xref: /linux-6.15/include/linux/skbuff.h (revision 4f3db074)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_keys.h>
38 
39 /* A. Checksumming of received packets by device.
40  *
41  * CHECKSUM_NONE:
42  *
43  *   Device failed to checksum this packet e.g. due to lack of capabilities.
44  *   The packet contains full (though not verified) checksum in packet but
45  *   not in skb->csum. Thus, skb->csum is undefined in this case.
46  *
47  * CHECKSUM_UNNECESSARY:
48  *
49  *   The hardware you're dealing with doesn't calculate the full checksum
50  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52  *   if their checksums are okay. skb->csum is still undefined in this case
53  *   though. It is a bad option, but, unfortunately, nowadays most vendors do
54  *   this. Apparently with the secret goal to sell you new devices, when you
55  *   will add new protocol to your host, f.e. IPv6 8)
56  *
57  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
58  *     TCP: IPv6 and IPv4.
59  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
61  *       may perform further validation in this case.
62  *     GRE: only if the checksum is present in the header.
63  *     SCTP: indicates the CRC in SCTP header has been validated.
64  *
65  *   skb->csum_level indicates the number of consecutive checksums found in
66  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68  *   and a device is able to verify the checksums for UDP (possibly zero),
69  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70  *   two. If the device were only able to verify the UDP checksum and not
71  *   GRE, either because it doesn't support GRE checksum of because GRE
72  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73  *   not considered in this case).
74  *
75  * CHECKSUM_COMPLETE:
76  *
77  *   This is the most generic way. The device supplied checksum of the _whole_
78  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79  *   hardware doesn't need to parse L3/L4 headers to implement this.
80  *
81  *   Note: Even if device supports only some protocols, but is able to produce
82  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83  *
84  * CHECKSUM_PARTIAL:
85  *
86  *   A checksum is set up to be offloaded to a device as described in the
87  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
88  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
89  *   on the same host, or it may be set in the input path in GRO or remote
90  *   checksum offload. For the purposes of checksum verification, the checksum
91  *   referred to by skb->csum_start + skb->csum_offset and any preceding
92  *   checksums in the packet are considered verified. Any checksums in the
93  *   packet that are after the checksum being offloaded are not considered to
94  *   be verified.
95  *
96  * B. Checksumming on output.
97  *
98  * CHECKSUM_NONE:
99  *
100  *   The skb was already checksummed by the protocol, or a checksum is not
101  *   required.
102  *
103  * CHECKSUM_PARTIAL:
104  *
105  *   The device is required to checksum the packet as seen by hard_start_xmit()
106  *   from skb->csum_start up to the end, and to record/write the checksum at
107  *   offset skb->csum_start + skb->csum_offset.
108  *
109  *   The device must show its capabilities in dev->features, set up at device
110  *   setup time, e.g. netdev_features.h:
111  *
112  *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
113  *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
114  *			  IPv4. Sigh. Vendors like this way for an unknown reason.
115  *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
116  *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
117  *	NETIF_F_...     - Well, you get the picture.
118  *
119  * CHECKSUM_UNNECESSARY:
120  *
121  *   Normally, the device will do per protocol specific checksumming. Protocol
122  *   implementations that do not want the NIC to perform the checksum
123  *   calculation should use this flag in their outgoing skbs.
124  *
125  *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
126  *			   offload. Correspondingly, the FCoE protocol driver
127  *			   stack should use CHECKSUM_UNNECESSARY.
128  *
129  * Any questions? No questions, good.		--ANK
130  */
131 
132 /* Don't change this without changing skb_csum_unnecessary! */
133 #define CHECKSUM_NONE		0
134 #define CHECKSUM_UNNECESSARY	1
135 #define CHECKSUM_COMPLETE	2
136 #define CHECKSUM_PARTIAL	3
137 
138 /* Maximum value in skb->csum_level */
139 #define SKB_MAX_CSUM_LEVEL	3
140 
141 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
142 #define SKB_WITH_OVERHEAD(X)	\
143 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
144 #define SKB_MAX_ORDER(X, ORDER) \
145 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
146 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
147 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
148 
149 /* return minimum truesize of one skb containing X bytes of data */
150 #define SKB_TRUESIZE(X) ((X) +						\
151 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
152 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
153 
154 struct net_device;
155 struct scatterlist;
156 struct pipe_inode_info;
157 struct iov_iter;
158 struct napi_struct;
159 
160 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
161 struct nf_conntrack {
162 	atomic_t use;
163 };
164 #endif
165 
166 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
167 struct nf_bridge_info {
168 	atomic_t		use;
169 	enum {
170 		BRNF_PROTO_UNCHANGED,
171 		BRNF_PROTO_8021Q,
172 		BRNF_PROTO_PPPOE
173 	} orig_proto;
174 	bool			pkt_otherhost;
175 	unsigned int		mask;
176 	struct net_device	*physindev;
177 	struct net_device	*physoutdev;
178 	char			neigh_header[8];
179 };
180 #endif
181 
182 struct sk_buff_head {
183 	/* These two members must be first. */
184 	struct sk_buff	*next;
185 	struct sk_buff	*prev;
186 
187 	__u32		qlen;
188 	spinlock_t	lock;
189 };
190 
191 struct sk_buff;
192 
193 /* To allow 64K frame to be packed as single skb without frag_list we
194  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
195  * buffers which do not start on a page boundary.
196  *
197  * Since GRO uses frags we allocate at least 16 regardless of page
198  * size.
199  */
200 #if (65536/PAGE_SIZE + 1) < 16
201 #define MAX_SKB_FRAGS 16UL
202 #else
203 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
204 #endif
205 
206 typedef struct skb_frag_struct skb_frag_t;
207 
208 struct skb_frag_struct {
209 	struct {
210 		struct page *p;
211 	} page;
212 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
213 	__u32 page_offset;
214 	__u32 size;
215 #else
216 	__u16 page_offset;
217 	__u16 size;
218 #endif
219 };
220 
221 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
222 {
223 	return frag->size;
224 }
225 
226 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
227 {
228 	frag->size = size;
229 }
230 
231 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
232 {
233 	frag->size += delta;
234 }
235 
236 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
237 {
238 	frag->size -= delta;
239 }
240 
241 #define HAVE_HW_TIME_STAMP
242 
243 /**
244  * struct skb_shared_hwtstamps - hardware time stamps
245  * @hwtstamp:	hardware time stamp transformed into duration
246  *		since arbitrary point in time
247  *
248  * Software time stamps generated by ktime_get_real() are stored in
249  * skb->tstamp.
250  *
251  * hwtstamps can only be compared against other hwtstamps from
252  * the same device.
253  *
254  * This structure is attached to packets as part of the
255  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
256  */
257 struct skb_shared_hwtstamps {
258 	ktime_t	hwtstamp;
259 };
260 
261 /* Definitions for tx_flags in struct skb_shared_info */
262 enum {
263 	/* generate hardware time stamp */
264 	SKBTX_HW_TSTAMP = 1 << 0,
265 
266 	/* generate software time stamp when queueing packet to NIC */
267 	SKBTX_SW_TSTAMP = 1 << 1,
268 
269 	/* device driver is going to provide hardware time stamp */
270 	SKBTX_IN_PROGRESS = 1 << 2,
271 
272 	/* device driver supports TX zero-copy buffers */
273 	SKBTX_DEV_ZEROCOPY = 1 << 3,
274 
275 	/* generate wifi status information (where possible) */
276 	SKBTX_WIFI_STATUS = 1 << 4,
277 
278 	/* This indicates at least one fragment might be overwritten
279 	 * (as in vmsplice(), sendfile() ...)
280 	 * If we need to compute a TX checksum, we'll need to copy
281 	 * all frags to avoid possible bad checksum
282 	 */
283 	SKBTX_SHARED_FRAG = 1 << 5,
284 
285 	/* generate software time stamp when entering packet scheduling */
286 	SKBTX_SCHED_TSTAMP = 1 << 6,
287 
288 	/* generate software timestamp on peer data acknowledgment */
289 	SKBTX_ACK_TSTAMP = 1 << 7,
290 };
291 
292 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
293 				 SKBTX_SCHED_TSTAMP | \
294 				 SKBTX_ACK_TSTAMP)
295 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
296 
297 /*
298  * The callback notifies userspace to release buffers when skb DMA is done in
299  * lower device, the skb last reference should be 0 when calling this.
300  * The zerocopy_success argument is true if zero copy transmit occurred,
301  * false on data copy or out of memory error caused by data copy attempt.
302  * The ctx field is used to track device context.
303  * The desc field is used to track userspace buffer index.
304  */
305 struct ubuf_info {
306 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
307 	void *ctx;
308 	unsigned long desc;
309 };
310 
311 /* This data is invariant across clones and lives at
312  * the end of the header data, ie. at skb->end.
313  */
314 struct skb_shared_info {
315 	unsigned char	nr_frags;
316 	__u8		tx_flags;
317 	unsigned short	gso_size;
318 	/* Warning: this field is not always filled in (UFO)! */
319 	unsigned short	gso_segs;
320 	unsigned short  gso_type;
321 	struct sk_buff	*frag_list;
322 	struct skb_shared_hwtstamps hwtstamps;
323 	u32		tskey;
324 	__be32          ip6_frag_id;
325 
326 	/*
327 	 * Warning : all fields before dataref are cleared in __alloc_skb()
328 	 */
329 	atomic_t	dataref;
330 
331 	/* Intermediate layers must ensure that destructor_arg
332 	 * remains valid until skb destructor */
333 	void *		destructor_arg;
334 
335 	/* must be last field, see pskb_expand_head() */
336 	skb_frag_t	frags[MAX_SKB_FRAGS];
337 };
338 
339 /* We divide dataref into two halves.  The higher 16 bits hold references
340  * to the payload part of skb->data.  The lower 16 bits hold references to
341  * the entire skb->data.  A clone of a headerless skb holds the length of
342  * the header in skb->hdr_len.
343  *
344  * All users must obey the rule that the skb->data reference count must be
345  * greater than or equal to the payload reference count.
346  *
347  * Holding a reference to the payload part means that the user does not
348  * care about modifications to the header part of skb->data.
349  */
350 #define SKB_DATAREF_SHIFT 16
351 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
352 
353 
354 enum {
355 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
356 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
357 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
358 };
359 
360 enum {
361 	SKB_GSO_TCPV4 = 1 << 0,
362 	SKB_GSO_UDP = 1 << 1,
363 
364 	/* This indicates the skb is from an untrusted source. */
365 	SKB_GSO_DODGY = 1 << 2,
366 
367 	/* This indicates the tcp segment has CWR set. */
368 	SKB_GSO_TCP_ECN = 1 << 3,
369 
370 	SKB_GSO_TCPV6 = 1 << 4,
371 
372 	SKB_GSO_FCOE = 1 << 5,
373 
374 	SKB_GSO_GRE = 1 << 6,
375 
376 	SKB_GSO_GRE_CSUM = 1 << 7,
377 
378 	SKB_GSO_IPIP = 1 << 8,
379 
380 	SKB_GSO_SIT = 1 << 9,
381 
382 	SKB_GSO_UDP_TUNNEL = 1 << 10,
383 
384 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
385 
386 	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
387 };
388 
389 #if BITS_PER_LONG > 32
390 #define NET_SKBUFF_DATA_USES_OFFSET 1
391 #endif
392 
393 #ifdef NET_SKBUFF_DATA_USES_OFFSET
394 typedef unsigned int sk_buff_data_t;
395 #else
396 typedef unsigned char *sk_buff_data_t;
397 #endif
398 
399 /**
400  * struct skb_mstamp - multi resolution time stamps
401  * @stamp_us: timestamp in us resolution
402  * @stamp_jiffies: timestamp in jiffies
403  */
404 struct skb_mstamp {
405 	union {
406 		u64		v64;
407 		struct {
408 			u32	stamp_us;
409 			u32	stamp_jiffies;
410 		};
411 	};
412 };
413 
414 /**
415  * skb_mstamp_get - get current timestamp
416  * @cl: place to store timestamps
417  */
418 static inline void skb_mstamp_get(struct skb_mstamp *cl)
419 {
420 	u64 val = local_clock();
421 
422 	do_div(val, NSEC_PER_USEC);
423 	cl->stamp_us = (u32)val;
424 	cl->stamp_jiffies = (u32)jiffies;
425 }
426 
427 /**
428  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
429  * @t1: pointer to newest sample
430  * @t0: pointer to oldest sample
431  */
432 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
433 				      const struct skb_mstamp *t0)
434 {
435 	s32 delta_us = t1->stamp_us - t0->stamp_us;
436 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
437 
438 	/* If delta_us is negative, this might be because interval is too big,
439 	 * or local_clock() drift is too big : fallback using jiffies.
440 	 */
441 	if (delta_us <= 0 ||
442 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
443 
444 		delta_us = jiffies_to_usecs(delta_jiffies);
445 
446 	return delta_us;
447 }
448 
449 
450 /**
451  *	struct sk_buff - socket buffer
452  *	@next: Next buffer in list
453  *	@prev: Previous buffer in list
454  *	@tstamp: Time we arrived/left
455  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
456  *	@sk: Socket we are owned by
457  *	@dev: Device we arrived on/are leaving by
458  *	@cb: Control buffer. Free for use by every layer. Put private vars here
459  *	@_skb_refdst: destination entry (with norefcount bit)
460  *	@sp: the security path, used for xfrm
461  *	@len: Length of actual data
462  *	@data_len: Data length
463  *	@mac_len: Length of link layer header
464  *	@hdr_len: writable header length of cloned skb
465  *	@csum: Checksum (must include start/offset pair)
466  *	@csum_start: Offset from skb->head where checksumming should start
467  *	@csum_offset: Offset from csum_start where checksum should be stored
468  *	@priority: Packet queueing priority
469  *	@ignore_df: allow local fragmentation
470  *	@cloned: Head may be cloned (check refcnt to be sure)
471  *	@ip_summed: Driver fed us an IP checksum
472  *	@nohdr: Payload reference only, must not modify header
473  *	@nfctinfo: Relationship of this skb to the connection
474  *	@pkt_type: Packet class
475  *	@fclone: skbuff clone status
476  *	@ipvs_property: skbuff is owned by ipvs
477  *	@peeked: this packet has been seen already, so stats have been
478  *		done for it, don't do them again
479  *	@nf_trace: netfilter packet trace flag
480  *	@protocol: Packet protocol from driver
481  *	@destructor: Destruct function
482  *	@nfct: Associated connection, if any
483  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
484  *	@skb_iif: ifindex of device we arrived on
485  *	@tc_index: Traffic control index
486  *	@tc_verd: traffic control verdict
487  *	@hash: the packet hash
488  *	@queue_mapping: Queue mapping for multiqueue devices
489  *	@xmit_more: More SKBs are pending for this queue
490  *	@ndisc_nodetype: router type (from link layer)
491  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
492  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
493  *		ports.
494  *	@sw_hash: indicates hash was computed in software stack
495  *	@wifi_acked_valid: wifi_acked was set
496  *	@wifi_acked: whether frame was acked on wifi or not
497  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
498   *	@napi_id: id of the NAPI struct this skb came from
499  *	@secmark: security marking
500  *	@mark: Generic packet mark
501  *	@vlan_proto: vlan encapsulation protocol
502  *	@vlan_tci: vlan tag control information
503  *	@inner_protocol: Protocol (encapsulation)
504  *	@inner_transport_header: Inner transport layer header (encapsulation)
505  *	@inner_network_header: Network layer header (encapsulation)
506  *	@inner_mac_header: Link layer header (encapsulation)
507  *	@transport_header: Transport layer header
508  *	@network_header: Network layer header
509  *	@mac_header: Link layer header
510  *	@tail: Tail pointer
511  *	@end: End pointer
512  *	@head: Head of buffer
513  *	@data: Data head pointer
514  *	@truesize: Buffer size
515  *	@users: User count - see {datagram,tcp}.c
516  */
517 
518 struct sk_buff {
519 	union {
520 		struct {
521 			/* These two members must be first. */
522 			struct sk_buff		*next;
523 			struct sk_buff		*prev;
524 
525 			union {
526 				ktime_t		tstamp;
527 				struct skb_mstamp skb_mstamp;
528 			};
529 		};
530 		struct rb_node	rbnode; /* used in netem & tcp stack */
531 	};
532 	struct sock		*sk;
533 	struct net_device	*dev;
534 
535 	/*
536 	 * This is the control buffer. It is free to use for every
537 	 * layer. Please put your private variables there. If you
538 	 * want to keep them across layers you have to do a skb_clone()
539 	 * first. This is owned by whoever has the skb queued ATM.
540 	 */
541 	char			cb[48] __aligned(8);
542 
543 	unsigned long		_skb_refdst;
544 	void			(*destructor)(struct sk_buff *skb);
545 #ifdef CONFIG_XFRM
546 	struct	sec_path	*sp;
547 #endif
548 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
549 	struct nf_conntrack	*nfct;
550 #endif
551 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
552 	struct nf_bridge_info	*nf_bridge;
553 #endif
554 	unsigned int		len,
555 				data_len;
556 	__u16			mac_len,
557 				hdr_len;
558 
559 	/* Following fields are _not_ copied in __copy_skb_header()
560 	 * Note that queue_mapping is here mostly to fill a hole.
561 	 */
562 	kmemcheck_bitfield_begin(flags1);
563 	__u16			queue_mapping;
564 	__u8			cloned:1,
565 				nohdr:1,
566 				fclone:2,
567 				peeked:1,
568 				head_frag:1,
569 				xmit_more:1;
570 	/* one bit hole */
571 	kmemcheck_bitfield_end(flags1);
572 
573 	/* fields enclosed in headers_start/headers_end are copied
574 	 * using a single memcpy() in __copy_skb_header()
575 	 */
576 	/* private: */
577 	__u32			headers_start[0];
578 	/* public: */
579 
580 /* if you move pkt_type around you also must adapt those constants */
581 #ifdef __BIG_ENDIAN_BITFIELD
582 #define PKT_TYPE_MAX	(7 << 5)
583 #else
584 #define PKT_TYPE_MAX	7
585 #endif
586 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
587 
588 	__u8			__pkt_type_offset[0];
589 	__u8			pkt_type:3;
590 	__u8			pfmemalloc:1;
591 	__u8			ignore_df:1;
592 	__u8			nfctinfo:3;
593 
594 	__u8			nf_trace:1;
595 	__u8			ip_summed:2;
596 	__u8			ooo_okay:1;
597 	__u8			l4_hash:1;
598 	__u8			sw_hash:1;
599 	__u8			wifi_acked_valid:1;
600 	__u8			wifi_acked:1;
601 
602 	__u8			no_fcs:1;
603 	/* Indicates the inner headers are valid in the skbuff. */
604 	__u8			encapsulation:1;
605 	__u8			encap_hdr_csum:1;
606 	__u8			csum_valid:1;
607 	__u8			csum_complete_sw:1;
608 	__u8			csum_level:2;
609 	__u8			csum_bad:1;
610 
611 #ifdef CONFIG_IPV6_NDISC_NODETYPE
612 	__u8			ndisc_nodetype:2;
613 #endif
614 	__u8			ipvs_property:1;
615 	__u8			inner_protocol_type:1;
616 	__u8			remcsum_offload:1;
617 	/* 3 or 5 bit hole */
618 
619 #ifdef CONFIG_NET_SCHED
620 	__u16			tc_index;	/* traffic control index */
621 #ifdef CONFIG_NET_CLS_ACT
622 	__u16			tc_verd;	/* traffic control verdict */
623 #endif
624 #endif
625 
626 	union {
627 		__wsum		csum;
628 		struct {
629 			__u16	csum_start;
630 			__u16	csum_offset;
631 		};
632 	};
633 	__u32			priority;
634 	int			skb_iif;
635 	__u32			hash;
636 	__be16			vlan_proto;
637 	__u16			vlan_tci;
638 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
639 	union {
640 		unsigned int	napi_id;
641 		unsigned int	sender_cpu;
642 	};
643 #endif
644 #ifdef CONFIG_NETWORK_SECMARK
645 	__u32			secmark;
646 #endif
647 	union {
648 		__u32		mark;
649 		__u32		reserved_tailroom;
650 	};
651 
652 	union {
653 		__be16		inner_protocol;
654 		__u8		inner_ipproto;
655 	};
656 
657 	__u16			inner_transport_header;
658 	__u16			inner_network_header;
659 	__u16			inner_mac_header;
660 
661 	__be16			protocol;
662 	__u16			transport_header;
663 	__u16			network_header;
664 	__u16			mac_header;
665 
666 	/* private: */
667 	__u32			headers_end[0];
668 	/* public: */
669 
670 	/* These elements must be at the end, see alloc_skb() for details.  */
671 	sk_buff_data_t		tail;
672 	sk_buff_data_t		end;
673 	unsigned char		*head,
674 				*data;
675 	unsigned int		truesize;
676 	atomic_t		users;
677 };
678 
679 #ifdef __KERNEL__
680 /*
681  *	Handling routines are only of interest to the kernel
682  */
683 #include <linux/slab.h>
684 
685 
686 #define SKB_ALLOC_FCLONE	0x01
687 #define SKB_ALLOC_RX		0x02
688 #define SKB_ALLOC_NAPI		0x04
689 
690 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
691 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
692 {
693 	return unlikely(skb->pfmemalloc);
694 }
695 
696 /*
697  * skb might have a dst pointer attached, refcounted or not.
698  * _skb_refdst low order bit is set if refcount was _not_ taken
699  */
700 #define SKB_DST_NOREF	1UL
701 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
702 
703 /**
704  * skb_dst - returns skb dst_entry
705  * @skb: buffer
706  *
707  * Returns skb dst_entry, regardless of reference taken or not.
708  */
709 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
710 {
711 	/* If refdst was not refcounted, check we still are in a
712 	 * rcu_read_lock section
713 	 */
714 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
715 		!rcu_read_lock_held() &&
716 		!rcu_read_lock_bh_held());
717 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
718 }
719 
720 /**
721  * skb_dst_set - sets skb dst
722  * @skb: buffer
723  * @dst: dst entry
724  *
725  * Sets skb dst, assuming a reference was taken on dst and should
726  * be released by skb_dst_drop()
727  */
728 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
729 {
730 	skb->_skb_refdst = (unsigned long)dst;
731 }
732 
733 /**
734  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
735  * @skb: buffer
736  * @dst: dst entry
737  *
738  * Sets skb dst, assuming a reference was not taken on dst.
739  * If dst entry is cached, we do not take reference and dst_release
740  * will be avoided by refdst_drop. If dst entry is not cached, we take
741  * reference, so that last dst_release can destroy the dst immediately.
742  */
743 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
744 {
745 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
746 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
747 }
748 
749 /**
750  * skb_dst_is_noref - Test if skb dst isn't refcounted
751  * @skb: buffer
752  */
753 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
754 {
755 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
756 }
757 
758 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
759 {
760 	return (struct rtable *)skb_dst(skb);
761 }
762 
763 void kfree_skb(struct sk_buff *skb);
764 void kfree_skb_list(struct sk_buff *segs);
765 void skb_tx_error(struct sk_buff *skb);
766 void consume_skb(struct sk_buff *skb);
767 void  __kfree_skb(struct sk_buff *skb);
768 extern struct kmem_cache *skbuff_head_cache;
769 
770 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
771 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
772 		      bool *fragstolen, int *delta_truesize);
773 
774 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
775 			    int node);
776 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
777 struct sk_buff *build_skb(void *data, unsigned int frag_size);
778 static inline struct sk_buff *alloc_skb(unsigned int size,
779 					gfp_t priority)
780 {
781 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
782 }
783 
784 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
785 				     unsigned long data_len,
786 				     int max_page_order,
787 				     int *errcode,
788 				     gfp_t gfp_mask);
789 
790 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
791 struct sk_buff_fclones {
792 	struct sk_buff	skb1;
793 
794 	struct sk_buff	skb2;
795 
796 	atomic_t	fclone_ref;
797 };
798 
799 /**
800  *	skb_fclone_busy - check if fclone is busy
801  *	@skb: buffer
802  *
803  * Returns true is skb is a fast clone, and its clone is not freed.
804  * Some drivers call skb_orphan() in their ndo_start_xmit(),
805  * so we also check that this didnt happen.
806  */
807 static inline bool skb_fclone_busy(const struct sock *sk,
808 				   const struct sk_buff *skb)
809 {
810 	const struct sk_buff_fclones *fclones;
811 
812 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
813 
814 	return skb->fclone == SKB_FCLONE_ORIG &&
815 	       atomic_read(&fclones->fclone_ref) > 1 &&
816 	       fclones->skb2.sk == sk;
817 }
818 
819 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
820 					       gfp_t priority)
821 {
822 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
823 }
824 
825 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
826 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
827 {
828 	return __alloc_skb_head(priority, -1);
829 }
830 
831 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
832 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
833 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
834 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
835 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
836 				   gfp_t gfp_mask, bool fclone);
837 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
838 					  gfp_t gfp_mask)
839 {
840 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
841 }
842 
843 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
844 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
845 				     unsigned int headroom);
846 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
847 				int newtailroom, gfp_t priority);
848 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
849 			int offset, int len);
850 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
851 		 int len);
852 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
853 int skb_pad(struct sk_buff *skb, int pad);
854 #define dev_kfree_skb(a)	consume_skb(a)
855 
856 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
857 			    int getfrag(void *from, char *to, int offset,
858 					int len, int odd, struct sk_buff *skb),
859 			    void *from, int length);
860 
861 struct skb_seq_state {
862 	__u32		lower_offset;
863 	__u32		upper_offset;
864 	__u32		frag_idx;
865 	__u32		stepped_offset;
866 	struct sk_buff	*root_skb;
867 	struct sk_buff	*cur_skb;
868 	__u8		*frag_data;
869 };
870 
871 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
872 			  unsigned int to, struct skb_seq_state *st);
873 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
874 			  struct skb_seq_state *st);
875 void skb_abort_seq_read(struct skb_seq_state *st);
876 
877 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
878 			   unsigned int to, struct ts_config *config);
879 
880 /*
881  * Packet hash types specify the type of hash in skb_set_hash.
882  *
883  * Hash types refer to the protocol layer addresses which are used to
884  * construct a packet's hash. The hashes are used to differentiate or identify
885  * flows of the protocol layer for the hash type. Hash types are either
886  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
887  *
888  * Properties of hashes:
889  *
890  * 1) Two packets in different flows have different hash values
891  * 2) Two packets in the same flow should have the same hash value
892  *
893  * A hash at a higher layer is considered to be more specific. A driver should
894  * set the most specific hash possible.
895  *
896  * A driver cannot indicate a more specific hash than the layer at which a hash
897  * was computed. For instance an L3 hash cannot be set as an L4 hash.
898  *
899  * A driver may indicate a hash level which is less specific than the
900  * actual layer the hash was computed on. For instance, a hash computed
901  * at L4 may be considered an L3 hash. This should only be done if the
902  * driver can't unambiguously determine that the HW computed the hash at
903  * the higher layer. Note that the "should" in the second property above
904  * permits this.
905  */
906 enum pkt_hash_types {
907 	PKT_HASH_TYPE_NONE,	/* Undefined type */
908 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
909 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
910 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
911 };
912 
913 static inline void
914 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
915 {
916 	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
917 	skb->sw_hash = 0;
918 	skb->hash = hash;
919 }
920 
921 void __skb_get_hash(struct sk_buff *skb);
922 static inline __u32 skb_get_hash(struct sk_buff *skb)
923 {
924 	if (!skb->l4_hash && !skb->sw_hash)
925 		__skb_get_hash(skb);
926 
927 	return skb->hash;
928 }
929 
930 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
931 {
932 	return skb->hash;
933 }
934 
935 static inline void skb_clear_hash(struct sk_buff *skb)
936 {
937 	skb->hash = 0;
938 	skb->sw_hash = 0;
939 	skb->l4_hash = 0;
940 }
941 
942 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
943 {
944 	if (!skb->l4_hash)
945 		skb_clear_hash(skb);
946 }
947 
948 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
949 {
950 	to->hash = from->hash;
951 	to->sw_hash = from->sw_hash;
952 	to->l4_hash = from->l4_hash;
953 };
954 
955 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
956 {
957 #ifdef CONFIG_XPS
958 	skb->sender_cpu = 0;
959 #endif
960 }
961 
962 #ifdef NET_SKBUFF_DATA_USES_OFFSET
963 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
964 {
965 	return skb->head + skb->end;
966 }
967 
968 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
969 {
970 	return skb->end;
971 }
972 #else
973 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
974 {
975 	return skb->end;
976 }
977 
978 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
979 {
980 	return skb->end - skb->head;
981 }
982 #endif
983 
984 /* Internal */
985 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
986 
987 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
988 {
989 	return &skb_shinfo(skb)->hwtstamps;
990 }
991 
992 /**
993  *	skb_queue_empty - check if a queue is empty
994  *	@list: queue head
995  *
996  *	Returns true if the queue is empty, false otherwise.
997  */
998 static inline int skb_queue_empty(const struct sk_buff_head *list)
999 {
1000 	return list->next == (const struct sk_buff *) list;
1001 }
1002 
1003 /**
1004  *	skb_queue_is_last - check if skb is the last entry in the queue
1005  *	@list: queue head
1006  *	@skb: buffer
1007  *
1008  *	Returns true if @skb is the last buffer on the list.
1009  */
1010 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1011 				     const struct sk_buff *skb)
1012 {
1013 	return skb->next == (const struct sk_buff *) list;
1014 }
1015 
1016 /**
1017  *	skb_queue_is_first - check if skb is the first entry in the queue
1018  *	@list: queue head
1019  *	@skb: buffer
1020  *
1021  *	Returns true if @skb is the first buffer on the list.
1022  */
1023 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1024 				      const struct sk_buff *skb)
1025 {
1026 	return skb->prev == (const struct sk_buff *) list;
1027 }
1028 
1029 /**
1030  *	skb_queue_next - return the next packet in the queue
1031  *	@list: queue head
1032  *	@skb: current buffer
1033  *
1034  *	Return the next packet in @list after @skb.  It is only valid to
1035  *	call this if skb_queue_is_last() evaluates to false.
1036  */
1037 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1038 					     const struct sk_buff *skb)
1039 {
1040 	/* This BUG_ON may seem severe, but if we just return then we
1041 	 * are going to dereference garbage.
1042 	 */
1043 	BUG_ON(skb_queue_is_last(list, skb));
1044 	return skb->next;
1045 }
1046 
1047 /**
1048  *	skb_queue_prev - return the prev packet in the queue
1049  *	@list: queue head
1050  *	@skb: current buffer
1051  *
1052  *	Return the prev packet in @list before @skb.  It is only valid to
1053  *	call this if skb_queue_is_first() evaluates to false.
1054  */
1055 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1056 					     const struct sk_buff *skb)
1057 {
1058 	/* This BUG_ON may seem severe, but if we just return then we
1059 	 * are going to dereference garbage.
1060 	 */
1061 	BUG_ON(skb_queue_is_first(list, skb));
1062 	return skb->prev;
1063 }
1064 
1065 /**
1066  *	skb_get - reference buffer
1067  *	@skb: buffer to reference
1068  *
1069  *	Makes another reference to a socket buffer and returns a pointer
1070  *	to the buffer.
1071  */
1072 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1073 {
1074 	atomic_inc(&skb->users);
1075 	return skb;
1076 }
1077 
1078 /*
1079  * If users == 1, we are the only owner and are can avoid redundant
1080  * atomic change.
1081  */
1082 
1083 /**
1084  *	skb_cloned - is the buffer a clone
1085  *	@skb: buffer to check
1086  *
1087  *	Returns true if the buffer was generated with skb_clone() and is
1088  *	one of multiple shared copies of the buffer. Cloned buffers are
1089  *	shared data so must not be written to under normal circumstances.
1090  */
1091 static inline int skb_cloned(const struct sk_buff *skb)
1092 {
1093 	return skb->cloned &&
1094 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1095 }
1096 
1097 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1098 {
1099 	might_sleep_if(pri & __GFP_WAIT);
1100 
1101 	if (skb_cloned(skb))
1102 		return pskb_expand_head(skb, 0, 0, pri);
1103 
1104 	return 0;
1105 }
1106 
1107 /**
1108  *	skb_header_cloned - is the header a clone
1109  *	@skb: buffer to check
1110  *
1111  *	Returns true if modifying the header part of the buffer requires
1112  *	the data to be copied.
1113  */
1114 static inline int skb_header_cloned(const struct sk_buff *skb)
1115 {
1116 	int dataref;
1117 
1118 	if (!skb->cloned)
1119 		return 0;
1120 
1121 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1122 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1123 	return dataref != 1;
1124 }
1125 
1126 /**
1127  *	skb_header_release - release reference to header
1128  *	@skb: buffer to operate on
1129  *
1130  *	Drop a reference to the header part of the buffer.  This is done
1131  *	by acquiring a payload reference.  You must not read from the header
1132  *	part of skb->data after this.
1133  *	Note : Check if you can use __skb_header_release() instead.
1134  */
1135 static inline void skb_header_release(struct sk_buff *skb)
1136 {
1137 	BUG_ON(skb->nohdr);
1138 	skb->nohdr = 1;
1139 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1140 }
1141 
1142 /**
1143  *	__skb_header_release - release reference to header
1144  *	@skb: buffer to operate on
1145  *
1146  *	Variant of skb_header_release() assuming skb is private to caller.
1147  *	We can avoid one atomic operation.
1148  */
1149 static inline void __skb_header_release(struct sk_buff *skb)
1150 {
1151 	skb->nohdr = 1;
1152 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1153 }
1154 
1155 
1156 /**
1157  *	skb_shared - is the buffer shared
1158  *	@skb: buffer to check
1159  *
1160  *	Returns true if more than one person has a reference to this
1161  *	buffer.
1162  */
1163 static inline int skb_shared(const struct sk_buff *skb)
1164 {
1165 	return atomic_read(&skb->users) != 1;
1166 }
1167 
1168 /**
1169  *	skb_share_check - check if buffer is shared and if so clone it
1170  *	@skb: buffer to check
1171  *	@pri: priority for memory allocation
1172  *
1173  *	If the buffer is shared the buffer is cloned and the old copy
1174  *	drops a reference. A new clone with a single reference is returned.
1175  *	If the buffer is not shared the original buffer is returned. When
1176  *	being called from interrupt status or with spinlocks held pri must
1177  *	be GFP_ATOMIC.
1178  *
1179  *	NULL is returned on a memory allocation failure.
1180  */
1181 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1182 {
1183 	might_sleep_if(pri & __GFP_WAIT);
1184 	if (skb_shared(skb)) {
1185 		struct sk_buff *nskb = skb_clone(skb, pri);
1186 
1187 		if (likely(nskb))
1188 			consume_skb(skb);
1189 		else
1190 			kfree_skb(skb);
1191 		skb = nskb;
1192 	}
1193 	return skb;
1194 }
1195 
1196 /*
1197  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1198  *	packets to handle cases where we have a local reader and forward
1199  *	and a couple of other messy ones. The normal one is tcpdumping
1200  *	a packet thats being forwarded.
1201  */
1202 
1203 /**
1204  *	skb_unshare - make a copy of a shared buffer
1205  *	@skb: buffer to check
1206  *	@pri: priority for memory allocation
1207  *
1208  *	If the socket buffer is a clone then this function creates a new
1209  *	copy of the data, drops a reference count on the old copy and returns
1210  *	the new copy with the reference count at 1. If the buffer is not a clone
1211  *	the original buffer is returned. When called with a spinlock held or
1212  *	from interrupt state @pri must be %GFP_ATOMIC
1213  *
1214  *	%NULL is returned on a memory allocation failure.
1215  */
1216 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1217 					  gfp_t pri)
1218 {
1219 	might_sleep_if(pri & __GFP_WAIT);
1220 	if (skb_cloned(skb)) {
1221 		struct sk_buff *nskb = skb_copy(skb, pri);
1222 
1223 		/* Free our shared copy */
1224 		if (likely(nskb))
1225 			consume_skb(skb);
1226 		else
1227 			kfree_skb(skb);
1228 		skb = nskb;
1229 	}
1230 	return skb;
1231 }
1232 
1233 /**
1234  *	skb_peek - peek at the head of an &sk_buff_head
1235  *	@list_: list to peek at
1236  *
1237  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1238  *	be careful with this one. A peek leaves the buffer on the
1239  *	list and someone else may run off with it. You must hold
1240  *	the appropriate locks or have a private queue to do this.
1241  *
1242  *	Returns %NULL for an empty list or a pointer to the head element.
1243  *	The reference count is not incremented and the reference is therefore
1244  *	volatile. Use with caution.
1245  */
1246 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1247 {
1248 	struct sk_buff *skb = list_->next;
1249 
1250 	if (skb == (struct sk_buff *)list_)
1251 		skb = NULL;
1252 	return skb;
1253 }
1254 
1255 /**
1256  *	skb_peek_next - peek skb following the given one from a queue
1257  *	@skb: skb to start from
1258  *	@list_: list to peek at
1259  *
1260  *	Returns %NULL when the end of the list is met or a pointer to the
1261  *	next element. The reference count is not incremented and the
1262  *	reference is therefore volatile. Use with caution.
1263  */
1264 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1265 		const struct sk_buff_head *list_)
1266 {
1267 	struct sk_buff *next = skb->next;
1268 
1269 	if (next == (struct sk_buff *)list_)
1270 		next = NULL;
1271 	return next;
1272 }
1273 
1274 /**
1275  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1276  *	@list_: list to peek at
1277  *
1278  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1279  *	be careful with this one. A peek leaves the buffer on the
1280  *	list and someone else may run off with it. You must hold
1281  *	the appropriate locks or have a private queue to do this.
1282  *
1283  *	Returns %NULL for an empty list or a pointer to the tail element.
1284  *	The reference count is not incremented and the reference is therefore
1285  *	volatile. Use with caution.
1286  */
1287 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1288 {
1289 	struct sk_buff *skb = list_->prev;
1290 
1291 	if (skb == (struct sk_buff *)list_)
1292 		skb = NULL;
1293 	return skb;
1294 
1295 }
1296 
1297 /**
1298  *	skb_queue_len	- get queue length
1299  *	@list_: list to measure
1300  *
1301  *	Return the length of an &sk_buff queue.
1302  */
1303 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1304 {
1305 	return list_->qlen;
1306 }
1307 
1308 /**
1309  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1310  *	@list: queue to initialize
1311  *
1312  *	This initializes only the list and queue length aspects of
1313  *	an sk_buff_head object.  This allows to initialize the list
1314  *	aspects of an sk_buff_head without reinitializing things like
1315  *	the spinlock.  It can also be used for on-stack sk_buff_head
1316  *	objects where the spinlock is known to not be used.
1317  */
1318 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1319 {
1320 	list->prev = list->next = (struct sk_buff *)list;
1321 	list->qlen = 0;
1322 }
1323 
1324 /*
1325  * This function creates a split out lock class for each invocation;
1326  * this is needed for now since a whole lot of users of the skb-queue
1327  * infrastructure in drivers have different locking usage (in hardirq)
1328  * than the networking core (in softirq only). In the long run either the
1329  * network layer or drivers should need annotation to consolidate the
1330  * main types of usage into 3 classes.
1331  */
1332 static inline void skb_queue_head_init(struct sk_buff_head *list)
1333 {
1334 	spin_lock_init(&list->lock);
1335 	__skb_queue_head_init(list);
1336 }
1337 
1338 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1339 		struct lock_class_key *class)
1340 {
1341 	skb_queue_head_init(list);
1342 	lockdep_set_class(&list->lock, class);
1343 }
1344 
1345 /*
1346  *	Insert an sk_buff on a list.
1347  *
1348  *	The "__skb_xxxx()" functions are the non-atomic ones that
1349  *	can only be called with interrupts disabled.
1350  */
1351 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1352 		struct sk_buff_head *list);
1353 static inline void __skb_insert(struct sk_buff *newsk,
1354 				struct sk_buff *prev, struct sk_buff *next,
1355 				struct sk_buff_head *list)
1356 {
1357 	newsk->next = next;
1358 	newsk->prev = prev;
1359 	next->prev  = prev->next = newsk;
1360 	list->qlen++;
1361 }
1362 
1363 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1364 				      struct sk_buff *prev,
1365 				      struct sk_buff *next)
1366 {
1367 	struct sk_buff *first = list->next;
1368 	struct sk_buff *last = list->prev;
1369 
1370 	first->prev = prev;
1371 	prev->next = first;
1372 
1373 	last->next = next;
1374 	next->prev = last;
1375 }
1376 
1377 /**
1378  *	skb_queue_splice - join two skb lists, this is designed for stacks
1379  *	@list: the new list to add
1380  *	@head: the place to add it in the first list
1381  */
1382 static inline void skb_queue_splice(const struct sk_buff_head *list,
1383 				    struct sk_buff_head *head)
1384 {
1385 	if (!skb_queue_empty(list)) {
1386 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1387 		head->qlen += list->qlen;
1388 	}
1389 }
1390 
1391 /**
1392  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1393  *	@list: the new list to add
1394  *	@head: the place to add it in the first list
1395  *
1396  *	The list at @list is reinitialised
1397  */
1398 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1399 					 struct sk_buff_head *head)
1400 {
1401 	if (!skb_queue_empty(list)) {
1402 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1403 		head->qlen += list->qlen;
1404 		__skb_queue_head_init(list);
1405 	}
1406 }
1407 
1408 /**
1409  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1410  *	@list: the new list to add
1411  *	@head: the place to add it in the first list
1412  */
1413 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1414 					 struct sk_buff_head *head)
1415 {
1416 	if (!skb_queue_empty(list)) {
1417 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1418 		head->qlen += list->qlen;
1419 	}
1420 }
1421 
1422 /**
1423  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1424  *	@list: the new list to add
1425  *	@head: the place to add it in the first list
1426  *
1427  *	Each of the lists is a queue.
1428  *	The list at @list is reinitialised
1429  */
1430 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1431 					      struct sk_buff_head *head)
1432 {
1433 	if (!skb_queue_empty(list)) {
1434 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1435 		head->qlen += list->qlen;
1436 		__skb_queue_head_init(list);
1437 	}
1438 }
1439 
1440 /**
1441  *	__skb_queue_after - queue a buffer at the list head
1442  *	@list: list to use
1443  *	@prev: place after this buffer
1444  *	@newsk: buffer to queue
1445  *
1446  *	Queue a buffer int the middle of a list. This function takes no locks
1447  *	and you must therefore hold required locks before calling it.
1448  *
1449  *	A buffer cannot be placed on two lists at the same time.
1450  */
1451 static inline void __skb_queue_after(struct sk_buff_head *list,
1452 				     struct sk_buff *prev,
1453 				     struct sk_buff *newsk)
1454 {
1455 	__skb_insert(newsk, prev, prev->next, list);
1456 }
1457 
1458 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1459 		struct sk_buff_head *list);
1460 
1461 static inline void __skb_queue_before(struct sk_buff_head *list,
1462 				      struct sk_buff *next,
1463 				      struct sk_buff *newsk)
1464 {
1465 	__skb_insert(newsk, next->prev, next, list);
1466 }
1467 
1468 /**
1469  *	__skb_queue_head - queue a buffer at the list head
1470  *	@list: list to use
1471  *	@newsk: buffer to queue
1472  *
1473  *	Queue a buffer at the start of a list. This function takes no locks
1474  *	and you must therefore hold required locks before calling it.
1475  *
1476  *	A buffer cannot be placed on two lists at the same time.
1477  */
1478 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1479 static inline void __skb_queue_head(struct sk_buff_head *list,
1480 				    struct sk_buff *newsk)
1481 {
1482 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1483 }
1484 
1485 /**
1486  *	__skb_queue_tail - queue a buffer at the list tail
1487  *	@list: list to use
1488  *	@newsk: buffer to queue
1489  *
1490  *	Queue a buffer at the end of a list. This function takes no locks
1491  *	and you must therefore hold required locks before calling it.
1492  *
1493  *	A buffer cannot be placed on two lists at the same time.
1494  */
1495 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1496 static inline void __skb_queue_tail(struct sk_buff_head *list,
1497 				   struct sk_buff *newsk)
1498 {
1499 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1500 }
1501 
1502 /*
1503  * remove sk_buff from list. _Must_ be called atomically, and with
1504  * the list known..
1505  */
1506 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1507 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1508 {
1509 	struct sk_buff *next, *prev;
1510 
1511 	list->qlen--;
1512 	next	   = skb->next;
1513 	prev	   = skb->prev;
1514 	skb->next  = skb->prev = NULL;
1515 	next->prev = prev;
1516 	prev->next = next;
1517 }
1518 
1519 /**
1520  *	__skb_dequeue - remove from the head of the queue
1521  *	@list: list to dequeue from
1522  *
1523  *	Remove the head of the list. This function does not take any locks
1524  *	so must be used with appropriate locks held only. The head item is
1525  *	returned or %NULL if the list is empty.
1526  */
1527 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1528 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1529 {
1530 	struct sk_buff *skb = skb_peek(list);
1531 	if (skb)
1532 		__skb_unlink(skb, list);
1533 	return skb;
1534 }
1535 
1536 /**
1537  *	__skb_dequeue_tail - remove from the tail of the queue
1538  *	@list: list to dequeue from
1539  *
1540  *	Remove the tail of the list. This function does not take any locks
1541  *	so must be used with appropriate locks held only. The tail item is
1542  *	returned or %NULL if the list is empty.
1543  */
1544 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1545 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1546 {
1547 	struct sk_buff *skb = skb_peek_tail(list);
1548 	if (skb)
1549 		__skb_unlink(skb, list);
1550 	return skb;
1551 }
1552 
1553 
1554 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1555 {
1556 	return skb->data_len;
1557 }
1558 
1559 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1560 {
1561 	return skb->len - skb->data_len;
1562 }
1563 
1564 static inline int skb_pagelen(const struct sk_buff *skb)
1565 {
1566 	int i, len = 0;
1567 
1568 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1569 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1570 	return len + skb_headlen(skb);
1571 }
1572 
1573 /**
1574  * __skb_fill_page_desc - initialise a paged fragment in an skb
1575  * @skb: buffer containing fragment to be initialised
1576  * @i: paged fragment index to initialise
1577  * @page: the page to use for this fragment
1578  * @off: the offset to the data with @page
1579  * @size: the length of the data
1580  *
1581  * Initialises the @i'th fragment of @skb to point to &size bytes at
1582  * offset @off within @page.
1583  *
1584  * Does not take any additional reference on the fragment.
1585  */
1586 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1587 					struct page *page, int off, int size)
1588 {
1589 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1590 
1591 	/*
1592 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1593 	 * that not all callers have unique ownership of the page. If
1594 	 * pfmemalloc is set, we check the mapping as a mapping implies
1595 	 * page->index is set (index and pfmemalloc share space).
1596 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1597 	 * do not lose pfmemalloc information as the pages would not be
1598 	 * allocated using __GFP_MEMALLOC.
1599 	 */
1600 	frag->page.p		  = page;
1601 	frag->page_offset	  = off;
1602 	skb_frag_size_set(frag, size);
1603 
1604 	page = compound_head(page);
1605 	if (page->pfmemalloc && !page->mapping)
1606 		skb->pfmemalloc	= true;
1607 }
1608 
1609 /**
1610  * skb_fill_page_desc - initialise a paged fragment in an skb
1611  * @skb: buffer containing fragment to be initialised
1612  * @i: paged fragment index to initialise
1613  * @page: the page to use for this fragment
1614  * @off: the offset to the data with @page
1615  * @size: the length of the data
1616  *
1617  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1618  * @skb to point to @size bytes at offset @off within @page. In
1619  * addition updates @skb such that @i is the last fragment.
1620  *
1621  * Does not take any additional reference on the fragment.
1622  */
1623 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1624 				      struct page *page, int off, int size)
1625 {
1626 	__skb_fill_page_desc(skb, i, page, off, size);
1627 	skb_shinfo(skb)->nr_frags = i + 1;
1628 }
1629 
1630 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1631 		     int size, unsigned int truesize);
1632 
1633 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1634 			  unsigned int truesize);
1635 
1636 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1637 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1638 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1639 
1640 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1641 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1642 {
1643 	return skb->head + skb->tail;
1644 }
1645 
1646 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1647 {
1648 	skb->tail = skb->data - skb->head;
1649 }
1650 
1651 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1652 {
1653 	skb_reset_tail_pointer(skb);
1654 	skb->tail += offset;
1655 }
1656 
1657 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1658 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1659 {
1660 	return skb->tail;
1661 }
1662 
1663 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1664 {
1665 	skb->tail = skb->data;
1666 }
1667 
1668 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1669 {
1670 	skb->tail = skb->data + offset;
1671 }
1672 
1673 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1674 
1675 /*
1676  *	Add data to an sk_buff
1677  */
1678 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1679 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1680 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1681 {
1682 	unsigned char *tmp = skb_tail_pointer(skb);
1683 	SKB_LINEAR_ASSERT(skb);
1684 	skb->tail += len;
1685 	skb->len  += len;
1686 	return tmp;
1687 }
1688 
1689 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1690 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1691 {
1692 	skb->data -= len;
1693 	skb->len  += len;
1694 	return skb->data;
1695 }
1696 
1697 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1698 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1699 {
1700 	skb->len -= len;
1701 	BUG_ON(skb->len < skb->data_len);
1702 	return skb->data += len;
1703 }
1704 
1705 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1706 {
1707 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1708 }
1709 
1710 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1711 
1712 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1713 {
1714 	if (len > skb_headlen(skb) &&
1715 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1716 		return NULL;
1717 	skb->len -= len;
1718 	return skb->data += len;
1719 }
1720 
1721 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1722 {
1723 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1724 }
1725 
1726 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1727 {
1728 	if (likely(len <= skb_headlen(skb)))
1729 		return 1;
1730 	if (unlikely(len > skb->len))
1731 		return 0;
1732 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1733 }
1734 
1735 /**
1736  *	skb_headroom - bytes at buffer head
1737  *	@skb: buffer to check
1738  *
1739  *	Return the number of bytes of free space at the head of an &sk_buff.
1740  */
1741 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1742 {
1743 	return skb->data - skb->head;
1744 }
1745 
1746 /**
1747  *	skb_tailroom - bytes at buffer end
1748  *	@skb: buffer to check
1749  *
1750  *	Return the number of bytes of free space at the tail of an sk_buff
1751  */
1752 static inline int skb_tailroom(const struct sk_buff *skb)
1753 {
1754 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1755 }
1756 
1757 /**
1758  *	skb_availroom - bytes at buffer end
1759  *	@skb: buffer to check
1760  *
1761  *	Return the number of bytes of free space at the tail of an sk_buff
1762  *	allocated by sk_stream_alloc()
1763  */
1764 static inline int skb_availroom(const struct sk_buff *skb)
1765 {
1766 	if (skb_is_nonlinear(skb))
1767 		return 0;
1768 
1769 	return skb->end - skb->tail - skb->reserved_tailroom;
1770 }
1771 
1772 /**
1773  *	skb_reserve - adjust headroom
1774  *	@skb: buffer to alter
1775  *	@len: bytes to move
1776  *
1777  *	Increase the headroom of an empty &sk_buff by reducing the tail
1778  *	room. This is only allowed for an empty buffer.
1779  */
1780 static inline void skb_reserve(struct sk_buff *skb, int len)
1781 {
1782 	skb->data += len;
1783 	skb->tail += len;
1784 }
1785 
1786 #define ENCAP_TYPE_ETHER	0
1787 #define ENCAP_TYPE_IPPROTO	1
1788 
1789 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1790 					  __be16 protocol)
1791 {
1792 	skb->inner_protocol = protocol;
1793 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1794 }
1795 
1796 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1797 					 __u8 ipproto)
1798 {
1799 	skb->inner_ipproto = ipproto;
1800 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1801 }
1802 
1803 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1804 {
1805 	skb->inner_mac_header = skb->mac_header;
1806 	skb->inner_network_header = skb->network_header;
1807 	skb->inner_transport_header = skb->transport_header;
1808 }
1809 
1810 static inline void skb_reset_mac_len(struct sk_buff *skb)
1811 {
1812 	skb->mac_len = skb->network_header - skb->mac_header;
1813 }
1814 
1815 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1816 							*skb)
1817 {
1818 	return skb->head + skb->inner_transport_header;
1819 }
1820 
1821 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1822 {
1823 	skb->inner_transport_header = skb->data - skb->head;
1824 }
1825 
1826 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1827 						   const int offset)
1828 {
1829 	skb_reset_inner_transport_header(skb);
1830 	skb->inner_transport_header += offset;
1831 }
1832 
1833 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1834 {
1835 	return skb->head + skb->inner_network_header;
1836 }
1837 
1838 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1839 {
1840 	skb->inner_network_header = skb->data - skb->head;
1841 }
1842 
1843 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1844 						const int offset)
1845 {
1846 	skb_reset_inner_network_header(skb);
1847 	skb->inner_network_header += offset;
1848 }
1849 
1850 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1851 {
1852 	return skb->head + skb->inner_mac_header;
1853 }
1854 
1855 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1856 {
1857 	skb->inner_mac_header = skb->data - skb->head;
1858 }
1859 
1860 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1861 					    const int offset)
1862 {
1863 	skb_reset_inner_mac_header(skb);
1864 	skb->inner_mac_header += offset;
1865 }
1866 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1867 {
1868 	return skb->transport_header != (typeof(skb->transport_header))~0U;
1869 }
1870 
1871 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1872 {
1873 	return skb->head + skb->transport_header;
1874 }
1875 
1876 static inline void skb_reset_transport_header(struct sk_buff *skb)
1877 {
1878 	skb->transport_header = skb->data - skb->head;
1879 }
1880 
1881 static inline void skb_set_transport_header(struct sk_buff *skb,
1882 					    const int offset)
1883 {
1884 	skb_reset_transport_header(skb);
1885 	skb->transport_header += offset;
1886 }
1887 
1888 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1889 {
1890 	return skb->head + skb->network_header;
1891 }
1892 
1893 static inline void skb_reset_network_header(struct sk_buff *skb)
1894 {
1895 	skb->network_header = skb->data - skb->head;
1896 }
1897 
1898 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1899 {
1900 	skb_reset_network_header(skb);
1901 	skb->network_header += offset;
1902 }
1903 
1904 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1905 {
1906 	return skb->head + skb->mac_header;
1907 }
1908 
1909 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1910 {
1911 	return skb->mac_header != (typeof(skb->mac_header))~0U;
1912 }
1913 
1914 static inline void skb_reset_mac_header(struct sk_buff *skb)
1915 {
1916 	skb->mac_header = skb->data - skb->head;
1917 }
1918 
1919 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1920 {
1921 	skb_reset_mac_header(skb);
1922 	skb->mac_header += offset;
1923 }
1924 
1925 static inline void skb_pop_mac_header(struct sk_buff *skb)
1926 {
1927 	skb->mac_header = skb->network_header;
1928 }
1929 
1930 static inline void skb_probe_transport_header(struct sk_buff *skb,
1931 					      const int offset_hint)
1932 {
1933 	struct flow_keys keys;
1934 
1935 	if (skb_transport_header_was_set(skb))
1936 		return;
1937 	else if (skb_flow_dissect(skb, &keys))
1938 		skb_set_transport_header(skb, keys.thoff);
1939 	else
1940 		skb_set_transport_header(skb, offset_hint);
1941 }
1942 
1943 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1944 {
1945 	if (skb_mac_header_was_set(skb)) {
1946 		const unsigned char *old_mac = skb_mac_header(skb);
1947 
1948 		skb_set_mac_header(skb, -skb->mac_len);
1949 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1950 	}
1951 }
1952 
1953 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1954 {
1955 	return skb->csum_start - skb_headroom(skb);
1956 }
1957 
1958 static inline int skb_transport_offset(const struct sk_buff *skb)
1959 {
1960 	return skb_transport_header(skb) - skb->data;
1961 }
1962 
1963 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1964 {
1965 	return skb->transport_header - skb->network_header;
1966 }
1967 
1968 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1969 {
1970 	return skb->inner_transport_header - skb->inner_network_header;
1971 }
1972 
1973 static inline int skb_network_offset(const struct sk_buff *skb)
1974 {
1975 	return skb_network_header(skb) - skb->data;
1976 }
1977 
1978 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1979 {
1980 	return skb_inner_network_header(skb) - skb->data;
1981 }
1982 
1983 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1984 {
1985 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1986 }
1987 
1988 /*
1989  * CPUs often take a performance hit when accessing unaligned memory
1990  * locations. The actual performance hit varies, it can be small if the
1991  * hardware handles it or large if we have to take an exception and fix it
1992  * in software.
1993  *
1994  * Since an ethernet header is 14 bytes network drivers often end up with
1995  * the IP header at an unaligned offset. The IP header can be aligned by
1996  * shifting the start of the packet by 2 bytes. Drivers should do this
1997  * with:
1998  *
1999  * skb_reserve(skb, NET_IP_ALIGN);
2000  *
2001  * The downside to this alignment of the IP header is that the DMA is now
2002  * unaligned. On some architectures the cost of an unaligned DMA is high
2003  * and this cost outweighs the gains made by aligning the IP header.
2004  *
2005  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2006  * to be overridden.
2007  */
2008 #ifndef NET_IP_ALIGN
2009 #define NET_IP_ALIGN	2
2010 #endif
2011 
2012 /*
2013  * The networking layer reserves some headroom in skb data (via
2014  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2015  * the header has to grow. In the default case, if the header has to grow
2016  * 32 bytes or less we avoid the reallocation.
2017  *
2018  * Unfortunately this headroom changes the DMA alignment of the resulting
2019  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2020  * on some architectures. An architecture can override this value,
2021  * perhaps setting it to a cacheline in size (since that will maintain
2022  * cacheline alignment of the DMA). It must be a power of 2.
2023  *
2024  * Various parts of the networking layer expect at least 32 bytes of
2025  * headroom, you should not reduce this.
2026  *
2027  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2028  * to reduce average number of cache lines per packet.
2029  * get_rps_cpus() for example only access one 64 bytes aligned block :
2030  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2031  */
2032 #ifndef NET_SKB_PAD
2033 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2034 #endif
2035 
2036 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2037 
2038 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2039 {
2040 	if (unlikely(skb_is_nonlinear(skb))) {
2041 		WARN_ON(1);
2042 		return;
2043 	}
2044 	skb->len = len;
2045 	skb_set_tail_pointer(skb, len);
2046 }
2047 
2048 void skb_trim(struct sk_buff *skb, unsigned int len);
2049 
2050 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2051 {
2052 	if (skb->data_len)
2053 		return ___pskb_trim(skb, len);
2054 	__skb_trim(skb, len);
2055 	return 0;
2056 }
2057 
2058 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2059 {
2060 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2061 }
2062 
2063 /**
2064  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2065  *	@skb: buffer to alter
2066  *	@len: new length
2067  *
2068  *	This is identical to pskb_trim except that the caller knows that
2069  *	the skb is not cloned so we should never get an error due to out-
2070  *	of-memory.
2071  */
2072 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2073 {
2074 	int err = pskb_trim(skb, len);
2075 	BUG_ON(err);
2076 }
2077 
2078 /**
2079  *	skb_orphan - orphan a buffer
2080  *	@skb: buffer to orphan
2081  *
2082  *	If a buffer currently has an owner then we call the owner's
2083  *	destructor function and make the @skb unowned. The buffer continues
2084  *	to exist but is no longer charged to its former owner.
2085  */
2086 static inline void skb_orphan(struct sk_buff *skb)
2087 {
2088 	if (skb->destructor) {
2089 		skb->destructor(skb);
2090 		skb->destructor = NULL;
2091 		skb->sk		= NULL;
2092 	} else {
2093 		BUG_ON(skb->sk);
2094 	}
2095 }
2096 
2097 /**
2098  *	skb_orphan_frags - orphan the frags contained in a buffer
2099  *	@skb: buffer to orphan frags from
2100  *	@gfp_mask: allocation mask for replacement pages
2101  *
2102  *	For each frag in the SKB which needs a destructor (i.e. has an
2103  *	owner) create a copy of that frag and release the original
2104  *	page by calling the destructor.
2105  */
2106 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2107 {
2108 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2109 		return 0;
2110 	return skb_copy_ubufs(skb, gfp_mask);
2111 }
2112 
2113 /**
2114  *	__skb_queue_purge - empty a list
2115  *	@list: list to empty
2116  *
2117  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2118  *	the list and one reference dropped. This function does not take the
2119  *	list lock and the caller must hold the relevant locks to use it.
2120  */
2121 void skb_queue_purge(struct sk_buff_head *list);
2122 static inline void __skb_queue_purge(struct sk_buff_head *list)
2123 {
2124 	struct sk_buff *skb;
2125 	while ((skb = __skb_dequeue(list)) != NULL)
2126 		kfree_skb(skb);
2127 }
2128 
2129 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2130 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2131 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
2132 
2133 void *netdev_alloc_frag(unsigned int fragsz);
2134 
2135 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2136 				   gfp_t gfp_mask);
2137 
2138 /**
2139  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2140  *	@dev: network device to receive on
2141  *	@length: length to allocate
2142  *
2143  *	Allocate a new &sk_buff and assign it a usage count of one. The
2144  *	buffer has unspecified headroom built in. Users should allocate
2145  *	the headroom they think they need without accounting for the
2146  *	built in space. The built in space is used for optimisations.
2147  *
2148  *	%NULL is returned if there is no free memory. Although this function
2149  *	allocates memory it can be called from an interrupt.
2150  */
2151 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2152 					       unsigned int length)
2153 {
2154 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2155 }
2156 
2157 /* legacy helper around __netdev_alloc_skb() */
2158 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2159 					      gfp_t gfp_mask)
2160 {
2161 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2162 }
2163 
2164 /* legacy helper around netdev_alloc_skb() */
2165 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2166 {
2167 	return netdev_alloc_skb(NULL, length);
2168 }
2169 
2170 
2171 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2172 		unsigned int length, gfp_t gfp)
2173 {
2174 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2175 
2176 	if (NET_IP_ALIGN && skb)
2177 		skb_reserve(skb, NET_IP_ALIGN);
2178 	return skb;
2179 }
2180 
2181 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2182 		unsigned int length)
2183 {
2184 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2185 }
2186 
2187 void *napi_alloc_frag(unsigned int fragsz);
2188 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2189 				 unsigned int length, gfp_t gfp_mask);
2190 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2191 					     unsigned int length)
2192 {
2193 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2194 }
2195 
2196 /**
2197  * __dev_alloc_pages - allocate page for network Rx
2198  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2199  * @order: size of the allocation
2200  *
2201  * Allocate a new page.
2202  *
2203  * %NULL is returned if there is no free memory.
2204 */
2205 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2206 					     unsigned int order)
2207 {
2208 	/* This piece of code contains several assumptions.
2209 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2210 	 * 2.  The expectation is the user wants a compound page.
2211 	 * 3.  If requesting a order 0 page it will not be compound
2212 	 *     due to the check to see if order has a value in prep_new_page
2213 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2214 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2215 	 */
2216 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2217 
2218 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2219 }
2220 
2221 static inline struct page *dev_alloc_pages(unsigned int order)
2222 {
2223 	return __dev_alloc_pages(GFP_ATOMIC, order);
2224 }
2225 
2226 /**
2227  * __dev_alloc_page - allocate a page for network Rx
2228  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2229  *
2230  * Allocate a new page.
2231  *
2232  * %NULL is returned if there is no free memory.
2233  */
2234 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2235 {
2236 	return __dev_alloc_pages(gfp_mask, 0);
2237 }
2238 
2239 static inline struct page *dev_alloc_page(void)
2240 {
2241 	return __dev_alloc_page(GFP_ATOMIC);
2242 }
2243 
2244 /**
2245  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2246  *	@page: The page that was allocated from skb_alloc_page
2247  *	@skb: The skb that may need pfmemalloc set
2248  */
2249 static inline void skb_propagate_pfmemalloc(struct page *page,
2250 					     struct sk_buff *skb)
2251 {
2252 	if (page && page->pfmemalloc)
2253 		skb->pfmemalloc = true;
2254 }
2255 
2256 /**
2257  * skb_frag_page - retrieve the page referred to by a paged fragment
2258  * @frag: the paged fragment
2259  *
2260  * Returns the &struct page associated with @frag.
2261  */
2262 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2263 {
2264 	return frag->page.p;
2265 }
2266 
2267 /**
2268  * __skb_frag_ref - take an addition reference on a paged fragment.
2269  * @frag: the paged fragment
2270  *
2271  * Takes an additional reference on the paged fragment @frag.
2272  */
2273 static inline void __skb_frag_ref(skb_frag_t *frag)
2274 {
2275 	get_page(skb_frag_page(frag));
2276 }
2277 
2278 /**
2279  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2280  * @skb: the buffer
2281  * @f: the fragment offset.
2282  *
2283  * Takes an additional reference on the @f'th paged fragment of @skb.
2284  */
2285 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2286 {
2287 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2288 }
2289 
2290 /**
2291  * __skb_frag_unref - release a reference on a paged fragment.
2292  * @frag: the paged fragment
2293  *
2294  * Releases a reference on the paged fragment @frag.
2295  */
2296 static inline void __skb_frag_unref(skb_frag_t *frag)
2297 {
2298 	put_page(skb_frag_page(frag));
2299 }
2300 
2301 /**
2302  * skb_frag_unref - release a reference on a paged fragment of an skb.
2303  * @skb: the buffer
2304  * @f: the fragment offset
2305  *
2306  * Releases a reference on the @f'th paged fragment of @skb.
2307  */
2308 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2309 {
2310 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2311 }
2312 
2313 /**
2314  * skb_frag_address - gets the address of the data contained in a paged fragment
2315  * @frag: the paged fragment buffer
2316  *
2317  * Returns the address of the data within @frag. The page must already
2318  * be mapped.
2319  */
2320 static inline void *skb_frag_address(const skb_frag_t *frag)
2321 {
2322 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2323 }
2324 
2325 /**
2326  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2327  * @frag: the paged fragment buffer
2328  *
2329  * Returns the address of the data within @frag. Checks that the page
2330  * is mapped and returns %NULL otherwise.
2331  */
2332 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2333 {
2334 	void *ptr = page_address(skb_frag_page(frag));
2335 	if (unlikely(!ptr))
2336 		return NULL;
2337 
2338 	return ptr + frag->page_offset;
2339 }
2340 
2341 /**
2342  * __skb_frag_set_page - sets the page contained in a paged fragment
2343  * @frag: the paged fragment
2344  * @page: the page to set
2345  *
2346  * Sets the fragment @frag to contain @page.
2347  */
2348 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2349 {
2350 	frag->page.p = page;
2351 }
2352 
2353 /**
2354  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2355  * @skb: the buffer
2356  * @f: the fragment offset
2357  * @page: the page to set
2358  *
2359  * Sets the @f'th fragment of @skb to contain @page.
2360  */
2361 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2362 				     struct page *page)
2363 {
2364 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2365 }
2366 
2367 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2368 
2369 /**
2370  * skb_frag_dma_map - maps a paged fragment via the DMA API
2371  * @dev: the device to map the fragment to
2372  * @frag: the paged fragment to map
2373  * @offset: the offset within the fragment (starting at the
2374  *          fragment's own offset)
2375  * @size: the number of bytes to map
2376  * @dir: the direction of the mapping (%PCI_DMA_*)
2377  *
2378  * Maps the page associated with @frag to @device.
2379  */
2380 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2381 					  const skb_frag_t *frag,
2382 					  size_t offset, size_t size,
2383 					  enum dma_data_direction dir)
2384 {
2385 	return dma_map_page(dev, skb_frag_page(frag),
2386 			    frag->page_offset + offset, size, dir);
2387 }
2388 
2389 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2390 					gfp_t gfp_mask)
2391 {
2392 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2393 }
2394 
2395 
2396 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2397 						  gfp_t gfp_mask)
2398 {
2399 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2400 }
2401 
2402 
2403 /**
2404  *	skb_clone_writable - is the header of a clone writable
2405  *	@skb: buffer to check
2406  *	@len: length up to which to write
2407  *
2408  *	Returns true if modifying the header part of the cloned buffer
2409  *	does not requires the data to be copied.
2410  */
2411 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2412 {
2413 	return !skb_header_cloned(skb) &&
2414 	       skb_headroom(skb) + len <= skb->hdr_len;
2415 }
2416 
2417 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2418 			    int cloned)
2419 {
2420 	int delta = 0;
2421 
2422 	if (headroom > skb_headroom(skb))
2423 		delta = headroom - skb_headroom(skb);
2424 
2425 	if (delta || cloned)
2426 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2427 					GFP_ATOMIC);
2428 	return 0;
2429 }
2430 
2431 /**
2432  *	skb_cow - copy header of skb when it is required
2433  *	@skb: buffer to cow
2434  *	@headroom: needed headroom
2435  *
2436  *	If the skb passed lacks sufficient headroom or its data part
2437  *	is shared, data is reallocated. If reallocation fails, an error
2438  *	is returned and original skb is not changed.
2439  *
2440  *	The result is skb with writable area skb->head...skb->tail
2441  *	and at least @headroom of space at head.
2442  */
2443 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2444 {
2445 	return __skb_cow(skb, headroom, skb_cloned(skb));
2446 }
2447 
2448 /**
2449  *	skb_cow_head - skb_cow but only making the head writable
2450  *	@skb: buffer to cow
2451  *	@headroom: needed headroom
2452  *
2453  *	This function is identical to skb_cow except that we replace the
2454  *	skb_cloned check by skb_header_cloned.  It should be used when
2455  *	you only need to push on some header and do not need to modify
2456  *	the data.
2457  */
2458 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2459 {
2460 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2461 }
2462 
2463 /**
2464  *	skb_padto	- pad an skbuff up to a minimal size
2465  *	@skb: buffer to pad
2466  *	@len: minimal length
2467  *
2468  *	Pads up a buffer to ensure the trailing bytes exist and are
2469  *	blanked. If the buffer already contains sufficient data it
2470  *	is untouched. Otherwise it is extended. Returns zero on
2471  *	success. The skb is freed on error.
2472  */
2473 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2474 {
2475 	unsigned int size = skb->len;
2476 	if (likely(size >= len))
2477 		return 0;
2478 	return skb_pad(skb, len - size);
2479 }
2480 
2481 /**
2482  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2483  *	@skb: buffer to pad
2484  *	@len: minimal length
2485  *
2486  *	Pads up a buffer to ensure the trailing bytes exist and are
2487  *	blanked. If the buffer already contains sufficient data it
2488  *	is untouched. Otherwise it is extended. Returns zero on
2489  *	success. The skb is freed on error.
2490  */
2491 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2492 {
2493 	unsigned int size = skb->len;
2494 
2495 	if (unlikely(size < len)) {
2496 		len -= size;
2497 		if (skb_pad(skb, len))
2498 			return -ENOMEM;
2499 		__skb_put(skb, len);
2500 	}
2501 	return 0;
2502 }
2503 
2504 static inline int skb_add_data(struct sk_buff *skb,
2505 			       struct iov_iter *from, int copy)
2506 {
2507 	const int off = skb->len;
2508 
2509 	if (skb->ip_summed == CHECKSUM_NONE) {
2510 		__wsum csum = 0;
2511 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2512 					    &csum, from) == copy) {
2513 			skb->csum = csum_block_add(skb->csum, csum, off);
2514 			return 0;
2515 		}
2516 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2517 		return 0;
2518 
2519 	__skb_trim(skb, off);
2520 	return -EFAULT;
2521 }
2522 
2523 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2524 				    const struct page *page, int off)
2525 {
2526 	if (i) {
2527 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2528 
2529 		return page == skb_frag_page(frag) &&
2530 		       off == frag->page_offset + skb_frag_size(frag);
2531 	}
2532 	return false;
2533 }
2534 
2535 static inline int __skb_linearize(struct sk_buff *skb)
2536 {
2537 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2538 }
2539 
2540 /**
2541  *	skb_linearize - convert paged skb to linear one
2542  *	@skb: buffer to linarize
2543  *
2544  *	If there is no free memory -ENOMEM is returned, otherwise zero
2545  *	is returned and the old skb data released.
2546  */
2547 static inline int skb_linearize(struct sk_buff *skb)
2548 {
2549 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2550 }
2551 
2552 /**
2553  * skb_has_shared_frag - can any frag be overwritten
2554  * @skb: buffer to test
2555  *
2556  * Return true if the skb has at least one frag that might be modified
2557  * by an external entity (as in vmsplice()/sendfile())
2558  */
2559 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2560 {
2561 	return skb_is_nonlinear(skb) &&
2562 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2563 }
2564 
2565 /**
2566  *	skb_linearize_cow - make sure skb is linear and writable
2567  *	@skb: buffer to process
2568  *
2569  *	If there is no free memory -ENOMEM is returned, otherwise zero
2570  *	is returned and the old skb data released.
2571  */
2572 static inline int skb_linearize_cow(struct sk_buff *skb)
2573 {
2574 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2575 	       __skb_linearize(skb) : 0;
2576 }
2577 
2578 /**
2579  *	skb_postpull_rcsum - update checksum for received skb after pull
2580  *	@skb: buffer to update
2581  *	@start: start of data before pull
2582  *	@len: length of data pulled
2583  *
2584  *	After doing a pull on a received packet, you need to call this to
2585  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2586  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2587  */
2588 
2589 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2590 				      const void *start, unsigned int len)
2591 {
2592 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2593 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2594 }
2595 
2596 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2597 
2598 /**
2599  *	pskb_trim_rcsum - trim received skb and update checksum
2600  *	@skb: buffer to trim
2601  *	@len: new length
2602  *
2603  *	This is exactly the same as pskb_trim except that it ensures the
2604  *	checksum of received packets are still valid after the operation.
2605  */
2606 
2607 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2608 {
2609 	if (likely(len >= skb->len))
2610 		return 0;
2611 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2612 		skb->ip_summed = CHECKSUM_NONE;
2613 	return __pskb_trim(skb, len);
2614 }
2615 
2616 #define skb_queue_walk(queue, skb) \
2617 		for (skb = (queue)->next;					\
2618 		     skb != (struct sk_buff *)(queue);				\
2619 		     skb = skb->next)
2620 
2621 #define skb_queue_walk_safe(queue, skb, tmp)					\
2622 		for (skb = (queue)->next, tmp = skb->next;			\
2623 		     skb != (struct sk_buff *)(queue);				\
2624 		     skb = tmp, tmp = skb->next)
2625 
2626 #define skb_queue_walk_from(queue, skb)						\
2627 		for (; skb != (struct sk_buff *)(queue);			\
2628 		     skb = skb->next)
2629 
2630 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2631 		for (tmp = skb->next;						\
2632 		     skb != (struct sk_buff *)(queue);				\
2633 		     skb = tmp, tmp = skb->next)
2634 
2635 #define skb_queue_reverse_walk(queue, skb) \
2636 		for (skb = (queue)->prev;					\
2637 		     skb != (struct sk_buff *)(queue);				\
2638 		     skb = skb->prev)
2639 
2640 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2641 		for (skb = (queue)->prev, tmp = skb->prev;			\
2642 		     skb != (struct sk_buff *)(queue);				\
2643 		     skb = tmp, tmp = skb->prev)
2644 
2645 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2646 		for (tmp = skb->prev;						\
2647 		     skb != (struct sk_buff *)(queue);				\
2648 		     skb = tmp, tmp = skb->prev)
2649 
2650 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2651 {
2652 	return skb_shinfo(skb)->frag_list != NULL;
2653 }
2654 
2655 static inline void skb_frag_list_init(struct sk_buff *skb)
2656 {
2657 	skb_shinfo(skb)->frag_list = NULL;
2658 }
2659 
2660 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2661 {
2662 	frag->next = skb_shinfo(skb)->frag_list;
2663 	skb_shinfo(skb)->frag_list = frag;
2664 }
2665 
2666 #define skb_walk_frags(skb, iter)	\
2667 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2668 
2669 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2670 				    int *peeked, int *off, int *err);
2671 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2672 				  int *err);
2673 unsigned int datagram_poll(struct file *file, struct socket *sock,
2674 			   struct poll_table_struct *wait);
2675 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2676 			   struct iov_iter *to, int size);
2677 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2678 					struct msghdr *msg, int size)
2679 {
2680 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2681 }
2682 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2683 				   struct msghdr *msg);
2684 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2685 				 struct iov_iter *from, int len);
2686 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2687 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2688 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2689 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2690 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2691 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2692 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2693 			      int len, __wsum csum);
2694 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2695 		    struct pipe_inode_info *pipe, unsigned int len,
2696 		    unsigned int flags);
2697 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2698 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2699 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2700 		 int len, int hlen);
2701 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2702 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2703 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2704 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2705 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2706 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2707 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2708 int skb_vlan_pop(struct sk_buff *skb);
2709 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2710 
2711 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2712 {
2713 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2714 }
2715 
2716 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2717 {
2718 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2719 }
2720 
2721 struct skb_checksum_ops {
2722 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2723 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2724 };
2725 
2726 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2727 		      __wsum csum, const struct skb_checksum_ops *ops);
2728 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2729 		    __wsum csum);
2730 
2731 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2732 					 int len, void *data, int hlen, void *buffer)
2733 {
2734 	if (hlen - offset >= len)
2735 		return data + offset;
2736 
2737 	if (!skb ||
2738 	    skb_copy_bits(skb, offset, buffer, len) < 0)
2739 		return NULL;
2740 
2741 	return buffer;
2742 }
2743 
2744 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2745 				       int len, void *buffer)
2746 {
2747 	return __skb_header_pointer(skb, offset, len, skb->data,
2748 				    skb_headlen(skb), buffer);
2749 }
2750 
2751 /**
2752  *	skb_needs_linearize - check if we need to linearize a given skb
2753  *			      depending on the given device features.
2754  *	@skb: socket buffer to check
2755  *	@features: net device features
2756  *
2757  *	Returns true if either:
2758  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2759  *	2. skb is fragmented and the device does not support SG.
2760  */
2761 static inline bool skb_needs_linearize(struct sk_buff *skb,
2762 				       netdev_features_t features)
2763 {
2764 	return skb_is_nonlinear(skb) &&
2765 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2766 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2767 }
2768 
2769 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2770 					     void *to,
2771 					     const unsigned int len)
2772 {
2773 	memcpy(to, skb->data, len);
2774 }
2775 
2776 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2777 						    const int offset, void *to,
2778 						    const unsigned int len)
2779 {
2780 	memcpy(to, skb->data + offset, len);
2781 }
2782 
2783 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2784 					   const void *from,
2785 					   const unsigned int len)
2786 {
2787 	memcpy(skb->data, from, len);
2788 }
2789 
2790 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2791 						  const int offset,
2792 						  const void *from,
2793 						  const unsigned int len)
2794 {
2795 	memcpy(skb->data + offset, from, len);
2796 }
2797 
2798 void skb_init(void);
2799 
2800 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2801 {
2802 	return skb->tstamp;
2803 }
2804 
2805 /**
2806  *	skb_get_timestamp - get timestamp from a skb
2807  *	@skb: skb to get stamp from
2808  *	@stamp: pointer to struct timeval to store stamp in
2809  *
2810  *	Timestamps are stored in the skb as offsets to a base timestamp.
2811  *	This function converts the offset back to a struct timeval and stores
2812  *	it in stamp.
2813  */
2814 static inline void skb_get_timestamp(const struct sk_buff *skb,
2815 				     struct timeval *stamp)
2816 {
2817 	*stamp = ktime_to_timeval(skb->tstamp);
2818 }
2819 
2820 static inline void skb_get_timestampns(const struct sk_buff *skb,
2821 				       struct timespec *stamp)
2822 {
2823 	*stamp = ktime_to_timespec(skb->tstamp);
2824 }
2825 
2826 static inline void __net_timestamp(struct sk_buff *skb)
2827 {
2828 	skb->tstamp = ktime_get_real();
2829 }
2830 
2831 static inline ktime_t net_timedelta(ktime_t t)
2832 {
2833 	return ktime_sub(ktime_get_real(), t);
2834 }
2835 
2836 static inline ktime_t net_invalid_timestamp(void)
2837 {
2838 	return ktime_set(0, 0);
2839 }
2840 
2841 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2842 
2843 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2844 
2845 void skb_clone_tx_timestamp(struct sk_buff *skb);
2846 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2847 
2848 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2849 
2850 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2851 {
2852 }
2853 
2854 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2855 {
2856 	return false;
2857 }
2858 
2859 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2860 
2861 /**
2862  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2863  *
2864  * PHY drivers may accept clones of transmitted packets for
2865  * timestamping via their phy_driver.txtstamp method. These drivers
2866  * must call this function to return the skb back to the stack, with
2867  * or without a timestamp.
2868  *
2869  * @skb: clone of the the original outgoing packet
2870  * @hwtstamps: hardware time stamps, may be NULL if not available
2871  *
2872  */
2873 void skb_complete_tx_timestamp(struct sk_buff *skb,
2874 			       struct skb_shared_hwtstamps *hwtstamps);
2875 
2876 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2877 		     struct skb_shared_hwtstamps *hwtstamps,
2878 		     struct sock *sk, int tstype);
2879 
2880 /**
2881  * skb_tstamp_tx - queue clone of skb with send time stamps
2882  * @orig_skb:	the original outgoing packet
2883  * @hwtstamps:	hardware time stamps, may be NULL if not available
2884  *
2885  * If the skb has a socket associated, then this function clones the
2886  * skb (thus sharing the actual data and optional structures), stores
2887  * the optional hardware time stamping information (if non NULL) or
2888  * generates a software time stamp (otherwise), then queues the clone
2889  * to the error queue of the socket.  Errors are silently ignored.
2890  */
2891 void skb_tstamp_tx(struct sk_buff *orig_skb,
2892 		   struct skb_shared_hwtstamps *hwtstamps);
2893 
2894 static inline void sw_tx_timestamp(struct sk_buff *skb)
2895 {
2896 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2897 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2898 		skb_tstamp_tx(skb, NULL);
2899 }
2900 
2901 /**
2902  * skb_tx_timestamp() - Driver hook for transmit timestamping
2903  *
2904  * Ethernet MAC Drivers should call this function in their hard_xmit()
2905  * function immediately before giving the sk_buff to the MAC hardware.
2906  *
2907  * Specifically, one should make absolutely sure that this function is
2908  * called before TX completion of this packet can trigger.  Otherwise
2909  * the packet could potentially already be freed.
2910  *
2911  * @skb: A socket buffer.
2912  */
2913 static inline void skb_tx_timestamp(struct sk_buff *skb)
2914 {
2915 	skb_clone_tx_timestamp(skb);
2916 	sw_tx_timestamp(skb);
2917 }
2918 
2919 /**
2920  * skb_complete_wifi_ack - deliver skb with wifi status
2921  *
2922  * @skb: the original outgoing packet
2923  * @acked: ack status
2924  *
2925  */
2926 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2927 
2928 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2929 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2930 
2931 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2932 {
2933 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2934 		skb->csum_valid ||
2935 		(skb->ip_summed == CHECKSUM_PARTIAL &&
2936 		 skb_checksum_start_offset(skb) >= 0));
2937 }
2938 
2939 /**
2940  *	skb_checksum_complete - Calculate checksum of an entire packet
2941  *	@skb: packet to process
2942  *
2943  *	This function calculates the checksum over the entire packet plus
2944  *	the value of skb->csum.  The latter can be used to supply the
2945  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2946  *	checksum.
2947  *
2948  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2949  *	this function can be used to verify that checksum on received
2950  *	packets.  In that case the function should return zero if the
2951  *	checksum is correct.  In particular, this function will return zero
2952  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2953  *	hardware has already verified the correctness of the checksum.
2954  */
2955 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2956 {
2957 	return skb_csum_unnecessary(skb) ?
2958 	       0 : __skb_checksum_complete(skb);
2959 }
2960 
2961 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2962 {
2963 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2964 		if (skb->csum_level == 0)
2965 			skb->ip_summed = CHECKSUM_NONE;
2966 		else
2967 			skb->csum_level--;
2968 	}
2969 }
2970 
2971 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2972 {
2973 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2974 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2975 			skb->csum_level++;
2976 	} else if (skb->ip_summed == CHECKSUM_NONE) {
2977 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2978 		skb->csum_level = 0;
2979 	}
2980 }
2981 
2982 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2983 {
2984 	/* Mark current checksum as bad (typically called from GRO
2985 	 * path). In the case that ip_summed is CHECKSUM_NONE
2986 	 * this must be the first checksum encountered in the packet.
2987 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2988 	 * checksum after the last one validated. For UDP, a zero
2989 	 * checksum can not be marked as bad.
2990 	 */
2991 
2992 	if (skb->ip_summed == CHECKSUM_NONE ||
2993 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
2994 		skb->csum_bad = 1;
2995 }
2996 
2997 /* Check if we need to perform checksum complete validation.
2998  *
2999  * Returns true if checksum complete is needed, false otherwise
3000  * (either checksum is unnecessary or zero checksum is allowed).
3001  */
3002 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3003 						  bool zero_okay,
3004 						  __sum16 check)
3005 {
3006 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3007 		skb->csum_valid = 1;
3008 		__skb_decr_checksum_unnecessary(skb);
3009 		return false;
3010 	}
3011 
3012 	return true;
3013 }
3014 
3015 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3016  * in checksum_init.
3017  */
3018 #define CHECKSUM_BREAK 76
3019 
3020 /* Unset checksum-complete
3021  *
3022  * Unset checksum complete can be done when packet is being modified
3023  * (uncompressed for instance) and checksum-complete value is
3024  * invalidated.
3025  */
3026 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3027 {
3028 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3029 		skb->ip_summed = CHECKSUM_NONE;
3030 }
3031 
3032 /* Validate (init) checksum based on checksum complete.
3033  *
3034  * Return values:
3035  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3036  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3037  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3038  *   non-zero: value of invalid checksum
3039  *
3040  */
3041 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3042 						       bool complete,
3043 						       __wsum psum)
3044 {
3045 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3046 		if (!csum_fold(csum_add(psum, skb->csum))) {
3047 			skb->csum_valid = 1;
3048 			return 0;
3049 		}
3050 	} else if (skb->csum_bad) {
3051 		/* ip_summed == CHECKSUM_NONE in this case */
3052 		return 1;
3053 	}
3054 
3055 	skb->csum = psum;
3056 
3057 	if (complete || skb->len <= CHECKSUM_BREAK) {
3058 		__sum16 csum;
3059 
3060 		csum = __skb_checksum_complete(skb);
3061 		skb->csum_valid = !csum;
3062 		return csum;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3069 {
3070 	return 0;
3071 }
3072 
3073 /* Perform checksum validate (init). Note that this is a macro since we only
3074  * want to calculate the pseudo header which is an input function if necessary.
3075  * First we try to validate without any computation (checksum unnecessary) and
3076  * then calculate based on checksum complete calling the function to compute
3077  * pseudo header.
3078  *
3079  * Return values:
3080  *   0: checksum is validated or try to in skb_checksum_complete
3081  *   non-zero: value of invalid checksum
3082  */
3083 #define __skb_checksum_validate(skb, proto, complete,			\
3084 				zero_okay, check, compute_pseudo)	\
3085 ({									\
3086 	__sum16 __ret = 0;						\
3087 	skb->csum_valid = 0;						\
3088 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3089 		__ret = __skb_checksum_validate_complete(skb,		\
3090 				complete, compute_pseudo(skb, proto));	\
3091 	__ret;								\
3092 })
3093 
3094 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3095 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3096 
3097 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3098 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3099 
3100 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3101 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3102 
3103 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3104 					 compute_pseudo)		\
3105 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3106 
3107 #define skb_checksum_simple_validate(skb)				\
3108 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3109 
3110 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3111 {
3112 	return (skb->ip_summed == CHECKSUM_NONE &&
3113 		skb->csum_valid && !skb->csum_bad);
3114 }
3115 
3116 static inline void __skb_checksum_convert(struct sk_buff *skb,
3117 					  __sum16 check, __wsum pseudo)
3118 {
3119 	skb->csum = ~pseudo;
3120 	skb->ip_summed = CHECKSUM_COMPLETE;
3121 }
3122 
3123 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3124 do {									\
3125 	if (__skb_checksum_convert_check(skb))				\
3126 		__skb_checksum_convert(skb, check,			\
3127 				       compute_pseudo(skb, proto));	\
3128 } while (0)
3129 
3130 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3131 					      u16 start, u16 offset)
3132 {
3133 	skb->ip_summed = CHECKSUM_PARTIAL;
3134 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3135 	skb->csum_offset = offset - start;
3136 }
3137 
3138 /* Update skbuf and packet to reflect the remote checksum offload operation.
3139  * When called, ptr indicates the starting point for skb->csum when
3140  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3141  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3142  */
3143 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3144 				       int start, int offset, bool nopartial)
3145 {
3146 	__wsum delta;
3147 
3148 	if (!nopartial) {
3149 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3150 		return;
3151 	}
3152 
3153 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3154 		__skb_checksum_complete(skb);
3155 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3156 	}
3157 
3158 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3159 
3160 	/* Adjust skb->csum since we changed the packet */
3161 	skb->csum = csum_add(skb->csum, delta);
3162 }
3163 
3164 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3165 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3166 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3167 {
3168 	if (nfct && atomic_dec_and_test(&nfct->use))
3169 		nf_conntrack_destroy(nfct);
3170 }
3171 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3172 {
3173 	if (nfct)
3174 		atomic_inc(&nfct->use);
3175 }
3176 #endif
3177 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3178 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3179 {
3180 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3181 		kfree(nf_bridge);
3182 }
3183 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3184 {
3185 	if (nf_bridge)
3186 		atomic_inc(&nf_bridge->use);
3187 }
3188 #endif /* CONFIG_BRIDGE_NETFILTER */
3189 static inline void nf_reset(struct sk_buff *skb)
3190 {
3191 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3192 	nf_conntrack_put(skb->nfct);
3193 	skb->nfct = NULL;
3194 #endif
3195 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3196 	nf_bridge_put(skb->nf_bridge);
3197 	skb->nf_bridge = NULL;
3198 #endif
3199 }
3200 
3201 static inline void nf_reset_trace(struct sk_buff *skb)
3202 {
3203 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3204 	skb->nf_trace = 0;
3205 #endif
3206 }
3207 
3208 /* Note: This doesn't put any conntrack and bridge info in dst. */
3209 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3210 			     bool copy)
3211 {
3212 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3213 	dst->nfct = src->nfct;
3214 	nf_conntrack_get(src->nfct);
3215 	if (copy)
3216 		dst->nfctinfo = src->nfctinfo;
3217 #endif
3218 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3219 	dst->nf_bridge  = src->nf_bridge;
3220 	nf_bridge_get(src->nf_bridge);
3221 #endif
3222 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3223 	if (copy)
3224 		dst->nf_trace = src->nf_trace;
3225 #endif
3226 }
3227 
3228 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3229 {
3230 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3231 	nf_conntrack_put(dst->nfct);
3232 #endif
3233 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3234 	nf_bridge_put(dst->nf_bridge);
3235 #endif
3236 	__nf_copy(dst, src, true);
3237 }
3238 
3239 #ifdef CONFIG_NETWORK_SECMARK
3240 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3241 {
3242 	to->secmark = from->secmark;
3243 }
3244 
3245 static inline void skb_init_secmark(struct sk_buff *skb)
3246 {
3247 	skb->secmark = 0;
3248 }
3249 #else
3250 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3251 { }
3252 
3253 static inline void skb_init_secmark(struct sk_buff *skb)
3254 { }
3255 #endif
3256 
3257 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3258 {
3259 	return !skb->destructor &&
3260 #if IS_ENABLED(CONFIG_XFRM)
3261 		!skb->sp &&
3262 #endif
3263 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3264 		!skb->nfct &&
3265 #endif
3266 		!skb->_skb_refdst &&
3267 		!skb_has_frag_list(skb);
3268 }
3269 
3270 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3271 {
3272 	skb->queue_mapping = queue_mapping;
3273 }
3274 
3275 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3276 {
3277 	return skb->queue_mapping;
3278 }
3279 
3280 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3281 {
3282 	to->queue_mapping = from->queue_mapping;
3283 }
3284 
3285 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3286 {
3287 	skb->queue_mapping = rx_queue + 1;
3288 }
3289 
3290 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3291 {
3292 	return skb->queue_mapping - 1;
3293 }
3294 
3295 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3296 {
3297 	return skb->queue_mapping != 0;
3298 }
3299 
3300 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3301 		  unsigned int num_tx_queues);
3302 
3303 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3304 {
3305 #ifdef CONFIG_XFRM
3306 	return skb->sp;
3307 #else
3308 	return NULL;
3309 #endif
3310 }
3311 
3312 /* Keeps track of mac header offset relative to skb->head.
3313  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3314  * For non-tunnel skb it points to skb_mac_header() and for
3315  * tunnel skb it points to outer mac header.
3316  * Keeps track of level of encapsulation of network headers.
3317  */
3318 struct skb_gso_cb {
3319 	int	mac_offset;
3320 	int	encap_level;
3321 	__u16	csum_start;
3322 };
3323 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3324 
3325 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3326 {
3327 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3328 		SKB_GSO_CB(inner_skb)->mac_offset;
3329 }
3330 
3331 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3332 {
3333 	int new_headroom, headroom;
3334 	int ret;
3335 
3336 	headroom = skb_headroom(skb);
3337 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3338 	if (ret)
3339 		return ret;
3340 
3341 	new_headroom = skb_headroom(skb);
3342 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3343 	return 0;
3344 }
3345 
3346 /* Compute the checksum for a gso segment. First compute the checksum value
3347  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3348  * then add in skb->csum (checksum from csum_start to end of packet).
3349  * skb->csum and csum_start are then updated to reflect the checksum of the
3350  * resultant packet starting from the transport header-- the resultant checksum
3351  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3352  * header.
3353  */
3354 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3355 {
3356 	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3357 	    skb_transport_offset(skb);
3358 	__u16 csum;
3359 
3360 	csum = csum_fold(csum_partial(skb_transport_header(skb),
3361 				      plen, skb->csum));
3362 	skb->csum = res;
3363 	SKB_GSO_CB(skb)->csum_start -= plen;
3364 
3365 	return csum;
3366 }
3367 
3368 static inline bool skb_is_gso(const struct sk_buff *skb)
3369 {
3370 	return skb_shinfo(skb)->gso_size;
3371 }
3372 
3373 /* Note: Should be called only if skb_is_gso(skb) is true */
3374 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3375 {
3376 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3377 }
3378 
3379 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3380 
3381 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3382 {
3383 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3384 	 * wanted then gso_type will be set. */
3385 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3386 
3387 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3388 	    unlikely(shinfo->gso_type == 0)) {
3389 		__skb_warn_lro_forwarding(skb);
3390 		return true;
3391 	}
3392 	return false;
3393 }
3394 
3395 static inline void skb_forward_csum(struct sk_buff *skb)
3396 {
3397 	/* Unfortunately we don't support this one.  Any brave souls? */
3398 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3399 		skb->ip_summed = CHECKSUM_NONE;
3400 }
3401 
3402 /**
3403  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3404  * @skb: skb to check
3405  *
3406  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3407  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3408  * use this helper, to document places where we make this assertion.
3409  */
3410 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3411 {
3412 #ifdef DEBUG
3413 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3414 #endif
3415 }
3416 
3417 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3418 
3419 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3420 
3421 u32 skb_get_poff(const struct sk_buff *skb);
3422 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3423 		   const struct flow_keys *keys, int hlen);
3424 
3425 /**
3426  * skb_head_is_locked - Determine if the skb->head is locked down
3427  * @skb: skb to check
3428  *
3429  * The head on skbs build around a head frag can be removed if they are
3430  * not cloned.  This function returns true if the skb head is locked down
3431  * due to either being allocated via kmalloc, or by being a clone with
3432  * multiple references to the head.
3433  */
3434 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3435 {
3436 	return !skb->head_frag || skb_cloned(skb);
3437 }
3438 
3439 /**
3440  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3441  *
3442  * @skb: GSO skb
3443  *
3444  * skb_gso_network_seglen is used to determine the real size of the
3445  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3446  *
3447  * The MAC/L2 header is not accounted for.
3448  */
3449 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3450 {
3451 	unsigned int hdr_len = skb_transport_header(skb) -
3452 			       skb_network_header(skb);
3453 	return hdr_len + skb_gso_transport_seglen(skb);
3454 }
3455 #endif	/* __KERNEL__ */
3456 #endif	/* _LINUX_SKBUFF_H */
3457