xref: /linux-6.15/include/linux/skbuff.h (revision 4ee2a8ca)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357  * segment using its current segmentation instead.
358  */
359 #define GSO_BY_FRAGS	0xFFFF
360 
361 typedef struct skb_frag {
362 	netmem_ref netmem;
363 	unsigned int len;
364 	unsigned int offset;
365 } skb_frag_t;
366 
367 /**
368  * skb_frag_size() - Returns the size of a skb fragment
369  * @frag: skb fragment
370  */
371 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372 {
373 	return frag->len;
374 }
375 
376 /**
377  * skb_frag_size_set() - Sets the size of a skb fragment
378  * @frag: skb fragment
379  * @size: size of fragment
380  */
381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382 {
383 	frag->len = size;
384 }
385 
386 /**
387  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
388  * @frag: skb fragment
389  * @delta: value to add
390  */
391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
392 {
393 	frag->len += delta;
394 }
395 
396 /**
397  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
398  * @frag: skb fragment
399  * @delta: value to subtract
400  */
401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
402 {
403 	frag->len -= delta;
404 }
405 
406 /**
407  * skb_frag_must_loop - Test if %p is a high memory page
408  * @p: fragment's page
409  */
410 static inline bool skb_frag_must_loop(struct page *p)
411 {
412 #if defined(CONFIG_HIGHMEM)
413 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
414 		return true;
415 #endif
416 	return false;
417 }
418 
419 /**
420  *	skb_frag_foreach_page - loop over pages in a fragment
421  *
422  *	@f:		skb frag to operate on
423  *	@f_off:		offset from start of f->netmem
424  *	@f_len:		length from f_off to loop over
425  *	@p:		(temp var) current page
426  *	@p_off:		(temp var) offset from start of current page,
427  *	                           non-zero only on first page.
428  *	@p_len:		(temp var) length in current page,
429  *				   < PAGE_SIZE only on first and last page.
430  *	@copied:	(temp var) length so far, excluding current p_len.
431  *
432  *	A fragment can hold a compound page, in which case per-page
433  *	operations, notably kmap_atomic, must be called for each
434  *	regular page.
435  */
436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
437 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
438 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
439 	     p_len = skb_frag_must_loop(p) ?				\
440 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
441 	     copied = 0;						\
442 	     copied < f_len;						\
443 	     copied += p_len, p++, p_off = 0,				\
444 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
445 
446 /**
447  * struct skb_shared_hwtstamps - hardware time stamps
448  * @hwtstamp:		hardware time stamp transformed into duration
449  *			since arbitrary point in time
450  * @netdev_data:	address/cookie of network device driver used as
451  *			reference to actual hardware time stamp
452  *
453  * Software time stamps generated by ktime_get_real() are stored in
454  * skb->tstamp.
455  *
456  * hwtstamps can only be compared against other hwtstamps from
457  * the same device.
458  *
459  * This structure is attached to packets as part of the
460  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461  */
462 struct skb_shared_hwtstamps {
463 	union {
464 		ktime_t	hwtstamp;
465 		void *netdev_data;
466 	};
467 };
468 
469 /* Definitions for tx_flags in struct skb_shared_info */
470 enum {
471 	/* generate hardware time stamp */
472 	SKBTX_HW_TSTAMP = 1 << 0,
473 
474 	/* generate software time stamp when queueing packet to NIC */
475 	SKBTX_SW_TSTAMP = 1 << 1,
476 
477 	/* device driver is going to provide hardware time stamp */
478 	SKBTX_IN_PROGRESS = 1 << 2,
479 
480 	/* generate hardware time stamp based on cycles if supported */
481 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
482 
483 	/* generate wifi status information (where possible) */
484 	SKBTX_WIFI_STATUS = 1 << 4,
485 
486 	/* determine hardware time stamp based on time or cycles */
487 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
488 
489 	/* generate software time stamp when entering packet scheduling */
490 	SKBTX_SCHED_TSTAMP = 1 << 6,
491 };
492 
493 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
494 				 SKBTX_SCHED_TSTAMP)
495 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
496 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
497 				 SKBTX_ANY_SW_TSTAMP)
498 
499 /* Definitions for flags in struct skb_shared_info */
500 enum {
501 	/* use zcopy routines */
502 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
503 
504 	/* This indicates at least one fragment might be overwritten
505 	 * (as in vmsplice(), sendfile() ...)
506 	 * If we need to compute a TX checksum, we'll need to copy
507 	 * all frags to avoid possible bad checksum
508 	 */
509 	SKBFL_SHARED_FRAG = BIT(1),
510 
511 	/* segment contains only zerocopy data and should not be
512 	 * charged to the kernel memory.
513 	 */
514 	SKBFL_PURE_ZEROCOPY = BIT(2),
515 
516 	SKBFL_DONT_ORPHAN = BIT(3),
517 
518 	/* page references are managed by the ubuf_info, so it's safe to
519 	 * use frags only up until ubuf_info is released
520 	 */
521 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
522 };
523 
524 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
525 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
526 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
527 
528 struct ubuf_info_ops {
529 	void (*complete)(struct sk_buff *, struct ubuf_info *,
530 			 bool zerocopy_success);
531 	/* has to be compatible with skb_zcopy_set() */
532 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
533 };
534 
535 /*
536  * The callback notifies userspace to release buffers when skb DMA is done in
537  * lower device, the skb last reference should be 0 when calling this.
538  * The zerocopy_success argument is true if zero copy transmit occurred,
539  * false on data copy or out of memory error caused by data copy attempt.
540  * The ctx field is used to track device context.
541  * The desc field is used to track userspace buffer index.
542  */
543 struct ubuf_info {
544 	const struct ubuf_info_ops *ops;
545 	refcount_t refcnt;
546 	u8 flags;
547 };
548 
549 struct ubuf_info_msgzc {
550 	struct ubuf_info ubuf;
551 
552 	union {
553 		struct {
554 			unsigned long desc;
555 			void *ctx;
556 		};
557 		struct {
558 			u32 id;
559 			u16 len;
560 			u16 zerocopy:1;
561 			u32 bytelen;
562 		};
563 	};
564 
565 	struct mmpin {
566 		struct user_struct *user;
567 		unsigned int num_pg;
568 	} mmp;
569 };
570 
571 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
572 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
573 					     ubuf)
574 
575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
576 void mm_unaccount_pinned_pages(struct mmpin *mmp);
577 
578 /* Preserve some data across TX submission and completion.
579  *
580  * Note, this state is stored in the driver. Extending the layout
581  * might need some special care.
582  */
583 struct xsk_tx_metadata_compl {
584 	__u64 *tx_timestamp;
585 };
586 
587 /* This data is invariant across clones and lives at
588  * the end of the header data, ie. at skb->end.
589  */
590 struct skb_shared_info {
591 	__u8		flags;
592 	__u8		meta_len;
593 	__u8		nr_frags;
594 	__u8		tx_flags;
595 	unsigned short	gso_size;
596 	/* Warning: this field is not always filled in (UFO)! */
597 	unsigned short	gso_segs;
598 	struct sk_buff	*frag_list;
599 	union {
600 		struct skb_shared_hwtstamps hwtstamps;
601 		struct xsk_tx_metadata_compl xsk_meta;
602 	};
603 	unsigned int	gso_type;
604 	u32		tskey;
605 
606 	/*
607 	 * Warning : all fields before dataref are cleared in __alloc_skb()
608 	 */
609 	atomic_t	dataref;
610 	unsigned int	xdp_frags_size;
611 
612 	/* Intermediate layers must ensure that destructor_arg
613 	 * remains valid until skb destructor */
614 	void *		destructor_arg;
615 
616 	/* must be last field, see pskb_expand_head() */
617 	skb_frag_t	frags[MAX_SKB_FRAGS];
618 };
619 
620 /**
621  * DOC: dataref and headerless skbs
622  *
623  * Transport layers send out clones of payload skbs they hold for
624  * retransmissions. To allow lower layers of the stack to prepend their headers
625  * we split &skb_shared_info.dataref into two halves.
626  * The lower 16 bits count the overall number of references.
627  * The higher 16 bits indicate how many of the references are payload-only.
628  * skb_header_cloned() checks if skb is allowed to add / write the headers.
629  *
630  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
631  * (via __skb_header_release()). Any clone created from marked skb will get
632  * &sk_buff.hdr_len populated with the available headroom.
633  * If there's the only clone in existence it's able to modify the headroom
634  * at will. The sequence of calls inside the transport layer is::
635  *
636  *  <alloc skb>
637  *  skb_reserve()
638  *  __skb_header_release()
639  *  skb_clone()
640  *  // send the clone down the stack
641  *
642  * This is not a very generic construct and it depends on the transport layers
643  * doing the right thing. In practice there's usually only one payload-only skb.
644  * Having multiple payload-only skbs with different lengths of hdr_len is not
645  * possible. The payload-only skbs should never leave their owner.
646  */
647 #define SKB_DATAREF_SHIFT 16
648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
649 
650 
651 enum {
652 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
653 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
654 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
655 };
656 
657 enum {
658 	SKB_GSO_TCPV4 = 1 << 0,
659 
660 	/* This indicates the skb is from an untrusted source. */
661 	SKB_GSO_DODGY = 1 << 1,
662 
663 	/* This indicates the tcp segment has CWR set. */
664 	SKB_GSO_TCP_ECN = 1 << 2,
665 
666 	SKB_GSO_TCP_FIXEDID = 1 << 3,
667 
668 	SKB_GSO_TCPV6 = 1 << 4,
669 
670 	SKB_GSO_FCOE = 1 << 5,
671 
672 	SKB_GSO_GRE = 1 << 6,
673 
674 	SKB_GSO_GRE_CSUM = 1 << 7,
675 
676 	SKB_GSO_IPXIP4 = 1 << 8,
677 
678 	SKB_GSO_IPXIP6 = 1 << 9,
679 
680 	SKB_GSO_UDP_TUNNEL = 1 << 10,
681 
682 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
683 
684 	SKB_GSO_PARTIAL = 1 << 12,
685 
686 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
687 
688 	SKB_GSO_SCTP = 1 << 14,
689 
690 	SKB_GSO_ESP = 1 << 15,
691 
692 	SKB_GSO_UDP = 1 << 16,
693 
694 	SKB_GSO_UDP_L4 = 1 << 17,
695 
696 	SKB_GSO_FRAGLIST = 1 << 18,
697 };
698 
699 #if BITS_PER_LONG > 32
700 #define NET_SKBUFF_DATA_USES_OFFSET 1
701 #endif
702 
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 typedef unsigned int sk_buff_data_t;
705 #else
706 typedef unsigned char *sk_buff_data_t;
707 #endif
708 
709 enum skb_tstamp_type {
710 	SKB_CLOCK_REALTIME,
711 	SKB_CLOCK_MONOTONIC,
712 	SKB_CLOCK_TAI,
713 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
714 };
715 
716 /**
717  * DOC: Basic sk_buff geometry
718  *
719  * struct sk_buff itself is a metadata structure and does not hold any packet
720  * data. All the data is held in associated buffers.
721  *
722  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
723  * into two parts:
724  *
725  *  - data buffer, containing headers and sometimes payload;
726  *    this is the part of the skb operated on by the common helpers
727  *    such as skb_put() or skb_pull();
728  *  - shared info (struct skb_shared_info) which holds an array of pointers
729  *    to read-only data in the (page, offset, length) format.
730  *
731  * Optionally &skb_shared_info.frag_list may point to another skb.
732  *
733  * Basic diagram may look like this::
734  *
735  *                                  ---------------
736  *                                 | sk_buff       |
737  *                                  ---------------
738  *     ,---------------------------  + head
739  *    /          ,-----------------  + data
740  *   /          /      ,-----------  + tail
741  *  |          |      |            , + end
742  *  |          |      |           |
743  *  v          v      v           v
744  *   -----------------------------------------------
745  *  | headroom | data |  tailroom | skb_shared_info |
746  *   -----------------------------------------------
747  *                                 + [page frag]
748  *                                 + [page frag]
749  *                                 + [page frag]
750  *                                 + [page frag]       ---------
751  *                                 + frag_list    --> | sk_buff |
752  *                                                     ---------
753  *
754  */
755 
756 /**
757  *	struct sk_buff - socket buffer
758  *	@next: Next buffer in list
759  *	@prev: Previous buffer in list
760  *	@tstamp: Time we arrived/left
761  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
762  *		for retransmit timer
763  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
764  *	@list: queue head
765  *	@ll_node: anchor in an llist (eg socket defer_list)
766  *	@sk: Socket we are owned by
767  *	@dev: Device we arrived on/are leaving by
768  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
769  *	@cb: Control buffer. Free for use by every layer. Put private vars here
770  *	@_skb_refdst: destination entry (with norefcount bit)
771  *	@len: Length of actual data
772  *	@data_len: Data length
773  *	@mac_len: Length of link layer header
774  *	@hdr_len: writable header length of cloned skb
775  *	@csum: Checksum (must include start/offset pair)
776  *	@csum_start: Offset from skb->head where checksumming should start
777  *	@csum_offset: Offset from csum_start where checksum should be stored
778  *	@priority: Packet queueing priority
779  *	@ignore_df: allow local fragmentation
780  *	@cloned: Head may be cloned (check refcnt to be sure)
781  *	@ip_summed: Driver fed us an IP checksum
782  *	@nohdr: Payload reference only, must not modify header
783  *	@pkt_type: Packet class
784  *	@fclone: skbuff clone status
785  *	@ipvs_property: skbuff is owned by ipvs
786  *	@inner_protocol_type: whether the inner protocol is
787  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
788  *	@remcsum_offload: remote checksum offload is enabled
789  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
790  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
791  *	@tc_skip_classify: do not classify packet. set by IFB device
792  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
793  *	@redirected: packet was redirected by packet classifier
794  *	@from_ingress: packet was redirected from the ingress path
795  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
796  *	@peeked: this packet has been seen already, so stats have been
797  *		done for it, don't do them again
798  *	@nf_trace: netfilter packet trace flag
799  *	@protocol: Packet protocol from driver
800  *	@destructor: Destruct function
801  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
802  *	@_sk_redir: socket redirection information for skmsg
803  *	@_nfct: Associated connection, if any (with nfctinfo bits)
804  *	@skb_iif: ifindex of device we arrived on
805  *	@tc_index: Traffic control index
806  *	@hash: the packet hash
807  *	@queue_mapping: Queue mapping for multiqueue devices
808  *	@head_frag: skb was allocated from page fragments,
809  *		not allocated by kmalloc() or vmalloc().
810  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
811  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
812  *		page_pool support on driver)
813  *	@active_extensions: active extensions (skb_ext_id types)
814  *	@ndisc_nodetype: router type (from link layer)
815  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
816  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
817  *		ports.
818  *	@sw_hash: indicates hash was computed in software stack
819  *	@wifi_acked_valid: wifi_acked was set
820  *	@wifi_acked: whether frame was acked on wifi or not
821  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
822  *	@encapsulation: indicates the inner headers in the skbuff are valid
823  *	@encap_hdr_csum: software checksum is needed
824  *	@csum_valid: checksum is already valid
825  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
826  *	@csum_complete_sw: checksum was completed by software
827  *	@csum_level: indicates the number of consecutive checksums found in
828  *		the packet minus one that have been verified as
829  *		CHECKSUM_UNNECESSARY (max 3)
830  *	@dst_pending_confirm: need to confirm neighbour
831  *	@decrypted: Decrypted SKB
832  *	@slow_gro: state present at GRO time, slower prepare step required
833  *	@tstamp_type: When set, skb->tstamp has the
834  *		delivery_time clock base of skb->tstamp.
835  *	@napi_id: id of the NAPI struct this skb came from
836  *	@sender_cpu: (aka @napi_id) source CPU in XPS
837  *	@alloc_cpu: CPU which did the skb allocation.
838  *	@secmark: security marking
839  *	@mark: Generic packet mark
840  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
841  *		at the tail of an sk_buff
842  *	@vlan_all: vlan fields (proto & tci)
843  *	@vlan_proto: vlan encapsulation protocol
844  *	@vlan_tci: vlan tag control information
845  *	@inner_protocol: Protocol (encapsulation)
846  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
847  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
848  *	@inner_transport_header: Inner transport layer header (encapsulation)
849  *	@inner_network_header: Network layer header (encapsulation)
850  *	@inner_mac_header: Link layer header (encapsulation)
851  *	@transport_header: Transport layer header
852  *	@network_header: Network layer header
853  *	@mac_header: Link layer header
854  *	@kcov_handle: KCOV remote handle for remote coverage collection
855  *	@tail: Tail pointer
856  *	@end: End pointer
857  *	@head: Head of buffer
858  *	@data: Data head pointer
859  *	@truesize: Buffer size
860  *	@users: User count - see {datagram,tcp}.c
861  *	@extensions: allocated extensions, valid if active_extensions is nonzero
862  */
863 
864 struct sk_buff {
865 	union {
866 		struct {
867 			/* These two members must be first to match sk_buff_head. */
868 			struct sk_buff		*next;
869 			struct sk_buff		*prev;
870 
871 			union {
872 				struct net_device	*dev;
873 				/* Some protocols might use this space to store information,
874 				 * while device pointer would be NULL.
875 				 * UDP receive path is one user.
876 				 */
877 				unsigned long		dev_scratch;
878 			};
879 		};
880 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
881 		struct list_head	list;
882 		struct llist_node	ll_node;
883 	};
884 
885 	struct sock		*sk;
886 
887 	union {
888 		ktime_t		tstamp;
889 		u64		skb_mstamp_ns; /* earliest departure time */
890 	};
891 	/*
892 	 * This is the control buffer. It is free to use for every
893 	 * layer. Please put your private variables there. If you
894 	 * want to keep them across layers you have to do a skb_clone()
895 	 * first. This is owned by whoever has the skb queued ATM.
896 	 */
897 	char			cb[48] __aligned(8);
898 
899 	union {
900 		struct {
901 			unsigned long	_skb_refdst;
902 			void		(*destructor)(struct sk_buff *skb);
903 		};
904 		struct list_head	tcp_tsorted_anchor;
905 #ifdef CONFIG_NET_SOCK_MSG
906 		unsigned long		_sk_redir;
907 #endif
908 	};
909 
910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
911 	unsigned long		 _nfct;
912 #endif
913 	unsigned int		len,
914 				data_len;
915 	__u16			mac_len,
916 				hdr_len;
917 
918 	/* Following fields are _not_ copied in __copy_skb_header()
919 	 * Note that queue_mapping is here mostly to fill a hole.
920 	 */
921 	__u16			queue_mapping;
922 
923 /* if you move cloned around you also must adapt those constants */
924 #ifdef __BIG_ENDIAN_BITFIELD
925 #define CLONED_MASK	(1 << 7)
926 #else
927 #define CLONED_MASK	1
928 #endif
929 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
930 
931 	/* private: */
932 	__u8			__cloned_offset[0];
933 	/* public: */
934 	__u8			cloned:1,
935 				nohdr:1,
936 				fclone:2,
937 				peeked:1,
938 				head_frag:1,
939 				pfmemalloc:1,
940 				pp_recycle:1; /* page_pool recycle indicator */
941 #ifdef CONFIG_SKB_EXTENSIONS
942 	__u8			active_extensions;
943 #endif
944 
945 	/* Fields enclosed in headers group are copied
946 	 * using a single memcpy() in __copy_skb_header()
947 	 */
948 	struct_group(headers,
949 
950 	/* private: */
951 	__u8			__pkt_type_offset[0];
952 	/* public: */
953 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
954 	__u8			ignore_df:1;
955 	__u8			dst_pending_confirm:1;
956 	__u8			ip_summed:2;
957 	__u8			ooo_okay:1;
958 
959 	/* private: */
960 	__u8			__mono_tc_offset[0];
961 	/* public: */
962 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
963 #ifdef CONFIG_NET_XGRESS
964 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
965 	__u8			tc_skip_classify:1;
966 #endif
967 	__u8			remcsum_offload:1;
968 	__u8			csum_complete_sw:1;
969 	__u8			csum_level:2;
970 	__u8			inner_protocol_type:1;
971 
972 	__u8			l4_hash:1;
973 	__u8			sw_hash:1;
974 #ifdef CONFIG_WIRELESS
975 	__u8			wifi_acked_valid:1;
976 	__u8			wifi_acked:1;
977 #endif
978 	__u8			no_fcs:1;
979 	/* Indicates the inner headers are valid in the skbuff. */
980 	__u8			encapsulation:1;
981 	__u8			encap_hdr_csum:1;
982 	__u8			csum_valid:1;
983 #ifdef CONFIG_IPV6_NDISC_NODETYPE
984 	__u8			ndisc_nodetype:2;
985 #endif
986 
987 #if IS_ENABLED(CONFIG_IP_VS)
988 	__u8			ipvs_property:1;
989 #endif
990 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
991 	__u8			nf_trace:1;
992 #endif
993 #ifdef CONFIG_NET_SWITCHDEV
994 	__u8			offload_fwd_mark:1;
995 	__u8			offload_l3_fwd_mark:1;
996 #endif
997 	__u8			redirected:1;
998 #ifdef CONFIG_NET_REDIRECT
999 	__u8			from_ingress:1;
1000 #endif
1001 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1002 	__u8			nf_skip_egress:1;
1003 #endif
1004 #ifdef CONFIG_SKB_DECRYPTED
1005 	__u8			decrypted:1;
1006 #endif
1007 	__u8			slow_gro:1;
1008 #if IS_ENABLED(CONFIG_IP_SCTP)
1009 	__u8			csum_not_inet:1;
1010 #endif
1011 
1012 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1013 	__u16			tc_index;	/* traffic control index */
1014 #endif
1015 
1016 	u16			alloc_cpu;
1017 
1018 	union {
1019 		__wsum		csum;
1020 		struct {
1021 			__u16	csum_start;
1022 			__u16	csum_offset;
1023 		};
1024 	};
1025 	__u32			priority;
1026 	int			skb_iif;
1027 	__u32			hash;
1028 	union {
1029 		u32		vlan_all;
1030 		struct {
1031 			__be16	vlan_proto;
1032 			__u16	vlan_tci;
1033 		};
1034 	};
1035 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1036 	union {
1037 		unsigned int	napi_id;
1038 		unsigned int	sender_cpu;
1039 	};
1040 #endif
1041 #ifdef CONFIG_NETWORK_SECMARK
1042 	__u32		secmark;
1043 #endif
1044 
1045 	union {
1046 		__u32		mark;
1047 		__u32		reserved_tailroom;
1048 	};
1049 
1050 	union {
1051 		__be16		inner_protocol;
1052 		__u8		inner_ipproto;
1053 	};
1054 
1055 	__u16			inner_transport_header;
1056 	__u16			inner_network_header;
1057 	__u16			inner_mac_header;
1058 
1059 	__be16			protocol;
1060 	__u16			transport_header;
1061 	__u16			network_header;
1062 	__u16			mac_header;
1063 
1064 #ifdef CONFIG_KCOV
1065 	u64			kcov_handle;
1066 #endif
1067 
1068 	); /* end headers group */
1069 
1070 	/* These elements must be at the end, see alloc_skb() for details.  */
1071 	sk_buff_data_t		tail;
1072 	sk_buff_data_t		end;
1073 	unsigned char		*head,
1074 				*data;
1075 	unsigned int		truesize;
1076 	refcount_t		users;
1077 
1078 #ifdef CONFIG_SKB_EXTENSIONS
1079 	/* only usable after checking ->active_extensions != 0 */
1080 	struct skb_ext		*extensions;
1081 #endif
1082 };
1083 
1084 /* if you move pkt_type around you also must adapt those constants */
1085 #ifdef __BIG_ENDIAN_BITFIELD
1086 #define PKT_TYPE_MAX	(7 << 5)
1087 #else
1088 #define PKT_TYPE_MAX	7
1089 #endif
1090 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1091 
1092 /* if you move tc_at_ingress or tstamp_type
1093  * around, you also must adapt these constants.
1094  */
1095 #ifdef __BIG_ENDIAN_BITFIELD
1096 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1097 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1098 #define TC_AT_INGRESS_MASK		(1 << 5)
1099 #else
1100 #define SKB_TSTAMP_TYPE_MASK		(3)
1101 #define TC_AT_INGRESS_MASK		(1 << 2)
1102 #endif
1103 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1104 
1105 #ifdef __KERNEL__
1106 /*
1107  *	Handling routines are only of interest to the kernel
1108  */
1109 
1110 #define SKB_ALLOC_FCLONE	0x01
1111 #define SKB_ALLOC_RX		0x02
1112 #define SKB_ALLOC_NAPI		0x04
1113 
1114 /**
1115  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1116  * @skb: buffer
1117  */
1118 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1119 {
1120 	return unlikely(skb->pfmemalloc);
1121 }
1122 
1123 /*
1124  * skb might have a dst pointer attached, refcounted or not.
1125  * _skb_refdst low order bit is set if refcount was _not_ taken
1126  */
1127 #define SKB_DST_NOREF	1UL
1128 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1129 
1130 /**
1131  * skb_dst - returns skb dst_entry
1132  * @skb: buffer
1133  *
1134  * Returns skb dst_entry, regardless of reference taken or not.
1135  */
1136 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1137 {
1138 	/* If refdst was not refcounted, check we still are in a
1139 	 * rcu_read_lock section
1140 	 */
1141 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1142 		!rcu_read_lock_held() &&
1143 		!rcu_read_lock_bh_held());
1144 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1145 }
1146 
1147 /**
1148  * skb_dst_set - sets skb dst
1149  * @skb: buffer
1150  * @dst: dst entry
1151  *
1152  * Sets skb dst, assuming a reference was taken on dst and should
1153  * be released by skb_dst_drop()
1154  */
1155 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1156 {
1157 	skb->slow_gro |= !!dst;
1158 	skb->_skb_refdst = (unsigned long)dst;
1159 }
1160 
1161 /**
1162  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1163  * @skb: buffer
1164  * @dst: dst entry
1165  *
1166  * Sets skb dst, assuming a reference was not taken on dst.
1167  * If dst entry is cached, we do not take reference and dst_release
1168  * will be avoided by refdst_drop. If dst entry is not cached, we take
1169  * reference, so that last dst_release can destroy the dst immediately.
1170  */
1171 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1172 {
1173 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1174 	skb->slow_gro |= !!dst;
1175 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1176 }
1177 
1178 /**
1179  * skb_dst_is_noref - Test if skb dst isn't refcounted
1180  * @skb: buffer
1181  */
1182 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1183 {
1184 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1185 }
1186 
1187 /* For mangling skb->pkt_type from user space side from applications
1188  * such as nft, tc, etc, we only allow a conservative subset of
1189  * possible pkt_types to be set.
1190 */
1191 static inline bool skb_pkt_type_ok(u32 ptype)
1192 {
1193 	return ptype <= PACKET_OTHERHOST;
1194 }
1195 
1196 /**
1197  * skb_napi_id - Returns the skb's NAPI id
1198  * @skb: buffer
1199  */
1200 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1201 {
1202 #ifdef CONFIG_NET_RX_BUSY_POLL
1203 	return skb->napi_id;
1204 #else
1205 	return 0;
1206 #endif
1207 }
1208 
1209 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1210 {
1211 #ifdef CONFIG_WIRELESS
1212 	return skb->wifi_acked_valid;
1213 #else
1214 	return 0;
1215 #endif
1216 }
1217 
1218 /**
1219  * skb_unref - decrement the skb's reference count
1220  * @skb: buffer
1221  *
1222  * Returns true if we can free the skb.
1223  */
1224 static inline bool skb_unref(struct sk_buff *skb)
1225 {
1226 	if (unlikely(!skb))
1227 		return false;
1228 	if (likely(refcount_read(&skb->users) == 1))
1229 		smp_rmb();
1230 	else if (likely(!refcount_dec_and_test(&skb->users)))
1231 		return false;
1232 
1233 	return true;
1234 }
1235 
1236 static inline bool skb_data_unref(const struct sk_buff *skb,
1237 				  struct skb_shared_info *shinfo)
1238 {
1239 	int bias;
1240 
1241 	if (!skb->cloned)
1242 		return true;
1243 
1244 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1245 
1246 	if (atomic_read(&shinfo->dataref) == bias)
1247 		smp_rmb();
1248 	else if (atomic_sub_return(bias, &shinfo->dataref))
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 void __fix_address
1255 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1256 
1257 /**
1258  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1259  *	@skb: buffer to free
1260  */
1261 static inline void kfree_skb(struct sk_buff *skb)
1262 {
1263 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1264 }
1265 
1266 void skb_release_head_state(struct sk_buff *skb);
1267 void kfree_skb_list_reason(struct sk_buff *segs,
1268 			   enum skb_drop_reason reason);
1269 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1270 void skb_tx_error(struct sk_buff *skb);
1271 
1272 static inline void kfree_skb_list(struct sk_buff *segs)
1273 {
1274 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1275 }
1276 
1277 #ifdef CONFIG_TRACEPOINTS
1278 void consume_skb(struct sk_buff *skb);
1279 #else
1280 static inline void consume_skb(struct sk_buff *skb)
1281 {
1282 	return kfree_skb(skb);
1283 }
1284 #endif
1285 
1286 void __consume_stateless_skb(struct sk_buff *skb);
1287 void  __kfree_skb(struct sk_buff *skb);
1288 
1289 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1290 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1291 		      bool *fragstolen, int *delta_truesize);
1292 
1293 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1294 			    int node);
1295 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1296 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1297 struct sk_buff *build_skb_around(struct sk_buff *skb,
1298 				 void *data, unsigned int frag_size);
1299 void skb_attempt_defer_free(struct sk_buff *skb);
1300 
1301 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1302 struct sk_buff *slab_build_skb(void *data);
1303 
1304 /**
1305  * alloc_skb - allocate a network buffer
1306  * @size: size to allocate
1307  * @priority: allocation mask
1308  *
1309  * This function is a convenient wrapper around __alloc_skb().
1310  */
1311 static inline struct sk_buff *alloc_skb(unsigned int size,
1312 					gfp_t priority)
1313 {
1314 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1315 }
1316 
1317 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1318 				     unsigned long data_len,
1319 				     int max_page_order,
1320 				     int *errcode,
1321 				     gfp_t gfp_mask);
1322 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1323 
1324 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1325 struct sk_buff_fclones {
1326 	struct sk_buff	skb1;
1327 
1328 	struct sk_buff	skb2;
1329 
1330 	refcount_t	fclone_ref;
1331 };
1332 
1333 /**
1334  *	skb_fclone_busy - check if fclone is busy
1335  *	@sk: socket
1336  *	@skb: buffer
1337  *
1338  * Returns true if skb is a fast clone, and its clone is not freed.
1339  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1340  * so we also check that didn't happen.
1341  */
1342 static inline bool skb_fclone_busy(const struct sock *sk,
1343 				   const struct sk_buff *skb)
1344 {
1345 	const struct sk_buff_fclones *fclones;
1346 
1347 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1348 
1349 	return skb->fclone == SKB_FCLONE_ORIG &&
1350 	       refcount_read(&fclones->fclone_ref) > 1 &&
1351 	       READ_ONCE(fclones->skb2.sk) == sk;
1352 }
1353 
1354 /**
1355  * alloc_skb_fclone - allocate a network buffer from fclone cache
1356  * @size: size to allocate
1357  * @priority: allocation mask
1358  *
1359  * This function is a convenient wrapper around __alloc_skb().
1360  */
1361 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1362 					       gfp_t priority)
1363 {
1364 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1365 }
1366 
1367 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1368 void skb_headers_offset_update(struct sk_buff *skb, int off);
1369 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1370 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1371 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1372 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1373 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1374 				   gfp_t gfp_mask, bool fclone);
1375 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1376 					  gfp_t gfp_mask)
1377 {
1378 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1379 }
1380 
1381 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1382 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1383 				     unsigned int headroom);
1384 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1385 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1386 				int newtailroom, gfp_t priority);
1387 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1388 				     int offset, int len);
1389 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1390 			      int offset, int len);
1391 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1392 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1393 
1394 /**
1395  *	skb_pad			-	zero pad the tail of an skb
1396  *	@skb: buffer to pad
1397  *	@pad: space to pad
1398  *
1399  *	Ensure that a buffer is followed by a padding area that is zero
1400  *	filled. Used by network drivers which may DMA or transfer data
1401  *	beyond the buffer end onto the wire.
1402  *
1403  *	May return error in out of memory cases. The skb is freed on error.
1404  */
1405 static inline int skb_pad(struct sk_buff *skb, int pad)
1406 {
1407 	return __skb_pad(skb, pad, true);
1408 }
1409 #define dev_kfree_skb(a)	consume_skb(a)
1410 
1411 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1412 			 int offset, size_t size, size_t max_frags);
1413 
1414 struct skb_seq_state {
1415 	__u32		lower_offset;
1416 	__u32		upper_offset;
1417 	__u32		frag_idx;
1418 	__u32		stepped_offset;
1419 	struct sk_buff	*root_skb;
1420 	struct sk_buff	*cur_skb;
1421 	__u8		*frag_data;
1422 	__u32		frag_off;
1423 };
1424 
1425 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1426 			  unsigned int to, struct skb_seq_state *st);
1427 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1428 			  struct skb_seq_state *st);
1429 void skb_abort_seq_read(struct skb_seq_state *st);
1430 
1431 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1432 			   unsigned int to, struct ts_config *config);
1433 
1434 /*
1435  * Packet hash types specify the type of hash in skb_set_hash.
1436  *
1437  * Hash types refer to the protocol layer addresses which are used to
1438  * construct a packet's hash. The hashes are used to differentiate or identify
1439  * flows of the protocol layer for the hash type. Hash types are either
1440  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1441  *
1442  * Properties of hashes:
1443  *
1444  * 1) Two packets in different flows have different hash values
1445  * 2) Two packets in the same flow should have the same hash value
1446  *
1447  * A hash at a higher layer is considered to be more specific. A driver should
1448  * set the most specific hash possible.
1449  *
1450  * A driver cannot indicate a more specific hash than the layer at which a hash
1451  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1452  *
1453  * A driver may indicate a hash level which is less specific than the
1454  * actual layer the hash was computed on. For instance, a hash computed
1455  * at L4 may be considered an L3 hash. This should only be done if the
1456  * driver can't unambiguously determine that the HW computed the hash at
1457  * the higher layer. Note that the "should" in the second property above
1458  * permits this.
1459  */
1460 enum pkt_hash_types {
1461 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1462 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1463 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1464 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1465 };
1466 
1467 static inline void skb_clear_hash(struct sk_buff *skb)
1468 {
1469 	skb->hash = 0;
1470 	skb->sw_hash = 0;
1471 	skb->l4_hash = 0;
1472 }
1473 
1474 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1475 {
1476 	if (!skb->l4_hash)
1477 		skb_clear_hash(skb);
1478 }
1479 
1480 static inline void
1481 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1482 {
1483 	skb->l4_hash = is_l4;
1484 	skb->sw_hash = is_sw;
1485 	skb->hash = hash;
1486 }
1487 
1488 static inline void
1489 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1490 {
1491 	/* Used by drivers to set hash from HW */
1492 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1493 }
1494 
1495 static inline void
1496 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1497 {
1498 	__skb_set_hash(skb, hash, true, is_l4);
1499 }
1500 
1501 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1502 
1503 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1504 {
1505 	return __skb_get_hash_symmetric_net(NULL, skb);
1506 }
1507 
1508 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1509 u32 skb_get_poff(const struct sk_buff *skb);
1510 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1511 		   const struct flow_keys_basic *keys, int hlen);
1512 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1513 			    const void *data, int hlen_proto);
1514 
1515 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1516 					int thoff, u8 ip_proto)
1517 {
1518 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1519 }
1520 
1521 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1522 			     const struct flow_dissector_key *key,
1523 			     unsigned int key_count);
1524 
1525 struct bpf_flow_dissector;
1526 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1527 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1528 
1529 bool __skb_flow_dissect(const struct net *net,
1530 			const struct sk_buff *skb,
1531 			struct flow_dissector *flow_dissector,
1532 			void *target_container, const void *data,
1533 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1534 
1535 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1536 				    struct flow_dissector *flow_dissector,
1537 				    void *target_container, unsigned int flags)
1538 {
1539 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1540 				  target_container, NULL, 0, 0, 0, flags);
1541 }
1542 
1543 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1544 					      struct flow_keys *flow,
1545 					      unsigned int flags)
1546 {
1547 	memset(flow, 0, sizeof(*flow));
1548 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1549 				  flow, NULL, 0, 0, 0, flags);
1550 }
1551 
1552 static inline bool
1553 skb_flow_dissect_flow_keys_basic(const struct net *net,
1554 				 const struct sk_buff *skb,
1555 				 struct flow_keys_basic *flow,
1556 				 const void *data, __be16 proto,
1557 				 int nhoff, int hlen, unsigned int flags)
1558 {
1559 	memset(flow, 0, sizeof(*flow));
1560 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1561 				  data, proto, nhoff, hlen, flags);
1562 }
1563 
1564 void skb_flow_dissect_meta(const struct sk_buff *skb,
1565 			   struct flow_dissector *flow_dissector,
1566 			   void *target_container);
1567 
1568 /* Gets a skb connection tracking info, ctinfo map should be a
1569  * map of mapsize to translate enum ip_conntrack_info states
1570  * to user states.
1571  */
1572 void
1573 skb_flow_dissect_ct(const struct sk_buff *skb,
1574 		    struct flow_dissector *flow_dissector,
1575 		    void *target_container,
1576 		    u16 *ctinfo_map, size_t mapsize,
1577 		    bool post_ct, u16 zone);
1578 void
1579 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1580 			     struct flow_dissector *flow_dissector,
1581 			     void *target_container);
1582 
1583 void skb_flow_dissect_hash(const struct sk_buff *skb,
1584 			   struct flow_dissector *flow_dissector,
1585 			   void *target_container);
1586 
1587 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1588 {
1589 	if (!skb->l4_hash && !skb->sw_hash)
1590 		__skb_get_hash_net(net, skb);
1591 
1592 	return skb->hash;
1593 }
1594 
1595 static inline __u32 skb_get_hash(struct sk_buff *skb)
1596 {
1597 	if (!skb->l4_hash && !skb->sw_hash)
1598 		__skb_get_hash_net(NULL, skb);
1599 
1600 	return skb->hash;
1601 }
1602 
1603 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1604 {
1605 	if (!skb->l4_hash && !skb->sw_hash) {
1606 		struct flow_keys keys;
1607 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1608 
1609 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1610 	}
1611 
1612 	return skb->hash;
1613 }
1614 
1615 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1616 			   const siphash_key_t *perturb);
1617 
1618 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1619 {
1620 	return skb->hash;
1621 }
1622 
1623 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1624 {
1625 	to->hash = from->hash;
1626 	to->sw_hash = from->sw_hash;
1627 	to->l4_hash = from->l4_hash;
1628 };
1629 
1630 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1631 				    const struct sk_buff *skb2)
1632 {
1633 #ifdef CONFIG_SKB_DECRYPTED
1634 	return skb2->decrypted - skb1->decrypted;
1635 #else
1636 	return 0;
1637 #endif
1638 }
1639 
1640 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1641 {
1642 #ifdef CONFIG_SKB_DECRYPTED
1643 	return skb->decrypted;
1644 #else
1645 	return false;
1646 #endif
1647 }
1648 
1649 static inline void skb_copy_decrypted(struct sk_buff *to,
1650 				      const struct sk_buff *from)
1651 {
1652 #ifdef CONFIG_SKB_DECRYPTED
1653 	to->decrypted = from->decrypted;
1654 #endif
1655 }
1656 
1657 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1658 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1659 {
1660 	return skb->head + skb->end;
1661 }
1662 
1663 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1664 {
1665 	return skb->end;
1666 }
1667 
1668 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1669 {
1670 	skb->end = offset;
1671 }
1672 #else
1673 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1674 {
1675 	return skb->end;
1676 }
1677 
1678 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1679 {
1680 	return skb->end - skb->head;
1681 }
1682 
1683 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1684 {
1685 	skb->end = skb->head + offset;
1686 }
1687 #endif
1688 
1689 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1690 
1691 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1692 				       struct ubuf_info *uarg);
1693 
1694 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1695 
1696 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1697 			    struct sk_buff *skb, struct iov_iter *from,
1698 			    size_t length);
1699 
1700 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1701 					  struct msghdr *msg, int len)
1702 {
1703 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1704 }
1705 
1706 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1707 			     struct msghdr *msg, int len,
1708 			     struct ubuf_info *uarg);
1709 
1710 /* Internal */
1711 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1712 
1713 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1714 {
1715 	return &skb_shinfo(skb)->hwtstamps;
1716 }
1717 
1718 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1719 {
1720 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1721 
1722 	return is_zcopy ? skb_uarg(skb) : NULL;
1723 }
1724 
1725 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1726 {
1727 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1728 }
1729 
1730 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1731 {
1732 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1733 }
1734 
1735 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1736 				       const struct sk_buff *skb2)
1737 {
1738 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1739 }
1740 
1741 static inline void net_zcopy_get(struct ubuf_info *uarg)
1742 {
1743 	refcount_inc(&uarg->refcnt);
1744 }
1745 
1746 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1747 {
1748 	skb_shinfo(skb)->destructor_arg = uarg;
1749 	skb_shinfo(skb)->flags |= uarg->flags;
1750 }
1751 
1752 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1753 				 bool *have_ref)
1754 {
1755 	if (skb && uarg && !skb_zcopy(skb)) {
1756 		if (unlikely(have_ref && *have_ref))
1757 			*have_ref = false;
1758 		else
1759 			net_zcopy_get(uarg);
1760 		skb_zcopy_init(skb, uarg);
1761 	}
1762 }
1763 
1764 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1765 {
1766 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1767 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1768 }
1769 
1770 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1771 {
1772 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1773 }
1774 
1775 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1776 {
1777 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1778 }
1779 
1780 static inline void net_zcopy_put(struct ubuf_info *uarg)
1781 {
1782 	if (uarg)
1783 		uarg->ops->complete(NULL, uarg, true);
1784 }
1785 
1786 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1787 {
1788 	if (uarg) {
1789 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1790 			msg_zerocopy_put_abort(uarg, have_uref);
1791 		else if (have_uref)
1792 			net_zcopy_put(uarg);
1793 	}
1794 }
1795 
1796 /* Release a reference on a zerocopy structure */
1797 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1798 {
1799 	struct ubuf_info *uarg = skb_zcopy(skb);
1800 
1801 	if (uarg) {
1802 		if (!skb_zcopy_is_nouarg(skb))
1803 			uarg->ops->complete(skb, uarg, zerocopy_success);
1804 
1805 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1806 	}
1807 }
1808 
1809 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1810 
1811 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1812 {
1813 	if (unlikely(skb_zcopy_managed(skb)))
1814 		__skb_zcopy_downgrade_managed(skb);
1815 }
1816 
1817 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1818 {
1819 	skb->next = NULL;
1820 }
1821 
1822 static inline void skb_poison_list(struct sk_buff *skb)
1823 {
1824 #ifdef CONFIG_DEBUG_NET
1825 	skb->next = SKB_LIST_POISON_NEXT;
1826 #endif
1827 }
1828 
1829 /* Iterate through singly-linked GSO fragments of an skb. */
1830 #define skb_list_walk_safe(first, skb, next_skb)                               \
1831 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1832 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1833 
1834 static inline void skb_list_del_init(struct sk_buff *skb)
1835 {
1836 	__list_del_entry(&skb->list);
1837 	skb_mark_not_on_list(skb);
1838 }
1839 
1840 /**
1841  *	skb_queue_empty - check if a queue is empty
1842  *	@list: queue head
1843  *
1844  *	Returns true if the queue is empty, false otherwise.
1845  */
1846 static inline int skb_queue_empty(const struct sk_buff_head *list)
1847 {
1848 	return list->next == (const struct sk_buff *) list;
1849 }
1850 
1851 /**
1852  *	skb_queue_empty_lockless - check if a queue is empty
1853  *	@list: queue head
1854  *
1855  *	Returns true if the queue is empty, false otherwise.
1856  *	This variant can be used in lockless contexts.
1857  */
1858 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1859 {
1860 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1861 }
1862 
1863 
1864 /**
1865  *	skb_queue_is_last - check if skb is the last entry in the queue
1866  *	@list: queue head
1867  *	@skb: buffer
1868  *
1869  *	Returns true if @skb is the last buffer on the list.
1870  */
1871 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1872 				     const struct sk_buff *skb)
1873 {
1874 	return skb->next == (const struct sk_buff *) list;
1875 }
1876 
1877 /**
1878  *	skb_queue_is_first - check if skb is the first entry in the queue
1879  *	@list: queue head
1880  *	@skb: buffer
1881  *
1882  *	Returns true if @skb is the first buffer on the list.
1883  */
1884 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1885 				      const struct sk_buff *skb)
1886 {
1887 	return skb->prev == (const struct sk_buff *) list;
1888 }
1889 
1890 /**
1891  *	skb_queue_next - return the next packet in the queue
1892  *	@list: queue head
1893  *	@skb: current buffer
1894  *
1895  *	Return the next packet in @list after @skb.  It is only valid to
1896  *	call this if skb_queue_is_last() evaluates to false.
1897  */
1898 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1899 					     const struct sk_buff *skb)
1900 {
1901 	/* This BUG_ON may seem severe, but if we just return then we
1902 	 * are going to dereference garbage.
1903 	 */
1904 	BUG_ON(skb_queue_is_last(list, skb));
1905 	return skb->next;
1906 }
1907 
1908 /**
1909  *	skb_queue_prev - return the prev packet in the queue
1910  *	@list: queue head
1911  *	@skb: current buffer
1912  *
1913  *	Return the prev packet in @list before @skb.  It is only valid to
1914  *	call this if skb_queue_is_first() evaluates to false.
1915  */
1916 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1917 					     const struct sk_buff *skb)
1918 {
1919 	/* This BUG_ON may seem severe, but if we just return then we
1920 	 * are going to dereference garbage.
1921 	 */
1922 	BUG_ON(skb_queue_is_first(list, skb));
1923 	return skb->prev;
1924 }
1925 
1926 /**
1927  *	skb_get - reference buffer
1928  *	@skb: buffer to reference
1929  *
1930  *	Makes another reference to a socket buffer and returns a pointer
1931  *	to the buffer.
1932  */
1933 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1934 {
1935 	refcount_inc(&skb->users);
1936 	return skb;
1937 }
1938 
1939 /*
1940  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1941  */
1942 
1943 /**
1944  *	skb_cloned - is the buffer a clone
1945  *	@skb: buffer to check
1946  *
1947  *	Returns true if the buffer was generated with skb_clone() and is
1948  *	one of multiple shared copies of the buffer. Cloned buffers are
1949  *	shared data so must not be written to under normal circumstances.
1950  */
1951 static inline int skb_cloned(const struct sk_buff *skb)
1952 {
1953 	return skb->cloned &&
1954 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1955 }
1956 
1957 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1958 {
1959 	might_sleep_if(gfpflags_allow_blocking(pri));
1960 
1961 	if (skb_cloned(skb))
1962 		return pskb_expand_head(skb, 0, 0, pri);
1963 
1964 	return 0;
1965 }
1966 
1967 /* This variant of skb_unclone() makes sure skb->truesize
1968  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1969  *
1970  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1971  * when various debugging features are in place.
1972  */
1973 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1974 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1975 {
1976 	might_sleep_if(gfpflags_allow_blocking(pri));
1977 
1978 	if (skb_cloned(skb))
1979 		return __skb_unclone_keeptruesize(skb, pri);
1980 	return 0;
1981 }
1982 
1983 /**
1984  *	skb_header_cloned - is the header a clone
1985  *	@skb: buffer to check
1986  *
1987  *	Returns true if modifying the header part of the buffer requires
1988  *	the data to be copied.
1989  */
1990 static inline int skb_header_cloned(const struct sk_buff *skb)
1991 {
1992 	int dataref;
1993 
1994 	if (!skb->cloned)
1995 		return 0;
1996 
1997 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1998 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1999 	return dataref != 1;
2000 }
2001 
2002 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2003 {
2004 	might_sleep_if(gfpflags_allow_blocking(pri));
2005 
2006 	if (skb_header_cloned(skb))
2007 		return pskb_expand_head(skb, 0, 0, pri);
2008 
2009 	return 0;
2010 }
2011 
2012 /**
2013  * __skb_header_release() - allow clones to use the headroom
2014  * @skb: buffer to operate on
2015  *
2016  * See "DOC: dataref and headerless skbs".
2017  */
2018 static inline void __skb_header_release(struct sk_buff *skb)
2019 {
2020 	skb->nohdr = 1;
2021 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2022 }
2023 
2024 
2025 /**
2026  *	skb_shared - is the buffer shared
2027  *	@skb: buffer to check
2028  *
2029  *	Returns true if more than one person has a reference to this
2030  *	buffer.
2031  */
2032 static inline int skb_shared(const struct sk_buff *skb)
2033 {
2034 	return refcount_read(&skb->users) != 1;
2035 }
2036 
2037 /**
2038  *	skb_share_check - check if buffer is shared and if so clone it
2039  *	@skb: buffer to check
2040  *	@pri: priority for memory allocation
2041  *
2042  *	If the buffer is shared the buffer is cloned and the old copy
2043  *	drops a reference. A new clone with a single reference is returned.
2044  *	If the buffer is not shared the original buffer is returned. When
2045  *	being called from interrupt status or with spinlocks held pri must
2046  *	be GFP_ATOMIC.
2047  *
2048  *	NULL is returned on a memory allocation failure.
2049  */
2050 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2051 {
2052 	might_sleep_if(gfpflags_allow_blocking(pri));
2053 	if (skb_shared(skb)) {
2054 		struct sk_buff *nskb = skb_clone(skb, pri);
2055 
2056 		if (likely(nskb))
2057 			consume_skb(skb);
2058 		else
2059 			kfree_skb(skb);
2060 		skb = nskb;
2061 	}
2062 	return skb;
2063 }
2064 
2065 /*
2066  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2067  *	packets to handle cases where we have a local reader and forward
2068  *	and a couple of other messy ones. The normal one is tcpdumping
2069  *	a packet that's being forwarded.
2070  */
2071 
2072 /**
2073  *	skb_unshare - make a copy of a shared buffer
2074  *	@skb: buffer to check
2075  *	@pri: priority for memory allocation
2076  *
2077  *	If the socket buffer is a clone then this function creates a new
2078  *	copy of the data, drops a reference count on the old copy and returns
2079  *	the new copy with the reference count at 1. If the buffer is not a clone
2080  *	the original buffer is returned. When called with a spinlock held or
2081  *	from interrupt state @pri must be %GFP_ATOMIC
2082  *
2083  *	%NULL is returned on a memory allocation failure.
2084  */
2085 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2086 					  gfp_t pri)
2087 {
2088 	might_sleep_if(gfpflags_allow_blocking(pri));
2089 	if (skb_cloned(skb)) {
2090 		struct sk_buff *nskb = skb_copy(skb, pri);
2091 
2092 		/* Free our shared copy */
2093 		if (likely(nskb))
2094 			consume_skb(skb);
2095 		else
2096 			kfree_skb(skb);
2097 		skb = nskb;
2098 	}
2099 	return skb;
2100 }
2101 
2102 /**
2103  *	skb_peek - peek at the head of an &sk_buff_head
2104  *	@list_: list to peek at
2105  *
2106  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2107  *	be careful with this one. A peek leaves the buffer on the
2108  *	list and someone else may run off with it. You must hold
2109  *	the appropriate locks or have a private queue to do this.
2110  *
2111  *	Returns %NULL for an empty list or a pointer to the head element.
2112  *	The reference count is not incremented and the reference is therefore
2113  *	volatile. Use with caution.
2114  */
2115 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2116 {
2117 	struct sk_buff *skb = list_->next;
2118 
2119 	if (skb == (struct sk_buff *)list_)
2120 		skb = NULL;
2121 	return skb;
2122 }
2123 
2124 /**
2125  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2126  *	@list_: list to peek at
2127  *
2128  *	Like skb_peek(), but the caller knows that the list is not empty.
2129  */
2130 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2131 {
2132 	return list_->next;
2133 }
2134 
2135 /**
2136  *	skb_peek_next - peek skb following the given one from a queue
2137  *	@skb: skb to start from
2138  *	@list_: list to peek at
2139  *
2140  *	Returns %NULL when the end of the list is met or a pointer to the
2141  *	next element. The reference count is not incremented and the
2142  *	reference is therefore volatile. Use with caution.
2143  */
2144 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2145 		const struct sk_buff_head *list_)
2146 {
2147 	struct sk_buff *next = skb->next;
2148 
2149 	if (next == (struct sk_buff *)list_)
2150 		next = NULL;
2151 	return next;
2152 }
2153 
2154 /**
2155  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2156  *	@list_: list to peek at
2157  *
2158  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2159  *	be careful with this one. A peek leaves the buffer on the
2160  *	list and someone else may run off with it. You must hold
2161  *	the appropriate locks or have a private queue to do this.
2162  *
2163  *	Returns %NULL for an empty list or a pointer to the tail element.
2164  *	The reference count is not incremented and the reference is therefore
2165  *	volatile. Use with caution.
2166  */
2167 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2168 {
2169 	struct sk_buff *skb = READ_ONCE(list_->prev);
2170 
2171 	if (skb == (struct sk_buff *)list_)
2172 		skb = NULL;
2173 	return skb;
2174 
2175 }
2176 
2177 /**
2178  *	skb_queue_len	- get queue length
2179  *	@list_: list to measure
2180  *
2181  *	Return the length of an &sk_buff queue.
2182  */
2183 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2184 {
2185 	return list_->qlen;
2186 }
2187 
2188 /**
2189  *	skb_queue_len_lockless	- get queue length
2190  *	@list_: list to measure
2191  *
2192  *	Return the length of an &sk_buff queue.
2193  *	This variant can be used in lockless contexts.
2194  */
2195 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2196 {
2197 	return READ_ONCE(list_->qlen);
2198 }
2199 
2200 /**
2201  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2202  *	@list: queue to initialize
2203  *
2204  *	This initializes only the list and queue length aspects of
2205  *	an sk_buff_head object.  This allows to initialize the list
2206  *	aspects of an sk_buff_head without reinitializing things like
2207  *	the spinlock.  It can also be used for on-stack sk_buff_head
2208  *	objects where the spinlock is known to not be used.
2209  */
2210 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2211 {
2212 	list->prev = list->next = (struct sk_buff *)list;
2213 	list->qlen = 0;
2214 }
2215 
2216 /*
2217  * This function creates a split out lock class for each invocation;
2218  * this is needed for now since a whole lot of users of the skb-queue
2219  * infrastructure in drivers have different locking usage (in hardirq)
2220  * than the networking core (in softirq only). In the long run either the
2221  * network layer or drivers should need annotation to consolidate the
2222  * main types of usage into 3 classes.
2223  */
2224 static inline void skb_queue_head_init(struct sk_buff_head *list)
2225 {
2226 	spin_lock_init(&list->lock);
2227 	__skb_queue_head_init(list);
2228 }
2229 
2230 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2231 		struct lock_class_key *class)
2232 {
2233 	skb_queue_head_init(list);
2234 	lockdep_set_class(&list->lock, class);
2235 }
2236 
2237 /*
2238  *	Insert an sk_buff on a list.
2239  *
2240  *	The "__skb_xxxx()" functions are the non-atomic ones that
2241  *	can only be called with interrupts disabled.
2242  */
2243 static inline void __skb_insert(struct sk_buff *newsk,
2244 				struct sk_buff *prev, struct sk_buff *next,
2245 				struct sk_buff_head *list)
2246 {
2247 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2248 	 * for the opposite READ_ONCE()
2249 	 */
2250 	WRITE_ONCE(newsk->next, next);
2251 	WRITE_ONCE(newsk->prev, prev);
2252 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2253 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2254 	WRITE_ONCE(list->qlen, list->qlen + 1);
2255 }
2256 
2257 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2258 				      struct sk_buff *prev,
2259 				      struct sk_buff *next)
2260 {
2261 	struct sk_buff *first = list->next;
2262 	struct sk_buff *last = list->prev;
2263 
2264 	WRITE_ONCE(first->prev, prev);
2265 	WRITE_ONCE(prev->next, first);
2266 
2267 	WRITE_ONCE(last->next, next);
2268 	WRITE_ONCE(next->prev, last);
2269 }
2270 
2271 /**
2272  *	skb_queue_splice - join two skb lists, this is designed for stacks
2273  *	@list: the new list to add
2274  *	@head: the place to add it in the first list
2275  */
2276 static inline void skb_queue_splice(const struct sk_buff_head *list,
2277 				    struct sk_buff_head *head)
2278 {
2279 	if (!skb_queue_empty(list)) {
2280 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2281 		head->qlen += list->qlen;
2282 	}
2283 }
2284 
2285 /**
2286  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2287  *	@list: the new list to add
2288  *	@head: the place to add it in the first list
2289  *
2290  *	The list at @list is reinitialised
2291  */
2292 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2293 					 struct sk_buff_head *head)
2294 {
2295 	if (!skb_queue_empty(list)) {
2296 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2297 		head->qlen += list->qlen;
2298 		__skb_queue_head_init(list);
2299 	}
2300 }
2301 
2302 /**
2303  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2304  *	@list: the new list to add
2305  *	@head: the place to add it in the first list
2306  */
2307 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2308 					 struct sk_buff_head *head)
2309 {
2310 	if (!skb_queue_empty(list)) {
2311 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2312 		head->qlen += list->qlen;
2313 	}
2314 }
2315 
2316 /**
2317  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2318  *	@list: the new list to add
2319  *	@head: the place to add it in the first list
2320  *
2321  *	Each of the lists is a queue.
2322  *	The list at @list is reinitialised
2323  */
2324 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2325 					      struct sk_buff_head *head)
2326 {
2327 	if (!skb_queue_empty(list)) {
2328 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2329 		head->qlen += list->qlen;
2330 		__skb_queue_head_init(list);
2331 	}
2332 }
2333 
2334 /**
2335  *	__skb_queue_after - queue a buffer at the list head
2336  *	@list: list to use
2337  *	@prev: place after this buffer
2338  *	@newsk: buffer to queue
2339  *
2340  *	Queue a buffer int the middle of a list. This function takes no locks
2341  *	and you must therefore hold required locks before calling it.
2342  *
2343  *	A buffer cannot be placed on two lists at the same time.
2344  */
2345 static inline void __skb_queue_after(struct sk_buff_head *list,
2346 				     struct sk_buff *prev,
2347 				     struct sk_buff *newsk)
2348 {
2349 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2350 }
2351 
2352 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2353 		struct sk_buff_head *list);
2354 
2355 static inline void __skb_queue_before(struct sk_buff_head *list,
2356 				      struct sk_buff *next,
2357 				      struct sk_buff *newsk)
2358 {
2359 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2360 }
2361 
2362 /**
2363  *	__skb_queue_head - queue a buffer at the list head
2364  *	@list: list to use
2365  *	@newsk: buffer to queue
2366  *
2367  *	Queue a buffer at the start of a list. This function takes no locks
2368  *	and you must therefore hold required locks before calling it.
2369  *
2370  *	A buffer cannot be placed on two lists at the same time.
2371  */
2372 static inline void __skb_queue_head(struct sk_buff_head *list,
2373 				    struct sk_buff *newsk)
2374 {
2375 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2376 }
2377 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2378 
2379 /**
2380  *	__skb_queue_tail - queue a buffer at the list tail
2381  *	@list: list to use
2382  *	@newsk: buffer to queue
2383  *
2384  *	Queue a buffer at the end of a list. This function takes no locks
2385  *	and you must therefore hold required locks before calling it.
2386  *
2387  *	A buffer cannot be placed on two lists at the same time.
2388  */
2389 static inline void __skb_queue_tail(struct sk_buff_head *list,
2390 				   struct sk_buff *newsk)
2391 {
2392 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2393 }
2394 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2395 
2396 /*
2397  * remove sk_buff from list. _Must_ be called atomically, and with
2398  * the list known..
2399  */
2400 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2401 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2402 {
2403 	struct sk_buff *next, *prev;
2404 
2405 	WRITE_ONCE(list->qlen, list->qlen - 1);
2406 	next	   = skb->next;
2407 	prev	   = skb->prev;
2408 	skb->next  = skb->prev = NULL;
2409 	WRITE_ONCE(next->prev, prev);
2410 	WRITE_ONCE(prev->next, next);
2411 }
2412 
2413 /**
2414  *	__skb_dequeue - remove from the head of the queue
2415  *	@list: list to dequeue from
2416  *
2417  *	Remove the head of the list. This function does not take any locks
2418  *	so must be used with appropriate locks held only. The head item is
2419  *	returned or %NULL if the list is empty.
2420  */
2421 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2422 {
2423 	struct sk_buff *skb = skb_peek(list);
2424 	if (skb)
2425 		__skb_unlink(skb, list);
2426 	return skb;
2427 }
2428 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2429 
2430 /**
2431  *	__skb_dequeue_tail - remove from the tail of the queue
2432  *	@list: list to dequeue from
2433  *
2434  *	Remove the tail of the list. This function does not take any locks
2435  *	so must be used with appropriate locks held only. The tail item is
2436  *	returned or %NULL if the list is empty.
2437  */
2438 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2439 {
2440 	struct sk_buff *skb = skb_peek_tail(list);
2441 	if (skb)
2442 		__skb_unlink(skb, list);
2443 	return skb;
2444 }
2445 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2446 
2447 
2448 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2449 {
2450 	return skb->data_len;
2451 }
2452 
2453 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2454 {
2455 	return skb->len - skb->data_len;
2456 }
2457 
2458 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2459 {
2460 	unsigned int i, len = 0;
2461 
2462 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2463 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2464 	return len;
2465 }
2466 
2467 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2468 {
2469 	return skb_headlen(skb) + __skb_pagelen(skb);
2470 }
2471 
2472 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2473 					     netmem_ref netmem, int off,
2474 					     int size)
2475 {
2476 	frag->netmem = netmem;
2477 	frag->offset = off;
2478 	skb_frag_size_set(frag, size);
2479 }
2480 
2481 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2482 					   struct page *page,
2483 					   int off, int size)
2484 {
2485 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2486 }
2487 
2488 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2489 						int i, netmem_ref netmem,
2490 						int off, int size)
2491 {
2492 	skb_frag_t *frag = &shinfo->frags[i];
2493 
2494 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2495 }
2496 
2497 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2498 					      int i, struct page *page,
2499 					      int off, int size)
2500 {
2501 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2502 				     size);
2503 }
2504 
2505 /**
2506  * skb_len_add - adds a number to len fields of skb
2507  * @skb: buffer to add len to
2508  * @delta: number of bytes to add
2509  */
2510 static inline void skb_len_add(struct sk_buff *skb, int delta)
2511 {
2512 	skb->len += delta;
2513 	skb->data_len += delta;
2514 	skb->truesize += delta;
2515 }
2516 
2517 /**
2518  * __skb_fill_netmem_desc - initialise a fragment in an skb
2519  * @skb: buffer containing fragment to be initialised
2520  * @i: fragment index to initialise
2521  * @netmem: the netmem to use for this fragment
2522  * @off: the offset to the data with @page
2523  * @size: the length of the data
2524  *
2525  * Initialises the @i'th fragment of @skb to point to &size bytes at
2526  * offset @off within @page.
2527  *
2528  * Does not take any additional reference on the fragment.
2529  */
2530 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2531 					  netmem_ref netmem, int off, int size)
2532 {
2533 	struct page *page = netmem_to_page(netmem);
2534 
2535 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2536 
2537 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2538 	 * that not all callers have unique ownership of the page but rely
2539 	 * on page_is_pfmemalloc doing the right thing(tm).
2540 	 */
2541 	page = compound_head(page);
2542 	if (page_is_pfmemalloc(page))
2543 		skb->pfmemalloc = true;
2544 }
2545 
2546 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2547 					struct page *page, int off, int size)
2548 {
2549 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2550 }
2551 
2552 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2553 					netmem_ref netmem, int off, int size)
2554 {
2555 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2556 	skb_shinfo(skb)->nr_frags = i + 1;
2557 }
2558 
2559 /**
2560  * skb_fill_page_desc - initialise a paged fragment in an skb
2561  * @skb: buffer containing fragment to be initialised
2562  * @i: paged fragment index to initialise
2563  * @page: the page to use for this fragment
2564  * @off: the offset to the data with @page
2565  * @size: the length of the data
2566  *
2567  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2568  * @skb to point to @size bytes at offset @off within @page. In
2569  * addition updates @skb such that @i is the last fragment.
2570  *
2571  * Does not take any additional reference on the fragment.
2572  */
2573 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2574 				      struct page *page, int off, int size)
2575 {
2576 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2577 }
2578 
2579 /**
2580  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2581  * @skb: buffer containing fragment to be initialised
2582  * @i: paged fragment index to initialise
2583  * @page: the page to use for this fragment
2584  * @off: the offset to the data with @page
2585  * @size: the length of the data
2586  *
2587  * Variant of skb_fill_page_desc() which does not deal with
2588  * pfmemalloc, if page is not owned by us.
2589  */
2590 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2591 					    struct page *page, int off,
2592 					    int size)
2593 {
2594 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2595 
2596 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2597 	shinfo->nr_frags = i + 1;
2598 }
2599 
2600 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2601 			    int off, int size, unsigned int truesize);
2602 
2603 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2604 				   struct page *page, int off, int size,
2605 				   unsigned int truesize)
2606 {
2607 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2608 			       truesize);
2609 }
2610 
2611 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2612 			  unsigned int truesize);
2613 
2614 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2615 
2616 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2617 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2618 {
2619 	return skb->head + skb->tail;
2620 }
2621 
2622 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2623 {
2624 	skb->tail = skb->data - skb->head;
2625 }
2626 
2627 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2628 {
2629 	skb_reset_tail_pointer(skb);
2630 	skb->tail += offset;
2631 }
2632 
2633 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2634 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2635 {
2636 	return skb->tail;
2637 }
2638 
2639 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2640 {
2641 	skb->tail = skb->data;
2642 }
2643 
2644 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2645 {
2646 	skb->tail = skb->data + offset;
2647 }
2648 
2649 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2650 
2651 static inline void skb_assert_len(struct sk_buff *skb)
2652 {
2653 #ifdef CONFIG_DEBUG_NET
2654 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2655 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2656 #endif /* CONFIG_DEBUG_NET */
2657 }
2658 
2659 /*
2660  *	Add data to an sk_buff
2661  */
2662 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2663 void *skb_put(struct sk_buff *skb, unsigned int len);
2664 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2665 {
2666 	void *tmp = skb_tail_pointer(skb);
2667 	SKB_LINEAR_ASSERT(skb);
2668 	skb->tail += len;
2669 	skb->len  += len;
2670 	return tmp;
2671 }
2672 
2673 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2674 {
2675 	void *tmp = __skb_put(skb, len);
2676 
2677 	memset(tmp, 0, len);
2678 	return tmp;
2679 }
2680 
2681 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2682 				   unsigned int len)
2683 {
2684 	void *tmp = __skb_put(skb, len);
2685 
2686 	memcpy(tmp, data, len);
2687 	return tmp;
2688 }
2689 
2690 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2691 {
2692 	*(u8 *)__skb_put(skb, 1) = val;
2693 }
2694 
2695 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2696 {
2697 	void *tmp = skb_put(skb, len);
2698 
2699 	memset(tmp, 0, len);
2700 
2701 	return tmp;
2702 }
2703 
2704 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2705 				 unsigned int len)
2706 {
2707 	void *tmp = skb_put(skb, len);
2708 
2709 	memcpy(tmp, data, len);
2710 
2711 	return tmp;
2712 }
2713 
2714 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2715 {
2716 	*(u8 *)skb_put(skb, 1) = val;
2717 }
2718 
2719 void *skb_push(struct sk_buff *skb, unsigned int len);
2720 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2721 {
2722 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2723 
2724 	skb->data -= len;
2725 	skb->len  += len;
2726 	return skb->data;
2727 }
2728 
2729 void *skb_pull(struct sk_buff *skb, unsigned int len);
2730 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2731 {
2732 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2733 
2734 	skb->len -= len;
2735 	if (unlikely(skb->len < skb->data_len)) {
2736 #if defined(CONFIG_DEBUG_NET)
2737 		skb->len += len;
2738 		pr_err("__skb_pull(len=%u)\n", len);
2739 		skb_dump(KERN_ERR, skb, false);
2740 #endif
2741 		BUG();
2742 	}
2743 	return skb->data += len;
2744 }
2745 
2746 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2747 {
2748 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2749 }
2750 
2751 void *skb_pull_data(struct sk_buff *skb, size_t len);
2752 
2753 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2754 
2755 static inline enum skb_drop_reason
2756 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2757 {
2758 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2759 
2760 	if (likely(len <= skb_headlen(skb)))
2761 		return SKB_NOT_DROPPED_YET;
2762 
2763 	if (unlikely(len > skb->len))
2764 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2765 
2766 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2767 		return SKB_DROP_REASON_NOMEM;
2768 
2769 	return SKB_NOT_DROPPED_YET;
2770 }
2771 
2772 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2773 {
2774 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2775 }
2776 
2777 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2778 {
2779 	if (!pskb_may_pull(skb, len))
2780 		return NULL;
2781 
2782 	skb->len -= len;
2783 	return skb->data += len;
2784 }
2785 
2786 void skb_condense(struct sk_buff *skb);
2787 
2788 /**
2789  *	skb_headroom - bytes at buffer head
2790  *	@skb: buffer to check
2791  *
2792  *	Return the number of bytes of free space at the head of an &sk_buff.
2793  */
2794 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2795 {
2796 	return skb->data - skb->head;
2797 }
2798 
2799 /**
2800  *	skb_tailroom - bytes at buffer end
2801  *	@skb: buffer to check
2802  *
2803  *	Return the number of bytes of free space at the tail of an sk_buff
2804  */
2805 static inline int skb_tailroom(const struct sk_buff *skb)
2806 {
2807 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2808 }
2809 
2810 /**
2811  *	skb_availroom - bytes at buffer end
2812  *	@skb: buffer to check
2813  *
2814  *	Return the number of bytes of free space at the tail of an sk_buff
2815  *	allocated by sk_stream_alloc()
2816  */
2817 static inline int skb_availroom(const struct sk_buff *skb)
2818 {
2819 	if (skb_is_nonlinear(skb))
2820 		return 0;
2821 
2822 	return skb->end - skb->tail - skb->reserved_tailroom;
2823 }
2824 
2825 /**
2826  *	skb_reserve - adjust headroom
2827  *	@skb: buffer to alter
2828  *	@len: bytes to move
2829  *
2830  *	Increase the headroom of an empty &sk_buff by reducing the tail
2831  *	room. This is only allowed for an empty buffer.
2832  */
2833 static inline void skb_reserve(struct sk_buff *skb, int len)
2834 {
2835 	skb->data += len;
2836 	skb->tail += len;
2837 }
2838 
2839 /**
2840  *	skb_tailroom_reserve - adjust reserved_tailroom
2841  *	@skb: buffer to alter
2842  *	@mtu: maximum amount of headlen permitted
2843  *	@needed_tailroom: minimum amount of reserved_tailroom
2844  *
2845  *	Set reserved_tailroom so that headlen can be as large as possible but
2846  *	not larger than mtu and tailroom cannot be smaller than
2847  *	needed_tailroom.
2848  *	The required headroom should already have been reserved before using
2849  *	this function.
2850  */
2851 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2852 					unsigned int needed_tailroom)
2853 {
2854 	SKB_LINEAR_ASSERT(skb);
2855 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2856 		/* use at most mtu */
2857 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2858 	else
2859 		/* use up to all available space */
2860 		skb->reserved_tailroom = needed_tailroom;
2861 }
2862 
2863 #define ENCAP_TYPE_ETHER	0
2864 #define ENCAP_TYPE_IPPROTO	1
2865 
2866 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2867 					  __be16 protocol)
2868 {
2869 	skb->inner_protocol = protocol;
2870 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2871 }
2872 
2873 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2874 					 __u8 ipproto)
2875 {
2876 	skb->inner_ipproto = ipproto;
2877 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2878 }
2879 
2880 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2881 {
2882 	skb->inner_mac_header = skb->mac_header;
2883 	skb->inner_network_header = skb->network_header;
2884 	skb->inner_transport_header = skb->transport_header;
2885 }
2886 
2887 static inline void skb_reset_mac_len(struct sk_buff *skb)
2888 {
2889 	skb->mac_len = skb->network_header - skb->mac_header;
2890 }
2891 
2892 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2893 							*skb)
2894 {
2895 	return skb->head + skb->inner_transport_header;
2896 }
2897 
2898 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2899 {
2900 	return skb_inner_transport_header(skb) - skb->data;
2901 }
2902 
2903 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2904 {
2905 	skb->inner_transport_header = skb->data - skb->head;
2906 }
2907 
2908 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2909 						   const int offset)
2910 {
2911 	skb_reset_inner_transport_header(skb);
2912 	skb->inner_transport_header += offset;
2913 }
2914 
2915 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2916 {
2917 	return skb->head + skb->inner_network_header;
2918 }
2919 
2920 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2921 {
2922 	skb->inner_network_header = skb->data - skb->head;
2923 }
2924 
2925 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2926 						const int offset)
2927 {
2928 	skb_reset_inner_network_header(skb);
2929 	skb->inner_network_header += offset;
2930 }
2931 
2932 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2933 {
2934 	return skb->inner_network_header > 0;
2935 }
2936 
2937 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2938 {
2939 	return skb->head + skb->inner_mac_header;
2940 }
2941 
2942 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2943 {
2944 	skb->inner_mac_header = skb->data - skb->head;
2945 }
2946 
2947 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2948 					    const int offset)
2949 {
2950 	skb_reset_inner_mac_header(skb);
2951 	skb->inner_mac_header += offset;
2952 }
2953 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2954 {
2955 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2956 }
2957 
2958 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2959 {
2960 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2961 	return skb->head + skb->transport_header;
2962 }
2963 
2964 static inline void skb_reset_transport_header(struct sk_buff *skb)
2965 {
2966 	skb->transport_header = skb->data - skb->head;
2967 }
2968 
2969 static inline void skb_set_transport_header(struct sk_buff *skb,
2970 					    const int offset)
2971 {
2972 	skb_reset_transport_header(skb);
2973 	skb->transport_header += offset;
2974 }
2975 
2976 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2977 {
2978 	return skb->head + skb->network_header;
2979 }
2980 
2981 static inline void skb_reset_network_header(struct sk_buff *skb)
2982 {
2983 	skb->network_header = skb->data - skb->head;
2984 }
2985 
2986 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2987 {
2988 	skb_reset_network_header(skb);
2989 	skb->network_header += offset;
2990 }
2991 
2992 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2993 {
2994 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2995 }
2996 
2997 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2998 {
2999 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3000 	return skb->head + skb->mac_header;
3001 }
3002 
3003 static inline int skb_mac_offset(const struct sk_buff *skb)
3004 {
3005 	return skb_mac_header(skb) - skb->data;
3006 }
3007 
3008 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3009 {
3010 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3011 	return skb->network_header - skb->mac_header;
3012 }
3013 
3014 static inline void skb_unset_mac_header(struct sk_buff *skb)
3015 {
3016 	skb->mac_header = (typeof(skb->mac_header))~0U;
3017 }
3018 
3019 static inline void skb_reset_mac_header(struct sk_buff *skb)
3020 {
3021 	skb->mac_header = skb->data - skb->head;
3022 }
3023 
3024 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3025 {
3026 	skb_reset_mac_header(skb);
3027 	skb->mac_header += offset;
3028 }
3029 
3030 static inline void skb_pop_mac_header(struct sk_buff *skb)
3031 {
3032 	skb->mac_header = skb->network_header;
3033 }
3034 
3035 static inline void skb_probe_transport_header(struct sk_buff *skb)
3036 {
3037 	struct flow_keys_basic keys;
3038 
3039 	if (skb_transport_header_was_set(skb))
3040 		return;
3041 
3042 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3043 					     NULL, 0, 0, 0, 0))
3044 		skb_set_transport_header(skb, keys.control.thoff);
3045 }
3046 
3047 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3048 {
3049 	if (skb_mac_header_was_set(skb)) {
3050 		const unsigned char *old_mac = skb_mac_header(skb);
3051 
3052 		skb_set_mac_header(skb, -skb->mac_len);
3053 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3054 	}
3055 }
3056 
3057 /* Move the full mac header up to current network_header.
3058  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3059  * Must be provided the complete mac header length.
3060  */
3061 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3062 {
3063 	if (skb_mac_header_was_set(skb)) {
3064 		const unsigned char *old_mac = skb_mac_header(skb);
3065 
3066 		skb_set_mac_header(skb, -full_mac_len);
3067 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3068 		__skb_push(skb, full_mac_len - skb->mac_len);
3069 	}
3070 }
3071 
3072 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3073 {
3074 	return skb->csum_start - skb_headroom(skb);
3075 }
3076 
3077 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3078 {
3079 	return skb->head + skb->csum_start;
3080 }
3081 
3082 static inline int skb_transport_offset(const struct sk_buff *skb)
3083 {
3084 	return skb_transport_header(skb) - skb->data;
3085 }
3086 
3087 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3088 {
3089 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3090 	return skb->transport_header - skb->network_header;
3091 }
3092 
3093 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3094 {
3095 	return skb->inner_transport_header - skb->inner_network_header;
3096 }
3097 
3098 static inline int skb_network_offset(const struct sk_buff *skb)
3099 {
3100 	return skb_network_header(skb) - skb->data;
3101 }
3102 
3103 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3104 {
3105 	return skb_inner_network_header(skb) - skb->data;
3106 }
3107 
3108 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3109 {
3110 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3111 }
3112 
3113 /*
3114  * CPUs often take a performance hit when accessing unaligned memory
3115  * locations. The actual performance hit varies, it can be small if the
3116  * hardware handles it or large if we have to take an exception and fix it
3117  * in software.
3118  *
3119  * Since an ethernet header is 14 bytes network drivers often end up with
3120  * the IP header at an unaligned offset. The IP header can be aligned by
3121  * shifting the start of the packet by 2 bytes. Drivers should do this
3122  * with:
3123  *
3124  * skb_reserve(skb, NET_IP_ALIGN);
3125  *
3126  * The downside to this alignment of the IP header is that the DMA is now
3127  * unaligned. On some architectures the cost of an unaligned DMA is high
3128  * and this cost outweighs the gains made by aligning the IP header.
3129  *
3130  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3131  * to be overridden.
3132  */
3133 #ifndef NET_IP_ALIGN
3134 #define NET_IP_ALIGN	2
3135 #endif
3136 
3137 /*
3138  * The networking layer reserves some headroom in skb data (via
3139  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3140  * the header has to grow. In the default case, if the header has to grow
3141  * 32 bytes or less we avoid the reallocation.
3142  *
3143  * Unfortunately this headroom changes the DMA alignment of the resulting
3144  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3145  * on some architectures. An architecture can override this value,
3146  * perhaps setting it to a cacheline in size (since that will maintain
3147  * cacheline alignment of the DMA). It must be a power of 2.
3148  *
3149  * Various parts of the networking layer expect at least 32 bytes of
3150  * headroom, you should not reduce this.
3151  *
3152  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3153  * to reduce average number of cache lines per packet.
3154  * get_rps_cpu() for example only access one 64 bytes aligned block :
3155  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3156  */
3157 #ifndef NET_SKB_PAD
3158 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3159 #endif
3160 
3161 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3162 
3163 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3164 {
3165 	if (WARN_ON(skb_is_nonlinear(skb)))
3166 		return;
3167 	skb->len = len;
3168 	skb_set_tail_pointer(skb, len);
3169 }
3170 
3171 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3172 {
3173 	__skb_set_length(skb, len);
3174 }
3175 
3176 void skb_trim(struct sk_buff *skb, unsigned int len);
3177 
3178 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3179 {
3180 	if (skb->data_len)
3181 		return ___pskb_trim(skb, len);
3182 	__skb_trim(skb, len);
3183 	return 0;
3184 }
3185 
3186 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3187 {
3188 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3189 }
3190 
3191 /**
3192  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3193  *	@skb: buffer to alter
3194  *	@len: new length
3195  *
3196  *	This is identical to pskb_trim except that the caller knows that
3197  *	the skb is not cloned so we should never get an error due to out-
3198  *	of-memory.
3199  */
3200 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3201 {
3202 	int err = pskb_trim(skb, len);
3203 	BUG_ON(err);
3204 }
3205 
3206 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3207 {
3208 	unsigned int diff = len - skb->len;
3209 
3210 	if (skb_tailroom(skb) < diff) {
3211 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3212 					   GFP_ATOMIC);
3213 		if (ret)
3214 			return ret;
3215 	}
3216 	__skb_set_length(skb, len);
3217 	return 0;
3218 }
3219 
3220 /**
3221  *	skb_orphan - orphan a buffer
3222  *	@skb: buffer to orphan
3223  *
3224  *	If a buffer currently has an owner then we call the owner's
3225  *	destructor function and make the @skb unowned. The buffer continues
3226  *	to exist but is no longer charged to its former owner.
3227  */
3228 static inline void skb_orphan(struct sk_buff *skb)
3229 {
3230 	if (skb->destructor) {
3231 		skb->destructor(skb);
3232 		skb->destructor = NULL;
3233 		skb->sk		= NULL;
3234 	} else {
3235 		BUG_ON(skb->sk);
3236 	}
3237 }
3238 
3239 /**
3240  *	skb_orphan_frags - orphan the frags contained in a buffer
3241  *	@skb: buffer to orphan frags from
3242  *	@gfp_mask: allocation mask for replacement pages
3243  *
3244  *	For each frag in the SKB which needs a destructor (i.e. has an
3245  *	owner) create a copy of that frag and release the original
3246  *	page by calling the destructor.
3247  */
3248 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3249 {
3250 	if (likely(!skb_zcopy(skb)))
3251 		return 0;
3252 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3253 		return 0;
3254 	return skb_copy_ubufs(skb, gfp_mask);
3255 }
3256 
3257 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3258 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3259 {
3260 	if (likely(!skb_zcopy(skb)))
3261 		return 0;
3262 	return skb_copy_ubufs(skb, gfp_mask);
3263 }
3264 
3265 /**
3266  *	__skb_queue_purge_reason - empty a list
3267  *	@list: list to empty
3268  *	@reason: drop reason
3269  *
3270  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3271  *	the list and one reference dropped. This function does not take the
3272  *	list lock and the caller must hold the relevant locks to use it.
3273  */
3274 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3275 					    enum skb_drop_reason reason)
3276 {
3277 	struct sk_buff *skb;
3278 
3279 	while ((skb = __skb_dequeue(list)) != NULL)
3280 		kfree_skb_reason(skb, reason);
3281 }
3282 
3283 static inline void __skb_queue_purge(struct sk_buff_head *list)
3284 {
3285 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3286 }
3287 
3288 void skb_queue_purge_reason(struct sk_buff_head *list,
3289 			    enum skb_drop_reason reason);
3290 
3291 static inline void skb_queue_purge(struct sk_buff_head *list)
3292 {
3293 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3294 }
3295 
3296 unsigned int skb_rbtree_purge(struct rb_root *root);
3297 void skb_errqueue_purge(struct sk_buff_head *list);
3298 
3299 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3300 
3301 /**
3302  * netdev_alloc_frag - allocate a page fragment
3303  * @fragsz: fragment size
3304  *
3305  * Allocates a frag from a page for receive buffer.
3306  * Uses GFP_ATOMIC allocations.
3307  */
3308 static inline void *netdev_alloc_frag(unsigned int fragsz)
3309 {
3310 	return __netdev_alloc_frag_align(fragsz, ~0u);
3311 }
3312 
3313 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3314 					    unsigned int align)
3315 {
3316 	WARN_ON_ONCE(!is_power_of_2(align));
3317 	return __netdev_alloc_frag_align(fragsz, -align);
3318 }
3319 
3320 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3321 				   gfp_t gfp_mask);
3322 
3323 /**
3324  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3325  *	@dev: network device to receive on
3326  *	@length: length to allocate
3327  *
3328  *	Allocate a new &sk_buff and assign it a usage count of one. The
3329  *	buffer has unspecified headroom built in. Users should allocate
3330  *	the headroom they think they need without accounting for the
3331  *	built in space. The built in space is used for optimisations.
3332  *
3333  *	%NULL is returned if there is no free memory. Although this function
3334  *	allocates memory it can be called from an interrupt.
3335  */
3336 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3337 					       unsigned int length)
3338 {
3339 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3340 }
3341 
3342 /* legacy helper around __netdev_alloc_skb() */
3343 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3344 					      gfp_t gfp_mask)
3345 {
3346 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3347 }
3348 
3349 /* legacy helper around netdev_alloc_skb() */
3350 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3351 {
3352 	return netdev_alloc_skb(NULL, length);
3353 }
3354 
3355 
3356 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3357 		unsigned int length, gfp_t gfp)
3358 {
3359 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3360 
3361 	if (NET_IP_ALIGN && skb)
3362 		skb_reserve(skb, NET_IP_ALIGN);
3363 	return skb;
3364 }
3365 
3366 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3367 		unsigned int length)
3368 {
3369 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3370 }
3371 
3372 static inline void skb_free_frag(void *addr)
3373 {
3374 	page_frag_free(addr);
3375 }
3376 
3377 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3378 
3379 static inline void *napi_alloc_frag(unsigned int fragsz)
3380 {
3381 	return __napi_alloc_frag_align(fragsz, ~0u);
3382 }
3383 
3384 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3385 					  unsigned int align)
3386 {
3387 	WARN_ON_ONCE(!is_power_of_2(align));
3388 	return __napi_alloc_frag_align(fragsz, -align);
3389 }
3390 
3391 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3392 void napi_consume_skb(struct sk_buff *skb, int budget);
3393 
3394 void napi_skb_free_stolen_head(struct sk_buff *skb);
3395 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3396 
3397 /**
3398  * __dev_alloc_pages - allocate page for network Rx
3399  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3400  * @order: size of the allocation
3401  *
3402  * Allocate a new page.
3403  *
3404  * %NULL is returned if there is no free memory.
3405 */
3406 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3407 					     unsigned int order)
3408 {
3409 	/* This piece of code contains several assumptions.
3410 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3411 	 * 2.  The expectation is the user wants a compound page.
3412 	 * 3.  If requesting a order 0 page it will not be compound
3413 	 *     due to the check to see if order has a value in prep_new_page
3414 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3415 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3416 	 */
3417 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3418 
3419 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3420 }
3421 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3422 
3423 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3424 
3425 /**
3426  * __dev_alloc_page - allocate a page for network Rx
3427  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3428  *
3429  * Allocate a new page.
3430  *
3431  * %NULL is returned if there is no free memory.
3432  */
3433 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3434 {
3435 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3436 }
3437 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3438 
3439 #define dev_alloc_page()	dev_alloc_pages(0)
3440 
3441 /**
3442  * dev_page_is_reusable - check whether a page can be reused for network Rx
3443  * @page: the page to test
3444  *
3445  * A page shouldn't be considered for reusing/recycling if it was allocated
3446  * under memory pressure or at a distant memory node.
3447  *
3448  * Returns false if this page should be returned to page allocator, true
3449  * otherwise.
3450  */
3451 static inline bool dev_page_is_reusable(const struct page *page)
3452 {
3453 	return likely(page_to_nid(page) == numa_mem_id() &&
3454 		      !page_is_pfmemalloc(page));
3455 }
3456 
3457 /**
3458  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3459  *	@page: The page that was allocated from skb_alloc_page
3460  *	@skb: The skb that may need pfmemalloc set
3461  */
3462 static inline void skb_propagate_pfmemalloc(const struct page *page,
3463 					    struct sk_buff *skb)
3464 {
3465 	if (page_is_pfmemalloc(page))
3466 		skb->pfmemalloc = true;
3467 }
3468 
3469 /**
3470  * skb_frag_off() - Returns the offset of a skb fragment
3471  * @frag: the paged fragment
3472  */
3473 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3474 {
3475 	return frag->offset;
3476 }
3477 
3478 /**
3479  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3480  * @frag: skb fragment
3481  * @delta: value to add
3482  */
3483 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3484 {
3485 	frag->offset += delta;
3486 }
3487 
3488 /**
3489  * skb_frag_off_set() - Sets the offset of a skb fragment
3490  * @frag: skb fragment
3491  * @offset: offset of fragment
3492  */
3493 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3494 {
3495 	frag->offset = offset;
3496 }
3497 
3498 /**
3499  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3500  * @fragto: skb fragment where offset is set
3501  * @fragfrom: skb fragment offset is copied from
3502  */
3503 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3504 				     const skb_frag_t *fragfrom)
3505 {
3506 	fragto->offset = fragfrom->offset;
3507 }
3508 
3509 /**
3510  * skb_frag_page - retrieve the page referred to by a paged fragment
3511  * @frag: the paged fragment
3512  *
3513  * Returns the &struct page associated with @frag.
3514  */
3515 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3516 {
3517 	return netmem_to_page(frag->netmem);
3518 }
3519 
3520 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3521 		    unsigned int headroom);
3522 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3523 			 struct bpf_prog *prog);
3524 /**
3525  * skb_frag_address - gets the address of the data contained in a paged fragment
3526  * @frag: the paged fragment buffer
3527  *
3528  * Returns the address of the data within @frag. The page must already
3529  * be mapped.
3530  */
3531 static inline void *skb_frag_address(const skb_frag_t *frag)
3532 {
3533 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3534 }
3535 
3536 /**
3537  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3538  * @frag: the paged fragment buffer
3539  *
3540  * Returns the address of the data within @frag. Checks that the page
3541  * is mapped and returns %NULL otherwise.
3542  */
3543 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3544 {
3545 	void *ptr = page_address(skb_frag_page(frag));
3546 	if (unlikely(!ptr))
3547 		return NULL;
3548 
3549 	return ptr + skb_frag_off(frag);
3550 }
3551 
3552 /**
3553  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3554  * @fragto: skb fragment where page is set
3555  * @fragfrom: skb fragment page is copied from
3556  */
3557 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3558 				      const skb_frag_t *fragfrom)
3559 {
3560 	fragto->netmem = fragfrom->netmem;
3561 }
3562 
3563 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3564 
3565 /**
3566  * skb_frag_dma_map - maps a paged fragment via the DMA API
3567  * @dev: the device to map the fragment to
3568  * @frag: the paged fragment to map
3569  * @offset: the offset within the fragment (starting at the
3570  *          fragment's own offset)
3571  * @size: the number of bytes to map
3572  * @dir: the direction of the mapping (``PCI_DMA_*``)
3573  *
3574  * Maps the page associated with @frag to @device.
3575  */
3576 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3577 					  const skb_frag_t *frag,
3578 					  size_t offset, size_t size,
3579 					  enum dma_data_direction dir)
3580 {
3581 	return dma_map_page(dev, skb_frag_page(frag),
3582 			    skb_frag_off(frag) + offset, size, dir);
3583 }
3584 
3585 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3586 					gfp_t gfp_mask)
3587 {
3588 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3589 }
3590 
3591 
3592 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3593 						  gfp_t gfp_mask)
3594 {
3595 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3596 }
3597 
3598 
3599 /**
3600  *	skb_clone_writable - is the header of a clone writable
3601  *	@skb: buffer to check
3602  *	@len: length up to which to write
3603  *
3604  *	Returns true if modifying the header part of the cloned buffer
3605  *	does not requires the data to be copied.
3606  */
3607 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3608 {
3609 	return !skb_header_cloned(skb) &&
3610 	       skb_headroom(skb) + len <= skb->hdr_len;
3611 }
3612 
3613 static inline int skb_try_make_writable(struct sk_buff *skb,
3614 					unsigned int write_len)
3615 {
3616 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3617 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3618 }
3619 
3620 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3621 			    int cloned)
3622 {
3623 	int delta = 0;
3624 
3625 	if (headroom > skb_headroom(skb))
3626 		delta = headroom - skb_headroom(skb);
3627 
3628 	if (delta || cloned)
3629 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3630 					GFP_ATOMIC);
3631 	return 0;
3632 }
3633 
3634 /**
3635  *	skb_cow - copy header of skb when it is required
3636  *	@skb: buffer to cow
3637  *	@headroom: needed headroom
3638  *
3639  *	If the skb passed lacks sufficient headroom or its data part
3640  *	is shared, data is reallocated. If reallocation fails, an error
3641  *	is returned and original skb is not changed.
3642  *
3643  *	The result is skb with writable area skb->head...skb->tail
3644  *	and at least @headroom of space at head.
3645  */
3646 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3647 {
3648 	return __skb_cow(skb, headroom, skb_cloned(skb));
3649 }
3650 
3651 /**
3652  *	skb_cow_head - skb_cow but only making the head writable
3653  *	@skb: buffer to cow
3654  *	@headroom: needed headroom
3655  *
3656  *	This function is identical to skb_cow except that we replace the
3657  *	skb_cloned check by skb_header_cloned.  It should be used when
3658  *	you only need to push on some header and do not need to modify
3659  *	the data.
3660  */
3661 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3662 {
3663 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3664 }
3665 
3666 /**
3667  *	skb_padto	- pad an skbuff up to a minimal size
3668  *	@skb: buffer to pad
3669  *	@len: minimal length
3670  *
3671  *	Pads up a buffer to ensure the trailing bytes exist and are
3672  *	blanked. If the buffer already contains sufficient data it
3673  *	is untouched. Otherwise it is extended. Returns zero on
3674  *	success. The skb is freed on error.
3675  */
3676 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3677 {
3678 	unsigned int size = skb->len;
3679 	if (likely(size >= len))
3680 		return 0;
3681 	return skb_pad(skb, len - size);
3682 }
3683 
3684 /**
3685  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3686  *	@skb: buffer to pad
3687  *	@len: minimal length
3688  *	@free_on_error: free buffer on error
3689  *
3690  *	Pads up a buffer to ensure the trailing bytes exist and are
3691  *	blanked. If the buffer already contains sufficient data it
3692  *	is untouched. Otherwise it is extended. Returns zero on
3693  *	success. The skb is freed on error if @free_on_error is true.
3694  */
3695 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3696 					       unsigned int len,
3697 					       bool free_on_error)
3698 {
3699 	unsigned int size = skb->len;
3700 
3701 	if (unlikely(size < len)) {
3702 		len -= size;
3703 		if (__skb_pad(skb, len, free_on_error))
3704 			return -ENOMEM;
3705 		__skb_put(skb, len);
3706 	}
3707 	return 0;
3708 }
3709 
3710 /**
3711  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3712  *	@skb: buffer to pad
3713  *	@len: minimal length
3714  *
3715  *	Pads up a buffer to ensure the trailing bytes exist and are
3716  *	blanked. If the buffer already contains sufficient data it
3717  *	is untouched. Otherwise it is extended. Returns zero on
3718  *	success. The skb is freed on error.
3719  */
3720 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3721 {
3722 	return __skb_put_padto(skb, len, true);
3723 }
3724 
3725 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3726 	__must_check;
3727 
3728 static inline int skb_add_data(struct sk_buff *skb,
3729 			       struct iov_iter *from, int copy)
3730 {
3731 	const int off = skb->len;
3732 
3733 	if (skb->ip_summed == CHECKSUM_NONE) {
3734 		__wsum csum = 0;
3735 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3736 					         &csum, from)) {
3737 			skb->csum = csum_block_add(skb->csum, csum, off);
3738 			return 0;
3739 		}
3740 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3741 		return 0;
3742 
3743 	__skb_trim(skb, off);
3744 	return -EFAULT;
3745 }
3746 
3747 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3748 				    const struct page *page, int off)
3749 {
3750 	if (skb_zcopy(skb))
3751 		return false;
3752 	if (i) {
3753 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3754 
3755 		return page == skb_frag_page(frag) &&
3756 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3757 	}
3758 	return false;
3759 }
3760 
3761 static inline int __skb_linearize(struct sk_buff *skb)
3762 {
3763 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3764 }
3765 
3766 /**
3767  *	skb_linearize - convert paged skb to linear one
3768  *	@skb: buffer to linarize
3769  *
3770  *	If there is no free memory -ENOMEM is returned, otherwise zero
3771  *	is returned and the old skb data released.
3772  */
3773 static inline int skb_linearize(struct sk_buff *skb)
3774 {
3775 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3776 }
3777 
3778 /**
3779  * skb_has_shared_frag - can any frag be overwritten
3780  * @skb: buffer to test
3781  *
3782  * Return true if the skb has at least one frag that might be modified
3783  * by an external entity (as in vmsplice()/sendfile())
3784  */
3785 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3786 {
3787 	return skb_is_nonlinear(skb) &&
3788 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3789 }
3790 
3791 /**
3792  *	skb_linearize_cow - make sure skb is linear and writable
3793  *	@skb: buffer to process
3794  *
3795  *	If there is no free memory -ENOMEM is returned, otherwise zero
3796  *	is returned and the old skb data released.
3797  */
3798 static inline int skb_linearize_cow(struct sk_buff *skb)
3799 {
3800 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3801 	       __skb_linearize(skb) : 0;
3802 }
3803 
3804 static __always_inline void
3805 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3806 		     unsigned int off)
3807 {
3808 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3809 		skb->csum = csum_block_sub(skb->csum,
3810 					   csum_partial(start, len, 0), off);
3811 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3812 		 skb_checksum_start_offset(skb) < 0)
3813 		skb->ip_summed = CHECKSUM_NONE;
3814 }
3815 
3816 /**
3817  *	skb_postpull_rcsum - update checksum for received skb after pull
3818  *	@skb: buffer to update
3819  *	@start: start of data before pull
3820  *	@len: length of data pulled
3821  *
3822  *	After doing a pull on a received packet, you need to call this to
3823  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3824  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3825  */
3826 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3827 				      const void *start, unsigned int len)
3828 {
3829 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3830 		skb->csum = wsum_negate(csum_partial(start, len,
3831 						     wsum_negate(skb->csum)));
3832 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3833 		 skb_checksum_start_offset(skb) < 0)
3834 		skb->ip_summed = CHECKSUM_NONE;
3835 }
3836 
3837 static __always_inline void
3838 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3839 		     unsigned int off)
3840 {
3841 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3842 		skb->csum = csum_block_add(skb->csum,
3843 					   csum_partial(start, len, 0), off);
3844 }
3845 
3846 /**
3847  *	skb_postpush_rcsum - update checksum for received skb after push
3848  *	@skb: buffer to update
3849  *	@start: start of data after push
3850  *	@len: length of data pushed
3851  *
3852  *	After doing a push on a received packet, you need to call this to
3853  *	update the CHECKSUM_COMPLETE checksum.
3854  */
3855 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3856 				      const void *start, unsigned int len)
3857 {
3858 	__skb_postpush_rcsum(skb, start, len, 0);
3859 }
3860 
3861 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3862 
3863 /**
3864  *	skb_push_rcsum - push skb and update receive checksum
3865  *	@skb: buffer to update
3866  *	@len: length of data pulled
3867  *
3868  *	This function performs an skb_push on the packet and updates
3869  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3870  *	receive path processing instead of skb_push unless you know
3871  *	that the checksum difference is zero (e.g., a valid IP header)
3872  *	or you are setting ip_summed to CHECKSUM_NONE.
3873  */
3874 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3875 {
3876 	skb_push(skb, len);
3877 	skb_postpush_rcsum(skb, skb->data, len);
3878 	return skb->data;
3879 }
3880 
3881 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3882 /**
3883  *	pskb_trim_rcsum - trim received skb and update checksum
3884  *	@skb: buffer to trim
3885  *	@len: new length
3886  *
3887  *	This is exactly the same as pskb_trim except that it ensures the
3888  *	checksum of received packets are still valid after the operation.
3889  *	It can change skb pointers.
3890  */
3891 
3892 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3893 {
3894 	if (likely(len >= skb->len))
3895 		return 0;
3896 	return pskb_trim_rcsum_slow(skb, len);
3897 }
3898 
3899 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3900 {
3901 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3902 		skb->ip_summed = CHECKSUM_NONE;
3903 	__skb_trim(skb, len);
3904 	return 0;
3905 }
3906 
3907 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3908 {
3909 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3910 		skb->ip_summed = CHECKSUM_NONE;
3911 	return __skb_grow(skb, len);
3912 }
3913 
3914 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3915 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3916 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3917 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3918 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3919 
3920 #define skb_queue_walk(queue, skb) \
3921 		for (skb = (queue)->next;					\
3922 		     skb != (struct sk_buff *)(queue);				\
3923 		     skb = skb->next)
3924 
3925 #define skb_queue_walk_safe(queue, skb, tmp)					\
3926 		for (skb = (queue)->next, tmp = skb->next;			\
3927 		     skb != (struct sk_buff *)(queue);				\
3928 		     skb = tmp, tmp = skb->next)
3929 
3930 #define skb_queue_walk_from(queue, skb)						\
3931 		for (; skb != (struct sk_buff *)(queue);			\
3932 		     skb = skb->next)
3933 
3934 #define skb_rbtree_walk(skb, root)						\
3935 		for (skb = skb_rb_first(root); skb != NULL;			\
3936 		     skb = skb_rb_next(skb))
3937 
3938 #define skb_rbtree_walk_from(skb)						\
3939 		for (; skb != NULL;						\
3940 		     skb = skb_rb_next(skb))
3941 
3942 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3943 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3944 		     skb = tmp)
3945 
3946 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3947 		for (tmp = skb->next;						\
3948 		     skb != (struct sk_buff *)(queue);				\
3949 		     skb = tmp, tmp = skb->next)
3950 
3951 #define skb_queue_reverse_walk(queue, skb) \
3952 		for (skb = (queue)->prev;					\
3953 		     skb != (struct sk_buff *)(queue);				\
3954 		     skb = skb->prev)
3955 
3956 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3957 		for (skb = (queue)->prev, tmp = skb->prev;			\
3958 		     skb != (struct sk_buff *)(queue);				\
3959 		     skb = tmp, tmp = skb->prev)
3960 
3961 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3962 		for (tmp = skb->prev;						\
3963 		     skb != (struct sk_buff *)(queue);				\
3964 		     skb = tmp, tmp = skb->prev)
3965 
3966 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3967 {
3968 	return skb_shinfo(skb)->frag_list != NULL;
3969 }
3970 
3971 static inline void skb_frag_list_init(struct sk_buff *skb)
3972 {
3973 	skb_shinfo(skb)->frag_list = NULL;
3974 }
3975 
3976 #define skb_walk_frags(skb, iter)	\
3977 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3978 
3979 
3980 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3981 				int *err, long *timeo_p,
3982 				const struct sk_buff *skb);
3983 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3984 					  struct sk_buff_head *queue,
3985 					  unsigned int flags,
3986 					  int *off, int *err,
3987 					  struct sk_buff **last);
3988 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3989 					struct sk_buff_head *queue,
3990 					unsigned int flags, int *off, int *err,
3991 					struct sk_buff **last);
3992 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3993 				    struct sk_buff_head *sk_queue,
3994 				    unsigned int flags, int *off, int *err);
3995 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3996 __poll_t datagram_poll(struct file *file, struct socket *sock,
3997 			   struct poll_table_struct *wait);
3998 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3999 			   struct iov_iter *to, int size);
4000 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4001 					struct msghdr *msg, int size)
4002 {
4003 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4004 }
4005 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4006 				   struct msghdr *msg);
4007 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4008 			   struct iov_iter *to, int len,
4009 			   struct ahash_request *hash);
4010 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4011 				 struct iov_iter *from, int len);
4012 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4013 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4014 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4015 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4016 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4018 			      int len);
4019 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4020 		    struct pipe_inode_info *pipe, unsigned int len,
4021 		    unsigned int flags);
4022 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4023 			 int len);
4024 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4025 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4026 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4027 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4028 		 int len, int hlen);
4029 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4030 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4031 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4032 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4033 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4034 				 unsigned int offset);
4035 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4036 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4037 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4038 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4039 int skb_vlan_pop(struct sk_buff *skb);
4040 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4041 int skb_eth_pop(struct sk_buff *skb);
4042 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4043 		 const unsigned char *src);
4044 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4045 		  int mac_len, bool ethernet);
4046 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4047 		 bool ethernet);
4048 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4049 int skb_mpls_dec_ttl(struct sk_buff *skb);
4050 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4051 			     gfp_t gfp);
4052 
4053 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4054 {
4055 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4056 }
4057 
4058 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4059 {
4060 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4061 }
4062 
4063 struct skb_checksum_ops {
4064 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4065 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4066 };
4067 
4068 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4069 
4070 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4071 		      __wsum csum, const struct skb_checksum_ops *ops);
4072 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4073 		    __wsum csum);
4074 
4075 static inline void * __must_check
4076 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4077 		     const void *data, int hlen, void *buffer)
4078 {
4079 	if (likely(hlen - offset >= len))
4080 		return (void *)data + offset;
4081 
4082 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4083 		return NULL;
4084 
4085 	return buffer;
4086 }
4087 
4088 static inline void * __must_check
4089 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4090 {
4091 	return __skb_header_pointer(skb, offset, len, skb->data,
4092 				    skb_headlen(skb), buffer);
4093 }
4094 
4095 static inline void * __must_check
4096 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4097 {
4098 	if (likely(skb_headlen(skb) - offset >= len))
4099 		return skb->data + offset;
4100 	return NULL;
4101 }
4102 
4103 /**
4104  *	skb_needs_linearize - check if we need to linearize a given skb
4105  *			      depending on the given device features.
4106  *	@skb: socket buffer to check
4107  *	@features: net device features
4108  *
4109  *	Returns true if either:
4110  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4111  *	2. skb is fragmented and the device does not support SG.
4112  */
4113 static inline bool skb_needs_linearize(struct sk_buff *skb,
4114 				       netdev_features_t features)
4115 {
4116 	return skb_is_nonlinear(skb) &&
4117 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4118 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4119 }
4120 
4121 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4122 					     void *to,
4123 					     const unsigned int len)
4124 {
4125 	memcpy(to, skb->data, len);
4126 }
4127 
4128 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4129 						    const int offset, void *to,
4130 						    const unsigned int len)
4131 {
4132 	memcpy(to, skb->data + offset, len);
4133 }
4134 
4135 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4136 					   const void *from,
4137 					   const unsigned int len)
4138 {
4139 	memcpy(skb->data, from, len);
4140 }
4141 
4142 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4143 						  const int offset,
4144 						  const void *from,
4145 						  const unsigned int len)
4146 {
4147 	memcpy(skb->data + offset, from, len);
4148 }
4149 
4150 void skb_init(void);
4151 
4152 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4153 {
4154 	return skb->tstamp;
4155 }
4156 
4157 /**
4158  *	skb_get_timestamp - get timestamp from a skb
4159  *	@skb: skb to get stamp from
4160  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4161  *
4162  *	Timestamps are stored in the skb as offsets to a base timestamp.
4163  *	This function converts the offset back to a struct timeval and stores
4164  *	it in stamp.
4165  */
4166 static inline void skb_get_timestamp(const struct sk_buff *skb,
4167 				     struct __kernel_old_timeval *stamp)
4168 {
4169 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4170 }
4171 
4172 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4173 					 struct __kernel_sock_timeval *stamp)
4174 {
4175 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4176 
4177 	stamp->tv_sec = ts.tv_sec;
4178 	stamp->tv_usec = ts.tv_nsec / 1000;
4179 }
4180 
4181 static inline void skb_get_timestampns(const struct sk_buff *skb,
4182 				       struct __kernel_old_timespec *stamp)
4183 {
4184 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4185 
4186 	stamp->tv_sec = ts.tv_sec;
4187 	stamp->tv_nsec = ts.tv_nsec;
4188 }
4189 
4190 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4191 					   struct __kernel_timespec *stamp)
4192 {
4193 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4194 
4195 	stamp->tv_sec = ts.tv_sec;
4196 	stamp->tv_nsec = ts.tv_nsec;
4197 }
4198 
4199 static inline void __net_timestamp(struct sk_buff *skb)
4200 {
4201 	skb->tstamp = ktime_get_real();
4202 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4203 }
4204 
4205 static inline ktime_t net_timedelta(ktime_t t)
4206 {
4207 	return ktime_sub(ktime_get_real(), t);
4208 }
4209 
4210 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4211 					 u8 tstamp_type)
4212 {
4213 	skb->tstamp = kt;
4214 
4215 	if (kt)
4216 		skb->tstamp_type = tstamp_type;
4217 	else
4218 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4219 }
4220 
4221 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4222 						    ktime_t kt, clockid_t clockid)
4223 {
4224 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4225 
4226 	switch (clockid) {
4227 	case CLOCK_REALTIME:
4228 		break;
4229 	case CLOCK_MONOTONIC:
4230 		tstamp_type = SKB_CLOCK_MONOTONIC;
4231 		break;
4232 	case CLOCK_TAI:
4233 		tstamp_type = SKB_CLOCK_TAI;
4234 		break;
4235 	default:
4236 		WARN_ON_ONCE(1);
4237 		kt = 0;
4238 	}
4239 
4240 	skb_set_delivery_time(skb, kt, tstamp_type);
4241 }
4242 
4243 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4244 
4245 /* It is used in the ingress path to clear the delivery_time.
4246  * If needed, set the skb->tstamp to the (rcv) timestamp.
4247  */
4248 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4249 {
4250 	if (skb->tstamp_type) {
4251 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4252 		if (static_branch_unlikely(&netstamp_needed_key))
4253 			skb->tstamp = ktime_get_real();
4254 		else
4255 			skb->tstamp = 0;
4256 	}
4257 }
4258 
4259 static inline void skb_clear_tstamp(struct sk_buff *skb)
4260 {
4261 	if (skb->tstamp_type)
4262 		return;
4263 
4264 	skb->tstamp = 0;
4265 }
4266 
4267 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4268 {
4269 	if (skb->tstamp_type)
4270 		return 0;
4271 
4272 	return skb->tstamp;
4273 }
4274 
4275 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4276 {
4277 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4278 		return skb->tstamp;
4279 
4280 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4281 		return ktime_get_real();
4282 
4283 	return 0;
4284 }
4285 
4286 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4287 {
4288 	return skb_shinfo(skb)->meta_len;
4289 }
4290 
4291 static inline void *skb_metadata_end(const struct sk_buff *skb)
4292 {
4293 	return skb_mac_header(skb);
4294 }
4295 
4296 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4297 					  const struct sk_buff *skb_b,
4298 					  u8 meta_len)
4299 {
4300 	const void *a = skb_metadata_end(skb_a);
4301 	const void *b = skb_metadata_end(skb_b);
4302 	u64 diffs = 0;
4303 
4304 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4305 	    BITS_PER_LONG != 64)
4306 		goto slow;
4307 
4308 	/* Using more efficient variant than plain call to memcmp(). */
4309 	switch (meta_len) {
4310 #define __it(x, op) (x -= sizeof(u##op))
4311 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4312 	case 32: diffs |= __it_diff(a, b, 64);
4313 		fallthrough;
4314 	case 24: diffs |= __it_diff(a, b, 64);
4315 		fallthrough;
4316 	case 16: diffs |= __it_diff(a, b, 64);
4317 		fallthrough;
4318 	case  8: diffs |= __it_diff(a, b, 64);
4319 		break;
4320 	case 28: diffs |= __it_diff(a, b, 64);
4321 		fallthrough;
4322 	case 20: diffs |= __it_diff(a, b, 64);
4323 		fallthrough;
4324 	case 12: diffs |= __it_diff(a, b, 64);
4325 		fallthrough;
4326 	case  4: diffs |= __it_diff(a, b, 32);
4327 		break;
4328 	default:
4329 slow:
4330 		return memcmp(a - meta_len, b - meta_len, meta_len);
4331 	}
4332 	return diffs;
4333 }
4334 
4335 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4336 					const struct sk_buff *skb_b)
4337 {
4338 	u8 len_a = skb_metadata_len(skb_a);
4339 	u8 len_b = skb_metadata_len(skb_b);
4340 
4341 	if (!(len_a | len_b))
4342 		return false;
4343 
4344 	return len_a != len_b ?
4345 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4346 }
4347 
4348 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4349 {
4350 	skb_shinfo(skb)->meta_len = meta_len;
4351 }
4352 
4353 static inline void skb_metadata_clear(struct sk_buff *skb)
4354 {
4355 	skb_metadata_set(skb, 0);
4356 }
4357 
4358 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4359 
4360 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4361 
4362 void skb_clone_tx_timestamp(struct sk_buff *skb);
4363 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4364 
4365 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4366 
4367 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4368 {
4369 }
4370 
4371 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4372 {
4373 	return false;
4374 }
4375 
4376 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4377 
4378 /**
4379  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4380  *
4381  * PHY drivers may accept clones of transmitted packets for
4382  * timestamping via their phy_driver.txtstamp method. These drivers
4383  * must call this function to return the skb back to the stack with a
4384  * timestamp.
4385  *
4386  * @skb: clone of the original outgoing packet
4387  * @hwtstamps: hardware time stamps
4388  *
4389  */
4390 void skb_complete_tx_timestamp(struct sk_buff *skb,
4391 			       struct skb_shared_hwtstamps *hwtstamps);
4392 
4393 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4394 		     struct skb_shared_hwtstamps *hwtstamps,
4395 		     struct sock *sk, int tstype);
4396 
4397 /**
4398  * skb_tstamp_tx - queue clone of skb with send time stamps
4399  * @orig_skb:	the original outgoing packet
4400  * @hwtstamps:	hardware time stamps, may be NULL if not available
4401  *
4402  * If the skb has a socket associated, then this function clones the
4403  * skb (thus sharing the actual data and optional structures), stores
4404  * the optional hardware time stamping information (if non NULL) or
4405  * generates a software time stamp (otherwise), then queues the clone
4406  * to the error queue of the socket.  Errors are silently ignored.
4407  */
4408 void skb_tstamp_tx(struct sk_buff *orig_skb,
4409 		   struct skb_shared_hwtstamps *hwtstamps);
4410 
4411 /**
4412  * skb_tx_timestamp() - Driver hook for transmit timestamping
4413  *
4414  * Ethernet MAC Drivers should call this function in their hard_xmit()
4415  * function immediately before giving the sk_buff to the MAC hardware.
4416  *
4417  * Specifically, one should make absolutely sure that this function is
4418  * called before TX completion of this packet can trigger.  Otherwise
4419  * the packet could potentially already be freed.
4420  *
4421  * @skb: A socket buffer.
4422  */
4423 static inline void skb_tx_timestamp(struct sk_buff *skb)
4424 {
4425 	skb_clone_tx_timestamp(skb);
4426 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4427 		skb_tstamp_tx(skb, NULL);
4428 }
4429 
4430 /**
4431  * skb_complete_wifi_ack - deliver skb with wifi status
4432  *
4433  * @skb: the original outgoing packet
4434  * @acked: ack status
4435  *
4436  */
4437 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4438 
4439 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4440 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4441 
4442 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4443 {
4444 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4445 		skb->csum_valid ||
4446 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4447 		 skb_checksum_start_offset(skb) >= 0));
4448 }
4449 
4450 /**
4451  *	skb_checksum_complete - Calculate checksum of an entire packet
4452  *	@skb: packet to process
4453  *
4454  *	This function calculates the checksum over the entire packet plus
4455  *	the value of skb->csum.  The latter can be used to supply the
4456  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4457  *	checksum.
4458  *
4459  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4460  *	this function can be used to verify that checksum on received
4461  *	packets.  In that case the function should return zero if the
4462  *	checksum is correct.  In particular, this function will return zero
4463  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4464  *	hardware has already verified the correctness of the checksum.
4465  */
4466 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4467 {
4468 	return skb_csum_unnecessary(skb) ?
4469 	       0 : __skb_checksum_complete(skb);
4470 }
4471 
4472 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4473 {
4474 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4475 		if (skb->csum_level == 0)
4476 			skb->ip_summed = CHECKSUM_NONE;
4477 		else
4478 			skb->csum_level--;
4479 	}
4480 }
4481 
4482 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4483 {
4484 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4485 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4486 			skb->csum_level++;
4487 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4488 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4489 		skb->csum_level = 0;
4490 	}
4491 }
4492 
4493 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4494 {
4495 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4496 		skb->ip_summed = CHECKSUM_NONE;
4497 		skb->csum_level = 0;
4498 	}
4499 }
4500 
4501 /* Check if we need to perform checksum complete validation.
4502  *
4503  * Returns true if checksum complete is needed, false otherwise
4504  * (either checksum is unnecessary or zero checksum is allowed).
4505  */
4506 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4507 						  bool zero_okay,
4508 						  __sum16 check)
4509 {
4510 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4511 		skb->csum_valid = 1;
4512 		__skb_decr_checksum_unnecessary(skb);
4513 		return false;
4514 	}
4515 
4516 	return true;
4517 }
4518 
4519 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4520  * in checksum_init.
4521  */
4522 #define CHECKSUM_BREAK 76
4523 
4524 /* Unset checksum-complete
4525  *
4526  * Unset checksum complete can be done when packet is being modified
4527  * (uncompressed for instance) and checksum-complete value is
4528  * invalidated.
4529  */
4530 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4531 {
4532 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4533 		skb->ip_summed = CHECKSUM_NONE;
4534 }
4535 
4536 /* Validate (init) checksum based on checksum complete.
4537  *
4538  * Return values:
4539  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4540  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4541  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4542  *   non-zero: value of invalid checksum
4543  *
4544  */
4545 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4546 						       bool complete,
4547 						       __wsum psum)
4548 {
4549 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4550 		if (!csum_fold(csum_add(psum, skb->csum))) {
4551 			skb->csum_valid = 1;
4552 			return 0;
4553 		}
4554 	}
4555 
4556 	skb->csum = psum;
4557 
4558 	if (complete || skb->len <= CHECKSUM_BREAK) {
4559 		__sum16 csum;
4560 
4561 		csum = __skb_checksum_complete(skb);
4562 		skb->csum_valid = !csum;
4563 		return csum;
4564 	}
4565 
4566 	return 0;
4567 }
4568 
4569 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4570 {
4571 	return 0;
4572 }
4573 
4574 /* Perform checksum validate (init). Note that this is a macro since we only
4575  * want to calculate the pseudo header which is an input function if necessary.
4576  * First we try to validate without any computation (checksum unnecessary) and
4577  * then calculate based on checksum complete calling the function to compute
4578  * pseudo header.
4579  *
4580  * Return values:
4581  *   0: checksum is validated or try to in skb_checksum_complete
4582  *   non-zero: value of invalid checksum
4583  */
4584 #define __skb_checksum_validate(skb, proto, complete,			\
4585 				zero_okay, check, compute_pseudo)	\
4586 ({									\
4587 	__sum16 __ret = 0;						\
4588 	skb->csum_valid = 0;						\
4589 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4590 		__ret = __skb_checksum_validate_complete(skb,		\
4591 				complete, compute_pseudo(skb, proto));	\
4592 	__ret;								\
4593 })
4594 
4595 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4596 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4597 
4598 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4599 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4600 
4601 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4602 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4603 
4604 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4605 					 compute_pseudo)		\
4606 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4607 
4608 #define skb_checksum_simple_validate(skb)				\
4609 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4610 
4611 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4612 {
4613 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4614 }
4615 
4616 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4617 {
4618 	skb->csum = ~pseudo;
4619 	skb->ip_summed = CHECKSUM_COMPLETE;
4620 }
4621 
4622 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4623 do {									\
4624 	if (__skb_checksum_convert_check(skb))				\
4625 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4626 } while (0)
4627 
4628 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4629 					      u16 start, u16 offset)
4630 {
4631 	skb->ip_summed = CHECKSUM_PARTIAL;
4632 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4633 	skb->csum_offset = offset - start;
4634 }
4635 
4636 /* Update skbuf and packet to reflect the remote checksum offload operation.
4637  * When called, ptr indicates the starting point for skb->csum when
4638  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4639  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4640  */
4641 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4642 				       int start, int offset, bool nopartial)
4643 {
4644 	__wsum delta;
4645 
4646 	if (!nopartial) {
4647 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4648 		return;
4649 	}
4650 
4651 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4652 		__skb_checksum_complete(skb);
4653 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4654 	}
4655 
4656 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4657 
4658 	/* Adjust skb->csum since we changed the packet */
4659 	skb->csum = csum_add(skb->csum, delta);
4660 }
4661 
4662 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4663 {
4664 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4665 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4666 #else
4667 	return NULL;
4668 #endif
4669 }
4670 
4671 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4672 {
4673 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4674 	return skb->_nfct;
4675 #else
4676 	return 0UL;
4677 #endif
4678 }
4679 
4680 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4681 {
4682 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4683 	skb->slow_gro |= !!nfct;
4684 	skb->_nfct = nfct;
4685 #endif
4686 }
4687 
4688 #ifdef CONFIG_SKB_EXTENSIONS
4689 enum skb_ext_id {
4690 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4691 	SKB_EXT_BRIDGE_NF,
4692 #endif
4693 #ifdef CONFIG_XFRM
4694 	SKB_EXT_SEC_PATH,
4695 #endif
4696 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4697 	TC_SKB_EXT,
4698 #endif
4699 #if IS_ENABLED(CONFIG_MPTCP)
4700 	SKB_EXT_MPTCP,
4701 #endif
4702 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4703 	SKB_EXT_MCTP,
4704 #endif
4705 	SKB_EXT_NUM, /* must be last */
4706 };
4707 
4708 /**
4709  *	struct skb_ext - sk_buff extensions
4710  *	@refcnt: 1 on allocation, deallocated on 0
4711  *	@offset: offset to add to @data to obtain extension address
4712  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4713  *	@data: start of extension data, variable sized
4714  *
4715  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4716  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4717  */
4718 struct skb_ext {
4719 	refcount_t refcnt;
4720 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4721 	u8 chunks;		/* same */
4722 	char data[] __aligned(8);
4723 };
4724 
4725 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4726 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4727 		    struct skb_ext *ext);
4728 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4729 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4730 void __skb_ext_put(struct skb_ext *ext);
4731 
4732 static inline void skb_ext_put(struct sk_buff *skb)
4733 {
4734 	if (skb->active_extensions)
4735 		__skb_ext_put(skb->extensions);
4736 }
4737 
4738 static inline void __skb_ext_copy(struct sk_buff *dst,
4739 				  const struct sk_buff *src)
4740 {
4741 	dst->active_extensions = src->active_extensions;
4742 
4743 	if (src->active_extensions) {
4744 		struct skb_ext *ext = src->extensions;
4745 
4746 		refcount_inc(&ext->refcnt);
4747 		dst->extensions = ext;
4748 	}
4749 }
4750 
4751 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4752 {
4753 	skb_ext_put(dst);
4754 	__skb_ext_copy(dst, src);
4755 }
4756 
4757 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4758 {
4759 	return !!ext->offset[i];
4760 }
4761 
4762 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4763 {
4764 	return skb->active_extensions & (1 << id);
4765 }
4766 
4767 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4768 {
4769 	if (skb_ext_exist(skb, id))
4770 		__skb_ext_del(skb, id);
4771 }
4772 
4773 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4774 {
4775 	if (skb_ext_exist(skb, id)) {
4776 		struct skb_ext *ext = skb->extensions;
4777 
4778 		return (void *)ext + (ext->offset[id] << 3);
4779 	}
4780 
4781 	return NULL;
4782 }
4783 
4784 static inline void skb_ext_reset(struct sk_buff *skb)
4785 {
4786 	if (unlikely(skb->active_extensions)) {
4787 		__skb_ext_put(skb->extensions);
4788 		skb->active_extensions = 0;
4789 	}
4790 }
4791 
4792 static inline bool skb_has_extensions(struct sk_buff *skb)
4793 {
4794 	return unlikely(skb->active_extensions);
4795 }
4796 #else
4797 static inline void skb_ext_put(struct sk_buff *skb) {}
4798 static inline void skb_ext_reset(struct sk_buff *skb) {}
4799 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4800 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4801 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4802 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4803 #endif /* CONFIG_SKB_EXTENSIONS */
4804 
4805 static inline void nf_reset_ct(struct sk_buff *skb)
4806 {
4807 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4808 	nf_conntrack_put(skb_nfct(skb));
4809 	skb->_nfct = 0;
4810 #endif
4811 }
4812 
4813 static inline void nf_reset_trace(struct sk_buff *skb)
4814 {
4815 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4816 	skb->nf_trace = 0;
4817 #endif
4818 }
4819 
4820 static inline void ipvs_reset(struct sk_buff *skb)
4821 {
4822 #if IS_ENABLED(CONFIG_IP_VS)
4823 	skb->ipvs_property = 0;
4824 #endif
4825 }
4826 
4827 /* Note: This doesn't put any conntrack info in dst. */
4828 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4829 			     bool copy)
4830 {
4831 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4832 	dst->_nfct = src->_nfct;
4833 	nf_conntrack_get(skb_nfct(src));
4834 #endif
4835 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4836 	if (copy)
4837 		dst->nf_trace = src->nf_trace;
4838 #endif
4839 }
4840 
4841 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4842 {
4843 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4844 	nf_conntrack_put(skb_nfct(dst));
4845 #endif
4846 	dst->slow_gro = src->slow_gro;
4847 	__nf_copy(dst, src, true);
4848 }
4849 
4850 #ifdef CONFIG_NETWORK_SECMARK
4851 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4852 {
4853 	to->secmark = from->secmark;
4854 }
4855 
4856 static inline void skb_init_secmark(struct sk_buff *skb)
4857 {
4858 	skb->secmark = 0;
4859 }
4860 #else
4861 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4862 { }
4863 
4864 static inline void skb_init_secmark(struct sk_buff *skb)
4865 { }
4866 #endif
4867 
4868 static inline int secpath_exists(const struct sk_buff *skb)
4869 {
4870 #ifdef CONFIG_XFRM
4871 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4872 #else
4873 	return 0;
4874 #endif
4875 }
4876 
4877 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4878 {
4879 	return !skb->destructor &&
4880 		!secpath_exists(skb) &&
4881 		!skb_nfct(skb) &&
4882 		!skb->_skb_refdst &&
4883 		!skb_has_frag_list(skb);
4884 }
4885 
4886 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4887 {
4888 	skb->queue_mapping = queue_mapping;
4889 }
4890 
4891 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4892 {
4893 	return skb->queue_mapping;
4894 }
4895 
4896 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4897 {
4898 	to->queue_mapping = from->queue_mapping;
4899 }
4900 
4901 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4902 {
4903 	skb->queue_mapping = rx_queue + 1;
4904 }
4905 
4906 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4907 {
4908 	return skb->queue_mapping - 1;
4909 }
4910 
4911 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4912 {
4913 	return skb->queue_mapping != 0;
4914 }
4915 
4916 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4917 {
4918 	skb->dst_pending_confirm = val;
4919 }
4920 
4921 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4922 {
4923 	return skb->dst_pending_confirm != 0;
4924 }
4925 
4926 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4927 {
4928 #ifdef CONFIG_XFRM
4929 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4930 #else
4931 	return NULL;
4932 #endif
4933 }
4934 
4935 static inline bool skb_is_gso(const struct sk_buff *skb)
4936 {
4937 	return skb_shinfo(skb)->gso_size;
4938 }
4939 
4940 /* Note: Should be called only if skb_is_gso(skb) is true */
4941 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4942 {
4943 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4944 }
4945 
4946 /* Note: Should be called only if skb_is_gso(skb) is true */
4947 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4948 {
4949 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4950 }
4951 
4952 /* Note: Should be called only if skb_is_gso(skb) is true */
4953 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4954 {
4955 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4956 }
4957 
4958 static inline void skb_gso_reset(struct sk_buff *skb)
4959 {
4960 	skb_shinfo(skb)->gso_size = 0;
4961 	skb_shinfo(skb)->gso_segs = 0;
4962 	skb_shinfo(skb)->gso_type = 0;
4963 }
4964 
4965 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4966 					 u16 increment)
4967 {
4968 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4969 		return;
4970 	shinfo->gso_size += increment;
4971 }
4972 
4973 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4974 					 u16 decrement)
4975 {
4976 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4977 		return;
4978 	shinfo->gso_size -= decrement;
4979 }
4980 
4981 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4982 
4983 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4984 {
4985 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4986 	 * wanted then gso_type will be set. */
4987 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4988 
4989 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4990 	    unlikely(shinfo->gso_type == 0)) {
4991 		__skb_warn_lro_forwarding(skb);
4992 		return true;
4993 	}
4994 	return false;
4995 }
4996 
4997 static inline void skb_forward_csum(struct sk_buff *skb)
4998 {
4999 	/* Unfortunately we don't support this one.  Any brave souls? */
5000 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5001 		skb->ip_summed = CHECKSUM_NONE;
5002 }
5003 
5004 /**
5005  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5006  * @skb: skb to check
5007  *
5008  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5009  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5010  * use this helper, to document places where we make this assertion.
5011  */
5012 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5013 {
5014 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5015 }
5016 
5017 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5018 
5019 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5020 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5021 				     unsigned int transport_len,
5022 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5023 
5024 /**
5025  * skb_head_is_locked - Determine if the skb->head is locked down
5026  * @skb: skb to check
5027  *
5028  * The head on skbs build around a head frag can be removed if they are
5029  * not cloned.  This function returns true if the skb head is locked down
5030  * due to either being allocated via kmalloc, or by being a clone with
5031  * multiple references to the head.
5032  */
5033 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5034 {
5035 	return !skb->head_frag || skb_cloned(skb);
5036 }
5037 
5038 /* Local Checksum Offload.
5039  * Compute outer checksum based on the assumption that the
5040  * inner checksum will be offloaded later.
5041  * See Documentation/networking/checksum-offloads.rst for
5042  * explanation of how this works.
5043  * Fill in outer checksum adjustment (e.g. with sum of outer
5044  * pseudo-header) before calling.
5045  * Also ensure that inner checksum is in linear data area.
5046  */
5047 static inline __wsum lco_csum(struct sk_buff *skb)
5048 {
5049 	unsigned char *csum_start = skb_checksum_start(skb);
5050 	unsigned char *l4_hdr = skb_transport_header(skb);
5051 	__wsum partial;
5052 
5053 	/* Start with complement of inner checksum adjustment */
5054 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5055 						    skb->csum_offset));
5056 
5057 	/* Add in checksum of our headers (incl. outer checksum
5058 	 * adjustment filled in by caller) and return result.
5059 	 */
5060 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5061 }
5062 
5063 static inline bool skb_is_redirected(const struct sk_buff *skb)
5064 {
5065 	return skb->redirected;
5066 }
5067 
5068 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5069 {
5070 	skb->redirected = 1;
5071 #ifdef CONFIG_NET_REDIRECT
5072 	skb->from_ingress = from_ingress;
5073 	if (skb->from_ingress)
5074 		skb_clear_tstamp(skb);
5075 #endif
5076 }
5077 
5078 static inline void skb_reset_redirect(struct sk_buff *skb)
5079 {
5080 	skb->redirected = 0;
5081 }
5082 
5083 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5084 					      bool from_ingress)
5085 {
5086 	skb->redirected = 1;
5087 #ifdef CONFIG_NET_REDIRECT
5088 	skb->from_ingress = from_ingress;
5089 #endif
5090 }
5091 
5092 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5093 {
5094 #if IS_ENABLED(CONFIG_IP_SCTP)
5095 	return skb->csum_not_inet;
5096 #else
5097 	return 0;
5098 #endif
5099 }
5100 
5101 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5102 {
5103 	skb->ip_summed = CHECKSUM_NONE;
5104 #if IS_ENABLED(CONFIG_IP_SCTP)
5105 	skb->csum_not_inet = 0;
5106 #endif
5107 }
5108 
5109 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5110 				       const u64 kcov_handle)
5111 {
5112 #ifdef CONFIG_KCOV
5113 	skb->kcov_handle = kcov_handle;
5114 #endif
5115 }
5116 
5117 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5118 {
5119 #ifdef CONFIG_KCOV
5120 	return skb->kcov_handle;
5121 #else
5122 	return 0;
5123 #endif
5124 }
5125 
5126 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5127 {
5128 #ifdef CONFIG_PAGE_POOL
5129 	skb->pp_recycle = 1;
5130 #endif
5131 }
5132 
5133 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5134 			     ssize_t maxsize, gfp_t gfp);
5135 
5136 #endif	/* __KERNEL__ */
5137 #endif	/* _LINUX_SKBUFF_H */
5138