1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 36 #include <linux/netfilter/nf_conntrack_common.h> 37 #endif 38 #include <net/net_debug.h> 39 #include <net/dropreason-core.h> 40 #include <net/netmem.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 int physinif; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314 }; 315 #endif 316 317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318 /* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322 struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 334 }; 335 #endif 336 337 struct sk_buff_head { 338 /* These two members must be first to match sk_buff. */ 339 struct_group_tagged(sk_buff_list, list, 340 struct sk_buff *next; 341 struct sk_buff *prev; 342 ); 343 344 __u32 qlen; 345 spinlock_t lock; 346 }; 347 348 struct sk_buff; 349 350 #ifndef CONFIG_MAX_SKB_FRAGS 351 # define CONFIG_MAX_SKB_FRAGS 17 352 #endif 353 354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 355 356 extern int sysctl_max_skb_frags; 357 358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 359 * segment using its current segmentation instead. 360 */ 361 #define GSO_BY_FRAGS 0xFFFF 362 363 typedef struct skb_frag { 364 netmem_ref netmem; 365 unsigned int len; 366 unsigned int offset; 367 } skb_frag_t; 368 369 /** 370 * skb_frag_size() - Returns the size of a skb fragment 371 * @frag: skb fragment 372 */ 373 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 374 { 375 return frag->len; 376 } 377 378 /** 379 * skb_frag_size_set() - Sets the size of a skb fragment 380 * @frag: skb fragment 381 * @size: size of fragment 382 */ 383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 384 { 385 frag->len = size; 386 } 387 388 /** 389 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 390 * @frag: skb fragment 391 * @delta: value to add 392 */ 393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 394 { 395 frag->len += delta; 396 } 397 398 /** 399 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 400 * @frag: skb fragment 401 * @delta: value to subtract 402 */ 403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 404 { 405 frag->len -= delta; 406 } 407 408 /** 409 * skb_frag_must_loop - Test if %p is a high memory page 410 * @p: fragment's page 411 */ 412 static inline bool skb_frag_must_loop(struct page *p) 413 { 414 #if defined(CONFIG_HIGHMEM) 415 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 416 return true; 417 #endif 418 return false; 419 } 420 421 /** 422 * skb_frag_foreach_page - loop over pages in a fragment 423 * 424 * @f: skb frag to operate on 425 * @f_off: offset from start of f->netmem 426 * @f_len: length from f_off to loop over 427 * @p: (temp var) current page 428 * @p_off: (temp var) offset from start of current page, 429 * non-zero only on first page. 430 * @p_len: (temp var) length in current page, 431 * < PAGE_SIZE only on first and last page. 432 * @copied: (temp var) length so far, excluding current p_len. 433 * 434 * A fragment can hold a compound page, in which case per-page 435 * operations, notably kmap_atomic, must be called for each 436 * regular page. 437 */ 438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 439 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 440 p_off = (f_off) & (PAGE_SIZE - 1), \ 441 p_len = skb_frag_must_loop(p) ? \ 442 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 443 copied = 0; \ 444 copied < f_len; \ 445 copied += p_len, p++, p_off = 0, \ 446 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 447 448 /** 449 * struct skb_shared_hwtstamps - hardware time stamps 450 * @hwtstamp: hardware time stamp transformed into duration 451 * since arbitrary point in time 452 * @netdev_data: address/cookie of network device driver used as 453 * reference to actual hardware time stamp 454 * 455 * Software time stamps generated by ktime_get_real() are stored in 456 * skb->tstamp. 457 * 458 * hwtstamps can only be compared against other hwtstamps from 459 * the same device. 460 * 461 * This structure is attached to packets as part of the 462 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 463 */ 464 struct skb_shared_hwtstamps { 465 union { 466 ktime_t hwtstamp; 467 void *netdev_data; 468 }; 469 }; 470 471 /* Definitions for tx_flags in struct skb_shared_info */ 472 enum { 473 /* generate hardware time stamp */ 474 SKBTX_HW_TSTAMP = 1 << 0, 475 476 /* generate software time stamp when queueing packet to NIC */ 477 SKBTX_SW_TSTAMP = 1 << 1, 478 479 /* device driver is going to provide hardware time stamp */ 480 SKBTX_IN_PROGRESS = 1 << 2, 481 482 /* generate hardware time stamp based on cycles if supported */ 483 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 484 485 /* generate wifi status information (where possible) */ 486 SKBTX_WIFI_STATUS = 1 << 4, 487 488 /* determine hardware time stamp based on time or cycles */ 489 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 490 491 /* generate software time stamp when entering packet scheduling */ 492 SKBTX_SCHED_TSTAMP = 1 << 6, 493 }; 494 495 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 496 SKBTX_SCHED_TSTAMP) 497 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 498 SKBTX_HW_TSTAMP_USE_CYCLES | \ 499 SKBTX_ANY_SW_TSTAMP) 500 501 /* Definitions for flags in struct skb_shared_info */ 502 enum { 503 /* use zcopy routines */ 504 SKBFL_ZEROCOPY_ENABLE = BIT(0), 505 506 /* This indicates at least one fragment might be overwritten 507 * (as in vmsplice(), sendfile() ...) 508 * If we need to compute a TX checksum, we'll need to copy 509 * all frags to avoid possible bad checksum 510 */ 511 SKBFL_SHARED_FRAG = BIT(1), 512 513 /* segment contains only zerocopy data and should not be 514 * charged to the kernel memory. 515 */ 516 SKBFL_PURE_ZEROCOPY = BIT(2), 517 518 SKBFL_DONT_ORPHAN = BIT(3), 519 520 /* page references are managed by the ubuf_info, so it's safe to 521 * use frags only up until ubuf_info is released 522 */ 523 SKBFL_MANAGED_FRAG_REFS = BIT(4), 524 }; 525 526 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 527 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 528 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 529 530 /* 531 * The callback notifies userspace to release buffers when skb DMA is done in 532 * lower device, the skb last reference should be 0 when calling this. 533 * The zerocopy_success argument is true if zero copy transmit occurred, 534 * false on data copy or out of memory error caused by data copy attempt. 535 * The ctx field is used to track device context. 536 * The desc field is used to track userspace buffer index. 537 */ 538 struct ubuf_info { 539 void (*callback)(struct sk_buff *, struct ubuf_info *, 540 bool zerocopy_success); 541 refcount_t refcnt; 542 u8 flags; 543 }; 544 545 struct ubuf_info_msgzc { 546 struct ubuf_info ubuf; 547 548 union { 549 struct { 550 unsigned long desc; 551 void *ctx; 552 }; 553 struct { 554 u32 id; 555 u16 len; 556 u16 zerocopy:1; 557 u32 bytelen; 558 }; 559 }; 560 561 struct mmpin { 562 struct user_struct *user; 563 unsigned int num_pg; 564 } mmp; 565 }; 566 567 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 568 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 569 ubuf) 570 571 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 572 void mm_unaccount_pinned_pages(struct mmpin *mmp); 573 574 /* Preserve some data across TX submission and completion. 575 * 576 * Note, this state is stored in the driver. Extending the layout 577 * might need some special care. 578 */ 579 struct xsk_tx_metadata_compl { 580 __u64 *tx_timestamp; 581 }; 582 583 /* This data is invariant across clones and lives at 584 * the end of the header data, ie. at skb->end. 585 */ 586 struct skb_shared_info { 587 __u8 flags; 588 __u8 meta_len; 589 __u8 nr_frags; 590 __u8 tx_flags; 591 unsigned short gso_size; 592 /* Warning: this field is not always filled in (UFO)! */ 593 unsigned short gso_segs; 594 struct sk_buff *frag_list; 595 union { 596 struct skb_shared_hwtstamps hwtstamps; 597 struct xsk_tx_metadata_compl xsk_meta; 598 }; 599 unsigned int gso_type; 600 u32 tskey; 601 602 /* 603 * Warning : all fields before dataref are cleared in __alloc_skb() 604 */ 605 atomic_t dataref; 606 unsigned int xdp_frags_size; 607 608 /* Intermediate layers must ensure that destructor_arg 609 * remains valid until skb destructor */ 610 void * destructor_arg; 611 612 /* must be last field, see pskb_expand_head() */ 613 skb_frag_t frags[MAX_SKB_FRAGS]; 614 }; 615 616 /** 617 * DOC: dataref and headerless skbs 618 * 619 * Transport layers send out clones of payload skbs they hold for 620 * retransmissions. To allow lower layers of the stack to prepend their headers 621 * we split &skb_shared_info.dataref into two halves. 622 * The lower 16 bits count the overall number of references. 623 * The higher 16 bits indicate how many of the references are payload-only. 624 * skb_header_cloned() checks if skb is allowed to add / write the headers. 625 * 626 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 627 * (via __skb_header_release()). Any clone created from marked skb will get 628 * &sk_buff.hdr_len populated with the available headroom. 629 * If there's the only clone in existence it's able to modify the headroom 630 * at will. The sequence of calls inside the transport layer is:: 631 * 632 * <alloc skb> 633 * skb_reserve() 634 * __skb_header_release() 635 * skb_clone() 636 * // send the clone down the stack 637 * 638 * This is not a very generic construct and it depends on the transport layers 639 * doing the right thing. In practice there's usually only one payload-only skb. 640 * Having multiple payload-only skbs with different lengths of hdr_len is not 641 * possible. The payload-only skbs should never leave their owner. 642 */ 643 #define SKB_DATAREF_SHIFT 16 644 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 645 646 647 enum { 648 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 649 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 650 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 651 }; 652 653 enum { 654 SKB_GSO_TCPV4 = 1 << 0, 655 656 /* This indicates the skb is from an untrusted source. */ 657 SKB_GSO_DODGY = 1 << 1, 658 659 /* This indicates the tcp segment has CWR set. */ 660 SKB_GSO_TCP_ECN = 1 << 2, 661 662 SKB_GSO_TCP_FIXEDID = 1 << 3, 663 664 SKB_GSO_TCPV6 = 1 << 4, 665 666 SKB_GSO_FCOE = 1 << 5, 667 668 SKB_GSO_GRE = 1 << 6, 669 670 SKB_GSO_GRE_CSUM = 1 << 7, 671 672 SKB_GSO_IPXIP4 = 1 << 8, 673 674 SKB_GSO_IPXIP6 = 1 << 9, 675 676 SKB_GSO_UDP_TUNNEL = 1 << 10, 677 678 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 679 680 SKB_GSO_PARTIAL = 1 << 12, 681 682 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 683 684 SKB_GSO_SCTP = 1 << 14, 685 686 SKB_GSO_ESP = 1 << 15, 687 688 SKB_GSO_UDP = 1 << 16, 689 690 SKB_GSO_UDP_L4 = 1 << 17, 691 692 SKB_GSO_FRAGLIST = 1 << 18, 693 }; 694 695 #if BITS_PER_LONG > 32 696 #define NET_SKBUFF_DATA_USES_OFFSET 1 697 #endif 698 699 #ifdef NET_SKBUFF_DATA_USES_OFFSET 700 typedef unsigned int sk_buff_data_t; 701 #else 702 typedef unsigned char *sk_buff_data_t; 703 #endif 704 705 /** 706 * DOC: Basic sk_buff geometry 707 * 708 * struct sk_buff itself is a metadata structure and does not hold any packet 709 * data. All the data is held in associated buffers. 710 * 711 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 712 * into two parts: 713 * 714 * - data buffer, containing headers and sometimes payload; 715 * this is the part of the skb operated on by the common helpers 716 * such as skb_put() or skb_pull(); 717 * - shared info (struct skb_shared_info) which holds an array of pointers 718 * to read-only data in the (page, offset, length) format. 719 * 720 * Optionally &skb_shared_info.frag_list may point to another skb. 721 * 722 * Basic diagram may look like this:: 723 * 724 * --------------- 725 * | sk_buff | 726 * --------------- 727 * ,--------------------------- + head 728 * / ,----------------- + data 729 * / / ,----------- + tail 730 * | | | , + end 731 * | | | | 732 * v v v v 733 * ----------------------------------------------- 734 * | headroom | data | tailroom | skb_shared_info | 735 * ----------------------------------------------- 736 * + [page frag] 737 * + [page frag] 738 * + [page frag] 739 * + [page frag] --------- 740 * + frag_list --> | sk_buff | 741 * --------- 742 * 743 */ 744 745 /** 746 * struct sk_buff - socket buffer 747 * @next: Next buffer in list 748 * @prev: Previous buffer in list 749 * @tstamp: Time we arrived/left 750 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 751 * for retransmit timer 752 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 753 * @list: queue head 754 * @ll_node: anchor in an llist (eg socket defer_list) 755 * @sk: Socket we are owned by 756 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 757 * fragmentation management 758 * @dev: Device we arrived on/are leaving by 759 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 760 * @cb: Control buffer. Free for use by every layer. Put private vars here 761 * @_skb_refdst: destination entry (with norefcount bit) 762 * @len: Length of actual data 763 * @data_len: Data length 764 * @mac_len: Length of link layer header 765 * @hdr_len: writable header length of cloned skb 766 * @csum: Checksum (must include start/offset pair) 767 * @csum_start: Offset from skb->head where checksumming should start 768 * @csum_offset: Offset from csum_start where checksum should be stored 769 * @priority: Packet queueing priority 770 * @ignore_df: allow local fragmentation 771 * @cloned: Head may be cloned (check refcnt to be sure) 772 * @ip_summed: Driver fed us an IP checksum 773 * @nohdr: Payload reference only, must not modify header 774 * @pkt_type: Packet class 775 * @fclone: skbuff clone status 776 * @ipvs_property: skbuff is owned by ipvs 777 * @inner_protocol_type: whether the inner protocol is 778 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 779 * @remcsum_offload: remote checksum offload is enabled 780 * @offload_fwd_mark: Packet was L2-forwarded in hardware 781 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 782 * @tc_skip_classify: do not classify packet. set by IFB device 783 * @tc_at_ingress: used within tc_classify to distinguish in/egress 784 * @redirected: packet was redirected by packet classifier 785 * @from_ingress: packet was redirected from the ingress path 786 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 787 * @peeked: this packet has been seen already, so stats have been 788 * done for it, don't do them again 789 * @nf_trace: netfilter packet trace flag 790 * @protocol: Packet protocol from driver 791 * @destructor: Destruct function 792 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 793 * @_sk_redir: socket redirection information for skmsg 794 * @_nfct: Associated connection, if any (with nfctinfo bits) 795 * @skb_iif: ifindex of device we arrived on 796 * @tc_index: Traffic control index 797 * @hash: the packet hash 798 * @queue_mapping: Queue mapping for multiqueue devices 799 * @head_frag: skb was allocated from page fragments, 800 * not allocated by kmalloc() or vmalloc(). 801 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 802 * @pp_recycle: mark the packet for recycling instead of freeing (implies 803 * page_pool support on driver) 804 * @active_extensions: active extensions (skb_ext_id types) 805 * @ndisc_nodetype: router type (from link layer) 806 * @ooo_okay: allow the mapping of a socket to a queue to be changed 807 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 808 * ports. 809 * @sw_hash: indicates hash was computed in software stack 810 * @wifi_acked_valid: wifi_acked was set 811 * @wifi_acked: whether frame was acked on wifi or not 812 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 813 * @encapsulation: indicates the inner headers in the skbuff are valid 814 * @encap_hdr_csum: software checksum is needed 815 * @csum_valid: checksum is already valid 816 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 817 * @csum_complete_sw: checksum was completed by software 818 * @csum_level: indicates the number of consecutive checksums found in 819 * the packet minus one that have been verified as 820 * CHECKSUM_UNNECESSARY (max 3) 821 * @dst_pending_confirm: need to confirm neighbour 822 * @decrypted: Decrypted SKB 823 * @slow_gro: state present at GRO time, slower prepare step required 824 * @mono_delivery_time: When set, skb->tstamp has the 825 * delivery_time in mono clock base (i.e., EDT) or a clock base chosen 826 * by SO_TXTIME. If zero, skb->tstamp has the (rcv) timestamp at 827 * ingress. 828 * @napi_id: id of the NAPI struct this skb came from 829 * @sender_cpu: (aka @napi_id) source CPU in XPS 830 * @alloc_cpu: CPU which did the skb allocation. 831 * @secmark: security marking 832 * @mark: Generic packet mark 833 * @reserved_tailroom: (aka @mark) number of bytes of free space available 834 * at the tail of an sk_buff 835 * @vlan_all: vlan fields (proto & tci) 836 * @vlan_proto: vlan encapsulation protocol 837 * @vlan_tci: vlan tag control information 838 * @inner_protocol: Protocol (encapsulation) 839 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 840 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 841 * @inner_transport_header: Inner transport layer header (encapsulation) 842 * @inner_network_header: Network layer header (encapsulation) 843 * @inner_mac_header: Link layer header (encapsulation) 844 * @transport_header: Transport layer header 845 * @network_header: Network layer header 846 * @mac_header: Link layer header 847 * @kcov_handle: KCOV remote handle for remote coverage collection 848 * @tail: Tail pointer 849 * @end: End pointer 850 * @head: Head of buffer 851 * @data: Data head pointer 852 * @truesize: Buffer size 853 * @users: User count - see {datagram,tcp}.c 854 * @extensions: allocated extensions, valid if active_extensions is nonzero 855 */ 856 857 struct sk_buff { 858 union { 859 struct { 860 /* These two members must be first to match sk_buff_head. */ 861 struct sk_buff *next; 862 struct sk_buff *prev; 863 864 union { 865 struct net_device *dev; 866 /* Some protocols might use this space to store information, 867 * while device pointer would be NULL. 868 * UDP receive path is one user. 869 */ 870 unsigned long dev_scratch; 871 }; 872 }; 873 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 874 struct list_head list; 875 struct llist_node ll_node; 876 }; 877 878 union { 879 struct sock *sk; 880 int ip_defrag_offset; 881 }; 882 883 union { 884 ktime_t tstamp; 885 u64 skb_mstamp_ns; /* earliest departure time */ 886 }; 887 /* 888 * This is the control buffer. It is free to use for every 889 * layer. Please put your private variables there. If you 890 * want to keep them across layers you have to do a skb_clone() 891 * first. This is owned by whoever has the skb queued ATM. 892 */ 893 char cb[48] __aligned(8); 894 895 union { 896 struct { 897 unsigned long _skb_refdst; 898 void (*destructor)(struct sk_buff *skb); 899 }; 900 struct list_head tcp_tsorted_anchor; 901 #ifdef CONFIG_NET_SOCK_MSG 902 unsigned long _sk_redir; 903 #endif 904 }; 905 906 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 907 unsigned long _nfct; 908 #endif 909 unsigned int len, 910 data_len; 911 __u16 mac_len, 912 hdr_len; 913 914 /* Following fields are _not_ copied in __copy_skb_header() 915 * Note that queue_mapping is here mostly to fill a hole. 916 */ 917 __u16 queue_mapping; 918 919 /* if you move cloned around you also must adapt those constants */ 920 #ifdef __BIG_ENDIAN_BITFIELD 921 #define CLONED_MASK (1 << 7) 922 #else 923 #define CLONED_MASK 1 924 #endif 925 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 926 927 /* private: */ 928 __u8 __cloned_offset[0]; 929 /* public: */ 930 __u8 cloned:1, 931 nohdr:1, 932 fclone:2, 933 peeked:1, 934 head_frag:1, 935 pfmemalloc:1, 936 pp_recycle:1; /* page_pool recycle indicator */ 937 #ifdef CONFIG_SKB_EXTENSIONS 938 __u8 active_extensions; 939 #endif 940 941 /* Fields enclosed in headers group are copied 942 * using a single memcpy() in __copy_skb_header() 943 */ 944 struct_group(headers, 945 946 /* private: */ 947 __u8 __pkt_type_offset[0]; 948 /* public: */ 949 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 950 __u8 ignore_df:1; 951 __u8 dst_pending_confirm:1; 952 __u8 ip_summed:2; 953 __u8 ooo_okay:1; 954 955 /* private: */ 956 __u8 __mono_tc_offset[0]; 957 /* public: */ 958 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 959 #ifdef CONFIG_NET_XGRESS 960 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 961 __u8 tc_skip_classify:1; 962 #endif 963 __u8 remcsum_offload:1; 964 __u8 csum_complete_sw:1; 965 __u8 csum_level:2; 966 __u8 inner_protocol_type:1; 967 968 __u8 l4_hash:1; 969 __u8 sw_hash:1; 970 #ifdef CONFIG_WIRELESS 971 __u8 wifi_acked_valid:1; 972 __u8 wifi_acked:1; 973 #endif 974 __u8 no_fcs:1; 975 /* Indicates the inner headers are valid in the skbuff. */ 976 __u8 encapsulation:1; 977 __u8 encap_hdr_csum:1; 978 __u8 csum_valid:1; 979 #ifdef CONFIG_IPV6_NDISC_NODETYPE 980 __u8 ndisc_nodetype:2; 981 #endif 982 983 #if IS_ENABLED(CONFIG_IP_VS) 984 __u8 ipvs_property:1; 985 #endif 986 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 987 __u8 nf_trace:1; 988 #endif 989 #ifdef CONFIG_NET_SWITCHDEV 990 __u8 offload_fwd_mark:1; 991 __u8 offload_l3_fwd_mark:1; 992 #endif 993 __u8 redirected:1; 994 #ifdef CONFIG_NET_REDIRECT 995 __u8 from_ingress:1; 996 #endif 997 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 998 __u8 nf_skip_egress:1; 999 #endif 1000 #ifdef CONFIG_TLS_DEVICE 1001 __u8 decrypted:1; 1002 #endif 1003 __u8 slow_gro:1; 1004 #if IS_ENABLED(CONFIG_IP_SCTP) 1005 __u8 csum_not_inet:1; 1006 #endif 1007 1008 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1009 __u16 tc_index; /* traffic control index */ 1010 #endif 1011 1012 u16 alloc_cpu; 1013 1014 union { 1015 __wsum csum; 1016 struct { 1017 __u16 csum_start; 1018 __u16 csum_offset; 1019 }; 1020 }; 1021 __u32 priority; 1022 int skb_iif; 1023 __u32 hash; 1024 union { 1025 u32 vlan_all; 1026 struct { 1027 __be16 vlan_proto; 1028 __u16 vlan_tci; 1029 }; 1030 }; 1031 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1032 union { 1033 unsigned int napi_id; 1034 unsigned int sender_cpu; 1035 }; 1036 #endif 1037 #ifdef CONFIG_NETWORK_SECMARK 1038 __u32 secmark; 1039 #endif 1040 1041 union { 1042 __u32 mark; 1043 __u32 reserved_tailroom; 1044 }; 1045 1046 union { 1047 __be16 inner_protocol; 1048 __u8 inner_ipproto; 1049 }; 1050 1051 __u16 inner_transport_header; 1052 __u16 inner_network_header; 1053 __u16 inner_mac_header; 1054 1055 __be16 protocol; 1056 __u16 transport_header; 1057 __u16 network_header; 1058 __u16 mac_header; 1059 1060 #ifdef CONFIG_KCOV 1061 u64 kcov_handle; 1062 #endif 1063 1064 ); /* end headers group */ 1065 1066 /* These elements must be at the end, see alloc_skb() for details. */ 1067 sk_buff_data_t tail; 1068 sk_buff_data_t end; 1069 unsigned char *head, 1070 *data; 1071 unsigned int truesize; 1072 refcount_t users; 1073 1074 #ifdef CONFIG_SKB_EXTENSIONS 1075 /* only usable after checking ->active_extensions != 0 */ 1076 struct skb_ext *extensions; 1077 #endif 1078 }; 1079 1080 /* if you move pkt_type around you also must adapt those constants */ 1081 #ifdef __BIG_ENDIAN_BITFIELD 1082 #define PKT_TYPE_MAX (7 << 5) 1083 #else 1084 #define PKT_TYPE_MAX 7 1085 #endif 1086 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1087 1088 /* if you move tc_at_ingress or mono_delivery_time 1089 * around, you also must adapt these constants. 1090 */ 1091 #ifdef __BIG_ENDIAN_BITFIELD 1092 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7) 1093 #define TC_AT_INGRESS_MASK (1 << 6) 1094 #else 1095 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0) 1096 #define TC_AT_INGRESS_MASK (1 << 1) 1097 #endif 1098 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1099 1100 #ifdef __KERNEL__ 1101 /* 1102 * Handling routines are only of interest to the kernel 1103 */ 1104 1105 #define SKB_ALLOC_FCLONE 0x01 1106 #define SKB_ALLOC_RX 0x02 1107 #define SKB_ALLOC_NAPI 0x04 1108 1109 /** 1110 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1111 * @skb: buffer 1112 */ 1113 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1114 { 1115 return unlikely(skb->pfmemalloc); 1116 } 1117 1118 /* 1119 * skb might have a dst pointer attached, refcounted or not. 1120 * _skb_refdst low order bit is set if refcount was _not_ taken 1121 */ 1122 #define SKB_DST_NOREF 1UL 1123 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1124 1125 /** 1126 * skb_dst - returns skb dst_entry 1127 * @skb: buffer 1128 * 1129 * Returns skb dst_entry, regardless of reference taken or not. 1130 */ 1131 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1132 { 1133 /* If refdst was not refcounted, check we still are in a 1134 * rcu_read_lock section 1135 */ 1136 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1137 !rcu_read_lock_held() && 1138 !rcu_read_lock_bh_held()); 1139 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1140 } 1141 1142 /** 1143 * skb_dst_set - sets skb dst 1144 * @skb: buffer 1145 * @dst: dst entry 1146 * 1147 * Sets skb dst, assuming a reference was taken on dst and should 1148 * be released by skb_dst_drop() 1149 */ 1150 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1151 { 1152 skb->slow_gro |= !!dst; 1153 skb->_skb_refdst = (unsigned long)dst; 1154 } 1155 1156 /** 1157 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1158 * @skb: buffer 1159 * @dst: dst entry 1160 * 1161 * Sets skb dst, assuming a reference was not taken on dst. 1162 * If dst entry is cached, we do not take reference and dst_release 1163 * will be avoided by refdst_drop. If dst entry is not cached, we take 1164 * reference, so that last dst_release can destroy the dst immediately. 1165 */ 1166 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1167 { 1168 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1169 skb->slow_gro |= !!dst; 1170 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1171 } 1172 1173 /** 1174 * skb_dst_is_noref - Test if skb dst isn't refcounted 1175 * @skb: buffer 1176 */ 1177 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1178 { 1179 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1180 } 1181 1182 /** 1183 * skb_rtable - Returns the skb &rtable 1184 * @skb: buffer 1185 */ 1186 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1187 { 1188 return (struct rtable *)skb_dst(skb); 1189 } 1190 1191 /* For mangling skb->pkt_type from user space side from applications 1192 * such as nft, tc, etc, we only allow a conservative subset of 1193 * possible pkt_types to be set. 1194 */ 1195 static inline bool skb_pkt_type_ok(u32 ptype) 1196 { 1197 return ptype <= PACKET_OTHERHOST; 1198 } 1199 1200 /** 1201 * skb_napi_id - Returns the skb's NAPI id 1202 * @skb: buffer 1203 */ 1204 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1205 { 1206 #ifdef CONFIG_NET_RX_BUSY_POLL 1207 return skb->napi_id; 1208 #else 1209 return 0; 1210 #endif 1211 } 1212 1213 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1214 { 1215 #ifdef CONFIG_WIRELESS 1216 return skb->wifi_acked_valid; 1217 #else 1218 return 0; 1219 #endif 1220 } 1221 1222 /** 1223 * skb_unref - decrement the skb's reference count 1224 * @skb: buffer 1225 * 1226 * Returns true if we can free the skb. 1227 */ 1228 static inline bool skb_unref(struct sk_buff *skb) 1229 { 1230 if (unlikely(!skb)) 1231 return false; 1232 if (likely(refcount_read(&skb->users) == 1)) 1233 smp_rmb(); 1234 else if (likely(!refcount_dec_and_test(&skb->users))) 1235 return false; 1236 1237 return true; 1238 } 1239 1240 void __fix_address 1241 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1242 1243 /** 1244 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1245 * @skb: buffer to free 1246 */ 1247 static inline void kfree_skb(struct sk_buff *skb) 1248 { 1249 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1250 } 1251 1252 void skb_release_head_state(struct sk_buff *skb); 1253 void kfree_skb_list_reason(struct sk_buff *segs, 1254 enum skb_drop_reason reason); 1255 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1256 void skb_tx_error(struct sk_buff *skb); 1257 1258 static inline void kfree_skb_list(struct sk_buff *segs) 1259 { 1260 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1261 } 1262 1263 #ifdef CONFIG_TRACEPOINTS 1264 void consume_skb(struct sk_buff *skb); 1265 #else 1266 static inline void consume_skb(struct sk_buff *skb) 1267 { 1268 return kfree_skb(skb); 1269 } 1270 #endif 1271 1272 void __consume_stateless_skb(struct sk_buff *skb); 1273 void __kfree_skb(struct sk_buff *skb); 1274 extern struct kmem_cache *skbuff_cache; 1275 1276 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1277 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1278 bool *fragstolen, int *delta_truesize); 1279 1280 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1281 int node); 1282 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1283 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1284 struct sk_buff *build_skb_around(struct sk_buff *skb, 1285 void *data, unsigned int frag_size); 1286 void skb_attempt_defer_free(struct sk_buff *skb); 1287 1288 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1289 struct sk_buff *slab_build_skb(void *data); 1290 1291 /** 1292 * alloc_skb - allocate a network buffer 1293 * @size: size to allocate 1294 * @priority: allocation mask 1295 * 1296 * This function is a convenient wrapper around __alloc_skb(). 1297 */ 1298 static inline struct sk_buff *alloc_skb(unsigned int size, 1299 gfp_t priority) 1300 { 1301 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1302 } 1303 1304 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1305 unsigned long data_len, 1306 int max_page_order, 1307 int *errcode, 1308 gfp_t gfp_mask); 1309 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1310 1311 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1312 struct sk_buff_fclones { 1313 struct sk_buff skb1; 1314 1315 struct sk_buff skb2; 1316 1317 refcount_t fclone_ref; 1318 }; 1319 1320 /** 1321 * skb_fclone_busy - check if fclone is busy 1322 * @sk: socket 1323 * @skb: buffer 1324 * 1325 * Returns true if skb is a fast clone, and its clone is not freed. 1326 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1327 * so we also check that didn't happen. 1328 */ 1329 static inline bool skb_fclone_busy(const struct sock *sk, 1330 const struct sk_buff *skb) 1331 { 1332 const struct sk_buff_fclones *fclones; 1333 1334 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1335 1336 return skb->fclone == SKB_FCLONE_ORIG && 1337 refcount_read(&fclones->fclone_ref) > 1 && 1338 READ_ONCE(fclones->skb2.sk) == sk; 1339 } 1340 1341 /** 1342 * alloc_skb_fclone - allocate a network buffer from fclone cache 1343 * @size: size to allocate 1344 * @priority: allocation mask 1345 * 1346 * This function is a convenient wrapper around __alloc_skb(). 1347 */ 1348 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1349 gfp_t priority) 1350 { 1351 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1352 } 1353 1354 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1355 void skb_headers_offset_update(struct sk_buff *skb, int off); 1356 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1357 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1358 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1359 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1360 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1361 gfp_t gfp_mask, bool fclone); 1362 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1363 gfp_t gfp_mask) 1364 { 1365 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1366 } 1367 1368 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1369 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1370 unsigned int headroom); 1371 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1372 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1373 int newtailroom, gfp_t priority); 1374 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1375 int offset, int len); 1376 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1377 int offset, int len); 1378 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1379 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1380 1381 /** 1382 * skb_pad - zero pad the tail of an skb 1383 * @skb: buffer to pad 1384 * @pad: space to pad 1385 * 1386 * Ensure that a buffer is followed by a padding area that is zero 1387 * filled. Used by network drivers which may DMA or transfer data 1388 * beyond the buffer end onto the wire. 1389 * 1390 * May return error in out of memory cases. The skb is freed on error. 1391 */ 1392 static inline int skb_pad(struct sk_buff *skb, int pad) 1393 { 1394 return __skb_pad(skb, pad, true); 1395 } 1396 #define dev_kfree_skb(a) consume_skb(a) 1397 1398 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1399 int offset, size_t size, size_t max_frags); 1400 1401 struct skb_seq_state { 1402 __u32 lower_offset; 1403 __u32 upper_offset; 1404 __u32 frag_idx; 1405 __u32 stepped_offset; 1406 struct sk_buff *root_skb; 1407 struct sk_buff *cur_skb; 1408 __u8 *frag_data; 1409 __u32 frag_off; 1410 }; 1411 1412 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1413 unsigned int to, struct skb_seq_state *st); 1414 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1415 struct skb_seq_state *st); 1416 void skb_abort_seq_read(struct skb_seq_state *st); 1417 1418 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1419 unsigned int to, struct ts_config *config); 1420 1421 /* 1422 * Packet hash types specify the type of hash in skb_set_hash. 1423 * 1424 * Hash types refer to the protocol layer addresses which are used to 1425 * construct a packet's hash. The hashes are used to differentiate or identify 1426 * flows of the protocol layer for the hash type. Hash types are either 1427 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1428 * 1429 * Properties of hashes: 1430 * 1431 * 1) Two packets in different flows have different hash values 1432 * 2) Two packets in the same flow should have the same hash value 1433 * 1434 * A hash at a higher layer is considered to be more specific. A driver should 1435 * set the most specific hash possible. 1436 * 1437 * A driver cannot indicate a more specific hash than the layer at which a hash 1438 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1439 * 1440 * A driver may indicate a hash level which is less specific than the 1441 * actual layer the hash was computed on. For instance, a hash computed 1442 * at L4 may be considered an L3 hash. This should only be done if the 1443 * driver can't unambiguously determine that the HW computed the hash at 1444 * the higher layer. Note that the "should" in the second property above 1445 * permits this. 1446 */ 1447 enum pkt_hash_types { 1448 PKT_HASH_TYPE_NONE, /* Undefined type */ 1449 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1450 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1451 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1452 }; 1453 1454 static inline void skb_clear_hash(struct sk_buff *skb) 1455 { 1456 skb->hash = 0; 1457 skb->sw_hash = 0; 1458 skb->l4_hash = 0; 1459 } 1460 1461 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1462 { 1463 if (!skb->l4_hash) 1464 skb_clear_hash(skb); 1465 } 1466 1467 static inline void 1468 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1469 { 1470 skb->l4_hash = is_l4; 1471 skb->sw_hash = is_sw; 1472 skb->hash = hash; 1473 } 1474 1475 static inline void 1476 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1477 { 1478 /* Used by drivers to set hash from HW */ 1479 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1480 } 1481 1482 static inline void 1483 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1484 { 1485 __skb_set_hash(skb, hash, true, is_l4); 1486 } 1487 1488 void __skb_get_hash(struct sk_buff *skb); 1489 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1490 u32 skb_get_poff(const struct sk_buff *skb); 1491 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1492 const struct flow_keys_basic *keys, int hlen); 1493 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1494 const void *data, int hlen_proto); 1495 1496 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1497 int thoff, u8 ip_proto) 1498 { 1499 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1500 } 1501 1502 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1503 const struct flow_dissector_key *key, 1504 unsigned int key_count); 1505 1506 struct bpf_flow_dissector; 1507 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1508 __be16 proto, int nhoff, int hlen, unsigned int flags); 1509 1510 bool __skb_flow_dissect(const struct net *net, 1511 const struct sk_buff *skb, 1512 struct flow_dissector *flow_dissector, 1513 void *target_container, const void *data, 1514 __be16 proto, int nhoff, int hlen, unsigned int flags); 1515 1516 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1517 struct flow_dissector *flow_dissector, 1518 void *target_container, unsigned int flags) 1519 { 1520 return __skb_flow_dissect(NULL, skb, flow_dissector, 1521 target_container, NULL, 0, 0, 0, flags); 1522 } 1523 1524 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1525 struct flow_keys *flow, 1526 unsigned int flags) 1527 { 1528 memset(flow, 0, sizeof(*flow)); 1529 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1530 flow, NULL, 0, 0, 0, flags); 1531 } 1532 1533 static inline bool 1534 skb_flow_dissect_flow_keys_basic(const struct net *net, 1535 const struct sk_buff *skb, 1536 struct flow_keys_basic *flow, 1537 const void *data, __be16 proto, 1538 int nhoff, int hlen, unsigned int flags) 1539 { 1540 memset(flow, 0, sizeof(*flow)); 1541 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1542 data, proto, nhoff, hlen, flags); 1543 } 1544 1545 void skb_flow_dissect_meta(const struct sk_buff *skb, 1546 struct flow_dissector *flow_dissector, 1547 void *target_container); 1548 1549 /* Gets a skb connection tracking info, ctinfo map should be a 1550 * map of mapsize to translate enum ip_conntrack_info states 1551 * to user states. 1552 */ 1553 void 1554 skb_flow_dissect_ct(const struct sk_buff *skb, 1555 struct flow_dissector *flow_dissector, 1556 void *target_container, 1557 u16 *ctinfo_map, size_t mapsize, 1558 bool post_ct, u16 zone); 1559 void 1560 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1561 struct flow_dissector *flow_dissector, 1562 void *target_container); 1563 1564 void skb_flow_dissect_hash(const struct sk_buff *skb, 1565 struct flow_dissector *flow_dissector, 1566 void *target_container); 1567 1568 static inline __u32 skb_get_hash(struct sk_buff *skb) 1569 { 1570 if (!skb->l4_hash && !skb->sw_hash) 1571 __skb_get_hash(skb); 1572 1573 return skb->hash; 1574 } 1575 1576 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1577 { 1578 if (!skb->l4_hash && !skb->sw_hash) { 1579 struct flow_keys keys; 1580 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1581 1582 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1583 } 1584 1585 return skb->hash; 1586 } 1587 1588 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1589 const siphash_key_t *perturb); 1590 1591 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1592 { 1593 return skb->hash; 1594 } 1595 1596 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1597 { 1598 to->hash = from->hash; 1599 to->sw_hash = from->sw_hash; 1600 to->l4_hash = from->l4_hash; 1601 }; 1602 1603 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1604 const struct sk_buff *skb2) 1605 { 1606 #ifdef CONFIG_TLS_DEVICE 1607 return skb2->decrypted - skb1->decrypted; 1608 #else 1609 return 0; 1610 #endif 1611 } 1612 1613 static inline void skb_copy_decrypted(struct sk_buff *to, 1614 const struct sk_buff *from) 1615 { 1616 #ifdef CONFIG_TLS_DEVICE 1617 to->decrypted = from->decrypted; 1618 #endif 1619 } 1620 1621 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1622 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1623 { 1624 return skb->head + skb->end; 1625 } 1626 1627 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1628 { 1629 return skb->end; 1630 } 1631 1632 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1633 { 1634 skb->end = offset; 1635 } 1636 #else 1637 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1638 { 1639 return skb->end; 1640 } 1641 1642 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1643 { 1644 return skb->end - skb->head; 1645 } 1646 1647 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1648 { 1649 skb->end = skb->head + offset; 1650 } 1651 #endif 1652 1653 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1654 struct ubuf_info *uarg); 1655 1656 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1657 1658 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1659 bool success); 1660 1661 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1662 struct sk_buff *skb, struct iov_iter *from, 1663 size_t length); 1664 1665 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1666 struct msghdr *msg, int len) 1667 { 1668 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1669 } 1670 1671 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1672 struct msghdr *msg, int len, 1673 struct ubuf_info *uarg); 1674 1675 /* Internal */ 1676 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1677 1678 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1679 { 1680 return &skb_shinfo(skb)->hwtstamps; 1681 } 1682 1683 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1684 { 1685 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1686 1687 return is_zcopy ? skb_uarg(skb) : NULL; 1688 } 1689 1690 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1691 { 1692 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1693 } 1694 1695 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1696 { 1697 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1698 } 1699 1700 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1701 const struct sk_buff *skb2) 1702 { 1703 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1704 } 1705 1706 static inline void net_zcopy_get(struct ubuf_info *uarg) 1707 { 1708 refcount_inc(&uarg->refcnt); 1709 } 1710 1711 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1712 { 1713 skb_shinfo(skb)->destructor_arg = uarg; 1714 skb_shinfo(skb)->flags |= uarg->flags; 1715 } 1716 1717 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1718 bool *have_ref) 1719 { 1720 if (skb && uarg && !skb_zcopy(skb)) { 1721 if (unlikely(have_ref && *have_ref)) 1722 *have_ref = false; 1723 else 1724 net_zcopy_get(uarg); 1725 skb_zcopy_init(skb, uarg); 1726 } 1727 } 1728 1729 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1730 { 1731 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1732 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1733 } 1734 1735 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1736 { 1737 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1738 } 1739 1740 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1741 { 1742 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1743 } 1744 1745 static inline void net_zcopy_put(struct ubuf_info *uarg) 1746 { 1747 if (uarg) 1748 uarg->callback(NULL, uarg, true); 1749 } 1750 1751 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1752 { 1753 if (uarg) { 1754 if (uarg->callback == msg_zerocopy_callback) 1755 msg_zerocopy_put_abort(uarg, have_uref); 1756 else if (have_uref) 1757 net_zcopy_put(uarg); 1758 } 1759 } 1760 1761 /* Release a reference on a zerocopy structure */ 1762 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1763 { 1764 struct ubuf_info *uarg = skb_zcopy(skb); 1765 1766 if (uarg) { 1767 if (!skb_zcopy_is_nouarg(skb)) 1768 uarg->callback(skb, uarg, zerocopy_success); 1769 1770 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1771 } 1772 } 1773 1774 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1775 1776 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1777 { 1778 if (unlikely(skb_zcopy_managed(skb))) 1779 __skb_zcopy_downgrade_managed(skb); 1780 } 1781 1782 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1783 { 1784 skb->next = NULL; 1785 } 1786 1787 static inline void skb_poison_list(struct sk_buff *skb) 1788 { 1789 #ifdef CONFIG_DEBUG_NET 1790 skb->next = SKB_LIST_POISON_NEXT; 1791 #endif 1792 } 1793 1794 /* Iterate through singly-linked GSO fragments of an skb. */ 1795 #define skb_list_walk_safe(first, skb, next_skb) \ 1796 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1797 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1798 1799 static inline void skb_list_del_init(struct sk_buff *skb) 1800 { 1801 __list_del_entry(&skb->list); 1802 skb_mark_not_on_list(skb); 1803 } 1804 1805 /** 1806 * skb_queue_empty - check if a queue is empty 1807 * @list: queue head 1808 * 1809 * Returns true if the queue is empty, false otherwise. 1810 */ 1811 static inline int skb_queue_empty(const struct sk_buff_head *list) 1812 { 1813 return list->next == (const struct sk_buff *) list; 1814 } 1815 1816 /** 1817 * skb_queue_empty_lockless - check if a queue is empty 1818 * @list: queue head 1819 * 1820 * Returns true if the queue is empty, false otherwise. 1821 * This variant can be used in lockless contexts. 1822 */ 1823 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1824 { 1825 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1826 } 1827 1828 1829 /** 1830 * skb_queue_is_last - check if skb is the last entry in the queue 1831 * @list: queue head 1832 * @skb: buffer 1833 * 1834 * Returns true if @skb is the last buffer on the list. 1835 */ 1836 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1837 const struct sk_buff *skb) 1838 { 1839 return skb->next == (const struct sk_buff *) list; 1840 } 1841 1842 /** 1843 * skb_queue_is_first - check if skb is the first entry in the queue 1844 * @list: queue head 1845 * @skb: buffer 1846 * 1847 * Returns true if @skb is the first buffer on the list. 1848 */ 1849 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1850 const struct sk_buff *skb) 1851 { 1852 return skb->prev == (const struct sk_buff *) list; 1853 } 1854 1855 /** 1856 * skb_queue_next - return the next packet in the queue 1857 * @list: queue head 1858 * @skb: current buffer 1859 * 1860 * Return the next packet in @list after @skb. It is only valid to 1861 * call this if skb_queue_is_last() evaluates to false. 1862 */ 1863 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1864 const struct sk_buff *skb) 1865 { 1866 /* This BUG_ON may seem severe, but if we just return then we 1867 * are going to dereference garbage. 1868 */ 1869 BUG_ON(skb_queue_is_last(list, skb)); 1870 return skb->next; 1871 } 1872 1873 /** 1874 * skb_queue_prev - return the prev packet in the queue 1875 * @list: queue head 1876 * @skb: current buffer 1877 * 1878 * Return the prev packet in @list before @skb. It is only valid to 1879 * call this if skb_queue_is_first() evaluates to false. 1880 */ 1881 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1882 const struct sk_buff *skb) 1883 { 1884 /* This BUG_ON may seem severe, but if we just return then we 1885 * are going to dereference garbage. 1886 */ 1887 BUG_ON(skb_queue_is_first(list, skb)); 1888 return skb->prev; 1889 } 1890 1891 /** 1892 * skb_get - reference buffer 1893 * @skb: buffer to reference 1894 * 1895 * Makes another reference to a socket buffer and returns a pointer 1896 * to the buffer. 1897 */ 1898 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1899 { 1900 refcount_inc(&skb->users); 1901 return skb; 1902 } 1903 1904 /* 1905 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1906 */ 1907 1908 /** 1909 * skb_cloned - is the buffer a clone 1910 * @skb: buffer to check 1911 * 1912 * Returns true if the buffer was generated with skb_clone() and is 1913 * one of multiple shared copies of the buffer. Cloned buffers are 1914 * shared data so must not be written to under normal circumstances. 1915 */ 1916 static inline int skb_cloned(const struct sk_buff *skb) 1917 { 1918 return skb->cloned && 1919 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1920 } 1921 1922 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1923 { 1924 might_sleep_if(gfpflags_allow_blocking(pri)); 1925 1926 if (skb_cloned(skb)) 1927 return pskb_expand_head(skb, 0, 0, pri); 1928 1929 return 0; 1930 } 1931 1932 /* This variant of skb_unclone() makes sure skb->truesize 1933 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1934 * 1935 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1936 * when various debugging features are in place. 1937 */ 1938 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1939 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1940 { 1941 might_sleep_if(gfpflags_allow_blocking(pri)); 1942 1943 if (skb_cloned(skb)) 1944 return __skb_unclone_keeptruesize(skb, pri); 1945 return 0; 1946 } 1947 1948 /** 1949 * skb_header_cloned - is the header a clone 1950 * @skb: buffer to check 1951 * 1952 * Returns true if modifying the header part of the buffer requires 1953 * the data to be copied. 1954 */ 1955 static inline int skb_header_cloned(const struct sk_buff *skb) 1956 { 1957 int dataref; 1958 1959 if (!skb->cloned) 1960 return 0; 1961 1962 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1963 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1964 return dataref != 1; 1965 } 1966 1967 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1968 { 1969 might_sleep_if(gfpflags_allow_blocking(pri)); 1970 1971 if (skb_header_cloned(skb)) 1972 return pskb_expand_head(skb, 0, 0, pri); 1973 1974 return 0; 1975 } 1976 1977 /** 1978 * __skb_header_release() - allow clones to use the headroom 1979 * @skb: buffer to operate on 1980 * 1981 * See "DOC: dataref and headerless skbs". 1982 */ 1983 static inline void __skb_header_release(struct sk_buff *skb) 1984 { 1985 skb->nohdr = 1; 1986 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1987 } 1988 1989 1990 /** 1991 * skb_shared - is the buffer shared 1992 * @skb: buffer to check 1993 * 1994 * Returns true if more than one person has a reference to this 1995 * buffer. 1996 */ 1997 static inline int skb_shared(const struct sk_buff *skb) 1998 { 1999 return refcount_read(&skb->users) != 1; 2000 } 2001 2002 /** 2003 * skb_share_check - check if buffer is shared and if so clone it 2004 * @skb: buffer to check 2005 * @pri: priority for memory allocation 2006 * 2007 * If the buffer is shared the buffer is cloned and the old copy 2008 * drops a reference. A new clone with a single reference is returned. 2009 * If the buffer is not shared the original buffer is returned. When 2010 * being called from interrupt status or with spinlocks held pri must 2011 * be GFP_ATOMIC. 2012 * 2013 * NULL is returned on a memory allocation failure. 2014 */ 2015 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2016 { 2017 might_sleep_if(gfpflags_allow_blocking(pri)); 2018 if (skb_shared(skb)) { 2019 struct sk_buff *nskb = skb_clone(skb, pri); 2020 2021 if (likely(nskb)) 2022 consume_skb(skb); 2023 else 2024 kfree_skb(skb); 2025 skb = nskb; 2026 } 2027 return skb; 2028 } 2029 2030 /* 2031 * Copy shared buffers into a new sk_buff. We effectively do COW on 2032 * packets to handle cases where we have a local reader and forward 2033 * and a couple of other messy ones. The normal one is tcpdumping 2034 * a packet that's being forwarded. 2035 */ 2036 2037 /** 2038 * skb_unshare - make a copy of a shared buffer 2039 * @skb: buffer to check 2040 * @pri: priority for memory allocation 2041 * 2042 * If the socket buffer is a clone then this function creates a new 2043 * copy of the data, drops a reference count on the old copy and returns 2044 * the new copy with the reference count at 1. If the buffer is not a clone 2045 * the original buffer is returned. When called with a spinlock held or 2046 * from interrupt state @pri must be %GFP_ATOMIC 2047 * 2048 * %NULL is returned on a memory allocation failure. 2049 */ 2050 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2051 gfp_t pri) 2052 { 2053 might_sleep_if(gfpflags_allow_blocking(pri)); 2054 if (skb_cloned(skb)) { 2055 struct sk_buff *nskb = skb_copy(skb, pri); 2056 2057 /* Free our shared copy */ 2058 if (likely(nskb)) 2059 consume_skb(skb); 2060 else 2061 kfree_skb(skb); 2062 skb = nskb; 2063 } 2064 return skb; 2065 } 2066 2067 /** 2068 * skb_peek - peek at the head of an &sk_buff_head 2069 * @list_: list to peek at 2070 * 2071 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2072 * be careful with this one. A peek leaves the buffer on the 2073 * list and someone else may run off with it. You must hold 2074 * the appropriate locks or have a private queue to do this. 2075 * 2076 * Returns %NULL for an empty list or a pointer to the head element. 2077 * The reference count is not incremented and the reference is therefore 2078 * volatile. Use with caution. 2079 */ 2080 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2081 { 2082 struct sk_buff *skb = list_->next; 2083 2084 if (skb == (struct sk_buff *)list_) 2085 skb = NULL; 2086 return skb; 2087 } 2088 2089 /** 2090 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2091 * @list_: list to peek at 2092 * 2093 * Like skb_peek(), but the caller knows that the list is not empty. 2094 */ 2095 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2096 { 2097 return list_->next; 2098 } 2099 2100 /** 2101 * skb_peek_next - peek skb following the given one from a queue 2102 * @skb: skb to start from 2103 * @list_: list to peek at 2104 * 2105 * Returns %NULL when the end of the list is met or a pointer to the 2106 * next element. The reference count is not incremented and the 2107 * reference is therefore volatile. Use with caution. 2108 */ 2109 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2110 const struct sk_buff_head *list_) 2111 { 2112 struct sk_buff *next = skb->next; 2113 2114 if (next == (struct sk_buff *)list_) 2115 next = NULL; 2116 return next; 2117 } 2118 2119 /** 2120 * skb_peek_tail - peek at the tail of an &sk_buff_head 2121 * @list_: list to peek at 2122 * 2123 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2124 * be careful with this one. A peek leaves the buffer on the 2125 * list and someone else may run off with it. You must hold 2126 * the appropriate locks or have a private queue to do this. 2127 * 2128 * Returns %NULL for an empty list or a pointer to the tail element. 2129 * The reference count is not incremented and the reference is therefore 2130 * volatile. Use with caution. 2131 */ 2132 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2133 { 2134 struct sk_buff *skb = READ_ONCE(list_->prev); 2135 2136 if (skb == (struct sk_buff *)list_) 2137 skb = NULL; 2138 return skb; 2139 2140 } 2141 2142 /** 2143 * skb_queue_len - get queue length 2144 * @list_: list to measure 2145 * 2146 * Return the length of an &sk_buff queue. 2147 */ 2148 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2149 { 2150 return list_->qlen; 2151 } 2152 2153 /** 2154 * skb_queue_len_lockless - get queue length 2155 * @list_: list to measure 2156 * 2157 * Return the length of an &sk_buff queue. 2158 * This variant can be used in lockless contexts. 2159 */ 2160 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2161 { 2162 return READ_ONCE(list_->qlen); 2163 } 2164 2165 /** 2166 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2167 * @list: queue to initialize 2168 * 2169 * This initializes only the list and queue length aspects of 2170 * an sk_buff_head object. This allows to initialize the list 2171 * aspects of an sk_buff_head without reinitializing things like 2172 * the spinlock. It can also be used for on-stack sk_buff_head 2173 * objects where the spinlock is known to not be used. 2174 */ 2175 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2176 { 2177 list->prev = list->next = (struct sk_buff *)list; 2178 list->qlen = 0; 2179 } 2180 2181 /* 2182 * This function creates a split out lock class for each invocation; 2183 * this is needed for now since a whole lot of users of the skb-queue 2184 * infrastructure in drivers have different locking usage (in hardirq) 2185 * than the networking core (in softirq only). In the long run either the 2186 * network layer or drivers should need annotation to consolidate the 2187 * main types of usage into 3 classes. 2188 */ 2189 static inline void skb_queue_head_init(struct sk_buff_head *list) 2190 { 2191 spin_lock_init(&list->lock); 2192 __skb_queue_head_init(list); 2193 } 2194 2195 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2196 struct lock_class_key *class) 2197 { 2198 skb_queue_head_init(list); 2199 lockdep_set_class(&list->lock, class); 2200 } 2201 2202 /* 2203 * Insert an sk_buff on a list. 2204 * 2205 * The "__skb_xxxx()" functions are the non-atomic ones that 2206 * can only be called with interrupts disabled. 2207 */ 2208 static inline void __skb_insert(struct sk_buff *newsk, 2209 struct sk_buff *prev, struct sk_buff *next, 2210 struct sk_buff_head *list) 2211 { 2212 /* See skb_queue_empty_lockless() and skb_peek_tail() 2213 * for the opposite READ_ONCE() 2214 */ 2215 WRITE_ONCE(newsk->next, next); 2216 WRITE_ONCE(newsk->prev, prev); 2217 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2218 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2219 WRITE_ONCE(list->qlen, list->qlen + 1); 2220 } 2221 2222 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2223 struct sk_buff *prev, 2224 struct sk_buff *next) 2225 { 2226 struct sk_buff *first = list->next; 2227 struct sk_buff *last = list->prev; 2228 2229 WRITE_ONCE(first->prev, prev); 2230 WRITE_ONCE(prev->next, first); 2231 2232 WRITE_ONCE(last->next, next); 2233 WRITE_ONCE(next->prev, last); 2234 } 2235 2236 /** 2237 * skb_queue_splice - join two skb lists, this is designed for stacks 2238 * @list: the new list to add 2239 * @head: the place to add it in the first list 2240 */ 2241 static inline void skb_queue_splice(const struct sk_buff_head *list, 2242 struct sk_buff_head *head) 2243 { 2244 if (!skb_queue_empty(list)) { 2245 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2246 head->qlen += list->qlen; 2247 } 2248 } 2249 2250 /** 2251 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2252 * @list: the new list to add 2253 * @head: the place to add it in the first list 2254 * 2255 * The list at @list is reinitialised 2256 */ 2257 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2258 struct sk_buff_head *head) 2259 { 2260 if (!skb_queue_empty(list)) { 2261 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2262 head->qlen += list->qlen; 2263 __skb_queue_head_init(list); 2264 } 2265 } 2266 2267 /** 2268 * skb_queue_splice_tail - join two skb lists, each list being a queue 2269 * @list: the new list to add 2270 * @head: the place to add it in the first list 2271 */ 2272 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2273 struct sk_buff_head *head) 2274 { 2275 if (!skb_queue_empty(list)) { 2276 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2277 head->qlen += list->qlen; 2278 } 2279 } 2280 2281 /** 2282 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2283 * @list: the new list to add 2284 * @head: the place to add it in the first list 2285 * 2286 * Each of the lists is a queue. 2287 * The list at @list is reinitialised 2288 */ 2289 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2290 struct sk_buff_head *head) 2291 { 2292 if (!skb_queue_empty(list)) { 2293 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2294 head->qlen += list->qlen; 2295 __skb_queue_head_init(list); 2296 } 2297 } 2298 2299 /** 2300 * __skb_queue_after - queue a buffer at the list head 2301 * @list: list to use 2302 * @prev: place after this buffer 2303 * @newsk: buffer to queue 2304 * 2305 * Queue a buffer int the middle of a list. This function takes no locks 2306 * and you must therefore hold required locks before calling it. 2307 * 2308 * A buffer cannot be placed on two lists at the same time. 2309 */ 2310 static inline void __skb_queue_after(struct sk_buff_head *list, 2311 struct sk_buff *prev, 2312 struct sk_buff *newsk) 2313 { 2314 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2315 } 2316 2317 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2318 struct sk_buff_head *list); 2319 2320 static inline void __skb_queue_before(struct sk_buff_head *list, 2321 struct sk_buff *next, 2322 struct sk_buff *newsk) 2323 { 2324 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2325 } 2326 2327 /** 2328 * __skb_queue_head - queue a buffer at the list head 2329 * @list: list to use 2330 * @newsk: buffer to queue 2331 * 2332 * Queue a buffer at the start of a list. This function takes no locks 2333 * and you must therefore hold required locks before calling it. 2334 * 2335 * A buffer cannot be placed on two lists at the same time. 2336 */ 2337 static inline void __skb_queue_head(struct sk_buff_head *list, 2338 struct sk_buff *newsk) 2339 { 2340 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2341 } 2342 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2343 2344 /** 2345 * __skb_queue_tail - queue a buffer at the list tail 2346 * @list: list to use 2347 * @newsk: buffer to queue 2348 * 2349 * Queue a buffer at the end of a list. This function takes no locks 2350 * and you must therefore hold required locks before calling it. 2351 * 2352 * A buffer cannot be placed on two lists at the same time. 2353 */ 2354 static inline void __skb_queue_tail(struct sk_buff_head *list, 2355 struct sk_buff *newsk) 2356 { 2357 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2358 } 2359 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2360 2361 /* 2362 * remove sk_buff from list. _Must_ be called atomically, and with 2363 * the list known.. 2364 */ 2365 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2366 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2367 { 2368 struct sk_buff *next, *prev; 2369 2370 WRITE_ONCE(list->qlen, list->qlen - 1); 2371 next = skb->next; 2372 prev = skb->prev; 2373 skb->next = skb->prev = NULL; 2374 WRITE_ONCE(next->prev, prev); 2375 WRITE_ONCE(prev->next, next); 2376 } 2377 2378 /** 2379 * __skb_dequeue - remove from the head of the queue 2380 * @list: list to dequeue from 2381 * 2382 * Remove the head of the list. This function does not take any locks 2383 * so must be used with appropriate locks held only. The head item is 2384 * returned or %NULL if the list is empty. 2385 */ 2386 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2387 { 2388 struct sk_buff *skb = skb_peek(list); 2389 if (skb) 2390 __skb_unlink(skb, list); 2391 return skb; 2392 } 2393 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2394 2395 /** 2396 * __skb_dequeue_tail - remove from the tail of the queue 2397 * @list: list to dequeue from 2398 * 2399 * Remove the tail of the list. This function does not take any locks 2400 * so must be used with appropriate locks held only. The tail item is 2401 * returned or %NULL if the list is empty. 2402 */ 2403 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2404 { 2405 struct sk_buff *skb = skb_peek_tail(list); 2406 if (skb) 2407 __skb_unlink(skb, list); 2408 return skb; 2409 } 2410 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2411 2412 2413 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2414 { 2415 return skb->data_len; 2416 } 2417 2418 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2419 { 2420 return skb->len - skb->data_len; 2421 } 2422 2423 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2424 { 2425 unsigned int i, len = 0; 2426 2427 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2428 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2429 return len; 2430 } 2431 2432 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2433 { 2434 return skb_headlen(skb) + __skb_pagelen(skb); 2435 } 2436 2437 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2438 netmem_ref netmem, int off, 2439 int size) 2440 { 2441 frag->netmem = netmem; 2442 frag->offset = off; 2443 skb_frag_size_set(frag, size); 2444 } 2445 2446 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2447 struct page *page, 2448 int off, int size) 2449 { 2450 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2451 } 2452 2453 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2454 int i, netmem_ref netmem, 2455 int off, int size) 2456 { 2457 skb_frag_t *frag = &shinfo->frags[i]; 2458 2459 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2460 } 2461 2462 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2463 int i, struct page *page, 2464 int off, int size) 2465 { 2466 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2467 size); 2468 } 2469 2470 /** 2471 * skb_len_add - adds a number to len fields of skb 2472 * @skb: buffer to add len to 2473 * @delta: number of bytes to add 2474 */ 2475 static inline void skb_len_add(struct sk_buff *skb, int delta) 2476 { 2477 skb->len += delta; 2478 skb->data_len += delta; 2479 skb->truesize += delta; 2480 } 2481 2482 /** 2483 * __skb_fill_netmem_desc - initialise a fragment in an skb 2484 * @skb: buffer containing fragment to be initialised 2485 * @i: fragment index to initialise 2486 * @netmem: the netmem to use for this fragment 2487 * @off: the offset to the data with @page 2488 * @size: the length of the data 2489 * 2490 * Initialises the @i'th fragment of @skb to point to &size bytes at 2491 * offset @off within @page. 2492 * 2493 * Does not take any additional reference on the fragment. 2494 */ 2495 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2496 netmem_ref netmem, int off, int size) 2497 { 2498 struct page *page = netmem_to_page(netmem); 2499 2500 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2501 2502 /* Propagate page pfmemalloc to the skb if we can. The problem is 2503 * that not all callers have unique ownership of the page but rely 2504 * on page_is_pfmemalloc doing the right thing(tm). 2505 */ 2506 page = compound_head(page); 2507 if (page_is_pfmemalloc(page)) 2508 skb->pfmemalloc = true; 2509 } 2510 2511 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2512 struct page *page, int off, int size) 2513 { 2514 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2515 } 2516 2517 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2518 netmem_ref netmem, int off, int size) 2519 { 2520 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2521 skb_shinfo(skb)->nr_frags = i + 1; 2522 } 2523 2524 /** 2525 * skb_fill_page_desc - initialise a paged fragment in an skb 2526 * @skb: buffer containing fragment to be initialised 2527 * @i: paged fragment index to initialise 2528 * @page: the page to use for this fragment 2529 * @off: the offset to the data with @page 2530 * @size: the length of the data 2531 * 2532 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2533 * @skb to point to @size bytes at offset @off within @page. In 2534 * addition updates @skb such that @i is the last fragment. 2535 * 2536 * Does not take any additional reference on the fragment. 2537 */ 2538 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2539 struct page *page, int off, int size) 2540 { 2541 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2542 } 2543 2544 /** 2545 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2546 * @skb: buffer containing fragment to be initialised 2547 * @i: paged fragment index to initialise 2548 * @page: the page to use for this fragment 2549 * @off: the offset to the data with @page 2550 * @size: the length of the data 2551 * 2552 * Variant of skb_fill_page_desc() which does not deal with 2553 * pfmemalloc, if page is not owned by us. 2554 */ 2555 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2556 struct page *page, int off, 2557 int size) 2558 { 2559 struct skb_shared_info *shinfo = skb_shinfo(skb); 2560 2561 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2562 shinfo->nr_frags = i + 1; 2563 } 2564 2565 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2566 int off, int size, unsigned int truesize); 2567 2568 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2569 struct page *page, int off, int size, 2570 unsigned int truesize) 2571 { 2572 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2573 truesize); 2574 } 2575 2576 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2577 unsigned int truesize); 2578 2579 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2580 2581 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2582 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2583 { 2584 return skb->head + skb->tail; 2585 } 2586 2587 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2588 { 2589 skb->tail = skb->data - skb->head; 2590 } 2591 2592 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2593 { 2594 skb_reset_tail_pointer(skb); 2595 skb->tail += offset; 2596 } 2597 2598 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2599 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2600 { 2601 return skb->tail; 2602 } 2603 2604 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2605 { 2606 skb->tail = skb->data; 2607 } 2608 2609 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2610 { 2611 skb->tail = skb->data + offset; 2612 } 2613 2614 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2615 2616 static inline void skb_assert_len(struct sk_buff *skb) 2617 { 2618 #ifdef CONFIG_DEBUG_NET 2619 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2620 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2621 #endif /* CONFIG_DEBUG_NET */ 2622 } 2623 2624 /* 2625 * Add data to an sk_buff 2626 */ 2627 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2628 void *skb_put(struct sk_buff *skb, unsigned int len); 2629 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2630 { 2631 void *tmp = skb_tail_pointer(skb); 2632 SKB_LINEAR_ASSERT(skb); 2633 skb->tail += len; 2634 skb->len += len; 2635 return tmp; 2636 } 2637 2638 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2639 { 2640 void *tmp = __skb_put(skb, len); 2641 2642 memset(tmp, 0, len); 2643 return tmp; 2644 } 2645 2646 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2647 unsigned int len) 2648 { 2649 void *tmp = __skb_put(skb, len); 2650 2651 memcpy(tmp, data, len); 2652 return tmp; 2653 } 2654 2655 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2656 { 2657 *(u8 *)__skb_put(skb, 1) = val; 2658 } 2659 2660 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2661 { 2662 void *tmp = skb_put(skb, len); 2663 2664 memset(tmp, 0, len); 2665 2666 return tmp; 2667 } 2668 2669 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2670 unsigned int len) 2671 { 2672 void *tmp = skb_put(skb, len); 2673 2674 memcpy(tmp, data, len); 2675 2676 return tmp; 2677 } 2678 2679 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2680 { 2681 *(u8 *)skb_put(skb, 1) = val; 2682 } 2683 2684 void *skb_push(struct sk_buff *skb, unsigned int len); 2685 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2686 { 2687 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2688 2689 skb->data -= len; 2690 skb->len += len; 2691 return skb->data; 2692 } 2693 2694 void *skb_pull(struct sk_buff *skb, unsigned int len); 2695 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2696 { 2697 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2698 2699 skb->len -= len; 2700 if (unlikely(skb->len < skb->data_len)) { 2701 #if defined(CONFIG_DEBUG_NET) 2702 skb->len += len; 2703 pr_err("__skb_pull(len=%u)\n", len); 2704 skb_dump(KERN_ERR, skb, false); 2705 #endif 2706 BUG(); 2707 } 2708 return skb->data += len; 2709 } 2710 2711 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2712 { 2713 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2714 } 2715 2716 void *skb_pull_data(struct sk_buff *skb, size_t len); 2717 2718 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2719 2720 static inline enum skb_drop_reason 2721 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2722 { 2723 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2724 2725 if (likely(len <= skb_headlen(skb))) 2726 return SKB_NOT_DROPPED_YET; 2727 2728 if (unlikely(len > skb->len)) 2729 return SKB_DROP_REASON_PKT_TOO_SMALL; 2730 2731 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2732 return SKB_DROP_REASON_NOMEM; 2733 2734 return SKB_NOT_DROPPED_YET; 2735 } 2736 2737 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2738 { 2739 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2740 } 2741 2742 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2743 { 2744 if (!pskb_may_pull(skb, len)) 2745 return NULL; 2746 2747 skb->len -= len; 2748 return skb->data += len; 2749 } 2750 2751 void skb_condense(struct sk_buff *skb); 2752 2753 /** 2754 * skb_headroom - bytes at buffer head 2755 * @skb: buffer to check 2756 * 2757 * Return the number of bytes of free space at the head of an &sk_buff. 2758 */ 2759 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2760 { 2761 return skb->data - skb->head; 2762 } 2763 2764 /** 2765 * skb_tailroom - bytes at buffer end 2766 * @skb: buffer to check 2767 * 2768 * Return the number of bytes of free space at the tail of an sk_buff 2769 */ 2770 static inline int skb_tailroom(const struct sk_buff *skb) 2771 { 2772 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2773 } 2774 2775 /** 2776 * skb_availroom - bytes at buffer end 2777 * @skb: buffer to check 2778 * 2779 * Return the number of bytes of free space at the tail of an sk_buff 2780 * allocated by sk_stream_alloc() 2781 */ 2782 static inline int skb_availroom(const struct sk_buff *skb) 2783 { 2784 if (skb_is_nonlinear(skb)) 2785 return 0; 2786 2787 return skb->end - skb->tail - skb->reserved_tailroom; 2788 } 2789 2790 /** 2791 * skb_reserve - adjust headroom 2792 * @skb: buffer to alter 2793 * @len: bytes to move 2794 * 2795 * Increase the headroom of an empty &sk_buff by reducing the tail 2796 * room. This is only allowed for an empty buffer. 2797 */ 2798 static inline void skb_reserve(struct sk_buff *skb, int len) 2799 { 2800 skb->data += len; 2801 skb->tail += len; 2802 } 2803 2804 /** 2805 * skb_tailroom_reserve - adjust reserved_tailroom 2806 * @skb: buffer to alter 2807 * @mtu: maximum amount of headlen permitted 2808 * @needed_tailroom: minimum amount of reserved_tailroom 2809 * 2810 * Set reserved_tailroom so that headlen can be as large as possible but 2811 * not larger than mtu and tailroom cannot be smaller than 2812 * needed_tailroom. 2813 * The required headroom should already have been reserved before using 2814 * this function. 2815 */ 2816 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2817 unsigned int needed_tailroom) 2818 { 2819 SKB_LINEAR_ASSERT(skb); 2820 if (mtu < skb_tailroom(skb) - needed_tailroom) 2821 /* use at most mtu */ 2822 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2823 else 2824 /* use up to all available space */ 2825 skb->reserved_tailroom = needed_tailroom; 2826 } 2827 2828 #define ENCAP_TYPE_ETHER 0 2829 #define ENCAP_TYPE_IPPROTO 1 2830 2831 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2832 __be16 protocol) 2833 { 2834 skb->inner_protocol = protocol; 2835 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2836 } 2837 2838 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2839 __u8 ipproto) 2840 { 2841 skb->inner_ipproto = ipproto; 2842 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2843 } 2844 2845 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2846 { 2847 skb->inner_mac_header = skb->mac_header; 2848 skb->inner_network_header = skb->network_header; 2849 skb->inner_transport_header = skb->transport_header; 2850 } 2851 2852 static inline void skb_reset_mac_len(struct sk_buff *skb) 2853 { 2854 skb->mac_len = skb->network_header - skb->mac_header; 2855 } 2856 2857 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2858 *skb) 2859 { 2860 return skb->head + skb->inner_transport_header; 2861 } 2862 2863 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2864 { 2865 return skb_inner_transport_header(skb) - skb->data; 2866 } 2867 2868 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2869 { 2870 skb->inner_transport_header = skb->data - skb->head; 2871 } 2872 2873 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2874 const int offset) 2875 { 2876 skb_reset_inner_transport_header(skb); 2877 skb->inner_transport_header += offset; 2878 } 2879 2880 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2881 { 2882 return skb->head + skb->inner_network_header; 2883 } 2884 2885 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2886 { 2887 skb->inner_network_header = skb->data - skb->head; 2888 } 2889 2890 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2891 const int offset) 2892 { 2893 skb_reset_inner_network_header(skb); 2894 skb->inner_network_header += offset; 2895 } 2896 2897 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2898 { 2899 return skb->inner_network_header > 0; 2900 } 2901 2902 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2903 { 2904 return skb->head + skb->inner_mac_header; 2905 } 2906 2907 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2908 { 2909 skb->inner_mac_header = skb->data - skb->head; 2910 } 2911 2912 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2913 const int offset) 2914 { 2915 skb_reset_inner_mac_header(skb); 2916 skb->inner_mac_header += offset; 2917 } 2918 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2919 { 2920 return skb->transport_header != (typeof(skb->transport_header))~0U; 2921 } 2922 2923 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2924 { 2925 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2926 return skb->head + skb->transport_header; 2927 } 2928 2929 static inline void skb_reset_transport_header(struct sk_buff *skb) 2930 { 2931 skb->transport_header = skb->data - skb->head; 2932 } 2933 2934 static inline void skb_set_transport_header(struct sk_buff *skb, 2935 const int offset) 2936 { 2937 skb_reset_transport_header(skb); 2938 skb->transport_header += offset; 2939 } 2940 2941 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2942 { 2943 return skb->head + skb->network_header; 2944 } 2945 2946 static inline void skb_reset_network_header(struct sk_buff *skb) 2947 { 2948 skb->network_header = skb->data - skb->head; 2949 } 2950 2951 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2952 { 2953 skb_reset_network_header(skb); 2954 skb->network_header += offset; 2955 } 2956 2957 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2958 { 2959 return skb->mac_header != (typeof(skb->mac_header))~0U; 2960 } 2961 2962 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2963 { 2964 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2965 return skb->head + skb->mac_header; 2966 } 2967 2968 static inline int skb_mac_offset(const struct sk_buff *skb) 2969 { 2970 return skb_mac_header(skb) - skb->data; 2971 } 2972 2973 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2974 { 2975 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2976 return skb->network_header - skb->mac_header; 2977 } 2978 2979 static inline void skb_unset_mac_header(struct sk_buff *skb) 2980 { 2981 skb->mac_header = (typeof(skb->mac_header))~0U; 2982 } 2983 2984 static inline void skb_reset_mac_header(struct sk_buff *skb) 2985 { 2986 skb->mac_header = skb->data - skb->head; 2987 } 2988 2989 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2990 { 2991 skb_reset_mac_header(skb); 2992 skb->mac_header += offset; 2993 } 2994 2995 static inline void skb_pop_mac_header(struct sk_buff *skb) 2996 { 2997 skb->mac_header = skb->network_header; 2998 } 2999 3000 static inline void skb_probe_transport_header(struct sk_buff *skb) 3001 { 3002 struct flow_keys_basic keys; 3003 3004 if (skb_transport_header_was_set(skb)) 3005 return; 3006 3007 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3008 NULL, 0, 0, 0, 0)) 3009 skb_set_transport_header(skb, keys.control.thoff); 3010 } 3011 3012 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3013 { 3014 if (skb_mac_header_was_set(skb)) { 3015 const unsigned char *old_mac = skb_mac_header(skb); 3016 3017 skb_set_mac_header(skb, -skb->mac_len); 3018 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3019 } 3020 } 3021 3022 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3023 { 3024 return skb->csum_start - skb_headroom(skb); 3025 } 3026 3027 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3028 { 3029 return skb->head + skb->csum_start; 3030 } 3031 3032 static inline int skb_transport_offset(const struct sk_buff *skb) 3033 { 3034 return skb_transport_header(skb) - skb->data; 3035 } 3036 3037 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3038 { 3039 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3040 return skb->transport_header - skb->network_header; 3041 } 3042 3043 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3044 { 3045 return skb->inner_transport_header - skb->inner_network_header; 3046 } 3047 3048 static inline int skb_network_offset(const struct sk_buff *skb) 3049 { 3050 return skb_network_header(skb) - skb->data; 3051 } 3052 3053 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3054 { 3055 return skb_inner_network_header(skb) - skb->data; 3056 } 3057 3058 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3059 { 3060 return pskb_may_pull(skb, skb_network_offset(skb) + len); 3061 } 3062 3063 /* 3064 * CPUs often take a performance hit when accessing unaligned memory 3065 * locations. The actual performance hit varies, it can be small if the 3066 * hardware handles it or large if we have to take an exception and fix it 3067 * in software. 3068 * 3069 * Since an ethernet header is 14 bytes network drivers often end up with 3070 * the IP header at an unaligned offset. The IP header can be aligned by 3071 * shifting the start of the packet by 2 bytes. Drivers should do this 3072 * with: 3073 * 3074 * skb_reserve(skb, NET_IP_ALIGN); 3075 * 3076 * The downside to this alignment of the IP header is that the DMA is now 3077 * unaligned. On some architectures the cost of an unaligned DMA is high 3078 * and this cost outweighs the gains made by aligning the IP header. 3079 * 3080 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3081 * to be overridden. 3082 */ 3083 #ifndef NET_IP_ALIGN 3084 #define NET_IP_ALIGN 2 3085 #endif 3086 3087 /* 3088 * The networking layer reserves some headroom in skb data (via 3089 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3090 * the header has to grow. In the default case, if the header has to grow 3091 * 32 bytes or less we avoid the reallocation. 3092 * 3093 * Unfortunately this headroom changes the DMA alignment of the resulting 3094 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3095 * on some architectures. An architecture can override this value, 3096 * perhaps setting it to a cacheline in size (since that will maintain 3097 * cacheline alignment of the DMA). It must be a power of 2. 3098 * 3099 * Various parts of the networking layer expect at least 32 bytes of 3100 * headroom, you should not reduce this. 3101 * 3102 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3103 * to reduce average number of cache lines per packet. 3104 * get_rps_cpu() for example only access one 64 bytes aligned block : 3105 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3106 */ 3107 #ifndef NET_SKB_PAD 3108 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3109 #endif 3110 3111 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3112 3113 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3114 { 3115 if (WARN_ON(skb_is_nonlinear(skb))) 3116 return; 3117 skb->len = len; 3118 skb_set_tail_pointer(skb, len); 3119 } 3120 3121 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3122 { 3123 __skb_set_length(skb, len); 3124 } 3125 3126 void skb_trim(struct sk_buff *skb, unsigned int len); 3127 3128 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3129 { 3130 if (skb->data_len) 3131 return ___pskb_trim(skb, len); 3132 __skb_trim(skb, len); 3133 return 0; 3134 } 3135 3136 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3137 { 3138 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3139 } 3140 3141 /** 3142 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3143 * @skb: buffer to alter 3144 * @len: new length 3145 * 3146 * This is identical to pskb_trim except that the caller knows that 3147 * the skb is not cloned so we should never get an error due to out- 3148 * of-memory. 3149 */ 3150 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3151 { 3152 int err = pskb_trim(skb, len); 3153 BUG_ON(err); 3154 } 3155 3156 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3157 { 3158 unsigned int diff = len - skb->len; 3159 3160 if (skb_tailroom(skb) < diff) { 3161 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3162 GFP_ATOMIC); 3163 if (ret) 3164 return ret; 3165 } 3166 __skb_set_length(skb, len); 3167 return 0; 3168 } 3169 3170 /** 3171 * skb_orphan - orphan a buffer 3172 * @skb: buffer to orphan 3173 * 3174 * If a buffer currently has an owner then we call the owner's 3175 * destructor function and make the @skb unowned. The buffer continues 3176 * to exist but is no longer charged to its former owner. 3177 */ 3178 static inline void skb_orphan(struct sk_buff *skb) 3179 { 3180 if (skb->destructor) { 3181 skb->destructor(skb); 3182 skb->destructor = NULL; 3183 skb->sk = NULL; 3184 } else { 3185 BUG_ON(skb->sk); 3186 } 3187 } 3188 3189 /** 3190 * skb_orphan_frags - orphan the frags contained in a buffer 3191 * @skb: buffer to orphan frags from 3192 * @gfp_mask: allocation mask for replacement pages 3193 * 3194 * For each frag in the SKB which needs a destructor (i.e. has an 3195 * owner) create a copy of that frag and release the original 3196 * page by calling the destructor. 3197 */ 3198 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3199 { 3200 if (likely(!skb_zcopy(skb))) 3201 return 0; 3202 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3203 return 0; 3204 return skb_copy_ubufs(skb, gfp_mask); 3205 } 3206 3207 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3208 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3209 { 3210 if (likely(!skb_zcopy(skb))) 3211 return 0; 3212 return skb_copy_ubufs(skb, gfp_mask); 3213 } 3214 3215 /** 3216 * __skb_queue_purge_reason - empty a list 3217 * @list: list to empty 3218 * @reason: drop reason 3219 * 3220 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3221 * the list and one reference dropped. This function does not take the 3222 * list lock and the caller must hold the relevant locks to use it. 3223 */ 3224 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3225 enum skb_drop_reason reason) 3226 { 3227 struct sk_buff *skb; 3228 3229 while ((skb = __skb_dequeue(list)) != NULL) 3230 kfree_skb_reason(skb, reason); 3231 } 3232 3233 static inline void __skb_queue_purge(struct sk_buff_head *list) 3234 { 3235 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3236 } 3237 3238 void skb_queue_purge_reason(struct sk_buff_head *list, 3239 enum skb_drop_reason reason); 3240 3241 static inline void skb_queue_purge(struct sk_buff_head *list) 3242 { 3243 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3244 } 3245 3246 unsigned int skb_rbtree_purge(struct rb_root *root); 3247 void skb_errqueue_purge(struct sk_buff_head *list); 3248 3249 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3250 3251 /** 3252 * netdev_alloc_frag - allocate a page fragment 3253 * @fragsz: fragment size 3254 * 3255 * Allocates a frag from a page for receive buffer. 3256 * Uses GFP_ATOMIC allocations. 3257 */ 3258 static inline void *netdev_alloc_frag(unsigned int fragsz) 3259 { 3260 return __netdev_alloc_frag_align(fragsz, ~0u); 3261 } 3262 3263 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3264 unsigned int align) 3265 { 3266 WARN_ON_ONCE(!is_power_of_2(align)); 3267 return __netdev_alloc_frag_align(fragsz, -align); 3268 } 3269 3270 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3271 gfp_t gfp_mask); 3272 3273 /** 3274 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3275 * @dev: network device to receive on 3276 * @length: length to allocate 3277 * 3278 * Allocate a new &sk_buff and assign it a usage count of one. The 3279 * buffer has unspecified headroom built in. Users should allocate 3280 * the headroom they think they need without accounting for the 3281 * built in space. The built in space is used for optimisations. 3282 * 3283 * %NULL is returned if there is no free memory. Although this function 3284 * allocates memory it can be called from an interrupt. 3285 */ 3286 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3287 unsigned int length) 3288 { 3289 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3290 } 3291 3292 /* legacy helper around __netdev_alloc_skb() */ 3293 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3294 gfp_t gfp_mask) 3295 { 3296 return __netdev_alloc_skb(NULL, length, gfp_mask); 3297 } 3298 3299 /* legacy helper around netdev_alloc_skb() */ 3300 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3301 { 3302 return netdev_alloc_skb(NULL, length); 3303 } 3304 3305 3306 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3307 unsigned int length, gfp_t gfp) 3308 { 3309 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3310 3311 if (NET_IP_ALIGN && skb) 3312 skb_reserve(skb, NET_IP_ALIGN); 3313 return skb; 3314 } 3315 3316 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3317 unsigned int length) 3318 { 3319 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3320 } 3321 3322 static inline void skb_free_frag(void *addr) 3323 { 3324 page_frag_free(addr); 3325 } 3326 3327 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3328 3329 static inline void *napi_alloc_frag(unsigned int fragsz) 3330 { 3331 return __napi_alloc_frag_align(fragsz, ~0u); 3332 } 3333 3334 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3335 unsigned int align) 3336 { 3337 WARN_ON_ONCE(!is_power_of_2(align)); 3338 return __napi_alloc_frag_align(fragsz, -align); 3339 } 3340 3341 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3342 unsigned int length, gfp_t gfp_mask); 3343 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3344 unsigned int length) 3345 { 3346 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3347 } 3348 void napi_consume_skb(struct sk_buff *skb, int budget); 3349 3350 void napi_skb_free_stolen_head(struct sk_buff *skb); 3351 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3352 3353 /** 3354 * __dev_alloc_pages - allocate page for network Rx 3355 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3356 * @order: size of the allocation 3357 * 3358 * Allocate a new page. 3359 * 3360 * %NULL is returned if there is no free memory. 3361 */ 3362 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3363 unsigned int order) 3364 { 3365 /* This piece of code contains several assumptions. 3366 * 1. This is for device Rx, therefore a cold page is preferred. 3367 * 2. The expectation is the user wants a compound page. 3368 * 3. If requesting a order 0 page it will not be compound 3369 * due to the check to see if order has a value in prep_new_page 3370 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3371 * code in gfp_to_alloc_flags that should be enforcing this. 3372 */ 3373 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3374 3375 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3376 } 3377 3378 static inline struct page *dev_alloc_pages(unsigned int order) 3379 { 3380 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3381 } 3382 3383 /** 3384 * __dev_alloc_page - allocate a page for network Rx 3385 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3386 * 3387 * Allocate a new page. 3388 * 3389 * %NULL is returned if there is no free memory. 3390 */ 3391 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3392 { 3393 return __dev_alloc_pages(gfp_mask, 0); 3394 } 3395 3396 static inline struct page *dev_alloc_page(void) 3397 { 3398 return dev_alloc_pages(0); 3399 } 3400 3401 /** 3402 * dev_page_is_reusable - check whether a page can be reused for network Rx 3403 * @page: the page to test 3404 * 3405 * A page shouldn't be considered for reusing/recycling if it was allocated 3406 * under memory pressure or at a distant memory node. 3407 * 3408 * Returns false if this page should be returned to page allocator, true 3409 * otherwise. 3410 */ 3411 static inline bool dev_page_is_reusable(const struct page *page) 3412 { 3413 return likely(page_to_nid(page) == numa_mem_id() && 3414 !page_is_pfmemalloc(page)); 3415 } 3416 3417 /** 3418 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3419 * @page: The page that was allocated from skb_alloc_page 3420 * @skb: The skb that may need pfmemalloc set 3421 */ 3422 static inline void skb_propagate_pfmemalloc(const struct page *page, 3423 struct sk_buff *skb) 3424 { 3425 if (page_is_pfmemalloc(page)) 3426 skb->pfmemalloc = true; 3427 } 3428 3429 /** 3430 * skb_frag_off() - Returns the offset of a skb fragment 3431 * @frag: the paged fragment 3432 */ 3433 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3434 { 3435 return frag->offset; 3436 } 3437 3438 /** 3439 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3440 * @frag: skb fragment 3441 * @delta: value to add 3442 */ 3443 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3444 { 3445 frag->offset += delta; 3446 } 3447 3448 /** 3449 * skb_frag_off_set() - Sets the offset of a skb fragment 3450 * @frag: skb fragment 3451 * @offset: offset of fragment 3452 */ 3453 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3454 { 3455 frag->offset = offset; 3456 } 3457 3458 /** 3459 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3460 * @fragto: skb fragment where offset is set 3461 * @fragfrom: skb fragment offset is copied from 3462 */ 3463 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3464 const skb_frag_t *fragfrom) 3465 { 3466 fragto->offset = fragfrom->offset; 3467 } 3468 3469 /** 3470 * skb_frag_page - retrieve the page referred to by a paged fragment 3471 * @frag: the paged fragment 3472 * 3473 * Returns the &struct page associated with @frag. 3474 */ 3475 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3476 { 3477 return netmem_to_page(frag->netmem); 3478 } 3479 3480 /** 3481 * __skb_frag_ref - take an addition reference on a paged fragment. 3482 * @frag: the paged fragment 3483 * 3484 * Takes an additional reference on the paged fragment @frag. 3485 */ 3486 static inline void __skb_frag_ref(skb_frag_t *frag) 3487 { 3488 get_page(skb_frag_page(frag)); 3489 } 3490 3491 /** 3492 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3493 * @skb: the buffer 3494 * @f: the fragment offset. 3495 * 3496 * Takes an additional reference on the @f'th paged fragment of @skb. 3497 */ 3498 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3499 { 3500 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3501 } 3502 3503 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3504 unsigned int headroom); 3505 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3506 struct bpf_prog *prog); 3507 bool napi_pp_put_page(struct page *page, bool napi_safe); 3508 3509 static inline void 3510 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe) 3511 { 3512 struct page *page = skb_frag_page(frag); 3513 3514 #ifdef CONFIG_PAGE_POOL 3515 if (recycle && napi_pp_put_page(page, napi_safe)) 3516 return; 3517 #endif 3518 put_page(page); 3519 } 3520 3521 /** 3522 * __skb_frag_unref - release a reference on a paged fragment. 3523 * @frag: the paged fragment 3524 * @recycle: recycle the page if allocated via page_pool 3525 * 3526 * Releases a reference on the paged fragment @frag 3527 * or recycles the page via the page_pool API. 3528 */ 3529 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3530 { 3531 napi_frag_unref(frag, recycle, false); 3532 } 3533 3534 /** 3535 * skb_frag_unref - release a reference on a paged fragment of an skb. 3536 * @skb: the buffer 3537 * @f: the fragment offset 3538 * 3539 * Releases a reference on the @f'th paged fragment of @skb. 3540 */ 3541 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3542 { 3543 struct skb_shared_info *shinfo = skb_shinfo(skb); 3544 3545 if (!skb_zcopy_managed(skb)) 3546 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3547 } 3548 3549 /** 3550 * skb_frag_address - gets the address of the data contained in a paged fragment 3551 * @frag: the paged fragment buffer 3552 * 3553 * Returns the address of the data within @frag. The page must already 3554 * be mapped. 3555 */ 3556 static inline void *skb_frag_address(const skb_frag_t *frag) 3557 { 3558 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3559 } 3560 3561 /** 3562 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3563 * @frag: the paged fragment buffer 3564 * 3565 * Returns the address of the data within @frag. Checks that the page 3566 * is mapped and returns %NULL otherwise. 3567 */ 3568 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3569 { 3570 void *ptr = page_address(skb_frag_page(frag)); 3571 if (unlikely(!ptr)) 3572 return NULL; 3573 3574 return ptr + skb_frag_off(frag); 3575 } 3576 3577 /** 3578 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3579 * @fragto: skb fragment where page is set 3580 * @fragfrom: skb fragment page is copied from 3581 */ 3582 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3583 const skb_frag_t *fragfrom) 3584 { 3585 fragto->netmem = fragfrom->netmem; 3586 } 3587 3588 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3589 3590 /** 3591 * skb_frag_dma_map - maps a paged fragment via the DMA API 3592 * @dev: the device to map the fragment to 3593 * @frag: the paged fragment to map 3594 * @offset: the offset within the fragment (starting at the 3595 * fragment's own offset) 3596 * @size: the number of bytes to map 3597 * @dir: the direction of the mapping (``PCI_DMA_*``) 3598 * 3599 * Maps the page associated with @frag to @device. 3600 */ 3601 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3602 const skb_frag_t *frag, 3603 size_t offset, size_t size, 3604 enum dma_data_direction dir) 3605 { 3606 return dma_map_page(dev, skb_frag_page(frag), 3607 skb_frag_off(frag) + offset, size, dir); 3608 } 3609 3610 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3611 gfp_t gfp_mask) 3612 { 3613 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3614 } 3615 3616 3617 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3618 gfp_t gfp_mask) 3619 { 3620 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3621 } 3622 3623 3624 /** 3625 * skb_clone_writable - is the header of a clone writable 3626 * @skb: buffer to check 3627 * @len: length up to which to write 3628 * 3629 * Returns true if modifying the header part of the cloned buffer 3630 * does not requires the data to be copied. 3631 */ 3632 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3633 { 3634 return !skb_header_cloned(skb) && 3635 skb_headroom(skb) + len <= skb->hdr_len; 3636 } 3637 3638 static inline int skb_try_make_writable(struct sk_buff *skb, 3639 unsigned int write_len) 3640 { 3641 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3642 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3643 } 3644 3645 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3646 int cloned) 3647 { 3648 int delta = 0; 3649 3650 if (headroom > skb_headroom(skb)) 3651 delta = headroom - skb_headroom(skb); 3652 3653 if (delta || cloned) 3654 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3655 GFP_ATOMIC); 3656 return 0; 3657 } 3658 3659 /** 3660 * skb_cow - copy header of skb when it is required 3661 * @skb: buffer to cow 3662 * @headroom: needed headroom 3663 * 3664 * If the skb passed lacks sufficient headroom or its data part 3665 * is shared, data is reallocated. If reallocation fails, an error 3666 * is returned and original skb is not changed. 3667 * 3668 * The result is skb with writable area skb->head...skb->tail 3669 * and at least @headroom of space at head. 3670 */ 3671 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3672 { 3673 return __skb_cow(skb, headroom, skb_cloned(skb)); 3674 } 3675 3676 /** 3677 * skb_cow_head - skb_cow but only making the head writable 3678 * @skb: buffer to cow 3679 * @headroom: needed headroom 3680 * 3681 * This function is identical to skb_cow except that we replace the 3682 * skb_cloned check by skb_header_cloned. It should be used when 3683 * you only need to push on some header and do not need to modify 3684 * the data. 3685 */ 3686 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3687 { 3688 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3689 } 3690 3691 /** 3692 * skb_padto - pad an skbuff up to a minimal size 3693 * @skb: buffer to pad 3694 * @len: minimal length 3695 * 3696 * Pads up a buffer to ensure the trailing bytes exist and are 3697 * blanked. If the buffer already contains sufficient data it 3698 * is untouched. Otherwise it is extended. Returns zero on 3699 * success. The skb is freed on error. 3700 */ 3701 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3702 { 3703 unsigned int size = skb->len; 3704 if (likely(size >= len)) 3705 return 0; 3706 return skb_pad(skb, len - size); 3707 } 3708 3709 /** 3710 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3711 * @skb: buffer to pad 3712 * @len: minimal length 3713 * @free_on_error: free buffer on error 3714 * 3715 * Pads up a buffer to ensure the trailing bytes exist and are 3716 * blanked. If the buffer already contains sufficient data it 3717 * is untouched. Otherwise it is extended. Returns zero on 3718 * success. The skb is freed on error if @free_on_error is true. 3719 */ 3720 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3721 unsigned int len, 3722 bool free_on_error) 3723 { 3724 unsigned int size = skb->len; 3725 3726 if (unlikely(size < len)) { 3727 len -= size; 3728 if (__skb_pad(skb, len, free_on_error)) 3729 return -ENOMEM; 3730 __skb_put(skb, len); 3731 } 3732 return 0; 3733 } 3734 3735 /** 3736 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3737 * @skb: buffer to pad 3738 * @len: minimal length 3739 * 3740 * Pads up a buffer to ensure the trailing bytes exist and are 3741 * blanked. If the buffer already contains sufficient data it 3742 * is untouched. Otherwise it is extended. Returns zero on 3743 * success. The skb is freed on error. 3744 */ 3745 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3746 { 3747 return __skb_put_padto(skb, len, true); 3748 } 3749 3750 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3751 __must_check; 3752 3753 static inline int skb_add_data(struct sk_buff *skb, 3754 struct iov_iter *from, int copy) 3755 { 3756 const int off = skb->len; 3757 3758 if (skb->ip_summed == CHECKSUM_NONE) { 3759 __wsum csum = 0; 3760 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3761 &csum, from)) { 3762 skb->csum = csum_block_add(skb->csum, csum, off); 3763 return 0; 3764 } 3765 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3766 return 0; 3767 3768 __skb_trim(skb, off); 3769 return -EFAULT; 3770 } 3771 3772 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3773 const struct page *page, int off) 3774 { 3775 if (skb_zcopy(skb)) 3776 return false; 3777 if (i) { 3778 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3779 3780 return page == skb_frag_page(frag) && 3781 off == skb_frag_off(frag) + skb_frag_size(frag); 3782 } 3783 return false; 3784 } 3785 3786 static inline int __skb_linearize(struct sk_buff *skb) 3787 { 3788 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3789 } 3790 3791 /** 3792 * skb_linearize - convert paged skb to linear one 3793 * @skb: buffer to linarize 3794 * 3795 * If there is no free memory -ENOMEM is returned, otherwise zero 3796 * is returned and the old skb data released. 3797 */ 3798 static inline int skb_linearize(struct sk_buff *skb) 3799 { 3800 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3801 } 3802 3803 /** 3804 * skb_has_shared_frag - can any frag be overwritten 3805 * @skb: buffer to test 3806 * 3807 * Return true if the skb has at least one frag that might be modified 3808 * by an external entity (as in vmsplice()/sendfile()) 3809 */ 3810 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3811 { 3812 return skb_is_nonlinear(skb) && 3813 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3814 } 3815 3816 /** 3817 * skb_linearize_cow - make sure skb is linear and writable 3818 * @skb: buffer to process 3819 * 3820 * If there is no free memory -ENOMEM is returned, otherwise zero 3821 * is returned and the old skb data released. 3822 */ 3823 static inline int skb_linearize_cow(struct sk_buff *skb) 3824 { 3825 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3826 __skb_linearize(skb) : 0; 3827 } 3828 3829 static __always_inline void 3830 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3831 unsigned int off) 3832 { 3833 if (skb->ip_summed == CHECKSUM_COMPLETE) 3834 skb->csum = csum_block_sub(skb->csum, 3835 csum_partial(start, len, 0), off); 3836 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3837 skb_checksum_start_offset(skb) < 0) 3838 skb->ip_summed = CHECKSUM_NONE; 3839 } 3840 3841 /** 3842 * skb_postpull_rcsum - update checksum for received skb after pull 3843 * @skb: buffer to update 3844 * @start: start of data before pull 3845 * @len: length of data pulled 3846 * 3847 * After doing a pull on a received packet, you need to call this to 3848 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3849 * CHECKSUM_NONE so that it can be recomputed from scratch. 3850 */ 3851 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3852 const void *start, unsigned int len) 3853 { 3854 if (skb->ip_summed == CHECKSUM_COMPLETE) 3855 skb->csum = wsum_negate(csum_partial(start, len, 3856 wsum_negate(skb->csum))); 3857 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3858 skb_checksum_start_offset(skb) < 0) 3859 skb->ip_summed = CHECKSUM_NONE; 3860 } 3861 3862 static __always_inline void 3863 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3864 unsigned int off) 3865 { 3866 if (skb->ip_summed == CHECKSUM_COMPLETE) 3867 skb->csum = csum_block_add(skb->csum, 3868 csum_partial(start, len, 0), off); 3869 } 3870 3871 /** 3872 * skb_postpush_rcsum - update checksum for received skb after push 3873 * @skb: buffer to update 3874 * @start: start of data after push 3875 * @len: length of data pushed 3876 * 3877 * After doing a push on a received packet, you need to call this to 3878 * update the CHECKSUM_COMPLETE checksum. 3879 */ 3880 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3881 const void *start, unsigned int len) 3882 { 3883 __skb_postpush_rcsum(skb, start, len, 0); 3884 } 3885 3886 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3887 3888 /** 3889 * skb_push_rcsum - push skb and update receive checksum 3890 * @skb: buffer to update 3891 * @len: length of data pulled 3892 * 3893 * This function performs an skb_push on the packet and updates 3894 * the CHECKSUM_COMPLETE checksum. It should be used on 3895 * receive path processing instead of skb_push unless you know 3896 * that the checksum difference is zero (e.g., a valid IP header) 3897 * or you are setting ip_summed to CHECKSUM_NONE. 3898 */ 3899 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3900 { 3901 skb_push(skb, len); 3902 skb_postpush_rcsum(skb, skb->data, len); 3903 return skb->data; 3904 } 3905 3906 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3907 /** 3908 * pskb_trim_rcsum - trim received skb and update checksum 3909 * @skb: buffer to trim 3910 * @len: new length 3911 * 3912 * This is exactly the same as pskb_trim except that it ensures the 3913 * checksum of received packets are still valid after the operation. 3914 * It can change skb pointers. 3915 */ 3916 3917 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3918 { 3919 if (likely(len >= skb->len)) 3920 return 0; 3921 return pskb_trim_rcsum_slow(skb, len); 3922 } 3923 3924 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3925 { 3926 if (skb->ip_summed == CHECKSUM_COMPLETE) 3927 skb->ip_summed = CHECKSUM_NONE; 3928 __skb_trim(skb, len); 3929 return 0; 3930 } 3931 3932 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3933 { 3934 if (skb->ip_summed == CHECKSUM_COMPLETE) 3935 skb->ip_summed = CHECKSUM_NONE; 3936 return __skb_grow(skb, len); 3937 } 3938 3939 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3940 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3941 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3942 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3943 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3944 3945 #define skb_queue_walk(queue, skb) \ 3946 for (skb = (queue)->next; \ 3947 skb != (struct sk_buff *)(queue); \ 3948 skb = skb->next) 3949 3950 #define skb_queue_walk_safe(queue, skb, tmp) \ 3951 for (skb = (queue)->next, tmp = skb->next; \ 3952 skb != (struct sk_buff *)(queue); \ 3953 skb = tmp, tmp = skb->next) 3954 3955 #define skb_queue_walk_from(queue, skb) \ 3956 for (; skb != (struct sk_buff *)(queue); \ 3957 skb = skb->next) 3958 3959 #define skb_rbtree_walk(skb, root) \ 3960 for (skb = skb_rb_first(root); skb != NULL; \ 3961 skb = skb_rb_next(skb)) 3962 3963 #define skb_rbtree_walk_from(skb) \ 3964 for (; skb != NULL; \ 3965 skb = skb_rb_next(skb)) 3966 3967 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3968 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3969 skb = tmp) 3970 3971 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3972 for (tmp = skb->next; \ 3973 skb != (struct sk_buff *)(queue); \ 3974 skb = tmp, tmp = skb->next) 3975 3976 #define skb_queue_reverse_walk(queue, skb) \ 3977 for (skb = (queue)->prev; \ 3978 skb != (struct sk_buff *)(queue); \ 3979 skb = skb->prev) 3980 3981 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3982 for (skb = (queue)->prev, tmp = skb->prev; \ 3983 skb != (struct sk_buff *)(queue); \ 3984 skb = tmp, tmp = skb->prev) 3985 3986 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3987 for (tmp = skb->prev; \ 3988 skb != (struct sk_buff *)(queue); \ 3989 skb = tmp, tmp = skb->prev) 3990 3991 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3992 { 3993 return skb_shinfo(skb)->frag_list != NULL; 3994 } 3995 3996 static inline void skb_frag_list_init(struct sk_buff *skb) 3997 { 3998 skb_shinfo(skb)->frag_list = NULL; 3999 } 4000 4001 #define skb_walk_frags(skb, iter) \ 4002 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 4003 4004 4005 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 4006 int *err, long *timeo_p, 4007 const struct sk_buff *skb); 4008 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 4009 struct sk_buff_head *queue, 4010 unsigned int flags, 4011 int *off, int *err, 4012 struct sk_buff **last); 4013 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 4014 struct sk_buff_head *queue, 4015 unsigned int flags, int *off, int *err, 4016 struct sk_buff **last); 4017 struct sk_buff *__skb_recv_datagram(struct sock *sk, 4018 struct sk_buff_head *sk_queue, 4019 unsigned int flags, int *off, int *err); 4020 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4021 __poll_t datagram_poll(struct file *file, struct socket *sock, 4022 struct poll_table_struct *wait); 4023 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4024 struct iov_iter *to, int size); 4025 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4026 struct msghdr *msg, int size) 4027 { 4028 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4029 } 4030 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4031 struct msghdr *msg); 4032 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 4033 struct iov_iter *to, int len, 4034 struct ahash_request *hash); 4035 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4036 struct iov_iter *from, int len); 4037 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4038 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4039 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 4040 static inline void skb_free_datagram_locked(struct sock *sk, 4041 struct sk_buff *skb) 4042 { 4043 __skb_free_datagram_locked(sk, skb, 0); 4044 } 4045 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4046 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4047 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4048 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4049 int len); 4050 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4051 struct pipe_inode_info *pipe, unsigned int len, 4052 unsigned int flags); 4053 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4054 int len); 4055 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4056 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4057 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4058 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4059 int len, int hlen); 4060 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4061 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4062 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4063 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4064 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4065 unsigned int offset); 4066 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4067 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4068 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4069 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4070 int skb_vlan_pop(struct sk_buff *skb); 4071 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4072 int skb_eth_pop(struct sk_buff *skb); 4073 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4074 const unsigned char *src); 4075 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4076 int mac_len, bool ethernet); 4077 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4078 bool ethernet); 4079 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4080 int skb_mpls_dec_ttl(struct sk_buff *skb); 4081 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4082 gfp_t gfp); 4083 4084 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4085 { 4086 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4087 } 4088 4089 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4090 { 4091 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4092 } 4093 4094 struct skb_checksum_ops { 4095 __wsum (*update)(const void *mem, int len, __wsum wsum); 4096 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4097 }; 4098 4099 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4100 4101 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4102 __wsum csum, const struct skb_checksum_ops *ops); 4103 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4104 __wsum csum); 4105 4106 static inline void * __must_check 4107 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4108 const void *data, int hlen, void *buffer) 4109 { 4110 if (likely(hlen - offset >= len)) 4111 return (void *)data + offset; 4112 4113 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4114 return NULL; 4115 4116 return buffer; 4117 } 4118 4119 static inline void * __must_check 4120 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4121 { 4122 return __skb_header_pointer(skb, offset, len, skb->data, 4123 skb_headlen(skb), buffer); 4124 } 4125 4126 static inline void * __must_check 4127 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4128 { 4129 if (likely(skb_headlen(skb) - offset >= len)) 4130 return skb->data + offset; 4131 return NULL; 4132 } 4133 4134 /** 4135 * skb_needs_linearize - check if we need to linearize a given skb 4136 * depending on the given device features. 4137 * @skb: socket buffer to check 4138 * @features: net device features 4139 * 4140 * Returns true if either: 4141 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4142 * 2. skb is fragmented and the device does not support SG. 4143 */ 4144 static inline bool skb_needs_linearize(struct sk_buff *skb, 4145 netdev_features_t features) 4146 { 4147 return skb_is_nonlinear(skb) && 4148 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4149 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4150 } 4151 4152 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4153 void *to, 4154 const unsigned int len) 4155 { 4156 memcpy(to, skb->data, len); 4157 } 4158 4159 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4160 const int offset, void *to, 4161 const unsigned int len) 4162 { 4163 memcpy(to, skb->data + offset, len); 4164 } 4165 4166 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4167 const void *from, 4168 const unsigned int len) 4169 { 4170 memcpy(skb->data, from, len); 4171 } 4172 4173 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4174 const int offset, 4175 const void *from, 4176 const unsigned int len) 4177 { 4178 memcpy(skb->data + offset, from, len); 4179 } 4180 4181 void skb_init(void); 4182 4183 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4184 { 4185 return skb->tstamp; 4186 } 4187 4188 /** 4189 * skb_get_timestamp - get timestamp from a skb 4190 * @skb: skb to get stamp from 4191 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4192 * 4193 * Timestamps are stored in the skb as offsets to a base timestamp. 4194 * This function converts the offset back to a struct timeval and stores 4195 * it in stamp. 4196 */ 4197 static inline void skb_get_timestamp(const struct sk_buff *skb, 4198 struct __kernel_old_timeval *stamp) 4199 { 4200 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4201 } 4202 4203 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4204 struct __kernel_sock_timeval *stamp) 4205 { 4206 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4207 4208 stamp->tv_sec = ts.tv_sec; 4209 stamp->tv_usec = ts.tv_nsec / 1000; 4210 } 4211 4212 static inline void skb_get_timestampns(const struct sk_buff *skb, 4213 struct __kernel_old_timespec *stamp) 4214 { 4215 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4216 4217 stamp->tv_sec = ts.tv_sec; 4218 stamp->tv_nsec = ts.tv_nsec; 4219 } 4220 4221 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4222 struct __kernel_timespec *stamp) 4223 { 4224 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4225 4226 stamp->tv_sec = ts.tv_sec; 4227 stamp->tv_nsec = ts.tv_nsec; 4228 } 4229 4230 static inline void __net_timestamp(struct sk_buff *skb) 4231 { 4232 skb->tstamp = ktime_get_real(); 4233 skb->mono_delivery_time = 0; 4234 } 4235 4236 static inline ktime_t net_timedelta(ktime_t t) 4237 { 4238 return ktime_sub(ktime_get_real(), t); 4239 } 4240 4241 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4242 bool mono) 4243 { 4244 skb->tstamp = kt; 4245 skb->mono_delivery_time = kt && mono; 4246 } 4247 4248 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4249 4250 /* It is used in the ingress path to clear the delivery_time. 4251 * If needed, set the skb->tstamp to the (rcv) timestamp. 4252 */ 4253 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4254 { 4255 if (skb->mono_delivery_time) { 4256 skb->mono_delivery_time = 0; 4257 if (static_branch_unlikely(&netstamp_needed_key)) 4258 skb->tstamp = ktime_get_real(); 4259 else 4260 skb->tstamp = 0; 4261 } 4262 } 4263 4264 static inline void skb_clear_tstamp(struct sk_buff *skb) 4265 { 4266 if (skb->mono_delivery_time) 4267 return; 4268 4269 skb->tstamp = 0; 4270 } 4271 4272 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4273 { 4274 if (skb->mono_delivery_time) 4275 return 0; 4276 4277 return skb->tstamp; 4278 } 4279 4280 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4281 { 4282 if (!skb->mono_delivery_time && skb->tstamp) 4283 return skb->tstamp; 4284 4285 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4286 return ktime_get_real(); 4287 4288 return 0; 4289 } 4290 4291 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4292 { 4293 return skb_shinfo(skb)->meta_len; 4294 } 4295 4296 static inline void *skb_metadata_end(const struct sk_buff *skb) 4297 { 4298 return skb_mac_header(skb); 4299 } 4300 4301 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4302 const struct sk_buff *skb_b, 4303 u8 meta_len) 4304 { 4305 const void *a = skb_metadata_end(skb_a); 4306 const void *b = skb_metadata_end(skb_b); 4307 u64 diffs = 0; 4308 4309 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4310 BITS_PER_LONG != 64) 4311 goto slow; 4312 4313 /* Using more efficient variant than plain call to memcmp(). */ 4314 switch (meta_len) { 4315 #define __it(x, op) (x -= sizeof(u##op)) 4316 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4317 case 32: diffs |= __it_diff(a, b, 64); 4318 fallthrough; 4319 case 24: diffs |= __it_diff(a, b, 64); 4320 fallthrough; 4321 case 16: diffs |= __it_diff(a, b, 64); 4322 fallthrough; 4323 case 8: diffs |= __it_diff(a, b, 64); 4324 break; 4325 case 28: diffs |= __it_diff(a, b, 64); 4326 fallthrough; 4327 case 20: diffs |= __it_diff(a, b, 64); 4328 fallthrough; 4329 case 12: diffs |= __it_diff(a, b, 64); 4330 fallthrough; 4331 case 4: diffs |= __it_diff(a, b, 32); 4332 break; 4333 default: 4334 slow: 4335 return memcmp(a - meta_len, b - meta_len, meta_len); 4336 } 4337 return diffs; 4338 } 4339 4340 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4341 const struct sk_buff *skb_b) 4342 { 4343 u8 len_a = skb_metadata_len(skb_a); 4344 u8 len_b = skb_metadata_len(skb_b); 4345 4346 if (!(len_a | len_b)) 4347 return false; 4348 4349 return len_a != len_b ? 4350 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4351 } 4352 4353 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4354 { 4355 skb_shinfo(skb)->meta_len = meta_len; 4356 } 4357 4358 static inline void skb_metadata_clear(struct sk_buff *skb) 4359 { 4360 skb_metadata_set(skb, 0); 4361 } 4362 4363 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4364 4365 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4366 4367 void skb_clone_tx_timestamp(struct sk_buff *skb); 4368 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4369 4370 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4371 4372 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4373 { 4374 } 4375 4376 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4377 { 4378 return false; 4379 } 4380 4381 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4382 4383 /** 4384 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4385 * 4386 * PHY drivers may accept clones of transmitted packets for 4387 * timestamping via their phy_driver.txtstamp method. These drivers 4388 * must call this function to return the skb back to the stack with a 4389 * timestamp. 4390 * 4391 * @skb: clone of the original outgoing packet 4392 * @hwtstamps: hardware time stamps 4393 * 4394 */ 4395 void skb_complete_tx_timestamp(struct sk_buff *skb, 4396 struct skb_shared_hwtstamps *hwtstamps); 4397 4398 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4399 struct skb_shared_hwtstamps *hwtstamps, 4400 struct sock *sk, int tstype); 4401 4402 /** 4403 * skb_tstamp_tx - queue clone of skb with send time stamps 4404 * @orig_skb: the original outgoing packet 4405 * @hwtstamps: hardware time stamps, may be NULL if not available 4406 * 4407 * If the skb has a socket associated, then this function clones the 4408 * skb (thus sharing the actual data and optional structures), stores 4409 * the optional hardware time stamping information (if non NULL) or 4410 * generates a software time stamp (otherwise), then queues the clone 4411 * to the error queue of the socket. Errors are silently ignored. 4412 */ 4413 void skb_tstamp_tx(struct sk_buff *orig_skb, 4414 struct skb_shared_hwtstamps *hwtstamps); 4415 4416 /** 4417 * skb_tx_timestamp() - Driver hook for transmit timestamping 4418 * 4419 * Ethernet MAC Drivers should call this function in their hard_xmit() 4420 * function immediately before giving the sk_buff to the MAC hardware. 4421 * 4422 * Specifically, one should make absolutely sure that this function is 4423 * called before TX completion of this packet can trigger. Otherwise 4424 * the packet could potentially already be freed. 4425 * 4426 * @skb: A socket buffer. 4427 */ 4428 static inline void skb_tx_timestamp(struct sk_buff *skb) 4429 { 4430 skb_clone_tx_timestamp(skb); 4431 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4432 skb_tstamp_tx(skb, NULL); 4433 } 4434 4435 /** 4436 * skb_complete_wifi_ack - deliver skb with wifi status 4437 * 4438 * @skb: the original outgoing packet 4439 * @acked: ack status 4440 * 4441 */ 4442 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4443 4444 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4445 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4446 4447 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4448 { 4449 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4450 skb->csum_valid || 4451 (skb->ip_summed == CHECKSUM_PARTIAL && 4452 skb_checksum_start_offset(skb) >= 0)); 4453 } 4454 4455 /** 4456 * skb_checksum_complete - Calculate checksum of an entire packet 4457 * @skb: packet to process 4458 * 4459 * This function calculates the checksum over the entire packet plus 4460 * the value of skb->csum. The latter can be used to supply the 4461 * checksum of a pseudo header as used by TCP/UDP. It returns the 4462 * checksum. 4463 * 4464 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4465 * this function can be used to verify that checksum on received 4466 * packets. In that case the function should return zero if the 4467 * checksum is correct. In particular, this function will return zero 4468 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4469 * hardware has already verified the correctness of the checksum. 4470 */ 4471 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4472 { 4473 return skb_csum_unnecessary(skb) ? 4474 0 : __skb_checksum_complete(skb); 4475 } 4476 4477 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4478 { 4479 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4480 if (skb->csum_level == 0) 4481 skb->ip_summed = CHECKSUM_NONE; 4482 else 4483 skb->csum_level--; 4484 } 4485 } 4486 4487 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4488 { 4489 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4490 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4491 skb->csum_level++; 4492 } else if (skb->ip_summed == CHECKSUM_NONE) { 4493 skb->ip_summed = CHECKSUM_UNNECESSARY; 4494 skb->csum_level = 0; 4495 } 4496 } 4497 4498 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4499 { 4500 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4501 skb->ip_summed = CHECKSUM_NONE; 4502 skb->csum_level = 0; 4503 } 4504 } 4505 4506 /* Check if we need to perform checksum complete validation. 4507 * 4508 * Returns true if checksum complete is needed, false otherwise 4509 * (either checksum is unnecessary or zero checksum is allowed). 4510 */ 4511 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4512 bool zero_okay, 4513 __sum16 check) 4514 { 4515 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4516 skb->csum_valid = 1; 4517 __skb_decr_checksum_unnecessary(skb); 4518 return false; 4519 } 4520 4521 return true; 4522 } 4523 4524 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4525 * in checksum_init. 4526 */ 4527 #define CHECKSUM_BREAK 76 4528 4529 /* Unset checksum-complete 4530 * 4531 * Unset checksum complete can be done when packet is being modified 4532 * (uncompressed for instance) and checksum-complete value is 4533 * invalidated. 4534 */ 4535 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4536 { 4537 if (skb->ip_summed == CHECKSUM_COMPLETE) 4538 skb->ip_summed = CHECKSUM_NONE; 4539 } 4540 4541 /* Validate (init) checksum based on checksum complete. 4542 * 4543 * Return values: 4544 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4545 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4546 * checksum is stored in skb->csum for use in __skb_checksum_complete 4547 * non-zero: value of invalid checksum 4548 * 4549 */ 4550 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4551 bool complete, 4552 __wsum psum) 4553 { 4554 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4555 if (!csum_fold(csum_add(psum, skb->csum))) { 4556 skb->csum_valid = 1; 4557 return 0; 4558 } 4559 } 4560 4561 skb->csum = psum; 4562 4563 if (complete || skb->len <= CHECKSUM_BREAK) { 4564 __sum16 csum; 4565 4566 csum = __skb_checksum_complete(skb); 4567 skb->csum_valid = !csum; 4568 return csum; 4569 } 4570 4571 return 0; 4572 } 4573 4574 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4575 { 4576 return 0; 4577 } 4578 4579 /* Perform checksum validate (init). Note that this is a macro since we only 4580 * want to calculate the pseudo header which is an input function if necessary. 4581 * First we try to validate without any computation (checksum unnecessary) and 4582 * then calculate based on checksum complete calling the function to compute 4583 * pseudo header. 4584 * 4585 * Return values: 4586 * 0: checksum is validated or try to in skb_checksum_complete 4587 * non-zero: value of invalid checksum 4588 */ 4589 #define __skb_checksum_validate(skb, proto, complete, \ 4590 zero_okay, check, compute_pseudo) \ 4591 ({ \ 4592 __sum16 __ret = 0; \ 4593 skb->csum_valid = 0; \ 4594 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4595 __ret = __skb_checksum_validate_complete(skb, \ 4596 complete, compute_pseudo(skb, proto)); \ 4597 __ret; \ 4598 }) 4599 4600 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4601 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4602 4603 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4604 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4605 4606 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4607 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4608 4609 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4610 compute_pseudo) \ 4611 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4612 4613 #define skb_checksum_simple_validate(skb) \ 4614 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4615 4616 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4617 { 4618 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4619 } 4620 4621 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4622 { 4623 skb->csum = ~pseudo; 4624 skb->ip_summed = CHECKSUM_COMPLETE; 4625 } 4626 4627 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4628 do { \ 4629 if (__skb_checksum_convert_check(skb)) \ 4630 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4631 } while (0) 4632 4633 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4634 u16 start, u16 offset) 4635 { 4636 skb->ip_summed = CHECKSUM_PARTIAL; 4637 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4638 skb->csum_offset = offset - start; 4639 } 4640 4641 /* Update skbuf and packet to reflect the remote checksum offload operation. 4642 * When called, ptr indicates the starting point for skb->csum when 4643 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4644 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4645 */ 4646 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4647 int start, int offset, bool nopartial) 4648 { 4649 __wsum delta; 4650 4651 if (!nopartial) { 4652 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4653 return; 4654 } 4655 4656 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4657 __skb_checksum_complete(skb); 4658 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4659 } 4660 4661 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4662 4663 /* Adjust skb->csum since we changed the packet */ 4664 skb->csum = csum_add(skb->csum, delta); 4665 } 4666 4667 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4668 { 4669 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4670 return (void *)(skb->_nfct & NFCT_PTRMASK); 4671 #else 4672 return NULL; 4673 #endif 4674 } 4675 4676 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4677 { 4678 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4679 return skb->_nfct; 4680 #else 4681 return 0UL; 4682 #endif 4683 } 4684 4685 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4686 { 4687 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4688 skb->slow_gro |= !!nfct; 4689 skb->_nfct = nfct; 4690 #endif 4691 } 4692 4693 #ifdef CONFIG_SKB_EXTENSIONS 4694 enum skb_ext_id { 4695 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4696 SKB_EXT_BRIDGE_NF, 4697 #endif 4698 #ifdef CONFIG_XFRM 4699 SKB_EXT_SEC_PATH, 4700 #endif 4701 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4702 TC_SKB_EXT, 4703 #endif 4704 #if IS_ENABLED(CONFIG_MPTCP) 4705 SKB_EXT_MPTCP, 4706 #endif 4707 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4708 SKB_EXT_MCTP, 4709 #endif 4710 SKB_EXT_NUM, /* must be last */ 4711 }; 4712 4713 /** 4714 * struct skb_ext - sk_buff extensions 4715 * @refcnt: 1 on allocation, deallocated on 0 4716 * @offset: offset to add to @data to obtain extension address 4717 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4718 * @data: start of extension data, variable sized 4719 * 4720 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4721 * to use 'u8' types while allowing up to 2kb worth of extension data. 4722 */ 4723 struct skb_ext { 4724 refcount_t refcnt; 4725 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4726 u8 chunks; /* same */ 4727 char data[] __aligned(8); 4728 }; 4729 4730 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4731 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4732 struct skb_ext *ext); 4733 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4734 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4735 void __skb_ext_put(struct skb_ext *ext); 4736 4737 static inline void skb_ext_put(struct sk_buff *skb) 4738 { 4739 if (skb->active_extensions) 4740 __skb_ext_put(skb->extensions); 4741 } 4742 4743 static inline void __skb_ext_copy(struct sk_buff *dst, 4744 const struct sk_buff *src) 4745 { 4746 dst->active_extensions = src->active_extensions; 4747 4748 if (src->active_extensions) { 4749 struct skb_ext *ext = src->extensions; 4750 4751 refcount_inc(&ext->refcnt); 4752 dst->extensions = ext; 4753 } 4754 } 4755 4756 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4757 { 4758 skb_ext_put(dst); 4759 __skb_ext_copy(dst, src); 4760 } 4761 4762 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4763 { 4764 return !!ext->offset[i]; 4765 } 4766 4767 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4768 { 4769 return skb->active_extensions & (1 << id); 4770 } 4771 4772 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4773 { 4774 if (skb_ext_exist(skb, id)) 4775 __skb_ext_del(skb, id); 4776 } 4777 4778 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4779 { 4780 if (skb_ext_exist(skb, id)) { 4781 struct skb_ext *ext = skb->extensions; 4782 4783 return (void *)ext + (ext->offset[id] << 3); 4784 } 4785 4786 return NULL; 4787 } 4788 4789 static inline void skb_ext_reset(struct sk_buff *skb) 4790 { 4791 if (unlikely(skb->active_extensions)) { 4792 __skb_ext_put(skb->extensions); 4793 skb->active_extensions = 0; 4794 } 4795 } 4796 4797 static inline bool skb_has_extensions(struct sk_buff *skb) 4798 { 4799 return unlikely(skb->active_extensions); 4800 } 4801 #else 4802 static inline void skb_ext_put(struct sk_buff *skb) {} 4803 static inline void skb_ext_reset(struct sk_buff *skb) {} 4804 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4805 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4806 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4807 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4808 #endif /* CONFIG_SKB_EXTENSIONS */ 4809 4810 static inline void nf_reset_ct(struct sk_buff *skb) 4811 { 4812 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4813 nf_conntrack_put(skb_nfct(skb)); 4814 skb->_nfct = 0; 4815 #endif 4816 } 4817 4818 static inline void nf_reset_trace(struct sk_buff *skb) 4819 { 4820 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4821 skb->nf_trace = 0; 4822 #endif 4823 } 4824 4825 static inline void ipvs_reset(struct sk_buff *skb) 4826 { 4827 #if IS_ENABLED(CONFIG_IP_VS) 4828 skb->ipvs_property = 0; 4829 #endif 4830 } 4831 4832 /* Note: This doesn't put any conntrack info in dst. */ 4833 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4834 bool copy) 4835 { 4836 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4837 dst->_nfct = src->_nfct; 4838 nf_conntrack_get(skb_nfct(src)); 4839 #endif 4840 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4841 if (copy) 4842 dst->nf_trace = src->nf_trace; 4843 #endif 4844 } 4845 4846 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4847 { 4848 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4849 nf_conntrack_put(skb_nfct(dst)); 4850 #endif 4851 dst->slow_gro = src->slow_gro; 4852 __nf_copy(dst, src, true); 4853 } 4854 4855 #ifdef CONFIG_NETWORK_SECMARK 4856 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4857 { 4858 to->secmark = from->secmark; 4859 } 4860 4861 static inline void skb_init_secmark(struct sk_buff *skb) 4862 { 4863 skb->secmark = 0; 4864 } 4865 #else 4866 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4867 { } 4868 4869 static inline void skb_init_secmark(struct sk_buff *skb) 4870 { } 4871 #endif 4872 4873 static inline int secpath_exists(const struct sk_buff *skb) 4874 { 4875 #ifdef CONFIG_XFRM 4876 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4877 #else 4878 return 0; 4879 #endif 4880 } 4881 4882 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4883 { 4884 return !skb->destructor && 4885 !secpath_exists(skb) && 4886 !skb_nfct(skb) && 4887 !skb->_skb_refdst && 4888 !skb_has_frag_list(skb); 4889 } 4890 4891 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4892 { 4893 skb->queue_mapping = queue_mapping; 4894 } 4895 4896 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4897 { 4898 return skb->queue_mapping; 4899 } 4900 4901 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4902 { 4903 to->queue_mapping = from->queue_mapping; 4904 } 4905 4906 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4907 { 4908 skb->queue_mapping = rx_queue + 1; 4909 } 4910 4911 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4912 { 4913 return skb->queue_mapping - 1; 4914 } 4915 4916 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4917 { 4918 return skb->queue_mapping != 0; 4919 } 4920 4921 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4922 { 4923 skb->dst_pending_confirm = val; 4924 } 4925 4926 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4927 { 4928 return skb->dst_pending_confirm != 0; 4929 } 4930 4931 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4932 { 4933 #ifdef CONFIG_XFRM 4934 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4935 #else 4936 return NULL; 4937 #endif 4938 } 4939 4940 static inline bool skb_is_gso(const struct sk_buff *skb) 4941 { 4942 return skb_shinfo(skb)->gso_size; 4943 } 4944 4945 /* Note: Should be called only if skb_is_gso(skb) is true */ 4946 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4947 { 4948 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4949 } 4950 4951 /* Note: Should be called only if skb_is_gso(skb) is true */ 4952 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4953 { 4954 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4955 } 4956 4957 /* Note: Should be called only if skb_is_gso(skb) is true */ 4958 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4959 { 4960 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4961 } 4962 4963 static inline void skb_gso_reset(struct sk_buff *skb) 4964 { 4965 skb_shinfo(skb)->gso_size = 0; 4966 skb_shinfo(skb)->gso_segs = 0; 4967 skb_shinfo(skb)->gso_type = 0; 4968 } 4969 4970 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4971 u16 increment) 4972 { 4973 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4974 return; 4975 shinfo->gso_size += increment; 4976 } 4977 4978 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4979 u16 decrement) 4980 { 4981 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4982 return; 4983 shinfo->gso_size -= decrement; 4984 } 4985 4986 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4987 4988 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4989 { 4990 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4991 * wanted then gso_type will be set. */ 4992 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4993 4994 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4995 unlikely(shinfo->gso_type == 0)) { 4996 __skb_warn_lro_forwarding(skb); 4997 return true; 4998 } 4999 return false; 5000 } 5001 5002 static inline void skb_forward_csum(struct sk_buff *skb) 5003 { 5004 /* Unfortunately we don't support this one. Any brave souls? */ 5005 if (skb->ip_summed == CHECKSUM_COMPLETE) 5006 skb->ip_summed = CHECKSUM_NONE; 5007 } 5008 5009 /** 5010 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5011 * @skb: skb to check 5012 * 5013 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5014 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5015 * use this helper, to document places where we make this assertion. 5016 */ 5017 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5018 { 5019 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5020 } 5021 5022 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5023 5024 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5025 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5026 unsigned int transport_len, 5027 __sum16(*skb_chkf)(struct sk_buff *skb)); 5028 5029 /** 5030 * skb_head_is_locked - Determine if the skb->head is locked down 5031 * @skb: skb to check 5032 * 5033 * The head on skbs build around a head frag can be removed if they are 5034 * not cloned. This function returns true if the skb head is locked down 5035 * due to either being allocated via kmalloc, or by being a clone with 5036 * multiple references to the head. 5037 */ 5038 static inline bool skb_head_is_locked(const struct sk_buff *skb) 5039 { 5040 return !skb->head_frag || skb_cloned(skb); 5041 } 5042 5043 /* Local Checksum Offload. 5044 * Compute outer checksum based on the assumption that the 5045 * inner checksum will be offloaded later. 5046 * See Documentation/networking/checksum-offloads.rst for 5047 * explanation of how this works. 5048 * Fill in outer checksum adjustment (e.g. with sum of outer 5049 * pseudo-header) before calling. 5050 * Also ensure that inner checksum is in linear data area. 5051 */ 5052 static inline __wsum lco_csum(struct sk_buff *skb) 5053 { 5054 unsigned char *csum_start = skb_checksum_start(skb); 5055 unsigned char *l4_hdr = skb_transport_header(skb); 5056 __wsum partial; 5057 5058 /* Start with complement of inner checksum adjustment */ 5059 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5060 skb->csum_offset)); 5061 5062 /* Add in checksum of our headers (incl. outer checksum 5063 * adjustment filled in by caller) and return result. 5064 */ 5065 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5066 } 5067 5068 static inline bool skb_is_redirected(const struct sk_buff *skb) 5069 { 5070 return skb->redirected; 5071 } 5072 5073 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5074 { 5075 skb->redirected = 1; 5076 #ifdef CONFIG_NET_REDIRECT 5077 skb->from_ingress = from_ingress; 5078 if (skb->from_ingress) 5079 skb_clear_tstamp(skb); 5080 #endif 5081 } 5082 5083 static inline void skb_reset_redirect(struct sk_buff *skb) 5084 { 5085 skb->redirected = 0; 5086 } 5087 5088 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5089 bool from_ingress) 5090 { 5091 skb->redirected = 1; 5092 #ifdef CONFIG_NET_REDIRECT 5093 skb->from_ingress = from_ingress; 5094 #endif 5095 } 5096 5097 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5098 { 5099 #if IS_ENABLED(CONFIG_IP_SCTP) 5100 return skb->csum_not_inet; 5101 #else 5102 return 0; 5103 #endif 5104 } 5105 5106 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5107 { 5108 skb->ip_summed = CHECKSUM_NONE; 5109 #if IS_ENABLED(CONFIG_IP_SCTP) 5110 skb->csum_not_inet = 0; 5111 #endif 5112 } 5113 5114 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5115 const u64 kcov_handle) 5116 { 5117 #ifdef CONFIG_KCOV 5118 skb->kcov_handle = kcov_handle; 5119 #endif 5120 } 5121 5122 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5123 { 5124 #ifdef CONFIG_KCOV 5125 return skb->kcov_handle; 5126 #else 5127 return 0; 5128 #endif 5129 } 5130 5131 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5132 { 5133 #ifdef CONFIG_PAGE_POOL 5134 skb->pp_recycle = 1; 5135 #endif 5136 } 5137 5138 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5139 ssize_t maxsize, gfp_t gfp); 5140 5141 #endif /* __KERNEL__ */ 5142 #endif /* _LINUX_SKBUFF_H */ 5143