xref: /linux-6.15/include/linux/skbuff.h (revision 4f3865fb)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/poll.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/dmaengine.h>
32 
33 #define HAVE_ALLOC_SKB		/* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35 
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_HW 1
38 #define CHECKSUM_UNNECESSARY 2
39 
40 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
41 				 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
43 				  sizeof(struct skb_shared_info)) & \
44 				  ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	HW: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use HW,
63  *	    not UNNECESSARY.
64  *
65  * B. Checksumming on output.
66  *
67  *	NONE: skb is checksummed by protocol or csum is not required.
68  *
69  *	HW: device is required to csum packet as seen by hard_start_xmit
70  *	from skb->h.raw to the end and to record the checksum
71  *	at skb->h.raw+skb->csum.
72  *
73  *	Device must show its capabilities in dev->features, set
74  *	at device setup time.
75  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
76  *			  everything.
77  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
78  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79  *			  TCP/UDP over IPv4. Sigh. Vendors like this
80  *			  way by an unknown reason. Though, see comment above
81  *			  about CHECKSUM_UNNECESSARY. 8)
82  *
83  *	Any questions? No questions, good. 		--ANK
84  */
85 
86 struct net_device;
87 
88 #ifdef CONFIG_NETFILTER
89 struct nf_conntrack {
90 	atomic_t use;
91 	void (*destroy)(struct nf_conntrack *);
92 };
93 
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
96 	atomic_t use;
97 	struct net_device *physindev;
98 	struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 	struct net_device *netoutdev;
101 #endif
102 	unsigned int mask;
103 	unsigned long data[32 / sizeof(unsigned long)];
104 };
105 #endif
106 
107 #endif
108 
109 struct sk_buff_head {
110 	/* These two members must be first. */
111 	struct sk_buff	*next;
112 	struct sk_buff	*prev;
113 
114 	__u32		qlen;
115 	spinlock_t	lock;
116 };
117 
118 struct sk_buff;
119 
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122 
123 typedef struct skb_frag_struct skb_frag_t;
124 
125 struct skb_frag_struct {
126 	struct page *page;
127 	__u16 page_offset;
128 	__u16 size;
129 };
130 
131 /* This data is invariant across clones and lives at
132  * the end of the header data, ie. at skb->end.
133  */
134 struct skb_shared_info {
135 	atomic_t	dataref;
136 	unsigned short	nr_frags;
137 	unsigned short	tso_size;
138 	unsigned short	tso_segs;
139 	unsigned short  ufo_size;
140 	unsigned int    ip6_frag_id;
141 	struct sk_buff	*frag_list;
142 	skb_frag_t	frags[MAX_SKB_FRAGS];
143 };
144 
145 /* We divide dataref into two halves.  The higher 16 bits hold references
146  * to the payload part of skb->data.  The lower 16 bits hold references to
147  * the entire skb->data.  It is up to the users of the skb to agree on
148  * where the payload starts.
149  *
150  * All users must obey the rule that the skb->data reference count must be
151  * greater than or equal to the payload reference count.
152  *
153  * Holding a reference to the payload part means that the user does not
154  * care about modifications to the header part of skb->data.
155  */
156 #define SKB_DATAREF_SHIFT 16
157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
158 
159 struct skb_timeval {
160 	u32	off_sec;
161 	u32	off_usec;
162 };
163 
164 
165 enum {
166 	SKB_FCLONE_UNAVAILABLE,
167 	SKB_FCLONE_ORIG,
168 	SKB_FCLONE_CLONE,
169 };
170 
171 /**
172  *	struct sk_buff - socket buffer
173  *	@next: Next buffer in list
174  *	@prev: Previous buffer in list
175  *	@sk: Socket we are owned by
176  *	@tstamp: Time we arrived
177  *	@dev: Device we arrived on/are leaving by
178  *	@input_dev: Device we arrived on
179  *	@h: Transport layer header
180  *	@nh: Network layer header
181  *	@mac: Link layer header
182  *	@dst: destination entry
183  *	@sp: the security path, used for xfrm
184  *	@cb: Control buffer. Free for use by every layer. Put private vars here
185  *	@len: Length of actual data
186  *	@data_len: Data length
187  *	@mac_len: Length of link layer header
188  *	@csum: Checksum
189  *	@local_df: allow local fragmentation
190  *	@cloned: Head may be cloned (check refcnt to be sure)
191  *	@nohdr: Payload reference only, must not modify header
192  *	@pkt_type: Packet class
193  *	@fclone: skbuff clone status
194  *	@ip_summed: Driver fed us an IP checksum
195  *	@priority: Packet queueing priority
196  *	@users: User count - see {datagram,tcp}.c
197  *	@protocol: Packet protocol from driver
198  *	@truesize: Buffer size
199  *	@head: Head of buffer
200  *	@data: Data head pointer
201  *	@tail: Tail pointer
202  *	@end: End pointer
203  *	@destructor: Destruct function
204  *	@nfmark: Can be used for communication between hooks
205  *	@nfct: Associated connection, if any
206  *	@ipvs_property: skbuff is owned by ipvs
207  *	@nfctinfo: Relationship of this skb to the connection
208  *	@nfct_reasm: netfilter conntrack re-assembly pointer
209  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
210  *	@tc_index: Traffic control index
211  *	@tc_verd: traffic control verdict
212  *	@secmark: security marking
213  */
214 
215 struct sk_buff {
216 	/* These two members must be first. */
217 	struct sk_buff		*next;
218 	struct sk_buff		*prev;
219 
220 	struct sock		*sk;
221 	struct skb_timeval	tstamp;
222 	struct net_device	*dev;
223 	struct net_device	*input_dev;
224 
225 	union {
226 		struct tcphdr	*th;
227 		struct udphdr	*uh;
228 		struct icmphdr	*icmph;
229 		struct igmphdr	*igmph;
230 		struct iphdr	*ipiph;
231 		struct ipv6hdr	*ipv6h;
232 		unsigned char	*raw;
233 	} h;
234 
235 	union {
236 		struct iphdr	*iph;
237 		struct ipv6hdr	*ipv6h;
238 		struct arphdr	*arph;
239 		unsigned char	*raw;
240 	} nh;
241 
242 	union {
243 	  	unsigned char 	*raw;
244 	} mac;
245 
246 	struct  dst_entry	*dst;
247 	struct	sec_path	*sp;
248 
249 	/*
250 	 * This is the control buffer. It is free to use for every
251 	 * layer. Please put your private variables there. If you
252 	 * want to keep them across layers you have to do a skb_clone()
253 	 * first. This is owned by whoever has the skb queued ATM.
254 	 */
255 	char			cb[48];
256 
257 	unsigned int		len,
258 				data_len,
259 				mac_len,
260 				csum;
261 	__u32			priority;
262 	__u8			local_df:1,
263 				cloned:1,
264 				ip_summed:2,
265 				nohdr:1,
266 				nfctinfo:3;
267 	__u8			pkt_type:3,
268 				fclone:2,
269 				ipvs_property:1;
270 	__be16			protocol;
271 
272 	void			(*destructor)(struct sk_buff *skb);
273 #ifdef CONFIG_NETFILTER
274 	struct nf_conntrack	*nfct;
275 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
276 	struct sk_buff		*nfct_reasm;
277 #endif
278 #ifdef CONFIG_BRIDGE_NETFILTER
279 	struct nf_bridge_info	*nf_bridge;
280 #endif
281 	__u32			nfmark;
282 #endif /* CONFIG_NETFILTER */
283 #ifdef CONFIG_NET_SCHED
284 	__u16			tc_index;	/* traffic control index */
285 #ifdef CONFIG_NET_CLS_ACT
286 	__u16			tc_verd;	/* traffic control verdict */
287 #endif
288 #endif
289 #ifdef CONFIG_NET_DMA
290 	dma_cookie_t		dma_cookie;
291 #endif
292 #ifdef CONFIG_NETWORK_SECMARK
293 	__u32			secmark;
294 #endif
295 
296 
297 	/* These elements must be at the end, see alloc_skb() for details.  */
298 	unsigned int		truesize;
299 	atomic_t		users;
300 	unsigned char		*head,
301 				*data,
302 				*tail,
303 				*end;
304 };
305 
306 #ifdef __KERNEL__
307 /*
308  *	Handling routines are only of interest to the kernel
309  */
310 #include <linux/slab.h>
311 
312 #include <asm/system.h>
313 
314 extern void kfree_skb(struct sk_buff *skb);
315 extern void	       __kfree_skb(struct sk_buff *skb);
316 extern struct sk_buff *__alloc_skb(unsigned int size,
317 				   gfp_t priority, int fclone);
318 static inline struct sk_buff *alloc_skb(unsigned int size,
319 					gfp_t priority)
320 {
321 	return __alloc_skb(size, priority, 0);
322 }
323 
324 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
325 					       gfp_t priority)
326 {
327 	return __alloc_skb(size, priority, 1);
328 }
329 
330 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
331 					    unsigned int size,
332 					    gfp_t priority);
333 extern void	       kfree_skbmem(struct sk_buff *skb);
334 extern struct sk_buff *skb_clone(struct sk_buff *skb,
335 				 gfp_t priority);
336 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
337 				gfp_t priority);
338 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
339 				 gfp_t gfp_mask);
340 extern int	       pskb_expand_head(struct sk_buff *skb,
341 					int nhead, int ntail,
342 					gfp_t gfp_mask);
343 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
344 					    unsigned int headroom);
345 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
346 				       int newheadroom, int newtailroom,
347 				       gfp_t priority);
348 extern struct sk_buff *		skb_pad(struct sk_buff *skb, int pad);
349 #define dev_kfree_skb(a)	kfree_skb(a)
350 extern void	      skb_over_panic(struct sk_buff *skb, int len,
351 				     void *here);
352 extern void	      skb_under_panic(struct sk_buff *skb, int len,
353 				      void *here);
354 extern void	      skb_truesize_bug(struct sk_buff *skb);
355 
356 static inline void skb_truesize_check(struct sk_buff *skb)
357 {
358 	if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
359 		skb_truesize_bug(skb);
360 }
361 
362 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
363 			int getfrag(void *from, char *to, int offset,
364 			int len,int odd, struct sk_buff *skb),
365 			void *from, int length);
366 
367 struct skb_seq_state
368 {
369 	__u32		lower_offset;
370 	__u32		upper_offset;
371 	__u32		frag_idx;
372 	__u32		stepped_offset;
373 	struct sk_buff	*root_skb;
374 	struct sk_buff	*cur_skb;
375 	__u8		*frag_data;
376 };
377 
378 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
379 					   unsigned int from, unsigned int to,
380 					   struct skb_seq_state *st);
381 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
382 				   struct skb_seq_state *st);
383 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
384 
385 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
386 				    unsigned int to, struct ts_config *config,
387 				    struct ts_state *state);
388 
389 /* Internal */
390 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
391 
392 /**
393  *	skb_queue_empty - check if a queue is empty
394  *	@list: queue head
395  *
396  *	Returns true if the queue is empty, false otherwise.
397  */
398 static inline int skb_queue_empty(const struct sk_buff_head *list)
399 {
400 	return list->next == (struct sk_buff *)list;
401 }
402 
403 /**
404  *	skb_get - reference buffer
405  *	@skb: buffer to reference
406  *
407  *	Makes another reference to a socket buffer and returns a pointer
408  *	to the buffer.
409  */
410 static inline struct sk_buff *skb_get(struct sk_buff *skb)
411 {
412 	atomic_inc(&skb->users);
413 	return skb;
414 }
415 
416 /*
417  * If users == 1, we are the only owner and are can avoid redundant
418  * atomic change.
419  */
420 
421 /**
422  *	skb_cloned - is the buffer a clone
423  *	@skb: buffer to check
424  *
425  *	Returns true if the buffer was generated with skb_clone() and is
426  *	one of multiple shared copies of the buffer. Cloned buffers are
427  *	shared data so must not be written to under normal circumstances.
428  */
429 static inline int skb_cloned(const struct sk_buff *skb)
430 {
431 	return skb->cloned &&
432 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
433 }
434 
435 /**
436  *	skb_header_cloned - is the header a clone
437  *	@skb: buffer to check
438  *
439  *	Returns true if modifying the header part of the buffer requires
440  *	the data to be copied.
441  */
442 static inline int skb_header_cloned(const struct sk_buff *skb)
443 {
444 	int dataref;
445 
446 	if (!skb->cloned)
447 		return 0;
448 
449 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
450 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
451 	return dataref != 1;
452 }
453 
454 /**
455  *	skb_header_release - release reference to header
456  *	@skb: buffer to operate on
457  *
458  *	Drop a reference to the header part of the buffer.  This is done
459  *	by acquiring a payload reference.  You must not read from the header
460  *	part of skb->data after this.
461  */
462 static inline void skb_header_release(struct sk_buff *skb)
463 {
464 	BUG_ON(skb->nohdr);
465 	skb->nohdr = 1;
466 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
467 }
468 
469 /**
470  *	skb_shared - is the buffer shared
471  *	@skb: buffer to check
472  *
473  *	Returns true if more than one person has a reference to this
474  *	buffer.
475  */
476 static inline int skb_shared(const struct sk_buff *skb)
477 {
478 	return atomic_read(&skb->users) != 1;
479 }
480 
481 /**
482  *	skb_share_check - check if buffer is shared and if so clone it
483  *	@skb: buffer to check
484  *	@pri: priority for memory allocation
485  *
486  *	If the buffer is shared the buffer is cloned and the old copy
487  *	drops a reference. A new clone with a single reference is returned.
488  *	If the buffer is not shared the original buffer is returned. When
489  *	being called from interrupt status or with spinlocks held pri must
490  *	be GFP_ATOMIC.
491  *
492  *	NULL is returned on a memory allocation failure.
493  */
494 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
495 					      gfp_t pri)
496 {
497 	might_sleep_if(pri & __GFP_WAIT);
498 	if (skb_shared(skb)) {
499 		struct sk_buff *nskb = skb_clone(skb, pri);
500 		kfree_skb(skb);
501 		skb = nskb;
502 	}
503 	return skb;
504 }
505 
506 /*
507  *	Copy shared buffers into a new sk_buff. We effectively do COW on
508  *	packets to handle cases where we have a local reader and forward
509  *	and a couple of other messy ones. The normal one is tcpdumping
510  *	a packet thats being forwarded.
511  */
512 
513 /**
514  *	skb_unshare - make a copy of a shared buffer
515  *	@skb: buffer to check
516  *	@pri: priority for memory allocation
517  *
518  *	If the socket buffer is a clone then this function creates a new
519  *	copy of the data, drops a reference count on the old copy and returns
520  *	the new copy with the reference count at 1. If the buffer is not a clone
521  *	the original buffer is returned. When called with a spinlock held or
522  *	from interrupt state @pri must be %GFP_ATOMIC
523  *
524  *	%NULL is returned on a memory allocation failure.
525  */
526 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
527 					  gfp_t pri)
528 {
529 	might_sleep_if(pri & __GFP_WAIT);
530 	if (skb_cloned(skb)) {
531 		struct sk_buff *nskb = skb_copy(skb, pri);
532 		kfree_skb(skb);	/* Free our shared copy */
533 		skb = nskb;
534 	}
535 	return skb;
536 }
537 
538 /**
539  *	skb_peek
540  *	@list_: list to peek at
541  *
542  *	Peek an &sk_buff. Unlike most other operations you _MUST_
543  *	be careful with this one. A peek leaves the buffer on the
544  *	list and someone else may run off with it. You must hold
545  *	the appropriate locks or have a private queue to do this.
546  *
547  *	Returns %NULL for an empty list or a pointer to the head element.
548  *	The reference count is not incremented and the reference is therefore
549  *	volatile. Use with caution.
550  */
551 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
552 {
553 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
554 	if (list == (struct sk_buff *)list_)
555 		list = NULL;
556 	return list;
557 }
558 
559 /**
560  *	skb_peek_tail
561  *	@list_: list to peek at
562  *
563  *	Peek an &sk_buff. Unlike most other operations you _MUST_
564  *	be careful with this one. A peek leaves the buffer on the
565  *	list and someone else may run off with it. You must hold
566  *	the appropriate locks or have a private queue to do this.
567  *
568  *	Returns %NULL for an empty list or a pointer to the tail element.
569  *	The reference count is not incremented and the reference is therefore
570  *	volatile. Use with caution.
571  */
572 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
573 {
574 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
575 	if (list == (struct sk_buff *)list_)
576 		list = NULL;
577 	return list;
578 }
579 
580 /**
581  *	skb_queue_len	- get queue length
582  *	@list_: list to measure
583  *
584  *	Return the length of an &sk_buff queue.
585  */
586 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
587 {
588 	return list_->qlen;
589 }
590 
591 static inline void skb_queue_head_init(struct sk_buff_head *list)
592 {
593 	spin_lock_init(&list->lock);
594 	list->prev = list->next = (struct sk_buff *)list;
595 	list->qlen = 0;
596 }
597 
598 /*
599  *	Insert an sk_buff at the start of a list.
600  *
601  *	The "__skb_xxxx()" functions are the non-atomic ones that
602  *	can only be called with interrupts disabled.
603  */
604 
605 /**
606  *	__skb_queue_after - queue a buffer at the list head
607  *	@list: list to use
608  *	@prev: place after this buffer
609  *	@newsk: buffer to queue
610  *
611  *	Queue a buffer int the middle of a list. This function takes no locks
612  *	and you must therefore hold required locks before calling it.
613  *
614  *	A buffer cannot be placed on two lists at the same time.
615  */
616 static inline void __skb_queue_after(struct sk_buff_head *list,
617 				     struct sk_buff *prev,
618 				     struct sk_buff *newsk)
619 {
620 	struct sk_buff *next;
621 	list->qlen++;
622 
623 	next = prev->next;
624 	newsk->next = next;
625 	newsk->prev = prev;
626 	next->prev  = prev->next = newsk;
627 }
628 
629 /**
630  *	__skb_queue_head - queue a buffer at the list head
631  *	@list: list to use
632  *	@newsk: buffer to queue
633  *
634  *	Queue a buffer at the start of a list. This function takes no locks
635  *	and you must therefore hold required locks before calling it.
636  *
637  *	A buffer cannot be placed on two lists at the same time.
638  */
639 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
640 static inline void __skb_queue_head(struct sk_buff_head *list,
641 				    struct sk_buff *newsk)
642 {
643 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
644 }
645 
646 /**
647  *	__skb_queue_tail - queue a buffer at the list tail
648  *	@list: list to use
649  *	@newsk: buffer to queue
650  *
651  *	Queue a buffer at the end of a list. This function takes no locks
652  *	and you must therefore hold required locks before calling it.
653  *
654  *	A buffer cannot be placed on two lists at the same time.
655  */
656 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
657 static inline void __skb_queue_tail(struct sk_buff_head *list,
658 				   struct sk_buff *newsk)
659 {
660 	struct sk_buff *prev, *next;
661 
662 	list->qlen++;
663 	next = (struct sk_buff *)list;
664 	prev = next->prev;
665 	newsk->next = next;
666 	newsk->prev = prev;
667 	next->prev  = prev->next = newsk;
668 }
669 
670 
671 /**
672  *	__skb_dequeue - remove from the head of the queue
673  *	@list: list to dequeue from
674  *
675  *	Remove the head of the list. This function does not take any locks
676  *	so must be used with appropriate locks held only. The head item is
677  *	returned or %NULL if the list is empty.
678  */
679 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
680 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
681 {
682 	struct sk_buff *next, *prev, *result;
683 
684 	prev = (struct sk_buff *) list;
685 	next = prev->next;
686 	result = NULL;
687 	if (next != prev) {
688 		result	     = next;
689 		next	     = next->next;
690 		list->qlen--;
691 		next->prev   = prev;
692 		prev->next   = next;
693 		result->next = result->prev = NULL;
694 	}
695 	return result;
696 }
697 
698 
699 /*
700  *	Insert a packet on a list.
701  */
702 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
703 static inline void __skb_insert(struct sk_buff *newsk,
704 				struct sk_buff *prev, struct sk_buff *next,
705 				struct sk_buff_head *list)
706 {
707 	newsk->next = next;
708 	newsk->prev = prev;
709 	next->prev  = prev->next = newsk;
710 	list->qlen++;
711 }
712 
713 /*
714  *	Place a packet after a given packet in a list.
715  */
716 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
717 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
718 {
719 	__skb_insert(newsk, old, old->next, list);
720 }
721 
722 /*
723  * remove sk_buff from list. _Must_ be called atomically, and with
724  * the list known..
725  */
726 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
727 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
728 {
729 	struct sk_buff *next, *prev;
730 
731 	list->qlen--;
732 	next	   = skb->next;
733 	prev	   = skb->prev;
734 	skb->next  = skb->prev = NULL;
735 	next->prev = prev;
736 	prev->next = next;
737 }
738 
739 
740 /* XXX: more streamlined implementation */
741 
742 /**
743  *	__skb_dequeue_tail - remove from the tail of the queue
744  *	@list: list to dequeue from
745  *
746  *	Remove the tail of the list. This function does not take any locks
747  *	so must be used with appropriate locks held only. The tail item is
748  *	returned or %NULL if the list is empty.
749  */
750 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
751 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
752 {
753 	struct sk_buff *skb = skb_peek_tail(list);
754 	if (skb)
755 		__skb_unlink(skb, list);
756 	return skb;
757 }
758 
759 
760 static inline int skb_is_nonlinear(const struct sk_buff *skb)
761 {
762 	return skb->data_len;
763 }
764 
765 static inline unsigned int skb_headlen(const struct sk_buff *skb)
766 {
767 	return skb->len - skb->data_len;
768 }
769 
770 static inline int skb_pagelen(const struct sk_buff *skb)
771 {
772 	int i, len = 0;
773 
774 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
775 		len += skb_shinfo(skb)->frags[i].size;
776 	return len + skb_headlen(skb);
777 }
778 
779 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
780 				      struct page *page, int off, int size)
781 {
782 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783 
784 	frag->page		  = page;
785 	frag->page_offset	  = off;
786 	frag->size		  = size;
787 	skb_shinfo(skb)->nr_frags = i + 1;
788 }
789 
790 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
791 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
792 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
793 
794 /*
795  *	Add data to an sk_buff
796  */
797 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
798 {
799 	unsigned char *tmp = skb->tail;
800 	SKB_LINEAR_ASSERT(skb);
801 	skb->tail += len;
802 	skb->len  += len;
803 	return tmp;
804 }
805 
806 /**
807  *	skb_put - add data to a buffer
808  *	@skb: buffer to use
809  *	@len: amount of data to add
810  *
811  *	This function extends the used data area of the buffer. If this would
812  *	exceed the total buffer size the kernel will panic. A pointer to the
813  *	first byte of the extra data is returned.
814  */
815 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
816 {
817 	unsigned char *tmp = skb->tail;
818 	SKB_LINEAR_ASSERT(skb);
819 	skb->tail += len;
820 	skb->len  += len;
821 	if (unlikely(skb->tail>skb->end))
822 		skb_over_panic(skb, len, current_text_addr());
823 	return tmp;
824 }
825 
826 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
827 {
828 	skb->data -= len;
829 	skb->len  += len;
830 	return skb->data;
831 }
832 
833 /**
834  *	skb_push - add data to the start of a buffer
835  *	@skb: buffer to use
836  *	@len: amount of data to add
837  *
838  *	This function extends the used data area of the buffer at the buffer
839  *	start. If this would exceed the total buffer headroom the kernel will
840  *	panic. A pointer to the first byte of the extra data is returned.
841  */
842 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
843 {
844 	skb->data -= len;
845 	skb->len  += len;
846 	if (unlikely(skb->data<skb->head))
847 		skb_under_panic(skb, len, current_text_addr());
848 	return skb->data;
849 }
850 
851 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
852 {
853 	skb->len -= len;
854 	BUG_ON(skb->len < skb->data_len);
855 	return skb->data += len;
856 }
857 
858 /**
859  *	skb_pull - remove data from the start of a buffer
860  *	@skb: buffer to use
861  *	@len: amount of data to remove
862  *
863  *	This function removes data from the start of a buffer, returning
864  *	the memory to the headroom. A pointer to the next data in the buffer
865  *	is returned. Once the data has been pulled future pushes will overwrite
866  *	the old data.
867  */
868 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
869 {
870 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
871 }
872 
873 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
874 
875 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
876 {
877 	if (len > skb_headlen(skb) &&
878 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
879 		return NULL;
880 	skb->len -= len;
881 	return skb->data += len;
882 }
883 
884 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
885 {
886 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
887 }
888 
889 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
890 {
891 	if (likely(len <= skb_headlen(skb)))
892 		return 1;
893 	if (unlikely(len > skb->len))
894 		return 0;
895 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
896 }
897 
898 /**
899  *	skb_headroom - bytes at buffer head
900  *	@skb: buffer to check
901  *
902  *	Return the number of bytes of free space at the head of an &sk_buff.
903  */
904 static inline int skb_headroom(const struct sk_buff *skb)
905 {
906 	return skb->data - skb->head;
907 }
908 
909 /**
910  *	skb_tailroom - bytes at buffer end
911  *	@skb: buffer to check
912  *
913  *	Return the number of bytes of free space at the tail of an sk_buff
914  */
915 static inline int skb_tailroom(const struct sk_buff *skb)
916 {
917 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
918 }
919 
920 /**
921  *	skb_reserve - adjust headroom
922  *	@skb: buffer to alter
923  *	@len: bytes to move
924  *
925  *	Increase the headroom of an empty &sk_buff by reducing the tail
926  *	room. This is only allowed for an empty buffer.
927  */
928 static inline void skb_reserve(struct sk_buff *skb, int len)
929 {
930 	skb->data += len;
931 	skb->tail += len;
932 }
933 
934 /*
935  * CPUs often take a performance hit when accessing unaligned memory
936  * locations. The actual performance hit varies, it can be small if the
937  * hardware handles it or large if we have to take an exception and fix it
938  * in software.
939  *
940  * Since an ethernet header is 14 bytes network drivers often end up with
941  * the IP header at an unaligned offset. The IP header can be aligned by
942  * shifting the start of the packet by 2 bytes. Drivers should do this
943  * with:
944  *
945  * skb_reserve(NET_IP_ALIGN);
946  *
947  * The downside to this alignment of the IP header is that the DMA is now
948  * unaligned. On some architectures the cost of an unaligned DMA is high
949  * and this cost outweighs the gains made by aligning the IP header.
950  *
951  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
952  * to be overridden.
953  */
954 #ifndef NET_IP_ALIGN
955 #define NET_IP_ALIGN	2
956 #endif
957 
958 /*
959  * The networking layer reserves some headroom in skb data (via
960  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
961  * the header has to grow. In the default case, if the header has to grow
962  * 16 bytes or less we avoid the reallocation.
963  *
964  * Unfortunately this headroom changes the DMA alignment of the resulting
965  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
966  * on some architectures. An architecture can override this value,
967  * perhaps setting it to a cacheline in size (since that will maintain
968  * cacheline alignment of the DMA). It must be a power of 2.
969  *
970  * Various parts of the networking layer expect at least 16 bytes of
971  * headroom, you should not reduce this.
972  */
973 #ifndef NET_SKB_PAD
974 #define NET_SKB_PAD	16
975 #endif
976 
977 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
978 
979 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
980 {
981 	if (unlikely(skb->data_len)) {
982 		WARN_ON(1);
983 		return;
984 	}
985 	skb->len  = len;
986 	skb->tail = skb->data + len;
987 }
988 
989 /**
990  *	skb_trim - remove end from a buffer
991  *	@skb: buffer to alter
992  *	@len: new length
993  *
994  *	Cut the length of a buffer down by removing data from the tail. If
995  *	the buffer is already under the length specified it is not modified.
996  *	The skb must be linear.
997  */
998 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
999 {
1000 	if (skb->len > len)
1001 		__skb_trim(skb, len);
1002 }
1003 
1004 
1005 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1006 {
1007 	if (skb->data_len)
1008 		return ___pskb_trim(skb, len);
1009 	__skb_trim(skb, len);
1010 	return 0;
1011 }
1012 
1013 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1014 {
1015 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1016 }
1017 
1018 /**
1019  *	skb_orphan - orphan a buffer
1020  *	@skb: buffer to orphan
1021  *
1022  *	If a buffer currently has an owner then we call the owner's
1023  *	destructor function and make the @skb unowned. The buffer continues
1024  *	to exist but is no longer charged to its former owner.
1025  */
1026 static inline void skb_orphan(struct sk_buff *skb)
1027 {
1028 	if (skb->destructor)
1029 		skb->destructor(skb);
1030 	skb->destructor = NULL;
1031 	skb->sk		= NULL;
1032 }
1033 
1034 /**
1035  *	__skb_queue_purge - empty a list
1036  *	@list: list to empty
1037  *
1038  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1039  *	the list and one reference dropped. This function does not take the
1040  *	list lock and the caller must hold the relevant locks to use it.
1041  */
1042 extern void skb_queue_purge(struct sk_buff_head *list);
1043 static inline void __skb_queue_purge(struct sk_buff_head *list)
1044 {
1045 	struct sk_buff *skb;
1046 	while ((skb = __skb_dequeue(list)) != NULL)
1047 		kfree_skb(skb);
1048 }
1049 
1050 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1051 /**
1052  *	__dev_alloc_skb - allocate an skbuff for sending
1053  *	@length: length to allocate
1054  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1055  *
1056  *	Allocate a new &sk_buff and assign it a usage count of one. The
1057  *	buffer has unspecified headroom built in. Users should allocate
1058  *	the headroom they think they need without accounting for the
1059  *	built in space. The built in space is used for optimisations.
1060  *
1061  *	%NULL is returned in there is no free memory.
1062  */
1063 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1064 					      gfp_t gfp_mask)
1065 {
1066 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1067 	if (likely(skb))
1068 		skb_reserve(skb, NET_SKB_PAD);
1069 	return skb;
1070 }
1071 #else
1072 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1073 #endif
1074 
1075 /**
1076  *	dev_alloc_skb - allocate an skbuff for sending
1077  *	@length: length to allocate
1078  *
1079  *	Allocate a new &sk_buff and assign it a usage count of one. The
1080  *	buffer has unspecified headroom built in. Users should allocate
1081  *	the headroom they think they need without accounting for the
1082  *	built in space. The built in space is used for optimisations.
1083  *
1084  *	%NULL is returned in there is no free memory. Although this function
1085  *	allocates memory it can be called from an interrupt.
1086  */
1087 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1088 {
1089 	return __dev_alloc_skb(length, GFP_ATOMIC);
1090 }
1091 
1092 /**
1093  *	skb_cow - copy header of skb when it is required
1094  *	@skb: buffer to cow
1095  *	@headroom: needed headroom
1096  *
1097  *	If the skb passed lacks sufficient headroom or its data part
1098  *	is shared, data is reallocated. If reallocation fails, an error
1099  *	is returned and original skb is not changed.
1100  *
1101  *	The result is skb with writable area skb->head...skb->tail
1102  *	and at least @headroom of space at head.
1103  */
1104 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1105 {
1106 	int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1107 			skb_headroom(skb);
1108 
1109 	if (delta < 0)
1110 		delta = 0;
1111 
1112 	if (delta || skb_cloned(skb))
1113 		return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1114 				~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1115 	return 0;
1116 }
1117 
1118 /**
1119  *	skb_padto	- pad an skbuff up to a minimal size
1120  *	@skb: buffer to pad
1121  *	@len: minimal length
1122  *
1123  *	Pads up a buffer to ensure the trailing bytes exist and are
1124  *	blanked. If the buffer already contains sufficient data it
1125  *	is untouched. Returns the buffer, which may be a replacement
1126  *	for the original, or NULL for out of memory - in which case
1127  *	the original buffer is still freed.
1128  */
1129 
1130 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1131 {
1132 	unsigned int size = skb->len;
1133 	if (likely(size >= len))
1134 		return skb;
1135 	return skb_pad(skb, len-size);
1136 }
1137 
1138 static inline int skb_add_data(struct sk_buff *skb,
1139 			       char __user *from, int copy)
1140 {
1141 	const int off = skb->len;
1142 
1143 	if (skb->ip_summed == CHECKSUM_NONE) {
1144 		int err = 0;
1145 		unsigned int csum = csum_and_copy_from_user(from,
1146 							    skb_put(skb, copy),
1147 							    copy, 0, &err);
1148 		if (!err) {
1149 			skb->csum = csum_block_add(skb->csum, csum, off);
1150 			return 0;
1151 		}
1152 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1153 		return 0;
1154 
1155 	__skb_trim(skb, off);
1156 	return -EFAULT;
1157 }
1158 
1159 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1160 				   struct page *page, int off)
1161 {
1162 	if (i) {
1163 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1164 
1165 		return page == frag->page &&
1166 		       off == frag->page_offset + frag->size;
1167 	}
1168 	return 0;
1169 }
1170 
1171 static inline int __skb_linearize(struct sk_buff *skb)
1172 {
1173 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1174 }
1175 
1176 /**
1177  *	skb_linearize - convert paged skb to linear one
1178  *	@skb: buffer to linarize
1179  *
1180  *	If there is no free memory -ENOMEM is returned, otherwise zero
1181  *	is returned and the old skb data released.
1182  */
1183 static inline int skb_linearize(struct sk_buff *skb)
1184 {
1185 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1186 }
1187 
1188 /**
1189  *	skb_linearize_cow - make sure skb is linear and writable
1190  *	@skb: buffer to process
1191  *
1192  *	If there is no free memory -ENOMEM is returned, otherwise zero
1193  *	is returned and the old skb data released.
1194  */
1195 static inline int skb_linearize_cow(struct sk_buff *skb)
1196 {
1197 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1198 	       __skb_linearize(skb) : 0;
1199 }
1200 
1201 /**
1202  *	skb_postpull_rcsum - update checksum for received skb after pull
1203  *	@skb: buffer to update
1204  *	@start: start of data before pull
1205  *	@len: length of data pulled
1206  *
1207  *	After doing a pull on a received packet, you need to call this to
1208  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1209  *	so that it can be recomputed from scratch.
1210  */
1211 
1212 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1213 				      const void *start, unsigned int len)
1214 {
1215 	if (skb->ip_summed == CHECKSUM_HW)
1216 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1217 }
1218 
1219 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1220 
1221 /**
1222  *	pskb_trim_rcsum - trim received skb and update checksum
1223  *	@skb: buffer to trim
1224  *	@len: new length
1225  *
1226  *	This is exactly the same as pskb_trim except that it ensures the
1227  *	checksum of received packets are still valid after the operation.
1228  */
1229 
1230 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1231 {
1232 	if (likely(len >= skb->len))
1233 		return 0;
1234 	if (skb->ip_summed == CHECKSUM_HW)
1235 		skb->ip_summed = CHECKSUM_NONE;
1236 	return __pskb_trim(skb, len);
1237 }
1238 
1239 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1240 {
1241 #ifdef CONFIG_HIGHMEM
1242 	BUG_ON(in_irq());
1243 
1244 	local_bh_disable();
1245 #endif
1246 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1247 }
1248 
1249 static inline void kunmap_skb_frag(void *vaddr)
1250 {
1251 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1252 #ifdef CONFIG_HIGHMEM
1253 	local_bh_enable();
1254 #endif
1255 }
1256 
1257 #define skb_queue_walk(queue, skb) \
1258 		for (skb = (queue)->next;					\
1259 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1260 		     skb = skb->next)
1261 
1262 #define skb_queue_reverse_walk(queue, skb) \
1263 		for (skb = (queue)->prev;					\
1264 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1265 		     skb = skb->prev)
1266 
1267 
1268 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1269 					 int noblock, int *err);
1270 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1271 				     struct poll_table_struct *wait);
1272 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1273 					       int offset, struct iovec *to,
1274 					       int size);
1275 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1276 							int hlen,
1277 							struct iovec *iov);
1278 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1279 extern void	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1280 					 unsigned int flags);
1281 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1282 				    int len, unsigned int csum);
1283 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1284 				     void *to, int len);
1285 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1286 				      void *from, int len);
1287 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1288 					      int offset, u8 *to, int len,
1289 					      unsigned int csum);
1290 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1291 extern void	       skb_split(struct sk_buff *skb,
1292 				 struct sk_buff *skb1, const u32 len);
1293 
1294 extern void	       skb_release_data(struct sk_buff *skb);
1295 
1296 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1297 				       int len, void *buffer)
1298 {
1299 	int hlen = skb_headlen(skb);
1300 
1301 	if (hlen - offset >= len)
1302 		return skb->data + offset;
1303 
1304 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1305 		return NULL;
1306 
1307 	return buffer;
1308 }
1309 
1310 extern void skb_init(void);
1311 extern void skb_add_mtu(int mtu);
1312 
1313 /**
1314  *	skb_get_timestamp - get timestamp from a skb
1315  *	@skb: skb to get stamp from
1316  *	@stamp: pointer to struct timeval to store stamp in
1317  *
1318  *	Timestamps are stored in the skb as offsets to a base timestamp.
1319  *	This function converts the offset back to a struct timeval and stores
1320  *	it in stamp.
1321  */
1322 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1323 {
1324 	stamp->tv_sec  = skb->tstamp.off_sec;
1325 	stamp->tv_usec = skb->tstamp.off_usec;
1326 }
1327 
1328 /**
1329  * 	skb_set_timestamp - set timestamp of a skb
1330  *	@skb: skb to set stamp of
1331  *	@stamp: pointer to struct timeval to get stamp from
1332  *
1333  *	Timestamps are stored in the skb as offsets to a base timestamp.
1334  *	This function converts a struct timeval to an offset and stores
1335  *	it in the skb.
1336  */
1337 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1338 {
1339 	skb->tstamp.off_sec  = stamp->tv_sec;
1340 	skb->tstamp.off_usec = stamp->tv_usec;
1341 }
1342 
1343 extern void __net_timestamp(struct sk_buff *skb);
1344 
1345 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1346 
1347 /**
1348  *	skb_checksum_complete - Calculate checksum of an entire packet
1349  *	@skb: packet to process
1350  *
1351  *	This function calculates the checksum over the entire packet plus
1352  *	the value of skb->csum.  The latter can be used to supply the
1353  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1354  *	checksum.
1355  *
1356  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1357  *	this function can be used to verify that checksum on received
1358  *	packets.  In that case the function should return zero if the
1359  *	checksum is correct.  In particular, this function will return zero
1360  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1361  *	hardware has already verified the correctness of the checksum.
1362  */
1363 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1364 {
1365 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1366 		__skb_checksum_complete(skb);
1367 }
1368 
1369 #ifdef CONFIG_NETFILTER
1370 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1371 {
1372 	if (nfct && atomic_dec_and_test(&nfct->use))
1373 		nfct->destroy(nfct);
1374 }
1375 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1376 {
1377 	if (nfct)
1378 		atomic_inc(&nfct->use);
1379 }
1380 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1381 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1382 {
1383 	if (skb)
1384 		atomic_inc(&skb->users);
1385 }
1386 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1387 {
1388 	if (skb)
1389 		kfree_skb(skb);
1390 }
1391 #endif
1392 #ifdef CONFIG_BRIDGE_NETFILTER
1393 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1394 {
1395 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1396 		kfree(nf_bridge);
1397 }
1398 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1399 {
1400 	if (nf_bridge)
1401 		atomic_inc(&nf_bridge->use);
1402 }
1403 #endif /* CONFIG_BRIDGE_NETFILTER */
1404 static inline void nf_reset(struct sk_buff *skb)
1405 {
1406 	nf_conntrack_put(skb->nfct);
1407 	skb->nfct = NULL;
1408 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1409 	nf_conntrack_put_reasm(skb->nfct_reasm);
1410 	skb->nfct_reasm = NULL;
1411 #endif
1412 #ifdef CONFIG_BRIDGE_NETFILTER
1413 	nf_bridge_put(skb->nf_bridge);
1414 	skb->nf_bridge = NULL;
1415 #endif
1416 }
1417 
1418 #else /* CONFIG_NETFILTER */
1419 static inline void nf_reset(struct sk_buff *skb) {}
1420 #endif /* CONFIG_NETFILTER */
1421 
1422 #ifdef CONFIG_NETWORK_SECMARK
1423 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1424 {
1425 	to->secmark = from->secmark;
1426 }
1427 
1428 static inline void skb_init_secmark(struct sk_buff *skb)
1429 {
1430 	skb->secmark = 0;
1431 }
1432 #else
1433 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1434 { }
1435 
1436 static inline void skb_init_secmark(struct sk_buff *skb)
1437 { }
1438 #endif
1439 
1440 #endif	/* __KERNEL__ */
1441 #endif	/* _LINUX_SKBUFF_H */
1442