xref: /linux-6.15/include/linux/skbuff.h (revision 4e73e1bc)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 extern int sysctl_max_skb_frags;
357 
358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
359  * segment using its current segmentation instead.
360  */
361 #define GSO_BY_FRAGS	0xFFFF
362 
363 typedef struct skb_frag {
364 	netmem_ref netmem;
365 	unsigned int len;
366 	unsigned int offset;
367 } skb_frag_t;
368 
369 /**
370  * skb_frag_size() - Returns the size of a skb fragment
371  * @frag: skb fragment
372  */
373 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374 {
375 	return frag->len;
376 }
377 
378 /**
379  * skb_frag_size_set() - Sets the size of a skb fragment
380  * @frag: skb fragment
381  * @size: size of fragment
382  */
383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384 {
385 	frag->len = size;
386 }
387 
388 /**
389  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
390  * @frag: skb fragment
391  * @delta: value to add
392  */
393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
394 {
395 	frag->len += delta;
396 }
397 
398 /**
399  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
400  * @frag: skb fragment
401  * @delta: value to subtract
402  */
403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
404 {
405 	frag->len -= delta;
406 }
407 
408 /**
409  * skb_frag_must_loop - Test if %p is a high memory page
410  * @p: fragment's page
411  */
412 static inline bool skb_frag_must_loop(struct page *p)
413 {
414 #if defined(CONFIG_HIGHMEM)
415 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
416 		return true;
417 #endif
418 	return false;
419 }
420 
421 /**
422  *	skb_frag_foreach_page - loop over pages in a fragment
423  *
424  *	@f:		skb frag to operate on
425  *	@f_off:		offset from start of f->netmem
426  *	@f_len:		length from f_off to loop over
427  *	@p:		(temp var) current page
428  *	@p_off:		(temp var) offset from start of current page,
429  *	                           non-zero only on first page.
430  *	@p_len:		(temp var) length in current page,
431  *				   < PAGE_SIZE only on first and last page.
432  *	@copied:	(temp var) length so far, excluding current p_len.
433  *
434  *	A fragment can hold a compound page, in which case per-page
435  *	operations, notably kmap_atomic, must be called for each
436  *	regular page.
437  */
438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
439 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
440 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
441 	     p_len = skb_frag_must_loop(p) ?				\
442 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
443 	     copied = 0;						\
444 	     copied < f_len;						\
445 	     copied += p_len, p++, p_off = 0,				\
446 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
447 
448 /**
449  * struct skb_shared_hwtstamps - hardware time stamps
450  * @hwtstamp:		hardware time stamp transformed into duration
451  *			since arbitrary point in time
452  * @netdev_data:	address/cookie of network device driver used as
453  *			reference to actual hardware time stamp
454  *
455  * Software time stamps generated by ktime_get_real() are stored in
456  * skb->tstamp.
457  *
458  * hwtstamps can only be compared against other hwtstamps from
459  * the same device.
460  *
461  * This structure is attached to packets as part of the
462  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
463  */
464 struct skb_shared_hwtstamps {
465 	union {
466 		ktime_t	hwtstamp;
467 		void *netdev_data;
468 	};
469 };
470 
471 /* Definitions for tx_flags in struct skb_shared_info */
472 enum {
473 	/* generate hardware time stamp */
474 	SKBTX_HW_TSTAMP = 1 << 0,
475 
476 	/* generate software time stamp when queueing packet to NIC */
477 	SKBTX_SW_TSTAMP = 1 << 1,
478 
479 	/* device driver is going to provide hardware time stamp */
480 	SKBTX_IN_PROGRESS = 1 << 2,
481 
482 	/* generate hardware time stamp based on cycles if supported */
483 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
484 
485 	/* generate wifi status information (where possible) */
486 	SKBTX_WIFI_STATUS = 1 << 4,
487 
488 	/* determine hardware time stamp based on time or cycles */
489 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
490 
491 	/* generate software time stamp when entering packet scheduling */
492 	SKBTX_SCHED_TSTAMP = 1 << 6,
493 };
494 
495 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
496 				 SKBTX_SCHED_TSTAMP)
497 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
498 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
499 				 SKBTX_ANY_SW_TSTAMP)
500 
501 /* Definitions for flags in struct skb_shared_info */
502 enum {
503 	/* use zcopy routines */
504 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
505 
506 	/* This indicates at least one fragment might be overwritten
507 	 * (as in vmsplice(), sendfile() ...)
508 	 * If we need to compute a TX checksum, we'll need to copy
509 	 * all frags to avoid possible bad checksum
510 	 */
511 	SKBFL_SHARED_FRAG = BIT(1),
512 
513 	/* segment contains only zerocopy data and should not be
514 	 * charged to the kernel memory.
515 	 */
516 	SKBFL_PURE_ZEROCOPY = BIT(2),
517 
518 	SKBFL_DONT_ORPHAN = BIT(3),
519 
520 	/* page references are managed by the ubuf_info, so it's safe to
521 	 * use frags only up until ubuf_info is released
522 	 */
523 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
524 };
525 
526 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
527 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
528 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
529 
530 /*
531  * The callback notifies userspace to release buffers when skb DMA is done in
532  * lower device, the skb last reference should be 0 when calling this.
533  * The zerocopy_success argument is true if zero copy transmit occurred,
534  * false on data copy or out of memory error caused by data copy attempt.
535  * The ctx field is used to track device context.
536  * The desc field is used to track userspace buffer index.
537  */
538 struct ubuf_info {
539 	void (*callback)(struct sk_buff *, struct ubuf_info *,
540 			 bool zerocopy_success);
541 	refcount_t refcnt;
542 	u8 flags;
543 };
544 
545 struct ubuf_info_msgzc {
546 	struct ubuf_info ubuf;
547 
548 	union {
549 		struct {
550 			unsigned long desc;
551 			void *ctx;
552 		};
553 		struct {
554 			u32 id;
555 			u16 len;
556 			u16 zerocopy:1;
557 			u32 bytelen;
558 		};
559 	};
560 
561 	struct mmpin {
562 		struct user_struct *user;
563 		unsigned int num_pg;
564 	} mmp;
565 };
566 
567 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
568 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
569 					     ubuf)
570 
571 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
572 void mm_unaccount_pinned_pages(struct mmpin *mmp);
573 
574 /* Preserve some data across TX submission and completion.
575  *
576  * Note, this state is stored in the driver. Extending the layout
577  * might need some special care.
578  */
579 struct xsk_tx_metadata_compl {
580 	__u64 *tx_timestamp;
581 };
582 
583 /* This data is invariant across clones and lives at
584  * the end of the header data, ie. at skb->end.
585  */
586 struct skb_shared_info {
587 	__u8		flags;
588 	__u8		meta_len;
589 	__u8		nr_frags;
590 	__u8		tx_flags;
591 	unsigned short	gso_size;
592 	/* Warning: this field is not always filled in (UFO)! */
593 	unsigned short	gso_segs;
594 	struct sk_buff	*frag_list;
595 	union {
596 		struct skb_shared_hwtstamps hwtstamps;
597 		struct xsk_tx_metadata_compl xsk_meta;
598 	};
599 	unsigned int	gso_type;
600 	u32		tskey;
601 
602 	/*
603 	 * Warning : all fields before dataref are cleared in __alloc_skb()
604 	 */
605 	atomic_t	dataref;
606 	unsigned int	xdp_frags_size;
607 
608 	/* Intermediate layers must ensure that destructor_arg
609 	 * remains valid until skb destructor */
610 	void *		destructor_arg;
611 
612 	/* must be last field, see pskb_expand_head() */
613 	skb_frag_t	frags[MAX_SKB_FRAGS];
614 };
615 
616 /**
617  * DOC: dataref and headerless skbs
618  *
619  * Transport layers send out clones of payload skbs they hold for
620  * retransmissions. To allow lower layers of the stack to prepend their headers
621  * we split &skb_shared_info.dataref into two halves.
622  * The lower 16 bits count the overall number of references.
623  * The higher 16 bits indicate how many of the references are payload-only.
624  * skb_header_cloned() checks if skb is allowed to add / write the headers.
625  *
626  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
627  * (via __skb_header_release()). Any clone created from marked skb will get
628  * &sk_buff.hdr_len populated with the available headroom.
629  * If there's the only clone in existence it's able to modify the headroom
630  * at will. The sequence of calls inside the transport layer is::
631  *
632  *  <alloc skb>
633  *  skb_reserve()
634  *  __skb_header_release()
635  *  skb_clone()
636  *  // send the clone down the stack
637  *
638  * This is not a very generic construct and it depends on the transport layers
639  * doing the right thing. In practice there's usually only one payload-only skb.
640  * Having multiple payload-only skbs with different lengths of hdr_len is not
641  * possible. The payload-only skbs should never leave their owner.
642  */
643 #define SKB_DATAREF_SHIFT 16
644 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
645 
646 
647 enum {
648 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
649 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
650 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
651 };
652 
653 enum {
654 	SKB_GSO_TCPV4 = 1 << 0,
655 
656 	/* This indicates the skb is from an untrusted source. */
657 	SKB_GSO_DODGY = 1 << 1,
658 
659 	/* This indicates the tcp segment has CWR set. */
660 	SKB_GSO_TCP_ECN = 1 << 2,
661 
662 	SKB_GSO_TCP_FIXEDID = 1 << 3,
663 
664 	SKB_GSO_TCPV6 = 1 << 4,
665 
666 	SKB_GSO_FCOE = 1 << 5,
667 
668 	SKB_GSO_GRE = 1 << 6,
669 
670 	SKB_GSO_GRE_CSUM = 1 << 7,
671 
672 	SKB_GSO_IPXIP4 = 1 << 8,
673 
674 	SKB_GSO_IPXIP6 = 1 << 9,
675 
676 	SKB_GSO_UDP_TUNNEL = 1 << 10,
677 
678 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
679 
680 	SKB_GSO_PARTIAL = 1 << 12,
681 
682 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
683 
684 	SKB_GSO_SCTP = 1 << 14,
685 
686 	SKB_GSO_ESP = 1 << 15,
687 
688 	SKB_GSO_UDP = 1 << 16,
689 
690 	SKB_GSO_UDP_L4 = 1 << 17,
691 
692 	SKB_GSO_FRAGLIST = 1 << 18,
693 };
694 
695 #if BITS_PER_LONG > 32
696 #define NET_SKBUFF_DATA_USES_OFFSET 1
697 #endif
698 
699 #ifdef NET_SKBUFF_DATA_USES_OFFSET
700 typedef unsigned int sk_buff_data_t;
701 #else
702 typedef unsigned char *sk_buff_data_t;
703 #endif
704 
705 /**
706  * DOC: Basic sk_buff geometry
707  *
708  * struct sk_buff itself is a metadata structure and does not hold any packet
709  * data. All the data is held in associated buffers.
710  *
711  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
712  * into two parts:
713  *
714  *  - data buffer, containing headers and sometimes payload;
715  *    this is the part of the skb operated on by the common helpers
716  *    such as skb_put() or skb_pull();
717  *  - shared info (struct skb_shared_info) which holds an array of pointers
718  *    to read-only data in the (page, offset, length) format.
719  *
720  * Optionally &skb_shared_info.frag_list may point to another skb.
721  *
722  * Basic diagram may look like this::
723  *
724  *                                  ---------------
725  *                                 | sk_buff       |
726  *                                  ---------------
727  *     ,---------------------------  + head
728  *    /          ,-----------------  + data
729  *   /          /      ,-----------  + tail
730  *  |          |      |            , + end
731  *  |          |      |           |
732  *  v          v      v           v
733  *   -----------------------------------------------
734  *  | headroom | data |  tailroom | skb_shared_info |
735  *   -----------------------------------------------
736  *                                 + [page frag]
737  *                                 + [page frag]
738  *                                 + [page frag]
739  *                                 + [page frag]       ---------
740  *                                 + frag_list    --> | sk_buff |
741  *                                                     ---------
742  *
743  */
744 
745 /**
746  *	struct sk_buff - socket buffer
747  *	@next: Next buffer in list
748  *	@prev: Previous buffer in list
749  *	@tstamp: Time we arrived/left
750  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
751  *		for retransmit timer
752  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
753  *	@list: queue head
754  *	@ll_node: anchor in an llist (eg socket defer_list)
755  *	@sk: Socket we are owned by
756  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
757  *		fragmentation management
758  *	@dev: Device we arrived on/are leaving by
759  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
760  *	@cb: Control buffer. Free for use by every layer. Put private vars here
761  *	@_skb_refdst: destination entry (with norefcount bit)
762  *	@len: Length of actual data
763  *	@data_len: Data length
764  *	@mac_len: Length of link layer header
765  *	@hdr_len: writable header length of cloned skb
766  *	@csum: Checksum (must include start/offset pair)
767  *	@csum_start: Offset from skb->head where checksumming should start
768  *	@csum_offset: Offset from csum_start where checksum should be stored
769  *	@priority: Packet queueing priority
770  *	@ignore_df: allow local fragmentation
771  *	@cloned: Head may be cloned (check refcnt to be sure)
772  *	@ip_summed: Driver fed us an IP checksum
773  *	@nohdr: Payload reference only, must not modify header
774  *	@pkt_type: Packet class
775  *	@fclone: skbuff clone status
776  *	@ipvs_property: skbuff is owned by ipvs
777  *	@inner_protocol_type: whether the inner protocol is
778  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
779  *	@remcsum_offload: remote checksum offload is enabled
780  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
781  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
782  *	@tc_skip_classify: do not classify packet. set by IFB device
783  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
784  *	@redirected: packet was redirected by packet classifier
785  *	@from_ingress: packet was redirected from the ingress path
786  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
787  *	@peeked: this packet has been seen already, so stats have been
788  *		done for it, don't do them again
789  *	@nf_trace: netfilter packet trace flag
790  *	@protocol: Packet protocol from driver
791  *	@destructor: Destruct function
792  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
793  *	@_sk_redir: socket redirection information for skmsg
794  *	@_nfct: Associated connection, if any (with nfctinfo bits)
795  *	@skb_iif: ifindex of device we arrived on
796  *	@tc_index: Traffic control index
797  *	@hash: the packet hash
798  *	@queue_mapping: Queue mapping for multiqueue devices
799  *	@head_frag: skb was allocated from page fragments,
800  *		not allocated by kmalloc() or vmalloc().
801  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
802  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
803  *		page_pool support on driver)
804  *	@active_extensions: active extensions (skb_ext_id types)
805  *	@ndisc_nodetype: router type (from link layer)
806  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
807  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
808  *		ports.
809  *	@sw_hash: indicates hash was computed in software stack
810  *	@wifi_acked_valid: wifi_acked was set
811  *	@wifi_acked: whether frame was acked on wifi or not
812  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
813  *	@encapsulation: indicates the inner headers in the skbuff are valid
814  *	@encap_hdr_csum: software checksum is needed
815  *	@csum_valid: checksum is already valid
816  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
817  *	@csum_complete_sw: checksum was completed by software
818  *	@csum_level: indicates the number of consecutive checksums found in
819  *		the packet minus one that have been verified as
820  *		CHECKSUM_UNNECESSARY (max 3)
821  *	@dst_pending_confirm: need to confirm neighbour
822  *	@decrypted: Decrypted SKB
823  *	@slow_gro: state present at GRO time, slower prepare step required
824  *	@mono_delivery_time: When set, skb->tstamp has the
825  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
826  *		skb->tstamp has the (rcv) timestamp at ingress and
827  *		delivery_time at egress.
828  *	@napi_id: id of the NAPI struct this skb came from
829  *	@sender_cpu: (aka @napi_id) source CPU in XPS
830  *	@alloc_cpu: CPU which did the skb allocation.
831  *	@secmark: security marking
832  *	@mark: Generic packet mark
833  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
834  *		at the tail of an sk_buff
835  *	@vlan_all: vlan fields (proto & tci)
836  *	@vlan_proto: vlan encapsulation protocol
837  *	@vlan_tci: vlan tag control information
838  *	@inner_protocol: Protocol (encapsulation)
839  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
840  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
841  *	@inner_transport_header: Inner transport layer header (encapsulation)
842  *	@inner_network_header: Network layer header (encapsulation)
843  *	@inner_mac_header: Link layer header (encapsulation)
844  *	@transport_header: Transport layer header
845  *	@network_header: Network layer header
846  *	@mac_header: Link layer header
847  *	@kcov_handle: KCOV remote handle for remote coverage collection
848  *	@tail: Tail pointer
849  *	@end: End pointer
850  *	@head: Head of buffer
851  *	@data: Data head pointer
852  *	@truesize: Buffer size
853  *	@users: User count - see {datagram,tcp}.c
854  *	@extensions: allocated extensions, valid if active_extensions is nonzero
855  */
856 
857 struct sk_buff {
858 	union {
859 		struct {
860 			/* These two members must be first to match sk_buff_head. */
861 			struct sk_buff		*next;
862 			struct sk_buff		*prev;
863 
864 			union {
865 				struct net_device	*dev;
866 				/* Some protocols might use this space to store information,
867 				 * while device pointer would be NULL.
868 				 * UDP receive path is one user.
869 				 */
870 				unsigned long		dev_scratch;
871 			};
872 		};
873 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
874 		struct list_head	list;
875 		struct llist_node	ll_node;
876 	};
877 
878 	union {
879 		struct sock		*sk;
880 		int			ip_defrag_offset;
881 	};
882 
883 	union {
884 		ktime_t		tstamp;
885 		u64		skb_mstamp_ns; /* earliest departure time */
886 	};
887 	/*
888 	 * This is the control buffer. It is free to use for every
889 	 * layer. Please put your private variables there. If you
890 	 * want to keep them across layers you have to do a skb_clone()
891 	 * first. This is owned by whoever has the skb queued ATM.
892 	 */
893 	char			cb[48] __aligned(8);
894 
895 	union {
896 		struct {
897 			unsigned long	_skb_refdst;
898 			void		(*destructor)(struct sk_buff *skb);
899 		};
900 		struct list_head	tcp_tsorted_anchor;
901 #ifdef CONFIG_NET_SOCK_MSG
902 		unsigned long		_sk_redir;
903 #endif
904 	};
905 
906 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
907 	unsigned long		 _nfct;
908 #endif
909 	unsigned int		len,
910 				data_len;
911 	__u16			mac_len,
912 				hdr_len;
913 
914 	/* Following fields are _not_ copied in __copy_skb_header()
915 	 * Note that queue_mapping is here mostly to fill a hole.
916 	 */
917 	__u16			queue_mapping;
918 
919 /* if you move cloned around you also must adapt those constants */
920 #ifdef __BIG_ENDIAN_BITFIELD
921 #define CLONED_MASK	(1 << 7)
922 #else
923 #define CLONED_MASK	1
924 #endif
925 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
926 
927 	/* private: */
928 	__u8			__cloned_offset[0];
929 	/* public: */
930 	__u8			cloned:1,
931 				nohdr:1,
932 				fclone:2,
933 				peeked:1,
934 				head_frag:1,
935 				pfmemalloc:1,
936 				pp_recycle:1; /* page_pool recycle indicator */
937 #ifdef CONFIG_SKB_EXTENSIONS
938 	__u8			active_extensions;
939 #endif
940 
941 	/* Fields enclosed in headers group are copied
942 	 * using a single memcpy() in __copy_skb_header()
943 	 */
944 	struct_group(headers,
945 
946 	/* private: */
947 	__u8			__pkt_type_offset[0];
948 	/* public: */
949 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
950 	__u8			ignore_df:1;
951 	__u8			dst_pending_confirm:1;
952 	__u8			ip_summed:2;
953 	__u8			ooo_okay:1;
954 
955 	/* private: */
956 	__u8			__mono_tc_offset[0];
957 	/* public: */
958 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
959 #ifdef CONFIG_NET_XGRESS
960 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
961 	__u8			tc_skip_classify:1;
962 #endif
963 	__u8			remcsum_offload:1;
964 	__u8			csum_complete_sw:1;
965 	__u8			csum_level:2;
966 	__u8			inner_protocol_type:1;
967 
968 	__u8			l4_hash:1;
969 	__u8			sw_hash:1;
970 #ifdef CONFIG_WIRELESS
971 	__u8			wifi_acked_valid:1;
972 	__u8			wifi_acked:1;
973 #endif
974 	__u8			no_fcs:1;
975 	/* Indicates the inner headers are valid in the skbuff. */
976 	__u8			encapsulation:1;
977 	__u8			encap_hdr_csum:1;
978 	__u8			csum_valid:1;
979 #ifdef CONFIG_IPV6_NDISC_NODETYPE
980 	__u8			ndisc_nodetype:2;
981 #endif
982 
983 #if IS_ENABLED(CONFIG_IP_VS)
984 	__u8			ipvs_property:1;
985 #endif
986 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
987 	__u8			nf_trace:1;
988 #endif
989 #ifdef CONFIG_NET_SWITCHDEV
990 	__u8			offload_fwd_mark:1;
991 	__u8			offload_l3_fwd_mark:1;
992 #endif
993 	__u8			redirected:1;
994 #ifdef CONFIG_NET_REDIRECT
995 	__u8			from_ingress:1;
996 #endif
997 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
998 	__u8			nf_skip_egress:1;
999 #endif
1000 #ifdef CONFIG_TLS_DEVICE
1001 	__u8			decrypted:1;
1002 #endif
1003 	__u8			slow_gro:1;
1004 #if IS_ENABLED(CONFIG_IP_SCTP)
1005 	__u8			csum_not_inet:1;
1006 #endif
1007 
1008 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1009 	__u16			tc_index;	/* traffic control index */
1010 #endif
1011 
1012 	u16			alloc_cpu;
1013 
1014 	union {
1015 		__wsum		csum;
1016 		struct {
1017 			__u16	csum_start;
1018 			__u16	csum_offset;
1019 		};
1020 	};
1021 	__u32			priority;
1022 	int			skb_iif;
1023 	__u32			hash;
1024 	union {
1025 		u32		vlan_all;
1026 		struct {
1027 			__be16	vlan_proto;
1028 			__u16	vlan_tci;
1029 		};
1030 	};
1031 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1032 	union {
1033 		unsigned int	napi_id;
1034 		unsigned int	sender_cpu;
1035 	};
1036 #endif
1037 #ifdef CONFIG_NETWORK_SECMARK
1038 	__u32		secmark;
1039 #endif
1040 
1041 	union {
1042 		__u32		mark;
1043 		__u32		reserved_tailroom;
1044 	};
1045 
1046 	union {
1047 		__be16		inner_protocol;
1048 		__u8		inner_ipproto;
1049 	};
1050 
1051 	__u16			inner_transport_header;
1052 	__u16			inner_network_header;
1053 	__u16			inner_mac_header;
1054 
1055 	__be16			protocol;
1056 	__u16			transport_header;
1057 	__u16			network_header;
1058 	__u16			mac_header;
1059 
1060 #ifdef CONFIG_KCOV
1061 	u64			kcov_handle;
1062 #endif
1063 
1064 	); /* end headers group */
1065 
1066 	/* These elements must be at the end, see alloc_skb() for details.  */
1067 	sk_buff_data_t		tail;
1068 	sk_buff_data_t		end;
1069 	unsigned char		*head,
1070 				*data;
1071 	unsigned int		truesize;
1072 	refcount_t		users;
1073 
1074 #ifdef CONFIG_SKB_EXTENSIONS
1075 	/* only usable after checking ->active_extensions != 0 */
1076 	struct skb_ext		*extensions;
1077 #endif
1078 };
1079 
1080 /* if you move pkt_type around you also must adapt those constants */
1081 #ifdef __BIG_ENDIAN_BITFIELD
1082 #define PKT_TYPE_MAX	(7 << 5)
1083 #else
1084 #define PKT_TYPE_MAX	7
1085 #endif
1086 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1087 
1088 /* if you move tc_at_ingress or mono_delivery_time
1089  * around, you also must adapt these constants.
1090  */
1091 #ifdef __BIG_ENDIAN_BITFIELD
1092 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1093 #define TC_AT_INGRESS_MASK		(1 << 6)
1094 #else
1095 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1096 #define TC_AT_INGRESS_MASK		(1 << 1)
1097 #endif
1098 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1099 
1100 #ifdef __KERNEL__
1101 /*
1102  *	Handling routines are only of interest to the kernel
1103  */
1104 
1105 #define SKB_ALLOC_FCLONE	0x01
1106 #define SKB_ALLOC_RX		0x02
1107 #define SKB_ALLOC_NAPI		0x04
1108 
1109 /**
1110  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1111  * @skb: buffer
1112  */
1113 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1114 {
1115 	return unlikely(skb->pfmemalloc);
1116 }
1117 
1118 /*
1119  * skb might have a dst pointer attached, refcounted or not.
1120  * _skb_refdst low order bit is set if refcount was _not_ taken
1121  */
1122 #define SKB_DST_NOREF	1UL
1123 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1124 
1125 /**
1126  * skb_dst - returns skb dst_entry
1127  * @skb: buffer
1128  *
1129  * Returns skb dst_entry, regardless of reference taken or not.
1130  */
1131 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1132 {
1133 	/* If refdst was not refcounted, check we still are in a
1134 	 * rcu_read_lock section
1135 	 */
1136 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1137 		!rcu_read_lock_held() &&
1138 		!rcu_read_lock_bh_held());
1139 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1140 }
1141 
1142 /**
1143  * skb_dst_set - sets skb dst
1144  * @skb: buffer
1145  * @dst: dst entry
1146  *
1147  * Sets skb dst, assuming a reference was taken on dst and should
1148  * be released by skb_dst_drop()
1149  */
1150 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1151 {
1152 	skb->slow_gro |= !!dst;
1153 	skb->_skb_refdst = (unsigned long)dst;
1154 }
1155 
1156 /**
1157  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1158  * @skb: buffer
1159  * @dst: dst entry
1160  *
1161  * Sets skb dst, assuming a reference was not taken on dst.
1162  * If dst entry is cached, we do not take reference and dst_release
1163  * will be avoided by refdst_drop. If dst entry is not cached, we take
1164  * reference, so that last dst_release can destroy the dst immediately.
1165  */
1166 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1167 {
1168 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1169 	skb->slow_gro |= !!dst;
1170 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1171 }
1172 
1173 /**
1174  * skb_dst_is_noref - Test if skb dst isn't refcounted
1175  * @skb: buffer
1176  */
1177 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1178 {
1179 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1180 }
1181 
1182 /**
1183  * skb_rtable - Returns the skb &rtable
1184  * @skb: buffer
1185  */
1186 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1187 {
1188 	return (struct rtable *)skb_dst(skb);
1189 }
1190 
1191 /* For mangling skb->pkt_type from user space side from applications
1192  * such as nft, tc, etc, we only allow a conservative subset of
1193  * possible pkt_types to be set.
1194 */
1195 static inline bool skb_pkt_type_ok(u32 ptype)
1196 {
1197 	return ptype <= PACKET_OTHERHOST;
1198 }
1199 
1200 /**
1201  * skb_napi_id - Returns the skb's NAPI id
1202  * @skb: buffer
1203  */
1204 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1205 {
1206 #ifdef CONFIG_NET_RX_BUSY_POLL
1207 	return skb->napi_id;
1208 #else
1209 	return 0;
1210 #endif
1211 }
1212 
1213 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1214 {
1215 #ifdef CONFIG_WIRELESS
1216 	return skb->wifi_acked_valid;
1217 #else
1218 	return 0;
1219 #endif
1220 }
1221 
1222 /**
1223  * skb_unref - decrement the skb's reference count
1224  * @skb: buffer
1225  *
1226  * Returns true if we can free the skb.
1227  */
1228 static inline bool skb_unref(struct sk_buff *skb)
1229 {
1230 	if (unlikely(!skb))
1231 		return false;
1232 	if (likely(refcount_read(&skb->users) == 1))
1233 		smp_rmb();
1234 	else if (likely(!refcount_dec_and_test(&skb->users)))
1235 		return false;
1236 
1237 	return true;
1238 }
1239 
1240 void __fix_address
1241 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1242 
1243 /**
1244  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1245  *	@skb: buffer to free
1246  */
1247 static inline void kfree_skb(struct sk_buff *skb)
1248 {
1249 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1250 }
1251 
1252 void skb_release_head_state(struct sk_buff *skb);
1253 void kfree_skb_list_reason(struct sk_buff *segs,
1254 			   enum skb_drop_reason reason);
1255 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1256 void skb_tx_error(struct sk_buff *skb);
1257 
1258 static inline void kfree_skb_list(struct sk_buff *segs)
1259 {
1260 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1261 }
1262 
1263 #ifdef CONFIG_TRACEPOINTS
1264 void consume_skb(struct sk_buff *skb);
1265 #else
1266 static inline void consume_skb(struct sk_buff *skb)
1267 {
1268 	return kfree_skb(skb);
1269 }
1270 #endif
1271 
1272 void __consume_stateless_skb(struct sk_buff *skb);
1273 void  __kfree_skb(struct sk_buff *skb);
1274 extern struct kmem_cache *skbuff_cache;
1275 
1276 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1277 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1278 		      bool *fragstolen, int *delta_truesize);
1279 
1280 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1281 			    int node);
1282 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1283 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1284 struct sk_buff *build_skb_around(struct sk_buff *skb,
1285 				 void *data, unsigned int frag_size);
1286 void skb_attempt_defer_free(struct sk_buff *skb);
1287 
1288 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1289 struct sk_buff *slab_build_skb(void *data);
1290 
1291 /**
1292  * alloc_skb - allocate a network buffer
1293  * @size: size to allocate
1294  * @priority: allocation mask
1295  *
1296  * This function is a convenient wrapper around __alloc_skb().
1297  */
1298 static inline struct sk_buff *alloc_skb(unsigned int size,
1299 					gfp_t priority)
1300 {
1301 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1302 }
1303 
1304 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1305 				     unsigned long data_len,
1306 				     int max_page_order,
1307 				     int *errcode,
1308 				     gfp_t gfp_mask);
1309 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1310 
1311 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1312 struct sk_buff_fclones {
1313 	struct sk_buff	skb1;
1314 
1315 	struct sk_buff	skb2;
1316 
1317 	refcount_t	fclone_ref;
1318 };
1319 
1320 /**
1321  *	skb_fclone_busy - check if fclone is busy
1322  *	@sk: socket
1323  *	@skb: buffer
1324  *
1325  * Returns true if skb is a fast clone, and its clone is not freed.
1326  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1327  * so we also check that didn't happen.
1328  */
1329 static inline bool skb_fclone_busy(const struct sock *sk,
1330 				   const struct sk_buff *skb)
1331 {
1332 	const struct sk_buff_fclones *fclones;
1333 
1334 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1335 
1336 	return skb->fclone == SKB_FCLONE_ORIG &&
1337 	       refcount_read(&fclones->fclone_ref) > 1 &&
1338 	       READ_ONCE(fclones->skb2.sk) == sk;
1339 }
1340 
1341 /**
1342  * alloc_skb_fclone - allocate a network buffer from fclone cache
1343  * @size: size to allocate
1344  * @priority: allocation mask
1345  *
1346  * This function is a convenient wrapper around __alloc_skb().
1347  */
1348 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1349 					       gfp_t priority)
1350 {
1351 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1352 }
1353 
1354 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1355 void skb_headers_offset_update(struct sk_buff *skb, int off);
1356 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1357 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1358 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1359 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1360 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1361 				   gfp_t gfp_mask, bool fclone);
1362 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1363 					  gfp_t gfp_mask)
1364 {
1365 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1366 }
1367 
1368 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1369 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1370 				     unsigned int headroom);
1371 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1372 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1373 				int newtailroom, gfp_t priority);
1374 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1375 				     int offset, int len);
1376 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1377 			      int offset, int len);
1378 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1379 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1380 
1381 /**
1382  *	skb_pad			-	zero pad the tail of an skb
1383  *	@skb: buffer to pad
1384  *	@pad: space to pad
1385  *
1386  *	Ensure that a buffer is followed by a padding area that is zero
1387  *	filled. Used by network drivers which may DMA or transfer data
1388  *	beyond the buffer end onto the wire.
1389  *
1390  *	May return error in out of memory cases. The skb is freed on error.
1391  */
1392 static inline int skb_pad(struct sk_buff *skb, int pad)
1393 {
1394 	return __skb_pad(skb, pad, true);
1395 }
1396 #define dev_kfree_skb(a)	consume_skb(a)
1397 
1398 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1399 			 int offset, size_t size, size_t max_frags);
1400 
1401 struct skb_seq_state {
1402 	__u32		lower_offset;
1403 	__u32		upper_offset;
1404 	__u32		frag_idx;
1405 	__u32		stepped_offset;
1406 	struct sk_buff	*root_skb;
1407 	struct sk_buff	*cur_skb;
1408 	__u8		*frag_data;
1409 	__u32		frag_off;
1410 };
1411 
1412 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1413 			  unsigned int to, struct skb_seq_state *st);
1414 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1415 			  struct skb_seq_state *st);
1416 void skb_abort_seq_read(struct skb_seq_state *st);
1417 
1418 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1419 			   unsigned int to, struct ts_config *config);
1420 
1421 /*
1422  * Packet hash types specify the type of hash in skb_set_hash.
1423  *
1424  * Hash types refer to the protocol layer addresses which are used to
1425  * construct a packet's hash. The hashes are used to differentiate or identify
1426  * flows of the protocol layer for the hash type. Hash types are either
1427  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1428  *
1429  * Properties of hashes:
1430  *
1431  * 1) Two packets in different flows have different hash values
1432  * 2) Two packets in the same flow should have the same hash value
1433  *
1434  * A hash at a higher layer is considered to be more specific. A driver should
1435  * set the most specific hash possible.
1436  *
1437  * A driver cannot indicate a more specific hash than the layer at which a hash
1438  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1439  *
1440  * A driver may indicate a hash level which is less specific than the
1441  * actual layer the hash was computed on. For instance, a hash computed
1442  * at L4 may be considered an L3 hash. This should only be done if the
1443  * driver can't unambiguously determine that the HW computed the hash at
1444  * the higher layer. Note that the "should" in the second property above
1445  * permits this.
1446  */
1447 enum pkt_hash_types {
1448 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1449 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1450 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1451 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1452 };
1453 
1454 static inline void skb_clear_hash(struct sk_buff *skb)
1455 {
1456 	skb->hash = 0;
1457 	skb->sw_hash = 0;
1458 	skb->l4_hash = 0;
1459 }
1460 
1461 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1462 {
1463 	if (!skb->l4_hash)
1464 		skb_clear_hash(skb);
1465 }
1466 
1467 static inline void
1468 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1469 {
1470 	skb->l4_hash = is_l4;
1471 	skb->sw_hash = is_sw;
1472 	skb->hash = hash;
1473 }
1474 
1475 static inline void
1476 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1477 {
1478 	/* Used by drivers to set hash from HW */
1479 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1480 }
1481 
1482 static inline void
1483 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1484 {
1485 	__skb_set_hash(skb, hash, true, is_l4);
1486 }
1487 
1488 void __skb_get_hash(struct sk_buff *skb);
1489 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1490 u32 skb_get_poff(const struct sk_buff *skb);
1491 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1492 		   const struct flow_keys_basic *keys, int hlen);
1493 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1494 			    const void *data, int hlen_proto);
1495 
1496 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1497 					int thoff, u8 ip_proto)
1498 {
1499 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1500 }
1501 
1502 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1503 			     const struct flow_dissector_key *key,
1504 			     unsigned int key_count);
1505 
1506 struct bpf_flow_dissector;
1507 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1508 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1509 
1510 bool __skb_flow_dissect(const struct net *net,
1511 			const struct sk_buff *skb,
1512 			struct flow_dissector *flow_dissector,
1513 			void *target_container, const void *data,
1514 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1515 
1516 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1517 				    struct flow_dissector *flow_dissector,
1518 				    void *target_container, unsigned int flags)
1519 {
1520 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1521 				  target_container, NULL, 0, 0, 0, flags);
1522 }
1523 
1524 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1525 					      struct flow_keys *flow,
1526 					      unsigned int flags)
1527 {
1528 	memset(flow, 0, sizeof(*flow));
1529 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1530 				  flow, NULL, 0, 0, 0, flags);
1531 }
1532 
1533 static inline bool
1534 skb_flow_dissect_flow_keys_basic(const struct net *net,
1535 				 const struct sk_buff *skb,
1536 				 struct flow_keys_basic *flow,
1537 				 const void *data, __be16 proto,
1538 				 int nhoff, int hlen, unsigned int flags)
1539 {
1540 	memset(flow, 0, sizeof(*flow));
1541 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1542 				  data, proto, nhoff, hlen, flags);
1543 }
1544 
1545 void skb_flow_dissect_meta(const struct sk_buff *skb,
1546 			   struct flow_dissector *flow_dissector,
1547 			   void *target_container);
1548 
1549 /* Gets a skb connection tracking info, ctinfo map should be a
1550  * map of mapsize to translate enum ip_conntrack_info states
1551  * to user states.
1552  */
1553 void
1554 skb_flow_dissect_ct(const struct sk_buff *skb,
1555 		    struct flow_dissector *flow_dissector,
1556 		    void *target_container,
1557 		    u16 *ctinfo_map, size_t mapsize,
1558 		    bool post_ct, u16 zone);
1559 void
1560 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1561 			     struct flow_dissector *flow_dissector,
1562 			     void *target_container);
1563 
1564 void skb_flow_dissect_hash(const struct sk_buff *skb,
1565 			   struct flow_dissector *flow_dissector,
1566 			   void *target_container);
1567 
1568 static inline __u32 skb_get_hash(struct sk_buff *skb)
1569 {
1570 	if (!skb->l4_hash && !skb->sw_hash)
1571 		__skb_get_hash(skb);
1572 
1573 	return skb->hash;
1574 }
1575 
1576 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1577 {
1578 	if (!skb->l4_hash && !skb->sw_hash) {
1579 		struct flow_keys keys;
1580 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1581 
1582 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1583 	}
1584 
1585 	return skb->hash;
1586 }
1587 
1588 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1589 			   const siphash_key_t *perturb);
1590 
1591 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1592 {
1593 	return skb->hash;
1594 }
1595 
1596 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1597 {
1598 	to->hash = from->hash;
1599 	to->sw_hash = from->sw_hash;
1600 	to->l4_hash = from->l4_hash;
1601 };
1602 
1603 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1604 				    const struct sk_buff *skb2)
1605 {
1606 #ifdef CONFIG_TLS_DEVICE
1607 	return skb2->decrypted - skb1->decrypted;
1608 #else
1609 	return 0;
1610 #endif
1611 }
1612 
1613 static inline void skb_copy_decrypted(struct sk_buff *to,
1614 				      const struct sk_buff *from)
1615 {
1616 #ifdef CONFIG_TLS_DEVICE
1617 	to->decrypted = from->decrypted;
1618 #endif
1619 }
1620 
1621 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1622 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1623 {
1624 	return skb->head + skb->end;
1625 }
1626 
1627 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1628 {
1629 	return skb->end;
1630 }
1631 
1632 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1633 {
1634 	skb->end = offset;
1635 }
1636 #else
1637 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1638 {
1639 	return skb->end;
1640 }
1641 
1642 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1643 {
1644 	return skb->end - skb->head;
1645 }
1646 
1647 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1648 {
1649 	skb->end = skb->head + offset;
1650 }
1651 #endif
1652 
1653 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1654 				       struct ubuf_info *uarg);
1655 
1656 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1657 
1658 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1659 			   bool success);
1660 
1661 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1662 			    struct sk_buff *skb, struct iov_iter *from,
1663 			    size_t length);
1664 
1665 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1666 					  struct msghdr *msg, int len)
1667 {
1668 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1669 }
1670 
1671 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1672 			     struct msghdr *msg, int len,
1673 			     struct ubuf_info *uarg);
1674 
1675 /* Internal */
1676 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1677 
1678 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1679 {
1680 	return &skb_shinfo(skb)->hwtstamps;
1681 }
1682 
1683 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1684 {
1685 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1686 
1687 	return is_zcopy ? skb_uarg(skb) : NULL;
1688 }
1689 
1690 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1691 {
1692 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1693 }
1694 
1695 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1696 {
1697 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1698 }
1699 
1700 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1701 				       const struct sk_buff *skb2)
1702 {
1703 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1704 }
1705 
1706 static inline void net_zcopy_get(struct ubuf_info *uarg)
1707 {
1708 	refcount_inc(&uarg->refcnt);
1709 }
1710 
1711 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1712 {
1713 	skb_shinfo(skb)->destructor_arg = uarg;
1714 	skb_shinfo(skb)->flags |= uarg->flags;
1715 }
1716 
1717 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1718 				 bool *have_ref)
1719 {
1720 	if (skb && uarg && !skb_zcopy(skb)) {
1721 		if (unlikely(have_ref && *have_ref))
1722 			*have_ref = false;
1723 		else
1724 			net_zcopy_get(uarg);
1725 		skb_zcopy_init(skb, uarg);
1726 	}
1727 }
1728 
1729 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1730 {
1731 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1732 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1733 }
1734 
1735 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1736 {
1737 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1738 }
1739 
1740 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1741 {
1742 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1743 }
1744 
1745 static inline void net_zcopy_put(struct ubuf_info *uarg)
1746 {
1747 	if (uarg)
1748 		uarg->callback(NULL, uarg, true);
1749 }
1750 
1751 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1752 {
1753 	if (uarg) {
1754 		if (uarg->callback == msg_zerocopy_callback)
1755 			msg_zerocopy_put_abort(uarg, have_uref);
1756 		else if (have_uref)
1757 			net_zcopy_put(uarg);
1758 	}
1759 }
1760 
1761 /* Release a reference on a zerocopy structure */
1762 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1763 {
1764 	struct ubuf_info *uarg = skb_zcopy(skb);
1765 
1766 	if (uarg) {
1767 		if (!skb_zcopy_is_nouarg(skb))
1768 			uarg->callback(skb, uarg, zerocopy_success);
1769 
1770 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1771 	}
1772 }
1773 
1774 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1775 
1776 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1777 {
1778 	if (unlikely(skb_zcopy_managed(skb)))
1779 		__skb_zcopy_downgrade_managed(skb);
1780 }
1781 
1782 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1783 {
1784 	skb->next = NULL;
1785 }
1786 
1787 static inline void skb_poison_list(struct sk_buff *skb)
1788 {
1789 #ifdef CONFIG_DEBUG_NET
1790 	skb->next = SKB_LIST_POISON_NEXT;
1791 #endif
1792 }
1793 
1794 /* Iterate through singly-linked GSO fragments of an skb. */
1795 #define skb_list_walk_safe(first, skb, next_skb)                               \
1796 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1797 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1798 
1799 static inline void skb_list_del_init(struct sk_buff *skb)
1800 {
1801 	__list_del_entry(&skb->list);
1802 	skb_mark_not_on_list(skb);
1803 }
1804 
1805 /**
1806  *	skb_queue_empty - check if a queue is empty
1807  *	@list: queue head
1808  *
1809  *	Returns true if the queue is empty, false otherwise.
1810  */
1811 static inline int skb_queue_empty(const struct sk_buff_head *list)
1812 {
1813 	return list->next == (const struct sk_buff *) list;
1814 }
1815 
1816 /**
1817  *	skb_queue_empty_lockless - check if a queue is empty
1818  *	@list: queue head
1819  *
1820  *	Returns true if the queue is empty, false otherwise.
1821  *	This variant can be used in lockless contexts.
1822  */
1823 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1824 {
1825 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1826 }
1827 
1828 
1829 /**
1830  *	skb_queue_is_last - check if skb is the last entry in the queue
1831  *	@list: queue head
1832  *	@skb: buffer
1833  *
1834  *	Returns true if @skb is the last buffer on the list.
1835  */
1836 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1837 				     const struct sk_buff *skb)
1838 {
1839 	return skb->next == (const struct sk_buff *) list;
1840 }
1841 
1842 /**
1843  *	skb_queue_is_first - check if skb is the first entry in the queue
1844  *	@list: queue head
1845  *	@skb: buffer
1846  *
1847  *	Returns true if @skb is the first buffer on the list.
1848  */
1849 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1850 				      const struct sk_buff *skb)
1851 {
1852 	return skb->prev == (const struct sk_buff *) list;
1853 }
1854 
1855 /**
1856  *	skb_queue_next - return the next packet in the queue
1857  *	@list: queue head
1858  *	@skb: current buffer
1859  *
1860  *	Return the next packet in @list after @skb.  It is only valid to
1861  *	call this if skb_queue_is_last() evaluates to false.
1862  */
1863 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1864 					     const struct sk_buff *skb)
1865 {
1866 	/* This BUG_ON may seem severe, but if we just return then we
1867 	 * are going to dereference garbage.
1868 	 */
1869 	BUG_ON(skb_queue_is_last(list, skb));
1870 	return skb->next;
1871 }
1872 
1873 /**
1874  *	skb_queue_prev - return the prev packet in the queue
1875  *	@list: queue head
1876  *	@skb: current buffer
1877  *
1878  *	Return the prev packet in @list before @skb.  It is only valid to
1879  *	call this if skb_queue_is_first() evaluates to false.
1880  */
1881 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1882 					     const struct sk_buff *skb)
1883 {
1884 	/* This BUG_ON may seem severe, but if we just return then we
1885 	 * are going to dereference garbage.
1886 	 */
1887 	BUG_ON(skb_queue_is_first(list, skb));
1888 	return skb->prev;
1889 }
1890 
1891 /**
1892  *	skb_get - reference buffer
1893  *	@skb: buffer to reference
1894  *
1895  *	Makes another reference to a socket buffer and returns a pointer
1896  *	to the buffer.
1897  */
1898 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1899 {
1900 	refcount_inc(&skb->users);
1901 	return skb;
1902 }
1903 
1904 /*
1905  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1906  */
1907 
1908 /**
1909  *	skb_cloned - is the buffer a clone
1910  *	@skb: buffer to check
1911  *
1912  *	Returns true if the buffer was generated with skb_clone() and is
1913  *	one of multiple shared copies of the buffer. Cloned buffers are
1914  *	shared data so must not be written to under normal circumstances.
1915  */
1916 static inline int skb_cloned(const struct sk_buff *skb)
1917 {
1918 	return skb->cloned &&
1919 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1920 }
1921 
1922 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1923 {
1924 	might_sleep_if(gfpflags_allow_blocking(pri));
1925 
1926 	if (skb_cloned(skb))
1927 		return pskb_expand_head(skb, 0, 0, pri);
1928 
1929 	return 0;
1930 }
1931 
1932 /* This variant of skb_unclone() makes sure skb->truesize
1933  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1934  *
1935  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1936  * when various debugging features are in place.
1937  */
1938 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1939 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1940 {
1941 	might_sleep_if(gfpflags_allow_blocking(pri));
1942 
1943 	if (skb_cloned(skb))
1944 		return __skb_unclone_keeptruesize(skb, pri);
1945 	return 0;
1946 }
1947 
1948 /**
1949  *	skb_header_cloned - is the header a clone
1950  *	@skb: buffer to check
1951  *
1952  *	Returns true if modifying the header part of the buffer requires
1953  *	the data to be copied.
1954  */
1955 static inline int skb_header_cloned(const struct sk_buff *skb)
1956 {
1957 	int dataref;
1958 
1959 	if (!skb->cloned)
1960 		return 0;
1961 
1962 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1963 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1964 	return dataref != 1;
1965 }
1966 
1967 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1968 {
1969 	might_sleep_if(gfpflags_allow_blocking(pri));
1970 
1971 	if (skb_header_cloned(skb))
1972 		return pskb_expand_head(skb, 0, 0, pri);
1973 
1974 	return 0;
1975 }
1976 
1977 /**
1978  * __skb_header_release() - allow clones to use the headroom
1979  * @skb: buffer to operate on
1980  *
1981  * See "DOC: dataref and headerless skbs".
1982  */
1983 static inline void __skb_header_release(struct sk_buff *skb)
1984 {
1985 	skb->nohdr = 1;
1986 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1987 }
1988 
1989 
1990 /**
1991  *	skb_shared - is the buffer shared
1992  *	@skb: buffer to check
1993  *
1994  *	Returns true if more than one person has a reference to this
1995  *	buffer.
1996  */
1997 static inline int skb_shared(const struct sk_buff *skb)
1998 {
1999 	return refcount_read(&skb->users) != 1;
2000 }
2001 
2002 /**
2003  *	skb_share_check - check if buffer is shared and if so clone it
2004  *	@skb: buffer to check
2005  *	@pri: priority for memory allocation
2006  *
2007  *	If the buffer is shared the buffer is cloned and the old copy
2008  *	drops a reference. A new clone with a single reference is returned.
2009  *	If the buffer is not shared the original buffer is returned. When
2010  *	being called from interrupt status or with spinlocks held pri must
2011  *	be GFP_ATOMIC.
2012  *
2013  *	NULL is returned on a memory allocation failure.
2014  */
2015 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2016 {
2017 	might_sleep_if(gfpflags_allow_blocking(pri));
2018 	if (skb_shared(skb)) {
2019 		struct sk_buff *nskb = skb_clone(skb, pri);
2020 
2021 		if (likely(nskb))
2022 			consume_skb(skb);
2023 		else
2024 			kfree_skb(skb);
2025 		skb = nskb;
2026 	}
2027 	return skb;
2028 }
2029 
2030 /*
2031  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2032  *	packets to handle cases where we have a local reader and forward
2033  *	and a couple of other messy ones. The normal one is tcpdumping
2034  *	a packet that's being forwarded.
2035  */
2036 
2037 /**
2038  *	skb_unshare - make a copy of a shared buffer
2039  *	@skb: buffer to check
2040  *	@pri: priority for memory allocation
2041  *
2042  *	If the socket buffer is a clone then this function creates a new
2043  *	copy of the data, drops a reference count on the old copy and returns
2044  *	the new copy with the reference count at 1. If the buffer is not a clone
2045  *	the original buffer is returned. When called with a spinlock held or
2046  *	from interrupt state @pri must be %GFP_ATOMIC
2047  *
2048  *	%NULL is returned on a memory allocation failure.
2049  */
2050 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2051 					  gfp_t pri)
2052 {
2053 	might_sleep_if(gfpflags_allow_blocking(pri));
2054 	if (skb_cloned(skb)) {
2055 		struct sk_buff *nskb = skb_copy(skb, pri);
2056 
2057 		/* Free our shared copy */
2058 		if (likely(nskb))
2059 			consume_skb(skb);
2060 		else
2061 			kfree_skb(skb);
2062 		skb = nskb;
2063 	}
2064 	return skb;
2065 }
2066 
2067 /**
2068  *	skb_peek - peek at the head of an &sk_buff_head
2069  *	@list_: list to peek at
2070  *
2071  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2072  *	be careful with this one. A peek leaves the buffer on the
2073  *	list and someone else may run off with it. You must hold
2074  *	the appropriate locks or have a private queue to do this.
2075  *
2076  *	Returns %NULL for an empty list or a pointer to the head element.
2077  *	The reference count is not incremented and the reference is therefore
2078  *	volatile. Use with caution.
2079  */
2080 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2081 {
2082 	struct sk_buff *skb = list_->next;
2083 
2084 	if (skb == (struct sk_buff *)list_)
2085 		skb = NULL;
2086 	return skb;
2087 }
2088 
2089 /**
2090  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2091  *	@list_: list to peek at
2092  *
2093  *	Like skb_peek(), but the caller knows that the list is not empty.
2094  */
2095 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2096 {
2097 	return list_->next;
2098 }
2099 
2100 /**
2101  *	skb_peek_next - peek skb following the given one from a queue
2102  *	@skb: skb to start from
2103  *	@list_: list to peek at
2104  *
2105  *	Returns %NULL when the end of the list is met or a pointer to the
2106  *	next element. The reference count is not incremented and the
2107  *	reference is therefore volatile. Use with caution.
2108  */
2109 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2110 		const struct sk_buff_head *list_)
2111 {
2112 	struct sk_buff *next = skb->next;
2113 
2114 	if (next == (struct sk_buff *)list_)
2115 		next = NULL;
2116 	return next;
2117 }
2118 
2119 /**
2120  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2121  *	@list_: list to peek at
2122  *
2123  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2124  *	be careful with this one. A peek leaves the buffer on the
2125  *	list and someone else may run off with it. You must hold
2126  *	the appropriate locks or have a private queue to do this.
2127  *
2128  *	Returns %NULL for an empty list or a pointer to the tail element.
2129  *	The reference count is not incremented and the reference is therefore
2130  *	volatile. Use with caution.
2131  */
2132 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2133 {
2134 	struct sk_buff *skb = READ_ONCE(list_->prev);
2135 
2136 	if (skb == (struct sk_buff *)list_)
2137 		skb = NULL;
2138 	return skb;
2139 
2140 }
2141 
2142 /**
2143  *	skb_queue_len	- get queue length
2144  *	@list_: list to measure
2145  *
2146  *	Return the length of an &sk_buff queue.
2147  */
2148 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2149 {
2150 	return list_->qlen;
2151 }
2152 
2153 /**
2154  *	skb_queue_len_lockless	- get queue length
2155  *	@list_: list to measure
2156  *
2157  *	Return the length of an &sk_buff queue.
2158  *	This variant can be used in lockless contexts.
2159  */
2160 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2161 {
2162 	return READ_ONCE(list_->qlen);
2163 }
2164 
2165 /**
2166  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2167  *	@list: queue to initialize
2168  *
2169  *	This initializes only the list and queue length aspects of
2170  *	an sk_buff_head object.  This allows to initialize the list
2171  *	aspects of an sk_buff_head without reinitializing things like
2172  *	the spinlock.  It can also be used for on-stack sk_buff_head
2173  *	objects where the spinlock is known to not be used.
2174  */
2175 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2176 {
2177 	list->prev = list->next = (struct sk_buff *)list;
2178 	list->qlen = 0;
2179 }
2180 
2181 /*
2182  * This function creates a split out lock class for each invocation;
2183  * this is needed for now since a whole lot of users of the skb-queue
2184  * infrastructure in drivers have different locking usage (in hardirq)
2185  * than the networking core (in softirq only). In the long run either the
2186  * network layer or drivers should need annotation to consolidate the
2187  * main types of usage into 3 classes.
2188  */
2189 static inline void skb_queue_head_init(struct sk_buff_head *list)
2190 {
2191 	spin_lock_init(&list->lock);
2192 	__skb_queue_head_init(list);
2193 }
2194 
2195 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2196 		struct lock_class_key *class)
2197 {
2198 	skb_queue_head_init(list);
2199 	lockdep_set_class(&list->lock, class);
2200 }
2201 
2202 /*
2203  *	Insert an sk_buff on a list.
2204  *
2205  *	The "__skb_xxxx()" functions are the non-atomic ones that
2206  *	can only be called with interrupts disabled.
2207  */
2208 static inline void __skb_insert(struct sk_buff *newsk,
2209 				struct sk_buff *prev, struct sk_buff *next,
2210 				struct sk_buff_head *list)
2211 {
2212 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2213 	 * for the opposite READ_ONCE()
2214 	 */
2215 	WRITE_ONCE(newsk->next, next);
2216 	WRITE_ONCE(newsk->prev, prev);
2217 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2218 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2219 	WRITE_ONCE(list->qlen, list->qlen + 1);
2220 }
2221 
2222 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2223 				      struct sk_buff *prev,
2224 				      struct sk_buff *next)
2225 {
2226 	struct sk_buff *first = list->next;
2227 	struct sk_buff *last = list->prev;
2228 
2229 	WRITE_ONCE(first->prev, prev);
2230 	WRITE_ONCE(prev->next, first);
2231 
2232 	WRITE_ONCE(last->next, next);
2233 	WRITE_ONCE(next->prev, last);
2234 }
2235 
2236 /**
2237  *	skb_queue_splice - join two skb lists, this is designed for stacks
2238  *	@list: the new list to add
2239  *	@head: the place to add it in the first list
2240  */
2241 static inline void skb_queue_splice(const struct sk_buff_head *list,
2242 				    struct sk_buff_head *head)
2243 {
2244 	if (!skb_queue_empty(list)) {
2245 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2246 		head->qlen += list->qlen;
2247 	}
2248 }
2249 
2250 /**
2251  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2252  *	@list: the new list to add
2253  *	@head: the place to add it in the first list
2254  *
2255  *	The list at @list is reinitialised
2256  */
2257 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2258 					 struct sk_buff_head *head)
2259 {
2260 	if (!skb_queue_empty(list)) {
2261 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2262 		head->qlen += list->qlen;
2263 		__skb_queue_head_init(list);
2264 	}
2265 }
2266 
2267 /**
2268  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2269  *	@list: the new list to add
2270  *	@head: the place to add it in the first list
2271  */
2272 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2273 					 struct sk_buff_head *head)
2274 {
2275 	if (!skb_queue_empty(list)) {
2276 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2277 		head->qlen += list->qlen;
2278 	}
2279 }
2280 
2281 /**
2282  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2283  *	@list: the new list to add
2284  *	@head: the place to add it in the first list
2285  *
2286  *	Each of the lists is a queue.
2287  *	The list at @list is reinitialised
2288  */
2289 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2290 					      struct sk_buff_head *head)
2291 {
2292 	if (!skb_queue_empty(list)) {
2293 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2294 		head->qlen += list->qlen;
2295 		__skb_queue_head_init(list);
2296 	}
2297 }
2298 
2299 /**
2300  *	__skb_queue_after - queue a buffer at the list head
2301  *	@list: list to use
2302  *	@prev: place after this buffer
2303  *	@newsk: buffer to queue
2304  *
2305  *	Queue a buffer int the middle of a list. This function takes no locks
2306  *	and you must therefore hold required locks before calling it.
2307  *
2308  *	A buffer cannot be placed on two lists at the same time.
2309  */
2310 static inline void __skb_queue_after(struct sk_buff_head *list,
2311 				     struct sk_buff *prev,
2312 				     struct sk_buff *newsk)
2313 {
2314 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2315 }
2316 
2317 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2318 		struct sk_buff_head *list);
2319 
2320 static inline void __skb_queue_before(struct sk_buff_head *list,
2321 				      struct sk_buff *next,
2322 				      struct sk_buff *newsk)
2323 {
2324 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2325 }
2326 
2327 /**
2328  *	__skb_queue_head - queue a buffer at the list head
2329  *	@list: list to use
2330  *	@newsk: buffer to queue
2331  *
2332  *	Queue a buffer at the start of a list. This function takes no locks
2333  *	and you must therefore hold required locks before calling it.
2334  *
2335  *	A buffer cannot be placed on two lists at the same time.
2336  */
2337 static inline void __skb_queue_head(struct sk_buff_head *list,
2338 				    struct sk_buff *newsk)
2339 {
2340 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2341 }
2342 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2343 
2344 /**
2345  *	__skb_queue_tail - queue a buffer at the list tail
2346  *	@list: list to use
2347  *	@newsk: buffer to queue
2348  *
2349  *	Queue a buffer at the end of a list. This function takes no locks
2350  *	and you must therefore hold required locks before calling it.
2351  *
2352  *	A buffer cannot be placed on two lists at the same time.
2353  */
2354 static inline void __skb_queue_tail(struct sk_buff_head *list,
2355 				   struct sk_buff *newsk)
2356 {
2357 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2358 }
2359 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2360 
2361 /*
2362  * remove sk_buff from list. _Must_ be called atomically, and with
2363  * the list known..
2364  */
2365 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2366 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2367 {
2368 	struct sk_buff *next, *prev;
2369 
2370 	WRITE_ONCE(list->qlen, list->qlen - 1);
2371 	next	   = skb->next;
2372 	prev	   = skb->prev;
2373 	skb->next  = skb->prev = NULL;
2374 	WRITE_ONCE(next->prev, prev);
2375 	WRITE_ONCE(prev->next, next);
2376 }
2377 
2378 /**
2379  *	__skb_dequeue - remove from the head of the queue
2380  *	@list: list to dequeue from
2381  *
2382  *	Remove the head of the list. This function does not take any locks
2383  *	so must be used with appropriate locks held only. The head item is
2384  *	returned or %NULL if the list is empty.
2385  */
2386 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2387 {
2388 	struct sk_buff *skb = skb_peek(list);
2389 	if (skb)
2390 		__skb_unlink(skb, list);
2391 	return skb;
2392 }
2393 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2394 
2395 /**
2396  *	__skb_dequeue_tail - remove from the tail of the queue
2397  *	@list: list to dequeue from
2398  *
2399  *	Remove the tail of the list. This function does not take any locks
2400  *	so must be used with appropriate locks held only. The tail item is
2401  *	returned or %NULL if the list is empty.
2402  */
2403 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2404 {
2405 	struct sk_buff *skb = skb_peek_tail(list);
2406 	if (skb)
2407 		__skb_unlink(skb, list);
2408 	return skb;
2409 }
2410 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2411 
2412 
2413 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2414 {
2415 	return skb->data_len;
2416 }
2417 
2418 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2419 {
2420 	return skb->len - skb->data_len;
2421 }
2422 
2423 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2424 {
2425 	unsigned int i, len = 0;
2426 
2427 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2428 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2429 	return len;
2430 }
2431 
2432 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2433 {
2434 	return skb_headlen(skb) + __skb_pagelen(skb);
2435 }
2436 
2437 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2438 					     netmem_ref netmem, int off,
2439 					     int size)
2440 {
2441 	frag->netmem = netmem;
2442 	frag->offset = off;
2443 	skb_frag_size_set(frag, size);
2444 }
2445 
2446 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2447 					   struct page *page,
2448 					   int off, int size)
2449 {
2450 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2451 }
2452 
2453 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2454 						int i, netmem_ref netmem,
2455 						int off, int size)
2456 {
2457 	skb_frag_t *frag = &shinfo->frags[i];
2458 
2459 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2460 }
2461 
2462 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2463 					      int i, struct page *page,
2464 					      int off, int size)
2465 {
2466 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2467 				     size);
2468 }
2469 
2470 /**
2471  * skb_len_add - adds a number to len fields of skb
2472  * @skb: buffer to add len to
2473  * @delta: number of bytes to add
2474  */
2475 static inline void skb_len_add(struct sk_buff *skb, int delta)
2476 {
2477 	skb->len += delta;
2478 	skb->data_len += delta;
2479 	skb->truesize += delta;
2480 }
2481 
2482 /**
2483  * __skb_fill_netmem_desc - initialise a fragment in an skb
2484  * @skb: buffer containing fragment to be initialised
2485  * @i: fragment index to initialise
2486  * @netmem: the netmem to use for this fragment
2487  * @off: the offset to the data with @page
2488  * @size: the length of the data
2489  *
2490  * Initialises the @i'th fragment of @skb to point to &size bytes at
2491  * offset @off within @page.
2492  *
2493  * Does not take any additional reference on the fragment.
2494  */
2495 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2496 					  netmem_ref netmem, int off, int size)
2497 {
2498 	struct page *page = netmem_to_page(netmem);
2499 
2500 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2501 
2502 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2503 	 * that not all callers have unique ownership of the page but rely
2504 	 * on page_is_pfmemalloc doing the right thing(tm).
2505 	 */
2506 	page = compound_head(page);
2507 	if (page_is_pfmemalloc(page))
2508 		skb->pfmemalloc = true;
2509 }
2510 
2511 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2512 					struct page *page, int off, int size)
2513 {
2514 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2515 }
2516 
2517 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2518 					netmem_ref netmem, int off, int size)
2519 {
2520 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2521 	skb_shinfo(skb)->nr_frags = i + 1;
2522 }
2523 
2524 /**
2525  * skb_fill_page_desc - initialise a paged fragment in an skb
2526  * @skb: buffer containing fragment to be initialised
2527  * @i: paged fragment index to initialise
2528  * @page: the page to use for this fragment
2529  * @off: the offset to the data with @page
2530  * @size: the length of the data
2531  *
2532  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2533  * @skb to point to @size bytes at offset @off within @page. In
2534  * addition updates @skb such that @i is the last fragment.
2535  *
2536  * Does not take any additional reference on the fragment.
2537  */
2538 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2539 				      struct page *page, int off, int size)
2540 {
2541 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2542 }
2543 
2544 /**
2545  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2546  * @skb: buffer containing fragment to be initialised
2547  * @i: paged fragment index to initialise
2548  * @page: the page to use for this fragment
2549  * @off: the offset to the data with @page
2550  * @size: the length of the data
2551  *
2552  * Variant of skb_fill_page_desc() which does not deal with
2553  * pfmemalloc, if page is not owned by us.
2554  */
2555 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2556 					    struct page *page, int off,
2557 					    int size)
2558 {
2559 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2560 
2561 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2562 	shinfo->nr_frags = i + 1;
2563 }
2564 
2565 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2566 			    int off, int size, unsigned int truesize);
2567 
2568 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2569 				   struct page *page, int off, int size,
2570 				   unsigned int truesize)
2571 {
2572 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2573 			       truesize);
2574 }
2575 
2576 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2577 			  unsigned int truesize);
2578 
2579 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2580 
2581 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2582 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2583 {
2584 	return skb->head + skb->tail;
2585 }
2586 
2587 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2588 {
2589 	skb->tail = skb->data - skb->head;
2590 }
2591 
2592 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2593 {
2594 	skb_reset_tail_pointer(skb);
2595 	skb->tail += offset;
2596 }
2597 
2598 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2599 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2600 {
2601 	return skb->tail;
2602 }
2603 
2604 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2605 {
2606 	skb->tail = skb->data;
2607 }
2608 
2609 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2610 {
2611 	skb->tail = skb->data + offset;
2612 }
2613 
2614 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2615 
2616 static inline void skb_assert_len(struct sk_buff *skb)
2617 {
2618 #ifdef CONFIG_DEBUG_NET
2619 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2620 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2621 #endif /* CONFIG_DEBUG_NET */
2622 }
2623 
2624 /*
2625  *	Add data to an sk_buff
2626  */
2627 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2628 void *skb_put(struct sk_buff *skb, unsigned int len);
2629 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2630 {
2631 	void *tmp = skb_tail_pointer(skb);
2632 	SKB_LINEAR_ASSERT(skb);
2633 	skb->tail += len;
2634 	skb->len  += len;
2635 	return tmp;
2636 }
2637 
2638 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2639 {
2640 	void *tmp = __skb_put(skb, len);
2641 
2642 	memset(tmp, 0, len);
2643 	return tmp;
2644 }
2645 
2646 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2647 				   unsigned int len)
2648 {
2649 	void *tmp = __skb_put(skb, len);
2650 
2651 	memcpy(tmp, data, len);
2652 	return tmp;
2653 }
2654 
2655 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2656 {
2657 	*(u8 *)__skb_put(skb, 1) = val;
2658 }
2659 
2660 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2661 {
2662 	void *tmp = skb_put(skb, len);
2663 
2664 	memset(tmp, 0, len);
2665 
2666 	return tmp;
2667 }
2668 
2669 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2670 				 unsigned int len)
2671 {
2672 	void *tmp = skb_put(skb, len);
2673 
2674 	memcpy(tmp, data, len);
2675 
2676 	return tmp;
2677 }
2678 
2679 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2680 {
2681 	*(u8 *)skb_put(skb, 1) = val;
2682 }
2683 
2684 void *skb_push(struct sk_buff *skb, unsigned int len);
2685 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2686 {
2687 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2688 
2689 	skb->data -= len;
2690 	skb->len  += len;
2691 	return skb->data;
2692 }
2693 
2694 void *skb_pull(struct sk_buff *skb, unsigned int len);
2695 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2696 {
2697 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2698 
2699 	skb->len -= len;
2700 	if (unlikely(skb->len < skb->data_len)) {
2701 #if defined(CONFIG_DEBUG_NET)
2702 		skb->len += len;
2703 		pr_err("__skb_pull(len=%u)\n", len);
2704 		skb_dump(KERN_ERR, skb, false);
2705 #endif
2706 		BUG();
2707 	}
2708 	return skb->data += len;
2709 }
2710 
2711 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2712 {
2713 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2714 }
2715 
2716 void *skb_pull_data(struct sk_buff *skb, size_t len);
2717 
2718 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2719 
2720 static inline enum skb_drop_reason
2721 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2722 {
2723 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2724 
2725 	if (likely(len <= skb_headlen(skb)))
2726 		return SKB_NOT_DROPPED_YET;
2727 
2728 	if (unlikely(len > skb->len))
2729 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2730 
2731 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2732 		return SKB_DROP_REASON_NOMEM;
2733 
2734 	return SKB_NOT_DROPPED_YET;
2735 }
2736 
2737 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2738 {
2739 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2740 }
2741 
2742 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2743 {
2744 	if (!pskb_may_pull(skb, len))
2745 		return NULL;
2746 
2747 	skb->len -= len;
2748 	return skb->data += len;
2749 }
2750 
2751 void skb_condense(struct sk_buff *skb);
2752 
2753 /**
2754  *	skb_headroom - bytes at buffer head
2755  *	@skb: buffer to check
2756  *
2757  *	Return the number of bytes of free space at the head of an &sk_buff.
2758  */
2759 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2760 {
2761 	return skb->data - skb->head;
2762 }
2763 
2764 /**
2765  *	skb_tailroom - bytes at buffer end
2766  *	@skb: buffer to check
2767  *
2768  *	Return the number of bytes of free space at the tail of an sk_buff
2769  */
2770 static inline int skb_tailroom(const struct sk_buff *skb)
2771 {
2772 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2773 }
2774 
2775 /**
2776  *	skb_availroom - bytes at buffer end
2777  *	@skb: buffer to check
2778  *
2779  *	Return the number of bytes of free space at the tail of an sk_buff
2780  *	allocated by sk_stream_alloc()
2781  */
2782 static inline int skb_availroom(const struct sk_buff *skb)
2783 {
2784 	if (skb_is_nonlinear(skb))
2785 		return 0;
2786 
2787 	return skb->end - skb->tail - skb->reserved_tailroom;
2788 }
2789 
2790 /**
2791  *	skb_reserve - adjust headroom
2792  *	@skb: buffer to alter
2793  *	@len: bytes to move
2794  *
2795  *	Increase the headroom of an empty &sk_buff by reducing the tail
2796  *	room. This is only allowed for an empty buffer.
2797  */
2798 static inline void skb_reserve(struct sk_buff *skb, int len)
2799 {
2800 	skb->data += len;
2801 	skb->tail += len;
2802 }
2803 
2804 /**
2805  *	skb_tailroom_reserve - adjust reserved_tailroom
2806  *	@skb: buffer to alter
2807  *	@mtu: maximum amount of headlen permitted
2808  *	@needed_tailroom: minimum amount of reserved_tailroom
2809  *
2810  *	Set reserved_tailroom so that headlen can be as large as possible but
2811  *	not larger than mtu and tailroom cannot be smaller than
2812  *	needed_tailroom.
2813  *	The required headroom should already have been reserved before using
2814  *	this function.
2815  */
2816 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2817 					unsigned int needed_tailroom)
2818 {
2819 	SKB_LINEAR_ASSERT(skb);
2820 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2821 		/* use at most mtu */
2822 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2823 	else
2824 		/* use up to all available space */
2825 		skb->reserved_tailroom = needed_tailroom;
2826 }
2827 
2828 #define ENCAP_TYPE_ETHER	0
2829 #define ENCAP_TYPE_IPPROTO	1
2830 
2831 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2832 					  __be16 protocol)
2833 {
2834 	skb->inner_protocol = protocol;
2835 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2836 }
2837 
2838 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2839 					 __u8 ipproto)
2840 {
2841 	skb->inner_ipproto = ipproto;
2842 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2843 }
2844 
2845 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2846 {
2847 	skb->inner_mac_header = skb->mac_header;
2848 	skb->inner_network_header = skb->network_header;
2849 	skb->inner_transport_header = skb->transport_header;
2850 }
2851 
2852 static inline void skb_reset_mac_len(struct sk_buff *skb)
2853 {
2854 	skb->mac_len = skb->network_header - skb->mac_header;
2855 }
2856 
2857 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2858 							*skb)
2859 {
2860 	return skb->head + skb->inner_transport_header;
2861 }
2862 
2863 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2864 {
2865 	return skb_inner_transport_header(skb) - skb->data;
2866 }
2867 
2868 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2869 {
2870 	skb->inner_transport_header = skb->data - skb->head;
2871 }
2872 
2873 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2874 						   const int offset)
2875 {
2876 	skb_reset_inner_transport_header(skb);
2877 	skb->inner_transport_header += offset;
2878 }
2879 
2880 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2881 {
2882 	return skb->head + skb->inner_network_header;
2883 }
2884 
2885 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2886 {
2887 	skb->inner_network_header = skb->data - skb->head;
2888 }
2889 
2890 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2891 						const int offset)
2892 {
2893 	skb_reset_inner_network_header(skb);
2894 	skb->inner_network_header += offset;
2895 }
2896 
2897 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2898 {
2899 	return skb->inner_network_header > 0;
2900 }
2901 
2902 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2903 {
2904 	return skb->head + skb->inner_mac_header;
2905 }
2906 
2907 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2908 {
2909 	skb->inner_mac_header = skb->data - skb->head;
2910 }
2911 
2912 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2913 					    const int offset)
2914 {
2915 	skb_reset_inner_mac_header(skb);
2916 	skb->inner_mac_header += offset;
2917 }
2918 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2919 {
2920 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2921 }
2922 
2923 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2924 {
2925 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2926 	return skb->head + skb->transport_header;
2927 }
2928 
2929 static inline void skb_reset_transport_header(struct sk_buff *skb)
2930 {
2931 	skb->transport_header = skb->data - skb->head;
2932 }
2933 
2934 static inline void skb_set_transport_header(struct sk_buff *skb,
2935 					    const int offset)
2936 {
2937 	skb_reset_transport_header(skb);
2938 	skb->transport_header += offset;
2939 }
2940 
2941 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2942 {
2943 	return skb->head + skb->network_header;
2944 }
2945 
2946 static inline void skb_reset_network_header(struct sk_buff *skb)
2947 {
2948 	skb->network_header = skb->data - skb->head;
2949 }
2950 
2951 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2952 {
2953 	skb_reset_network_header(skb);
2954 	skb->network_header += offset;
2955 }
2956 
2957 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2958 {
2959 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2960 }
2961 
2962 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2963 {
2964 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2965 	return skb->head + skb->mac_header;
2966 }
2967 
2968 static inline int skb_mac_offset(const struct sk_buff *skb)
2969 {
2970 	return skb_mac_header(skb) - skb->data;
2971 }
2972 
2973 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2974 {
2975 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2976 	return skb->network_header - skb->mac_header;
2977 }
2978 
2979 static inline void skb_unset_mac_header(struct sk_buff *skb)
2980 {
2981 	skb->mac_header = (typeof(skb->mac_header))~0U;
2982 }
2983 
2984 static inline void skb_reset_mac_header(struct sk_buff *skb)
2985 {
2986 	skb->mac_header = skb->data - skb->head;
2987 }
2988 
2989 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2990 {
2991 	skb_reset_mac_header(skb);
2992 	skb->mac_header += offset;
2993 }
2994 
2995 static inline void skb_pop_mac_header(struct sk_buff *skb)
2996 {
2997 	skb->mac_header = skb->network_header;
2998 }
2999 
3000 static inline void skb_probe_transport_header(struct sk_buff *skb)
3001 {
3002 	struct flow_keys_basic keys;
3003 
3004 	if (skb_transport_header_was_set(skb))
3005 		return;
3006 
3007 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3008 					     NULL, 0, 0, 0, 0))
3009 		skb_set_transport_header(skb, keys.control.thoff);
3010 }
3011 
3012 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3013 {
3014 	if (skb_mac_header_was_set(skb)) {
3015 		const unsigned char *old_mac = skb_mac_header(skb);
3016 
3017 		skb_set_mac_header(skb, -skb->mac_len);
3018 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3019 	}
3020 }
3021 
3022 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3023 {
3024 	return skb->csum_start - skb_headroom(skb);
3025 }
3026 
3027 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3028 {
3029 	return skb->head + skb->csum_start;
3030 }
3031 
3032 static inline int skb_transport_offset(const struct sk_buff *skb)
3033 {
3034 	return skb_transport_header(skb) - skb->data;
3035 }
3036 
3037 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3038 {
3039 	return skb->transport_header - skb->network_header;
3040 }
3041 
3042 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3043 {
3044 	return skb->inner_transport_header - skb->inner_network_header;
3045 }
3046 
3047 static inline int skb_network_offset(const struct sk_buff *skb)
3048 {
3049 	return skb_network_header(skb) - skb->data;
3050 }
3051 
3052 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3053 {
3054 	return skb_inner_network_header(skb) - skb->data;
3055 }
3056 
3057 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3058 {
3059 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3060 }
3061 
3062 /*
3063  * CPUs often take a performance hit when accessing unaligned memory
3064  * locations. The actual performance hit varies, it can be small if the
3065  * hardware handles it or large if we have to take an exception and fix it
3066  * in software.
3067  *
3068  * Since an ethernet header is 14 bytes network drivers often end up with
3069  * the IP header at an unaligned offset. The IP header can be aligned by
3070  * shifting the start of the packet by 2 bytes. Drivers should do this
3071  * with:
3072  *
3073  * skb_reserve(skb, NET_IP_ALIGN);
3074  *
3075  * The downside to this alignment of the IP header is that the DMA is now
3076  * unaligned. On some architectures the cost of an unaligned DMA is high
3077  * and this cost outweighs the gains made by aligning the IP header.
3078  *
3079  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3080  * to be overridden.
3081  */
3082 #ifndef NET_IP_ALIGN
3083 #define NET_IP_ALIGN	2
3084 #endif
3085 
3086 /*
3087  * The networking layer reserves some headroom in skb data (via
3088  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3089  * the header has to grow. In the default case, if the header has to grow
3090  * 32 bytes or less we avoid the reallocation.
3091  *
3092  * Unfortunately this headroom changes the DMA alignment of the resulting
3093  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3094  * on some architectures. An architecture can override this value,
3095  * perhaps setting it to a cacheline in size (since that will maintain
3096  * cacheline alignment of the DMA). It must be a power of 2.
3097  *
3098  * Various parts of the networking layer expect at least 32 bytes of
3099  * headroom, you should not reduce this.
3100  *
3101  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3102  * to reduce average number of cache lines per packet.
3103  * get_rps_cpu() for example only access one 64 bytes aligned block :
3104  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3105  */
3106 #ifndef NET_SKB_PAD
3107 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3108 #endif
3109 
3110 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3111 
3112 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3113 {
3114 	if (WARN_ON(skb_is_nonlinear(skb)))
3115 		return;
3116 	skb->len = len;
3117 	skb_set_tail_pointer(skb, len);
3118 }
3119 
3120 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3121 {
3122 	__skb_set_length(skb, len);
3123 }
3124 
3125 void skb_trim(struct sk_buff *skb, unsigned int len);
3126 
3127 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3128 {
3129 	if (skb->data_len)
3130 		return ___pskb_trim(skb, len);
3131 	__skb_trim(skb, len);
3132 	return 0;
3133 }
3134 
3135 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3136 {
3137 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3138 }
3139 
3140 /**
3141  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3142  *	@skb: buffer to alter
3143  *	@len: new length
3144  *
3145  *	This is identical to pskb_trim except that the caller knows that
3146  *	the skb is not cloned so we should never get an error due to out-
3147  *	of-memory.
3148  */
3149 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3150 {
3151 	int err = pskb_trim(skb, len);
3152 	BUG_ON(err);
3153 }
3154 
3155 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3156 {
3157 	unsigned int diff = len - skb->len;
3158 
3159 	if (skb_tailroom(skb) < diff) {
3160 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3161 					   GFP_ATOMIC);
3162 		if (ret)
3163 			return ret;
3164 	}
3165 	__skb_set_length(skb, len);
3166 	return 0;
3167 }
3168 
3169 /**
3170  *	skb_orphan - orphan a buffer
3171  *	@skb: buffer to orphan
3172  *
3173  *	If a buffer currently has an owner then we call the owner's
3174  *	destructor function and make the @skb unowned. The buffer continues
3175  *	to exist but is no longer charged to its former owner.
3176  */
3177 static inline void skb_orphan(struct sk_buff *skb)
3178 {
3179 	if (skb->destructor) {
3180 		skb->destructor(skb);
3181 		skb->destructor = NULL;
3182 		skb->sk		= NULL;
3183 	} else {
3184 		BUG_ON(skb->sk);
3185 	}
3186 }
3187 
3188 /**
3189  *	skb_orphan_frags - orphan the frags contained in a buffer
3190  *	@skb: buffer to orphan frags from
3191  *	@gfp_mask: allocation mask for replacement pages
3192  *
3193  *	For each frag in the SKB which needs a destructor (i.e. has an
3194  *	owner) create a copy of that frag and release the original
3195  *	page by calling the destructor.
3196  */
3197 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3198 {
3199 	if (likely(!skb_zcopy(skb)))
3200 		return 0;
3201 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3202 		return 0;
3203 	return skb_copy_ubufs(skb, gfp_mask);
3204 }
3205 
3206 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3207 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3208 {
3209 	if (likely(!skb_zcopy(skb)))
3210 		return 0;
3211 	return skb_copy_ubufs(skb, gfp_mask);
3212 }
3213 
3214 /**
3215  *	__skb_queue_purge_reason - empty a list
3216  *	@list: list to empty
3217  *	@reason: drop reason
3218  *
3219  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3220  *	the list and one reference dropped. This function does not take the
3221  *	list lock and the caller must hold the relevant locks to use it.
3222  */
3223 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3224 					    enum skb_drop_reason reason)
3225 {
3226 	struct sk_buff *skb;
3227 
3228 	while ((skb = __skb_dequeue(list)) != NULL)
3229 		kfree_skb_reason(skb, reason);
3230 }
3231 
3232 static inline void __skb_queue_purge(struct sk_buff_head *list)
3233 {
3234 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3235 }
3236 
3237 void skb_queue_purge_reason(struct sk_buff_head *list,
3238 			    enum skb_drop_reason reason);
3239 
3240 static inline void skb_queue_purge(struct sk_buff_head *list)
3241 {
3242 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3243 }
3244 
3245 unsigned int skb_rbtree_purge(struct rb_root *root);
3246 void skb_errqueue_purge(struct sk_buff_head *list);
3247 
3248 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3249 
3250 /**
3251  * netdev_alloc_frag - allocate a page fragment
3252  * @fragsz: fragment size
3253  *
3254  * Allocates a frag from a page for receive buffer.
3255  * Uses GFP_ATOMIC allocations.
3256  */
3257 static inline void *netdev_alloc_frag(unsigned int fragsz)
3258 {
3259 	return __netdev_alloc_frag_align(fragsz, ~0u);
3260 }
3261 
3262 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3263 					    unsigned int align)
3264 {
3265 	WARN_ON_ONCE(!is_power_of_2(align));
3266 	return __netdev_alloc_frag_align(fragsz, -align);
3267 }
3268 
3269 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3270 				   gfp_t gfp_mask);
3271 
3272 /**
3273  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3274  *	@dev: network device to receive on
3275  *	@length: length to allocate
3276  *
3277  *	Allocate a new &sk_buff and assign it a usage count of one. The
3278  *	buffer has unspecified headroom built in. Users should allocate
3279  *	the headroom they think they need without accounting for the
3280  *	built in space. The built in space is used for optimisations.
3281  *
3282  *	%NULL is returned if there is no free memory. Although this function
3283  *	allocates memory it can be called from an interrupt.
3284  */
3285 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3286 					       unsigned int length)
3287 {
3288 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3289 }
3290 
3291 /* legacy helper around __netdev_alloc_skb() */
3292 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3293 					      gfp_t gfp_mask)
3294 {
3295 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3296 }
3297 
3298 /* legacy helper around netdev_alloc_skb() */
3299 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3300 {
3301 	return netdev_alloc_skb(NULL, length);
3302 }
3303 
3304 
3305 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3306 		unsigned int length, gfp_t gfp)
3307 {
3308 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3309 
3310 	if (NET_IP_ALIGN && skb)
3311 		skb_reserve(skb, NET_IP_ALIGN);
3312 	return skb;
3313 }
3314 
3315 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3316 		unsigned int length)
3317 {
3318 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3319 }
3320 
3321 static inline void skb_free_frag(void *addr)
3322 {
3323 	page_frag_free(addr);
3324 }
3325 
3326 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3327 
3328 static inline void *napi_alloc_frag(unsigned int fragsz)
3329 {
3330 	return __napi_alloc_frag_align(fragsz, ~0u);
3331 }
3332 
3333 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3334 					  unsigned int align)
3335 {
3336 	WARN_ON_ONCE(!is_power_of_2(align));
3337 	return __napi_alloc_frag_align(fragsz, -align);
3338 }
3339 
3340 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3341 				 unsigned int length, gfp_t gfp_mask);
3342 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3343 					     unsigned int length)
3344 {
3345 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3346 }
3347 void napi_consume_skb(struct sk_buff *skb, int budget);
3348 
3349 void napi_skb_free_stolen_head(struct sk_buff *skb);
3350 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3351 
3352 /**
3353  * __dev_alloc_pages - allocate page for network Rx
3354  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3355  * @order: size of the allocation
3356  *
3357  * Allocate a new page.
3358  *
3359  * %NULL is returned if there is no free memory.
3360 */
3361 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3362 					     unsigned int order)
3363 {
3364 	/* This piece of code contains several assumptions.
3365 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3366 	 * 2.  The expectation is the user wants a compound page.
3367 	 * 3.  If requesting a order 0 page it will not be compound
3368 	 *     due to the check to see if order has a value in prep_new_page
3369 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3370 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3371 	 */
3372 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3373 
3374 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3375 }
3376 
3377 static inline struct page *dev_alloc_pages(unsigned int order)
3378 {
3379 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3380 }
3381 
3382 /**
3383  * __dev_alloc_page - allocate a page for network Rx
3384  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3385  *
3386  * Allocate a new page.
3387  *
3388  * %NULL is returned if there is no free memory.
3389  */
3390 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3391 {
3392 	return __dev_alloc_pages(gfp_mask, 0);
3393 }
3394 
3395 static inline struct page *dev_alloc_page(void)
3396 {
3397 	return dev_alloc_pages(0);
3398 }
3399 
3400 /**
3401  * dev_page_is_reusable - check whether a page can be reused for network Rx
3402  * @page: the page to test
3403  *
3404  * A page shouldn't be considered for reusing/recycling if it was allocated
3405  * under memory pressure or at a distant memory node.
3406  *
3407  * Returns false if this page should be returned to page allocator, true
3408  * otherwise.
3409  */
3410 static inline bool dev_page_is_reusable(const struct page *page)
3411 {
3412 	return likely(page_to_nid(page) == numa_mem_id() &&
3413 		      !page_is_pfmemalloc(page));
3414 }
3415 
3416 /**
3417  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3418  *	@page: The page that was allocated from skb_alloc_page
3419  *	@skb: The skb that may need pfmemalloc set
3420  */
3421 static inline void skb_propagate_pfmemalloc(const struct page *page,
3422 					    struct sk_buff *skb)
3423 {
3424 	if (page_is_pfmemalloc(page))
3425 		skb->pfmemalloc = true;
3426 }
3427 
3428 /**
3429  * skb_frag_off() - Returns the offset of a skb fragment
3430  * @frag: the paged fragment
3431  */
3432 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3433 {
3434 	return frag->offset;
3435 }
3436 
3437 /**
3438  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3439  * @frag: skb fragment
3440  * @delta: value to add
3441  */
3442 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3443 {
3444 	frag->offset += delta;
3445 }
3446 
3447 /**
3448  * skb_frag_off_set() - Sets the offset of a skb fragment
3449  * @frag: skb fragment
3450  * @offset: offset of fragment
3451  */
3452 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3453 {
3454 	frag->offset = offset;
3455 }
3456 
3457 /**
3458  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3459  * @fragto: skb fragment where offset is set
3460  * @fragfrom: skb fragment offset is copied from
3461  */
3462 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3463 				     const skb_frag_t *fragfrom)
3464 {
3465 	fragto->offset = fragfrom->offset;
3466 }
3467 
3468 /**
3469  * skb_frag_page - retrieve the page referred to by a paged fragment
3470  * @frag: the paged fragment
3471  *
3472  * Returns the &struct page associated with @frag.
3473  */
3474 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3475 {
3476 	return netmem_to_page(frag->netmem);
3477 }
3478 
3479 /**
3480  * __skb_frag_ref - take an addition reference on a paged fragment.
3481  * @frag: the paged fragment
3482  *
3483  * Takes an additional reference on the paged fragment @frag.
3484  */
3485 static inline void __skb_frag_ref(skb_frag_t *frag)
3486 {
3487 	get_page(skb_frag_page(frag));
3488 }
3489 
3490 /**
3491  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3492  * @skb: the buffer
3493  * @f: the fragment offset.
3494  *
3495  * Takes an additional reference on the @f'th paged fragment of @skb.
3496  */
3497 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3498 {
3499 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3500 }
3501 
3502 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3503 		    unsigned int headroom);
3504 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3505 			 struct bpf_prog *prog);
3506 bool napi_pp_put_page(struct page *page, bool napi_safe);
3507 
3508 static inline void
3509 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3510 {
3511 	struct page *page = skb_frag_page(frag);
3512 
3513 #ifdef CONFIG_PAGE_POOL
3514 	if (recycle && napi_pp_put_page(page, napi_safe))
3515 		return;
3516 #endif
3517 	put_page(page);
3518 }
3519 
3520 /**
3521  * __skb_frag_unref - release a reference on a paged fragment.
3522  * @frag: the paged fragment
3523  * @recycle: recycle the page if allocated via page_pool
3524  *
3525  * Releases a reference on the paged fragment @frag
3526  * or recycles the page via the page_pool API.
3527  */
3528 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3529 {
3530 	napi_frag_unref(frag, recycle, false);
3531 }
3532 
3533 /**
3534  * skb_frag_unref - release a reference on a paged fragment of an skb.
3535  * @skb: the buffer
3536  * @f: the fragment offset
3537  *
3538  * Releases a reference on the @f'th paged fragment of @skb.
3539  */
3540 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3541 {
3542 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3543 
3544 	if (!skb_zcopy_managed(skb))
3545 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3546 }
3547 
3548 /**
3549  * skb_frag_address - gets the address of the data contained in a paged fragment
3550  * @frag: the paged fragment buffer
3551  *
3552  * Returns the address of the data within @frag. The page must already
3553  * be mapped.
3554  */
3555 static inline void *skb_frag_address(const skb_frag_t *frag)
3556 {
3557 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3558 }
3559 
3560 /**
3561  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3562  * @frag: the paged fragment buffer
3563  *
3564  * Returns the address of the data within @frag. Checks that the page
3565  * is mapped and returns %NULL otherwise.
3566  */
3567 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3568 {
3569 	void *ptr = page_address(skb_frag_page(frag));
3570 	if (unlikely(!ptr))
3571 		return NULL;
3572 
3573 	return ptr + skb_frag_off(frag);
3574 }
3575 
3576 /**
3577  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3578  * @fragto: skb fragment where page is set
3579  * @fragfrom: skb fragment page is copied from
3580  */
3581 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3582 				      const skb_frag_t *fragfrom)
3583 {
3584 	fragto->netmem = fragfrom->netmem;
3585 }
3586 
3587 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3588 
3589 /**
3590  * skb_frag_dma_map - maps a paged fragment via the DMA API
3591  * @dev: the device to map the fragment to
3592  * @frag: the paged fragment to map
3593  * @offset: the offset within the fragment (starting at the
3594  *          fragment's own offset)
3595  * @size: the number of bytes to map
3596  * @dir: the direction of the mapping (``PCI_DMA_*``)
3597  *
3598  * Maps the page associated with @frag to @device.
3599  */
3600 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3601 					  const skb_frag_t *frag,
3602 					  size_t offset, size_t size,
3603 					  enum dma_data_direction dir)
3604 {
3605 	return dma_map_page(dev, skb_frag_page(frag),
3606 			    skb_frag_off(frag) + offset, size, dir);
3607 }
3608 
3609 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3610 					gfp_t gfp_mask)
3611 {
3612 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3613 }
3614 
3615 
3616 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3617 						  gfp_t gfp_mask)
3618 {
3619 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3620 }
3621 
3622 
3623 /**
3624  *	skb_clone_writable - is the header of a clone writable
3625  *	@skb: buffer to check
3626  *	@len: length up to which to write
3627  *
3628  *	Returns true if modifying the header part of the cloned buffer
3629  *	does not requires the data to be copied.
3630  */
3631 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3632 {
3633 	return !skb_header_cloned(skb) &&
3634 	       skb_headroom(skb) + len <= skb->hdr_len;
3635 }
3636 
3637 static inline int skb_try_make_writable(struct sk_buff *skb,
3638 					unsigned int write_len)
3639 {
3640 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3641 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3642 }
3643 
3644 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3645 			    int cloned)
3646 {
3647 	int delta = 0;
3648 
3649 	if (headroom > skb_headroom(skb))
3650 		delta = headroom - skb_headroom(skb);
3651 
3652 	if (delta || cloned)
3653 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3654 					GFP_ATOMIC);
3655 	return 0;
3656 }
3657 
3658 /**
3659  *	skb_cow - copy header of skb when it is required
3660  *	@skb: buffer to cow
3661  *	@headroom: needed headroom
3662  *
3663  *	If the skb passed lacks sufficient headroom or its data part
3664  *	is shared, data is reallocated. If reallocation fails, an error
3665  *	is returned and original skb is not changed.
3666  *
3667  *	The result is skb with writable area skb->head...skb->tail
3668  *	and at least @headroom of space at head.
3669  */
3670 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3671 {
3672 	return __skb_cow(skb, headroom, skb_cloned(skb));
3673 }
3674 
3675 /**
3676  *	skb_cow_head - skb_cow but only making the head writable
3677  *	@skb: buffer to cow
3678  *	@headroom: needed headroom
3679  *
3680  *	This function is identical to skb_cow except that we replace the
3681  *	skb_cloned check by skb_header_cloned.  It should be used when
3682  *	you only need to push on some header and do not need to modify
3683  *	the data.
3684  */
3685 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3686 {
3687 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3688 }
3689 
3690 /**
3691  *	skb_padto	- pad an skbuff up to a minimal size
3692  *	@skb: buffer to pad
3693  *	@len: minimal length
3694  *
3695  *	Pads up a buffer to ensure the trailing bytes exist and are
3696  *	blanked. If the buffer already contains sufficient data it
3697  *	is untouched. Otherwise it is extended. Returns zero on
3698  *	success. The skb is freed on error.
3699  */
3700 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3701 {
3702 	unsigned int size = skb->len;
3703 	if (likely(size >= len))
3704 		return 0;
3705 	return skb_pad(skb, len - size);
3706 }
3707 
3708 /**
3709  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3710  *	@skb: buffer to pad
3711  *	@len: minimal length
3712  *	@free_on_error: free buffer on error
3713  *
3714  *	Pads up a buffer to ensure the trailing bytes exist and are
3715  *	blanked. If the buffer already contains sufficient data it
3716  *	is untouched. Otherwise it is extended. Returns zero on
3717  *	success. The skb is freed on error if @free_on_error is true.
3718  */
3719 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3720 					       unsigned int len,
3721 					       bool free_on_error)
3722 {
3723 	unsigned int size = skb->len;
3724 
3725 	if (unlikely(size < len)) {
3726 		len -= size;
3727 		if (__skb_pad(skb, len, free_on_error))
3728 			return -ENOMEM;
3729 		__skb_put(skb, len);
3730 	}
3731 	return 0;
3732 }
3733 
3734 /**
3735  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3736  *	@skb: buffer to pad
3737  *	@len: minimal length
3738  *
3739  *	Pads up a buffer to ensure the trailing bytes exist and are
3740  *	blanked. If the buffer already contains sufficient data it
3741  *	is untouched. Otherwise it is extended. Returns zero on
3742  *	success. The skb is freed on error.
3743  */
3744 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3745 {
3746 	return __skb_put_padto(skb, len, true);
3747 }
3748 
3749 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3750 	__must_check;
3751 
3752 static inline int skb_add_data(struct sk_buff *skb,
3753 			       struct iov_iter *from, int copy)
3754 {
3755 	const int off = skb->len;
3756 
3757 	if (skb->ip_summed == CHECKSUM_NONE) {
3758 		__wsum csum = 0;
3759 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3760 					         &csum, from)) {
3761 			skb->csum = csum_block_add(skb->csum, csum, off);
3762 			return 0;
3763 		}
3764 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3765 		return 0;
3766 
3767 	__skb_trim(skb, off);
3768 	return -EFAULT;
3769 }
3770 
3771 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3772 				    const struct page *page, int off)
3773 {
3774 	if (skb_zcopy(skb))
3775 		return false;
3776 	if (i) {
3777 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3778 
3779 		return page == skb_frag_page(frag) &&
3780 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3781 	}
3782 	return false;
3783 }
3784 
3785 static inline int __skb_linearize(struct sk_buff *skb)
3786 {
3787 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3788 }
3789 
3790 /**
3791  *	skb_linearize - convert paged skb to linear one
3792  *	@skb: buffer to linarize
3793  *
3794  *	If there is no free memory -ENOMEM is returned, otherwise zero
3795  *	is returned and the old skb data released.
3796  */
3797 static inline int skb_linearize(struct sk_buff *skb)
3798 {
3799 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3800 }
3801 
3802 /**
3803  * skb_has_shared_frag - can any frag be overwritten
3804  * @skb: buffer to test
3805  *
3806  * Return true if the skb has at least one frag that might be modified
3807  * by an external entity (as in vmsplice()/sendfile())
3808  */
3809 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3810 {
3811 	return skb_is_nonlinear(skb) &&
3812 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3813 }
3814 
3815 /**
3816  *	skb_linearize_cow - make sure skb is linear and writable
3817  *	@skb: buffer to process
3818  *
3819  *	If there is no free memory -ENOMEM is returned, otherwise zero
3820  *	is returned and the old skb data released.
3821  */
3822 static inline int skb_linearize_cow(struct sk_buff *skb)
3823 {
3824 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3825 	       __skb_linearize(skb) : 0;
3826 }
3827 
3828 static __always_inline void
3829 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3830 		     unsigned int off)
3831 {
3832 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3833 		skb->csum = csum_block_sub(skb->csum,
3834 					   csum_partial(start, len, 0), off);
3835 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3836 		 skb_checksum_start_offset(skb) < 0)
3837 		skb->ip_summed = CHECKSUM_NONE;
3838 }
3839 
3840 /**
3841  *	skb_postpull_rcsum - update checksum for received skb after pull
3842  *	@skb: buffer to update
3843  *	@start: start of data before pull
3844  *	@len: length of data pulled
3845  *
3846  *	After doing a pull on a received packet, you need to call this to
3847  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3848  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3849  */
3850 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3851 				      const void *start, unsigned int len)
3852 {
3853 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3854 		skb->csum = wsum_negate(csum_partial(start, len,
3855 						     wsum_negate(skb->csum)));
3856 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3857 		 skb_checksum_start_offset(skb) < 0)
3858 		skb->ip_summed = CHECKSUM_NONE;
3859 }
3860 
3861 static __always_inline void
3862 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3863 		     unsigned int off)
3864 {
3865 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3866 		skb->csum = csum_block_add(skb->csum,
3867 					   csum_partial(start, len, 0), off);
3868 }
3869 
3870 /**
3871  *	skb_postpush_rcsum - update checksum for received skb after push
3872  *	@skb: buffer to update
3873  *	@start: start of data after push
3874  *	@len: length of data pushed
3875  *
3876  *	After doing a push on a received packet, you need to call this to
3877  *	update the CHECKSUM_COMPLETE checksum.
3878  */
3879 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3880 				      const void *start, unsigned int len)
3881 {
3882 	__skb_postpush_rcsum(skb, start, len, 0);
3883 }
3884 
3885 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3886 
3887 /**
3888  *	skb_push_rcsum - push skb and update receive checksum
3889  *	@skb: buffer to update
3890  *	@len: length of data pulled
3891  *
3892  *	This function performs an skb_push on the packet and updates
3893  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3894  *	receive path processing instead of skb_push unless you know
3895  *	that the checksum difference is zero (e.g., a valid IP header)
3896  *	or you are setting ip_summed to CHECKSUM_NONE.
3897  */
3898 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3899 {
3900 	skb_push(skb, len);
3901 	skb_postpush_rcsum(skb, skb->data, len);
3902 	return skb->data;
3903 }
3904 
3905 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3906 /**
3907  *	pskb_trim_rcsum - trim received skb and update checksum
3908  *	@skb: buffer to trim
3909  *	@len: new length
3910  *
3911  *	This is exactly the same as pskb_trim except that it ensures the
3912  *	checksum of received packets are still valid after the operation.
3913  *	It can change skb pointers.
3914  */
3915 
3916 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3917 {
3918 	if (likely(len >= skb->len))
3919 		return 0;
3920 	return pskb_trim_rcsum_slow(skb, len);
3921 }
3922 
3923 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3924 {
3925 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3926 		skb->ip_summed = CHECKSUM_NONE;
3927 	__skb_trim(skb, len);
3928 	return 0;
3929 }
3930 
3931 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3932 {
3933 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3934 		skb->ip_summed = CHECKSUM_NONE;
3935 	return __skb_grow(skb, len);
3936 }
3937 
3938 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3939 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3940 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3941 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3942 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3943 
3944 #define skb_queue_walk(queue, skb) \
3945 		for (skb = (queue)->next;					\
3946 		     skb != (struct sk_buff *)(queue);				\
3947 		     skb = skb->next)
3948 
3949 #define skb_queue_walk_safe(queue, skb, tmp)					\
3950 		for (skb = (queue)->next, tmp = skb->next;			\
3951 		     skb != (struct sk_buff *)(queue);				\
3952 		     skb = tmp, tmp = skb->next)
3953 
3954 #define skb_queue_walk_from(queue, skb)						\
3955 		for (; skb != (struct sk_buff *)(queue);			\
3956 		     skb = skb->next)
3957 
3958 #define skb_rbtree_walk(skb, root)						\
3959 		for (skb = skb_rb_first(root); skb != NULL;			\
3960 		     skb = skb_rb_next(skb))
3961 
3962 #define skb_rbtree_walk_from(skb)						\
3963 		for (; skb != NULL;						\
3964 		     skb = skb_rb_next(skb))
3965 
3966 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3967 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3968 		     skb = tmp)
3969 
3970 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3971 		for (tmp = skb->next;						\
3972 		     skb != (struct sk_buff *)(queue);				\
3973 		     skb = tmp, tmp = skb->next)
3974 
3975 #define skb_queue_reverse_walk(queue, skb) \
3976 		for (skb = (queue)->prev;					\
3977 		     skb != (struct sk_buff *)(queue);				\
3978 		     skb = skb->prev)
3979 
3980 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3981 		for (skb = (queue)->prev, tmp = skb->prev;			\
3982 		     skb != (struct sk_buff *)(queue);				\
3983 		     skb = tmp, tmp = skb->prev)
3984 
3985 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3986 		for (tmp = skb->prev;						\
3987 		     skb != (struct sk_buff *)(queue);				\
3988 		     skb = tmp, tmp = skb->prev)
3989 
3990 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3991 {
3992 	return skb_shinfo(skb)->frag_list != NULL;
3993 }
3994 
3995 static inline void skb_frag_list_init(struct sk_buff *skb)
3996 {
3997 	skb_shinfo(skb)->frag_list = NULL;
3998 }
3999 
4000 #define skb_walk_frags(skb, iter)	\
4001 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4002 
4003 
4004 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4005 				int *err, long *timeo_p,
4006 				const struct sk_buff *skb);
4007 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4008 					  struct sk_buff_head *queue,
4009 					  unsigned int flags,
4010 					  int *off, int *err,
4011 					  struct sk_buff **last);
4012 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4013 					struct sk_buff_head *queue,
4014 					unsigned int flags, int *off, int *err,
4015 					struct sk_buff **last);
4016 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4017 				    struct sk_buff_head *sk_queue,
4018 				    unsigned int flags, int *off, int *err);
4019 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4020 __poll_t datagram_poll(struct file *file, struct socket *sock,
4021 			   struct poll_table_struct *wait);
4022 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4023 			   struct iov_iter *to, int size);
4024 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4025 					struct msghdr *msg, int size)
4026 {
4027 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4028 }
4029 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4030 				   struct msghdr *msg);
4031 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4032 			   struct iov_iter *to, int len,
4033 			   struct ahash_request *hash);
4034 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4035 				 struct iov_iter *from, int len);
4036 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4037 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4038 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
4039 static inline void skb_free_datagram_locked(struct sock *sk,
4040 					    struct sk_buff *skb)
4041 {
4042 	__skb_free_datagram_locked(sk, skb, 0);
4043 }
4044 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4045 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4046 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4047 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4048 			      int len);
4049 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4050 		    struct pipe_inode_info *pipe, unsigned int len,
4051 		    unsigned int flags);
4052 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4053 			 int len);
4054 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4055 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4056 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4057 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4058 		 int len, int hlen);
4059 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4060 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4061 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4062 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4063 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4064 				 unsigned int offset);
4065 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4066 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4067 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4068 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4069 int skb_vlan_pop(struct sk_buff *skb);
4070 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4071 int skb_eth_pop(struct sk_buff *skb);
4072 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4073 		 const unsigned char *src);
4074 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4075 		  int mac_len, bool ethernet);
4076 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4077 		 bool ethernet);
4078 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4079 int skb_mpls_dec_ttl(struct sk_buff *skb);
4080 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4081 			     gfp_t gfp);
4082 
4083 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4084 {
4085 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4086 }
4087 
4088 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4089 {
4090 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4091 }
4092 
4093 struct skb_checksum_ops {
4094 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4095 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4096 };
4097 
4098 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4099 
4100 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4101 		      __wsum csum, const struct skb_checksum_ops *ops);
4102 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4103 		    __wsum csum);
4104 
4105 static inline void * __must_check
4106 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4107 		     const void *data, int hlen, void *buffer)
4108 {
4109 	if (likely(hlen - offset >= len))
4110 		return (void *)data + offset;
4111 
4112 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4113 		return NULL;
4114 
4115 	return buffer;
4116 }
4117 
4118 static inline void * __must_check
4119 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4120 {
4121 	return __skb_header_pointer(skb, offset, len, skb->data,
4122 				    skb_headlen(skb), buffer);
4123 }
4124 
4125 static inline void * __must_check
4126 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4127 {
4128 	if (likely(skb_headlen(skb) - offset >= len))
4129 		return skb->data + offset;
4130 	return NULL;
4131 }
4132 
4133 /**
4134  *	skb_needs_linearize - check if we need to linearize a given skb
4135  *			      depending on the given device features.
4136  *	@skb: socket buffer to check
4137  *	@features: net device features
4138  *
4139  *	Returns true if either:
4140  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4141  *	2. skb is fragmented and the device does not support SG.
4142  */
4143 static inline bool skb_needs_linearize(struct sk_buff *skb,
4144 				       netdev_features_t features)
4145 {
4146 	return skb_is_nonlinear(skb) &&
4147 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4148 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4149 }
4150 
4151 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4152 					     void *to,
4153 					     const unsigned int len)
4154 {
4155 	memcpy(to, skb->data, len);
4156 }
4157 
4158 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4159 						    const int offset, void *to,
4160 						    const unsigned int len)
4161 {
4162 	memcpy(to, skb->data + offset, len);
4163 }
4164 
4165 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4166 					   const void *from,
4167 					   const unsigned int len)
4168 {
4169 	memcpy(skb->data, from, len);
4170 }
4171 
4172 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4173 						  const int offset,
4174 						  const void *from,
4175 						  const unsigned int len)
4176 {
4177 	memcpy(skb->data + offset, from, len);
4178 }
4179 
4180 void skb_init(void);
4181 
4182 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4183 {
4184 	return skb->tstamp;
4185 }
4186 
4187 /**
4188  *	skb_get_timestamp - get timestamp from a skb
4189  *	@skb: skb to get stamp from
4190  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4191  *
4192  *	Timestamps are stored in the skb as offsets to a base timestamp.
4193  *	This function converts the offset back to a struct timeval and stores
4194  *	it in stamp.
4195  */
4196 static inline void skb_get_timestamp(const struct sk_buff *skb,
4197 				     struct __kernel_old_timeval *stamp)
4198 {
4199 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4200 }
4201 
4202 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4203 					 struct __kernel_sock_timeval *stamp)
4204 {
4205 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4206 
4207 	stamp->tv_sec = ts.tv_sec;
4208 	stamp->tv_usec = ts.tv_nsec / 1000;
4209 }
4210 
4211 static inline void skb_get_timestampns(const struct sk_buff *skb,
4212 				       struct __kernel_old_timespec *stamp)
4213 {
4214 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4215 
4216 	stamp->tv_sec = ts.tv_sec;
4217 	stamp->tv_nsec = ts.tv_nsec;
4218 }
4219 
4220 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4221 					   struct __kernel_timespec *stamp)
4222 {
4223 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4224 
4225 	stamp->tv_sec = ts.tv_sec;
4226 	stamp->tv_nsec = ts.tv_nsec;
4227 }
4228 
4229 static inline void __net_timestamp(struct sk_buff *skb)
4230 {
4231 	skb->tstamp = ktime_get_real();
4232 	skb->mono_delivery_time = 0;
4233 }
4234 
4235 static inline ktime_t net_timedelta(ktime_t t)
4236 {
4237 	return ktime_sub(ktime_get_real(), t);
4238 }
4239 
4240 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4241 					 bool mono)
4242 {
4243 	skb->tstamp = kt;
4244 	skb->mono_delivery_time = kt && mono;
4245 }
4246 
4247 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4248 
4249 /* It is used in the ingress path to clear the delivery_time.
4250  * If needed, set the skb->tstamp to the (rcv) timestamp.
4251  */
4252 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4253 {
4254 	if (skb->mono_delivery_time) {
4255 		skb->mono_delivery_time = 0;
4256 		if (static_branch_unlikely(&netstamp_needed_key))
4257 			skb->tstamp = ktime_get_real();
4258 		else
4259 			skb->tstamp = 0;
4260 	}
4261 }
4262 
4263 static inline void skb_clear_tstamp(struct sk_buff *skb)
4264 {
4265 	if (skb->mono_delivery_time)
4266 		return;
4267 
4268 	skb->tstamp = 0;
4269 }
4270 
4271 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4272 {
4273 	if (skb->mono_delivery_time)
4274 		return 0;
4275 
4276 	return skb->tstamp;
4277 }
4278 
4279 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4280 {
4281 	if (!skb->mono_delivery_time && skb->tstamp)
4282 		return skb->tstamp;
4283 
4284 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4285 		return ktime_get_real();
4286 
4287 	return 0;
4288 }
4289 
4290 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4291 {
4292 	return skb_shinfo(skb)->meta_len;
4293 }
4294 
4295 static inline void *skb_metadata_end(const struct sk_buff *skb)
4296 {
4297 	return skb_mac_header(skb);
4298 }
4299 
4300 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4301 					  const struct sk_buff *skb_b,
4302 					  u8 meta_len)
4303 {
4304 	const void *a = skb_metadata_end(skb_a);
4305 	const void *b = skb_metadata_end(skb_b);
4306 	u64 diffs = 0;
4307 
4308 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4309 	    BITS_PER_LONG != 64)
4310 		goto slow;
4311 
4312 	/* Using more efficient variant than plain call to memcmp(). */
4313 	switch (meta_len) {
4314 #define __it(x, op) (x -= sizeof(u##op))
4315 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4316 	case 32: diffs |= __it_diff(a, b, 64);
4317 		fallthrough;
4318 	case 24: diffs |= __it_diff(a, b, 64);
4319 		fallthrough;
4320 	case 16: diffs |= __it_diff(a, b, 64);
4321 		fallthrough;
4322 	case  8: diffs |= __it_diff(a, b, 64);
4323 		break;
4324 	case 28: diffs |= __it_diff(a, b, 64);
4325 		fallthrough;
4326 	case 20: diffs |= __it_diff(a, b, 64);
4327 		fallthrough;
4328 	case 12: diffs |= __it_diff(a, b, 64);
4329 		fallthrough;
4330 	case  4: diffs |= __it_diff(a, b, 32);
4331 		break;
4332 	default:
4333 slow:
4334 		return memcmp(a - meta_len, b - meta_len, meta_len);
4335 	}
4336 	return diffs;
4337 }
4338 
4339 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4340 					const struct sk_buff *skb_b)
4341 {
4342 	u8 len_a = skb_metadata_len(skb_a);
4343 	u8 len_b = skb_metadata_len(skb_b);
4344 
4345 	if (!(len_a | len_b))
4346 		return false;
4347 
4348 	return len_a != len_b ?
4349 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4350 }
4351 
4352 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4353 {
4354 	skb_shinfo(skb)->meta_len = meta_len;
4355 }
4356 
4357 static inline void skb_metadata_clear(struct sk_buff *skb)
4358 {
4359 	skb_metadata_set(skb, 0);
4360 }
4361 
4362 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4363 
4364 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4365 
4366 void skb_clone_tx_timestamp(struct sk_buff *skb);
4367 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4368 
4369 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4370 
4371 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4372 {
4373 }
4374 
4375 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4376 {
4377 	return false;
4378 }
4379 
4380 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4381 
4382 /**
4383  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4384  *
4385  * PHY drivers may accept clones of transmitted packets for
4386  * timestamping via their phy_driver.txtstamp method. These drivers
4387  * must call this function to return the skb back to the stack with a
4388  * timestamp.
4389  *
4390  * @skb: clone of the original outgoing packet
4391  * @hwtstamps: hardware time stamps
4392  *
4393  */
4394 void skb_complete_tx_timestamp(struct sk_buff *skb,
4395 			       struct skb_shared_hwtstamps *hwtstamps);
4396 
4397 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4398 		     struct skb_shared_hwtstamps *hwtstamps,
4399 		     struct sock *sk, int tstype);
4400 
4401 /**
4402  * skb_tstamp_tx - queue clone of skb with send time stamps
4403  * @orig_skb:	the original outgoing packet
4404  * @hwtstamps:	hardware time stamps, may be NULL if not available
4405  *
4406  * If the skb has a socket associated, then this function clones the
4407  * skb (thus sharing the actual data and optional structures), stores
4408  * the optional hardware time stamping information (if non NULL) or
4409  * generates a software time stamp (otherwise), then queues the clone
4410  * to the error queue of the socket.  Errors are silently ignored.
4411  */
4412 void skb_tstamp_tx(struct sk_buff *orig_skb,
4413 		   struct skb_shared_hwtstamps *hwtstamps);
4414 
4415 /**
4416  * skb_tx_timestamp() - Driver hook for transmit timestamping
4417  *
4418  * Ethernet MAC Drivers should call this function in their hard_xmit()
4419  * function immediately before giving the sk_buff to the MAC hardware.
4420  *
4421  * Specifically, one should make absolutely sure that this function is
4422  * called before TX completion of this packet can trigger.  Otherwise
4423  * the packet could potentially already be freed.
4424  *
4425  * @skb: A socket buffer.
4426  */
4427 static inline void skb_tx_timestamp(struct sk_buff *skb)
4428 {
4429 	skb_clone_tx_timestamp(skb);
4430 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4431 		skb_tstamp_tx(skb, NULL);
4432 }
4433 
4434 /**
4435  * skb_complete_wifi_ack - deliver skb with wifi status
4436  *
4437  * @skb: the original outgoing packet
4438  * @acked: ack status
4439  *
4440  */
4441 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4442 
4443 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4444 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4445 
4446 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4447 {
4448 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4449 		skb->csum_valid ||
4450 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4451 		 skb_checksum_start_offset(skb) >= 0));
4452 }
4453 
4454 /**
4455  *	skb_checksum_complete - Calculate checksum of an entire packet
4456  *	@skb: packet to process
4457  *
4458  *	This function calculates the checksum over the entire packet plus
4459  *	the value of skb->csum.  The latter can be used to supply the
4460  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4461  *	checksum.
4462  *
4463  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4464  *	this function can be used to verify that checksum on received
4465  *	packets.  In that case the function should return zero if the
4466  *	checksum is correct.  In particular, this function will return zero
4467  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4468  *	hardware has already verified the correctness of the checksum.
4469  */
4470 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4471 {
4472 	return skb_csum_unnecessary(skb) ?
4473 	       0 : __skb_checksum_complete(skb);
4474 }
4475 
4476 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4477 {
4478 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4479 		if (skb->csum_level == 0)
4480 			skb->ip_summed = CHECKSUM_NONE;
4481 		else
4482 			skb->csum_level--;
4483 	}
4484 }
4485 
4486 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4487 {
4488 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4489 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4490 			skb->csum_level++;
4491 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4492 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4493 		skb->csum_level = 0;
4494 	}
4495 }
4496 
4497 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4498 {
4499 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4500 		skb->ip_summed = CHECKSUM_NONE;
4501 		skb->csum_level = 0;
4502 	}
4503 }
4504 
4505 /* Check if we need to perform checksum complete validation.
4506  *
4507  * Returns true if checksum complete is needed, false otherwise
4508  * (either checksum is unnecessary or zero checksum is allowed).
4509  */
4510 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4511 						  bool zero_okay,
4512 						  __sum16 check)
4513 {
4514 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4515 		skb->csum_valid = 1;
4516 		__skb_decr_checksum_unnecessary(skb);
4517 		return false;
4518 	}
4519 
4520 	return true;
4521 }
4522 
4523 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4524  * in checksum_init.
4525  */
4526 #define CHECKSUM_BREAK 76
4527 
4528 /* Unset checksum-complete
4529  *
4530  * Unset checksum complete can be done when packet is being modified
4531  * (uncompressed for instance) and checksum-complete value is
4532  * invalidated.
4533  */
4534 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4535 {
4536 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4537 		skb->ip_summed = CHECKSUM_NONE;
4538 }
4539 
4540 /* Validate (init) checksum based on checksum complete.
4541  *
4542  * Return values:
4543  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4544  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4545  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4546  *   non-zero: value of invalid checksum
4547  *
4548  */
4549 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4550 						       bool complete,
4551 						       __wsum psum)
4552 {
4553 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4554 		if (!csum_fold(csum_add(psum, skb->csum))) {
4555 			skb->csum_valid = 1;
4556 			return 0;
4557 		}
4558 	}
4559 
4560 	skb->csum = psum;
4561 
4562 	if (complete || skb->len <= CHECKSUM_BREAK) {
4563 		__sum16 csum;
4564 
4565 		csum = __skb_checksum_complete(skb);
4566 		skb->csum_valid = !csum;
4567 		return csum;
4568 	}
4569 
4570 	return 0;
4571 }
4572 
4573 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4574 {
4575 	return 0;
4576 }
4577 
4578 /* Perform checksum validate (init). Note that this is a macro since we only
4579  * want to calculate the pseudo header which is an input function if necessary.
4580  * First we try to validate without any computation (checksum unnecessary) and
4581  * then calculate based on checksum complete calling the function to compute
4582  * pseudo header.
4583  *
4584  * Return values:
4585  *   0: checksum is validated or try to in skb_checksum_complete
4586  *   non-zero: value of invalid checksum
4587  */
4588 #define __skb_checksum_validate(skb, proto, complete,			\
4589 				zero_okay, check, compute_pseudo)	\
4590 ({									\
4591 	__sum16 __ret = 0;						\
4592 	skb->csum_valid = 0;						\
4593 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4594 		__ret = __skb_checksum_validate_complete(skb,		\
4595 				complete, compute_pseudo(skb, proto));	\
4596 	__ret;								\
4597 })
4598 
4599 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4600 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4601 
4602 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4603 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4604 
4605 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4606 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4607 
4608 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4609 					 compute_pseudo)		\
4610 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4611 
4612 #define skb_checksum_simple_validate(skb)				\
4613 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4614 
4615 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4616 {
4617 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4618 }
4619 
4620 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4621 {
4622 	skb->csum = ~pseudo;
4623 	skb->ip_summed = CHECKSUM_COMPLETE;
4624 }
4625 
4626 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4627 do {									\
4628 	if (__skb_checksum_convert_check(skb))				\
4629 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4630 } while (0)
4631 
4632 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4633 					      u16 start, u16 offset)
4634 {
4635 	skb->ip_summed = CHECKSUM_PARTIAL;
4636 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4637 	skb->csum_offset = offset - start;
4638 }
4639 
4640 /* Update skbuf and packet to reflect the remote checksum offload operation.
4641  * When called, ptr indicates the starting point for skb->csum when
4642  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4643  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4644  */
4645 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4646 				       int start, int offset, bool nopartial)
4647 {
4648 	__wsum delta;
4649 
4650 	if (!nopartial) {
4651 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4652 		return;
4653 	}
4654 
4655 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4656 		__skb_checksum_complete(skb);
4657 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4658 	}
4659 
4660 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4661 
4662 	/* Adjust skb->csum since we changed the packet */
4663 	skb->csum = csum_add(skb->csum, delta);
4664 }
4665 
4666 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4667 {
4668 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4669 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4670 #else
4671 	return NULL;
4672 #endif
4673 }
4674 
4675 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4676 {
4677 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4678 	return skb->_nfct;
4679 #else
4680 	return 0UL;
4681 #endif
4682 }
4683 
4684 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4685 {
4686 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4687 	skb->slow_gro |= !!nfct;
4688 	skb->_nfct = nfct;
4689 #endif
4690 }
4691 
4692 #ifdef CONFIG_SKB_EXTENSIONS
4693 enum skb_ext_id {
4694 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4695 	SKB_EXT_BRIDGE_NF,
4696 #endif
4697 #ifdef CONFIG_XFRM
4698 	SKB_EXT_SEC_PATH,
4699 #endif
4700 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4701 	TC_SKB_EXT,
4702 #endif
4703 #if IS_ENABLED(CONFIG_MPTCP)
4704 	SKB_EXT_MPTCP,
4705 #endif
4706 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4707 	SKB_EXT_MCTP,
4708 #endif
4709 	SKB_EXT_NUM, /* must be last */
4710 };
4711 
4712 /**
4713  *	struct skb_ext - sk_buff extensions
4714  *	@refcnt: 1 on allocation, deallocated on 0
4715  *	@offset: offset to add to @data to obtain extension address
4716  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4717  *	@data: start of extension data, variable sized
4718  *
4719  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4720  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4721  */
4722 struct skb_ext {
4723 	refcount_t refcnt;
4724 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4725 	u8 chunks;		/* same */
4726 	char data[] __aligned(8);
4727 };
4728 
4729 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4730 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4731 		    struct skb_ext *ext);
4732 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4733 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4734 void __skb_ext_put(struct skb_ext *ext);
4735 
4736 static inline void skb_ext_put(struct sk_buff *skb)
4737 {
4738 	if (skb->active_extensions)
4739 		__skb_ext_put(skb->extensions);
4740 }
4741 
4742 static inline void __skb_ext_copy(struct sk_buff *dst,
4743 				  const struct sk_buff *src)
4744 {
4745 	dst->active_extensions = src->active_extensions;
4746 
4747 	if (src->active_extensions) {
4748 		struct skb_ext *ext = src->extensions;
4749 
4750 		refcount_inc(&ext->refcnt);
4751 		dst->extensions = ext;
4752 	}
4753 }
4754 
4755 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4756 {
4757 	skb_ext_put(dst);
4758 	__skb_ext_copy(dst, src);
4759 }
4760 
4761 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4762 {
4763 	return !!ext->offset[i];
4764 }
4765 
4766 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4767 {
4768 	return skb->active_extensions & (1 << id);
4769 }
4770 
4771 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4772 {
4773 	if (skb_ext_exist(skb, id))
4774 		__skb_ext_del(skb, id);
4775 }
4776 
4777 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4778 {
4779 	if (skb_ext_exist(skb, id)) {
4780 		struct skb_ext *ext = skb->extensions;
4781 
4782 		return (void *)ext + (ext->offset[id] << 3);
4783 	}
4784 
4785 	return NULL;
4786 }
4787 
4788 static inline void skb_ext_reset(struct sk_buff *skb)
4789 {
4790 	if (unlikely(skb->active_extensions)) {
4791 		__skb_ext_put(skb->extensions);
4792 		skb->active_extensions = 0;
4793 	}
4794 }
4795 
4796 static inline bool skb_has_extensions(struct sk_buff *skb)
4797 {
4798 	return unlikely(skb->active_extensions);
4799 }
4800 #else
4801 static inline void skb_ext_put(struct sk_buff *skb) {}
4802 static inline void skb_ext_reset(struct sk_buff *skb) {}
4803 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4804 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4805 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4806 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4807 #endif /* CONFIG_SKB_EXTENSIONS */
4808 
4809 static inline void nf_reset_ct(struct sk_buff *skb)
4810 {
4811 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4812 	nf_conntrack_put(skb_nfct(skb));
4813 	skb->_nfct = 0;
4814 #endif
4815 }
4816 
4817 static inline void nf_reset_trace(struct sk_buff *skb)
4818 {
4819 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4820 	skb->nf_trace = 0;
4821 #endif
4822 }
4823 
4824 static inline void ipvs_reset(struct sk_buff *skb)
4825 {
4826 #if IS_ENABLED(CONFIG_IP_VS)
4827 	skb->ipvs_property = 0;
4828 #endif
4829 }
4830 
4831 /* Note: This doesn't put any conntrack info in dst. */
4832 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4833 			     bool copy)
4834 {
4835 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4836 	dst->_nfct = src->_nfct;
4837 	nf_conntrack_get(skb_nfct(src));
4838 #endif
4839 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4840 	if (copy)
4841 		dst->nf_trace = src->nf_trace;
4842 #endif
4843 }
4844 
4845 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4846 {
4847 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4848 	nf_conntrack_put(skb_nfct(dst));
4849 #endif
4850 	dst->slow_gro = src->slow_gro;
4851 	__nf_copy(dst, src, true);
4852 }
4853 
4854 #ifdef CONFIG_NETWORK_SECMARK
4855 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4856 {
4857 	to->secmark = from->secmark;
4858 }
4859 
4860 static inline void skb_init_secmark(struct sk_buff *skb)
4861 {
4862 	skb->secmark = 0;
4863 }
4864 #else
4865 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4866 { }
4867 
4868 static inline void skb_init_secmark(struct sk_buff *skb)
4869 { }
4870 #endif
4871 
4872 static inline int secpath_exists(const struct sk_buff *skb)
4873 {
4874 #ifdef CONFIG_XFRM
4875 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4876 #else
4877 	return 0;
4878 #endif
4879 }
4880 
4881 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4882 {
4883 	return !skb->destructor &&
4884 		!secpath_exists(skb) &&
4885 		!skb_nfct(skb) &&
4886 		!skb->_skb_refdst &&
4887 		!skb_has_frag_list(skb);
4888 }
4889 
4890 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4891 {
4892 	skb->queue_mapping = queue_mapping;
4893 }
4894 
4895 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4896 {
4897 	return skb->queue_mapping;
4898 }
4899 
4900 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4901 {
4902 	to->queue_mapping = from->queue_mapping;
4903 }
4904 
4905 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4906 {
4907 	skb->queue_mapping = rx_queue + 1;
4908 }
4909 
4910 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4911 {
4912 	return skb->queue_mapping - 1;
4913 }
4914 
4915 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4916 {
4917 	return skb->queue_mapping != 0;
4918 }
4919 
4920 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4921 {
4922 	skb->dst_pending_confirm = val;
4923 }
4924 
4925 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4926 {
4927 	return skb->dst_pending_confirm != 0;
4928 }
4929 
4930 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4931 {
4932 #ifdef CONFIG_XFRM
4933 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4934 #else
4935 	return NULL;
4936 #endif
4937 }
4938 
4939 static inline bool skb_is_gso(const struct sk_buff *skb)
4940 {
4941 	return skb_shinfo(skb)->gso_size;
4942 }
4943 
4944 /* Note: Should be called only if skb_is_gso(skb) is true */
4945 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4946 {
4947 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4948 }
4949 
4950 /* Note: Should be called only if skb_is_gso(skb) is true */
4951 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4952 {
4953 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4954 }
4955 
4956 /* Note: Should be called only if skb_is_gso(skb) is true */
4957 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4958 {
4959 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4960 }
4961 
4962 static inline void skb_gso_reset(struct sk_buff *skb)
4963 {
4964 	skb_shinfo(skb)->gso_size = 0;
4965 	skb_shinfo(skb)->gso_segs = 0;
4966 	skb_shinfo(skb)->gso_type = 0;
4967 }
4968 
4969 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4970 					 u16 increment)
4971 {
4972 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4973 		return;
4974 	shinfo->gso_size += increment;
4975 }
4976 
4977 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4978 					 u16 decrement)
4979 {
4980 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4981 		return;
4982 	shinfo->gso_size -= decrement;
4983 }
4984 
4985 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4986 
4987 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4988 {
4989 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4990 	 * wanted then gso_type will be set. */
4991 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4992 
4993 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4994 	    unlikely(shinfo->gso_type == 0)) {
4995 		__skb_warn_lro_forwarding(skb);
4996 		return true;
4997 	}
4998 	return false;
4999 }
5000 
5001 static inline void skb_forward_csum(struct sk_buff *skb)
5002 {
5003 	/* Unfortunately we don't support this one.  Any brave souls? */
5004 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5005 		skb->ip_summed = CHECKSUM_NONE;
5006 }
5007 
5008 /**
5009  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5010  * @skb: skb to check
5011  *
5012  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5013  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5014  * use this helper, to document places where we make this assertion.
5015  */
5016 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5017 {
5018 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5019 }
5020 
5021 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5022 
5023 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5024 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5025 				     unsigned int transport_len,
5026 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5027 
5028 /**
5029  * skb_head_is_locked - Determine if the skb->head is locked down
5030  * @skb: skb to check
5031  *
5032  * The head on skbs build around a head frag can be removed if they are
5033  * not cloned.  This function returns true if the skb head is locked down
5034  * due to either being allocated via kmalloc, or by being a clone with
5035  * multiple references to the head.
5036  */
5037 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5038 {
5039 	return !skb->head_frag || skb_cloned(skb);
5040 }
5041 
5042 /* Local Checksum Offload.
5043  * Compute outer checksum based on the assumption that the
5044  * inner checksum will be offloaded later.
5045  * See Documentation/networking/checksum-offloads.rst for
5046  * explanation of how this works.
5047  * Fill in outer checksum adjustment (e.g. with sum of outer
5048  * pseudo-header) before calling.
5049  * Also ensure that inner checksum is in linear data area.
5050  */
5051 static inline __wsum lco_csum(struct sk_buff *skb)
5052 {
5053 	unsigned char *csum_start = skb_checksum_start(skb);
5054 	unsigned char *l4_hdr = skb_transport_header(skb);
5055 	__wsum partial;
5056 
5057 	/* Start with complement of inner checksum adjustment */
5058 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5059 						    skb->csum_offset));
5060 
5061 	/* Add in checksum of our headers (incl. outer checksum
5062 	 * adjustment filled in by caller) and return result.
5063 	 */
5064 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5065 }
5066 
5067 static inline bool skb_is_redirected(const struct sk_buff *skb)
5068 {
5069 	return skb->redirected;
5070 }
5071 
5072 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5073 {
5074 	skb->redirected = 1;
5075 #ifdef CONFIG_NET_REDIRECT
5076 	skb->from_ingress = from_ingress;
5077 	if (skb->from_ingress)
5078 		skb_clear_tstamp(skb);
5079 #endif
5080 }
5081 
5082 static inline void skb_reset_redirect(struct sk_buff *skb)
5083 {
5084 	skb->redirected = 0;
5085 }
5086 
5087 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5088 					      bool from_ingress)
5089 {
5090 	skb->redirected = 1;
5091 #ifdef CONFIG_NET_REDIRECT
5092 	skb->from_ingress = from_ingress;
5093 #endif
5094 }
5095 
5096 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5097 {
5098 #if IS_ENABLED(CONFIG_IP_SCTP)
5099 	return skb->csum_not_inet;
5100 #else
5101 	return 0;
5102 #endif
5103 }
5104 
5105 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5106 {
5107 	skb->ip_summed = CHECKSUM_NONE;
5108 #if IS_ENABLED(CONFIG_IP_SCTP)
5109 	skb->csum_not_inet = 0;
5110 #endif
5111 }
5112 
5113 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5114 				       const u64 kcov_handle)
5115 {
5116 #ifdef CONFIG_KCOV
5117 	skb->kcov_handle = kcov_handle;
5118 #endif
5119 }
5120 
5121 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5122 {
5123 #ifdef CONFIG_KCOV
5124 	return skb->kcov_handle;
5125 #else
5126 	return 0;
5127 #endif
5128 }
5129 
5130 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5131 {
5132 #ifdef CONFIG_PAGE_POOL
5133 	skb->pp_recycle = 1;
5134 #endif
5135 }
5136 
5137 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5138 			     ssize_t maxsize, gfp_t gfp);
5139 
5140 #endif	/* __KERNEL__ */
5141 #endif	/* _LINUX_SKBUFF_H */
5142