1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list */ 126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128 typedef struct skb_frag_struct skb_frag_t; 129 130 struct skb_frag_struct { 131 struct page *page; 132 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 133 __u32 page_offset; 134 __u32 size; 135 #else 136 __u16 page_offset; 137 __u16 size; 138 #endif 139 }; 140 141 #define HAVE_HW_TIME_STAMP 142 143 /** 144 * struct skb_shared_hwtstamps - hardware time stamps 145 * @hwtstamp: hardware time stamp transformed into duration 146 * since arbitrary point in time 147 * @syststamp: hwtstamp transformed to system time base 148 * 149 * Software time stamps generated by ktime_get_real() are stored in 150 * skb->tstamp. The relation between the different kinds of time 151 * stamps is as follows: 152 * 153 * syststamp and tstamp can be compared against each other in 154 * arbitrary combinations. The accuracy of a 155 * syststamp/tstamp/"syststamp from other device" comparison is 156 * limited by the accuracy of the transformation into system time 157 * base. This depends on the device driver and its underlying 158 * hardware. 159 * 160 * hwtstamps can only be compared against other hwtstamps from 161 * the same device. 162 * 163 * This structure is attached to packets as part of the 164 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 165 */ 166 struct skb_shared_hwtstamps { 167 ktime_t hwtstamp; 168 ktime_t syststamp; 169 }; 170 171 /* Definitions for tx_flags in struct skb_shared_info */ 172 enum { 173 /* generate hardware time stamp */ 174 SKBTX_HW_TSTAMP = 1 << 0, 175 176 /* generate software time stamp */ 177 SKBTX_SW_TSTAMP = 1 << 1, 178 179 /* device driver is going to provide hardware time stamp */ 180 SKBTX_IN_PROGRESS = 1 << 2, 181 182 /* ensure the originating sk reference is available on driver level */ 183 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 184 }; 185 186 /* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189 struct skb_shared_info { 190 unsigned short nr_frags; 191 unsigned short gso_size; 192 /* Warning: this field is not always filled in (UFO)! */ 193 unsigned short gso_segs; 194 unsigned short gso_type; 195 __be32 ip6_frag_id; 196 __u8 tx_flags; 197 struct sk_buff *frag_list; 198 struct skb_shared_hwtstamps hwtstamps; 199 200 /* 201 * Warning : all fields before dataref are cleared in __alloc_skb() 202 */ 203 atomic_t dataref; 204 205 /* Intermediate layers must ensure that destructor_arg 206 * remains valid until skb destructor */ 207 void * destructor_arg; 208 /* must be last field, see pskb_expand_head() */ 209 skb_frag_t frags[MAX_SKB_FRAGS]; 210 }; 211 212 /* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223 #define SKB_DATAREF_SHIFT 16 224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227 enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231 }; 232 233 enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246 }; 247 248 #if BITS_PER_LONG > 32 249 #define NET_SKBUFF_DATA_USES_OFFSET 1 250 #endif 251 252 #ifdef NET_SKBUFF_DATA_USES_OFFSET 253 typedef unsigned int sk_buff_data_t; 254 #else 255 typedef unsigned char *sk_buff_data_t; 256 #endif 257 258 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 259 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 260 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 261 #endif 262 263 /** 264 * struct sk_buff - socket buffer 265 * @next: Next buffer in list 266 * @prev: Previous buffer in list 267 * @sk: Socket we are owned by 268 * @tstamp: Time we arrived 269 * @dev: Device we arrived on/are leaving by 270 * @transport_header: Transport layer header 271 * @network_header: Network layer header 272 * @mac_header: Link layer header 273 * @_skb_refdst: destination entry (with norefcount bit) 274 * @sp: the security path, used for xfrm 275 * @cb: Control buffer. Free for use by every layer. Put private vars here 276 * @len: Length of actual data 277 * @data_len: Data length 278 * @mac_len: Length of link layer header 279 * @hdr_len: writable header length of cloned skb 280 * @csum: Checksum (must include start/offset pair) 281 * @csum_start: Offset from skb->head where checksumming should start 282 * @csum_offset: Offset from csum_start where checksum should be stored 283 * @local_df: allow local fragmentation 284 * @cloned: Head may be cloned (check refcnt to be sure) 285 * @nohdr: Payload reference only, must not modify header 286 * @pkt_type: Packet class 287 * @fclone: skbuff clone status 288 * @ip_summed: Driver fed us an IP checksum 289 * @priority: Packet queueing priority 290 * @users: User count - see {datagram,tcp}.c 291 * @protocol: Packet protocol from driver 292 * @truesize: Buffer size 293 * @head: Head of buffer 294 * @data: Data head pointer 295 * @tail: Tail pointer 296 * @end: End pointer 297 * @destructor: Destruct function 298 * @mark: Generic packet mark 299 * @nfct: Associated connection, if any 300 * @ipvs_property: skbuff is owned by ipvs 301 * @peeked: this packet has been seen already, so stats have been 302 * done for it, don't do them again 303 * @nf_trace: netfilter packet trace flag 304 * @nfctinfo: Relationship of this skb to the connection 305 * @nfct_reasm: netfilter conntrack re-assembly pointer 306 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 307 * @skb_iif: ifindex of device we arrived on 308 * @rxhash: the packet hash computed on receive 309 * @queue_mapping: Queue mapping for multiqueue devices 310 * @tc_index: Traffic control index 311 * @tc_verd: traffic control verdict 312 * @ndisc_nodetype: router type (from link layer) 313 * @dma_cookie: a cookie to one of several possible DMA operations 314 * done by skb DMA functions 315 * @secmark: security marking 316 * @vlan_tci: vlan tag control information 317 */ 318 319 struct sk_buff { 320 /* These two members must be first. */ 321 struct sk_buff *next; 322 struct sk_buff *prev; 323 324 ktime_t tstamp; 325 326 struct sock *sk; 327 struct net_device *dev; 328 329 /* 330 * This is the control buffer. It is free to use for every 331 * layer. Please put your private variables there. If you 332 * want to keep them across layers you have to do a skb_clone() 333 * first. This is owned by whoever has the skb queued ATM. 334 */ 335 char cb[48] __aligned(8); 336 337 unsigned long _skb_refdst; 338 #ifdef CONFIG_XFRM 339 struct sec_path *sp; 340 #endif 341 unsigned int len, 342 data_len; 343 __u16 mac_len, 344 hdr_len; 345 union { 346 __wsum csum; 347 struct { 348 __u16 csum_start; 349 __u16 csum_offset; 350 }; 351 }; 352 __u32 priority; 353 kmemcheck_bitfield_begin(flags1); 354 __u8 local_df:1, 355 cloned:1, 356 ip_summed:2, 357 nohdr:1, 358 nfctinfo:3; 359 __u8 pkt_type:3, 360 fclone:2, 361 ipvs_property:1, 362 peeked:1, 363 nf_trace:1; 364 kmemcheck_bitfield_end(flags1); 365 __be16 protocol; 366 367 void (*destructor)(struct sk_buff *skb); 368 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 369 struct nf_conntrack *nfct; 370 #endif 371 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 372 struct sk_buff *nfct_reasm; 373 #endif 374 #ifdef CONFIG_BRIDGE_NETFILTER 375 struct nf_bridge_info *nf_bridge; 376 #endif 377 378 int skb_iif; 379 #ifdef CONFIG_NET_SCHED 380 __u16 tc_index; /* traffic control index */ 381 #ifdef CONFIG_NET_CLS_ACT 382 __u16 tc_verd; /* traffic control verdict */ 383 #endif 384 #endif 385 386 __u32 rxhash; 387 388 kmemcheck_bitfield_begin(flags2); 389 __u16 queue_mapping:16; 390 #ifdef CONFIG_IPV6_NDISC_NODETYPE 391 __u8 ndisc_nodetype:2, 392 deliver_no_wcard:1; 393 #else 394 __u8 deliver_no_wcard:1; 395 #endif 396 __u8 ooo_okay:1; 397 kmemcheck_bitfield_end(flags2); 398 399 /* 0/13 bit hole */ 400 401 #ifdef CONFIG_NET_DMA 402 dma_cookie_t dma_cookie; 403 #endif 404 #ifdef CONFIG_NETWORK_SECMARK 405 __u32 secmark; 406 #endif 407 union { 408 __u32 mark; 409 __u32 dropcount; 410 }; 411 412 __u16 vlan_tci; 413 414 sk_buff_data_t transport_header; 415 sk_buff_data_t network_header; 416 sk_buff_data_t mac_header; 417 /* These elements must be at the end, see alloc_skb() for details. */ 418 sk_buff_data_t tail; 419 sk_buff_data_t end; 420 unsigned char *head, 421 *data; 422 unsigned int truesize; 423 atomic_t users; 424 }; 425 426 #ifdef __KERNEL__ 427 /* 428 * Handling routines are only of interest to the kernel 429 */ 430 #include <linux/slab.h> 431 432 #include <asm/system.h> 433 434 /* 435 * skb might have a dst pointer attached, refcounted or not. 436 * _skb_refdst low order bit is set if refcount was _not_ taken 437 */ 438 #define SKB_DST_NOREF 1UL 439 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 440 441 /** 442 * skb_dst - returns skb dst_entry 443 * @skb: buffer 444 * 445 * Returns skb dst_entry, regardless of reference taken or not. 446 */ 447 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 448 { 449 /* If refdst was not refcounted, check we still are in a 450 * rcu_read_lock section 451 */ 452 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 453 !rcu_read_lock_held() && 454 !rcu_read_lock_bh_held()); 455 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 456 } 457 458 /** 459 * skb_dst_set - sets skb dst 460 * @skb: buffer 461 * @dst: dst entry 462 * 463 * Sets skb dst, assuming a reference was taken on dst and should 464 * be released by skb_dst_drop() 465 */ 466 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 467 { 468 skb->_skb_refdst = (unsigned long)dst; 469 } 470 471 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 472 473 /** 474 * skb_dst_is_noref - Test if skb dst isnt refcounted 475 * @skb: buffer 476 */ 477 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 478 { 479 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 480 } 481 482 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 483 { 484 return (struct rtable *)skb_dst(skb); 485 } 486 487 extern void kfree_skb(struct sk_buff *skb); 488 extern void consume_skb(struct sk_buff *skb); 489 extern void __kfree_skb(struct sk_buff *skb); 490 extern struct sk_buff *__alloc_skb(unsigned int size, 491 gfp_t priority, int fclone, int node); 492 static inline struct sk_buff *alloc_skb(unsigned int size, 493 gfp_t priority) 494 { 495 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 496 } 497 498 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 499 gfp_t priority) 500 { 501 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 502 } 503 504 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 505 506 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 507 extern struct sk_buff *skb_clone(struct sk_buff *skb, 508 gfp_t priority); 509 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 510 gfp_t priority); 511 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 512 gfp_t gfp_mask); 513 extern int pskb_expand_head(struct sk_buff *skb, 514 int nhead, int ntail, 515 gfp_t gfp_mask); 516 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 517 unsigned int headroom); 518 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 519 int newheadroom, int newtailroom, 520 gfp_t priority); 521 extern int skb_to_sgvec(struct sk_buff *skb, 522 struct scatterlist *sg, int offset, 523 int len); 524 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 525 struct sk_buff **trailer); 526 extern int skb_pad(struct sk_buff *skb, int pad); 527 #define dev_kfree_skb(a) consume_skb(a) 528 529 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 530 int getfrag(void *from, char *to, int offset, 531 int len,int odd, struct sk_buff *skb), 532 void *from, int length); 533 534 struct skb_seq_state { 535 __u32 lower_offset; 536 __u32 upper_offset; 537 __u32 frag_idx; 538 __u32 stepped_offset; 539 struct sk_buff *root_skb; 540 struct sk_buff *cur_skb; 541 __u8 *frag_data; 542 }; 543 544 extern void skb_prepare_seq_read(struct sk_buff *skb, 545 unsigned int from, unsigned int to, 546 struct skb_seq_state *st); 547 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 548 struct skb_seq_state *st); 549 extern void skb_abort_seq_read(struct skb_seq_state *st); 550 551 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 552 unsigned int to, struct ts_config *config, 553 struct ts_state *state); 554 555 extern __u32 __skb_get_rxhash(struct sk_buff *skb); 556 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 557 { 558 if (!skb->rxhash) 559 skb->rxhash = __skb_get_rxhash(skb); 560 561 return skb->rxhash; 562 } 563 564 #ifdef NET_SKBUFF_DATA_USES_OFFSET 565 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 566 { 567 return skb->head + skb->end; 568 } 569 #else 570 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 571 { 572 return skb->end; 573 } 574 #endif 575 576 /* Internal */ 577 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 578 579 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 580 { 581 return &skb_shinfo(skb)->hwtstamps; 582 } 583 584 /** 585 * skb_queue_empty - check if a queue is empty 586 * @list: queue head 587 * 588 * Returns true if the queue is empty, false otherwise. 589 */ 590 static inline int skb_queue_empty(const struct sk_buff_head *list) 591 { 592 return list->next == (struct sk_buff *)list; 593 } 594 595 /** 596 * skb_queue_is_last - check if skb is the last entry in the queue 597 * @list: queue head 598 * @skb: buffer 599 * 600 * Returns true if @skb is the last buffer on the list. 601 */ 602 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 603 const struct sk_buff *skb) 604 { 605 return skb->next == (struct sk_buff *)list; 606 } 607 608 /** 609 * skb_queue_is_first - check if skb is the first entry in the queue 610 * @list: queue head 611 * @skb: buffer 612 * 613 * Returns true if @skb is the first buffer on the list. 614 */ 615 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 616 const struct sk_buff *skb) 617 { 618 return skb->prev == (struct sk_buff *)list; 619 } 620 621 /** 622 * skb_queue_next - return the next packet in the queue 623 * @list: queue head 624 * @skb: current buffer 625 * 626 * Return the next packet in @list after @skb. It is only valid to 627 * call this if skb_queue_is_last() evaluates to false. 628 */ 629 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 630 const struct sk_buff *skb) 631 { 632 /* This BUG_ON may seem severe, but if we just return then we 633 * are going to dereference garbage. 634 */ 635 BUG_ON(skb_queue_is_last(list, skb)); 636 return skb->next; 637 } 638 639 /** 640 * skb_queue_prev - return the prev packet in the queue 641 * @list: queue head 642 * @skb: current buffer 643 * 644 * Return the prev packet in @list before @skb. It is only valid to 645 * call this if skb_queue_is_first() evaluates to false. 646 */ 647 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 648 const struct sk_buff *skb) 649 { 650 /* This BUG_ON may seem severe, but if we just return then we 651 * are going to dereference garbage. 652 */ 653 BUG_ON(skb_queue_is_first(list, skb)); 654 return skb->prev; 655 } 656 657 /** 658 * skb_get - reference buffer 659 * @skb: buffer to reference 660 * 661 * Makes another reference to a socket buffer and returns a pointer 662 * to the buffer. 663 */ 664 static inline struct sk_buff *skb_get(struct sk_buff *skb) 665 { 666 atomic_inc(&skb->users); 667 return skb; 668 } 669 670 /* 671 * If users == 1, we are the only owner and are can avoid redundant 672 * atomic change. 673 */ 674 675 /** 676 * skb_cloned - is the buffer a clone 677 * @skb: buffer to check 678 * 679 * Returns true if the buffer was generated with skb_clone() and is 680 * one of multiple shared copies of the buffer. Cloned buffers are 681 * shared data so must not be written to under normal circumstances. 682 */ 683 static inline int skb_cloned(const struct sk_buff *skb) 684 { 685 return skb->cloned && 686 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 687 } 688 689 /** 690 * skb_header_cloned - is the header a clone 691 * @skb: buffer to check 692 * 693 * Returns true if modifying the header part of the buffer requires 694 * the data to be copied. 695 */ 696 static inline int skb_header_cloned(const struct sk_buff *skb) 697 { 698 int dataref; 699 700 if (!skb->cloned) 701 return 0; 702 703 dataref = atomic_read(&skb_shinfo(skb)->dataref); 704 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 705 return dataref != 1; 706 } 707 708 /** 709 * skb_header_release - release reference to header 710 * @skb: buffer to operate on 711 * 712 * Drop a reference to the header part of the buffer. This is done 713 * by acquiring a payload reference. You must not read from the header 714 * part of skb->data after this. 715 */ 716 static inline void skb_header_release(struct sk_buff *skb) 717 { 718 BUG_ON(skb->nohdr); 719 skb->nohdr = 1; 720 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 721 } 722 723 /** 724 * skb_shared - is the buffer shared 725 * @skb: buffer to check 726 * 727 * Returns true if more than one person has a reference to this 728 * buffer. 729 */ 730 static inline int skb_shared(const struct sk_buff *skb) 731 { 732 return atomic_read(&skb->users) != 1; 733 } 734 735 /** 736 * skb_share_check - check if buffer is shared and if so clone it 737 * @skb: buffer to check 738 * @pri: priority for memory allocation 739 * 740 * If the buffer is shared the buffer is cloned and the old copy 741 * drops a reference. A new clone with a single reference is returned. 742 * If the buffer is not shared the original buffer is returned. When 743 * being called from interrupt status or with spinlocks held pri must 744 * be GFP_ATOMIC. 745 * 746 * NULL is returned on a memory allocation failure. 747 */ 748 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 749 gfp_t pri) 750 { 751 might_sleep_if(pri & __GFP_WAIT); 752 if (skb_shared(skb)) { 753 struct sk_buff *nskb = skb_clone(skb, pri); 754 kfree_skb(skb); 755 skb = nskb; 756 } 757 return skb; 758 } 759 760 /* 761 * Copy shared buffers into a new sk_buff. We effectively do COW on 762 * packets to handle cases where we have a local reader and forward 763 * and a couple of other messy ones. The normal one is tcpdumping 764 * a packet thats being forwarded. 765 */ 766 767 /** 768 * skb_unshare - make a copy of a shared buffer 769 * @skb: buffer to check 770 * @pri: priority for memory allocation 771 * 772 * If the socket buffer is a clone then this function creates a new 773 * copy of the data, drops a reference count on the old copy and returns 774 * the new copy with the reference count at 1. If the buffer is not a clone 775 * the original buffer is returned. When called with a spinlock held or 776 * from interrupt state @pri must be %GFP_ATOMIC 777 * 778 * %NULL is returned on a memory allocation failure. 779 */ 780 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 781 gfp_t pri) 782 { 783 might_sleep_if(pri & __GFP_WAIT); 784 if (skb_cloned(skb)) { 785 struct sk_buff *nskb = skb_copy(skb, pri); 786 kfree_skb(skb); /* Free our shared copy */ 787 skb = nskb; 788 } 789 return skb; 790 } 791 792 /** 793 * skb_peek - peek at the head of an &sk_buff_head 794 * @list_: list to peek at 795 * 796 * Peek an &sk_buff. Unlike most other operations you _MUST_ 797 * be careful with this one. A peek leaves the buffer on the 798 * list and someone else may run off with it. You must hold 799 * the appropriate locks or have a private queue to do this. 800 * 801 * Returns %NULL for an empty list or a pointer to the head element. 802 * The reference count is not incremented and the reference is therefore 803 * volatile. Use with caution. 804 */ 805 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 806 { 807 struct sk_buff *list = ((struct sk_buff *)list_)->next; 808 if (list == (struct sk_buff *)list_) 809 list = NULL; 810 return list; 811 } 812 813 /** 814 * skb_peek_tail - peek at the tail of an &sk_buff_head 815 * @list_: list to peek at 816 * 817 * Peek an &sk_buff. Unlike most other operations you _MUST_ 818 * be careful with this one. A peek leaves the buffer on the 819 * list and someone else may run off with it. You must hold 820 * the appropriate locks or have a private queue to do this. 821 * 822 * Returns %NULL for an empty list or a pointer to the tail element. 823 * The reference count is not incremented and the reference is therefore 824 * volatile. Use with caution. 825 */ 826 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 827 { 828 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 829 if (list == (struct sk_buff *)list_) 830 list = NULL; 831 return list; 832 } 833 834 /** 835 * skb_queue_len - get queue length 836 * @list_: list to measure 837 * 838 * Return the length of an &sk_buff queue. 839 */ 840 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 841 { 842 return list_->qlen; 843 } 844 845 /** 846 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 847 * @list: queue to initialize 848 * 849 * This initializes only the list and queue length aspects of 850 * an sk_buff_head object. This allows to initialize the list 851 * aspects of an sk_buff_head without reinitializing things like 852 * the spinlock. It can also be used for on-stack sk_buff_head 853 * objects where the spinlock is known to not be used. 854 */ 855 static inline void __skb_queue_head_init(struct sk_buff_head *list) 856 { 857 list->prev = list->next = (struct sk_buff *)list; 858 list->qlen = 0; 859 } 860 861 /* 862 * This function creates a split out lock class for each invocation; 863 * this is needed for now since a whole lot of users of the skb-queue 864 * infrastructure in drivers have different locking usage (in hardirq) 865 * than the networking core (in softirq only). In the long run either the 866 * network layer or drivers should need annotation to consolidate the 867 * main types of usage into 3 classes. 868 */ 869 static inline void skb_queue_head_init(struct sk_buff_head *list) 870 { 871 spin_lock_init(&list->lock); 872 __skb_queue_head_init(list); 873 } 874 875 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 876 struct lock_class_key *class) 877 { 878 skb_queue_head_init(list); 879 lockdep_set_class(&list->lock, class); 880 } 881 882 /* 883 * Insert an sk_buff on a list. 884 * 885 * The "__skb_xxxx()" functions are the non-atomic ones that 886 * can only be called with interrupts disabled. 887 */ 888 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 889 static inline void __skb_insert(struct sk_buff *newsk, 890 struct sk_buff *prev, struct sk_buff *next, 891 struct sk_buff_head *list) 892 { 893 newsk->next = next; 894 newsk->prev = prev; 895 next->prev = prev->next = newsk; 896 list->qlen++; 897 } 898 899 static inline void __skb_queue_splice(const struct sk_buff_head *list, 900 struct sk_buff *prev, 901 struct sk_buff *next) 902 { 903 struct sk_buff *first = list->next; 904 struct sk_buff *last = list->prev; 905 906 first->prev = prev; 907 prev->next = first; 908 909 last->next = next; 910 next->prev = last; 911 } 912 913 /** 914 * skb_queue_splice - join two skb lists, this is designed for stacks 915 * @list: the new list to add 916 * @head: the place to add it in the first list 917 */ 918 static inline void skb_queue_splice(const struct sk_buff_head *list, 919 struct sk_buff_head *head) 920 { 921 if (!skb_queue_empty(list)) { 922 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 923 head->qlen += list->qlen; 924 } 925 } 926 927 /** 928 * skb_queue_splice - join two skb lists and reinitialise the emptied list 929 * @list: the new list to add 930 * @head: the place to add it in the first list 931 * 932 * The list at @list is reinitialised 933 */ 934 static inline void skb_queue_splice_init(struct sk_buff_head *list, 935 struct sk_buff_head *head) 936 { 937 if (!skb_queue_empty(list)) { 938 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 939 head->qlen += list->qlen; 940 __skb_queue_head_init(list); 941 } 942 } 943 944 /** 945 * skb_queue_splice_tail - join two skb lists, each list being a queue 946 * @list: the new list to add 947 * @head: the place to add it in the first list 948 */ 949 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 950 struct sk_buff_head *head) 951 { 952 if (!skb_queue_empty(list)) { 953 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 954 head->qlen += list->qlen; 955 } 956 } 957 958 /** 959 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 960 * @list: the new list to add 961 * @head: the place to add it in the first list 962 * 963 * Each of the lists is a queue. 964 * The list at @list is reinitialised 965 */ 966 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 967 struct sk_buff_head *head) 968 { 969 if (!skb_queue_empty(list)) { 970 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 971 head->qlen += list->qlen; 972 __skb_queue_head_init(list); 973 } 974 } 975 976 /** 977 * __skb_queue_after - queue a buffer at the list head 978 * @list: list to use 979 * @prev: place after this buffer 980 * @newsk: buffer to queue 981 * 982 * Queue a buffer int the middle of a list. This function takes no locks 983 * and you must therefore hold required locks before calling it. 984 * 985 * A buffer cannot be placed on two lists at the same time. 986 */ 987 static inline void __skb_queue_after(struct sk_buff_head *list, 988 struct sk_buff *prev, 989 struct sk_buff *newsk) 990 { 991 __skb_insert(newsk, prev, prev->next, list); 992 } 993 994 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 995 struct sk_buff_head *list); 996 997 static inline void __skb_queue_before(struct sk_buff_head *list, 998 struct sk_buff *next, 999 struct sk_buff *newsk) 1000 { 1001 __skb_insert(newsk, next->prev, next, list); 1002 } 1003 1004 /** 1005 * __skb_queue_head - queue a buffer at the list head 1006 * @list: list to use 1007 * @newsk: buffer to queue 1008 * 1009 * Queue a buffer at the start of a list. This function takes no locks 1010 * and you must therefore hold required locks before calling it. 1011 * 1012 * A buffer cannot be placed on two lists at the same time. 1013 */ 1014 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1015 static inline void __skb_queue_head(struct sk_buff_head *list, 1016 struct sk_buff *newsk) 1017 { 1018 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1019 } 1020 1021 /** 1022 * __skb_queue_tail - queue a buffer at the list tail 1023 * @list: list to use 1024 * @newsk: buffer to queue 1025 * 1026 * Queue a buffer at the end of a list. This function takes no locks 1027 * and you must therefore hold required locks before calling it. 1028 * 1029 * A buffer cannot be placed on two lists at the same time. 1030 */ 1031 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1032 static inline void __skb_queue_tail(struct sk_buff_head *list, 1033 struct sk_buff *newsk) 1034 { 1035 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1036 } 1037 1038 /* 1039 * remove sk_buff from list. _Must_ be called atomically, and with 1040 * the list known.. 1041 */ 1042 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1043 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1044 { 1045 struct sk_buff *next, *prev; 1046 1047 list->qlen--; 1048 next = skb->next; 1049 prev = skb->prev; 1050 skb->next = skb->prev = NULL; 1051 next->prev = prev; 1052 prev->next = next; 1053 } 1054 1055 /** 1056 * __skb_dequeue - remove from the head of the queue 1057 * @list: list to dequeue from 1058 * 1059 * Remove the head of the list. This function does not take any locks 1060 * so must be used with appropriate locks held only. The head item is 1061 * returned or %NULL if the list is empty. 1062 */ 1063 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1064 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1065 { 1066 struct sk_buff *skb = skb_peek(list); 1067 if (skb) 1068 __skb_unlink(skb, list); 1069 return skb; 1070 } 1071 1072 /** 1073 * __skb_dequeue_tail - remove from the tail of the queue 1074 * @list: list to dequeue from 1075 * 1076 * Remove the tail of the list. This function does not take any locks 1077 * so must be used with appropriate locks held only. The tail item is 1078 * returned or %NULL if the list is empty. 1079 */ 1080 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1081 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1082 { 1083 struct sk_buff *skb = skb_peek_tail(list); 1084 if (skb) 1085 __skb_unlink(skb, list); 1086 return skb; 1087 } 1088 1089 1090 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1091 { 1092 return skb->data_len; 1093 } 1094 1095 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1096 { 1097 return skb->len - skb->data_len; 1098 } 1099 1100 static inline int skb_pagelen(const struct sk_buff *skb) 1101 { 1102 int i, len = 0; 1103 1104 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1105 len += skb_shinfo(skb)->frags[i].size; 1106 return len + skb_headlen(skb); 1107 } 1108 1109 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1110 struct page *page, int off, int size) 1111 { 1112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1113 1114 frag->page = page; 1115 frag->page_offset = off; 1116 frag->size = size; 1117 skb_shinfo(skb)->nr_frags = i + 1; 1118 } 1119 1120 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1121 int off, int size); 1122 1123 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1124 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1125 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1126 1127 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1128 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1129 { 1130 return skb->head + skb->tail; 1131 } 1132 1133 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1134 { 1135 skb->tail = skb->data - skb->head; 1136 } 1137 1138 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1139 { 1140 skb_reset_tail_pointer(skb); 1141 skb->tail += offset; 1142 } 1143 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1144 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1145 { 1146 return skb->tail; 1147 } 1148 1149 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1150 { 1151 skb->tail = skb->data; 1152 } 1153 1154 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1155 { 1156 skb->tail = skb->data + offset; 1157 } 1158 1159 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1160 1161 /* 1162 * Add data to an sk_buff 1163 */ 1164 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1165 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1166 { 1167 unsigned char *tmp = skb_tail_pointer(skb); 1168 SKB_LINEAR_ASSERT(skb); 1169 skb->tail += len; 1170 skb->len += len; 1171 return tmp; 1172 } 1173 1174 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1175 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1176 { 1177 skb->data -= len; 1178 skb->len += len; 1179 return skb->data; 1180 } 1181 1182 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1183 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1184 { 1185 skb->len -= len; 1186 BUG_ON(skb->len < skb->data_len); 1187 return skb->data += len; 1188 } 1189 1190 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1191 { 1192 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1193 } 1194 1195 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1196 1197 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1198 { 1199 if (len > skb_headlen(skb) && 1200 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1201 return NULL; 1202 skb->len -= len; 1203 return skb->data += len; 1204 } 1205 1206 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1207 { 1208 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1209 } 1210 1211 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1212 { 1213 if (likely(len <= skb_headlen(skb))) 1214 return 1; 1215 if (unlikely(len > skb->len)) 1216 return 0; 1217 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1218 } 1219 1220 /** 1221 * skb_headroom - bytes at buffer head 1222 * @skb: buffer to check 1223 * 1224 * Return the number of bytes of free space at the head of an &sk_buff. 1225 */ 1226 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1227 { 1228 return skb->data - skb->head; 1229 } 1230 1231 /** 1232 * skb_tailroom - bytes at buffer end 1233 * @skb: buffer to check 1234 * 1235 * Return the number of bytes of free space at the tail of an sk_buff 1236 */ 1237 static inline int skb_tailroom(const struct sk_buff *skb) 1238 { 1239 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1240 } 1241 1242 /** 1243 * skb_reserve - adjust headroom 1244 * @skb: buffer to alter 1245 * @len: bytes to move 1246 * 1247 * Increase the headroom of an empty &sk_buff by reducing the tail 1248 * room. This is only allowed for an empty buffer. 1249 */ 1250 static inline void skb_reserve(struct sk_buff *skb, int len) 1251 { 1252 skb->data += len; 1253 skb->tail += len; 1254 } 1255 1256 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1257 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1258 { 1259 return skb->head + skb->transport_header; 1260 } 1261 1262 static inline void skb_reset_transport_header(struct sk_buff *skb) 1263 { 1264 skb->transport_header = skb->data - skb->head; 1265 } 1266 1267 static inline void skb_set_transport_header(struct sk_buff *skb, 1268 const int offset) 1269 { 1270 skb_reset_transport_header(skb); 1271 skb->transport_header += offset; 1272 } 1273 1274 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1275 { 1276 return skb->head + skb->network_header; 1277 } 1278 1279 static inline void skb_reset_network_header(struct sk_buff *skb) 1280 { 1281 skb->network_header = skb->data - skb->head; 1282 } 1283 1284 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1285 { 1286 skb_reset_network_header(skb); 1287 skb->network_header += offset; 1288 } 1289 1290 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1291 { 1292 return skb->head + skb->mac_header; 1293 } 1294 1295 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1296 { 1297 return skb->mac_header != ~0U; 1298 } 1299 1300 static inline void skb_reset_mac_header(struct sk_buff *skb) 1301 { 1302 skb->mac_header = skb->data - skb->head; 1303 } 1304 1305 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1306 { 1307 skb_reset_mac_header(skb); 1308 skb->mac_header += offset; 1309 } 1310 1311 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1312 1313 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1314 { 1315 return skb->transport_header; 1316 } 1317 1318 static inline void skb_reset_transport_header(struct sk_buff *skb) 1319 { 1320 skb->transport_header = skb->data; 1321 } 1322 1323 static inline void skb_set_transport_header(struct sk_buff *skb, 1324 const int offset) 1325 { 1326 skb->transport_header = skb->data + offset; 1327 } 1328 1329 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1330 { 1331 return skb->network_header; 1332 } 1333 1334 static inline void skb_reset_network_header(struct sk_buff *skb) 1335 { 1336 skb->network_header = skb->data; 1337 } 1338 1339 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1340 { 1341 skb->network_header = skb->data + offset; 1342 } 1343 1344 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1345 { 1346 return skb->mac_header; 1347 } 1348 1349 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1350 { 1351 return skb->mac_header != NULL; 1352 } 1353 1354 static inline void skb_reset_mac_header(struct sk_buff *skb) 1355 { 1356 skb->mac_header = skb->data; 1357 } 1358 1359 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1360 { 1361 skb->mac_header = skb->data + offset; 1362 } 1363 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1364 1365 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1366 { 1367 return skb->csum_start - skb_headroom(skb); 1368 } 1369 1370 static inline int skb_transport_offset(const struct sk_buff *skb) 1371 { 1372 return skb_transport_header(skb) - skb->data; 1373 } 1374 1375 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1376 { 1377 return skb->transport_header - skb->network_header; 1378 } 1379 1380 static inline int skb_network_offset(const struct sk_buff *skb) 1381 { 1382 return skb_network_header(skb) - skb->data; 1383 } 1384 1385 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1386 { 1387 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1388 } 1389 1390 /* 1391 * CPUs often take a performance hit when accessing unaligned memory 1392 * locations. The actual performance hit varies, it can be small if the 1393 * hardware handles it or large if we have to take an exception and fix it 1394 * in software. 1395 * 1396 * Since an ethernet header is 14 bytes network drivers often end up with 1397 * the IP header at an unaligned offset. The IP header can be aligned by 1398 * shifting the start of the packet by 2 bytes. Drivers should do this 1399 * with: 1400 * 1401 * skb_reserve(skb, NET_IP_ALIGN); 1402 * 1403 * The downside to this alignment of the IP header is that the DMA is now 1404 * unaligned. On some architectures the cost of an unaligned DMA is high 1405 * and this cost outweighs the gains made by aligning the IP header. 1406 * 1407 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1408 * to be overridden. 1409 */ 1410 #ifndef NET_IP_ALIGN 1411 #define NET_IP_ALIGN 2 1412 #endif 1413 1414 /* 1415 * The networking layer reserves some headroom in skb data (via 1416 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1417 * the header has to grow. In the default case, if the header has to grow 1418 * 32 bytes or less we avoid the reallocation. 1419 * 1420 * Unfortunately this headroom changes the DMA alignment of the resulting 1421 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1422 * on some architectures. An architecture can override this value, 1423 * perhaps setting it to a cacheline in size (since that will maintain 1424 * cacheline alignment of the DMA). It must be a power of 2. 1425 * 1426 * Various parts of the networking layer expect at least 32 bytes of 1427 * headroom, you should not reduce this. 1428 * 1429 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1430 * to reduce average number of cache lines per packet. 1431 * get_rps_cpus() for example only access one 64 bytes aligned block : 1432 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1433 */ 1434 #ifndef NET_SKB_PAD 1435 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1436 #endif 1437 1438 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1439 1440 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1441 { 1442 if (unlikely(skb->data_len)) { 1443 WARN_ON(1); 1444 return; 1445 } 1446 skb->len = len; 1447 skb_set_tail_pointer(skb, len); 1448 } 1449 1450 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1451 1452 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1453 { 1454 if (skb->data_len) 1455 return ___pskb_trim(skb, len); 1456 __skb_trim(skb, len); 1457 return 0; 1458 } 1459 1460 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1461 { 1462 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1463 } 1464 1465 /** 1466 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1467 * @skb: buffer to alter 1468 * @len: new length 1469 * 1470 * This is identical to pskb_trim except that the caller knows that 1471 * the skb is not cloned so we should never get an error due to out- 1472 * of-memory. 1473 */ 1474 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1475 { 1476 int err = pskb_trim(skb, len); 1477 BUG_ON(err); 1478 } 1479 1480 /** 1481 * skb_orphan - orphan a buffer 1482 * @skb: buffer to orphan 1483 * 1484 * If a buffer currently has an owner then we call the owner's 1485 * destructor function and make the @skb unowned. The buffer continues 1486 * to exist but is no longer charged to its former owner. 1487 */ 1488 static inline void skb_orphan(struct sk_buff *skb) 1489 { 1490 if (skb->destructor) 1491 skb->destructor(skb); 1492 skb->destructor = NULL; 1493 skb->sk = NULL; 1494 } 1495 1496 /** 1497 * __skb_queue_purge - empty a list 1498 * @list: list to empty 1499 * 1500 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1501 * the list and one reference dropped. This function does not take the 1502 * list lock and the caller must hold the relevant locks to use it. 1503 */ 1504 extern void skb_queue_purge(struct sk_buff_head *list); 1505 static inline void __skb_queue_purge(struct sk_buff_head *list) 1506 { 1507 struct sk_buff *skb; 1508 while ((skb = __skb_dequeue(list)) != NULL) 1509 kfree_skb(skb); 1510 } 1511 1512 /** 1513 * __dev_alloc_skb - allocate an skbuff for receiving 1514 * @length: length to allocate 1515 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1516 * 1517 * Allocate a new &sk_buff and assign it a usage count of one. The 1518 * buffer has unspecified headroom built in. Users should allocate 1519 * the headroom they think they need without accounting for the 1520 * built in space. The built in space is used for optimisations. 1521 * 1522 * %NULL is returned if there is no free memory. 1523 */ 1524 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1525 gfp_t gfp_mask) 1526 { 1527 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1528 if (likely(skb)) 1529 skb_reserve(skb, NET_SKB_PAD); 1530 return skb; 1531 } 1532 1533 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1534 1535 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1536 unsigned int length, gfp_t gfp_mask); 1537 1538 /** 1539 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1540 * @dev: network device to receive on 1541 * @length: length to allocate 1542 * 1543 * Allocate a new &sk_buff and assign it a usage count of one. The 1544 * buffer has unspecified headroom built in. Users should allocate 1545 * the headroom they think they need without accounting for the 1546 * built in space. The built in space is used for optimisations. 1547 * 1548 * %NULL is returned if there is no free memory. Although this function 1549 * allocates memory it can be called from an interrupt. 1550 */ 1551 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1552 unsigned int length) 1553 { 1554 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1555 } 1556 1557 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1558 unsigned int length) 1559 { 1560 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1561 1562 if (NET_IP_ALIGN && skb) 1563 skb_reserve(skb, NET_IP_ALIGN); 1564 return skb; 1565 } 1566 1567 /** 1568 * __netdev_alloc_page - allocate a page for ps-rx on a specific device 1569 * @dev: network device to receive on 1570 * @gfp_mask: alloc_pages_node mask 1571 * 1572 * Allocate a new page. dev currently unused. 1573 * 1574 * %NULL is returned if there is no free memory. 1575 */ 1576 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 1577 { 1578 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); 1579 } 1580 1581 /** 1582 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1583 * @dev: network device to receive on 1584 * 1585 * Allocate a new page. dev currently unused. 1586 * 1587 * %NULL is returned if there is no free memory. 1588 */ 1589 static inline struct page *netdev_alloc_page(struct net_device *dev) 1590 { 1591 return __netdev_alloc_page(dev, GFP_ATOMIC); 1592 } 1593 1594 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1595 { 1596 __free_page(page); 1597 } 1598 1599 /** 1600 * skb_clone_writable - is the header of a clone writable 1601 * @skb: buffer to check 1602 * @len: length up to which to write 1603 * 1604 * Returns true if modifying the header part of the cloned buffer 1605 * does not requires the data to be copied. 1606 */ 1607 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1608 { 1609 return !skb_header_cloned(skb) && 1610 skb_headroom(skb) + len <= skb->hdr_len; 1611 } 1612 1613 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1614 int cloned) 1615 { 1616 int delta = 0; 1617 1618 if (headroom < NET_SKB_PAD) 1619 headroom = NET_SKB_PAD; 1620 if (headroom > skb_headroom(skb)) 1621 delta = headroom - skb_headroom(skb); 1622 1623 if (delta || cloned) 1624 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1625 GFP_ATOMIC); 1626 return 0; 1627 } 1628 1629 /** 1630 * skb_cow - copy header of skb when it is required 1631 * @skb: buffer to cow 1632 * @headroom: needed headroom 1633 * 1634 * If the skb passed lacks sufficient headroom or its data part 1635 * is shared, data is reallocated. If reallocation fails, an error 1636 * is returned and original skb is not changed. 1637 * 1638 * The result is skb with writable area skb->head...skb->tail 1639 * and at least @headroom of space at head. 1640 */ 1641 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1642 { 1643 return __skb_cow(skb, headroom, skb_cloned(skb)); 1644 } 1645 1646 /** 1647 * skb_cow_head - skb_cow but only making the head writable 1648 * @skb: buffer to cow 1649 * @headroom: needed headroom 1650 * 1651 * This function is identical to skb_cow except that we replace the 1652 * skb_cloned check by skb_header_cloned. It should be used when 1653 * you only need to push on some header and do not need to modify 1654 * the data. 1655 */ 1656 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1657 { 1658 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1659 } 1660 1661 /** 1662 * skb_padto - pad an skbuff up to a minimal size 1663 * @skb: buffer to pad 1664 * @len: minimal length 1665 * 1666 * Pads up a buffer to ensure the trailing bytes exist and are 1667 * blanked. If the buffer already contains sufficient data it 1668 * is untouched. Otherwise it is extended. Returns zero on 1669 * success. The skb is freed on error. 1670 */ 1671 1672 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1673 { 1674 unsigned int size = skb->len; 1675 if (likely(size >= len)) 1676 return 0; 1677 return skb_pad(skb, len - size); 1678 } 1679 1680 static inline int skb_add_data(struct sk_buff *skb, 1681 char __user *from, int copy) 1682 { 1683 const int off = skb->len; 1684 1685 if (skb->ip_summed == CHECKSUM_NONE) { 1686 int err = 0; 1687 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1688 copy, 0, &err); 1689 if (!err) { 1690 skb->csum = csum_block_add(skb->csum, csum, off); 1691 return 0; 1692 } 1693 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1694 return 0; 1695 1696 __skb_trim(skb, off); 1697 return -EFAULT; 1698 } 1699 1700 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1701 struct page *page, int off) 1702 { 1703 if (i) { 1704 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1705 1706 return page == frag->page && 1707 off == frag->page_offset + frag->size; 1708 } 1709 return 0; 1710 } 1711 1712 static inline int __skb_linearize(struct sk_buff *skb) 1713 { 1714 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1715 } 1716 1717 /** 1718 * skb_linearize - convert paged skb to linear one 1719 * @skb: buffer to linarize 1720 * 1721 * If there is no free memory -ENOMEM is returned, otherwise zero 1722 * is returned and the old skb data released. 1723 */ 1724 static inline int skb_linearize(struct sk_buff *skb) 1725 { 1726 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1727 } 1728 1729 /** 1730 * skb_linearize_cow - make sure skb is linear and writable 1731 * @skb: buffer to process 1732 * 1733 * If there is no free memory -ENOMEM is returned, otherwise zero 1734 * is returned and the old skb data released. 1735 */ 1736 static inline int skb_linearize_cow(struct sk_buff *skb) 1737 { 1738 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1739 __skb_linearize(skb) : 0; 1740 } 1741 1742 /** 1743 * skb_postpull_rcsum - update checksum for received skb after pull 1744 * @skb: buffer to update 1745 * @start: start of data before pull 1746 * @len: length of data pulled 1747 * 1748 * After doing a pull on a received packet, you need to call this to 1749 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1750 * CHECKSUM_NONE so that it can be recomputed from scratch. 1751 */ 1752 1753 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1754 const void *start, unsigned int len) 1755 { 1756 if (skb->ip_summed == CHECKSUM_COMPLETE) 1757 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1758 } 1759 1760 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1761 1762 /** 1763 * pskb_trim_rcsum - trim received skb and update checksum 1764 * @skb: buffer to trim 1765 * @len: new length 1766 * 1767 * This is exactly the same as pskb_trim except that it ensures the 1768 * checksum of received packets are still valid after the operation. 1769 */ 1770 1771 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1772 { 1773 if (likely(len >= skb->len)) 1774 return 0; 1775 if (skb->ip_summed == CHECKSUM_COMPLETE) 1776 skb->ip_summed = CHECKSUM_NONE; 1777 return __pskb_trim(skb, len); 1778 } 1779 1780 #define skb_queue_walk(queue, skb) \ 1781 for (skb = (queue)->next; \ 1782 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1783 skb = skb->next) 1784 1785 #define skb_queue_walk_safe(queue, skb, tmp) \ 1786 for (skb = (queue)->next, tmp = skb->next; \ 1787 skb != (struct sk_buff *)(queue); \ 1788 skb = tmp, tmp = skb->next) 1789 1790 #define skb_queue_walk_from(queue, skb) \ 1791 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1792 skb = skb->next) 1793 1794 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1795 for (tmp = skb->next; \ 1796 skb != (struct sk_buff *)(queue); \ 1797 skb = tmp, tmp = skb->next) 1798 1799 #define skb_queue_reverse_walk(queue, skb) \ 1800 for (skb = (queue)->prev; \ 1801 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1802 skb = skb->prev) 1803 1804 1805 static inline bool skb_has_frag_list(const struct sk_buff *skb) 1806 { 1807 return skb_shinfo(skb)->frag_list != NULL; 1808 } 1809 1810 static inline void skb_frag_list_init(struct sk_buff *skb) 1811 { 1812 skb_shinfo(skb)->frag_list = NULL; 1813 } 1814 1815 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1816 { 1817 frag->next = skb_shinfo(skb)->frag_list; 1818 skb_shinfo(skb)->frag_list = frag; 1819 } 1820 1821 #define skb_walk_frags(skb, iter) \ 1822 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1823 1824 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1825 int *peeked, int *err); 1826 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1827 int noblock, int *err); 1828 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1829 struct poll_table_struct *wait); 1830 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1831 int offset, struct iovec *to, 1832 int size); 1833 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1834 int hlen, 1835 struct iovec *iov); 1836 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1837 int offset, 1838 const struct iovec *from, 1839 int from_offset, 1840 int len); 1841 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1842 int offset, 1843 const struct iovec *to, 1844 int to_offset, 1845 int size); 1846 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1847 extern void skb_free_datagram_locked(struct sock *sk, 1848 struct sk_buff *skb); 1849 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1850 unsigned int flags); 1851 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1852 int len, __wsum csum); 1853 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1854 void *to, int len); 1855 extern int skb_store_bits(struct sk_buff *skb, int offset, 1856 const void *from, int len); 1857 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1858 int offset, u8 *to, int len, 1859 __wsum csum); 1860 extern int skb_splice_bits(struct sk_buff *skb, 1861 unsigned int offset, 1862 struct pipe_inode_info *pipe, 1863 unsigned int len, 1864 unsigned int flags); 1865 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1866 extern void skb_split(struct sk_buff *skb, 1867 struct sk_buff *skb1, const u32 len); 1868 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1869 int shiftlen); 1870 1871 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1872 1873 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1874 int len, void *buffer) 1875 { 1876 int hlen = skb_headlen(skb); 1877 1878 if (hlen - offset >= len) 1879 return skb->data + offset; 1880 1881 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1882 return NULL; 1883 1884 return buffer; 1885 } 1886 1887 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1888 void *to, 1889 const unsigned int len) 1890 { 1891 memcpy(to, skb->data, len); 1892 } 1893 1894 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1895 const int offset, void *to, 1896 const unsigned int len) 1897 { 1898 memcpy(to, skb->data + offset, len); 1899 } 1900 1901 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1902 const void *from, 1903 const unsigned int len) 1904 { 1905 memcpy(skb->data, from, len); 1906 } 1907 1908 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1909 const int offset, 1910 const void *from, 1911 const unsigned int len) 1912 { 1913 memcpy(skb->data + offset, from, len); 1914 } 1915 1916 extern void skb_init(void); 1917 1918 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1919 { 1920 return skb->tstamp; 1921 } 1922 1923 /** 1924 * skb_get_timestamp - get timestamp from a skb 1925 * @skb: skb to get stamp from 1926 * @stamp: pointer to struct timeval to store stamp in 1927 * 1928 * Timestamps are stored in the skb as offsets to a base timestamp. 1929 * This function converts the offset back to a struct timeval and stores 1930 * it in stamp. 1931 */ 1932 static inline void skb_get_timestamp(const struct sk_buff *skb, 1933 struct timeval *stamp) 1934 { 1935 *stamp = ktime_to_timeval(skb->tstamp); 1936 } 1937 1938 static inline void skb_get_timestampns(const struct sk_buff *skb, 1939 struct timespec *stamp) 1940 { 1941 *stamp = ktime_to_timespec(skb->tstamp); 1942 } 1943 1944 static inline void __net_timestamp(struct sk_buff *skb) 1945 { 1946 skb->tstamp = ktime_get_real(); 1947 } 1948 1949 static inline ktime_t net_timedelta(ktime_t t) 1950 { 1951 return ktime_sub(ktime_get_real(), t); 1952 } 1953 1954 static inline ktime_t net_invalid_timestamp(void) 1955 { 1956 return ktime_set(0, 0); 1957 } 1958 1959 extern void skb_timestamping_init(void); 1960 1961 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 1962 1963 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 1964 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 1965 1966 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 1967 1968 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 1969 { 1970 } 1971 1972 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 1973 { 1974 return false; 1975 } 1976 1977 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 1978 1979 /** 1980 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 1981 * 1982 * @skb: clone of the the original outgoing packet 1983 * @hwtstamps: hardware time stamps 1984 * 1985 */ 1986 void skb_complete_tx_timestamp(struct sk_buff *skb, 1987 struct skb_shared_hwtstamps *hwtstamps); 1988 1989 /** 1990 * skb_tstamp_tx - queue clone of skb with send time stamps 1991 * @orig_skb: the original outgoing packet 1992 * @hwtstamps: hardware time stamps, may be NULL if not available 1993 * 1994 * If the skb has a socket associated, then this function clones the 1995 * skb (thus sharing the actual data and optional structures), stores 1996 * the optional hardware time stamping information (if non NULL) or 1997 * generates a software time stamp (otherwise), then queues the clone 1998 * to the error queue of the socket. Errors are silently ignored. 1999 */ 2000 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2001 struct skb_shared_hwtstamps *hwtstamps); 2002 2003 static inline void sw_tx_timestamp(struct sk_buff *skb) 2004 { 2005 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2006 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2007 skb_tstamp_tx(skb, NULL); 2008 } 2009 2010 /** 2011 * skb_tx_timestamp() - Driver hook for transmit timestamping 2012 * 2013 * Ethernet MAC Drivers should call this function in their hard_xmit() 2014 * function as soon as possible after giving the sk_buff to the MAC 2015 * hardware, but before freeing the sk_buff. 2016 * 2017 * @skb: A socket buffer. 2018 */ 2019 static inline void skb_tx_timestamp(struct sk_buff *skb) 2020 { 2021 skb_clone_tx_timestamp(skb); 2022 sw_tx_timestamp(skb); 2023 } 2024 2025 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2026 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2027 2028 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2029 { 2030 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2031 } 2032 2033 /** 2034 * skb_checksum_complete - Calculate checksum of an entire packet 2035 * @skb: packet to process 2036 * 2037 * This function calculates the checksum over the entire packet plus 2038 * the value of skb->csum. The latter can be used to supply the 2039 * checksum of a pseudo header as used by TCP/UDP. It returns the 2040 * checksum. 2041 * 2042 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2043 * this function can be used to verify that checksum on received 2044 * packets. In that case the function should return zero if the 2045 * checksum is correct. In particular, this function will return zero 2046 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2047 * hardware has already verified the correctness of the checksum. 2048 */ 2049 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2050 { 2051 return skb_csum_unnecessary(skb) ? 2052 0 : __skb_checksum_complete(skb); 2053 } 2054 2055 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2056 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2057 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2058 { 2059 if (nfct && atomic_dec_and_test(&nfct->use)) 2060 nf_conntrack_destroy(nfct); 2061 } 2062 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2063 { 2064 if (nfct) 2065 atomic_inc(&nfct->use); 2066 } 2067 #endif 2068 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2069 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2070 { 2071 if (skb) 2072 atomic_inc(&skb->users); 2073 } 2074 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2075 { 2076 if (skb) 2077 kfree_skb(skb); 2078 } 2079 #endif 2080 #ifdef CONFIG_BRIDGE_NETFILTER 2081 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2082 { 2083 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2084 kfree(nf_bridge); 2085 } 2086 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2087 { 2088 if (nf_bridge) 2089 atomic_inc(&nf_bridge->use); 2090 } 2091 #endif /* CONFIG_BRIDGE_NETFILTER */ 2092 static inline void nf_reset(struct sk_buff *skb) 2093 { 2094 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2095 nf_conntrack_put(skb->nfct); 2096 skb->nfct = NULL; 2097 #endif 2098 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2099 nf_conntrack_put_reasm(skb->nfct_reasm); 2100 skb->nfct_reasm = NULL; 2101 #endif 2102 #ifdef CONFIG_BRIDGE_NETFILTER 2103 nf_bridge_put(skb->nf_bridge); 2104 skb->nf_bridge = NULL; 2105 #endif 2106 } 2107 2108 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2109 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2110 { 2111 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2112 dst->nfct = src->nfct; 2113 nf_conntrack_get(src->nfct); 2114 dst->nfctinfo = src->nfctinfo; 2115 #endif 2116 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2117 dst->nfct_reasm = src->nfct_reasm; 2118 nf_conntrack_get_reasm(src->nfct_reasm); 2119 #endif 2120 #ifdef CONFIG_BRIDGE_NETFILTER 2121 dst->nf_bridge = src->nf_bridge; 2122 nf_bridge_get(src->nf_bridge); 2123 #endif 2124 } 2125 2126 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2127 { 2128 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2129 nf_conntrack_put(dst->nfct); 2130 #endif 2131 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2132 nf_conntrack_put_reasm(dst->nfct_reasm); 2133 #endif 2134 #ifdef CONFIG_BRIDGE_NETFILTER 2135 nf_bridge_put(dst->nf_bridge); 2136 #endif 2137 __nf_copy(dst, src); 2138 } 2139 2140 #ifdef CONFIG_NETWORK_SECMARK 2141 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2142 { 2143 to->secmark = from->secmark; 2144 } 2145 2146 static inline void skb_init_secmark(struct sk_buff *skb) 2147 { 2148 skb->secmark = 0; 2149 } 2150 #else 2151 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2152 { } 2153 2154 static inline void skb_init_secmark(struct sk_buff *skb) 2155 { } 2156 #endif 2157 2158 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2159 { 2160 skb->queue_mapping = queue_mapping; 2161 } 2162 2163 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2164 { 2165 return skb->queue_mapping; 2166 } 2167 2168 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2169 { 2170 to->queue_mapping = from->queue_mapping; 2171 } 2172 2173 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2174 { 2175 skb->queue_mapping = rx_queue + 1; 2176 } 2177 2178 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2179 { 2180 return skb->queue_mapping - 1; 2181 } 2182 2183 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2184 { 2185 return skb->queue_mapping != 0; 2186 } 2187 2188 extern u16 __skb_tx_hash(const struct net_device *dev, 2189 const struct sk_buff *skb, 2190 unsigned int num_tx_queues); 2191 2192 #ifdef CONFIG_XFRM 2193 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2194 { 2195 return skb->sp; 2196 } 2197 #else 2198 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2199 { 2200 return NULL; 2201 } 2202 #endif 2203 2204 static inline int skb_is_gso(const struct sk_buff *skb) 2205 { 2206 return skb_shinfo(skb)->gso_size; 2207 } 2208 2209 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2210 { 2211 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2212 } 2213 2214 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2215 2216 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2217 { 2218 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2219 * wanted then gso_type will be set. */ 2220 struct skb_shared_info *shinfo = skb_shinfo(skb); 2221 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2222 unlikely(shinfo->gso_type == 0)) { 2223 __skb_warn_lro_forwarding(skb); 2224 return true; 2225 } 2226 return false; 2227 } 2228 2229 static inline void skb_forward_csum(struct sk_buff *skb) 2230 { 2231 /* Unfortunately we don't support this one. Any brave souls? */ 2232 if (skb->ip_summed == CHECKSUM_COMPLETE) 2233 skb->ip_summed = CHECKSUM_NONE; 2234 } 2235 2236 /** 2237 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2238 * @skb: skb to check 2239 * 2240 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2241 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2242 * use this helper, to document places where we make this assertion. 2243 */ 2244 static inline void skb_checksum_none_assert(struct sk_buff *skb) 2245 { 2246 #ifdef DEBUG 2247 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2248 #endif 2249 } 2250 2251 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2252 #endif /* __KERNEL__ */ 2253 #endif /* _LINUX_SKBUFF_H */ 2254