4030 }
4031 
4032 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4033 {
4034 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4035 }
4036 
4037 struct skb_checksum_ops {
4038 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4039 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4040 };
4041 
4042 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4043 
4044 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4045 		      __wsum csum, const struct skb_checksum_ops *ops);
4046 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4047 		    __wsum csum);
4048 
4049 static inline void * __must_check
4050 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4051 		     const void *data, int hlen, void *buffer)
4052 {
4053 	if (likely(hlen - offset >= len))
4054 		return (void *)data + offset;
4055 
4056 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4057 		return NULL;
4058 
4059 	return buffer;
4060 }
4061 
4062 static inline void * __must_check
4063 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4064 {
4065 	return __skb_header_pointer(skb, offset, len, skb->data,
4066 				    skb_headlen(skb), buffer);
4067 }
4068 
4069 static inline void * __must_check
4070 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4071 {
4072 	if (likely(skb_headlen(skb) - offset >= len))
4073 		return skb->data + offset;
4074 	return NULL;
4075 }
4076 
4077 /**
4078  *	skb_needs_linearize - check if we need to linearize a given skb
4079  *			      depending on the given device features.
4080  *	@skb: socket buffer to check
4081  *	@features: net device features
4082  *
4083  *	Returns true if either:
4084  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4085  *	2. skb is fragmented and the device does not support SG.
4086  */
4087 static inline bool skb_needs_linearize(struct sk_buff *skb,
4088 				       netdev_features_t features)
4089 {
4090 	return skb_is_nonlinear(skb) &&
4091 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4092 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4093 }
4094 
4095 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4096 					     void *to,
4097 					     const unsigned int len)
4098 {
4099 	memcpy(to, skb->data, len);
4100 }
4101 
4102 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4103 						    const int offset, void *to,
4104 						    const unsigned int len)
4105 {
4106 	memcpy(to, skb->data + offset, len);
4107 }
4108 
4109 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4110 					   const void *from,
4111 					   const unsigned int len)
4112 {
4113 	memcpy(skb->data, from, len);
4114 }
4115 
4116 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4117 						  const int offset,
4118 						  const void *from,
4119 						  const unsigned int len)
4120 {
4121 	memcpy(skb->data + offset, from, len);
4122 }
4123 
4124 void skb_init(void);
4125 
4126 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4127 {
4128 	return skb->tstamp;
4129 }
4130 
4131 /**
4132  *	skb_get_timestamp - get timestamp from a skb
4133  *	@skb: skb to get stamp from
4134  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4135  *
4136  *	Timestamps are stored in the skb as offsets to a base timestamp.
4137  *	This function converts the offset back to a struct timeval and stores
4138  *	it in stamp.
4139  */
4140 static inline void skb_get_timestamp(const struct sk_buff *skb,
4141 				     struct __kernel_old_timeval *stamp)
4142 {
4143 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4144 }
4145 
4146 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4147 					 struct __kernel_sock_timeval *stamp)
4148 {
4149 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4150 
4151 	stamp->tv_sec = ts.tv_sec;
4152 	stamp->tv_usec = ts.tv_nsec / 1000;
4153 }
4154 
4155 static inline void skb_get_timestampns(const struct sk_buff *skb,
4156 				       struct __kernel_old_timespec *stamp)
4157 {
4158 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4159 
4160 	stamp->tv_sec = ts.tv_sec;
4161 	stamp->tv_nsec = ts.tv_nsec;
4162 }
4163 
4164 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4165 					   struct __kernel_timespec *stamp)
4166 {
4167 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4168 
4169 	stamp->tv_sec = ts.tv_sec;
4170 	stamp->tv_nsec = ts.tv_nsec;
4171 }
4172 
4173 static inline void __net_timestamp(struct sk_buff *skb)
4174 {
4175 	skb->tstamp = ktime_get_real();
4176 	skb->mono_delivery_time = 0;
4177 }
4178 
4179 static inline ktime_t net_timedelta(ktime_t t)
4180 {
4181 	return ktime_sub(ktime_get_real(), t);
4182 }
4183 
4184 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4185 					 bool mono)
4186 {
4187 	skb->tstamp = kt;
4188 	skb->mono_delivery_time = kt && mono;
4189 }
4190 
4191 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4192 
4193 /* It is used in the ingress path to clear the delivery_time.
4194  * If needed, set the skb->tstamp to the (rcv) timestamp.
4195  */
4196 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4197 {
4198 	if (skb->mono_delivery_time) {
4199 		skb->mono_delivery_time = 0;
4200 		if (static_branch_unlikely(&netstamp_needed_key))
4201 			skb->tstamp = ktime_get_real();
4202 		else
4203 			skb->tstamp = 0;
4204 	}
4205 }
4206 
4207 static inline void skb_clear_tstamp(struct sk_buff *skb)
4208 {
4209 	if (skb->mono_delivery_time)
4210 		return;
4211 
4212 	skb->tstamp = 0;
4213 }
4214 
4215 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4216 {
4217 	if (skb->mono_delivery_time)
4218 		return 0;
4219 
4220 	return skb->tstamp;
4221 }
4222 
4223 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4224 {
4225 	if (!skb->mono_delivery_time && skb->tstamp)
4226 		return skb->tstamp;
4227 
4228 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4229 		return ktime_get_real();
4230 
4231 	return 0;
4232 }
4233 
4234 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4235 {
4236 	return skb_shinfo(skb)->meta_len;
4237 }
4238 
4239 static inline void *skb_metadata_end(const struct sk_buff *skb)
4240 {
4241 	return skb_mac_header(skb);
4242 }
4243 
4244 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4245 					  const struct sk_buff *skb_b,
4246 					  u8 meta_len)
4247 {
4248 	const void *a = skb_metadata_end(skb_a);
4249 	const void *b = skb_metadata_end(skb_b);
4250 	/* Using more efficient variant than plain call to memcmp(). */
4251 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4252 	u64 diffs = 0;
4253 
4254 	switch (meta_len) {
4255 #define __it(x, op) (x -= sizeof(u##op))
4256 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4257 	case 32: diffs |= __it_diff(a, b, 64);
4258 		fallthrough;
4259 	case 24: diffs |= __it_diff(a, b, 64);
4260 		fallthrough;
4261 	case 16: diffs |= __it_diff(a, b, 64);
4262 		fallthrough;
4263 	case  8: diffs |= __it_diff(a, b, 64);
4264 		break;
4265 	case 28: diffs |= __it_diff(a, b, 64);
4266 		fallthrough;
4267 	case 20: diffs |= __it_diff(a, b, 64);
4268 		fallthrough;
4269 	case 12: diffs |= __it_diff(a, b, 64);
4270 		fallthrough;
4271 	case  4: diffs |= __it_diff(a, b, 32);
4272 		break;
4273 	}
4274 	return diffs;
4275 #else
4276 	return memcmp(a - meta_len, b - meta_len, meta_len);
4277 #endif
4278 }
4279 
4280 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4281 					const struct sk_buff *skb_b)
4282 {
4283 	u8 len_a = skb_metadata_len(skb_a);
4284 	u8 len_b = skb_metadata_len(skb_b);
4285 
4286 	if (!(len_a | len_b))
4287 		return false;
4288 
4289 	return len_a != len_b ?
4290 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4291 }
4292 
4293 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4294 {
4295 	skb_shinfo(skb)->meta_len = meta_len;
4296 }
4297 
4298 static inline void skb_metadata_clear(struct sk_buff *skb)
4299 {
4300 	skb_metadata_set(skb, 0);
4301 }
4302 
4303 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4304 
4305 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4306 
4307 void skb_clone_tx_timestamp(struct sk_buff *skb);
4308 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4309 
4310 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4311 
4312 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4313 {
4314 }
4315 
4316 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4317 {
4318 	return false;
4319 }
4320 
4321 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4322 
4323 /**
4324  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4325  *
4326  * PHY drivers may accept clones of transmitted packets for
4327  * timestamping via their phy_driver.txtstamp method. These drivers
4328  * must call this function to return the skb back to the stack with a
4329  * timestamp.
4330  *
4331  * @skb: clone of the original outgoing packet
4332  * @hwtstamps: hardware time stamps
4333  *
4334  */
4335 void skb_complete_tx_timestamp(struct sk_buff *skb,
4336 			       struct skb_shared_hwtstamps *hwtstamps);
4337 
4338 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4339 		     struct skb_shared_hwtstamps *hwtstamps,
4340 		     struct sock *sk, int tstype);
4341 
4342 /**
4343  * skb_tstamp_tx - queue clone of skb with send time stamps
4344  * @orig_skb:	the original outgoing packet
4345  * @hwtstamps:	hardware time stamps, may be NULL if not available
4346  *
4347  * If the skb has a socket associated, then this function clones the
4348  * skb (thus sharing the actual data and optional structures), stores
4349  * the optional hardware time stamping information (if non NULL) or
4350  * generates a software time stamp (otherwise), then queues the clone
4351  * to the error queue of the socket.  Errors are silently ignored.
4352  */
4353 void skb_tstamp_tx(struct sk_buff *orig_skb,
4354 		   struct skb_shared_hwtstamps *hwtstamps);
4355 
4356 /**
4357  * skb_tx_timestamp() - Driver hook for transmit timestamping
4358  *
4359  * Ethernet MAC Drivers should call this function in their hard_xmit()
4360  * function immediately before giving the sk_buff to the MAC hardware.
4361  *
4362  * Specifically, one should make absolutely sure that this function is
4363  * called before TX completion of this packet can trigger.  Otherwise
4364  * the packet could potentially already be freed.
4365  *
4366  * @skb: A socket buffer.
4367  */
4368 static inline void skb_tx_timestamp(struct sk_buff *skb)
4369 {
4370 	skb_clone_tx_timestamp(skb);
4371 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4372 		skb_tstamp_tx(skb, NULL);
4373 }
4374 
4375 /**
4376  * skb_complete_wifi_ack - deliver skb with wifi status
4377  *
4378  * @skb: the original outgoing packet
4379  * @acked: ack status
4380  *
4381  */
4382 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4383 
4384 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4385 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4386 
4387 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4388 {
4389 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4390 		skb->csum_valid ||
4391 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4392 		 skb_checksum_start_offset(skb) >= 0));
4393 }
4394 
4395 /**
4396  *	skb_checksum_complete - Calculate checksum of an entire packet
4397  *	@skb: packet to process
4398  *
4399  *	This function calculates the checksum over the entire packet plus
4400  *	the value of skb->csum.  The latter can be used to supply the
4401  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4402  *	checksum.
4403  *
4404  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4405  *	this function can be used to verify that checksum on received
4406  *	packets.  In that case the function should return zero if the
4407  *	checksum is correct.  In particular, this function will return zero
4408  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4409  *	hardware has already verified the correctness of the checksum.
4410  */
4411 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4412 {
4413 	return skb_csum_unnecessary(skb) ?
4414 	       0 : __skb_checksum_complete(skb);
4415 }
4416 
4417 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4418 {
4419 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4420 		if (skb->csum_level == 0)
4421 			skb->ip_summed = CHECKSUM_NONE;
4422 		else
4423 			skb->csum_level--;
4424 	}
4425 }
4426 
4427 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4428 {
4429 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4430 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4431 			skb->csum_level++;
4432 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4433 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4434 		skb->csum_level = 0;
4435 	}
4436 }
4437 
4438 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4439 {
4440 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4441 		skb->ip_summed = CHECKSUM_NONE;
4442 		skb->csum_level = 0;
4443 	}
4444 }
4445 
4446 /* Check if we need to perform checksum complete validation.
4447  *
4448  * Returns true if checksum complete is needed, false otherwise
4449  * (either checksum is unnecessary or zero checksum is allowed).
4450  */
4451 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4452 						  bool zero_okay,
4453 						  __sum16 check)
4454 {
4455 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4456 		skb->csum_valid = 1;
4457 		__skb_decr_checksum_unnecessary(skb);
4458 		return false;
4459 	}
4460 
4461 	return true;
4462 }
4463 
4464 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4465  * in checksum_init.
4466  */
4467 #define CHECKSUM_BREAK 76
4468 
4469 /* Unset checksum-complete
4470  *
4471  * Unset checksum complete can be done when packet is being modified
4472  * (uncompressed for instance) and checksum-complete value is
4473  * invalidated.
4474  */
4475 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4476 {
4477 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4478 		skb->ip_summed = CHECKSUM_NONE;
4479 }
4480 
4481 /* Validate (init) checksum based on checksum complete.
4482  *
4483  * Return values:
4484  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4485  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4486  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4487  *   non-zero: value of invalid checksum
4488  *
4489  */
4490 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4491 						       bool complete,
4492 						       __wsum psum)
4493 {
4494 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4495 		if (!csum_fold(csum_add(psum, skb->csum))) {
4496 			skb->csum_valid = 1;
4497 			return 0;
4498 		}
4499 	}
4500 
4501 	skb->csum = psum;
4502 
4503 	if (complete || skb->len <= CHECKSUM_BREAK) {
4504 		__sum16 csum;
4505 
4506 		csum = __skb_checksum_complete(skb);
4507 		skb->csum_valid = !csum;
4508 		return csum;
4509 	}
4510 
4511 	return 0;
4512 }
4513 
4514 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4515 {
4516 	return 0;
4517 }
4518 
4519 /* Perform checksum validate (init). Note that this is a macro since we only
4520  * want to calculate the pseudo header which is an input function if necessary.
4521  * First we try to validate without any computation (checksum unnecessary) and
4522  * then calculate based on checksum complete calling the function to compute
4523  * pseudo header.
4524  *
4525  * Return values:
4526  *   0: checksum is validated or try to in skb_checksum_complete
4527  *   non-zero: value of invalid checksum
4528  */
4529 #define __skb_checksum_validate(skb, proto, complete,			\
4530 				zero_okay, check, compute_pseudo)	\
4531 ({									\
4532 	__sum16 __ret = 0;						\
4533 	skb->csum_valid = 0;						\
4534 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4535 		__ret = __skb_checksum_validate_complete(skb,		\
4536 				complete, compute_pseudo(skb, proto));	\
4537 	__ret;								\
4538 })
4539 
4540 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4541 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4542 
4543 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4544 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4545 
4546 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4547 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4548 
4549 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4550 					 compute_pseudo)		\
4551 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4552 
4553 #define skb_checksum_simple_validate(skb)				\
4554 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4555 
4556 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4557 {
4558 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4559 }
4560 
4561 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4562 {
4563 	skb->csum = ~pseudo;
4564 	skb->ip_summed = CHECKSUM_COMPLETE;
4565 }
4566 
4567 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4568 do {									\
4569 	if (__skb_checksum_convert_check(skb))				\
4570 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4571 } while (0)
4572 
4573 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4574 					      u16 start, u16 offset)
4575 {
4576 	skb->ip_summed = CHECKSUM_PARTIAL;
4577 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4578 	skb->csum_offset = offset - start;
4579 }
4580 
4581 /* Update skbuf and packet to reflect the remote checksum offload operation.
4582  * When called, ptr indicates the starting point for skb->csum when
4583  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4584  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4585  */
4586 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4587 				       int start, int offset, bool nopartial)
4588 {
4589 	__wsum delta;
4590 
4591 	if (!nopartial) {
4592 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4593 		return;
4594 	}
4595 
4596 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4597 		__skb_checksum_complete(skb);
4598 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4599 	}
4600 
4601 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4602 
4603 	/* Adjust skb->csum since we changed the packet */
4604 	skb->csum = csum_add(skb->csum, delta);
4605 }
4606 
4607 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4608 {
4609 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4610 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4611 #else
4612 	return NULL;
4613 #endif
4614 }
4615 
4616 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4617 {
4618 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4619 	return skb->_nfct;
4620 #else
4621 	return 0UL;
4622 #endif
4623 }
4624 
4625 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4626 {
4627 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4628 	skb->slow_gro |= !!nfct;
4629 	skb->_nfct = nfct;
4630 #endif
4631 }
4632 
4633 #ifdef CONFIG_SKB_EXTENSIONS
4634 enum skb_ext_id {
4635 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4636 	SKB_EXT_BRIDGE_NF,
4637 #endif
4638 #ifdef CONFIG_XFRM
4639 	SKB_EXT_SEC_PATH,
4640 #endif
4641 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4642 	TC_SKB_EXT,
4643 #endif
4644 #if IS_ENABLED(CONFIG_MPTCP)
4645 	SKB_EXT_MPTCP,
4646 #endif
4647 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4648 	SKB_EXT_MCTP,
4649 #endif
4650 	SKB_EXT_NUM, /* must be last */
4651 };
4652 
4653 /**
4654  *	struct skb_ext - sk_buff extensions
4655  *	@refcnt: 1 on allocation, deallocated on 0
4656  *	@offset: offset to add to @data to obtain extension address
4657  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4658  *	@data: start of extension data, variable sized
4659  *
4660  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4661  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4662  */
4663 struct skb_ext {
4664 	refcount_t refcnt;
4665 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4666 	u8 chunks;		/* same */
4667 	char data[] __aligned(8);
4668 };
4669 
4670 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4671 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4672 		    struct skb_ext *ext);
4673 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4674 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4675 void __skb_ext_put(struct skb_ext *ext);
4676 
4677 static inline void skb_ext_put(struct sk_buff *skb)
4678 {
4679 	if (skb->active_extensions)
4680 		__skb_ext_put(skb->extensions);
4681 }
4682 
4683 static inline void __skb_ext_copy(struct sk_buff *dst,
4684 				  const struct sk_buff *src)
4685 {
4686 	dst->active_extensions = src->active_extensions;
4687 
4688 	if (src->active_extensions) {
4689 		struct skb_ext *ext = src->extensions;
4690 
4691 		refcount_inc(&ext->refcnt);
4692 		dst->extensions = ext;
4693 	}
4694 }
4695 
4696 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4697 {
4698 	skb_ext_put(dst);
4699 	__skb_ext_copy(dst, src);
4700 }
4701 
4702 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4703 {
4704 	return !!ext->offset[i];
4705 }
4706 
4707 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4708 {
4709 	return skb->active_extensions & (1 << id);
4710 }
4711 
4712 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4713 {
4714 	if (skb_ext_exist(skb, id))
4715 		__skb_ext_del(skb, id);
4716 }
4717 
4718 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4719 {
4720 	if (skb_ext_exist(skb, id)) {
4721 		struct skb_ext *ext = skb->extensions;
4722 
4723 		return (void *)ext + (ext->offset[id] << 3);
4724 	}
4725 
4726 	return NULL;
4727 }
4728 
4729 static inline void skb_ext_reset(struct sk_buff *skb)
4730 {
4731 	if (unlikely(skb->active_extensions)) {
4732 		__skb_ext_put(skb->extensions);
4733 		skb->active_extensions = 0;
4734 	}
4735 }
4736 
4737 static inline bool skb_has_extensions(struct sk_buff *skb)
4738 {
4739 	return unlikely(skb->active_extensions);
4740 }
4741 #else
4742 static inline void skb_ext_put(struct sk_buff *skb) {}
4743 static inline void skb_ext_reset(struct sk_buff *skb) {}
4744 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4745 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4746 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4747 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4748 #endif /* CONFIG_SKB_EXTENSIONS */
4749 
4750 static inline void nf_reset_ct(struct sk_buff *skb)
4751 {
4752 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4753 	nf_conntrack_put(skb_nfct(skb));
4754 	skb->_nfct = 0;
4755 #endif
4756 }
4757 
4758 static inline void nf_reset_trace(struct sk_buff *skb)
4759 {
4760 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4761 	skb->nf_trace = 0;
4762 #endif
4763 }
4764 
4765 static inline void ipvs_reset(struct sk_buff *skb)
4766 {
4767 #if IS_ENABLED(CONFIG_IP_VS)
4768 	skb->ipvs_property = 0;
4769 #endif
4770 }
4771 
4772 /* Note: This doesn't put any conntrack info in dst. */
4773 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4774 			     bool copy)
4775 {
4776 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4777 	dst->_nfct = src->_nfct;
4778 	nf_conntrack_get(skb_nfct(src));
4779 #endif
4780 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4781 	if (copy)
4782 		dst->nf_trace = src->nf_trace;
4783 #endif
4784 }
4785 
4786 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4787 {
4788 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4789 	nf_conntrack_put(skb_nfct(dst));
4790 #endif
4791 	dst->slow_gro = src->slow_gro;
4792 	__nf_copy(dst, src, true);
4793 }
4794 
4795 #ifdef CONFIG_NETWORK_SECMARK
4796 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4797 {
4798 	to->secmark = from->secmark;
4799 }
4800 
4801 static inline void skb_init_secmark(struct sk_buff *skb)
4802 {
4803 	skb->secmark = 0;
4804 }
4805 #else
4806 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4807 { }
4808 
4809 static inline void skb_init_secmark(struct sk_buff *skb)
4810 { }
4811 #endif
4812 
4813 static inline int secpath_exists(const struct sk_buff *skb)
4814 {
4815 #ifdef CONFIG_XFRM
4816 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4817 #else
4818 	return 0;
4819 #endif
4820 }
4821 
4822 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4823 {
4824 	return !skb->destructor &&
4825 		!secpath_exists(skb) &&
4826 		!skb_nfct(skb) &&
4827 		!skb->_skb_refdst &&
4828 		!skb_has_frag_list(skb);
4829 }
4830 
4831 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4832 {
4833 	skb->queue_mapping = queue_mapping;
4834 }
4835 
4836 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4837 {
4838 	return skb->queue_mapping;
4839 }
4840 
4841 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4842 {
4843 	to->queue_mapping = from->queue_mapping;
4844 }
4845 
4846 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4847 {
4848 	skb->queue_mapping = rx_queue + 1;
4849 }
4850 
4851 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4852 {
4853 	return skb->queue_mapping - 1;
4854 }
4855 
4856 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4857 {
4858 	return skb->queue_mapping != 0;
4859 }
4860 
4861 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4862 {
4863 	skb->dst_pending_confirm = val;
4864 }
4865 
4866 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4867 {
4868 	return skb->dst_pending_confirm != 0;
4869 }
4870 
4871 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4872 {
4873 #ifdef CONFIG_XFRM
4874 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4875 #else
4876 	return NULL;
4877 #endif
4878 }
4879 
4880 static inline bool skb_is_gso(const struct sk_buff *skb)
4881 {
4882 	return skb_shinfo(skb)->gso_size;
4883 }
4884 
4885 /* Note: Should be called only if skb_is_gso(skb) is true */
4886 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4887 {
4888 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4889 }
4890 
4891 /* Note: Should be called only if skb_is_gso(skb) is true */
4892 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4893 {
4894 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4895 }
4896 
4897 /* Note: Should be called only if skb_is_gso(skb) is true */
4898 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4899 {
4900 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4901 }
4902 
4903 static inline void skb_gso_reset(struct sk_buff *skb)
4904 {
4905 	skb_shinfo(skb)->gso_size = 0;
4906 	skb_shinfo(skb)->gso_segs = 0;
4907 	skb_shinfo(skb)->gso_type = 0;
4908 }
4909 
4910 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4911 					 u16 increment)
4912 {
4913 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4914 		return;
4915 	shinfo->gso_size += increment;
4916 }
4917 
4918 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4919 					 u16 decrement)
4920 {
4921 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4922 		return;
4923 	shinfo->gso_size -= decrement;
4924 }
4925 
4926 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4927 
4928 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4929 {
4930 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4931 	 * wanted then gso_type will be set. */
4932 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4933 
4934 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4935 	    unlikely(shinfo->gso_type == 0)) {
4936 		__skb_warn_lro_forwarding(skb);
4937 		return true;
4938 	}
4939 	return false;
4940 }
4941 
4942 static inline void skb_forward_csum(struct sk_buff *skb)
4943 {
4944 	/* Unfortunately we don't support this one.  Any brave souls? */
4945 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4946 		skb->ip_summed = CHECKSUM_NONE;
4947 }
4948 
4949 /**
4950  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4951  * @skb: skb to check
4952  *
4953  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4954  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4955  * use this helper, to document places where we make this assertion.
4956  */
4957 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4958 {
4959 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4960 }
4961 
4962 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4963 
4964 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4965 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4966 				     unsigned int transport_len,
4967 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4968 
4969 /**
4970  * skb_head_is_locked - Determine if the skb->head is locked down
4971  * @skb: skb to check
4972  *
4973  * The head on skbs build around a head frag can be removed if they are
4974  * not cloned.  This function returns true if the skb head is locked down
4975  * due to either being allocated via kmalloc, or by being a clone with
4976  * multiple references to the head.
4977  */
4978 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4979 {
4980 	return !skb->head_frag || skb_cloned(skb);
4981 }
4982 
4983 /* Local Checksum Offload.
4984  * Compute outer checksum based on the assumption that the
4985  * inner checksum will be offloaded later.
4986  * See Documentation/networking/checksum-offloads.rst for
4987  * explanation of how this works.
4988  * Fill in outer checksum adjustment (e.g. with sum of outer
4989  * pseudo-header) before calling.
4990  * Also ensure that inner checksum is in linear data area.
4991  */
4992 static inline __wsum lco_csum(struct sk_buff *skb)
4993 {
4994 	unsigned char *csum_start = skb_checksum_start(skb);
4995 	unsigned char *l4_hdr = skb_transport_header(skb);
4996 	__wsum partial;
4997 
4998 	/* Start with complement of inner checksum adjustment */
4999 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5000 						    skb->csum_offset));
5001 
5002 	/* Add in checksum of our headers (incl. outer checksum
5003 	 * adjustment filled in by caller) and return result.
5004 	 */
5005 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5006 }
5007 
5008 static inline bool skb_is_redirected(const struct sk_buff *skb)
5009 {
5010 	return skb->redirected;
5011 }
5012 
5013 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5014 {
5015 	skb->redirected = 1;
5016 #ifdef CONFIG_NET_REDIRECT
5017 	skb->from_ingress = from_ingress;
5018 	if (skb->from_ingress)
5019 		skb_clear_tstamp(skb);
5020 #endif
5021 }
5022 
5023 static inline void skb_reset_redirect(struct sk_buff *skb)
5024 {
5025 	skb->redirected = 0;
5026 }
5027 
5028 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5029 					      bool from_ingress)
5030 {
5031 	skb->redirected = 1;
5032 #ifdef CONFIG_NET_REDIRECT
5033 	skb->from_ingress = from_ingress;
5034 #endif
5035 }
5036 
5037 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5038 {
5039 #if IS_ENABLED(CONFIG_IP_SCTP)
5040 	return skb->csum_not_inet;
5041 #else
5042 	return 0;
5043 #endif
5044 }
5045 
5046 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5047 {
5048 	skb->ip_summed = CHECKSUM_NONE;
5049 #if IS_ENABLED(CONFIG_IP_SCTP)
5050 	skb->csum_not_inet = 0;
5051 #endif
5052 }
5053 
5054 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5055 				       const u64 kcov_handle)
5056 {
5057 #ifdef CONFIG_KCOV
5058 	skb->kcov_handle = kcov_handle;
5059 #endif
5060 }
5061 
5062 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5063 {
5064 #ifdef CONFIG_KCOV
5065 	return skb->kcov_handle;
5066 #else
5067 	return 0;
5068 #endif
5069 }
5070 
5071 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5072 {
5073 #ifdef CONFIG_PAGE_POOL
5074 	skb->pp_recycle = 1;
5075 #endif
5076 }
5077 
5078 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5079 			     ssize_t maxsize, gfp_t gfp);
5080 
5081 #endif	/* __KERNEL__ */
5082 #endif	/* _LINUX_SKBUFF_H */
5083