xref: /linux-6.15/include/linux/skbuff.h (revision 5148fa52)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t		use;
121 	unsigned int		mask;
122 	struct net_device	*physindev;
123 	struct net_device	*physoutdev;
124 	unsigned long		data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* ensure the originating sk reference is available on driver level */
229 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
230 
231 	/* device driver supports TX zero-copy buffers */
232 	SKBTX_DEV_ZEROCOPY = 1 << 4,
233 
234 	/* generate wifi status information (where possible) */
235 	SKBTX_WIFI_STATUS = 1 << 5,
236 };
237 
238 /*
239  * The callback notifies userspace to release buffers when skb DMA is done in
240  * lower device, the skb last reference should be 0 when calling this.
241  * The ctx field is used to track device context.
242  * The desc field is used to track userspace buffer index.
243  */
244 struct ubuf_info {
245 	void (*callback)(struct ubuf_info *);
246 	void *ctx;
247 	unsigned long desc;
248 };
249 
250 /* This data is invariant across clones and lives at
251  * the end of the header data, ie. at skb->end.
252  */
253 struct skb_shared_info {
254 	unsigned char	nr_frags;
255 	__u8		tx_flags;
256 	unsigned short	gso_size;
257 	/* Warning: this field is not always filled in (UFO)! */
258 	unsigned short	gso_segs;
259 	unsigned short  gso_type;
260 	struct sk_buff	*frag_list;
261 	struct skb_shared_hwtstamps hwtstamps;
262 	__be32          ip6_frag_id;
263 
264 	/*
265 	 * Warning : all fields before dataref are cleared in __alloc_skb()
266 	 */
267 	atomic_t	dataref;
268 
269 	/* Intermediate layers must ensure that destructor_arg
270 	 * remains valid until skb destructor */
271 	void *		destructor_arg;
272 
273 	/* must be last field, see pskb_expand_head() */
274 	skb_frag_t	frags[MAX_SKB_FRAGS];
275 };
276 
277 /* We divide dataref into two halves.  The higher 16 bits hold references
278  * to the payload part of skb->data.  The lower 16 bits hold references to
279  * the entire skb->data.  A clone of a headerless skb holds the length of
280  * the header in skb->hdr_len.
281  *
282  * All users must obey the rule that the skb->data reference count must be
283  * greater than or equal to the payload reference count.
284  *
285  * Holding a reference to the payload part means that the user does not
286  * care about modifications to the header part of skb->data.
287  */
288 #define SKB_DATAREF_SHIFT 16
289 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
290 
291 
292 enum {
293 	SKB_FCLONE_UNAVAILABLE,
294 	SKB_FCLONE_ORIG,
295 	SKB_FCLONE_CLONE,
296 };
297 
298 enum {
299 	SKB_GSO_TCPV4 = 1 << 0,
300 	SKB_GSO_UDP = 1 << 1,
301 
302 	/* This indicates the skb is from an untrusted source. */
303 	SKB_GSO_DODGY = 1 << 2,
304 
305 	/* This indicates the tcp segment has CWR set. */
306 	SKB_GSO_TCP_ECN = 1 << 3,
307 
308 	SKB_GSO_TCPV6 = 1 << 4,
309 
310 	SKB_GSO_FCOE = 1 << 5,
311 };
312 
313 #if BITS_PER_LONG > 32
314 #define NET_SKBUFF_DATA_USES_OFFSET 1
315 #endif
316 
317 #ifdef NET_SKBUFF_DATA_USES_OFFSET
318 typedef unsigned int sk_buff_data_t;
319 #else
320 typedef unsigned char *sk_buff_data_t;
321 #endif
322 
323 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
324     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
325 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
326 #endif
327 
328 /**
329  *	struct sk_buff - socket buffer
330  *	@next: Next buffer in list
331  *	@prev: Previous buffer in list
332  *	@tstamp: Time we arrived
333  *	@sk: Socket we are owned by
334  *	@dev: Device we arrived on/are leaving by
335  *	@cb: Control buffer. Free for use by every layer. Put private vars here
336  *	@_skb_refdst: destination entry (with norefcount bit)
337  *	@sp: the security path, used for xfrm
338  *	@len: Length of actual data
339  *	@data_len: Data length
340  *	@mac_len: Length of link layer header
341  *	@hdr_len: writable header length of cloned skb
342  *	@csum: Checksum (must include start/offset pair)
343  *	@csum_start: Offset from skb->head where checksumming should start
344  *	@csum_offset: Offset from csum_start where checksum should be stored
345  *	@priority: Packet queueing priority
346  *	@local_df: allow local fragmentation
347  *	@cloned: Head may be cloned (check refcnt to be sure)
348  *	@ip_summed: Driver fed us an IP checksum
349  *	@nohdr: Payload reference only, must not modify header
350  *	@nfctinfo: Relationship of this skb to the connection
351  *	@pkt_type: Packet class
352  *	@fclone: skbuff clone status
353  *	@ipvs_property: skbuff is owned by ipvs
354  *	@peeked: this packet has been seen already, so stats have been
355  *		done for it, don't do them again
356  *	@nf_trace: netfilter packet trace flag
357  *	@protocol: Packet protocol from driver
358  *	@destructor: Destruct function
359  *	@nfct: Associated connection, if any
360  *	@nfct_reasm: netfilter conntrack re-assembly pointer
361  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
362  *	@skb_iif: ifindex of device we arrived on
363  *	@tc_index: Traffic control index
364  *	@tc_verd: traffic control verdict
365  *	@rxhash: the packet hash computed on receive
366  *	@queue_mapping: Queue mapping for multiqueue devices
367  *	@ndisc_nodetype: router type (from link layer)
368  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
369  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
370  *		ports.
371  *	@wifi_acked_valid: wifi_acked was set
372  *	@wifi_acked: whether frame was acked on wifi or not
373  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
374  *	@dma_cookie: a cookie to one of several possible DMA operations
375  *		done by skb DMA functions
376  *	@secmark: security marking
377  *	@mark: Generic packet mark
378  *	@dropcount: total number of sk_receive_queue overflows
379  *	@vlan_tci: vlan tag control information
380  *	@transport_header: Transport layer header
381  *	@network_header: Network layer header
382  *	@mac_header: Link layer header
383  *	@tail: Tail pointer
384  *	@end: End pointer
385  *	@head: Head of buffer
386  *	@data: Data head pointer
387  *	@truesize: Buffer size
388  *	@users: User count - see {datagram,tcp}.c
389  */
390 
391 struct sk_buff {
392 	/* These two members must be first. */
393 	struct sk_buff		*next;
394 	struct sk_buff		*prev;
395 
396 	ktime_t			tstamp;
397 
398 	struct sock		*sk;
399 	struct net_device	*dev;
400 
401 	/*
402 	 * This is the control buffer. It is free to use for every
403 	 * layer. Please put your private variables there. If you
404 	 * want to keep them across layers you have to do a skb_clone()
405 	 * first. This is owned by whoever has the skb queued ATM.
406 	 */
407 	char			cb[48] __aligned(8);
408 
409 	unsigned long		_skb_refdst;
410 #ifdef CONFIG_XFRM
411 	struct	sec_path	*sp;
412 #endif
413 	unsigned int		len,
414 				data_len;
415 	__u16			mac_len,
416 				hdr_len;
417 	union {
418 		__wsum		csum;
419 		struct {
420 			__u16	csum_start;
421 			__u16	csum_offset;
422 		};
423 	};
424 	__u32			priority;
425 	kmemcheck_bitfield_begin(flags1);
426 	__u8			local_df:1,
427 				cloned:1,
428 				ip_summed:2,
429 				nohdr:1,
430 				nfctinfo:3;
431 	__u8			pkt_type:3,
432 				fclone:2,
433 				ipvs_property:1,
434 				peeked:1,
435 				nf_trace:1;
436 	kmemcheck_bitfield_end(flags1);
437 	__be16			protocol;
438 
439 	void			(*destructor)(struct sk_buff *skb);
440 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
441 	struct nf_conntrack	*nfct;
442 #endif
443 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
444 	struct sk_buff		*nfct_reasm;
445 #endif
446 #ifdef CONFIG_BRIDGE_NETFILTER
447 	struct nf_bridge_info	*nf_bridge;
448 #endif
449 
450 	int			skb_iif;
451 
452 	__u32			rxhash;
453 
454 	__u16			vlan_tci;
455 
456 #ifdef CONFIG_NET_SCHED
457 	__u16			tc_index;	/* traffic control index */
458 #ifdef CONFIG_NET_CLS_ACT
459 	__u16			tc_verd;	/* traffic control verdict */
460 #endif
461 #endif
462 
463 	__u16			queue_mapping;
464 	kmemcheck_bitfield_begin(flags2);
465 #ifdef CONFIG_IPV6_NDISC_NODETYPE
466 	__u8			ndisc_nodetype:2;
467 #endif
468 	__u8			ooo_okay:1;
469 	__u8			l4_rxhash:1;
470 	__u8			wifi_acked_valid:1;
471 	__u8			wifi_acked:1;
472 	__u8			no_fcs:1;
473 	__u8			head_frag:1;
474 	/* 8/10 bit hole (depending on ndisc_nodetype presence) */
475 	kmemcheck_bitfield_end(flags2);
476 
477 #ifdef CONFIG_NET_DMA
478 	dma_cookie_t		dma_cookie;
479 #endif
480 #ifdef CONFIG_NETWORK_SECMARK
481 	__u32			secmark;
482 #endif
483 	union {
484 		__u32		mark;
485 		__u32		dropcount;
486 		__u32		avail_size;
487 	};
488 
489 	sk_buff_data_t		transport_header;
490 	sk_buff_data_t		network_header;
491 	sk_buff_data_t		mac_header;
492 	/* These elements must be at the end, see alloc_skb() for details.  */
493 	sk_buff_data_t		tail;
494 	sk_buff_data_t		end;
495 	unsigned char		*head,
496 				*data;
497 	unsigned int		truesize;
498 	atomic_t		users;
499 };
500 
501 #ifdef __KERNEL__
502 /*
503  *	Handling routines are only of interest to the kernel
504  */
505 #include <linux/slab.h>
506 
507 
508 /*
509  * skb might have a dst pointer attached, refcounted or not.
510  * _skb_refdst low order bit is set if refcount was _not_ taken
511  */
512 #define SKB_DST_NOREF	1UL
513 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
514 
515 /**
516  * skb_dst - returns skb dst_entry
517  * @skb: buffer
518  *
519  * Returns skb dst_entry, regardless of reference taken or not.
520  */
521 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
522 {
523 	/* If refdst was not refcounted, check we still are in a
524 	 * rcu_read_lock section
525 	 */
526 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
527 		!rcu_read_lock_held() &&
528 		!rcu_read_lock_bh_held());
529 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
530 }
531 
532 /**
533  * skb_dst_set - sets skb dst
534  * @skb: buffer
535  * @dst: dst entry
536  *
537  * Sets skb dst, assuming a reference was taken on dst and should
538  * be released by skb_dst_drop()
539  */
540 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
541 {
542 	skb->_skb_refdst = (unsigned long)dst;
543 }
544 
545 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
546 
547 /**
548  * skb_dst_is_noref - Test if skb dst isn't refcounted
549  * @skb: buffer
550  */
551 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
552 {
553 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
554 }
555 
556 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
557 {
558 	return (struct rtable *)skb_dst(skb);
559 }
560 
561 extern void kfree_skb(struct sk_buff *skb);
562 extern void consume_skb(struct sk_buff *skb);
563 extern void	       __kfree_skb(struct sk_buff *skb);
564 extern struct kmem_cache *skbuff_head_cache;
565 
566 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
567 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
568 			     bool *fragstolen, int *delta_truesize);
569 
570 extern struct sk_buff *__alloc_skb(unsigned int size,
571 				   gfp_t priority, int fclone, int node);
572 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
573 static inline struct sk_buff *alloc_skb(unsigned int size,
574 					gfp_t priority)
575 {
576 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
577 }
578 
579 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
580 					       gfp_t priority)
581 {
582 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
583 }
584 
585 extern void skb_recycle(struct sk_buff *skb);
586 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
587 
588 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
589 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
590 extern struct sk_buff *skb_clone(struct sk_buff *skb,
591 				 gfp_t priority);
592 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
593 				gfp_t priority);
594 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
595 				 int headroom, gfp_t gfp_mask);
596 
597 extern int	       pskb_expand_head(struct sk_buff *skb,
598 					int nhead, int ntail,
599 					gfp_t gfp_mask);
600 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
601 					    unsigned int headroom);
602 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
603 				       int newheadroom, int newtailroom,
604 				       gfp_t priority);
605 extern int	       skb_to_sgvec(struct sk_buff *skb,
606 				    struct scatterlist *sg, int offset,
607 				    int len);
608 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
609 				    struct sk_buff **trailer);
610 extern int	       skb_pad(struct sk_buff *skb, int pad);
611 #define dev_kfree_skb(a)	consume_skb(a)
612 
613 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
614 			int getfrag(void *from, char *to, int offset,
615 			int len,int odd, struct sk_buff *skb),
616 			void *from, int length);
617 
618 struct skb_seq_state {
619 	__u32		lower_offset;
620 	__u32		upper_offset;
621 	__u32		frag_idx;
622 	__u32		stepped_offset;
623 	struct sk_buff	*root_skb;
624 	struct sk_buff	*cur_skb;
625 	__u8		*frag_data;
626 };
627 
628 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
629 					   unsigned int from, unsigned int to,
630 					   struct skb_seq_state *st);
631 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
632 				   struct skb_seq_state *st);
633 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
634 
635 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
636 				    unsigned int to, struct ts_config *config,
637 				    struct ts_state *state);
638 
639 extern void __skb_get_rxhash(struct sk_buff *skb);
640 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
641 {
642 	if (!skb->rxhash)
643 		__skb_get_rxhash(skb);
644 
645 	return skb->rxhash;
646 }
647 
648 #ifdef NET_SKBUFF_DATA_USES_OFFSET
649 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
650 {
651 	return skb->head + skb->end;
652 }
653 
654 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
655 {
656 	return skb->end;
657 }
658 #else
659 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
660 {
661 	return skb->end;
662 }
663 
664 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
665 {
666 	return skb->end - skb->head;
667 }
668 #endif
669 
670 /* Internal */
671 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
672 
673 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
674 {
675 	return &skb_shinfo(skb)->hwtstamps;
676 }
677 
678 /**
679  *	skb_queue_empty - check if a queue is empty
680  *	@list: queue head
681  *
682  *	Returns true if the queue is empty, false otherwise.
683  */
684 static inline int skb_queue_empty(const struct sk_buff_head *list)
685 {
686 	return list->next == (struct sk_buff *)list;
687 }
688 
689 /**
690  *	skb_queue_is_last - check if skb is the last entry in the queue
691  *	@list: queue head
692  *	@skb: buffer
693  *
694  *	Returns true if @skb is the last buffer on the list.
695  */
696 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
697 				     const struct sk_buff *skb)
698 {
699 	return skb->next == (struct sk_buff *)list;
700 }
701 
702 /**
703  *	skb_queue_is_first - check if skb is the first entry in the queue
704  *	@list: queue head
705  *	@skb: buffer
706  *
707  *	Returns true if @skb is the first buffer on the list.
708  */
709 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
710 				      const struct sk_buff *skb)
711 {
712 	return skb->prev == (struct sk_buff *)list;
713 }
714 
715 /**
716  *	skb_queue_next - return the next packet in the queue
717  *	@list: queue head
718  *	@skb: current buffer
719  *
720  *	Return the next packet in @list after @skb.  It is only valid to
721  *	call this if skb_queue_is_last() evaluates to false.
722  */
723 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
724 					     const struct sk_buff *skb)
725 {
726 	/* This BUG_ON may seem severe, but if we just return then we
727 	 * are going to dereference garbage.
728 	 */
729 	BUG_ON(skb_queue_is_last(list, skb));
730 	return skb->next;
731 }
732 
733 /**
734  *	skb_queue_prev - return the prev packet in the queue
735  *	@list: queue head
736  *	@skb: current buffer
737  *
738  *	Return the prev packet in @list before @skb.  It is only valid to
739  *	call this if skb_queue_is_first() evaluates to false.
740  */
741 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
742 					     const struct sk_buff *skb)
743 {
744 	/* This BUG_ON may seem severe, but if we just return then we
745 	 * are going to dereference garbage.
746 	 */
747 	BUG_ON(skb_queue_is_first(list, skb));
748 	return skb->prev;
749 }
750 
751 /**
752  *	skb_get - reference buffer
753  *	@skb: buffer to reference
754  *
755  *	Makes another reference to a socket buffer and returns a pointer
756  *	to the buffer.
757  */
758 static inline struct sk_buff *skb_get(struct sk_buff *skb)
759 {
760 	atomic_inc(&skb->users);
761 	return skb;
762 }
763 
764 /*
765  * If users == 1, we are the only owner and are can avoid redundant
766  * atomic change.
767  */
768 
769 /**
770  *	skb_cloned - is the buffer a clone
771  *	@skb: buffer to check
772  *
773  *	Returns true if the buffer was generated with skb_clone() and is
774  *	one of multiple shared copies of the buffer. Cloned buffers are
775  *	shared data so must not be written to under normal circumstances.
776  */
777 static inline int skb_cloned(const struct sk_buff *skb)
778 {
779 	return skb->cloned &&
780 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
781 }
782 
783 /**
784  *	skb_header_cloned - is the header a clone
785  *	@skb: buffer to check
786  *
787  *	Returns true if modifying the header part of the buffer requires
788  *	the data to be copied.
789  */
790 static inline int skb_header_cloned(const struct sk_buff *skb)
791 {
792 	int dataref;
793 
794 	if (!skb->cloned)
795 		return 0;
796 
797 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
798 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
799 	return dataref != 1;
800 }
801 
802 /**
803  *	skb_header_release - release reference to header
804  *	@skb: buffer to operate on
805  *
806  *	Drop a reference to the header part of the buffer.  This is done
807  *	by acquiring a payload reference.  You must not read from the header
808  *	part of skb->data after this.
809  */
810 static inline void skb_header_release(struct sk_buff *skb)
811 {
812 	BUG_ON(skb->nohdr);
813 	skb->nohdr = 1;
814 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
815 }
816 
817 /**
818  *	skb_shared - is the buffer shared
819  *	@skb: buffer to check
820  *
821  *	Returns true if more than one person has a reference to this
822  *	buffer.
823  */
824 static inline int skb_shared(const struct sk_buff *skb)
825 {
826 	return atomic_read(&skb->users) != 1;
827 }
828 
829 /**
830  *	skb_share_check - check if buffer is shared and if so clone it
831  *	@skb: buffer to check
832  *	@pri: priority for memory allocation
833  *
834  *	If the buffer is shared the buffer is cloned and the old copy
835  *	drops a reference. A new clone with a single reference is returned.
836  *	If the buffer is not shared the original buffer is returned. When
837  *	being called from interrupt status or with spinlocks held pri must
838  *	be GFP_ATOMIC.
839  *
840  *	NULL is returned on a memory allocation failure.
841  */
842 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
843 					      gfp_t pri)
844 {
845 	might_sleep_if(pri & __GFP_WAIT);
846 	if (skb_shared(skb)) {
847 		struct sk_buff *nskb = skb_clone(skb, pri);
848 		kfree_skb(skb);
849 		skb = nskb;
850 	}
851 	return skb;
852 }
853 
854 /*
855  *	Copy shared buffers into a new sk_buff. We effectively do COW on
856  *	packets to handle cases where we have a local reader and forward
857  *	and a couple of other messy ones. The normal one is tcpdumping
858  *	a packet thats being forwarded.
859  */
860 
861 /**
862  *	skb_unshare - make a copy of a shared buffer
863  *	@skb: buffer to check
864  *	@pri: priority for memory allocation
865  *
866  *	If the socket buffer is a clone then this function creates a new
867  *	copy of the data, drops a reference count on the old copy and returns
868  *	the new copy with the reference count at 1. If the buffer is not a clone
869  *	the original buffer is returned. When called with a spinlock held or
870  *	from interrupt state @pri must be %GFP_ATOMIC
871  *
872  *	%NULL is returned on a memory allocation failure.
873  */
874 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
875 					  gfp_t pri)
876 {
877 	might_sleep_if(pri & __GFP_WAIT);
878 	if (skb_cloned(skb)) {
879 		struct sk_buff *nskb = skb_copy(skb, pri);
880 		kfree_skb(skb);	/* Free our shared copy */
881 		skb = nskb;
882 	}
883 	return skb;
884 }
885 
886 /**
887  *	skb_peek - peek at the head of an &sk_buff_head
888  *	@list_: list to peek at
889  *
890  *	Peek an &sk_buff. Unlike most other operations you _MUST_
891  *	be careful with this one. A peek leaves the buffer on the
892  *	list and someone else may run off with it. You must hold
893  *	the appropriate locks or have a private queue to do this.
894  *
895  *	Returns %NULL for an empty list or a pointer to the head element.
896  *	The reference count is not incremented and the reference is therefore
897  *	volatile. Use with caution.
898  */
899 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
900 {
901 	struct sk_buff *skb = list_->next;
902 
903 	if (skb == (struct sk_buff *)list_)
904 		skb = NULL;
905 	return skb;
906 }
907 
908 /**
909  *	skb_peek_next - peek skb following the given one from a queue
910  *	@skb: skb to start from
911  *	@list_: list to peek at
912  *
913  *	Returns %NULL when the end of the list is met or a pointer to the
914  *	next element. The reference count is not incremented and the
915  *	reference is therefore volatile. Use with caution.
916  */
917 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
918 		const struct sk_buff_head *list_)
919 {
920 	struct sk_buff *next = skb->next;
921 
922 	if (next == (struct sk_buff *)list_)
923 		next = NULL;
924 	return next;
925 }
926 
927 /**
928  *	skb_peek_tail - peek at the tail of an &sk_buff_head
929  *	@list_: list to peek at
930  *
931  *	Peek an &sk_buff. Unlike most other operations you _MUST_
932  *	be careful with this one. A peek leaves the buffer on the
933  *	list and someone else may run off with it. You must hold
934  *	the appropriate locks or have a private queue to do this.
935  *
936  *	Returns %NULL for an empty list or a pointer to the tail element.
937  *	The reference count is not incremented and the reference is therefore
938  *	volatile. Use with caution.
939  */
940 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
941 {
942 	struct sk_buff *skb = list_->prev;
943 
944 	if (skb == (struct sk_buff *)list_)
945 		skb = NULL;
946 	return skb;
947 
948 }
949 
950 /**
951  *	skb_queue_len	- get queue length
952  *	@list_: list to measure
953  *
954  *	Return the length of an &sk_buff queue.
955  */
956 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
957 {
958 	return list_->qlen;
959 }
960 
961 /**
962  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
963  *	@list: queue to initialize
964  *
965  *	This initializes only the list and queue length aspects of
966  *	an sk_buff_head object.  This allows to initialize the list
967  *	aspects of an sk_buff_head without reinitializing things like
968  *	the spinlock.  It can also be used for on-stack sk_buff_head
969  *	objects where the spinlock is known to not be used.
970  */
971 static inline void __skb_queue_head_init(struct sk_buff_head *list)
972 {
973 	list->prev = list->next = (struct sk_buff *)list;
974 	list->qlen = 0;
975 }
976 
977 /*
978  * This function creates a split out lock class for each invocation;
979  * this is needed for now since a whole lot of users of the skb-queue
980  * infrastructure in drivers have different locking usage (in hardirq)
981  * than the networking core (in softirq only). In the long run either the
982  * network layer or drivers should need annotation to consolidate the
983  * main types of usage into 3 classes.
984  */
985 static inline void skb_queue_head_init(struct sk_buff_head *list)
986 {
987 	spin_lock_init(&list->lock);
988 	__skb_queue_head_init(list);
989 }
990 
991 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
992 		struct lock_class_key *class)
993 {
994 	skb_queue_head_init(list);
995 	lockdep_set_class(&list->lock, class);
996 }
997 
998 /*
999  *	Insert an sk_buff on a list.
1000  *
1001  *	The "__skb_xxxx()" functions are the non-atomic ones that
1002  *	can only be called with interrupts disabled.
1003  */
1004 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1005 static inline void __skb_insert(struct sk_buff *newsk,
1006 				struct sk_buff *prev, struct sk_buff *next,
1007 				struct sk_buff_head *list)
1008 {
1009 	newsk->next = next;
1010 	newsk->prev = prev;
1011 	next->prev  = prev->next = newsk;
1012 	list->qlen++;
1013 }
1014 
1015 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1016 				      struct sk_buff *prev,
1017 				      struct sk_buff *next)
1018 {
1019 	struct sk_buff *first = list->next;
1020 	struct sk_buff *last = list->prev;
1021 
1022 	first->prev = prev;
1023 	prev->next = first;
1024 
1025 	last->next = next;
1026 	next->prev = last;
1027 }
1028 
1029 /**
1030  *	skb_queue_splice - join two skb lists, this is designed for stacks
1031  *	@list: the new list to add
1032  *	@head: the place to add it in the first list
1033  */
1034 static inline void skb_queue_splice(const struct sk_buff_head *list,
1035 				    struct sk_buff_head *head)
1036 {
1037 	if (!skb_queue_empty(list)) {
1038 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1039 		head->qlen += list->qlen;
1040 	}
1041 }
1042 
1043 /**
1044  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1045  *	@list: the new list to add
1046  *	@head: the place to add it in the first list
1047  *
1048  *	The list at @list is reinitialised
1049  */
1050 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1051 					 struct sk_buff_head *head)
1052 {
1053 	if (!skb_queue_empty(list)) {
1054 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1055 		head->qlen += list->qlen;
1056 		__skb_queue_head_init(list);
1057 	}
1058 }
1059 
1060 /**
1061  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1062  *	@list: the new list to add
1063  *	@head: the place to add it in the first list
1064  */
1065 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1066 					 struct sk_buff_head *head)
1067 {
1068 	if (!skb_queue_empty(list)) {
1069 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1070 		head->qlen += list->qlen;
1071 	}
1072 }
1073 
1074 /**
1075  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1076  *	@list: the new list to add
1077  *	@head: the place to add it in the first list
1078  *
1079  *	Each of the lists is a queue.
1080  *	The list at @list is reinitialised
1081  */
1082 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1083 					      struct sk_buff_head *head)
1084 {
1085 	if (!skb_queue_empty(list)) {
1086 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1087 		head->qlen += list->qlen;
1088 		__skb_queue_head_init(list);
1089 	}
1090 }
1091 
1092 /**
1093  *	__skb_queue_after - queue a buffer at the list head
1094  *	@list: list to use
1095  *	@prev: place after this buffer
1096  *	@newsk: buffer to queue
1097  *
1098  *	Queue a buffer int the middle of a list. This function takes no locks
1099  *	and you must therefore hold required locks before calling it.
1100  *
1101  *	A buffer cannot be placed on two lists at the same time.
1102  */
1103 static inline void __skb_queue_after(struct sk_buff_head *list,
1104 				     struct sk_buff *prev,
1105 				     struct sk_buff *newsk)
1106 {
1107 	__skb_insert(newsk, prev, prev->next, list);
1108 }
1109 
1110 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1111 		       struct sk_buff_head *list);
1112 
1113 static inline void __skb_queue_before(struct sk_buff_head *list,
1114 				      struct sk_buff *next,
1115 				      struct sk_buff *newsk)
1116 {
1117 	__skb_insert(newsk, next->prev, next, list);
1118 }
1119 
1120 /**
1121  *	__skb_queue_head - queue a buffer at the list head
1122  *	@list: list to use
1123  *	@newsk: buffer to queue
1124  *
1125  *	Queue a buffer at the start of a list. This function takes no locks
1126  *	and you must therefore hold required locks before calling it.
1127  *
1128  *	A buffer cannot be placed on two lists at the same time.
1129  */
1130 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1131 static inline void __skb_queue_head(struct sk_buff_head *list,
1132 				    struct sk_buff *newsk)
1133 {
1134 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1135 }
1136 
1137 /**
1138  *	__skb_queue_tail - queue a buffer at the list tail
1139  *	@list: list to use
1140  *	@newsk: buffer to queue
1141  *
1142  *	Queue a buffer at the end of a list. This function takes no locks
1143  *	and you must therefore hold required locks before calling it.
1144  *
1145  *	A buffer cannot be placed on two lists at the same time.
1146  */
1147 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1148 static inline void __skb_queue_tail(struct sk_buff_head *list,
1149 				   struct sk_buff *newsk)
1150 {
1151 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1152 }
1153 
1154 /*
1155  * remove sk_buff from list. _Must_ be called atomically, and with
1156  * the list known..
1157  */
1158 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1159 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1160 {
1161 	struct sk_buff *next, *prev;
1162 
1163 	list->qlen--;
1164 	next	   = skb->next;
1165 	prev	   = skb->prev;
1166 	skb->next  = skb->prev = NULL;
1167 	next->prev = prev;
1168 	prev->next = next;
1169 }
1170 
1171 /**
1172  *	__skb_dequeue - remove from the head of the queue
1173  *	@list: list to dequeue from
1174  *
1175  *	Remove the head of the list. This function does not take any locks
1176  *	so must be used with appropriate locks held only. The head item is
1177  *	returned or %NULL if the list is empty.
1178  */
1179 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1180 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1181 {
1182 	struct sk_buff *skb = skb_peek(list);
1183 	if (skb)
1184 		__skb_unlink(skb, list);
1185 	return skb;
1186 }
1187 
1188 /**
1189  *	__skb_dequeue_tail - remove from the tail of the queue
1190  *	@list: list to dequeue from
1191  *
1192  *	Remove the tail of the list. This function does not take any locks
1193  *	so must be used with appropriate locks held only. The tail item is
1194  *	returned or %NULL if the list is empty.
1195  */
1196 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1197 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1198 {
1199 	struct sk_buff *skb = skb_peek_tail(list);
1200 	if (skb)
1201 		__skb_unlink(skb, list);
1202 	return skb;
1203 }
1204 
1205 
1206 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1207 {
1208 	return skb->data_len;
1209 }
1210 
1211 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1212 {
1213 	return skb->len - skb->data_len;
1214 }
1215 
1216 static inline int skb_pagelen(const struct sk_buff *skb)
1217 {
1218 	int i, len = 0;
1219 
1220 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1221 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1222 	return len + skb_headlen(skb);
1223 }
1224 
1225 /**
1226  * __skb_fill_page_desc - initialise a paged fragment in an skb
1227  * @skb: buffer containing fragment to be initialised
1228  * @i: paged fragment index to initialise
1229  * @page: the page to use for this fragment
1230  * @off: the offset to the data with @page
1231  * @size: the length of the data
1232  *
1233  * Initialises the @i'th fragment of @skb to point to &size bytes at
1234  * offset @off within @page.
1235  *
1236  * Does not take any additional reference on the fragment.
1237  */
1238 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1239 					struct page *page, int off, int size)
1240 {
1241 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1242 
1243 	frag->page.p		  = page;
1244 	frag->page_offset	  = off;
1245 	skb_frag_size_set(frag, size);
1246 }
1247 
1248 /**
1249  * skb_fill_page_desc - initialise a paged fragment in an skb
1250  * @skb: buffer containing fragment to be initialised
1251  * @i: paged fragment index to initialise
1252  * @page: the page to use for this fragment
1253  * @off: the offset to the data with @page
1254  * @size: the length of the data
1255  *
1256  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1257  * @skb to point to &size bytes at offset @off within @page. In
1258  * addition updates @skb such that @i is the last fragment.
1259  *
1260  * Does not take any additional reference on the fragment.
1261  */
1262 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1263 				      struct page *page, int off, int size)
1264 {
1265 	__skb_fill_page_desc(skb, i, page, off, size);
1266 	skb_shinfo(skb)->nr_frags = i + 1;
1267 }
1268 
1269 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1270 			    int off, int size, unsigned int truesize);
1271 
1272 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1273 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1274 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1275 
1276 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1277 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1278 {
1279 	return skb->head + skb->tail;
1280 }
1281 
1282 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1283 {
1284 	skb->tail = skb->data - skb->head;
1285 }
1286 
1287 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1288 {
1289 	skb_reset_tail_pointer(skb);
1290 	skb->tail += offset;
1291 }
1292 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1293 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1294 {
1295 	return skb->tail;
1296 }
1297 
1298 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1299 {
1300 	skb->tail = skb->data;
1301 }
1302 
1303 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1304 {
1305 	skb->tail = skb->data + offset;
1306 }
1307 
1308 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1309 
1310 /*
1311  *	Add data to an sk_buff
1312  */
1313 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1314 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1315 {
1316 	unsigned char *tmp = skb_tail_pointer(skb);
1317 	SKB_LINEAR_ASSERT(skb);
1318 	skb->tail += len;
1319 	skb->len  += len;
1320 	return tmp;
1321 }
1322 
1323 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1324 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1325 {
1326 	skb->data -= len;
1327 	skb->len  += len;
1328 	return skb->data;
1329 }
1330 
1331 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1332 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1333 {
1334 	skb->len -= len;
1335 	BUG_ON(skb->len < skb->data_len);
1336 	return skb->data += len;
1337 }
1338 
1339 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1340 {
1341 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1342 }
1343 
1344 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1345 
1346 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1347 {
1348 	if (len > skb_headlen(skb) &&
1349 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1350 		return NULL;
1351 	skb->len -= len;
1352 	return skb->data += len;
1353 }
1354 
1355 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1356 {
1357 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1358 }
1359 
1360 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1361 {
1362 	if (likely(len <= skb_headlen(skb)))
1363 		return 1;
1364 	if (unlikely(len > skb->len))
1365 		return 0;
1366 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1367 }
1368 
1369 /**
1370  *	skb_headroom - bytes at buffer head
1371  *	@skb: buffer to check
1372  *
1373  *	Return the number of bytes of free space at the head of an &sk_buff.
1374  */
1375 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1376 {
1377 	return skb->data - skb->head;
1378 }
1379 
1380 /**
1381  *	skb_tailroom - bytes at buffer end
1382  *	@skb: buffer to check
1383  *
1384  *	Return the number of bytes of free space at the tail of an sk_buff
1385  */
1386 static inline int skb_tailroom(const struct sk_buff *skb)
1387 {
1388 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1389 }
1390 
1391 /**
1392  *	skb_availroom - bytes at buffer end
1393  *	@skb: buffer to check
1394  *
1395  *	Return the number of bytes of free space at the tail of an sk_buff
1396  *	allocated by sk_stream_alloc()
1397  */
1398 static inline int skb_availroom(const struct sk_buff *skb)
1399 {
1400 	return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1401 }
1402 
1403 /**
1404  *	skb_reserve - adjust headroom
1405  *	@skb: buffer to alter
1406  *	@len: bytes to move
1407  *
1408  *	Increase the headroom of an empty &sk_buff by reducing the tail
1409  *	room. This is only allowed for an empty buffer.
1410  */
1411 static inline void skb_reserve(struct sk_buff *skb, int len)
1412 {
1413 	skb->data += len;
1414 	skb->tail += len;
1415 }
1416 
1417 static inline void skb_reset_mac_len(struct sk_buff *skb)
1418 {
1419 	skb->mac_len = skb->network_header - skb->mac_header;
1420 }
1421 
1422 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1423 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1424 {
1425 	return skb->head + skb->transport_header;
1426 }
1427 
1428 static inline void skb_reset_transport_header(struct sk_buff *skb)
1429 {
1430 	skb->transport_header = skb->data - skb->head;
1431 }
1432 
1433 static inline void skb_set_transport_header(struct sk_buff *skb,
1434 					    const int offset)
1435 {
1436 	skb_reset_transport_header(skb);
1437 	skb->transport_header += offset;
1438 }
1439 
1440 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1441 {
1442 	return skb->head + skb->network_header;
1443 }
1444 
1445 static inline void skb_reset_network_header(struct sk_buff *skb)
1446 {
1447 	skb->network_header = skb->data - skb->head;
1448 }
1449 
1450 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1451 {
1452 	skb_reset_network_header(skb);
1453 	skb->network_header += offset;
1454 }
1455 
1456 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1457 {
1458 	return skb->head + skb->mac_header;
1459 }
1460 
1461 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1462 {
1463 	return skb->mac_header != ~0U;
1464 }
1465 
1466 static inline void skb_reset_mac_header(struct sk_buff *skb)
1467 {
1468 	skb->mac_header = skb->data - skb->head;
1469 }
1470 
1471 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1472 {
1473 	skb_reset_mac_header(skb);
1474 	skb->mac_header += offset;
1475 }
1476 
1477 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1478 
1479 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1480 {
1481 	return skb->transport_header;
1482 }
1483 
1484 static inline void skb_reset_transport_header(struct sk_buff *skb)
1485 {
1486 	skb->transport_header = skb->data;
1487 }
1488 
1489 static inline void skb_set_transport_header(struct sk_buff *skb,
1490 					    const int offset)
1491 {
1492 	skb->transport_header = skb->data + offset;
1493 }
1494 
1495 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1496 {
1497 	return skb->network_header;
1498 }
1499 
1500 static inline void skb_reset_network_header(struct sk_buff *skb)
1501 {
1502 	skb->network_header = skb->data;
1503 }
1504 
1505 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1506 {
1507 	skb->network_header = skb->data + offset;
1508 }
1509 
1510 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1511 {
1512 	return skb->mac_header;
1513 }
1514 
1515 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1516 {
1517 	return skb->mac_header != NULL;
1518 }
1519 
1520 static inline void skb_reset_mac_header(struct sk_buff *skb)
1521 {
1522 	skb->mac_header = skb->data;
1523 }
1524 
1525 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1526 {
1527 	skb->mac_header = skb->data + offset;
1528 }
1529 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1530 
1531 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1532 {
1533 	if (skb_mac_header_was_set(skb)) {
1534 		const unsigned char *old_mac = skb_mac_header(skb);
1535 
1536 		skb_set_mac_header(skb, -skb->mac_len);
1537 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1538 	}
1539 }
1540 
1541 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1542 {
1543 	return skb->csum_start - skb_headroom(skb);
1544 }
1545 
1546 static inline int skb_transport_offset(const struct sk_buff *skb)
1547 {
1548 	return skb_transport_header(skb) - skb->data;
1549 }
1550 
1551 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1552 {
1553 	return skb->transport_header - skb->network_header;
1554 }
1555 
1556 static inline int skb_network_offset(const struct sk_buff *skb)
1557 {
1558 	return skb_network_header(skb) - skb->data;
1559 }
1560 
1561 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1562 {
1563 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1564 }
1565 
1566 /*
1567  * CPUs often take a performance hit when accessing unaligned memory
1568  * locations. The actual performance hit varies, it can be small if the
1569  * hardware handles it or large if we have to take an exception and fix it
1570  * in software.
1571  *
1572  * Since an ethernet header is 14 bytes network drivers often end up with
1573  * the IP header at an unaligned offset. The IP header can be aligned by
1574  * shifting the start of the packet by 2 bytes. Drivers should do this
1575  * with:
1576  *
1577  * skb_reserve(skb, NET_IP_ALIGN);
1578  *
1579  * The downside to this alignment of the IP header is that the DMA is now
1580  * unaligned. On some architectures the cost of an unaligned DMA is high
1581  * and this cost outweighs the gains made by aligning the IP header.
1582  *
1583  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1584  * to be overridden.
1585  */
1586 #ifndef NET_IP_ALIGN
1587 #define NET_IP_ALIGN	2
1588 #endif
1589 
1590 /*
1591  * The networking layer reserves some headroom in skb data (via
1592  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1593  * the header has to grow. In the default case, if the header has to grow
1594  * 32 bytes or less we avoid the reallocation.
1595  *
1596  * Unfortunately this headroom changes the DMA alignment of the resulting
1597  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1598  * on some architectures. An architecture can override this value,
1599  * perhaps setting it to a cacheline in size (since that will maintain
1600  * cacheline alignment of the DMA). It must be a power of 2.
1601  *
1602  * Various parts of the networking layer expect at least 32 bytes of
1603  * headroom, you should not reduce this.
1604  *
1605  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1606  * to reduce average number of cache lines per packet.
1607  * get_rps_cpus() for example only access one 64 bytes aligned block :
1608  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1609  */
1610 #ifndef NET_SKB_PAD
1611 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1612 #endif
1613 
1614 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1615 
1616 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1617 {
1618 	if (unlikely(skb_is_nonlinear(skb))) {
1619 		WARN_ON(1);
1620 		return;
1621 	}
1622 	skb->len = len;
1623 	skb_set_tail_pointer(skb, len);
1624 }
1625 
1626 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1627 
1628 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1629 {
1630 	if (skb->data_len)
1631 		return ___pskb_trim(skb, len);
1632 	__skb_trim(skb, len);
1633 	return 0;
1634 }
1635 
1636 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1637 {
1638 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1639 }
1640 
1641 /**
1642  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1643  *	@skb: buffer to alter
1644  *	@len: new length
1645  *
1646  *	This is identical to pskb_trim except that the caller knows that
1647  *	the skb is not cloned so we should never get an error due to out-
1648  *	of-memory.
1649  */
1650 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1651 {
1652 	int err = pskb_trim(skb, len);
1653 	BUG_ON(err);
1654 }
1655 
1656 /**
1657  *	skb_orphan - orphan a buffer
1658  *	@skb: buffer to orphan
1659  *
1660  *	If a buffer currently has an owner then we call the owner's
1661  *	destructor function and make the @skb unowned. The buffer continues
1662  *	to exist but is no longer charged to its former owner.
1663  */
1664 static inline void skb_orphan(struct sk_buff *skb)
1665 {
1666 	if (skb->destructor)
1667 		skb->destructor(skb);
1668 	skb->destructor = NULL;
1669 	skb->sk		= NULL;
1670 }
1671 
1672 /**
1673  *	__skb_queue_purge - empty a list
1674  *	@list: list to empty
1675  *
1676  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1677  *	the list and one reference dropped. This function does not take the
1678  *	list lock and the caller must hold the relevant locks to use it.
1679  */
1680 extern void skb_queue_purge(struct sk_buff_head *list);
1681 static inline void __skb_queue_purge(struct sk_buff_head *list)
1682 {
1683 	struct sk_buff *skb;
1684 	while ((skb = __skb_dequeue(list)) != NULL)
1685 		kfree_skb(skb);
1686 }
1687 
1688 extern void *netdev_alloc_frag(unsigned int fragsz);
1689 
1690 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1691 					  unsigned int length,
1692 					  gfp_t gfp_mask);
1693 
1694 /**
1695  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1696  *	@dev: network device to receive on
1697  *	@length: length to allocate
1698  *
1699  *	Allocate a new &sk_buff and assign it a usage count of one. The
1700  *	buffer has unspecified headroom built in. Users should allocate
1701  *	the headroom they think they need without accounting for the
1702  *	built in space. The built in space is used for optimisations.
1703  *
1704  *	%NULL is returned if there is no free memory. Although this function
1705  *	allocates memory it can be called from an interrupt.
1706  */
1707 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1708 					       unsigned int length)
1709 {
1710 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1711 }
1712 
1713 /* legacy helper around __netdev_alloc_skb() */
1714 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1715 					      gfp_t gfp_mask)
1716 {
1717 	return __netdev_alloc_skb(NULL, length, gfp_mask);
1718 }
1719 
1720 /* legacy helper around netdev_alloc_skb() */
1721 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1722 {
1723 	return netdev_alloc_skb(NULL, length);
1724 }
1725 
1726 
1727 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1728 		unsigned int length, gfp_t gfp)
1729 {
1730 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1731 
1732 	if (NET_IP_ALIGN && skb)
1733 		skb_reserve(skb, NET_IP_ALIGN);
1734 	return skb;
1735 }
1736 
1737 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1738 		unsigned int length)
1739 {
1740 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1741 }
1742 
1743 /**
1744  * skb_frag_page - retrieve the page refered to by a paged fragment
1745  * @frag: the paged fragment
1746  *
1747  * Returns the &struct page associated with @frag.
1748  */
1749 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1750 {
1751 	return frag->page.p;
1752 }
1753 
1754 /**
1755  * __skb_frag_ref - take an addition reference on a paged fragment.
1756  * @frag: the paged fragment
1757  *
1758  * Takes an additional reference on the paged fragment @frag.
1759  */
1760 static inline void __skb_frag_ref(skb_frag_t *frag)
1761 {
1762 	get_page(skb_frag_page(frag));
1763 }
1764 
1765 /**
1766  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1767  * @skb: the buffer
1768  * @f: the fragment offset.
1769  *
1770  * Takes an additional reference on the @f'th paged fragment of @skb.
1771  */
1772 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1773 {
1774 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1775 }
1776 
1777 /**
1778  * __skb_frag_unref - release a reference on a paged fragment.
1779  * @frag: the paged fragment
1780  *
1781  * Releases a reference on the paged fragment @frag.
1782  */
1783 static inline void __skb_frag_unref(skb_frag_t *frag)
1784 {
1785 	put_page(skb_frag_page(frag));
1786 }
1787 
1788 /**
1789  * skb_frag_unref - release a reference on a paged fragment of an skb.
1790  * @skb: the buffer
1791  * @f: the fragment offset
1792  *
1793  * Releases a reference on the @f'th paged fragment of @skb.
1794  */
1795 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1796 {
1797 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1798 }
1799 
1800 /**
1801  * skb_frag_address - gets the address of the data contained in a paged fragment
1802  * @frag: the paged fragment buffer
1803  *
1804  * Returns the address of the data within @frag. The page must already
1805  * be mapped.
1806  */
1807 static inline void *skb_frag_address(const skb_frag_t *frag)
1808 {
1809 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1810 }
1811 
1812 /**
1813  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1814  * @frag: the paged fragment buffer
1815  *
1816  * Returns the address of the data within @frag. Checks that the page
1817  * is mapped and returns %NULL otherwise.
1818  */
1819 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1820 {
1821 	void *ptr = page_address(skb_frag_page(frag));
1822 	if (unlikely(!ptr))
1823 		return NULL;
1824 
1825 	return ptr + frag->page_offset;
1826 }
1827 
1828 /**
1829  * __skb_frag_set_page - sets the page contained in a paged fragment
1830  * @frag: the paged fragment
1831  * @page: the page to set
1832  *
1833  * Sets the fragment @frag to contain @page.
1834  */
1835 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1836 {
1837 	frag->page.p = page;
1838 }
1839 
1840 /**
1841  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1842  * @skb: the buffer
1843  * @f: the fragment offset
1844  * @page: the page to set
1845  *
1846  * Sets the @f'th fragment of @skb to contain @page.
1847  */
1848 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1849 				     struct page *page)
1850 {
1851 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1852 }
1853 
1854 /**
1855  * skb_frag_dma_map - maps a paged fragment via the DMA API
1856  * @dev: the device to map the fragment to
1857  * @frag: the paged fragment to map
1858  * @offset: the offset within the fragment (starting at the
1859  *          fragment's own offset)
1860  * @size: the number of bytes to map
1861  * @dir: the direction of the mapping (%PCI_DMA_*)
1862  *
1863  * Maps the page associated with @frag to @device.
1864  */
1865 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1866 					  const skb_frag_t *frag,
1867 					  size_t offset, size_t size,
1868 					  enum dma_data_direction dir)
1869 {
1870 	return dma_map_page(dev, skb_frag_page(frag),
1871 			    frag->page_offset + offset, size, dir);
1872 }
1873 
1874 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1875 					gfp_t gfp_mask)
1876 {
1877 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1878 }
1879 
1880 /**
1881  *	skb_clone_writable - is the header of a clone writable
1882  *	@skb: buffer to check
1883  *	@len: length up to which to write
1884  *
1885  *	Returns true if modifying the header part of the cloned buffer
1886  *	does not requires the data to be copied.
1887  */
1888 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1889 {
1890 	return !skb_header_cloned(skb) &&
1891 	       skb_headroom(skb) + len <= skb->hdr_len;
1892 }
1893 
1894 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1895 			    int cloned)
1896 {
1897 	int delta = 0;
1898 
1899 	if (headroom < NET_SKB_PAD)
1900 		headroom = NET_SKB_PAD;
1901 	if (headroom > skb_headroom(skb))
1902 		delta = headroom - skb_headroom(skb);
1903 
1904 	if (delta || cloned)
1905 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1906 					GFP_ATOMIC);
1907 	return 0;
1908 }
1909 
1910 /**
1911  *	skb_cow - copy header of skb when it is required
1912  *	@skb: buffer to cow
1913  *	@headroom: needed headroom
1914  *
1915  *	If the skb passed lacks sufficient headroom or its data part
1916  *	is shared, data is reallocated. If reallocation fails, an error
1917  *	is returned and original skb is not changed.
1918  *
1919  *	The result is skb with writable area skb->head...skb->tail
1920  *	and at least @headroom of space at head.
1921  */
1922 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1923 {
1924 	return __skb_cow(skb, headroom, skb_cloned(skb));
1925 }
1926 
1927 /**
1928  *	skb_cow_head - skb_cow but only making the head writable
1929  *	@skb: buffer to cow
1930  *	@headroom: needed headroom
1931  *
1932  *	This function is identical to skb_cow except that we replace the
1933  *	skb_cloned check by skb_header_cloned.  It should be used when
1934  *	you only need to push on some header and do not need to modify
1935  *	the data.
1936  */
1937 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1938 {
1939 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1940 }
1941 
1942 /**
1943  *	skb_padto	- pad an skbuff up to a minimal size
1944  *	@skb: buffer to pad
1945  *	@len: minimal length
1946  *
1947  *	Pads up a buffer to ensure the trailing bytes exist and are
1948  *	blanked. If the buffer already contains sufficient data it
1949  *	is untouched. Otherwise it is extended. Returns zero on
1950  *	success. The skb is freed on error.
1951  */
1952 
1953 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1954 {
1955 	unsigned int size = skb->len;
1956 	if (likely(size >= len))
1957 		return 0;
1958 	return skb_pad(skb, len - size);
1959 }
1960 
1961 static inline int skb_add_data(struct sk_buff *skb,
1962 			       char __user *from, int copy)
1963 {
1964 	const int off = skb->len;
1965 
1966 	if (skb->ip_summed == CHECKSUM_NONE) {
1967 		int err = 0;
1968 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1969 							    copy, 0, &err);
1970 		if (!err) {
1971 			skb->csum = csum_block_add(skb->csum, csum, off);
1972 			return 0;
1973 		}
1974 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1975 		return 0;
1976 
1977 	__skb_trim(skb, off);
1978 	return -EFAULT;
1979 }
1980 
1981 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
1982 				    const struct page *page, int off)
1983 {
1984 	if (i) {
1985 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1986 
1987 		return page == skb_frag_page(frag) &&
1988 		       off == frag->page_offset + skb_frag_size(frag);
1989 	}
1990 	return false;
1991 }
1992 
1993 static inline int __skb_linearize(struct sk_buff *skb)
1994 {
1995 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1996 }
1997 
1998 /**
1999  *	skb_linearize - convert paged skb to linear one
2000  *	@skb: buffer to linarize
2001  *
2002  *	If there is no free memory -ENOMEM is returned, otherwise zero
2003  *	is returned and the old skb data released.
2004  */
2005 static inline int skb_linearize(struct sk_buff *skb)
2006 {
2007 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2008 }
2009 
2010 /**
2011  *	skb_linearize_cow - make sure skb is linear and writable
2012  *	@skb: buffer to process
2013  *
2014  *	If there is no free memory -ENOMEM is returned, otherwise zero
2015  *	is returned and the old skb data released.
2016  */
2017 static inline int skb_linearize_cow(struct sk_buff *skb)
2018 {
2019 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2020 	       __skb_linearize(skb) : 0;
2021 }
2022 
2023 /**
2024  *	skb_postpull_rcsum - update checksum for received skb after pull
2025  *	@skb: buffer to update
2026  *	@start: start of data before pull
2027  *	@len: length of data pulled
2028  *
2029  *	After doing a pull on a received packet, you need to call this to
2030  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2031  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2032  */
2033 
2034 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2035 				      const void *start, unsigned int len)
2036 {
2037 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2039 }
2040 
2041 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2042 
2043 /**
2044  *	pskb_trim_rcsum - trim received skb and update checksum
2045  *	@skb: buffer to trim
2046  *	@len: new length
2047  *
2048  *	This is exactly the same as pskb_trim except that it ensures the
2049  *	checksum of received packets are still valid after the operation.
2050  */
2051 
2052 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2053 {
2054 	if (likely(len >= skb->len))
2055 		return 0;
2056 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2057 		skb->ip_summed = CHECKSUM_NONE;
2058 	return __pskb_trim(skb, len);
2059 }
2060 
2061 #define skb_queue_walk(queue, skb) \
2062 		for (skb = (queue)->next;					\
2063 		     skb != (struct sk_buff *)(queue);				\
2064 		     skb = skb->next)
2065 
2066 #define skb_queue_walk_safe(queue, skb, tmp)					\
2067 		for (skb = (queue)->next, tmp = skb->next;			\
2068 		     skb != (struct sk_buff *)(queue);				\
2069 		     skb = tmp, tmp = skb->next)
2070 
2071 #define skb_queue_walk_from(queue, skb)						\
2072 		for (; skb != (struct sk_buff *)(queue);			\
2073 		     skb = skb->next)
2074 
2075 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2076 		for (tmp = skb->next;						\
2077 		     skb != (struct sk_buff *)(queue);				\
2078 		     skb = tmp, tmp = skb->next)
2079 
2080 #define skb_queue_reverse_walk(queue, skb) \
2081 		for (skb = (queue)->prev;					\
2082 		     skb != (struct sk_buff *)(queue);				\
2083 		     skb = skb->prev)
2084 
2085 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2086 		for (skb = (queue)->prev, tmp = skb->prev;			\
2087 		     skb != (struct sk_buff *)(queue);				\
2088 		     skb = tmp, tmp = skb->prev)
2089 
2090 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2091 		for (tmp = skb->prev;						\
2092 		     skb != (struct sk_buff *)(queue);				\
2093 		     skb = tmp, tmp = skb->prev)
2094 
2095 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2096 {
2097 	return skb_shinfo(skb)->frag_list != NULL;
2098 }
2099 
2100 static inline void skb_frag_list_init(struct sk_buff *skb)
2101 {
2102 	skb_shinfo(skb)->frag_list = NULL;
2103 }
2104 
2105 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2106 {
2107 	frag->next = skb_shinfo(skb)->frag_list;
2108 	skb_shinfo(skb)->frag_list = frag;
2109 }
2110 
2111 #define skb_walk_frags(skb, iter)	\
2112 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2113 
2114 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2115 					   int *peeked, int *off, int *err);
2116 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2117 					 int noblock, int *err);
2118 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2119 				     struct poll_table_struct *wait);
2120 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2121 					       int offset, struct iovec *to,
2122 					       int size);
2123 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2124 							int hlen,
2125 							struct iovec *iov);
2126 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2127 						    int offset,
2128 						    const struct iovec *from,
2129 						    int from_offset,
2130 						    int len);
2131 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2132 						     int offset,
2133 						     const struct iovec *to,
2134 						     int to_offset,
2135 						     int size);
2136 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2137 extern void	       skb_free_datagram_locked(struct sock *sk,
2138 						struct sk_buff *skb);
2139 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2140 					 unsigned int flags);
2141 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2142 				    int len, __wsum csum);
2143 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2144 				     void *to, int len);
2145 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2146 				      const void *from, int len);
2147 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2148 					      int offset, u8 *to, int len,
2149 					      __wsum csum);
2150 extern int             skb_splice_bits(struct sk_buff *skb,
2151 						unsigned int offset,
2152 						struct pipe_inode_info *pipe,
2153 						unsigned int len,
2154 						unsigned int flags);
2155 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2156 extern void	       skb_split(struct sk_buff *skb,
2157 				 struct sk_buff *skb1, const u32 len);
2158 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2159 				 int shiftlen);
2160 
2161 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2162 				   netdev_features_t features);
2163 
2164 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2165 				       int len, void *buffer)
2166 {
2167 	int hlen = skb_headlen(skb);
2168 
2169 	if (hlen - offset >= len)
2170 		return skb->data + offset;
2171 
2172 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2173 		return NULL;
2174 
2175 	return buffer;
2176 }
2177 
2178 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2179 					     void *to,
2180 					     const unsigned int len)
2181 {
2182 	memcpy(to, skb->data, len);
2183 }
2184 
2185 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2186 						    const int offset, void *to,
2187 						    const unsigned int len)
2188 {
2189 	memcpy(to, skb->data + offset, len);
2190 }
2191 
2192 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2193 					   const void *from,
2194 					   const unsigned int len)
2195 {
2196 	memcpy(skb->data, from, len);
2197 }
2198 
2199 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2200 						  const int offset,
2201 						  const void *from,
2202 						  const unsigned int len)
2203 {
2204 	memcpy(skb->data + offset, from, len);
2205 }
2206 
2207 extern void skb_init(void);
2208 
2209 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2210 {
2211 	return skb->tstamp;
2212 }
2213 
2214 /**
2215  *	skb_get_timestamp - get timestamp from a skb
2216  *	@skb: skb to get stamp from
2217  *	@stamp: pointer to struct timeval to store stamp in
2218  *
2219  *	Timestamps are stored in the skb as offsets to a base timestamp.
2220  *	This function converts the offset back to a struct timeval and stores
2221  *	it in stamp.
2222  */
2223 static inline void skb_get_timestamp(const struct sk_buff *skb,
2224 				     struct timeval *stamp)
2225 {
2226 	*stamp = ktime_to_timeval(skb->tstamp);
2227 }
2228 
2229 static inline void skb_get_timestampns(const struct sk_buff *skb,
2230 				       struct timespec *stamp)
2231 {
2232 	*stamp = ktime_to_timespec(skb->tstamp);
2233 }
2234 
2235 static inline void __net_timestamp(struct sk_buff *skb)
2236 {
2237 	skb->tstamp = ktime_get_real();
2238 }
2239 
2240 static inline ktime_t net_timedelta(ktime_t t)
2241 {
2242 	return ktime_sub(ktime_get_real(), t);
2243 }
2244 
2245 static inline ktime_t net_invalid_timestamp(void)
2246 {
2247 	return ktime_set(0, 0);
2248 }
2249 
2250 extern void skb_timestamping_init(void);
2251 
2252 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2253 
2254 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2255 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2256 
2257 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2258 
2259 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2260 {
2261 }
2262 
2263 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2264 {
2265 	return false;
2266 }
2267 
2268 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2269 
2270 /**
2271  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2272  *
2273  * PHY drivers may accept clones of transmitted packets for
2274  * timestamping via their phy_driver.txtstamp method. These drivers
2275  * must call this function to return the skb back to the stack, with
2276  * or without a timestamp.
2277  *
2278  * @skb: clone of the the original outgoing packet
2279  * @hwtstamps: hardware time stamps, may be NULL if not available
2280  *
2281  */
2282 void skb_complete_tx_timestamp(struct sk_buff *skb,
2283 			       struct skb_shared_hwtstamps *hwtstamps);
2284 
2285 /**
2286  * skb_tstamp_tx - queue clone of skb with send time stamps
2287  * @orig_skb:	the original outgoing packet
2288  * @hwtstamps:	hardware time stamps, may be NULL if not available
2289  *
2290  * If the skb has a socket associated, then this function clones the
2291  * skb (thus sharing the actual data and optional structures), stores
2292  * the optional hardware time stamping information (if non NULL) or
2293  * generates a software time stamp (otherwise), then queues the clone
2294  * to the error queue of the socket.  Errors are silently ignored.
2295  */
2296 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2297 			struct skb_shared_hwtstamps *hwtstamps);
2298 
2299 static inline void sw_tx_timestamp(struct sk_buff *skb)
2300 {
2301 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2302 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2303 		skb_tstamp_tx(skb, NULL);
2304 }
2305 
2306 /**
2307  * skb_tx_timestamp() - Driver hook for transmit timestamping
2308  *
2309  * Ethernet MAC Drivers should call this function in their hard_xmit()
2310  * function immediately before giving the sk_buff to the MAC hardware.
2311  *
2312  * @skb: A socket buffer.
2313  */
2314 static inline void skb_tx_timestamp(struct sk_buff *skb)
2315 {
2316 	skb_clone_tx_timestamp(skb);
2317 	sw_tx_timestamp(skb);
2318 }
2319 
2320 /**
2321  * skb_complete_wifi_ack - deliver skb with wifi status
2322  *
2323  * @skb: the original outgoing packet
2324  * @acked: ack status
2325  *
2326  */
2327 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2328 
2329 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2330 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2331 
2332 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2333 {
2334 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2335 }
2336 
2337 /**
2338  *	skb_checksum_complete - Calculate checksum of an entire packet
2339  *	@skb: packet to process
2340  *
2341  *	This function calculates the checksum over the entire packet plus
2342  *	the value of skb->csum.  The latter can be used to supply the
2343  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2344  *	checksum.
2345  *
2346  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2347  *	this function can be used to verify that checksum on received
2348  *	packets.  In that case the function should return zero if the
2349  *	checksum is correct.  In particular, this function will return zero
2350  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2351  *	hardware has already verified the correctness of the checksum.
2352  */
2353 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2354 {
2355 	return skb_csum_unnecessary(skb) ?
2356 	       0 : __skb_checksum_complete(skb);
2357 }
2358 
2359 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2360 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2361 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2362 {
2363 	if (nfct && atomic_dec_and_test(&nfct->use))
2364 		nf_conntrack_destroy(nfct);
2365 }
2366 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2367 {
2368 	if (nfct)
2369 		atomic_inc(&nfct->use);
2370 }
2371 #endif
2372 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2373 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2374 {
2375 	if (skb)
2376 		atomic_inc(&skb->users);
2377 }
2378 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2379 {
2380 	if (skb)
2381 		kfree_skb(skb);
2382 }
2383 #endif
2384 #ifdef CONFIG_BRIDGE_NETFILTER
2385 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2386 {
2387 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2388 		kfree(nf_bridge);
2389 }
2390 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2391 {
2392 	if (nf_bridge)
2393 		atomic_inc(&nf_bridge->use);
2394 }
2395 #endif /* CONFIG_BRIDGE_NETFILTER */
2396 static inline void nf_reset(struct sk_buff *skb)
2397 {
2398 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2399 	nf_conntrack_put(skb->nfct);
2400 	skb->nfct = NULL;
2401 #endif
2402 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2403 	nf_conntrack_put_reasm(skb->nfct_reasm);
2404 	skb->nfct_reasm = NULL;
2405 #endif
2406 #ifdef CONFIG_BRIDGE_NETFILTER
2407 	nf_bridge_put(skb->nf_bridge);
2408 	skb->nf_bridge = NULL;
2409 #endif
2410 }
2411 
2412 /* Note: This doesn't put any conntrack and bridge info in dst. */
2413 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2414 {
2415 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2416 	dst->nfct = src->nfct;
2417 	nf_conntrack_get(src->nfct);
2418 	dst->nfctinfo = src->nfctinfo;
2419 #endif
2420 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2421 	dst->nfct_reasm = src->nfct_reasm;
2422 	nf_conntrack_get_reasm(src->nfct_reasm);
2423 #endif
2424 #ifdef CONFIG_BRIDGE_NETFILTER
2425 	dst->nf_bridge  = src->nf_bridge;
2426 	nf_bridge_get(src->nf_bridge);
2427 #endif
2428 }
2429 
2430 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2431 {
2432 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2433 	nf_conntrack_put(dst->nfct);
2434 #endif
2435 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2436 	nf_conntrack_put_reasm(dst->nfct_reasm);
2437 #endif
2438 #ifdef CONFIG_BRIDGE_NETFILTER
2439 	nf_bridge_put(dst->nf_bridge);
2440 #endif
2441 	__nf_copy(dst, src);
2442 }
2443 
2444 #ifdef CONFIG_NETWORK_SECMARK
2445 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2446 {
2447 	to->secmark = from->secmark;
2448 }
2449 
2450 static inline void skb_init_secmark(struct sk_buff *skb)
2451 {
2452 	skb->secmark = 0;
2453 }
2454 #else
2455 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2456 { }
2457 
2458 static inline void skb_init_secmark(struct sk_buff *skb)
2459 { }
2460 #endif
2461 
2462 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2463 {
2464 	skb->queue_mapping = queue_mapping;
2465 }
2466 
2467 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2468 {
2469 	return skb->queue_mapping;
2470 }
2471 
2472 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2473 {
2474 	to->queue_mapping = from->queue_mapping;
2475 }
2476 
2477 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2478 {
2479 	skb->queue_mapping = rx_queue + 1;
2480 }
2481 
2482 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2483 {
2484 	return skb->queue_mapping - 1;
2485 }
2486 
2487 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2488 {
2489 	return skb->queue_mapping != 0;
2490 }
2491 
2492 extern u16 __skb_tx_hash(const struct net_device *dev,
2493 			 const struct sk_buff *skb,
2494 			 unsigned int num_tx_queues);
2495 
2496 #ifdef CONFIG_XFRM
2497 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2498 {
2499 	return skb->sp;
2500 }
2501 #else
2502 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2503 {
2504 	return NULL;
2505 }
2506 #endif
2507 
2508 static inline bool skb_is_gso(const struct sk_buff *skb)
2509 {
2510 	return skb_shinfo(skb)->gso_size;
2511 }
2512 
2513 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2514 {
2515 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2516 }
2517 
2518 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2519 
2520 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2521 {
2522 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2523 	 * wanted then gso_type will be set. */
2524 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2525 
2526 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2527 	    unlikely(shinfo->gso_type == 0)) {
2528 		__skb_warn_lro_forwarding(skb);
2529 		return true;
2530 	}
2531 	return false;
2532 }
2533 
2534 static inline void skb_forward_csum(struct sk_buff *skb)
2535 {
2536 	/* Unfortunately we don't support this one.  Any brave souls? */
2537 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2538 		skb->ip_summed = CHECKSUM_NONE;
2539 }
2540 
2541 /**
2542  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2543  * @skb: skb to check
2544  *
2545  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2546  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2547  * use this helper, to document places where we make this assertion.
2548  */
2549 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2550 {
2551 #ifdef DEBUG
2552 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2553 #endif
2554 }
2555 
2556 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2557 
2558 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2559 {
2560 	if (irqs_disabled())
2561 		return false;
2562 
2563 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2564 		return false;
2565 
2566 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2567 		return false;
2568 
2569 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2570 	if (skb_end_offset(skb) < skb_size)
2571 		return false;
2572 
2573 	if (skb_shared(skb) || skb_cloned(skb))
2574 		return false;
2575 
2576 	return true;
2577 }
2578 
2579 /**
2580  * skb_head_is_locked - Determine if the skb->head is locked down
2581  * @skb: skb to check
2582  *
2583  * The head on skbs build around a head frag can be removed if they are
2584  * not cloned.  This function returns true if the skb head is locked down
2585  * due to either being allocated via kmalloc, or by being a clone with
2586  * multiple references to the head.
2587  */
2588 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2589 {
2590 	return !skb->head_frag || skb_cloned(skb);
2591 }
2592 #endif	/* __KERNEL__ */
2593 #endif	/* _LINUX_SKBUFF_H */
2594