xref: /linux-6.15/include/linux/skbuff.h (revision 514fcaac)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/cache.h>
18 #include <linux/rbtree.h>
19 #include <linux/socket.h>
20 #include <linux/refcount.h>
21 
22 #include <linux/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/hrtimer.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdev_features.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <net/flow_dissector.h>
35 #include <linux/splice.h>
36 #include <linux/in6.h>
37 #include <linux/if_packet.h>
38 #include <net/flow.h>
39 
40 /* The interface for checksum offload between the stack and networking drivers
41  * is as follows...
42  *
43  * A. IP checksum related features
44  *
45  * Drivers advertise checksum offload capabilities in the features of a device.
46  * From the stack's point of view these are capabilities offered by the driver,
47  * a driver typically only advertises features that it is capable of offloading
48  * to its device.
49  *
50  * The checksum related features are:
51  *
52  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
53  *			  IP (one's complement) checksum for any combination
54  *			  of protocols or protocol layering. The checksum is
55  *			  computed and set in a packet per the CHECKSUM_PARTIAL
56  *			  interface (see below).
57  *
58  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
59  *			  TCP or UDP packets over IPv4. These are specifically
60  *			  unencapsulated packets of the form IPv4|TCP or
61  *			  IPv4|UDP where the Protocol field in the IPv4 header
62  *			  is TCP or UDP. The IPv4 header may contain IP options
63  *			  This feature cannot be set in features for a device
64  *			  with NETIF_F_HW_CSUM also set. This feature is being
65  *			  DEPRECATED (see below).
66  *
67  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
68  *			  TCP or UDP packets over IPv6. These are specifically
69  *			  unencapsulated packets of the form IPv6|TCP or
70  *			  IPv4|UDP where the Next Header field in the IPv6
71  *			  header is either TCP or UDP. IPv6 extension headers
72  *			  are not supported with this feature. This feature
73  *			  cannot be set in features for a device with
74  *			  NETIF_F_HW_CSUM also set. This feature is being
75  *			  DEPRECATED (see below).
76  *
77  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
78  *			 This flag is used only used to disable the RX checksum
79  *			 feature for a device. The stack will accept receive
80  *			 checksum indication in packets received on a device
81  *			 regardless of whether NETIF_F_RXCSUM is set.
82  *
83  * B. Checksumming of received packets by device. Indication of checksum
84  *    verification is in set skb->ip_summed. Possible values are:
85  *
86  * CHECKSUM_NONE:
87  *
88  *   Device did not checksum this packet e.g. due to lack of capabilities.
89  *   The packet contains full (though not verified) checksum in packet but
90  *   not in skb->csum. Thus, skb->csum is undefined in this case.
91  *
92  * CHECKSUM_UNNECESSARY:
93  *
94  *   The hardware you're dealing with doesn't calculate the full checksum
95  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
96  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
97  *   if their checksums are okay. skb->csum is still undefined in this case
98  *   though. A driver or device must never modify the checksum field in the
99  *   packet even if checksum is verified.
100  *
101  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
102  *     TCP: IPv6 and IPv4.
103  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
104  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
105  *       may perform further validation in this case.
106  *     GRE: only if the checksum is present in the header.
107  *     SCTP: indicates the CRC in SCTP header has been validated.
108  *     FCOE: indicates the CRC in FC frame has been validated.
109  *
110  *   skb->csum_level indicates the number of consecutive checksums found in
111  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
112  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
113  *   and a device is able to verify the checksums for UDP (possibly zero),
114  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
115  *   two. If the device were only able to verify the UDP checksum and not
116  *   GRE, either because it doesn't support GRE checksum of because GRE
117  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
118  *   not considered in this case).
119  *
120  * CHECKSUM_COMPLETE:
121  *
122  *   This is the most generic way. The device supplied checksum of the _whole_
123  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
124  *   hardware doesn't need to parse L3/L4 headers to implement this.
125  *
126  *   Notes:
127  *   - Even if device supports only some protocols, but is able to produce
128  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
130  *
131  * CHECKSUM_PARTIAL:
132  *
133  *   A checksum is set up to be offloaded to a device as described in the
134  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
135  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
136  *   on the same host, or it may be set in the input path in GRO or remote
137  *   checksum offload. For the purposes of checksum verification, the checksum
138  *   referred to by skb->csum_start + skb->csum_offset and any preceding
139  *   checksums in the packet are considered verified. Any checksums in the
140  *   packet that are after the checksum being offloaded are not considered to
141  *   be verified.
142  *
143  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144  *    in the skb->ip_summed for a packet. Values are:
145  *
146  * CHECKSUM_PARTIAL:
147  *
148  *   The driver is required to checksum the packet as seen by hard_start_xmit()
149  *   from skb->csum_start up to the end, and to record/write the checksum at
150  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
151  *   csum_start and csum_offset values are valid values given the length and
152  *   offset of the packet, however they should not attempt to validate that the
153  *   checksum refers to a legitimate transport layer checksum-- it is the
154  *   purview of the stack to validate that csum_start and csum_offset are set
155  *   correctly.
156  *
157  *   When the stack requests checksum offload for a packet, the driver MUST
158  *   ensure that the checksum is set correctly. A driver can either offload the
159  *   checksum calculation to the device, or call skb_checksum_help (in the case
160  *   that the device does not support offload for a particular checksum).
161  *
162  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164  *   checksum offload capability.
165  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
166  *   on network device checksumming capabilities: if a packet does not match
167  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
168  *   csum_not_inet, see item D.) is called to resolve the checksum.
169  *
170  * CHECKSUM_NONE:
171  *
172  *   The skb was already checksummed by the protocol, or a checksum is not
173  *   required.
174  *
175  * CHECKSUM_UNNECESSARY:
176  *
177  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
178  *   output.
179  *
180  * CHECKSUM_COMPLETE:
181  *   Not used in checksum output. If a driver observes a packet with this value
182  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
183  *
184  * D. Non-IP checksum (CRC) offloads
185  *
186  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
187  *     offloading the SCTP CRC in a packet. To perform this offload the stack
188  *     will set set csum_start and csum_offset accordingly, set ip_summed to
189  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
190  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
191  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
192  *     must verify which offload is configured for a packet by testing the
193  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
194  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 struct bpf_prog;
243 union bpf_attr;
244 struct skb_ext;
245 
246 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
247 struct nf_conntrack {
248 	atomic_t use;
249 };
250 #endif
251 
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 struct sk_buff_head {
282 	/* These two members must be first. */
283 	struct sk_buff	*next;
284 	struct sk_buff	*prev;
285 
286 	__u32		qlen;
287 	spinlock_t	lock;
288 };
289 
290 struct sk_buff;
291 
292 /* To allow 64K frame to be packed as single skb without frag_list we
293  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
294  * buffers which do not start on a page boundary.
295  *
296  * Since GRO uses frags we allocate at least 16 regardless of page
297  * size.
298  */
299 #if (65536/PAGE_SIZE + 1) < 16
300 #define MAX_SKB_FRAGS 16UL
301 #else
302 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
303 #endif
304 extern int sysctl_max_skb_frags;
305 
306 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
307  * segment using its current segmentation instead.
308  */
309 #define GSO_BY_FRAGS	0xFFFF
310 
311 typedef struct skb_frag_struct skb_frag_t;
312 
313 struct skb_frag_struct {
314 	struct {
315 		struct page *p;
316 	} page;
317 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
318 	__u32 page_offset;
319 	__u32 size;
320 #else
321 	__u16 page_offset;
322 	__u16 size;
323 #endif
324 };
325 
326 /**
327  * skb_frag_size - Returns the size of a skb fragment
328  * @frag: skb fragment
329  */
330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->size;
333 }
334 
335 /**
336  * skb_frag_size_set - Sets the size of a skb fragment
337  * @frag: skb fragment
338  * @size: size of fragment
339  */
340 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341 {
342 	frag->size = size;
343 }
344 
345 /**
346  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
347  * @frag: skb fragment
348  * @delta: value to add
349  */
350 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351 {
352 	frag->size += delta;
353 }
354 
355 /**
356  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
357  * @frag: skb fragment
358  * @delta: value to subtract
359  */
360 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361 {
362 	frag->size -= delta;
363 }
364 
365 /**
366  * skb_frag_must_loop - Test if %p is a high memory page
367  * @p: fragment's page
368  */
369 static inline bool skb_frag_must_loop(struct page *p)
370 {
371 #if defined(CONFIG_HIGHMEM)
372 	if (PageHighMem(p))
373 		return true;
374 #endif
375 	return false;
376 }
377 
378 /**
379  *	skb_frag_foreach_page - loop over pages in a fragment
380  *
381  *	@f:		skb frag to operate on
382  *	@f_off:		offset from start of f->page.p
383  *	@f_len:		length from f_off to loop over
384  *	@p:		(temp var) current page
385  *	@p_off:		(temp var) offset from start of current page,
386  *	                           non-zero only on first page.
387  *	@p_len:		(temp var) length in current page,
388  *				   < PAGE_SIZE only on first and last page.
389  *	@copied:	(temp var) length so far, excluding current p_len.
390  *
391  *	A fragment can hold a compound page, in which case per-page
392  *	operations, notably kmap_atomic, must be called for each
393  *	regular page.
394  */
395 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
396 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
397 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
398 	     p_len = skb_frag_must_loop(p) ?				\
399 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
400 	     copied = 0;						\
401 	     copied < f_len;						\
402 	     copied += p_len, p++, p_off = 0,				\
403 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
404 
405 #define HAVE_HW_TIME_STAMP
406 
407 /**
408  * struct skb_shared_hwtstamps - hardware time stamps
409  * @hwtstamp:	hardware time stamp transformed into duration
410  *		since arbitrary point in time
411  *
412  * Software time stamps generated by ktime_get_real() are stored in
413  * skb->tstamp.
414  *
415  * hwtstamps can only be compared against other hwtstamps from
416  * the same device.
417  *
418  * This structure is attached to packets as part of the
419  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420  */
421 struct skb_shared_hwtstamps {
422 	ktime_t	hwtstamp;
423 };
424 
425 /* Definitions for tx_flags in struct skb_shared_info */
426 enum {
427 	/* generate hardware time stamp */
428 	SKBTX_HW_TSTAMP = 1 << 0,
429 
430 	/* generate software time stamp when queueing packet to NIC */
431 	SKBTX_SW_TSTAMP = 1 << 1,
432 
433 	/* device driver is going to provide hardware time stamp */
434 	SKBTX_IN_PROGRESS = 1 << 2,
435 
436 	/* device driver supports TX zero-copy buffers */
437 	SKBTX_DEV_ZEROCOPY = 1 << 3,
438 
439 	/* generate wifi status information (where possible) */
440 	SKBTX_WIFI_STATUS = 1 << 4,
441 
442 	/* This indicates at least one fragment might be overwritten
443 	 * (as in vmsplice(), sendfile() ...)
444 	 * If we need to compute a TX checksum, we'll need to copy
445 	 * all frags to avoid possible bad checksum
446 	 */
447 	SKBTX_SHARED_FRAG = 1 << 5,
448 
449 	/* generate software time stamp when entering packet scheduling */
450 	SKBTX_SCHED_TSTAMP = 1 << 6,
451 };
452 
453 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
454 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
455 				 SKBTX_SCHED_TSTAMP)
456 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
457 
458 /*
459  * The callback notifies userspace to release buffers when skb DMA is done in
460  * lower device, the skb last reference should be 0 when calling this.
461  * The zerocopy_success argument is true if zero copy transmit occurred,
462  * false on data copy or out of memory error caused by data copy attempt.
463  * The ctx field is used to track device context.
464  * The desc field is used to track userspace buffer index.
465  */
466 struct ubuf_info {
467 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
468 	union {
469 		struct {
470 			unsigned long desc;
471 			void *ctx;
472 		};
473 		struct {
474 			u32 id;
475 			u16 len;
476 			u16 zerocopy:1;
477 			u32 bytelen;
478 		};
479 	};
480 	refcount_t refcnt;
481 
482 	struct mmpin {
483 		struct user_struct *user;
484 		unsigned int num_pg;
485 	} mmp;
486 };
487 
488 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
489 
490 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
491 void mm_unaccount_pinned_pages(struct mmpin *mmp);
492 
493 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
494 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
495 					struct ubuf_info *uarg);
496 
497 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
498 {
499 	refcount_inc(&uarg->refcnt);
500 }
501 
502 void sock_zerocopy_put(struct ubuf_info *uarg);
503 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
504 
505 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
506 
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 			     struct msghdr *msg, int len,
510 			     struct ubuf_info *uarg);
511 
512 /* This data is invariant across clones and lives at
513  * the end of the header data, ie. at skb->end.
514  */
515 struct skb_shared_info {
516 	__u8		__unused;
517 	__u8		meta_len;
518 	__u8		nr_frags;
519 	__u8		tx_flags;
520 	unsigned short	gso_size;
521 	/* Warning: this field is not always filled in (UFO)! */
522 	unsigned short	gso_segs;
523 	struct sk_buff	*frag_list;
524 	struct skb_shared_hwtstamps hwtstamps;
525 	unsigned int	gso_type;
526 	u32		tskey;
527 
528 	/*
529 	 * Warning : all fields before dataref are cleared in __alloc_skb()
530 	 */
531 	atomic_t	dataref;
532 
533 	/* Intermediate layers must ensure that destructor_arg
534 	 * remains valid until skb destructor */
535 	void *		destructor_arg;
536 
537 	/* must be last field, see pskb_expand_head() */
538 	skb_frag_t	frags[MAX_SKB_FRAGS];
539 };
540 
541 /* We divide dataref into two halves.  The higher 16 bits hold references
542  * to the payload part of skb->data.  The lower 16 bits hold references to
543  * the entire skb->data.  A clone of a headerless skb holds the length of
544  * the header in skb->hdr_len.
545  *
546  * All users must obey the rule that the skb->data reference count must be
547  * greater than or equal to the payload reference count.
548  *
549  * Holding a reference to the payload part means that the user does not
550  * care about modifications to the header part of skb->data.
551  */
552 #define SKB_DATAREF_SHIFT 16
553 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554 
555 
556 enum {
557 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
558 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
559 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
560 };
561 
562 enum {
563 	SKB_GSO_TCPV4 = 1 << 0,
564 
565 	/* This indicates the skb is from an untrusted source. */
566 	SKB_GSO_DODGY = 1 << 1,
567 
568 	/* This indicates the tcp segment has CWR set. */
569 	SKB_GSO_TCP_ECN = 1 << 2,
570 
571 	SKB_GSO_TCP_FIXEDID = 1 << 3,
572 
573 	SKB_GSO_TCPV6 = 1 << 4,
574 
575 	SKB_GSO_FCOE = 1 << 5,
576 
577 	SKB_GSO_GRE = 1 << 6,
578 
579 	SKB_GSO_GRE_CSUM = 1 << 7,
580 
581 	SKB_GSO_IPXIP4 = 1 << 8,
582 
583 	SKB_GSO_IPXIP6 = 1 << 9,
584 
585 	SKB_GSO_UDP_TUNNEL = 1 << 10,
586 
587 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
588 
589 	SKB_GSO_PARTIAL = 1 << 12,
590 
591 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
592 
593 	SKB_GSO_SCTP = 1 << 14,
594 
595 	SKB_GSO_ESP = 1 << 15,
596 
597 	SKB_GSO_UDP = 1 << 16,
598 
599 	SKB_GSO_UDP_L4 = 1 << 17,
600 };
601 
602 #if BITS_PER_LONG > 32
603 #define NET_SKBUFF_DATA_USES_OFFSET 1
604 #endif
605 
606 #ifdef NET_SKBUFF_DATA_USES_OFFSET
607 typedef unsigned int sk_buff_data_t;
608 #else
609 typedef unsigned char *sk_buff_data_t;
610 #endif
611 
612 /**
613  *	struct sk_buff - socket buffer
614  *	@next: Next buffer in list
615  *	@prev: Previous buffer in list
616  *	@tstamp: Time we arrived/left
617  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
618  *	@sk: Socket we are owned by
619  *	@dev: Device we arrived on/are leaving by
620  *	@cb: Control buffer. Free for use by every layer. Put private vars here
621  *	@_skb_refdst: destination entry (with norefcount bit)
622  *	@sp: the security path, used for xfrm
623  *	@len: Length of actual data
624  *	@data_len: Data length
625  *	@mac_len: Length of link layer header
626  *	@hdr_len: writable header length of cloned skb
627  *	@csum: Checksum (must include start/offset pair)
628  *	@csum_start: Offset from skb->head where checksumming should start
629  *	@csum_offset: Offset from csum_start where checksum should be stored
630  *	@priority: Packet queueing priority
631  *	@ignore_df: allow local fragmentation
632  *	@cloned: Head may be cloned (check refcnt to be sure)
633  *	@ip_summed: Driver fed us an IP checksum
634  *	@nohdr: Payload reference only, must not modify header
635  *	@pkt_type: Packet class
636  *	@fclone: skbuff clone status
637  *	@ipvs_property: skbuff is owned by ipvs
638  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
639  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
640  *	@tc_skip_classify: do not classify packet. set by IFB device
641  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
642  *	@tc_redirected: packet was redirected by a tc action
643  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
644  *	@peeked: this packet has been seen already, so stats have been
645  *		done for it, don't do them again
646  *	@nf_trace: netfilter packet trace flag
647  *	@protocol: Packet protocol from driver
648  *	@destructor: Destruct function
649  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
650  *	@_nfct: Associated connection, if any (with nfctinfo bits)
651  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
652  *	@skb_iif: ifindex of device we arrived on
653  *	@tc_index: Traffic control index
654  *	@hash: the packet hash
655  *	@queue_mapping: Queue mapping for multiqueue devices
656  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
657  *	@active_extensions: active extensions (skb_ext_id types)
658  *	@ndisc_nodetype: router type (from link layer)
659  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
660  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
661  *		ports.
662  *	@sw_hash: indicates hash was computed in software stack
663  *	@wifi_acked_valid: wifi_acked was set
664  *	@wifi_acked: whether frame was acked on wifi or not
665  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
666  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
667  *	@dst_pending_confirm: need to confirm neighbour
668  *	@decrypted: Decrypted SKB
669  *	@napi_id: id of the NAPI struct this skb came from
670  *	@secmark: security marking
671  *	@mark: Generic packet mark
672  *	@vlan_proto: vlan encapsulation protocol
673  *	@vlan_tci: vlan tag control information
674  *	@inner_protocol: Protocol (encapsulation)
675  *	@inner_transport_header: Inner transport layer header (encapsulation)
676  *	@inner_network_header: Network layer header (encapsulation)
677  *	@inner_mac_header: Link layer header (encapsulation)
678  *	@transport_header: Transport layer header
679  *	@network_header: Network layer header
680  *	@mac_header: Link layer header
681  *	@tail: Tail pointer
682  *	@end: End pointer
683  *	@head: Head of buffer
684  *	@data: Data head pointer
685  *	@truesize: Buffer size
686  *	@users: User count - see {datagram,tcp}.c
687  *	@extensions: allocated extensions, valid if active_extensions is nonzero
688  */
689 
690 struct sk_buff {
691 	union {
692 		struct {
693 			/* These two members must be first. */
694 			struct sk_buff		*next;
695 			struct sk_buff		*prev;
696 
697 			union {
698 				struct net_device	*dev;
699 				/* Some protocols might use this space to store information,
700 				 * while device pointer would be NULL.
701 				 * UDP receive path is one user.
702 				 */
703 				unsigned long		dev_scratch;
704 			};
705 		};
706 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
707 		struct list_head	list;
708 	};
709 
710 	union {
711 		struct sock		*sk;
712 		int			ip_defrag_offset;
713 	};
714 
715 	union {
716 		ktime_t		tstamp;
717 		u64		skb_mstamp_ns; /* earliest departure time */
718 	};
719 	/*
720 	 * This is the control buffer. It is free to use for every
721 	 * layer. Please put your private variables there. If you
722 	 * want to keep them across layers you have to do a skb_clone()
723 	 * first. This is owned by whoever has the skb queued ATM.
724 	 */
725 	char			cb[48] __aligned(8);
726 
727 	union {
728 		struct {
729 			unsigned long	_skb_refdst;
730 			void		(*destructor)(struct sk_buff *skb);
731 		};
732 		struct list_head	tcp_tsorted_anchor;
733 	};
734 
735 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
736 	unsigned long		 _nfct;
737 #endif
738 	unsigned int		len,
739 				data_len;
740 	__u16			mac_len,
741 				hdr_len;
742 
743 	/* Following fields are _not_ copied in __copy_skb_header()
744 	 * Note that queue_mapping is here mostly to fill a hole.
745 	 */
746 	__u16			queue_mapping;
747 
748 /* if you move cloned around you also must adapt those constants */
749 #ifdef __BIG_ENDIAN_BITFIELD
750 #define CLONED_MASK	(1 << 7)
751 #else
752 #define CLONED_MASK	1
753 #endif
754 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
755 
756 	__u8			__cloned_offset[0];
757 	__u8			cloned:1,
758 				nohdr:1,
759 				fclone:2,
760 				peeked:1,
761 				head_frag:1,
762 				pfmemalloc:1;
763 #ifdef CONFIG_SKB_EXTENSIONS
764 	__u8			active_extensions;
765 #endif
766 	/* fields enclosed in headers_start/headers_end are copied
767 	 * using a single memcpy() in __copy_skb_header()
768 	 */
769 	/* private: */
770 	__u32			headers_start[0];
771 	/* public: */
772 
773 /* if you move pkt_type around you also must adapt those constants */
774 #ifdef __BIG_ENDIAN_BITFIELD
775 #define PKT_TYPE_MAX	(7 << 5)
776 #else
777 #define PKT_TYPE_MAX	7
778 #endif
779 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
780 
781 	__u8			__pkt_type_offset[0];
782 	__u8			pkt_type:3;
783 	__u8			ignore_df:1;
784 	__u8			nf_trace:1;
785 	__u8			ip_summed:2;
786 	__u8			ooo_okay:1;
787 
788 	__u8			l4_hash:1;
789 	__u8			sw_hash:1;
790 	__u8			wifi_acked_valid:1;
791 	__u8			wifi_acked:1;
792 	__u8			no_fcs:1;
793 	/* Indicates the inner headers are valid in the skbuff. */
794 	__u8			encapsulation:1;
795 	__u8			encap_hdr_csum:1;
796 	__u8			csum_valid:1;
797 
798 #ifdef __BIG_ENDIAN_BITFIELD
799 #define PKT_VLAN_PRESENT_BIT	7
800 #else
801 #define PKT_VLAN_PRESENT_BIT	0
802 #endif
803 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
804 	__u8			__pkt_vlan_present_offset[0];
805 	__u8			vlan_present:1;
806 	__u8			csum_complete_sw:1;
807 	__u8			csum_level:2;
808 	__u8			csum_not_inet:1;
809 	__u8			dst_pending_confirm:1;
810 #ifdef CONFIG_IPV6_NDISC_NODETYPE
811 	__u8			ndisc_nodetype:2;
812 #endif
813 
814 	__u8			ipvs_property:1;
815 	__u8			inner_protocol_type:1;
816 	__u8			remcsum_offload:1;
817 #ifdef CONFIG_NET_SWITCHDEV
818 	__u8			offload_fwd_mark:1;
819 	__u8			offload_l3_fwd_mark:1;
820 #endif
821 #ifdef CONFIG_NET_CLS_ACT
822 	__u8			tc_skip_classify:1;
823 	__u8			tc_at_ingress:1;
824 	__u8			tc_redirected:1;
825 	__u8			tc_from_ingress:1;
826 #endif
827 #ifdef CONFIG_TLS_DEVICE
828 	__u8			decrypted:1;
829 #endif
830 
831 #ifdef CONFIG_NET_SCHED
832 	__u16			tc_index;	/* traffic control index */
833 #endif
834 
835 	union {
836 		__wsum		csum;
837 		struct {
838 			__u16	csum_start;
839 			__u16	csum_offset;
840 		};
841 	};
842 	__u32			priority;
843 	int			skb_iif;
844 	__u32			hash;
845 	__be16			vlan_proto;
846 	__u16			vlan_tci;
847 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
848 	union {
849 		unsigned int	napi_id;
850 		unsigned int	sender_cpu;
851 	};
852 #endif
853 #ifdef CONFIG_NETWORK_SECMARK
854 	__u32		secmark;
855 #endif
856 
857 	union {
858 		__u32		mark;
859 		__u32		reserved_tailroom;
860 	};
861 
862 	union {
863 		__be16		inner_protocol;
864 		__u8		inner_ipproto;
865 	};
866 
867 	__u16			inner_transport_header;
868 	__u16			inner_network_header;
869 	__u16			inner_mac_header;
870 
871 	__be16			protocol;
872 	__u16			transport_header;
873 	__u16			network_header;
874 	__u16			mac_header;
875 
876 	/* private: */
877 	__u32			headers_end[0];
878 	/* public: */
879 
880 	/* These elements must be at the end, see alloc_skb() for details.  */
881 	sk_buff_data_t		tail;
882 	sk_buff_data_t		end;
883 	unsigned char		*head,
884 				*data;
885 	unsigned int		truesize;
886 	refcount_t		users;
887 
888 #ifdef CONFIG_SKB_EXTENSIONS
889 	/* only useable after checking ->active_extensions != 0 */
890 	struct skb_ext		*extensions;
891 #endif
892 };
893 
894 #ifdef __KERNEL__
895 /*
896  *	Handling routines are only of interest to the kernel
897  */
898 
899 #define SKB_ALLOC_FCLONE	0x01
900 #define SKB_ALLOC_RX		0x02
901 #define SKB_ALLOC_NAPI		0x04
902 
903 /**
904  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
905  * @skb: buffer
906  */
907 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
908 {
909 	return unlikely(skb->pfmemalloc);
910 }
911 
912 /*
913  * skb might have a dst pointer attached, refcounted or not.
914  * _skb_refdst low order bit is set if refcount was _not_ taken
915  */
916 #define SKB_DST_NOREF	1UL
917 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
918 
919 #define SKB_NFCT_PTRMASK	~(7UL)
920 /**
921  * skb_dst - returns skb dst_entry
922  * @skb: buffer
923  *
924  * Returns skb dst_entry, regardless of reference taken or not.
925  */
926 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
927 {
928 	/* If refdst was not refcounted, check we still are in a
929 	 * rcu_read_lock section
930 	 */
931 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
932 		!rcu_read_lock_held() &&
933 		!rcu_read_lock_bh_held());
934 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
935 }
936 
937 /**
938  * skb_dst_set - sets skb dst
939  * @skb: buffer
940  * @dst: dst entry
941  *
942  * Sets skb dst, assuming a reference was taken on dst and should
943  * be released by skb_dst_drop()
944  */
945 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
946 {
947 	skb->_skb_refdst = (unsigned long)dst;
948 }
949 
950 /**
951  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
952  * @skb: buffer
953  * @dst: dst entry
954  *
955  * Sets skb dst, assuming a reference was not taken on dst.
956  * If dst entry is cached, we do not take reference and dst_release
957  * will be avoided by refdst_drop. If dst entry is not cached, we take
958  * reference, so that last dst_release can destroy the dst immediately.
959  */
960 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
961 {
962 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
963 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
964 }
965 
966 /**
967  * skb_dst_is_noref - Test if skb dst isn't refcounted
968  * @skb: buffer
969  */
970 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
971 {
972 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
973 }
974 
975 /**
976  * skb_rtable - Returns the skb &rtable
977  * @skb: buffer
978  */
979 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
980 {
981 	return (struct rtable *)skb_dst(skb);
982 }
983 
984 /* For mangling skb->pkt_type from user space side from applications
985  * such as nft, tc, etc, we only allow a conservative subset of
986  * possible pkt_types to be set.
987 */
988 static inline bool skb_pkt_type_ok(u32 ptype)
989 {
990 	return ptype <= PACKET_OTHERHOST;
991 }
992 
993 /**
994  * skb_napi_id - Returns the skb's NAPI id
995  * @skb: buffer
996  */
997 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
998 {
999 #ifdef CONFIG_NET_RX_BUSY_POLL
1000 	return skb->napi_id;
1001 #else
1002 	return 0;
1003 #endif
1004 }
1005 
1006 /**
1007  * skb_unref - decrement the skb's reference count
1008  * @skb: buffer
1009  *
1010  * Returns true if we can free the skb.
1011  */
1012 static inline bool skb_unref(struct sk_buff *skb)
1013 {
1014 	if (unlikely(!skb))
1015 		return false;
1016 	if (likely(refcount_read(&skb->users) == 1))
1017 		smp_rmb();
1018 	else if (likely(!refcount_dec_and_test(&skb->users)))
1019 		return false;
1020 
1021 	return true;
1022 }
1023 
1024 void skb_release_head_state(struct sk_buff *skb);
1025 void kfree_skb(struct sk_buff *skb);
1026 void kfree_skb_list(struct sk_buff *segs);
1027 void skb_tx_error(struct sk_buff *skb);
1028 void consume_skb(struct sk_buff *skb);
1029 void __consume_stateless_skb(struct sk_buff *skb);
1030 void  __kfree_skb(struct sk_buff *skb);
1031 extern struct kmem_cache *skbuff_head_cache;
1032 
1033 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1034 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1035 		      bool *fragstolen, int *delta_truesize);
1036 
1037 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1038 			    int node);
1039 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1040 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1041 struct sk_buff *build_skb_around(struct sk_buff *skb,
1042 				 void *data, unsigned int frag_size);
1043 
1044 /**
1045  * alloc_skb - allocate a network buffer
1046  * @size: size to allocate
1047  * @priority: allocation mask
1048  *
1049  * This function is a convenient wrapper around __alloc_skb().
1050  */
1051 static inline struct sk_buff *alloc_skb(unsigned int size,
1052 					gfp_t priority)
1053 {
1054 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1055 }
1056 
1057 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1058 				     unsigned long data_len,
1059 				     int max_page_order,
1060 				     int *errcode,
1061 				     gfp_t gfp_mask);
1062 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1063 
1064 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1065 struct sk_buff_fclones {
1066 	struct sk_buff	skb1;
1067 
1068 	struct sk_buff	skb2;
1069 
1070 	refcount_t	fclone_ref;
1071 };
1072 
1073 /**
1074  *	skb_fclone_busy - check if fclone is busy
1075  *	@sk: socket
1076  *	@skb: buffer
1077  *
1078  * Returns true if skb is a fast clone, and its clone is not freed.
1079  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1080  * so we also check that this didnt happen.
1081  */
1082 static inline bool skb_fclone_busy(const struct sock *sk,
1083 				   const struct sk_buff *skb)
1084 {
1085 	const struct sk_buff_fclones *fclones;
1086 
1087 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1088 
1089 	return skb->fclone == SKB_FCLONE_ORIG &&
1090 	       refcount_read(&fclones->fclone_ref) > 1 &&
1091 	       fclones->skb2.sk == sk;
1092 }
1093 
1094 /**
1095  * alloc_skb_fclone - allocate a network buffer from fclone cache
1096  * @size: size to allocate
1097  * @priority: allocation mask
1098  *
1099  * This function is a convenient wrapper around __alloc_skb().
1100  */
1101 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1102 					       gfp_t priority)
1103 {
1104 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1105 }
1106 
1107 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1108 void skb_headers_offset_update(struct sk_buff *skb, int off);
1109 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1110 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1111 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1112 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1113 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1114 				   gfp_t gfp_mask, bool fclone);
1115 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1116 					  gfp_t gfp_mask)
1117 {
1118 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1119 }
1120 
1121 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1122 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1123 				     unsigned int headroom);
1124 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1125 				int newtailroom, gfp_t priority);
1126 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1127 				     int offset, int len);
1128 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1129 			      int offset, int len);
1130 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1131 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1132 
1133 /**
1134  *	skb_pad			-	zero pad the tail of an skb
1135  *	@skb: buffer to pad
1136  *	@pad: space to pad
1137  *
1138  *	Ensure that a buffer is followed by a padding area that is zero
1139  *	filled. Used by network drivers which may DMA or transfer data
1140  *	beyond the buffer end onto the wire.
1141  *
1142  *	May return error in out of memory cases. The skb is freed on error.
1143  */
1144 static inline int skb_pad(struct sk_buff *skb, int pad)
1145 {
1146 	return __skb_pad(skb, pad, true);
1147 }
1148 #define dev_kfree_skb(a)	consume_skb(a)
1149 
1150 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1151 			 int offset, size_t size);
1152 
1153 struct skb_seq_state {
1154 	__u32		lower_offset;
1155 	__u32		upper_offset;
1156 	__u32		frag_idx;
1157 	__u32		stepped_offset;
1158 	struct sk_buff	*root_skb;
1159 	struct sk_buff	*cur_skb;
1160 	__u8		*frag_data;
1161 };
1162 
1163 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1164 			  unsigned int to, struct skb_seq_state *st);
1165 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1166 			  struct skb_seq_state *st);
1167 void skb_abort_seq_read(struct skb_seq_state *st);
1168 
1169 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1170 			   unsigned int to, struct ts_config *config);
1171 
1172 /*
1173  * Packet hash types specify the type of hash in skb_set_hash.
1174  *
1175  * Hash types refer to the protocol layer addresses which are used to
1176  * construct a packet's hash. The hashes are used to differentiate or identify
1177  * flows of the protocol layer for the hash type. Hash types are either
1178  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1179  *
1180  * Properties of hashes:
1181  *
1182  * 1) Two packets in different flows have different hash values
1183  * 2) Two packets in the same flow should have the same hash value
1184  *
1185  * A hash at a higher layer is considered to be more specific. A driver should
1186  * set the most specific hash possible.
1187  *
1188  * A driver cannot indicate a more specific hash than the layer at which a hash
1189  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1190  *
1191  * A driver may indicate a hash level which is less specific than the
1192  * actual layer the hash was computed on. For instance, a hash computed
1193  * at L4 may be considered an L3 hash. This should only be done if the
1194  * driver can't unambiguously determine that the HW computed the hash at
1195  * the higher layer. Note that the "should" in the second property above
1196  * permits this.
1197  */
1198 enum pkt_hash_types {
1199 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1200 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1201 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1202 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1203 };
1204 
1205 static inline void skb_clear_hash(struct sk_buff *skb)
1206 {
1207 	skb->hash = 0;
1208 	skb->sw_hash = 0;
1209 	skb->l4_hash = 0;
1210 }
1211 
1212 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1213 {
1214 	if (!skb->l4_hash)
1215 		skb_clear_hash(skb);
1216 }
1217 
1218 static inline void
1219 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1220 {
1221 	skb->l4_hash = is_l4;
1222 	skb->sw_hash = is_sw;
1223 	skb->hash = hash;
1224 }
1225 
1226 static inline void
1227 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1228 {
1229 	/* Used by drivers to set hash from HW */
1230 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1231 }
1232 
1233 static inline void
1234 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1235 {
1236 	__skb_set_hash(skb, hash, true, is_l4);
1237 }
1238 
1239 void __skb_get_hash(struct sk_buff *skb);
1240 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1241 u32 skb_get_poff(const struct sk_buff *skb);
1242 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1243 		   const struct flow_keys_basic *keys, int hlen);
1244 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1245 			    void *data, int hlen_proto);
1246 
1247 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1248 					int thoff, u8 ip_proto)
1249 {
1250 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1251 }
1252 
1253 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1254 			     const struct flow_dissector_key *key,
1255 			     unsigned int key_count);
1256 
1257 #ifdef CONFIG_NET
1258 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1259 				  union bpf_attr __user *uattr);
1260 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1261 				       struct bpf_prog *prog);
1262 
1263 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1264 #else
1265 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1266 						union bpf_attr __user *uattr)
1267 {
1268 	return -EOPNOTSUPP;
1269 }
1270 
1271 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1272 						     struct bpf_prog *prog)
1273 {
1274 	return -EOPNOTSUPP;
1275 }
1276 
1277 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1278 {
1279 	return -EOPNOTSUPP;
1280 }
1281 #endif
1282 
1283 struct bpf_flow_dissector;
1284 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1285 		      __be16 proto, int nhoff, int hlen);
1286 
1287 bool __skb_flow_dissect(const struct net *net,
1288 			const struct sk_buff *skb,
1289 			struct flow_dissector *flow_dissector,
1290 			void *target_container,
1291 			void *data, __be16 proto, int nhoff, int hlen,
1292 			unsigned int flags);
1293 
1294 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1295 				    struct flow_dissector *flow_dissector,
1296 				    void *target_container, unsigned int flags)
1297 {
1298 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1299 				  target_container, NULL, 0, 0, 0, flags);
1300 }
1301 
1302 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1303 					      struct flow_keys *flow,
1304 					      unsigned int flags)
1305 {
1306 	memset(flow, 0, sizeof(*flow));
1307 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1308 				  flow, NULL, 0, 0, 0, flags);
1309 }
1310 
1311 static inline bool
1312 skb_flow_dissect_flow_keys_basic(const struct net *net,
1313 				 const struct sk_buff *skb,
1314 				 struct flow_keys_basic *flow, void *data,
1315 				 __be16 proto, int nhoff, int hlen,
1316 				 unsigned int flags)
1317 {
1318 	memset(flow, 0, sizeof(*flow));
1319 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1320 				  data, proto, nhoff, hlen, flags);
1321 }
1322 
1323 void
1324 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1325 			     struct flow_dissector *flow_dissector,
1326 			     void *target_container);
1327 
1328 static inline __u32 skb_get_hash(struct sk_buff *skb)
1329 {
1330 	if (!skb->l4_hash && !skb->sw_hash)
1331 		__skb_get_hash(skb);
1332 
1333 	return skb->hash;
1334 }
1335 
1336 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1337 {
1338 	if (!skb->l4_hash && !skb->sw_hash) {
1339 		struct flow_keys keys;
1340 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1341 
1342 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1343 	}
1344 
1345 	return skb->hash;
1346 }
1347 
1348 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1349 
1350 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1351 {
1352 	return skb->hash;
1353 }
1354 
1355 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1356 {
1357 	to->hash = from->hash;
1358 	to->sw_hash = from->sw_hash;
1359 	to->l4_hash = from->l4_hash;
1360 };
1361 
1362 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1363 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1364 {
1365 	return skb->head + skb->end;
1366 }
1367 
1368 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1369 {
1370 	return skb->end;
1371 }
1372 #else
1373 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1374 {
1375 	return skb->end;
1376 }
1377 
1378 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1379 {
1380 	return skb->end - skb->head;
1381 }
1382 #endif
1383 
1384 /* Internal */
1385 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1386 
1387 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1388 {
1389 	return &skb_shinfo(skb)->hwtstamps;
1390 }
1391 
1392 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1393 {
1394 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1395 
1396 	return is_zcopy ? skb_uarg(skb) : NULL;
1397 }
1398 
1399 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1400 				 bool *have_ref)
1401 {
1402 	if (skb && uarg && !skb_zcopy(skb)) {
1403 		if (unlikely(have_ref && *have_ref))
1404 			*have_ref = false;
1405 		else
1406 			sock_zerocopy_get(uarg);
1407 		skb_shinfo(skb)->destructor_arg = uarg;
1408 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1409 	}
1410 }
1411 
1412 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1413 {
1414 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1415 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1416 }
1417 
1418 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1419 {
1420 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1421 }
1422 
1423 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1424 {
1425 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1426 }
1427 
1428 /* Release a reference on a zerocopy structure */
1429 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1430 {
1431 	struct ubuf_info *uarg = skb_zcopy(skb);
1432 
1433 	if (uarg) {
1434 		if (skb_zcopy_is_nouarg(skb)) {
1435 			/* no notification callback */
1436 		} else if (uarg->callback == sock_zerocopy_callback) {
1437 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1438 			sock_zerocopy_put(uarg);
1439 		} else {
1440 			uarg->callback(uarg, zerocopy);
1441 		}
1442 
1443 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1444 	}
1445 }
1446 
1447 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1448 static inline void skb_zcopy_abort(struct sk_buff *skb)
1449 {
1450 	struct ubuf_info *uarg = skb_zcopy(skb);
1451 
1452 	if (uarg) {
1453 		sock_zerocopy_put_abort(uarg, false);
1454 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1455 	}
1456 }
1457 
1458 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1459 {
1460 	skb->next = NULL;
1461 }
1462 
1463 static inline void skb_list_del_init(struct sk_buff *skb)
1464 {
1465 	__list_del_entry(&skb->list);
1466 	skb_mark_not_on_list(skb);
1467 }
1468 
1469 /**
1470  *	skb_queue_empty - check if a queue is empty
1471  *	@list: queue head
1472  *
1473  *	Returns true if the queue is empty, false otherwise.
1474  */
1475 static inline int skb_queue_empty(const struct sk_buff_head *list)
1476 {
1477 	return list->next == (const struct sk_buff *) list;
1478 }
1479 
1480 /**
1481  *	skb_queue_is_last - check if skb is the last entry in the queue
1482  *	@list: queue head
1483  *	@skb: buffer
1484  *
1485  *	Returns true if @skb is the last buffer on the list.
1486  */
1487 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1488 				     const struct sk_buff *skb)
1489 {
1490 	return skb->next == (const struct sk_buff *) list;
1491 }
1492 
1493 /**
1494  *	skb_queue_is_first - check if skb is the first entry in the queue
1495  *	@list: queue head
1496  *	@skb: buffer
1497  *
1498  *	Returns true if @skb is the first buffer on the list.
1499  */
1500 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1501 				      const struct sk_buff *skb)
1502 {
1503 	return skb->prev == (const struct sk_buff *) list;
1504 }
1505 
1506 /**
1507  *	skb_queue_next - return the next packet in the queue
1508  *	@list: queue head
1509  *	@skb: current buffer
1510  *
1511  *	Return the next packet in @list after @skb.  It is only valid to
1512  *	call this if skb_queue_is_last() evaluates to false.
1513  */
1514 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1515 					     const struct sk_buff *skb)
1516 {
1517 	/* This BUG_ON may seem severe, but if we just return then we
1518 	 * are going to dereference garbage.
1519 	 */
1520 	BUG_ON(skb_queue_is_last(list, skb));
1521 	return skb->next;
1522 }
1523 
1524 /**
1525  *	skb_queue_prev - return the prev packet in the queue
1526  *	@list: queue head
1527  *	@skb: current buffer
1528  *
1529  *	Return the prev packet in @list before @skb.  It is only valid to
1530  *	call this if skb_queue_is_first() evaluates to false.
1531  */
1532 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1533 					     const struct sk_buff *skb)
1534 {
1535 	/* This BUG_ON may seem severe, but if we just return then we
1536 	 * are going to dereference garbage.
1537 	 */
1538 	BUG_ON(skb_queue_is_first(list, skb));
1539 	return skb->prev;
1540 }
1541 
1542 /**
1543  *	skb_get - reference buffer
1544  *	@skb: buffer to reference
1545  *
1546  *	Makes another reference to a socket buffer and returns a pointer
1547  *	to the buffer.
1548  */
1549 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1550 {
1551 	refcount_inc(&skb->users);
1552 	return skb;
1553 }
1554 
1555 /*
1556  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1557  */
1558 
1559 /**
1560  *	skb_cloned - is the buffer a clone
1561  *	@skb: buffer to check
1562  *
1563  *	Returns true if the buffer was generated with skb_clone() and is
1564  *	one of multiple shared copies of the buffer. Cloned buffers are
1565  *	shared data so must not be written to under normal circumstances.
1566  */
1567 static inline int skb_cloned(const struct sk_buff *skb)
1568 {
1569 	return skb->cloned &&
1570 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1571 }
1572 
1573 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1574 {
1575 	might_sleep_if(gfpflags_allow_blocking(pri));
1576 
1577 	if (skb_cloned(skb))
1578 		return pskb_expand_head(skb, 0, 0, pri);
1579 
1580 	return 0;
1581 }
1582 
1583 /**
1584  *	skb_header_cloned - is the header a clone
1585  *	@skb: buffer to check
1586  *
1587  *	Returns true if modifying the header part of the buffer requires
1588  *	the data to be copied.
1589  */
1590 static inline int skb_header_cloned(const struct sk_buff *skb)
1591 {
1592 	int dataref;
1593 
1594 	if (!skb->cloned)
1595 		return 0;
1596 
1597 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1598 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1599 	return dataref != 1;
1600 }
1601 
1602 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1603 {
1604 	might_sleep_if(gfpflags_allow_blocking(pri));
1605 
1606 	if (skb_header_cloned(skb))
1607 		return pskb_expand_head(skb, 0, 0, pri);
1608 
1609 	return 0;
1610 }
1611 
1612 /**
1613  *	__skb_header_release - release reference to header
1614  *	@skb: buffer to operate on
1615  */
1616 static inline void __skb_header_release(struct sk_buff *skb)
1617 {
1618 	skb->nohdr = 1;
1619 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1620 }
1621 
1622 
1623 /**
1624  *	skb_shared - is the buffer shared
1625  *	@skb: buffer to check
1626  *
1627  *	Returns true if more than one person has a reference to this
1628  *	buffer.
1629  */
1630 static inline int skb_shared(const struct sk_buff *skb)
1631 {
1632 	return refcount_read(&skb->users) != 1;
1633 }
1634 
1635 /**
1636  *	skb_share_check - check if buffer is shared and if so clone it
1637  *	@skb: buffer to check
1638  *	@pri: priority for memory allocation
1639  *
1640  *	If the buffer is shared the buffer is cloned and the old copy
1641  *	drops a reference. A new clone with a single reference is returned.
1642  *	If the buffer is not shared the original buffer is returned. When
1643  *	being called from interrupt status or with spinlocks held pri must
1644  *	be GFP_ATOMIC.
1645  *
1646  *	NULL is returned on a memory allocation failure.
1647  */
1648 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1649 {
1650 	might_sleep_if(gfpflags_allow_blocking(pri));
1651 	if (skb_shared(skb)) {
1652 		struct sk_buff *nskb = skb_clone(skb, pri);
1653 
1654 		if (likely(nskb))
1655 			consume_skb(skb);
1656 		else
1657 			kfree_skb(skb);
1658 		skb = nskb;
1659 	}
1660 	return skb;
1661 }
1662 
1663 /*
1664  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1665  *	packets to handle cases where we have a local reader and forward
1666  *	and a couple of other messy ones. The normal one is tcpdumping
1667  *	a packet thats being forwarded.
1668  */
1669 
1670 /**
1671  *	skb_unshare - make a copy of a shared buffer
1672  *	@skb: buffer to check
1673  *	@pri: priority for memory allocation
1674  *
1675  *	If the socket buffer is a clone then this function creates a new
1676  *	copy of the data, drops a reference count on the old copy and returns
1677  *	the new copy with the reference count at 1. If the buffer is not a clone
1678  *	the original buffer is returned. When called with a spinlock held or
1679  *	from interrupt state @pri must be %GFP_ATOMIC
1680  *
1681  *	%NULL is returned on a memory allocation failure.
1682  */
1683 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1684 					  gfp_t pri)
1685 {
1686 	might_sleep_if(gfpflags_allow_blocking(pri));
1687 	if (skb_cloned(skb)) {
1688 		struct sk_buff *nskb = skb_copy(skb, pri);
1689 
1690 		/* Free our shared copy */
1691 		if (likely(nskb))
1692 			consume_skb(skb);
1693 		else
1694 			kfree_skb(skb);
1695 		skb = nskb;
1696 	}
1697 	return skb;
1698 }
1699 
1700 /**
1701  *	skb_peek - peek at the head of an &sk_buff_head
1702  *	@list_: list to peek at
1703  *
1704  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1705  *	be careful with this one. A peek leaves the buffer on the
1706  *	list and someone else may run off with it. You must hold
1707  *	the appropriate locks or have a private queue to do this.
1708  *
1709  *	Returns %NULL for an empty list or a pointer to the head element.
1710  *	The reference count is not incremented and the reference is therefore
1711  *	volatile. Use with caution.
1712  */
1713 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1714 {
1715 	struct sk_buff *skb = list_->next;
1716 
1717 	if (skb == (struct sk_buff *)list_)
1718 		skb = NULL;
1719 	return skb;
1720 }
1721 
1722 /**
1723  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1724  *	@list_: list to peek at
1725  *
1726  *	Like skb_peek(), but the caller knows that the list is not empty.
1727  */
1728 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1729 {
1730 	return list_->next;
1731 }
1732 
1733 /**
1734  *	skb_peek_next - peek skb following the given one from a queue
1735  *	@skb: skb to start from
1736  *	@list_: list to peek at
1737  *
1738  *	Returns %NULL when the end of the list is met or a pointer to the
1739  *	next element. The reference count is not incremented and the
1740  *	reference is therefore volatile. Use with caution.
1741  */
1742 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1743 		const struct sk_buff_head *list_)
1744 {
1745 	struct sk_buff *next = skb->next;
1746 
1747 	if (next == (struct sk_buff *)list_)
1748 		next = NULL;
1749 	return next;
1750 }
1751 
1752 /**
1753  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1754  *	@list_: list to peek at
1755  *
1756  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1757  *	be careful with this one. A peek leaves the buffer on the
1758  *	list and someone else may run off with it. You must hold
1759  *	the appropriate locks or have a private queue to do this.
1760  *
1761  *	Returns %NULL for an empty list or a pointer to the tail element.
1762  *	The reference count is not incremented and the reference is therefore
1763  *	volatile. Use with caution.
1764  */
1765 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1766 {
1767 	struct sk_buff *skb = list_->prev;
1768 
1769 	if (skb == (struct sk_buff *)list_)
1770 		skb = NULL;
1771 	return skb;
1772 
1773 }
1774 
1775 /**
1776  *	skb_queue_len	- get queue length
1777  *	@list_: list to measure
1778  *
1779  *	Return the length of an &sk_buff queue.
1780  */
1781 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1782 {
1783 	return list_->qlen;
1784 }
1785 
1786 /**
1787  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1788  *	@list: queue to initialize
1789  *
1790  *	This initializes only the list and queue length aspects of
1791  *	an sk_buff_head object.  This allows to initialize the list
1792  *	aspects of an sk_buff_head without reinitializing things like
1793  *	the spinlock.  It can also be used for on-stack sk_buff_head
1794  *	objects where the spinlock is known to not be used.
1795  */
1796 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1797 {
1798 	list->prev = list->next = (struct sk_buff *)list;
1799 	list->qlen = 0;
1800 }
1801 
1802 /*
1803  * This function creates a split out lock class for each invocation;
1804  * this is needed for now since a whole lot of users of the skb-queue
1805  * infrastructure in drivers have different locking usage (in hardirq)
1806  * than the networking core (in softirq only). In the long run either the
1807  * network layer or drivers should need annotation to consolidate the
1808  * main types of usage into 3 classes.
1809  */
1810 static inline void skb_queue_head_init(struct sk_buff_head *list)
1811 {
1812 	spin_lock_init(&list->lock);
1813 	__skb_queue_head_init(list);
1814 }
1815 
1816 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1817 		struct lock_class_key *class)
1818 {
1819 	skb_queue_head_init(list);
1820 	lockdep_set_class(&list->lock, class);
1821 }
1822 
1823 /*
1824  *	Insert an sk_buff on a list.
1825  *
1826  *	The "__skb_xxxx()" functions are the non-atomic ones that
1827  *	can only be called with interrupts disabled.
1828  */
1829 static inline void __skb_insert(struct sk_buff *newsk,
1830 				struct sk_buff *prev, struct sk_buff *next,
1831 				struct sk_buff_head *list)
1832 {
1833 	newsk->next = next;
1834 	newsk->prev = prev;
1835 	next->prev  = prev->next = newsk;
1836 	list->qlen++;
1837 }
1838 
1839 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1840 				      struct sk_buff *prev,
1841 				      struct sk_buff *next)
1842 {
1843 	struct sk_buff *first = list->next;
1844 	struct sk_buff *last = list->prev;
1845 
1846 	first->prev = prev;
1847 	prev->next = first;
1848 
1849 	last->next = next;
1850 	next->prev = last;
1851 }
1852 
1853 /**
1854  *	skb_queue_splice - join two skb lists, this is designed for stacks
1855  *	@list: the new list to add
1856  *	@head: the place to add it in the first list
1857  */
1858 static inline void skb_queue_splice(const struct sk_buff_head *list,
1859 				    struct sk_buff_head *head)
1860 {
1861 	if (!skb_queue_empty(list)) {
1862 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1863 		head->qlen += list->qlen;
1864 	}
1865 }
1866 
1867 /**
1868  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1869  *	@list: the new list to add
1870  *	@head: the place to add it in the first list
1871  *
1872  *	The list at @list is reinitialised
1873  */
1874 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1875 					 struct sk_buff_head *head)
1876 {
1877 	if (!skb_queue_empty(list)) {
1878 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1879 		head->qlen += list->qlen;
1880 		__skb_queue_head_init(list);
1881 	}
1882 }
1883 
1884 /**
1885  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1886  *	@list: the new list to add
1887  *	@head: the place to add it in the first list
1888  */
1889 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1890 					 struct sk_buff_head *head)
1891 {
1892 	if (!skb_queue_empty(list)) {
1893 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1894 		head->qlen += list->qlen;
1895 	}
1896 }
1897 
1898 /**
1899  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1900  *	@list: the new list to add
1901  *	@head: the place to add it in the first list
1902  *
1903  *	Each of the lists is a queue.
1904  *	The list at @list is reinitialised
1905  */
1906 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1907 					      struct sk_buff_head *head)
1908 {
1909 	if (!skb_queue_empty(list)) {
1910 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1911 		head->qlen += list->qlen;
1912 		__skb_queue_head_init(list);
1913 	}
1914 }
1915 
1916 /**
1917  *	__skb_queue_after - queue a buffer at the list head
1918  *	@list: list to use
1919  *	@prev: place after this buffer
1920  *	@newsk: buffer to queue
1921  *
1922  *	Queue a buffer int the middle of a list. This function takes no locks
1923  *	and you must therefore hold required locks before calling it.
1924  *
1925  *	A buffer cannot be placed on two lists at the same time.
1926  */
1927 static inline void __skb_queue_after(struct sk_buff_head *list,
1928 				     struct sk_buff *prev,
1929 				     struct sk_buff *newsk)
1930 {
1931 	__skb_insert(newsk, prev, prev->next, list);
1932 }
1933 
1934 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1935 		struct sk_buff_head *list);
1936 
1937 static inline void __skb_queue_before(struct sk_buff_head *list,
1938 				      struct sk_buff *next,
1939 				      struct sk_buff *newsk)
1940 {
1941 	__skb_insert(newsk, next->prev, next, list);
1942 }
1943 
1944 /**
1945  *	__skb_queue_head - queue a buffer at the list head
1946  *	@list: list to use
1947  *	@newsk: buffer to queue
1948  *
1949  *	Queue a buffer at the start of a list. This function takes no locks
1950  *	and you must therefore hold required locks before calling it.
1951  *
1952  *	A buffer cannot be placed on two lists at the same time.
1953  */
1954 static inline void __skb_queue_head(struct sk_buff_head *list,
1955 				    struct sk_buff *newsk)
1956 {
1957 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1958 }
1959 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1960 
1961 /**
1962  *	__skb_queue_tail - queue a buffer at the list tail
1963  *	@list: list to use
1964  *	@newsk: buffer to queue
1965  *
1966  *	Queue a buffer at the end of a list. This function takes no locks
1967  *	and you must therefore hold required locks before calling it.
1968  *
1969  *	A buffer cannot be placed on two lists at the same time.
1970  */
1971 static inline void __skb_queue_tail(struct sk_buff_head *list,
1972 				   struct sk_buff *newsk)
1973 {
1974 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1975 }
1976 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1977 
1978 /*
1979  * remove sk_buff from list. _Must_ be called atomically, and with
1980  * the list known..
1981  */
1982 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1983 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1984 {
1985 	struct sk_buff *next, *prev;
1986 
1987 	list->qlen--;
1988 	next	   = skb->next;
1989 	prev	   = skb->prev;
1990 	skb->next  = skb->prev = NULL;
1991 	next->prev = prev;
1992 	prev->next = next;
1993 }
1994 
1995 /**
1996  *	__skb_dequeue - remove from the head of the queue
1997  *	@list: list to dequeue from
1998  *
1999  *	Remove the head of the list. This function does not take any locks
2000  *	so must be used with appropriate locks held only. The head item is
2001  *	returned or %NULL if the list is empty.
2002  */
2003 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2004 {
2005 	struct sk_buff *skb = skb_peek(list);
2006 	if (skb)
2007 		__skb_unlink(skb, list);
2008 	return skb;
2009 }
2010 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2011 
2012 /**
2013  *	__skb_dequeue_tail - remove from the tail of the queue
2014  *	@list: list to dequeue from
2015  *
2016  *	Remove the tail of the list. This function does not take any locks
2017  *	so must be used with appropriate locks held only. The tail item is
2018  *	returned or %NULL if the list is empty.
2019  */
2020 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2021 {
2022 	struct sk_buff *skb = skb_peek_tail(list);
2023 	if (skb)
2024 		__skb_unlink(skb, list);
2025 	return skb;
2026 }
2027 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2028 
2029 
2030 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2031 {
2032 	return skb->data_len;
2033 }
2034 
2035 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2036 {
2037 	return skb->len - skb->data_len;
2038 }
2039 
2040 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2041 {
2042 	unsigned int i, len = 0;
2043 
2044 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2045 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2046 	return len;
2047 }
2048 
2049 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2050 {
2051 	return skb_headlen(skb) + __skb_pagelen(skb);
2052 }
2053 
2054 /**
2055  * __skb_fill_page_desc - initialise a paged fragment in an skb
2056  * @skb: buffer containing fragment to be initialised
2057  * @i: paged fragment index to initialise
2058  * @page: the page to use for this fragment
2059  * @off: the offset to the data with @page
2060  * @size: the length of the data
2061  *
2062  * Initialises the @i'th fragment of @skb to point to &size bytes at
2063  * offset @off within @page.
2064  *
2065  * Does not take any additional reference on the fragment.
2066  */
2067 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2068 					struct page *page, int off, int size)
2069 {
2070 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2071 
2072 	/*
2073 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2074 	 * that not all callers have unique ownership of the page but rely
2075 	 * on page_is_pfmemalloc doing the right thing(tm).
2076 	 */
2077 	frag->page.p		  = page;
2078 	frag->page_offset	  = off;
2079 	skb_frag_size_set(frag, size);
2080 
2081 	page = compound_head(page);
2082 	if (page_is_pfmemalloc(page))
2083 		skb->pfmemalloc	= true;
2084 }
2085 
2086 /**
2087  * skb_fill_page_desc - initialise a paged fragment in an skb
2088  * @skb: buffer containing fragment to be initialised
2089  * @i: paged fragment index to initialise
2090  * @page: the page to use for this fragment
2091  * @off: the offset to the data with @page
2092  * @size: the length of the data
2093  *
2094  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2095  * @skb to point to @size bytes at offset @off within @page. In
2096  * addition updates @skb such that @i is the last fragment.
2097  *
2098  * Does not take any additional reference on the fragment.
2099  */
2100 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2101 				      struct page *page, int off, int size)
2102 {
2103 	__skb_fill_page_desc(skb, i, page, off, size);
2104 	skb_shinfo(skb)->nr_frags = i + 1;
2105 }
2106 
2107 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2108 		     int size, unsigned int truesize);
2109 
2110 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2111 			  unsigned int truesize);
2112 
2113 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2114 
2115 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2116 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2117 {
2118 	return skb->head + skb->tail;
2119 }
2120 
2121 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2122 {
2123 	skb->tail = skb->data - skb->head;
2124 }
2125 
2126 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2127 {
2128 	skb_reset_tail_pointer(skb);
2129 	skb->tail += offset;
2130 }
2131 
2132 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2133 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2134 {
2135 	return skb->tail;
2136 }
2137 
2138 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2139 {
2140 	skb->tail = skb->data;
2141 }
2142 
2143 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2144 {
2145 	skb->tail = skb->data + offset;
2146 }
2147 
2148 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2149 
2150 /*
2151  *	Add data to an sk_buff
2152  */
2153 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2154 void *skb_put(struct sk_buff *skb, unsigned int len);
2155 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2156 {
2157 	void *tmp = skb_tail_pointer(skb);
2158 	SKB_LINEAR_ASSERT(skb);
2159 	skb->tail += len;
2160 	skb->len  += len;
2161 	return tmp;
2162 }
2163 
2164 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2165 {
2166 	void *tmp = __skb_put(skb, len);
2167 
2168 	memset(tmp, 0, len);
2169 	return tmp;
2170 }
2171 
2172 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2173 				   unsigned int len)
2174 {
2175 	void *tmp = __skb_put(skb, len);
2176 
2177 	memcpy(tmp, data, len);
2178 	return tmp;
2179 }
2180 
2181 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2182 {
2183 	*(u8 *)__skb_put(skb, 1) = val;
2184 }
2185 
2186 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2187 {
2188 	void *tmp = skb_put(skb, len);
2189 
2190 	memset(tmp, 0, len);
2191 
2192 	return tmp;
2193 }
2194 
2195 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2196 				 unsigned int len)
2197 {
2198 	void *tmp = skb_put(skb, len);
2199 
2200 	memcpy(tmp, data, len);
2201 
2202 	return tmp;
2203 }
2204 
2205 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2206 {
2207 	*(u8 *)skb_put(skb, 1) = val;
2208 }
2209 
2210 void *skb_push(struct sk_buff *skb, unsigned int len);
2211 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2212 {
2213 	skb->data -= len;
2214 	skb->len  += len;
2215 	return skb->data;
2216 }
2217 
2218 void *skb_pull(struct sk_buff *skb, unsigned int len);
2219 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2220 {
2221 	skb->len -= len;
2222 	BUG_ON(skb->len < skb->data_len);
2223 	return skb->data += len;
2224 }
2225 
2226 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2227 {
2228 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2229 }
2230 
2231 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2232 
2233 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2234 {
2235 	if (len > skb_headlen(skb) &&
2236 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2237 		return NULL;
2238 	skb->len -= len;
2239 	return skb->data += len;
2240 }
2241 
2242 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2243 {
2244 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2245 }
2246 
2247 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2248 {
2249 	if (likely(len <= skb_headlen(skb)))
2250 		return 1;
2251 	if (unlikely(len > skb->len))
2252 		return 0;
2253 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2254 }
2255 
2256 void skb_condense(struct sk_buff *skb);
2257 
2258 /**
2259  *	skb_headroom - bytes at buffer head
2260  *	@skb: buffer to check
2261  *
2262  *	Return the number of bytes of free space at the head of an &sk_buff.
2263  */
2264 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2265 {
2266 	return skb->data - skb->head;
2267 }
2268 
2269 /**
2270  *	skb_tailroom - bytes at buffer end
2271  *	@skb: buffer to check
2272  *
2273  *	Return the number of bytes of free space at the tail of an sk_buff
2274  */
2275 static inline int skb_tailroom(const struct sk_buff *skb)
2276 {
2277 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2278 }
2279 
2280 /**
2281  *	skb_availroom - bytes at buffer end
2282  *	@skb: buffer to check
2283  *
2284  *	Return the number of bytes of free space at the tail of an sk_buff
2285  *	allocated by sk_stream_alloc()
2286  */
2287 static inline int skb_availroom(const struct sk_buff *skb)
2288 {
2289 	if (skb_is_nonlinear(skb))
2290 		return 0;
2291 
2292 	return skb->end - skb->tail - skb->reserved_tailroom;
2293 }
2294 
2295 /**
2296  *	skb_reserve - adjust headroom
2297  *	@skb: buffer to alter
2298  *	@len: bytes to move
2299  *
2300  *	Increase the headroom of an empty &sk_buff by reducing the tail
2301  *	room. This is only allowed for an empty buffer.
2302  */
2303 static inline void skb_reserve(struct sk_buff *skb, int len)
2304 {
2305 	skb->data += len;
2306 	skb->tail += len;
2307 }
2308 
2309 /**
2310  *	skb_tailroom_reserve - adjust reserved_tailroom
2311  *	@skb: buffer to alter
2312  *	@mtu: maximum amount of headlen permitted
2313  *	@needed_tailroom: minimum amount of reserved_tailroom
2314  *
2315  *	Set reserved_tailroom so that headlen can be as large as possible but
2316  *	not larger than mtu and tailroom cannot be smaller than
2317  *	needed_tailroom.
2318  *	The required headroom should already have been reserved before using
2319  *	this function.
2320  */
2321 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2322 					unsigned int needed_tailroom)
2323 {
2324 	SKB_LINEAR_ASSERT(skb);
2325 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2326 		/* use at most mtu */
2327 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2328 	else
2329 		/* use up to all available space */
2330 		skb->reserved_tailroom = needed_tailroom;
2331 }
2332 
2333 #define ENCAP_TYPE_ETHER	0
2334 #define ENCAP_TYPE_IPPROTO	1
2335 
2336 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2337 					  __be16 protocol)
2338 {
2339 	skb->inner_protocol = protocol;
2340 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2341 }
2342 
2343 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2344 					 __u8 ipproto)
2345 {
2346 	skb->inner_ipproto = ipproto;
2347 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2348 }
2349 
2350 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2351 {
2352 	skb->inner_mac_header = skb->mac_header;
2353 	skb->inner_network_header = skb->network_header;
2354 	skb->inner_transport_header = skb->transport_header;
2355 }
2356 
2357 static inline void skb_reset_mac_len(struct sk_buff *skb)
2358 {
2359 	skb->mac_len = skb->network_header - skb->mac_header;
2360 }
2361 
2362 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2363 							*skb)
2364 {
2365 	return skb->head + skb->inner_transport_header;
2366 }
2367 
2368 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2369 {
2370 	return skb_inner_transport_header(skb) - skb->data;
2371 }
2372 
2373 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2374 {
2375 	skb->inner_transport_header = skb->data - skb->head;
2376 }
2377 
2378 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2379 						   const int offset)
2380 {
2381 	skb_reset_inner_transport_header(skb);
2382 	skb->inner_transport_header += offset;
2383 }
2384 
2385 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2386 {
2387 	return skb->head + skb->inner_network_header;
2388 }
2389 
2390 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2391 {
2392 	skb->inner_network_header = skb->data - skb->head;
2393 }
2394 
2395 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2396 						const int offset)
2397 {
2398 	skb_reset_inner_network_header(skb);
2399 	skb->inner_network_header += offset;
2400 }
2401 
2402 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2403 {
2404 	return skb->head + skb->inner_mac_header;
2405 }
2406 
2407 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2408 {
2409 	skb->inner_mac_header = skb->data - skb->head;
2410 }
2411 
2412 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2413 					    const int offset)
2414 {
2415 	skb_reset_inner_mac_header(skb);
2416 	skb->inner_mac_header += offset;
2417 }
2418 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2419 {
2420 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2421 }
2422 
2423 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2424 {
2425 	return skb->head + skb->transport_header;
2426 }
2427 
2428 static inline void skb_reset_transport_header(struct sk_buff *skb)
2429 {
2430 	skb->transport_header = skb->data - skb->head;
2431 }
2432 
2433 static inline void skb_set_transport_header(struct sk_buff *skb,
2434 					    const int offset)
2435 {
2436 	skb_reset_transport_header(skb);
2437 	skb->transport_header += offset;
2438 }
2439 
2440 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2441 {
2442 	return skb->head + skb->network_header;
2443 }
2444 
2445 static inline void skb_reset_network_header(struct sk_buff *skb)
2446 {
2447 	skb->network_header = skb->data - skb->head;
2448 }
2449 
2450 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2451 {
2452 	skb_reset_network_header(skb);
2453 	skb->network_header += offset;
2454 }
2455 
2456 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2457 {
2458 	return skb->head + skb->mac_header;
2459 }
2460 
2461 static inline int skb_mac_offset(const struct sk_buff *skb)
2462 {
2463 	return skb_mac_header(skb) - skb->data;
2464 }
2465 
2466 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2467 {
2468 	return skb->network_header - skb->mac_header;
2469 }
2470 
2471 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2472 {
2473 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2474 }
2475 
2476 static inline void skb_reset_mac_header(struct sk_buff *skb)
2477 {
2478 	skb->mac_header = skb->data - skb->head;
2479 }
2480 
2481 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2482 {
2483 	skb_reset_mac_header(skb);
2484 	skb->mac_header += offset;
2485 }
2486 
2487 static inline void skb_pop_mac_header(struct sk_buff *skb)
2488 {
2489 	skb->mac_header = skb->network_header;
2490 }
2491 
2492 static inline void skb_probe_transport_header(struct sk_buff *skb)
2493 {
2494 	struct flow_keys_basic keys;
2495 
2496 	if (skb_transport_header_was_set(skb))
2497 		return;
2498 
2499 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2500 					     NULL, 0, 0, 0, 0))
2501 		skb_set_transport_header(skb, keys.control.thoff);
2502 }
2503 
2504 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2505 {
2506 	if (skb_mac_header_was_set(skb)) {
2507 		const unsigned char *old_mac = skb_mac_header(skb);
2508 
2509 		skb_set_mac_header(skb, -skb->mac_len);
2510 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2511 	}
2512 }
2513 
2514 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2515 {
2516 	return skb->csum_start - skb_headroom(skb);
2517 }
2518 
2519 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2520 {
2521 	return skb->head + skb->csum_start;
2522 }
2523 
2524 static inline int skb_transport_offset(const struct sk_buff *skb)
2525 {
2526 	return skb_transport_header(skb) - skb->data;
2527 }
2528 
2529 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2530 {
2531 	return skb->transport_header - skb->network_header;
2532 }
2533 
2534 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2535 {
2536 	return skb->inner_transport_header - skb->inner_network_header;
2537 }
2538 
2539 static inline int skb_network_offset(const struct sk_buff *skb)
2540 {
2541 	return skb_network_header(skb) - skb->data;
2542 }
2543 
2544 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2545 {
2546 	return skb_inner_network_header(skb) - skb->data;
2547 }
2548 
2549 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2550 {
2551 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2552 }
2553 
2554 /*
2555  * CPUs often take a performance hit when accessing unaligned memory
2556  * locations. The actual performance hit varies, it can be small if the
2557  * hardware handles it or large if we have to take an exception and fix it
2558  * in software.
2559  *
2560  * Since an ethernet header is 14 bytes network drivers often end up with
2561  * the IP header at an unaligned offset. The IP header can be aligned by
2562  * shifting the start of the packet by 2 bytes. Drivers should do this
2563  * with:
2564  *
2565  * skb_reserve(skb, NET_IP_ALIGN);
2566  *
2567  * The downside to this alignment of the IP header is that the DMA is now
2568  * unaligned. On some architectures the cost of an unaligned DMA is high
2569  * and this cost outweighs the gains made by aligning the IP header.
2570  *
2571  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2572  * to be overridden.
2573  */
2574 #ifndef NET_IP_ALIGN
2575 #define NET_IP_ALIGN	2
2576 #endif
2577 
2578 /*
2579  * The networking layer reserves some headroom in skb data (via
2580  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2581  * the header has to grow. In the default case, if the header has to grow
2582  * 32 bytes or less we avoid the reallocation.
2583  *
2584  * Unfortunately this headroom changes the DMA alignment of the resulting
2585  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2586  * on some architectures. An architecture can override this value,
2587  * perhaps setting it to a cacheline in size (since that will maintain
2588  * cacheline alignment of the DMA). It must be a power of 2.
2589  *
2590  * Various parts of the networking layer expect at least 32 bytes of
2591  * headroom, you should not reduce this.
2592  *
2593  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2594  * to reduce average number of cache lines per packet.
2595  * get_rps_cpus() for example only access one 64 bytes aligned block :
2596  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2597  */
2598 #ifndef NET_SKB_PAD
2599 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2600 #endif
2601 
2602 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2603 
2604 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2605 {
2606 	if (WARN_ON(skb_is_nonlinear(skb)))
2607 		return;
2608 	skb->len = len;
2609 	skb_set_tail_pointer(skb, len);
2610 }
2611 
2612 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2613 {
2614 	__skb_set_length(skb, len);
2615 }
2616 
2617 void skb_trim(struct sk_buff *skb, unsigned int len);
2618 
2619 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2620 {
2621 	if (skb->data_len)
2622 		return ___pskb_trim(skb, len);
2623 	__skb_trim(skb, len);
2624 	return 0;
2625 }
2626 
2627 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2628 {
2629 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2630 }
2631 
2632 /**
2633  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2634  *	@skb: buffer to alter
2635  *	@len: new length
2636  *
2637  *	This is identical to pskb_trim except that the caller knows that
2638  *	the skb is not cloned so we should never get an error due to out-
2639  *	of-memory.
2640  */
2641 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2642 {
2643 	int err = pskb_trim(skb, len);
2644 	BUG_ON(err);
2645 }
2646 
2647 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2648 {
2649 	unsigned int diff = len - skb->len;
2650 
2651 	if (skb_tailroom(skb) < diff) {
2652 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2653 					   GFP_ATOMIC);
2654 		if (ret)
2655 			return ret;
2656 	}
2657 	__skb_set_length(skb, len);
2658 	return 0;
2659 }
2660 
2661 /**
2662  *	skb_orphan - orphan a buffer
2663  *	@skb: buffer to orphan
2664  *
2665  *	If a buffer currently has an owner then we call the owner's
2666  *	destructor function and make the @skb unowned. The buffer continues
2667  *	to exist but is no longer charged to its former owner.
2668  */
2669 static inline void skb_orphan(struct sk_buff *skb)
2670 {
2671 	if (skb->destructor) {
2672 		skb->destructor(skb);
2673 		skb->destructor = NULL;
2674 		skb->sk		= NULL;
2675 	} else {
2676 		BUG_ON(skb->sk);
2677 	}
2678 }
2679 
2680 /**
2681  *	skb_orphan_frags - orphan the frags contained in a buffer
2682  *	@skb: buffer to orphan frags from
2683  *	@gfp_mask: allocation mask for replacement pages
2684  *
2685  *	For each frag in the SKB which needs a destructor (i.e. has an
2686  *	owner) create a copy of that frag and release the original
2687  *	page by calling the destructor.
2688  */
2689 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2690 {
2691 	if (likely(!skb_zcopy(skb)))
2692 		return 0;
2693 	if (!skb_zcopy_is_nouarg(skb) &&
2694 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2695 		return 0;
2696 	return skb_copy_ubufs(skb, gfp_mask);
2697 }
2698 
2699 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2700 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2701 {
2702 	if (likely(!skb_zcopy(skb)))
2703 		return 0;
2704 	return skb_copy_ubufs(skb, gfp_mask);
2705 }
2706 
2707 /**
2708  *	__skb_queue_purge - empty a list
2709  *	@list: list to empty
2710  *
2711  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2712  *	the list and one reference dropped. This function does not take the
2713  *	list lock and the caller must hold the relevant locks to use it.
2714  */
2715 static inline void __skb_queue_purge(struct sk_buff_head *list)
2716 {
2717 	struct sk_buff *skb;
2718 	while ((skb = __skb_dequeue(list)) != NULL)
2719 		kfree_skb(skb);
2720 }
2721 void skb_queue_purge(struct sk_buff_head *list);
2722 
2723 unsigned int skb_rbtree_purge(struct rb_root *root);
2724 
2725 void *netdev_alloc_frag(unsigned int fragsz);
2726 
2727 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2728 				   gfp_t gfp_mask);
2729 
2730 /**
2731  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2732  *	@dev: network device to receive on
2733  *	@length: length to allocate
2734  *
2735  *	Allocate a new &sk_buff and assign it a usage count of one. The
2736  *	buffer has unspecified headroom built in. Users should allocate
2737  *	the headroom they think they need without accounting for the
2738  *	built in space. The built in space is used for optimisations.
2739  *
2740  *	%NULL is returned if there is no free memory. Although this function
2741  *	allocates memory it can be called from an interrupt.
2742  */
2743 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2744 					       unsigned int length)
2745 {
2746 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2747 }
2748 
2749 /* legacy helper around __netdev_alloc_skb() */
2750 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2751 					      gfp_t gfp_mask)
2752 {
2753 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2754 }
2755 
2756 /* legacy helper around netdev_alloc_skb() */
2757 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2758 {
2759 	return netdev_alloc_skb(NULL, length);
2760 }
2761 
2762 
2763 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2764 		unsigned int length, gfp_t gfp)
2765 {
2766 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2767 
2768 	if (NET_IP_ALIGN && skb)
2769 		skb_reserve(skb, NET_IP_ALIGN);
2770 	return skb;
2771 }
2772 
2773 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2774 		unsigned int length)
2775 {
2776 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2777 }
2778 
2779 static inline void skb_free_frag(void *addr)
2780 {
2781 	page_frag_free(addr);
2782 }
2783 
2784 void *napi_alloc_frag(unsigned int fragsz);
2785 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2786 				 unsigned int length, gfp_t gfp_mask);
2787 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2788 					     unsigned int length)
2789 {
2790 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2791 }
2792 void napi_consume_skb(struct sk_buff *skb, int budget);
2793 
2794 void __kfree_skb_flush(void);
2795 void __kfree_skb_defer(struct sk_buff *skb);
2796 
2797 /**
2798  * __dev_alloc_pages - allocate page for network Rx
2799  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2800  * @order: size of the allocation
2801  *
2802  * Allocate a new page.
2803  *
2804  * %NULL is returned if there is no free memory.
2805 */
2806 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2807 					     unsigned int order)
2808 {
2809 	/* This piece of code contains several assumptions.
2810 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2811 	 * 2.  The expectation is the user wants a compound page.
2812 	 * 3.  If requesting a order 0 page it will not be compound
2813 	 *     due to the check to see if order has a value in prep_new_page
2814 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2815 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2816 	 */
2817 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2818 
2819 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2820 }
2821 
2822 static inline struct page *dev_alloc_pages(unsigned int order)
2823 {
2824 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2825 }
2826 
2827 /**
2828  * __dev_alloc_page - allocate a page for network Rx
2829  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2830  *
2831  * Allocate a new page.
2832  *
2833  * %NULL is returned if there is no free memory.
2834  */
2835 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2836 {
2837 	return __dev_alloc_pages(gfp_mask, 0);
2838 }
2839 
2840 static inline struct page *dev_alloc_page(void)
2841 {
2842 	return dev_alloc_pages(0);
2843 }
2844 
2845 /**
2846  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2847  *	@page: The page that was allocated from skb_alloc_page
2848  *	@skb: The skb that may need pfmemalloc set
2849  */
2850 static inline void skb_propagate_pfmemalloc(struct page *page,
2851 					     struct sk_buff *skb)
2852 {
2853 	if (page_is_pfmemalloc(page))
2854 		skb->pfmemalloc = true;
2855 }
2856 
2857 /**
2858  * skb_frag_page - retrieve the page referred to by a paged fragment
2859  * @frag: the paged fragment
2860  *
2861  * Returns the &struct page associated with @frag.
2862  */
2863 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2864 {
2865 	return frag->page.p;
2866 }
2867 
2868 /**
2869  * __skb_frag_ref - take an addition reference on a paged fragment.
2870  * @frag: the paged fragment
2871  *
2872  * Takes an additional reference on the paged fragment @frag.
2873  */
2874 static inline void __skb_frag_ref(skb_frag_t *frag)
2875 {
2876 	get_page(skb_frag_page(frag));
2877 }
2878 
2879 /**
2880  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2881  * @skb: the buffer
2882  * @f: the fragment offset.
2883  *
2884  * Takes an additional reference on the @f'th paged fragment of @skb.
2885  */
2886 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2887 {
2888 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2889 }
2890 
2891 /**
2892  * __skb_frag_unref - release a reference on a paged fragment.
2893  * @frag: the paged fragment
2894  *
2895  * Releases a reference on the paged fragment @frag.
2896  */
2897 static inline void __skb_frag_unref(skb_frag_t *frag)
2898 {
2899 	put_page(skb_frag_page(frag));
2900 }
2901 
2902 /**
2903  * skb_frag_unref - release a reference on a paged fragment of an skb.
2904  * @skb: the buffer
2905  * @f: the fragment offset
2906  *
2907  * Releases a reference on the @f'th paged fragment of @skb.
2908  */
2909 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2910 {
2911 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2912 }
2913 
2914 /**
2915  * skb_frag_address - gets the address of the data contained in a paged fragment
2916  * @frag: the paged fragment buffer
2917  *
2918  * Returns the address of the data within @frag. The page must already
2919  * be mapped.
2920  */
2921 static inline void *skb_frag_address(const skb_frag_t *frag)
2922 {
2923 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2924 }
2925 
2926 /**
2927  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2928  * @frag: the paged fragment buffer
2929  *
2930  * Returns the address of the data within @frag. Checks that the page
2931  * is mapped and returns %NULL otherwise.
2932  */
2933 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2934 {
2935 	void *ptr = page_address(skb_frag_page(frag));
2936 	if (unlikely(!ptr))
2937 		return NULL;
2938 
2939 	return ptr + frag->page_offset;
2940 }
2941 
2942 /**
2943  * __skb_frag_set_page - sets the page contained in a paged fragment
2944  * @frag: the paged fragment
2945  * @page: the page to set
2946  *
2947  * Sets the fragment @frag to contain @page.
2948  */
2949 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2950 {
2951 	frag->page.p = page;
2952 }
2953 
2954 /**
2955  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2956  * @skb: the buffer
2957  * @f: the fragment offset
2958  * @page: the page to set
2959  *
2960  * Sets the @f'th fragment of @skb to contain @page.
2961  */
2962 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2963 				     struct page *page)
2964 {
2965 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2966 }
2967 
2968 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2969 
2970 /**
2971  * skb_frag_dma_map - maps a paged fragment via the DMA API
2972  * @dev: the device to map the fragment to
2973  * @frag: the paged fragment to map
2974  * @offset: the offset within the fragment (starting at the
2975  *          fragment's own offset)
2976  * @size: the number of bytes to map
2977  * @dir: the direction of the mapping (``PCI_DMA_*``)
2978  *
2979  * Maps the page associated with @frag to @device.
2980  */
2981 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2982 					  const skb_frag_t *frag,
2983 					  size_t offset, size_t size,
2984 					  enum dma_data_direction dir)
2985 {
2986 	return dma_map_page(dev, skb_frag_page(frag),
2987 			    frag->page_offset + offset, size, dir);
2988 }
2989 
2990 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2991 					gfp_t gfp_mask)
2992 {
2993 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2994 }
2995 
2996 
2997 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2998 						  gfp_t gfp_mask)
2999 {
3000 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3001 }
3002 
3003 
3004 /**
3005  *	skb_clone_writable - is the header of a clone writable
3006  *	@skb: buffer to check
3007  *	@len: length up to which to write
3008  *
3009  *	Returns true if modifying the header part of the cloned buffer
3010  *	does not requires the data to be copied.
3011  */
3012 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3013 {
3014 	return !skb_header_cloned(skb) &&
3015 	       skb_headroom(skb) + len <= skb->hdr_len;
3016 }
3017 
3018 static inline int skb_try_make_writable(struct sk_buff *skb,
3019 					unsigned int write_len)
3020 {
3021 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3022 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3023 }
3024 
3025 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3026 			    int cloned)
3027 {
3028 	int delta = 0;
3029 
3030 	if (headroom > skb_headroom(skb))
3031 		delta = headroom - skb_headroom(skb);
3032 
3033 	if (delta || cloned)
3034 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3035 					GFP_ATOMIC);
3036 	return 0;
3037 }
3038 
3039 /**
3040  *	skb_cow - copy header of skb when it is required
3041  *	@skb: buffer to cow
3042  *	@headroom: needed headroom
3043  *
3044  *	If the skb passed lacks sufficient headroom or its data part
3045  *	is shared, data is reallocated. If reallocation fails, an error
3046  *	is returned and original skb is not changed.
3047  *
3048  *	The result is skb with writable area skb->head...skb->tail
3049  *	and at least @headroom of space at head.
3050  */
3051 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3052 {
3053 	return __skb_cow(skb, headroom, skb_cloned(skb));
3054 }
3055 
3056 /**
3057  *	skb_cow_head - skb_cow but only making the head writable
3058  *	@skb: buffer to cow
3059  *	@headroom: needed headroom
3060  *
3061  *	This function is identical to skb_cow except that we replace the
3062  *	skb_cloned check by skb_header_cloned.  It should be used when
3063  *	you only need to push on some header and do not need to modify
3064  *	the data.
3065  */
3066 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3067 {
3068 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3069 }
3070 
3071 /**
3072  *	skb_padto	- pad an skbuff up to a minimal size
3073  *	@skb: buffer to pad
3074  *	@len: minimal length
3075  *
3076  *	Pads up a buffer to ensure the trailing bytes exist and are
3077  *	blanked. If the buffer already contains sufficient data it
3078  *	is untouched. Otherwise it is extended. Returns zero on
3079  *	success. The skb is freed on error.
3080  */
3081 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3082 {
3083 	unsigned int size = skb->len;
3084 	if (likely(size >= len))
3085 		return 0;
3086 	return skb_pad(skb, len - size);
3087 }
3088 
3089 /**
3090  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3091  *	@skb: buffer to pad
3092  *	@len: minimal length
3093  *	@free_on_error: free buffer on error
3094  *
3095  *	Pads up a buffer to ensure the trailing bytes exist and are
3096  *	blanked. If the buffer already contains sufficient data it
3097  *	is untouched. Otherwise it is extended. Returns zero on
3098  *	success. The skb is freed on error if @free_on_error is true.
3099  */
3100 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3101 				  bool free_on_error)
3102 {
3103 	unsigned int size = skb->len;
3104 
3105 	if (unlikely(size < len)) {
3106 		len -= size;
3107 		if (__skb_pad(skb, len, free_on_error))
3108 			return -ENOMEM;
3109 		__skb_put(skb, len);
3110 	}
3111 	return 0;
3112 }
3113 
3114 /**
3115  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3116  *	@skb: buffer to pad
3117  *	@len: minimal length
3118  *
3119  *	Pads up a buffer to ensure the trailing bytes exist and are
3120  *	blanked. If the buffer already contains sufficient data it
3121  *	is untouched. Otherwise it is extended. Returns zero on
3122  *	success. The skb is freed on error.
3123  */
3124 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3125 {
3126 	return __skb_put_padto(skb, len, true);
3127 }
3128 
3129 static inline int skb_add_data(struct sk_buff *skb,
3130 			       struct iov_iter *from, int copy)
3131 {
3132 	const int off = skb->len;
3133 
3134 	if (skb->ip_summed == CHECKSUM_NONE) {
3135 		__wsum csum = 0;
3136 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3137 					         &csum, from)) {
3138 			skb->csum = csum_block_add(skb->csum, csum, off);
3139 			return 0;
3140 		}
3141 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3142 		return 0;
3143 
3144 	__skb_trim(skb, off);
3145 	return -EFAULT;
3146 }
3147 
3148 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3149 				    const struct page *page, int off)
3150 {
3151 	if (skb_zcopy(skb))
3152 		return false;
3153 	if (i) {
3154 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3155 
3156 		return page == skb_frag_page(frag) &&
3157 		       off == frag->page_offset + skb_frag_size(frag);
3158 	}
3159 	return false;
3160 }
3161 
3162 static inline int __skb_linearize(struct sk_buff *skb)
3163 {
3164 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3165 }
3166 
3167 /**
3168  *	skb_linearize - convert paged skb to linear one
3169  *	@skb: buffer to linarize
3170  *
3171  *	If there is no free memory -ENOMEM is returned, otherwise zero
3172  *	is returned and the old skb data released.
3173  */
3174 static inline int skb_linearize(struct sk_buff *skb)
3175 {
3176 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3177 }
3178 
3179 /**
3180  * skb_has_shared_frag - can any frag be overwritten
3181  * @skb: buffer to test
3182  *
3183  * Return true if the skb has at least one frag that might be modified
3184  * by an external entity (as in vmsplice()/sendfile())
3185  */
3186 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3187 {
3188 	return skb_is_nonlinear(skb) &&
3189 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3190 }
3191 
3192 /**
3193  *	skb_linearize_cow - make sure skb is linear and writable
3194  *	@skb: buffer to process
3195  *
3196  *	If there is no free memory -ENOMEM is returned, otherwise zero
3197  *	is returned and the old skb data released.
3198  */
3199 static inline int skb_linearize_cow(struct sk_buff *skb)
3200 {
3201 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3202 	       __skb_linearize(skb) : 0;
3203 }
3204 
3205 static __always_inline void
3206 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3207 		     unsigned int off)
3208 {
3209 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3210 		skb->csum = csum_block_sub(skb->csum,
3211 					   csum_partial(start, len, 0), off);
3212 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3213 		 skb_checksum_start_offset(skb) < 0)
3214 		skb->ip_summed = CHECKSUM_NONE;
3215 }
3216 
3217 /**
3218  *	skb_postpull_rcsum - update checksum for received skb after pull
3219  *	@skb: buffer to update
3220  *	@start: start of data before pull
3221  *	@len: length of data pulled
3222  *
3223  *	After doing a pull on a received packet, you need to call this to
3224  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3225  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3226  */
3227 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3228 				      const void *start, unsigned int len)
3229 {
3230 	__skb_postpull_rcsum(skb, start, len, 0);
3231 }
3232 
3233 static __always_inline void
3234 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3235 		     unsigned int off)
3236 {
3237 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3238 		skb->csum = csum_block_add(skb->csum,
3239 					   csum_partial(start, len, 0), off);
3240 }
3241 
3242 /**
3243  *	skb_postpush_rcsum - update checksum for received skb after push
3244  *	@skb: buffer to update
3245  *	@start: start of data after push
3246  *	@len: length of data pushed
3247  *
3248  *	After doing a push on a received packet, you need to call this to
3249  *	update the CHECKSUM_COMPLETE checksum.
3250  */
3251 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3252 				      const void *start, unsigned int len)
3253 {
3254 	__skb_postpush_rcsum(skb, start, len, 0);
3255 }
3256 
3257 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3258 
3259 /**
3260  *	skb_push_rcsum - push skb and update receive checksum
3261  *	@skb: buffer to update
3262  *	@len: length of data pulled
3263  *
3264  *	This function performs an skb_push on the packet and updates
3265  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3266  *	receive path processing instead of skb_push unless you know
3267  *	that the checksum difference is zero (e.g., a valid IP header)
3268  *	or you are setting ip_summed to CHECKSUM_NONE.
3269  */
3270 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3271 {
3272 	skb_push(skb, len);
3273 	skb_postpush_rcsum(skb, skb->data, len);
3274 	return skb->data;
3275 }
3276 
3277 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3278 /**
3279  *	pskb_trim_rcsum - trim received skb and update checksum
3280  *	@skb: buffer to trim
3281  *	@len: new length
3282  *
3283  *	This is exactly the same as pskb_trim except that it ensures the
3284  *	checksum of received packets are still valid after the operation.
3285  *	It can change skb pointers.
3286  */
3287 
3288 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3289 {
3290 	if (likely(len >= skb->len))
3291 		return 0;
3292 	return pskb_trim_rcsum_slow(skb, len);
3293 }
3294 
3295 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3296 {
3297 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3298 		skb->ip_summed = CHECKSUM_NONE;
3299 	__skb_trim(skb, len);
3300 	return 0;
3301 }
3302 
3303 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3304 {
3305 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3306 		skb->ip_summed = CHECKSUM_NONE;
3307 	return __skb_grow(skb, len);
3308 }
3309 
3310 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3311 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3312 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3313 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3314 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3315 
3316 #define skb_queue_walk(queue, skb) \
3317 		for (skb = (queue)->next;					\
3318 		     skb != (struct sk_buff *)(queue);				\
3319 		     skb = skb->next)
3320 
3321 #define skb_queue_walk_safe(queue, skb, tmp)					\
3322 		for (skb = (queue)->next, tmp = skb->next;			\
3323 		     skb != (struct sk_buff *)(queue);				\
3324 		     skb = tmp, tmp = skb->next)
3325 
3326 #define skb_queue_walk_from(queue, skb)						\
3327 		for (; skb != (struct sk_buff *)(queue);			\
3328 		     skb = skb->next)
3329 
3330 #define skb_rbtree_walk(skb, root)						\
3331 		for (skb = skb_rb_first(root); skb != NULL;			\
3332 		     skb = skb_rb_next(skb))
3333 
3334 #define skb_rbtree_walk_from(skb)						\
3335 		for (; skb != NULL;						\
3336 		     skb = skb_rb_next(skb))
3337 
3338 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3339 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3340 		     skb = tmp)
3341 
3342 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3343 		for (tmp = skb->next;						\
3344 		     skb != (struct sk_buff *)(queue);				\
3345 		     skb = tmp, tmp = skb->next)
3346 
3347 #define skb_queue_reverse_walk(queue, skb) \
3348 		for (skb = (queue)->prev;					\
3349 		     skb != (struct sk_buff *)(queue);				\
3350 		     skb = skb->prev)
3351 
3352 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3353 		for (skb = (queue)->prev, tmp = skb->prev;			\
3354 		     skb != (struct sk_buff *)(queue);				\
3355 		     skb = tmp, tmp = skb->prev)
3356 
3357 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3358 		for (tmp = skb->prev;						\
3359 		     skb != (struct sk_buff *)(queue);				\
3360 		     skb = tmp, tmp = skb->prev)
3361 
3362 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3363 {
3364 	return skb_shinfo(skb)->frag_list != NULL;
3365 }
3366 
3367 static inline void skb_frag_list_init(struct sk_buff *skb)
3368 {
3369 	skb_shinfo(skb)->frag_list = NULL;
3370 }
3371 
3372 #define skb_walk_frags(skb, iter)	\
3373 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3374 
3375 
3376 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3377 				const struct sk_buff *skb);
3378 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3379 					  struct sk_buff_head *queue,
3380 					  unsigned int flags,
3381 					  void (*destructor)(struct sock *sk,
3382 							   struct sk_buff *skb),
3383 					  int *off, int *err,
3384 					  struct sk_buff **last);
3385 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3386 					void (*destructor)(struct sock *sk,
3387 							   struct sk_buff *skb),
3388 					int *off, int *err,
3389 					struct sk_buff **last);
3390 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3391 				    void (*destructor)(struct sock *sk,
3392 						       struct sk_buff *skb),
3393 				    int *off, int *err);
3394 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3395 				  int *err);
3396 __poll_t datagram_poll(struct file *file, struct socket *sock,
3397 			   struct poll_table_struct *wait);
3398 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3399 			   struct iov_iter *to, int size);
3400 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3401 					struct msghdr *msg, int size)
3402 {
3403 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3404 }
3405 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3406 				   struct msghdr *msg);
3407 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3408 			   struct iov_iter *to, int len,
3409 			   struct ahash_request *hash);
3410 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3411 				 struct iov_iter *from, int len);
3412 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3413 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3414 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3415 static inline void skb_free_datagram_locked(struct sock *sk,
3416 					    struct sk_buff *skb)
3417 {
3418 	__skb_free_datagram_locked(sk, skb, 0);
3419 }
3420 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3421 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3422 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3423 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3424 			      int len, __wsum csum);
3425 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3426 		    struct pipe_inode_info *pipe, unsigned int len,
3427 		    unsigned int flags);
3428 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3429 			 int len);
3430 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3431 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3432 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3433 		 int len, int hlen);
3434 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3435 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3436 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3437 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3438 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3439 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3440 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3441 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3442 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3443 int skb_vlan_pop(struct sk_buff *skb);
3444 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3445 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3446 			     gfp_t gfp);
3447 
3448 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3449 {
3450 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3451 }
3452 
3453 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3454 {
3455 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3456 }
3457 
3458 struct skb_checksum_ops {
3459 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3460 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3461 };
3462 
3463 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3464 
3465 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3466 		      __wsum csum, const struct skb_checksum_ops *ops);
3467 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3468 		    __wsum csum);
3469 
3470 static inline void * __must_check
3471 __skb_header_pointer(const struct sk_buff *skb, int offset,
3472 		     int len, void *data, int hlen, void *buffer)
3473 {
3474 	if (hlen - offset >= len)
3475 		return data + offset;
3476 
3477 	if (!skb ||
3478 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3479 		return NULL;
3480 
3481 	return buffer;
3482 }
3483 
3484 static inline void * __must_check
3485 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3486 {
3487 	return __skb_header_pointer(skb, offset, len, skb->data,
3488 				    skb_headlen(skb), buffer);
3489 }
3490 
3491 /**
3492  *	skb_needs_linearize - check if we need to linearize a given skb
3493  *			      depending on the given device features.
3494  *	@skb: socket buffer to check
3495  *	@features: net device features
3496  *
3497  *	Returns true if either:
3498  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3499  *	2. skb is fragmented and the device does not support SG.
3500  */
3501 static inline bool skb_needs_linearize(struct sk_buff *skb,
3502 				       netdev_features_t features)
3503 {
3504 	return skb_is_nonlinear(skb) &&
3505 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3506 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3507 }
3508 
3509 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3510 					     void *to,
3511 					     const unsigned int len)
3512 {
3513 	memcpy(to, skb->data, len);
3514 }
3515 
3516 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3517 						    const int offset, void *to,
3518 						    const unsigned int len)
3519 {
3520 	memcpy(to, skb->data + offset, len);
3521 }
3522 
3523 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3524 					   const void *from,
3525 					   const unsigned int len)
3526 {
3527 	memcpy(skb->data, from, len);
3528 }
3529 
3530 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3531 						  const int offset,
3532 						  const void *from,
3533 						  const unsigned int len)
3534 {
3535 	memcpy(skb->data + offset, from, len);
3536 }
3537 
3538 void skb_init(void);
3539 
3540 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3541 {
3542 	return skb->tstamp;
3543 }
3544 
3545 /**
3546  *	skb_get_timestamp - get timestamp from a skb
3547  *	@skb: skb to get stamp from
3548  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3549  *
3550  *	Timestamps are stored in the skb as offsets to a base timestamp.
3551  *	This function converts the offset back to a struct timeval and stores
3552  *	it in stamp.
3553  */
3554 static inline void skb_get_timestamp(const struct sk_buff *skb,
3555 				     struct __kernel_old_timeval *stamp)
3556 {
3557 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3558 }
3559 
3560 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3561 					 struct __kernel_sock_timeval *stamp)
3562 {
3563 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3564 
3565 	stamp->tv_sec = ts.tv_sec;
3566 	stamp->tv_usec = ts.tv_nsec / 1000;
3567 }
3568 
3569 static inline void skb_get_timestampns(const struct sk_buff *skb,
3570 				       struct timespec *stamp)
3571 {
3572 	*stamp = ktime_to_timespec(skb->tstamp);
3573 }
3574 
3575 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3576 					   struct __kernel_timespec *stamp)
3577 {
3578 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3579 
3580 	stamp->tv_sec = ts.tv_sec;
3581 	stamp->tv_nsec = ts.tv_nsec;
3582 }
3583 
3584 static inline void __net_timestamp(struct sk_buff *skb)
3585 {
3586 	skb->tstamp = ktime_get_real();
3587 }
3588 
3589 static inline ktime_t net_timedelta(ktime_t t)
3590 {
3591 	return ktime_sub(ktime_get_real(), t);
3592 }
3593 
3594 static inline ktime_t net_invalid_timestamp(void)
3595 {
3596 	return 0;
3597 }
3598 
3599 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3600 {
3601 	return skb_shinfo(skb)->meta_len;
3602 }
3603 
3604 static inline void *skb_metadata_end(const struct sk_buff *skb)
3605 {
3606 	return skb_mac_header(skb);
3607 }
3608 
3609 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3610 					  const struct sk_buff *skb_b,
3611 					  u8 meta_len)
3612 {
3613 	const void *a = skb_metadata_end(skb_a);
3614 	const void *b = skb_metadata_end(skb_b);
3615 	/* Using more efficient varaiant than plain call to memcmp(). */
3616 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3617 	u64 diffs = 0;
3618 
3619 	switch (meta_len) {
3620 #define __it(x, op) (x -= sizeof(u##op))
3621 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3622 	case 32: diffs |= __it_diff(a, b, 64);
3623 		 /* fall through */
3624 	case 24: diffs |= __it_diff(a, b, 64);
3625 		 /* fall through */
3626 	case 16: diffs |= __it_diff(a, b, 64);
3627 		 /* fall through */
3628 	case  8: diffs |= __it_diff(a, b, 64);
3629 		break;
3630 	case 28: diffs |= __it_diff(a, b, 64);
3631 		 /* fall through */
3632 	case 20: diffs |= __it_diff(a, b, 64);
3633 		 /* fall through */
3634 	case 12: diffs |= __it_diff(a, b, 64);
3635 		 /* fall through */
3636 	case  4: diffs |= __it_diff(a, b, 32);
3637 		break;
3638 	}
3639 	return diffs;
3640 #else
3641 	return memcmp(a - meta_len, b - meta_len, meta_len);
3642 #endif
3643 }
3644 
3645 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3646 					const struct sk_buff *skb_b)
3647 {
3648 	u8 len_a = skb_metadata_len(skb_a);
3649 	u8 len_b = skb_metadata_len(skb_b);
3650 
3651 	if (!(len_a | len_b))
3652 		return false;
3653 
3654 	return len_a != len_b ?
3655 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3656 }
3657 
3658 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3659 {
3660 	skb_shinfo(skb)->meta_len = meta_len;
3661 }
3662 
3663 static inline void skb_metadata_clear(struct sk_buff *skb)
3664 {
3665 	skb_metadata_set(skb, 0);
3666 }
3667 
3668 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3669 
3670 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3671 
3672 void skb_clone_tx_timestamp(struct sk_buff *skb);
3673 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3674 
3675 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3676 
3677 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3678 {
3679 }
3680 
3681 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3682 {
3683 	return false;
3684 }
3685 
3686 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3687 
3688 /**
3689  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3690  *
3691  * PHY drivers may accept clones of transmitted packets for
3692  * timestamping via their phy_driver.txtstamp method. These drivers
3693  * must call this function to return the skb back to the stack with a
3694  * timestamp.
3695  *
3696  * @skb: clone of the the original outgoing packet
3697  * @hwtstamps: hardware time stamps
3698  *
3699  */
3700 void skb_complete_tx_timestamp(struct sk_buff *skb,
3701 			       struct skb_shared_hwtstamps *hwtstamps);
3702 
3703 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3704 		     struct skb_shared_hwtstamps *hwtstamps,
3705 		     struct sock *sk, int tstype);
3706 
3707 /**
3708  * skb_tstamp_tx - queue clone of skb with send time stamps
3709  * @orig_skb:	the original outgoing packet
3710  * @hwtstamps:	hardware time stamps, may be NULL if not available
3711  *
3712  * If the skb has a socket associated, then this function clones the
3713  * skb (thus sharing the actual data and optional structures), stores
3714  * the optional hardware time stamping information (if non NULL) or
3715  * generates a software time stamp (otherwise), then queues the clone
3716  * to the error queue of the socket.  Errors are silently ignored.
3717  */
3718 void skb_tstamp_tx(struct sk_buff *orig_skb,
3719 		   struct skb_shared_hwtstamps *hwtstamps);
3720 
3721 /**
3722  * skb_tx_timestamp() - Driver hook for transmit timestamping
3723  *
3724  * Ethernet MAC Drivers should call this function in their hard_xmit()
3725  * function immediately before giving the sk_buff to the MAC hardware.
3726  *
3727  * Specifically, one should make absolutely sure that this function is
3728  * called before TX completion of this packet can trigger.  Otherwise
3729  * the packet could potentially already be freed.
3730  *
3731  * @skb: A socket buffer.
3732  */
3733 static inline void skb_tx_timestamp(struct sk_buff *skb)
3734 {
3735 	skb_clone_tx_timestamp(skb);
3736 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3737 		skb_tstamp_tx(skb, NULL);
3738 }
3739 
3740 /**
3741  * skb_complete_wifi_ack - deliver skb with wifi status
3742  *
3743  * @skb: the original outgoing packet
3744  * @acked: ack status
3745  *
3746  */
3747 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3748 
3749 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3750 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3751 
3752 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3753 {
3754 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3755 		skb->csum_valid ||
3756 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3757 		 skb_checksum_start_offset(skb) >= 0));
3758 }
3759 
3760 /**
3761  *	skb_checksum_complete - Calculate checksum of an entire packet
3762  *	@skb: packet to process
3763  *
3764  *	This function calculates the checksum over the entire packet plus
3765  *	the value of skb->csum.  The latter can be used to supply the
3766  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3767  *	checksum.
3768  *
3769  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3770  *	this function can be used to verify that checksum on received
3771  *	packets.  In that case the function should return zero if the
3772  *	checksum is correct.  In particular, this function will return zero
3773  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3774  *	hardware has already verified the correctness of the checksum.
3775  */
3776 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3777 {
3778 	return skb_csum_unnecessary(skb) ?
3779 	       0 : __skb_checksum_complete(skb);
3780 }
3781 
3782 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3783 {
3784 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3785 		if (skb->csum_level == 0)
3786 			skb->ip_summed = CHECKSUM_NONE;
3787 		else
3788 			skb->csum_level--;
3789 	}
3790 }
3791 
3792 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3793 {
3794 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3795 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3796 			skb->csum_level++;
3797 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3798 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3799 		skb->csum_level = 0;
3800 	}
3801 }
3802 
3803 /* Check if we need to perform checksum complete validation.
3804  *
3805  * Returns true if checksum complete is needed, false otherwise
3806  * (either checksum is unnecessary or zero checksum is allowed).
3807  */
3808 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3809 						  bool zero_okay,
3810 						  __sum16 check)
3811 {
3812 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3813 		skb->csum_valid = 1;
3814 		__skb_decr_checksum_unnecessary(skb);
3815 		return false;
3816 	}
3817 
3818 	return true;
3819 }
3820 
3821 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3822  * in checksum_init.
3823  */
3824 #define CHECKSUM_BREAK 76
3825 
3826 /* Unset checksum-complete
3827  *
3828  * Unset checksum complete can be done when packet is being modified
3829  * (uncompressed for instance) and checksum-complete value is
3830  * invalidated.
3831  */
3832 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3833 {
3834 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3835 		skb->ip_summed = CHECKSUM_NONE;
3836 }
3837 
3838 /* Validate (init) checksum based on checksum complete.
3839  *
3840  * Return values:
3841  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3842  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3843  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3844  *   non-zero: value of invalid checksum
3845  *
3846  */
3847 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3848 						       bool complete,
3849 						       __wsum psum)
3850 {
3851 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3852 		if (!csum_fold(csum_add(psum, skb->csum))) {
3853 			skb->csum_valid = 1;
3854 			return 0;
3855 		}
3856 	}
3857 
3858 	skb->csum = psum;
3859 
3860 	if (complete || skb->len <= CHECKSUM_BREAK) {
3861 		__sum16 csum;
3862 
3863 		csum = __skb_checksum_complete(skb);
3864 		skb->csum_valid = !csum;
3865 		return csum;
3866 	}
3867 
3868 	return 0;
3869 }
3870 
3871 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3872 {
3873 	return 0;
3874 }
3875 
3876 /* Perform checksum validate (init). Note that this is a macro since we only
3877  * want to calculate the pseudo header which is an input function if necessary.
3878  * First we try to validate without any computation (checksum unnecessary) and
3879  * then calculate based on checksum complete calling the function to compute
3880  * pseudo header.
3881  *
3882  * Return values:
3883  *   0: checksum is validated or try to in skb_checksum_complete
3884  *   non-zero: value of invalid checksum
3885  */
3886 #define __skb_checksum_validate(skb, proto, complete,			\
3887 				zero_okay, check, compute_pseudo)	\
3888 ({									\
3889 	__sum16 __ret = 0;						\
3890 	skb->csum_valid = 0;						\
3891 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3892 		__ret = __skb_checksum_validate_complete(skb,		\
3893 				complete, compute_pseudo(skb, proto));	\
3894 	__ret;								\
3895 })
3896 
3897 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3898 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3899 
3900 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3901 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3902 
3903 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3904 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3905 
3906 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3907 					 compute_pseudo)		\
3908 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3909 
3910 #define skb_checksum_simple_validate(skb)				\
3911 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3912 
3913 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3914 {
3915 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3916 }
3917 
3918 static inline void __skb_checksum_convert(struct sk_buff *skb,
3919 					  __sum16 check, __wsum pseudo)
3920 {
3921 	skb->csum = ~pseudo;
3922 	skb->ip_summed = CHECKSUM_COMPLETE;
3923 }
3924 
3925 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3926 do {									\
3927 	if (__skb_checksum_convert_check(skb))				\
3928 		__skb_checksum_convert(skb, check,			\
3929 				       compute_pseudo(skb, proto));	\
3930 } while (0)
3931 
3932 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3933 					      u16 start, u16 offset)
3934 {
3935 	skb->ip_summed = CHECKSUM_PARTIAL;
3936 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3937 	skb->csum_offset = offset - start;
3938 }
3939 
3940 /* Update skbuf and packet to reflect the remote checksum offload operation.
3941  * When called, ptr indicates the starting point for skb->csum when
3942  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3943  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3944  */
3945 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3946 				       int start, int offset, bool nopartial)
3947 {
3948 	__wsum delta;
3949 
3950 	if (!nopartial) {
3951 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3952 		return;
3953 	}
3954 
3955 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3956 		__skb_checksum_complete(skb);
3957 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3958 	}
3959 
3960 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3961 
3962 	/* Adjust skb->csum since we changed the packet */
3963 	skb->csum = csum_add(skb->csum, delta);
3964 }
3965 
3966 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3967 {
3968 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3969 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3970 #else
3971 	return NULL;
3972 #endif
3973 }
3974 
3975 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3976 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3977 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3978 {
3979 	if (nfct && atomic_dec_and_test(&nfct->use))
3980 		nf_conntrack_destroy(nfct);
3981 }
3982 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3983 {
3984 	if (nfct)
3985 		atomic_inc(&nfct->use);
3986 }
3987 #endif
3988 
3989 #ifdef CONFIG_SKB_EXTENSIONS
3990 enum skb_ext_id {
3991 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3992 	SKB_EXT_BRIDGE_NF,
3993 #endif
3994 #ifdef CONFIG_XFRM
3995 	SKB_EXT_SEC_PATH,
3996 #endif
3997 	SKB_EXT_NUM, /* must be last */
3998 };
3999 
4000 /**
4001  *	struct skb_ext - sk_buff extensions
4002  *	@refcnt: 1 on allocation, deallocated on 0
4003  *	@offset: offset to add to @data to obtain extension address
4004  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4005  *	@data: start of extension data, variable sized
4006  *
4007  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4008  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4009  */
4010 struct skb_ext {
4011 	refcount_t refcnt;
4012 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4013 	u8 chunks;		/* same */
4014 	char data[0] __aligned(8);
4015 };
4016 
4017 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4018 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4019 void __skb_ext_put(struct skb_ext *ext);
4020 
4021 static inline void skb_ext_put(struct sk_buff *skb)
4022 {
4023 	if (skb->active_extensions)
4024 		__skb_ext_put(skb->extensions);
4025 }
4026 
4027 static inline void __skb_ext_copy(struct sk_buff *dst,
4028 				  const struct sk_buff *src)
4029 {
4030 	dst->active_extensions = src->active_extensions;
4031 
4032 	if (src->active_extensions) {
4033 		struct skb_ext *ext = src->extensions;
4034 
4035 		refcount_inc(&ext->refcnt);
4036 		dst->extensions = ext;
4037 	}
4038 }
4039 
4040 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4041 {
4042 	skb_ext_put(dst);
4043 	__skb_ext_copy(dst, src);
4044 }
4045 
4046 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4047 {
4048 	return !!ext->offset[i];
4049 }
4050 
4051 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4052 {
4053 	return skb->active_extensions & (1 << id);
4054 }
4055 
4056 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4057 {
4058 	if (skb_ext_exist(skb, id))
4059 		__skb_ext_del(skb, id);
4060 }
4061 
4062 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4063 {
4064 	if (skb_ext_exist(skb, id)) {
4065 		struct skb_ext *ext = skb->extensions;
4066 
4067 		return (void *)ext + (ext->offset[id] << 3);
4068 	}
4069 
4070 	return NULL;
4071 }
4072 #else
4073 static inline void skb_ext_put(struct sk_buff *skb) {}
4074 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4075 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4076 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4077 #endif /* CONFIG_SKB_EXTENSIONS */
4078 
4079 static inline void nf_reset(struct sk_buff *skb)
4080 {
4081 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4082 	nf_conntrack_put(skb_nfct(skb));
4083 	skb->_nfct = 0;
4084 #endif
4085 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4086 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4087 #endif
4088 }
4089 
4090 static inline void nf_reset_trace(struct sk_buff *skb)
4091 {
4092 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4093 	skb->nf_trace = 0;
4094 #endif
4095 }
4096 
4097 static inline void ipvs_reset(struct sk_buff *skb)
4098 {
4099 #if IS_ENABLED(CONFIG_IP_VS)
4100 	skb->ipvs_property = 0;
4101 #endif
4102 }
4103 
4104 /* Note: This doesn't put any conntrack info in dst. */
4105 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4106 			     bool copy)
4107 {
4108 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4109 	dst->_nfct = src->_nfct;
4110 	nf_conntrack_get(skb_nfct(src));
4111 #endif
4112 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4113 	if (copy)
4114 		dst->nf_trace = src->nf_trace;
4115 #endif
4116 }
4117 
4118 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4119 {
4120 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4121 	nf_conntrack_put(skb_nfct(dst));
4122 #endif
4123 	__nf_copy(dst, src, true);
4124 }
4125 
4126 #ifdef CONFIG_NETWORK_SECMARK
4127 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4128 {
4129 	to->secmark = from->secmark;
4130 }
4131 
4132 static inline void skb_init_secmark(struct sk_buff *skb)
4133 {
4134 	skb->secmark = 0;
4135 }
4136 #else
4137 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4138 { }
4139 
4140 static inline void skb_init_secmark(struct sk_buff *skb)
4141 { }
4142 #endif
4143 
4144 static inline int secpath_exists(const struct sk_buff *skb)
4145 {
4146 #ifdef CONFIG_XFRM
4147 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4148 #else
4149 	return 0;
4150 #endif
4151 }
4152 
4153 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4154 {
4155 	return !skb->destructor &&
4156 		!secpath_exists(skb) &&
4157 		!skb_nfct(skb) &&
4158 		!skb->_skb_refdst &&
4159 		!skb_has_frag_list(skb);
4160 }
4161 
4162 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4163 {
4164 	skb->queue_mapping = queue_mapping;
4165 }
4166 
4167 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4168 {
4169 	return skb->queue_mapping;
4170 }
4171 
4172 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4173 {
4174 	to->queue_mapping = from->queue_mapping;
4175 }
4176 
4177 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4178 {
4179 	skb->queue_mapping = rx_queue + 1;
4180 }
4181 
4182 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4183 {
4184 	return skb->queue_mapping - 1;
4185 }
4186 
4187 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4188 {
4189 	return skb->queue_mapping != 0;
4190 }
4191 
4192 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4193 {
4194 	skb->dst_pending_confirm = val;
4195 }
4196 
4197 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4198 {
4199 	return skb->dst_pending_confirm != 0;
4200 }
4201 
4202 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4203 {
4204 #ifdef CONFIG_XFRM
4205 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4206 #else
4207 	return NULL;
4208 #endif
4209 }
4210 
4211 /* Keeps track of mac header offset relative to skb->head.
4212  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4213  * For non-tunnel skb it points to skb_mac_header() and for
4214  * tunnel skb it points to outer mac header.
4215  * Keeps track of level of encapsulation of network headers.
4216  */
4217 struct skb_gso_cb {
4218 	union {
4219 		int	mac_offset;
4220 		int	data_offset;
4221 	};
4222 	int	encap_level;
4223 	__wsum	csum;
4224 	__u16	csum_start;
4225 };
4226 #define SKB_SGO_CB_OFFSET	32
4227 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4228 
4229 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4230 {
4231 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4232 		SKB_GSO_CB(inner_skb)->mac_offset;
4233 }
4234 
4235 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4236 {
4237 	int new_headroom, headroom;
4238 	int ret;
4239 
4240 	headroom = skb_headroom(skb);
4241 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4242 	if (ret)
4243 		return ret;
4244 
4245 	new_headroom = skb_headroom(skb);
4246 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4247 	return 0;
4248 }
4249 
4250 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4251 {
4252 	/* Do not update partial checksums if remote checksum is enabled. */
4253 	if (skb->remcsum_offload)
4254 		return;
4255 
4256 	SKB_GSO_CB(skb)->csum = res;
4257 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4258 }
4259 
4260 /* Compute the checksum for a gso segment. First compute the checksum value
4261  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4262  * then add in skb->csum (checksum from csum_start to end of packet).
4263  * skb->csum and csum_start are then updated to reflect the checksum of the
4264  * resultant packet starting from the transport header-- the resultant checksum
4265  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4266  * header.
4267  */
4268 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4269 {
4270 	unsigned char *csum_start = skb_transport_header(skb);
4271 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4272 	__wsum partial = SKB_GSO_CB(skb)->csum;
4273 
4274 	SKB_GSO_CB(skb)->csum = res;
4275 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4276 
4277 	return csum_fold(csum_partial(csum_start, plen, partial));
4278 }
4279 
4280 static inline bool skb_is_gso(const struct sk_buff *skb)
4281 {
4282 	return skb_shinfo(skb)->gso_size;
4283 }
4284 
4285 /* Note: Should be called only if skb_is_gso(skb) is true */
4286 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4287 {
4288 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4289 }
4290 
4291 /* Note: Should be called only if skb_is_gso(skb) is true */
4292 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4293 {
4294 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4295 }
4296 
4297 /* Note: Should be called only if skb_is_gso(skb) is true */
4298 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4299 {
4300 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4301 }
4302 
4303 static inline void skb_gso_reset(struct sk_buff *skb)
4304 {
4305 	skb_shinfo(skb)->gso_size = 0;
4306 	skb_shinfo(skb)->gso_segs = 0;
4307 	skb_shinfo(skb)->gso_type = 0;
4308 }
4309 
4310 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4311 					 u16 increment)
4312 {
4313 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4314 		return;
4315 	shinfo->gso_size += increment;
4316 }
4317 
4318 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4319 					 u16 decrement)
4320 {
4321 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4322 		return;
4323 	shinfo->gso_size -= decrement;
4324 }
4325 
4326 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4327 
4328 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4329 {
4330 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4331 	 * wanted then gso_type will be set. */
4332 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4333 
4334 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4335 	    unlikely(shinfo->gso_type == 0)) {
4336 		__skb_warn_lro_forwarding(skb);
4337 		return true;
4338 	}
4339 	return false;
4340 }
4341 
4342 static inline void skb_forward_csum(struct sk_buff *skb)
4343 {
4344 	/* Unfortunately we don't support this one.  Any brave souls? */
4345 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4346 		skb->ip_summed = CHECKSUM_NONE;
4347 }
4348 
4349 /**
4350  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4351  * @skb: skb to check
4352  *
4353  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4354  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4355  * use this helper, to document places where we make this assertion.
4356  */
4357 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4358 {
4359 #ifdef DEBUG
4360 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4361 #endif
4362 }
4363 
4364 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4365 
4366 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4367 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4368 				     unsigned int transport_len,
4369 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4370 
4371 /**
4372  * skb_head_is_locked - Determine if the skb->head is locked down
4373  * @skb: skb to check
4374  *
4375  * The head on skbs build around a head frag can be removed if they are
4376  * not cloned.  This function returns true if the skb head is locked down
4377  * due to either being allocated via kmalloc, or by being a clone with
4378  * multiple references to the head.
4379  */
4380 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4381 {
4382 	return !skb->head_frag || skb_cloned(skb);
4383 }
4384 
4385 /* Local Checksum Offload.
4386  * Compute outer checksum based on the assumption that the
4387  * inner checksum will be offloaded later.
4388  * See Documentation/networking/checksum-offloads.rst for
4389  * explanation of how this works.
4390  * Fill in outer checksum adjustment (e.g. with sum of outer
4391  * pseudo-header) before calling.
4392  * Also ensure that inner checksum is in linear data area.
4393  */
4394 static inline __wsum lco_csum(struct sk_buff *skb)
4395 {
4396 	unsigned char *csum_start = skb_checksum_start(skb);
4397 	unsigned char *l4_hdr = skb_transport_header(skb);
4398 	__wsum partial;
4399 
4400 	/* Start with complement of inner checksum adjustment */
4401 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4402 						    skb->csum_offset));
4403 
4404 	/* Add in checksum of our headers (incl. outer checksum
4405 	 * adjustment filled in by caller) and return result.
4406 	 */
4407 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4408 }
4409 
4410 #endif	/* __KERNEL__ */
4411 #endif	/* _LINUX_SKBUFF_H */
4412