xref: /linux-6.15/include/linux/skbuff.h (revision 4f542e3d)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
133 	__u32 page_offset;
134 	__u32 size;
135 #else
136 	__u16 page_offset;
137 	__u16 size;
138 #endif
139 };
140 
141 #define HAVE_HW_TIME_STAMP
142 
143 /**
144  * struct skb_shared_hwtstamps - hardware time stamps
145  * @hwtstamp:	hardware time stamp transformed into duration
146  *		since arbitrary point in time
147  * @syststamp:	hwtstamp transformed to system time base
148  *
149  * Software time stamps generated by ktime_get_real() are stored in
150  * skb->tstamp. The relation between the different kinds of time
151  * stamps is as follows:
152  *
153  * syststamp and tstamp can be compared against each other in
154  * arbitrary combinations.  The accuracy of a
155  * syststamp/tstamp/"syststamp from other device" comparison is
156  * limited by the accuracy of the transformation into system time
157  * base. This depends on the device driver and its underlying
158  * hardware.
159  *
160  * hwtstamps can only be compared against other hwtstamps from
161  * the same device.
162  *
163  * This structure is attached to packets as part of the
164  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
165  */
166 struct skb_shared_hwtstamps {
167 	ktime_t	hwtstamp;
168 	ktime_t	syststamp;
169 };
170 
171 /* Definitions for tx_flags in struct skb_shared_info */
172 enum {
173 	/* generate hardware time stamp */
174 	SKBTX_HW_TSTAMP = 1 << 0,
175 
176 	/* generate software time stamp */
177 	SKBTX_SW_TSTAMP = 1 << 1,
178 
179 	/* device driver is going to provide hardware time stamp */
180 	SKBTX_IN_PROGRESS = 1 << 2,
181 
182 	/* ensure the originating sk reference is available on driver level */
183 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	unsigned short	nr_frags;
191 	unsigned short	gso_size;
192 	/* Warning: this field is not always filled in (UFO)! */
193 	unsigned short	gso_segs;
194 	unsigned short  gso_type;
195 	__be32          ip6_frag_id;
196 	__u8		tx_flags;
197 	struct sk_buff	*frag_list;
198 	struct skb_shared_hwtstamps hwtstamps;
199 
200 	/*
201 	 * Warning : all fields before dataref are cleared in __alloc_skb()
202 	 */
203 	atomic_t	dataref;
204 
205 	/* Intermediate layers must ensure that destructor_arg
206 	 * remains valid until skb destructor */
207 	void *		destructor_arg;
208 	/* must be last field, see pskb_expand_head() */
209 	skb_frag_t	frags[MAX_SKB_FRAGS];
210 };
211 
212 /* We divide dataref into two halves.  The higher 16 bits hold references
213  * to the payload part of skb->data.  The lower 16 bits hold references to
214  * the entire skb->data.  A clone of a headerless skb holds the length of
215  * the header in skb->hdr_len.
216  *
217  * All users must obey the rule that the skb->data reference count must be
218  * greater than or equal to the payload reference count.
219  *
220  * Holding a reference to the payload part means that the user does not
221  * care about modifications to the header part of skb->data.
222  */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225 
226 
227 enum {
228 	SKB_FCLONE_UNAVAILABLE,
229 	SKB_FCLONE_ORIG,
230 	SKB_FCLONE_CLONE,
231 };
232 
233 enum {
234 	SKB_GSO_TCPV4 = 1 << 0,
235 	SKB_GSO_UDP = 1 << 1,
236 
237 	/* This indicates the skb is from an untrusted source. */
238 	SKB_GSO_DODGY = 1 << 2,
239 
240 	/* This indicates the tcp segment has CWR set. */
241 	SKB_GSO_TCP_ECN = 1 << 3,
242 
243 	SKB_GSO_TCPV6 = 1 << 4,
244 
245 	SKB_GSO_FCOE = 1 << 5,
246 };
247 
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251 
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257 
258 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
259     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
260 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
261 #endif
262 
263 /**
264  *	struct sk_buff - socket buffer
265  *	@next: Next buffer in list
266  *	@prev: Previous buffer in list
267  *	@sk: Socket we are owned by
268  *	@tstamp: Time we arrived
269  *	@dev: Device we arrived on/are leaving by
270  *	@transport_header: Transport layer header
271  *	@network_header: Network layer header
272  *	@mac_header: Link layer header
273  *	@_skb_refdst: destination entry (with norefcount bit)
274  *	@sp: the security path, used for xfrm
275  *	@cb: Control buffer. Free for use by every layer. Put private vars here
276  *	@len: Length of actual data
277  *	@data_len: Data length
278  *	@mac_len: Length of link layer header
279  *	@hdr_len: writable header length of cloned skb
280  *	@csum: Checksum (must include start/offset pair)
281  *	@csum_start: Offset from skb->head where checksumming should start
282  *	@csum_offset: Offset from csum_start where checksum should be stored
283  *	@local_df: allow local fragmentation
284  *	@cloned: Head may be cloned (check refcnt to be sure)
285  *	@nohdr: Payload reference only, must not modify header
286  *	@pkt_type: Packet class
287  *	@fclone: skbuff clone status
288  *	@ip_summed: Driver fed us an IP checksum
289  *	@priority: Packet queueing priority
290  *	@users: User count - see {datagram,tcp}.c
291  *	@protocol: Packet protocol from driver
292  *	@truesize: Buffer size
293  *	@head: Head of buffer
294  *	@data: Data head pointer
295  *	@tail: Tail pointer
296  *	@end: End pointer
297  *	@destructor: Destruct function
298  *	@mark: Generic packet mark
299  *	@nfct: Associated connection, if any
300  *	@ipvs_property: skbuff is owned by ipvs
301  *	@peeked: this packet has been seen already, so stats have been
302  *		done for it, don't do them again
303  *	@nf_trace: netfilter packet trace flag
304  *	@nfctinfo: Relationship of this skb to the connection
305  *	@nfct_reasm: netfilter conntrack re-assembly pointer
306  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
307  *	@skb_iif: ifindex of device we arrived on
308  *	@rxhash: the packet hash computed on receive
309  *	@queue_mapping: Queue mapping for multiqueue devices
310  *	@tc_index: Traffic control index
311  *	@tc_verd: traffic control verdict
312  *	@ndisc_nodetype: router type (from link layer)
313  *	@dma_cookie: a cookie to one of several possible DMA operations
314  *		done by skb DMA functions
315  *	@secmark: security marking
316  *	@vlan_tci: vlan tag control information
317  */
318 
319 struct sk_buff {
320 	/* These two members must be first. */
321 	struct sk_buff		*next;
322 	struct sk_buff		*prev;
323 
324 	ktime_t			tstamp;
325 
326 	struct sock		*sk;
327 	struct net_device	*dev;
328 
329 	/*
330 	 * This is the control buffer. It is free to use for every
331 	 * layer. Please put your private variables there. If you
332 	 * want to keep them across layers you have to do a skb_clone()
333 	 * first. This is owned by whoever has the skb queued ATM.
334 	 */
335 	char			cb[48] __aligned(8);
336 
337 	unsigned long		_skb_refdst;
338 #ifdef CONFIG_XFRM
339 	struct	sec_path	*sp;
340 #endif
341 	unsigned int		len,
342 				data_len;
343 	__u16			mac_len,
344 				hdr_len;
345 	union {
346 		__wsum		csum;
347 		struct {
348 			__u16	csum_start;
349 			__u16	csum_offset;
350 		};
351 	};
352 	__u32			priority;
353 	kmemcheck_bitfield_begin(flags1);
354 	__u8			local_df:1,
355 				cloned:1,
356 				ip_summed:2,
357 				nohdr:1,
358 				nfctinfo:3;
359 	__u8			pkt_type:3,
360 				fclone:2,
361 				ipvs_property:1,
362 				peeked:1,
363 				nf_trace:1;
364 	kmemcheck_bitfield_end(flags1);
365 	__be16			protocol;
366 
367 	void			(*destructor)(struct sk_buff *skb);
368 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
369 	struct nf_conntrack	*nfct;
370 #endif
371 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
372 	struct sk_buff		*nfct_reasm;
373 #endif
374 #ifdef CONFIG_BRIDGE_NETFILTER
375 	struct nf_bridge_info	*nf_bridge;
376 #endif
377 
378 	int			skb_iif;
379 #ifdef CONFIG_NET_SCHED
380 	__u16			tc_index;	/* traffic control index */
381 #ifdef CONFIG_NET_CLS_ACT
382 	__u16			tc_verd;	/* traffic control verdict */
383 #endif
384 #endif
385 
386 	__u32			rxhash;
387 
388 	kmemcheck_bitfield_begin(flags2);
389 	__u16			queue_mapping:16;
390 #ifdef CONFIG_IPV6_NDISC_NODETYPE
391 	__u8			ndisc_nodetype:2,
392 				deliver_no_wcard:1;
393 #else
394 	__u8			deliver_no_wcard:1;
395 #endif
396 	__u8			ooo_okay:1;
397 	kmemcheck_bitfield_end(flags2);
398 
399 	/* 0/13 bit hole */
400 
401 #ifdef CONFIG_NET_DMA
402 	dma_cookie_t		dma_cookie;
403 #endif
404 #ifdef CONFIG_NETWORK_SECMARK
405 	__u32			secmark;
406 #endif
407 	union {
408 		__u32		mark;
409 		__u32		dropcount;
410 	};
411 
412 	__u16			vlan_tci;
413 
414 	sk_buff_data_t		transport_header;
415 	sk_buff_data_t		network_header;
416 	sk_buff_data_t		mac_header;
417 	/* These elements must be at the end, see alloc_skb() for details.  */
418 	sk_buff_data_t		tail;
419 	sk_buff_data_t		end;
420 	unsigned char		*head,
421 				*data;
422 	unsigned int		truesize;
423 	atomic_t		users;
424 };
425 
426 #ifdef __KERNEL__
427 /*
428  *	Handling routines are only of interest to the kernel
429  */
430 #include <linux/slab.h>
431 
432 #include <asm/system.h>
433 
434 /*
435  * skb might have a dst pointer attached, refcounted or not.
436  * _skb_refdst low order bit is set if refcount was _not_ taken
437  */
438 #define SKB_DST_NOREF	1UL
439 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
440 
441 /**
442  * skb_dst - returns skb dst_entry
443  * @skb: buffer
444  *
445  * Returns skb dst_entry, regardless of reference taken or not.
446  */
447 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
448 {
449 	/* If refdst was not refcounted, check we still are in a
450 	 * rcu_read_lock section
451 	 */
452 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
453 		!rcu_read_lock_held() &&
454 		!rcu_read_lock_bh_held());
455 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
456 }
457 
458 /**
459  * skb_dst_set - sets skb dst
460  * @skb: buffer
461  * @dst: dst entry
462  *
463  * Sets skb dst, assuming a reference was taken on dst and should
464  * be released by skb_dst_drop()
465  */
466 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
467 {
468 	skb->_skb_refdst = (unsigned long)dst;
469 }
470 
471 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
472 
473 /**
474  * skb_dst_is_noref - Test if skb dst isnt refcounted
475  * @skb: buffer
476  */
477 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
478 {
479 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
480 }
481 
482 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
483 {
484 	return (struct rtable *)skb_dst(skb);
485 }
486 
487 extern void kfree_skb(struct sk_buff *skb);
488 extern void consume_skb(struct sk_buff *skb);
489 extern void	       __kfree_skb(struct sk_buff *skb);
490 extern struct sk_buff *__alloc_skb(unsigned int size,
491 				   gfp_t priority, int fclone, int node);
492 static inline struct sk_buff *alloc_skb(unsigned int size,
493 					gfp_t priority)
494 {
495 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
496 }
497 
498 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
499 					       gfp_t priority)
500 {
501 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
502 }
503 
504 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
505 
506 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
507 extern struct sk_buff *skb_clone(struct sk_buff *skb,
508 				 gfp_t priority);
509 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
510 				gfp_t priority);
511 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
512 				 gfp_t gfp_mask);
513 extern int	       pskb_expand_head(struct sk_buff *skb,
514 					int nhead, int ntail,
515 					gfp_t gfp_mask);
516 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
517 					    unsigned int headroom);
518 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
519 				       int newheadroom, int newtailroom,
520 				       gfp_t priority);
521 extern int	       skb_to_sgvec(struct sk_buff *skb,
522 				    struct scatterlist *sg, int offset,
523 				    int len);
524 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
525 				    struct sk_buff **trailer);
526 extern int	       skb_pad(struct sk_buff *skb, int pad);
527 #define dev_kfree_skb(a)	consume_skb(a)
528 
529 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
530 			int getfrag(void *from, char *to, int offset,
531 			int len,int odd, struct sk_buff *skb),
532 			void *from, int length);
533 
534 struct skb_seq_state {
535 	__u32		lower_offset;
536 	__u32		upper_offset;
537 	__u32		frag_idx;
538 	__u32		stepped_offset;
539 	struct sk_buff	*root_skb;
540 	struct sk_buff	*cur_skb;
541 	__u8		*frag_data;
542 };
543 
544 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
545 					   unsigned int from, unsigned int to,
546 					   struct skb_seq_state *st);
547 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
548 				   struct skb_seq_state *st);
549 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
550 
551 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
552 				    unsigned int to, struct ts_config *config,
553 				    struct ts_state *state);
554 
555 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
556 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
557 {
558 	if (!skb->rxhash)
559 		skb->rxhash = __skb_get_rxhash(skb);
560 
561 	return skb->rxhash;
562 }
563 
564 #ifdef NET_SKBUFF_DATA_USES_OFFSET
565 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
566 {
567 	return skb->head + skb->end;
568 }
569 #else
570 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
571 {
572 	return skb->end;
573 }
574 #endif
575 
576 /* Internal */
577 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
578 
579 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
580 {
581 	return &skb_shinfo(skb)->hwtstamps;
582 }
583 
584 /**
585  *	skb_queue_empty - check if a queue is empty
586  *	@list: queue head
587  *
588  *	Returns true if the queue is empty, false otherwise.
589  */
590 static inline int skb_queue_empty(const struct sk_buff_head *list)
591 {
592 	return list->next == (struct sk_buff *)list;
593 }
594 
595 /**
596  *	skb_queue_is_last - check if skb is the last entry in the queue
597  *	@list: queue head
598  *	@skb: buffer
599  *
600  *	Returns true if @skb is the last buffer on the list.
601  */
602 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
603 				     const struct sk_buff *skb)
604 {
605 	return skb->next == (struct sk_buff *)list;
606 }
607 
608 /**
609  *	skb_queue_is_first - check if skb is the first entry in the queue
610  *	@list: queue head
611  *	@skb: buffer
612  *
613  *	Returns true if @skb is the first buffer on the list.
614  */
615 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
616 				      const struct sk_buff *skb)
617 {
618 	return skb->prev == (struct sk_buff *)list;
619 }
620 
621 /**
622  *	skb_queue_next - return the next packet in the queue
623  *	@list: queue head
624  *	@skb: current buffer
625  *
626  *	Return the next packet in @list after @skb.  It is only valid to
627  *	call this if skb_queue_is_last() evaluates to false.
628  */
629 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
630 					     const struct sk_buff *skb)
631 {
632 	/* This BUG_ON may seem severe, but if we just return then we
633 	 * are going to dereference garbage.
634 	 */
635 	BUG_ON(skb_queue_is_last(list, skb));
636 	return skb->next;
637 }
638 
639 /**
640  *	skb_queue_prev - return the prev packet in the queue
641  *	@list: queue head
642  *	@skb: current buffer
643  *
644  *	Return the prev packet in @list before @skb.  It is only valid to
645  *	call this if skb_queue_is_first() evaluates to false.
646  */
647 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
648 					     const struct sk_buff *skb)
649 {
650 	/* This BUG_ON may seem severe, but if we just return then we
651 	 * are going to dereference garbage.
652 	 */
653 	BUG_ON(skb_queue_is_first(list, skb));
654 	return skb->prev;
655 }
656 
657 /**
658  *	skb_get - reference buffer
659  *	@skb: buffer to reference
660  *
661  *	Makes another reference to a socket buffer and returns a pointer
662  *	to the buffer.
663  */
664 static inline struct sk_buff *skb_get(struct sk_buff *skb)
665 {
666 	atomic_inc(&skb->users);
667 	return skb;
668 }
669 
670 /*
671  * If users == 1, we are the only owner and are can avoid redundant
672  * atomic change.
673  */
674 
675 /**
676  *	skb_cloned - is the buffer a clone
677  *	@skb: buffer to check
678  *
679  *	Returns true if the buffer was generated with skb_clone() and is
680  *	one of multiple shared copies of the buffer. Cloned buffers are
681  *	shared data so must not be written to under normal circumstances.
682  */
683 static inline int skb_cloned(const struct sk_buff *skb)
684 {
685 	return skb->cloned &&
686 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
687 }
688 
689 /**
690  *	skb_header_cloned - is the header a clone
691  *	@skb: buffer to check
692  *
693  *	Returns true if modifying the header part of the buffer requires
694  *	the data to be copied.
695  */
696 static inline int skb_header_cloned(const struct sk_buff *skb)
697 {
698 	int dataref;
699 
700 	if (!skb->cloned)
701 		return 0;
702 
703 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
704 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
705 	return dataref != 1;
706 }
707 
708 /**
709  *	skb_header_release - release reference to header
710  *	@skb: buffer to operate on
711  *
712  *	Drop a reference to the header part of the buffer.  This is done
713  *	by acquiring a payload reference.  You must not read from the header
714  *	part of skb->data after this.
715  */
716 static inline void skb_header_release(struct sk_buff *skb)
717 {
718 	BUG_ON(skb->nohdr);
719 	skb->nohdr = 1;
720 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
721 }
722 
723 /**
724  *	skb_shared - is the buffer shared
725  *	@skb: buffer to check
726  *
727  *	Returns true if more than one person has a reference to this
728  *	buffer.
729  */
730 static inline int skb_shared(const struct sk_buff *skb)
731 {
732 	return atomic_read(&skb->users) != 1;
733 }
734 
735 /**
736  *	skb_share_check - check if buffer is shared and if so clone it
737  *	@skb: buffer to check
738  *	@pri: priority for memory allocation
739  *
740  *	If the buffer is shared the buffer is cloned and the old copy
741  *	drops a reference. A new clone with a single reference is returned.
742  *	If the buffer is not shared the original buffer is returned. When
743  *	being called from interrupt status or with spinlocks held pri must
744  *	be GFP_ATOMIC.
745  *
746  *	NULL is returned on a memory allocation failure.
747  */
748 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
749 					      gfp_t pri)
750 {
751 	might_sleep_if(pri & __GFP_WAIT);
752 	if (skb_shared(skb)) {
753 		struct sk_buff *nskb = skb_clone(skb, pri);
754 		kfree_skb(skb);
755 		skb = nskb;
756 	}
757 	return skb;
758 }
759 
760 /*
761  *	Copy shared buffers into a new sk_buff. We effectively do COW on
762  *	packets to handle cases where we have a local reader and forward
763  *	and a couple of other messy ones. The normal one is tcpdumping
764  *	a packet thats being forwarded.
765  */
766 
767 /**
768  *	skb_unshare - make a copy of a shared buffer
769  *	@skb: buffer to check
770  *	@pri: priority for memory allocation
771  *
772  *	If the socket buffer is a clone then this function creates a new
773  *	copy of the data, drops a reference count on the old copy and returns
774  *	the new copy with the reference count at 1. If the buffer is not a clone
775  *	the original buffer is returned. When called with a spinlock held or
776  *	from interrupt state @pri must be %GFP_ATOMIC
777  *
778  *	%NULL is returned on a memory allocation failure.
779  */
780 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
781 					  gfp_t pri)
782 {
783 	might_sleep_if(pri & __GFP_WAIT);
784 	if (skb_cloned(skb)) {
785 		struct sk_buff *nskb = skb_copy(skb, pri);
786 		kfree_skb(skb);	/* Free our shared copy */
787 		skb = nskb;
788 	}
789 	return skb;
790 }
791 
792 /**
793  *	skb_peek - peek at the head of an &sk_buff_head
794  *	@list_: list to peek at
795  *
796  *	Peek an &sk_buff. Unlike most other operations you _MUST_
797  *	be careful with this one. A peek leaves the buffer on the
798  *	list and someone else may run off with it. You must hold
799  *	the appropriate locks or have a private queue to do this.
800  *
801  *	Returns %NULL for an empty list or a pointer to the head element.
802  *	The reference count is not incremented and the reference is therefore
803  *	volatile. Use with caution.
804  */
805 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
806 {
807 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
808 	if (list == (struct sk_buff *)list_)
809 		list = NULL;
810 	return list;
811 }
812 
813 /**
814  *	skb_peek_tail - peek at the tail of an &sk_buff_head
815  *	@list_: list to peek at
816  *
817  *	Peek an &sk_buff. Unlike most other operations you _MUST_
818  *	be careful with this one. A peek leaves the buffer on the
819  *	list and someone else may run off with it. You must hold
820  *	the appropriate locks or have a private queue to do this.
821  *
822  *	Returns %NULL for an empty list or a pointer to the tail element.
823  *	The reference count is not incremented and the reference is therefore
824  *	volatile. Use with caution.
825  */
826 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
827 {
828 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
829 	if (list == (struct sk_buff *)list_)
830 		list = NULL;
831 	return list;
832 }
833 
834 /**
835  *	skb_queue_len	- get queue length
836  *	@list_: list to measure
837  *
838  *	Return the length of an &sk_buff queue.
839  */
840 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
841 {
842 	return list_->qlen;
843 }
844 
845 /**
846  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
847  *	@list: queue to initialize
848  *
849  *	This initializes only the list and queue length aspects of
850  *	an sk_buff_head object.  This allows to initialize the list
851  *	aspects of an sk_buff_head without reinitializing things like
852  *	the spinlock.  It can also be used for on-stack sk_buff_head
853  *	objects where the spinlock is known to not be used.
854  */
855 static inline void __skb_queue_head_init(struct sk_buff_head *list)
856 {
857 	list->prev = list->next = (struct sk_buff *)list;
858 	list->qlen = 0;
859 }
860 
861 /*
862  * This function creates a split out lock class for each invocation;
863  * this is needed for now since a whole lot of users of the skb-queue
864  * infrastructure in drivers have different locking usage (in hardirq)
865  * than the networking core (in softirq only). In the long run either the
866  * network layer or drivers should need annotation to consolidate the
867  * main types of usage into 3 classes.
868  */
869 static inline void skb_queue_head_init(struct sk_buff_head *list)
870 {
871 	spin_lock_init(&list->lock);
872 	__skb_queue_head_init(list);
873 }
874 
875 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
876 		struct lock_class_key *class)
877 {
878 	skb_queue_head_init(list);
879 	lockdep_set_class(&list->lock, class);
880 }
881 
882 /*
883  *	Insert an sk_buff on a list.
884  *
885  *	The "__skb_xxxx()" functions are the non-atomic ones that
886  *	can only be called with interrupts disabled.
887  */
888 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
889 static inline void __skb_insert(struct sk_buff *newsk,
890 				struct sk_buff *prev, struct sk_buff *next,
891 				struct sk_buff_head *list)
892 {
893 	newsk->next = next;
894 	newsk->prev = prev;
895 	next->prev  = prev->next = newsk;
896 	list->qlen++;
897 }
898 
899 static inline void __skb_queue_splice(const struct sk_buff_head *list,
900 				      struct sk_buff *prev,
901 				      struct sk_buff *next)
902 {
903 	struct sk_buff *first = list->next;
904 	struct sk_buff *last = list->prev;
905 
906 	first->prev = prev;
907 	prev->next = first;
908 
909 	last->next = next;
910 	next->prev = last;
911 }
912 
913 /**
914  *	skb_queue_splice - join two skb lists, this is designed for stacks
915  *	@list: the new list to add
916  *	@head: the place to add it in the first list
917  */
918 static inline void skb_queue_splice(const struct sk_buff_head *list,
919 				    struct sk_buff_head *head)
920 {
921 	if (!skb_queue_empty(list)) {
922 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
923 		head->qlen += list->qlen;
924 	}
925 }
926 
927 /**
928  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
929  *	@list: the new list to add
930  *	@head: the place to add it in the first list
931  *
932  *	The list at @list is reinitialised
933  */
934 static inline void skb_queue_splice_init(struct sk_buff_head *list,
935 					 struct sk_buff_head *head)
936 {
937 	if (!skb_queue_empty(list)) {
938 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
939 		head->qlen += list->qlen;
940 		__skb_queue_head_init(list);
941 	}
942 }
943 
944 /**
945  *	skb_queue_splice_tail - join two skb lists, each list being a queue
946  *	@list: the new list to add
947  *	@head: the place to add it in the first list
948  */
949 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
950 					 struct sk_buff_head *head)
951 {
952 	if (!skb_queue_empty(list)) {
953 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
954 		head->qlen += list->qlen;
955 	}
956 }
957 
958 /**
959  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
960  *	@list: the new list to add
961  *	@head: the place to add it in the first list
962  *
963  *	Each of the lists is a queue.
964  *	The list at @list is reinitialised
965  */
966 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
967 					      struct sk_buff_head *head)
968 {
969 	if (!skb_queue_empty(list)) {
970 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
971 		head->qlen += list->qlen;
972 		__skb_queue_head_init(list);
973 	}
974 }
975 
976 /**
977  *	__skb_queue_after - queue a buffer at the list head
978  *	@list: list to use
979  *	@prev: place after this buffer
980  *	@newsk: buffer to queue
981  *
982  *	Queue a buffer int the middle of a list. This function takes no locks
983  *	and you must therefore hold required locks before calling it.
984  *
985  *	A buffer cannot be placed on two lists at the same time.
986  */
987 static inline void __skb_queue_after(struct sk_buff_head *list,
988 				     struct sk_buff *prev,
989 				     struct sk_buff *newsk)
990 {
991 	__skb_insert(newsk, prev, prev->next, list);
992 }
993 
994 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
995 		       struct sk_buff_head *list);
996 
997 static inline void __skb_queue_before(struct sk_buff_head *list,
998 				      struct sk_buff *next,
999 				      struct sk_buff *newsk)
1000 {
1001 	__skb_insert(newsk, next->prev, next, list);
1002 }
1003 
1004 /**
1005  *	__skb_queue_head - queue a buffer at the list head
1006  *	@list: list to use
1007  *	@newsk: buffer to queue
1008  *
1009  *	Queue a buffer at the start of a list. This function takes no locks
1010  *	and you must therefore hold required locks before calling it.
1011  *
1012  *	A buffer cannot be placed on two lists at the same time.
1013  */
1014 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1015 static inline void __skb_queue_head(struct sk_buff_head *list,
1016 				    struct sk_buff *newsk)
1017 {
1018 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1019 }
1020 
1021 /**
1022  *	__skb_queue_tail - queue a buffer at the list tail
1023  *	@list: list to use
1024  *	@newsk: buffer to queue
1025  *
1026  *	Queue a buffer at the end of a list. This function takes no locks
1027  *	and you must therefore hold required locks before calling it.
1028  *
1029  *	A buffer cannot be placed on two lists at the same time.
1030  */
1031 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1032 static inline void __skb_queue_tail(struct sk_buff_head *list,
1033 				   struct sk_buff *newsk)
1034 {
1035 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1036 }
1037 
1038 /*
1039  * remove sk_buff from list. _Must_ be called atomically, and with
1040  * the list known..
1041  */
1042 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1043 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1044 {
1045 	struct sk_buff *next, *prev;
1046 
1047 	list->qlen--;
1048 	next	   = skb->next;
1049 	prev	   = skb->prev;
1050 	skb->next  = skb->prev = NULL;
1051 	next->prev = prev;
1052 	prev->next = next;
1053 }
1054 
1055 /**
1056  *	__skb_dequeue - remove from the head of the queue
1057  *	@list: list to dequeue from
1058  *
1059  *	Remove the head of the list. This function does not take any locks
1060  *	so must be used with appropriate locks held only. The head item is
1061  *	returned or %NULL if the list is empty.
1062  */
1063 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1064 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1065 {
1066 	struct sk_buff *skb = skb_peek(list);
1067 	if (skb)
1068 		__skb_unlink(skb, list);
1069 	return skb;
1070 }
1071 
1072 /**
1073  *	__skb_dequeue_tail - remove from the tail of the queue
1074  *	@list: list to dequeue from
1075  *
1076  *	Remove the tail of the list. This function does not take any locks
1077  *	so must be used with appropriate locks held only. The tail item is
1078  *	returned or %NULL if the list is empty.
1079  */
1080 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1081 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1082 {
1083 	struct sk_buff *skb = skb_peek_tail(list);
1084 	if (skb)
1085 		__skb_unlink(skb, list);
1086 	return skb;
1087 }
1088 
1089 
1090 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1091 {
1092 	return skb->data_len;
1093 }
1094 
1095 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1096 {
1097 	return skb->len - skb->data_len;
1098 }
1099 
1100 static inline int skb_pagelen(const struct sk_buff *skb)
1101 {
1102 	int i, len = 0;
1103 
1104 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1105 		len += skb_shinfo(skb)->frags[i].size;
1106 	return len + skb_headlen(skb);
1107 }
1108 
1109 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1110 				      struct page *page, int off, int size)
1111 {
1112 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1113 
1114 	frag->page		  = page;
1115 	frag->page_offset	  = off;
1116 	frag->size		  = size;
1117 	skb_shinfo(skb)->nr_frags = i + 1;
1118 }
1119 
1120 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1121 			    int off, int size);
1122 
1123 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1124 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1125 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1126 
1127 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1128 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1129 {
1130 	return skb->head + skb->tail;
1131 }
1132 
1133 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1134 {
1135 	skb->tail = skb->data - skb->head;
1136 }
1137 
1138 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1139 {
1140 	skb_reset_tail_pointer(skb);
1141 	skb->tail += offset;
1142 }
1143 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1144 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1145 {
1146 	return skb->tail;
1147 }
1148 
1149 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1150 {
1151 	skb->tail = skb->data;
1152 }
1153 
1154 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1155 {
1156 	skb->tail = skb->data + offset;
1157 }
1158 
1159 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1160 
1161 /*
1162  *	Add data to an sk_buff
1163  */
1164 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1165 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1166 {
1167 	unsigned char *tmp = skb_tail_pointer(skb);
1168 	SKB_LINEAR_ASSERT(skb);
1169 	skb->tail += len;
1170 	skb->len  += len;
1171 	return tmp;
1172 }
1173 
1174 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1175 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1176 {
1177 	skb->data -= len;
1178 	skb->len  += len;
1179 	return skb->data;
1180 }
1181 
1182 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1183 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1184 {
1185 	skb->len -= len;
1186 	BUG_ON(skb->len < skb->data_len);
1187 	return skb->data += len;
1188 }
1189 
1190 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1191 {
1192 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1193 }
1194 
1195 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1196 
1197 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1198 {
1199 	if (len > skb_headlen(skb) &&
1200 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1201 		return NULL;
1202 	skb->len -= len;
1203 	return skb->data += len;
1204 }
1205 
1206 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1207 {
1208 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1209 }
1210 
1211 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1212 {
1213 	if (likely(len <= skb_headlen(skb)))
1214 		return 1;
1215 	if (unlikely(len > skb->len))
1216 		return 0;
1217 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1218 }
1219 
1220 /**
1221  *	skb_headroom - bytes at buffer head
1222  *	@skb: buffer to check
1223  *
1224  *	Return the number of bytes of free space at the head of an &sk_buff.
1225  */
1226 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1227 {
1228 	return skb->data - skb->head;
1229 }
1230 
1231 /**
1232  *	skb_tailroom - bytes at buffer end
1233  *	@skb: buffer to check
1234  *
1235  *	Return the number of bytes of free space at the tail of an sk_buff
1236  */
1237 static inline int skb_tailroom(const struct sk_buff *skb)
1238 {
1239 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1240 }
1241 
1242 /**
1243  *	skb_reserve - adjust headroom
1244  *	@skb: buffer to alter
1245  *	@len: bytes to move
1246  *
1247  *	Increase the headroom of an empty &sk_buff by reducing the tail
1248  *	room. This is only allowed for an empty buffer.
1249  */
1250 static inline void skb_reserve(struct sk_buff *skb, int len)
1251 {
1252 	skb->data += len;
1253 	skb->tail += len;
1254 }
1255 
1256 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1257 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1258 {
1259 	return skb->head + skb->transport_header;
1260 }
1261 
1262 static inline void skb_reset_transport_header(struct sk_buff *skb)
1263 {
1264 	skb->transport_header = skb->data - skb->head;
1265 }
1266 
1267 static inline void skb_set_transport_header(struct sk_buff *skb,
1268 					    const int offset)
1269 {
1270 	skb_reset_transport_header(skb);
1271 	skb->transport_header += offset;
1272 }
1273 
1274 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1275 {
1276 	return skb->head + skb->network_header;
1277 }
1278 
1279 static inline void skb_reset_network_header(struct sk_buff *skb)
1280 {
1281 	skb->network_header = skb->data - skb->head;
1282 }
1283 
1284 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1285 {
1286 	skb_reset_network_header(skb);
1287 	skb->network_header += offset;
1288 }
1289 
1290 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1291 {
1292 	return skb->head + skb->mac_header;
1293 }
1294 
1295 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1296 {
1297 	return skb->mac_header != ~0U;
1298 }
1299 
1300 static inline void skb_reset_mac_header(struct sk_buff *skb)
1301 {
1302 	skb->mac_header = skb->data - skb->head;
1303 }
1304 
1305 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1306 {
1307 	skb_reset_mac_header(skb);
1308 	skb->mac_header += offset;
1309 }
1310 
1311 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1312 
1313 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1314 {
1315 	return skb->transport_header;
1316 }
1317 
1318 static inline void skb_reset_transport_header(struct sk_buff *skb)
1319 {
1320 	skb->transport_header = skb->data;
1321 }
1322 
1323 static inline void skb_set_transport_header(struct sk_buff *skb,
1324 					    const int offset)
1325 {
1326 	skb->transport_header = skb->data + offset;
1327 }
1328 
1329 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1330 {
1331 	return skb->network_header;
1332 }
1333 
1334 static inline void skb_reset_network_header(struct sk_buff *skb)
1335 {
1336 	skb->network_header = skb->data;
1337 }
1338 
1339 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1340 {
1341 	skb->network_header = skb->data + offset;
1342 }
1343 
1344 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1345 {
1346 	return skb->mac_header;
1347 }
1348 
1349 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1350 {
1351 	return skb->mac_header != NULL;
1352 }
1353 
1354 static inline void skb_reset_mac_header(struct sk_buff *skb)
1355 {
1356 	skb->mac_header = skb->data;
1357 }
1358 
1359 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1360 {
1361 	skb->mac_header = skb->data + offset;
1362 }
1363 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1364 
1365 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1366 {
1367 	return skb->csum_start - skb_headroom(skb);
1368 }
1369 
1370 static inline int skb_transport_offset(const struct sk_buff *skb)
1371 {
1372 	return skb_transport_header(skb) - skb->data;
1373 }
1374 
1375 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1376 {
1377 	return skb->transport_header - skb->network_header;
1378 }
1379 
1380 static inline int skb_network_offset(const struct sk_buff *skb)
1381 {
1382 	return skb_network_header(skb) - skb->data;
1383 }
1384 
1385 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1386 {
1387 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1388 }
1389 
1390 /*
1391  * CPUs often take a performance hit when accessing unaligned memory
1392  * locations. The actual performance hit varies, it can be small if the
1393  * hardware handles it or large if we have to take an exception and fix it
1394  * in software.
1395  *
1396  * Since an ethernet header is 14 bytes network drivers often end up with
1397  * the IP header at an unaligned offset. The IP header can be aligned by
1398  * shifting the start of the packet by 2 bytes. Drivers should do this
1399  * with:
1400  *
1401  * skb_reserve(skb, NET_IP_ALIGN);
1402  *
1403  * The downside to this alignment of the IP header is that the DMA is now
1404  * unaligned. On some architectures the cost of an unaligned DMA is high
1405  * and this cost outweighs the gains made by aligning the IP header.
1406  *
1407  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1408  * to be overridden.
1409  */
1410 #ifndef NET_IP_ALIGN
1411 #define NET_IP_ALIGN	2
1412 #endif
1413 
1414 /*
1415  * The networking layer reserves some headroom in skb data (via
1416  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1417  * the header has to grow. In the default case, if the header has to grow
1418  * 32 bytes or less we avoid the reallocation.
1419  *
1420  * Unfortunately this headroom changes the DMA alignment of the resulting
1421  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1422  * on some architectures. An architecture can override this value,
1423  * perhaps setting it to a cacheline in size (since that will maintain
1424  * cacheline alignment of the DMA). It must be a power of 2.
1425  *
1426  * Various parts of the networking layer expect at least 32 bytes of
1427  * headroom, you should not reduce this.
1428  *
1429  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1430  * to reduce average number of cache lines per packet.
1431  * get_rps_cpus() for example only access one 64 bytes aligned block :
1432  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1433  */
1434 #ifndef NET_SKB_PAD
1435 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1436 #endif
1437 
1438 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1439 
1440 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1441 {
1442 	if (unlikely(skb->data_len)) {
1443 		WARN_ON(1);
1444 		return;
1445 	}
1446 	skb->len = len;
1447 	skb_set_tail_pointer(skb, len);
1448 }
1449 
1450 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1451 
1452 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1453 {
1454 	if (skb->data_len)
1455 		return ___pskb_trim(skb, len);
1456 	__skb_trim(skb, len);
1457 	return 0;
1458 }
1459 
1460 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1461 {
1462 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1463 }
1464 
1465 /**
1466  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1467  *	@skb: buffer to alter
1468  *	@len: new length
1469  *
1470  *	This is identical to pskb_trim except that the caller knows that
1471  *	the skb is not cloned so we should never get an error due to out-
1472  *	of-memory.
1473  */
1474 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1475 {
1476 	int err = pskb_trim(skb, len);
1477 	BUG_ON(err);
1478 }
1479 
1480 /**
1481  *	skb_orphan - orphan a buffer
1482  *	@skb: buffer to orphan
1483  *
1484  *	If a buffer currently has an owner then we call the owner's
1485  *	destructor function and make the @skb unowned. The buffer continues
1486  *	to exist but is no longer charged to its former owner.
1487  */
1488 static inline void skb_orphan(struct sk_buff *skb)
1489 {
1490 	if (skb->destructor)
1491 		skb->destructor(skb);
1492 	skb->destructor = NULL;
1493 	skb->sk		= NULL;
1494 }
1495 
1496 /**
1497  *	__skb_queue_purge - empty a list
1498  *	@list: list to empty
1499  *
1500  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1501  *	the list and one reference dropped. This function does not take the
1502  *	list lock and the caller must hold the relevant locks to use it.
1503  */
1504 extern void skb_queue_purge(struct sk_buff_head *list);
1505 static inline void __skb_queue_purge(struct sk_buff_head *list)
1506 {
1507 	struct sk_buff *skb;
1508 	while ((skb = __skb_dequeue(list)) != NULL)
1509 		kfree_skb(skb);
1510 }
1511 
1512 /**
1513  *	__dev_alloc_skb - allocate an skbuff for receiving
1514  *	@length: length to allocate
1515  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1516  *
1517  *	Allocate a new &sk_buff and assign it a usage count of one. The
1518  *	buffer has unspecified headroom built in. Users should allocate
1519  *	the headroom they think they need without accounting for the
1520  *	built in space. The built in space is used for optimisations.
1521  *
1522  *	%NULL is returned if there is no free memory.
1523  */
1524 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1525 					      gfp_t gfp_mask)
1526 {
1527 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1528 	if (likely(skb))
1529 		skb_reserve(skb, NET_SKB_PAD);
1530 	return skb;
1531 }
1532 
1533 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1534 
1535 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1536 		unsigned int length, gfp_t gfp_mask);
1537 
1538 /**
1539  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1540  *	@dev: network device to receive on
1541  *	@length: length to allocate
1542  *
1543  *	Allocate a new &sk_buff and assign it a usage count of one. The
1544  *	buffer has unspecified headroom built in. Users should allocate
1545  *	the headroom they think they need without accounting for the
1546  *	built in space. The built in space is used for optimisations.
1547  *
1548  *	%NULL is returned if there is no free memory. Although this function
1549  *	allocates memory it can be called from an interrupt.
1550  */
1551 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1552 		unsigned int length)
1553 {
1554 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1555 }
1556 
1557 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1558 		unsigned int length)
1559 {
1560 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1561 
1562 	if (NET_IP_ALIGN && skb)
1563 		skb_reserve(skb, NET_IP_ALIGN);
1564 	return skb;
1565 }
1566 
1567 /**
1568  *	__netdev_alloc_page - allocate a page for ps-rx on a specific device
1569  *	@dev: network device to receive on
1570  *	@gfp_mask: alloc_pages_node mask
1571  *
1572  * 	Allocate a new page. dev currently unused.
1573  *
1574  * 	%NULL is returned if there is no free memory.
1575  */
1576 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1577 {
1578 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1579 }
1580 
1581 /**
1582  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1583  *	@dev: network device to receive on
1584  *
1585  * 	Allocate a new page. dev currently unused.
1586  *
1587  * 	%NULL is returned if there is no free memory.
1588  */
1589 static inline struct page *netdev_alloc_page(struct net_device *dev)
1590 {
1591 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1592 }
1593 
1594 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1595 {
1596 	__free_page(page);
1597 }
1598 
1599 /**
1600  *	skb_clone_writable - is the header of a clone writable
1601  *	@skb: buffer to check
1602  *	@len: length up to which to write
1603  *
1604  *	Returns true if modifying the header part of the cloned buffer
1605  *	does not requires the data to be copied.
1606  */
1607 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1608 {
1609 	return !skb_header_cloned(skb) &&
1610 	       skb_headroom(skb) + len <= skb->hdr_len;
1611 }
1612 
1613 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1614 			    int cloned)
1615 {
1616 	int delta = 0;
1617 
1618 	if (headroom < NET_SKB_PAD)
1619 		headroom = NET_SKB_PAD;
1620 	if (headroom > skb_headroom(skb))
1621 		delta = headroom - skb_headroom(skb);
1622 
1623 	if (delta || cloned)
1624 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1625 					GFP_ATOMIC);
1626 	return 0;
1627 }
1628 
1629 /**
1630  *	skb_cow - copy header of skb when it is required
1631  *	@skb: buffer to cow
1632  *	@headroom: needed headroom
1633  *
1634  *	If the skb passed lacks sufficient headroom or its data part
1635  *	is shared, data is reallocated. If reallocation fails, an error
1636  *	is returned and original skb is not changed.
1637  *
1638  *	The result is skb with writable area skb->head...skb->tail
1639  *	and at least @headroom of space at head.
1640  */
1641 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1642 {
1643 	return __skb_cow(skb, headroom, skb_cloned(skb));
1644 }
1645 
1646 /**
1647  *	skb_cow_head - skb_cow but only making the head writable
1648  *	@skb: buffer to cow
1649  *	@headroom: needed headroom
1650  *
1651  *	This function is identical to skb_cow except that we replace the
1652  *	skb_cloned check by skb_header_cloned.  It should be used when
1653  *	you only need to push on some header and do not need to modify
1654  *	the data.
1655  */
1656 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1657 {
1658 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1659 }
1660 
1661 /**
1662  *	skb_padto	- pad an skbuff up to a minimal size
1663  *	@skb: buffer to pad
1664  *	@len: minimal length
1665  *
1666  *	Pads up a buffer to ensure the trailing bytes exist and are
1667  *	blanked. If the buffer already contains sufficient data it
1668  *	is untouched. Otherwise it is extended. Returns zero on
1669  *	success. The skb is freed on error.
1670  */
1671 
1672 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1673 {
1674 	unsigned int size = skb->len;
1675 	if (likely(size >= len))
1676 		return 0;
1677 	return skb_pad(skb, len - size);
1678 }
1679 
1680 static inline int skb_add_data(struct sk_buff *skb,
1681 			       char __user *from, int copy)
1682 {
1683 	const int off = skb->len;
1684 
1685 	if (skb->ip_summed == CHECKSUM_NONE) {
1686 		int err = 0;
1687 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1688 							    copy, 0, &err);
1689 		if (!err) {
1690 			skb->csum = csum_block_add(skb->csum, csum, off);
1691 			return 0;
1692 		}
1693 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1694 		return 0;
1695 
1696 	__skb_trim(skb, off);
1697 	return -EFAULT;
1698 }
1699 
1700 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1701 				   struct page *page, int off)
1702 {
1703 	if (i) {
1704 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1705 
1706 		return page == frag->page &&
1707 		       off == frag->page_offset + frag->size;
1708 	}
1709 	return 0;
1710 }
1711 
1712 static inline int __skb_linearize(struct sk_buff *skb)
1713 {
1714 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1715 }
1716 
1717 /**
1718  *	skb_linearize - convert paged skb to linear one
1719  *	@skb: buffer to linarize
1720  *
1721  *	If there is no free memory -ENOMEM is returned, otherwise zero
1722  *	is returned and the old skb data released.
1723  */
1724 static inline int skb_linearize(struct sk_buff *skb)
1725 {
1726 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1727 }
1728 
1729 /**
1730  *	skb_linearize_cow - make sure skb is linear and writable
1731  *	@skb: buffer to process
1732  *
1733  *	If there is no free memory -ENOMEM is returned, otherwise zero
1734  *	is returned and the old skb data released.
1735  */
1736 static inline int skb_linearize_cow(struct sk_buff *skb)
1737 {
1738 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1739 	       __skb_linearize(skb) : 0;
1740 }
1741 
1742 /**
1743  *	skb_postpull_rcsum - update checksum for received skb after pull
1744  *	@skb: buffer to update
1745  *	@start: start of data before pull
1746  *	@len: length of data pulled
1747  *
1748  *	After doing a pull on a received packet, you need to call this to
1749  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1750  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1751  */
1752 
1753 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1754 				      const void *start, unsigned int len)
1755 {
1756 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1757 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1758 }
1759 
1760 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1761 
1762 /**
1763  *	pskb_trim_rcsum - trim received skb and update checksum
1764  *	@skb: buffer to trim
1765  *	@len: new length
1766  *
1767  *	This is exactly the same as pskb_trim except that it ensures the
1768  *	checksum of received packets are still valid after the operation.
1769  */
1770 
1771 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1772 {
1773 	if (likely(len >= skb->len))
1774 		return 0;
1775 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1776 		skb->ip_summed = CHECKSUM_NONE;
1777 	return __pskb_trim(skb, len);
1778 }
1779 
1780 #define skb_queue_walk(queue, skb) \
1781 		for (skb = (queue)->next;					\
1782 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1783 		     skb = skb->next)
1784 
1785 #define skb_queue_walk_safe(queue, skb, tmp)					\
1786 		for (skb = (queue)->next, tmp = skb->next;			\
1787 		     skb != (struct sk_buff *)(queue);				\
1788 		     skb = tmp, tmp = skb->next)
1789 
1790 #define skb_queue_walk_from(queue, skb)						\
1791 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1792 		     skb = skb->next)
1793 
1794 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1795 		for (tmp = skb->next;						\
1796 		     skb != (struct sk_buff *)(queue);				\
1797 		     skb = tmp, tmp = skb->next)
1798 
1799 #define skb_queue_reverse_walk(queue, skb) \
1800 		for (skb = (queue)->prev;					\
1801 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1802 		     skb = skb->prev)
1803 
1804 
1805 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1806 {
1807 	return skb_shinfo(skb)->frag_list != NULL;
1808 }
1809 
1810 static inline void skb_frag_list_init(struct sk_buff *skb)
1811 {
1812 	skb_shinfo(skb)->frag_list = NULL;
1813 }
1814 
1815 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1816 {
1817 	frag->next = skb_shinfo(skb)->frag_list;
1818 	skb_shinfo(skb)->frag_list = frag;
1819 }
1820 
1821 #define skb_walk_frags(skb, iter)	\
1822 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1823 
1824 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1825 					   int *peeked, int *err);
1826 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1827 					 int noblock, int *err);
1828 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1829 				     struct poll_table_struct *wait);
1830 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1831 					       int offset, struct iovec *to,
1832 					       int size);
1833 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1834 							int hlen,
1835 							struct iovec *iov);
1836 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1837 						    int offset,
1838 						    const struct iovec *from,
1839 						    int from_offset,
1840 						    int len);
1841 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1842 						     int offset,
1843 						     const struct iovec *to,
1844 						     int to_offset,
1845 						     int size);
1846 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1847 extern void	       skb_free_datagram_locked(struct sock *sk,
1848 						struct sk_buff *skb);
1849 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1850 					 unsigned int flags);
1851 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1852 				    int len, __wsum csum);
1853 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1854 				     void *to, int len);
1855 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1856 				      const void *from, int len);
1857 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1858 					      int offset, u8 *to, int len,
1859 					      __wsum csum);
1860 extern int             skb_splice_bits(struct sk_buff *skb,
1861 						unsigned int offset,
1862 						struct pipe_inode_info *pipe,
1863 						unsigned int len,
1864 						unsigned int flags);
1865 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1866 extern void	       skb_split(struct sk_buff *skb,
1867 				 struct sk_buff *skb1, const u32 len);
1868 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1869 				 int shiftlen);
1870 
1871 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1872 
1873 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1874 				       int len, void *buffer)
1875 {
1876 	int hlen = skb_headlen(skb);
1877 
1878 	if (hlen - offset >= len)
1879 		return skb->data + offset;
1880 
1881 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1882 		return NULL;
1883 
1884 	return buffer;
1885 }
1886 
1887 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1888 					     void *to,
1889 					     const unsigned int len)
1890 {
1891 	memcpy(to, skb->data, len);
1892 }
1893 
1894 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1895 						    const int offset, void *to,
1896 						    const unsigned int len)
1897 {
1898 	memcpy(to, skb->data + offset, len);
1899 }
1900 
1901 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1902 					   const void *from,
1903 					   const unsigned int len)
1904 {
1905 	memcpy(skb->data, from, len);
1906 }
1907 
1908 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1909 						  const int offset,
1910 						  const void *from,
1911 						  const unsigned int len)
1912 {
1913 	memcpy(skb->data + offset, from, len);
1914 }
1915 
1916 extern void skb_init(void);
1917 
1918 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1919 {
1920 	return skb->tstamp;
1921 }
1922 
1923 /**
1924  *	skb_get_timestamp - get timestamp from a skb
1925  *	@skb: skb to get stamp from
1926  *	@stamp: pointer to struct timeval to store stamp in
1927  *
1928  *	Timestamps are stored in the skb as offsets to a base timestamp.
1929  *	This function converts the offset back to a struct timeval and stores
1930  *	it in stamp.
1931  */
1932 static inline void skb_get_timestamp(const struct sk_buff *skb,
1933 				     struct timeval *stamp)
1934 {
1935 	*stamp = ktime_to_timeval(skb->tstamp);
1936 }
1937 
1938 static inline void skb_get_timestampns(const struct sk_buff *skb,
1939 				       struct timespec *stamp)
1940 {
1941 	*stamp = ktime_to_timespec(skb->tstamp);
1942 }
1943 
1944 static inline void __net_timestamp(struct sk_buff *skb)
1945 {
1946 	skb->tstamp = ktime_get_real();
1947 }
1948 
1949 static inline ktime_t net_timedelta(ktime_t t)
1950 {
1951 	return ktime_sub(ktime_get_real(), t);
1952 }
1953 
1954 static inline ktime_t net_invalid_timestamp(void)
1955 {
1956 	return ktime_set(0, 0);
1957 }
1958 
1959 extern void skb_timestamping_init(void);
1960 
1961 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1962 
1963 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1964 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1965 
1966 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1967 
1968 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1969 {
1970 }
1971 
1972 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1973 {
1974 	return false;
1975 }
1976 
1977 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1978 
1979 /**
1980  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1981  *
1982  * @skb: clone of the the original outgoing packet
1983  * @hwtstamps: hardware time stamps
1984  *
1985  */
1986 void skb_complete_tx_timestamp(struct sk_buff *skb,
1987 			       struct skb_shared_hwtstamps *hwtstamps);
1988 
1989 /**
1990  * skb_tstamp_tx - queue clone of skb with send time stamps
1991  * @orig_skb:	the original outgoing packet
1992  * @hwtstamps:	hardware time stamps, may be NULL if not available
1993  *
1994  * If the skb has a socket associated, then this function clones the
1995  * skb (thus sharing the actual data and optional structures), stores
1996  * the optional hardware time stamping information (if non NULL) or
1997  * generates a software time stamp (otherwise), then queues the clone
1998  * to the error queue of the socket.  Errors are silently ignored.
1999  */
2000 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2001 			struct skb_shared_hwtstamps *hwtstamps);
2002 
2003 static inline void sw_tx_timestamp(struct sk_buff *skb)
2004 {
2005 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2006 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2007 		skb_tstamp_tx(skb, NULL);
2008 }
2009 
2010 /**
2011  * skb_tx_timestamp() - Driver hook for transmit timestamping
2012  *
2013  * Ethernet MAC Drivers should call this function in their hard_xmit()
2014  * function as soon as possible after giving the sk_buff to the MAC
2015  * hardware, but before freeing the sk_buff.
2016  *
2017  * @skb: A socket buffer.
2018  */
2019 static inline void skb_tx_timestamp(struct sk_buff *skb)
2020 {
2021 	skb_clone_tx_timestamp(skb);
2022 	sw_tx_timestamp(skb);
2023 }
2024 
2025 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2026 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2027 
2028 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2029 {
2030 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2031 }
2032 
2033 /**
2034  *	skb_checksum_complete - Calculate checksum of an entire packet
2035  *	@skb: packet to process
2036  *
2037  *	This function calculates the checksum over the entire packet plus
2038  *	the value of skb->csum.  The latter can be used to supply the
2039  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2040  *	checksum.
2041  *
2042  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2043  *	this function can be used to verify that checksum on received
2044  *	packets.  In that case the function should return zero if the
2045  *	checksum is correct.  In particular, this function will return zero
2046  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2047  *	hardware has already verified the correctness of the checksum.
2048  */
2049 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2050 {
2051 	return skb_csum_unnecessary(skb) ?
2052 	       0 : __skb_checksum_complete(skb);
2053 }
2054 
2055 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2056 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2057 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2058 {
2059 	if (nfct && atomic_dec_and_test(&nfct->use))
2060 		nf_conntrack_destroy(nfct);
2061 }
2062 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2063 {
2064 	if (nfct)
2065 		atomic_inc(&nfct->use);
2066 }
2067 #endif
2068 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2069 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2070 {
2071 	if (skb)
2072 		atomic_inc(&skb->users);
2073 }
2074 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2075 {
2076 	if (skb)
2077 		kfree_skb(skb);
2078 }
2079 #endif
2080 #ifdef CONFIG_BRIDGE_NETFILTER
2081 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2082 {
2083 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2084 		kfree(nf_bridge);
2085 }
2086 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2087 {
2088 	if (nf_bridge)
2089 		atomic_inc(&nf_bridge->use);
2090 }
2091 #endif /* CONFIG_BRIDGE_NETFILTER */
2092 static inline void nf_reset(struct sk_buff *skb)
2093 {
2094 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2095 	nf_conntrack_put(skb->nfct);
2096 	skb->nfct = NULL;
2097 #endif
2098 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2099 	nf_conntrack_put_reasm(skb->nfct_reasm);
2100 	skb->nfct_reasm = NULL;
2101 #endif
2102 #ifdef CONFIG_BRIDGE_NETFILTER
2103 	nf_bridge_put(skb->nf_bridge);
2104 	skb->nf_bridge = NULL;
2105 #endif
2106 }
2107 
2108 /* Note: This doesn't put any conntrack and bridge info in dst. */
2109 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2110 {
2111 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2112 	dst->nfct = src->nfct;
2113 	nf_conntrack_get(src->nfct);
2114 	dst->nfctinfo = src->nfctinfo;
2115 #endif
2116 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2117 	dst->nfct_reasm = src->nfct_reasm;
2118 	nf_conntrack_get_reasm(src->nfct_reasm);
2119 #endif
2120 #ifdef CONFIG_BRIDGE_NETFILTER
2121 	dst->nf_bridge  = src->nf_bridge;
2122 	nf_bridge_get(src->nf_bridge);
2123 #endif
2124 }
2125 
2126 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2127 {
2128 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2129 	nf_conntrack_put(dst->nfct);
2130 #endif
2131 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2132 	nf_conntrack_put_reasm(dst->nfct_reasm);
2133 #endif
2134 #ifdef CONFIG_BRIDGE_NETFILTER
2135 	nf_bridge_put(dst->nf_bridge);
2136 #endif
2137 	__nf_copy(dst, src);
2138 }
2139 
2140 #ifdef CONFIG_NETWORK_SECMARK
2141 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2142 {
2143 	to->secmark = from->secmark;
2144 }
2145 
2146 static inline void skb_init_secmark(struct sk_buff *skb)
2147 {
2148 	skb->secmark = 0;
2149 }
2150 #else
2151 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2152 { }
2153 
2154 static inline void skb_init_secmark(struct sk_buff *skb)
2155 { }
2156 #endif
2157 
2158 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2159 {
2160 	skb->queue_mapping = queue_mapping;
2161 }
2162 
2163 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2164 {
2165 	return skb->queue_mapping;
2166 }
2167 
2168 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2169 {
2170 	to->queue_mapping = from->queue_mapping;
2171 }
2172 
2173 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2174 {
2175 	skb->queue_mapping = rx_queue + 1;
2176 }
2177 
2178 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2179 {
2180 	return skb->queue_mapping - 1;
2181 }
2182 
2183 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2184 {
2185 	return skb->queue_mapping != 0;
2186 }
2187 
2188 extern u16 __skb_tx_hash(const struct net_device *dev,
2189 			 const struct sk_buff *skb,
2190 			 unsigned int num_tx_queues);
2191 
2192 #ifdef CONFIG_XFRM
2193 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2194 {
2195 	return skb->sp;
2196 }
2197 #else
2198 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2199 {
2200 	return NULL;
2201 }
2202 #endif
2203 
2204 static inline int skb_is_gso(const struct sk_buff *skb)
2205 {
2206 	return skb_shinfo(skb)->gso_size;
2207 }
2208 
2209 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2210 {
2211 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2212 }
2213 
2214 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2215 
2216 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2217 {
2218 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2219 	 * wanted then gso_type will be set. */
2220 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2221 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2222 	    unlikely(shinfo->gso_type == 0)) {
2223 		__skb_warn_lro_forwarding(skb);
2224 		return true;
2225 	}
2226 	return false;
2227 }
2228 
2229 static inline void skb_forward_csum(struct sk_buff *skb)
2230 {
2231 	/* Unfortunately we don't support this one.  Any brave souls? */
2232 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2233 		skb->ip_summed = CHECKSUM_NONE;
2234 }
2235 
2236 /**
2237  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2238  * @skb: skb to check
2239  *
2240  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2241  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2242  * use this helper, to document places where we make this assertion.
2243  */
2244 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2245 {
2246 #ifdef DEBUG
2247 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2248 #endif
2249 }
2250 
2251 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2252 #endif	/* __KERNEL__ */
2253 #endif	/* _LINUX_SKBUFF_H */
2254