1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/config.h> 18 #include <linux/kernel.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/poll.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 33 #define HAVE_ALLOC_SKB /* For the drivers to know */ 34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 35 #define SLAB_SKB /* Slabified skbuffs */ 36 37 #define CHECKSUM_NONE 0 38 #define CHECKSUM_HW 1 39 #define CHECKSUM_UNNECESSARY 2 40 41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \ 44 sizeof(struct skb_shared_info)) & \ 45 ~(SMP_CACHE_BYTES - 1)) 46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 48 49 /* A. Checksumming of received packets by device. 50 * 51 * NONE: device failed to checksum this packet. 52 * skb->csum is undefined. 53 * 54 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 55 * skb->csum is undefined. 56 * It is bad option, but, unfortunately, many of vendors do this. 57 * Apparently with secret goal to sell you new device, when you 58 * will add new protocol to your host. F.e. IPv6. 8) 59 * 60 * HW: the most generic way. Device supplied checksum of _all_ 61 * the packet as seen by netif_rx in skb->csum. 62 * NOTE: Even if device supports only some protocols, but 63 * is able to produce some skb->csum, it MUST use HW, 64 * not UNNECESSARY. 65 * 66 * B. Checksumming on output. 67 * 68 * NONE: skb is checksummed by protocol or csum is not required. 69 * 70 * HW: device is required to csum packet as seen by hard_start_xmit 71 * from skb->h.raw to the end and to record the checksum 72 * at skb->h.raw+skb->csum. 73 * 74 * Device must show its capabilities in dev->features, set 75 * at device setup time. 76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 77 * everything. 78 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 80 * TCP/UDP over IPv4. Sigh. Vendors like this 81 * way by an unknown reason. Though, see comment above 82 * about CHECKSUM_UNNECESSARY. 8) 83 * 84 * Any questions? No questions, good. --ANK 85 */ 86 87 struct net_device; 88 89 #ifdef CONFIG_NETFILTER 90 struct nf_conntrack { 91 atomic_t use; 92 void (*destroy)(struct nf_conntrack *); 93 }; 94 95 #ifdef CONFIG_BRIDGE_NETFILTER 96 struct nf_bridge_info { 97 atomic_t use; 98 struct net_device *physindev; 99 struct net_device *physoutdev; 100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 101 struct net_device *netoutdev; 102 #endif 103 unsigned int mask; 104 unsigned long data[32 / sizeof(unsigned long)]; 105 }; 106 #endif 107 108 #endif 109 110 struct sk_buff_head { 111 /* These two members must be first. */ 112 struct sk_buff *next; 113 struct sk_buff *prev; 114 115 __u32 qlen; 116 spinlock_t lock; 117 }; 118 119 struct sk_buff; 120 121 /* To allow 64K frame to be packed as single skb without frag_list */ 122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 123 124 typedef struct skb_frag_struct skb_frag_t; 125 126 struct skb_frag_struct { 127 struct page *page; 128 __u16 page_offset; 129 __u16 size; 130 }; 131 132 /* This data is invariant across clones and lives at 133 * the end of the header data, ie. at skb->end. 134 */ 135 struct skb_shared_info { 136 atomic_t dataref; 137 unsigned int nr_frags; 138 unsigned short tso_size; 139 unsigned short tso_segs; 140 unsigned short ufo_size; 141 unsigned int ip6_frag_id; 142 struct sk_buff *frag_list; 143 skb_frag_t frags[MAX_SKB_FRAGS]; 144 }; 145 146 /* We divide dataref into two halves. The higher 16 bits hold references 147 * to the payload part of skb->data. The lower 16 bits hold references to 148 * the entire skb->data. It is up to the users of the skb to agree on 149 * where the payload starts. 150 * 151 * All users must obey the rule that the skb->data reference count must be 152 * greater than or equal to the payload reference count. 153 * 154 * Holding a reference to the payload part means that the user does not 155 * care about modifications to the header part of skb->data. 156 */ 157 #define SKB_DATAREF_SHIFT 16 158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 159 160 struct skb_timeval { 161 u32 off_sec; 162 u32 off_usec; 163 }; 164 165 166 enum { 167 SKB_FCLONE_UNAVAILABLE, 168 SKB_FCLONE_ORIG, 169 SKB_FCLONE_CLONE, 170 }; 171 172 /** 173 * struct sk_buff - socket buffer 174 * @next: Next buffer in list 175 * @prev: Previous buffer in list 176 * @sk: Socket we are owned by 177 * @tstamp: Time we arrived 178 * @dev: Device we arrived on/are leaving by 179 * @input_dev: Device we arrived on 180 * @h: Transport layer header 181 * @nh: Network layer header 182 * @mac: Link layer header 183 * @dst: destination entry 184 * @sp: the security path, used for xfrm 185 * @cb: Control buffer. Free for use by every layer. Put private vars here 186 * @len: Length of actual data 187 * @data_len: Data length 188 * @mac_len: Length of link layer header 189 * @csum: Checksum 190 * @local_df: allow local fragmentation 191 * @cloned: Head may be cloned (check refcnt to be sure) 192 * @nohdr: Payload reference only, must not modify header 193 * @pkt_type: Packet class 194 * @fclone: skbuff clone status 195 * @ip_summed: Driver fed us an IP checksum 196 * @priority: Packet queueing priority 197 * @users: User count - see {datagram,tcp}.c 198 * @protocol: Packet protocol from driver 199 * @truesize: Buffer size 200 * @head: Head of buffer 201 * @data: Data head pointer 202 * @tail: Tail pointer 203 * @end: End pointer 204 * @destructor: Destruct function 205 * @nfmark: Can be used for communication between hooks 206 * @nfct: Associated connection, if any 207 * @ipvs_property: skbuff is owned by ipvs 208 * @nfctinfo: Relationship of this skb to the connection 209 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 210 * @tc_index: Traffic control index 211 * @tc_verd: traffic control verdict 212 */ 213 214 struct sk_buff { 215 /* These two members must be first. */ 216 struct sk_buff *next; 217 struct sk_buff *prev; 218 219 struct sock *sk; 220 struct skb_timeval tstamp; 221 struct net_device *dev; 222 struct net_device *input_dev; 223 224 union { 225 struct tcphdr *th; 226 struct udphdr *uh; 227 struct icmphdr *icmph; 228 struct igmphdr *igmph; 229 struct iphdr *ipiph; 230 struct ipv6hdr *ipv6h; 231 unsigned char *raw; 232 } h; 233 234 union { 235 struct iphdr *iph; 236 struct ipv6hdr *ipv6h; 237 struct arphdr *arph; 238 unsigned char *raw; 239 } nh; 240 241 union { 242 unsigned char *raw; 243 } mac; 244 245 struct dst_entry *dst; 246 struct sec_path *sp; 247 248 /* 249 * This is the control buffer. It is free to use for every 250 * layer. Please put your private variables there. If you 251 * want to keep them across layers you have to do a skb_clone() 252 * first. This is owned by whoever has the skb queued ATM. 253 */ 254 char cb[40]; 255 256 unsigned int len, 257 data_len, 258 mac_len, 259 csum; 260 __u32 priority; 261 __u8 local_df:1, 262 cloned:1, 263 ip_summed:2, 264 nohdr:1, 265 nfctinfo:3; 266 __u8 pkt_type:3, 267 fclone:2; 268 __be16 protocol; 269 270 void (*destructor)(struct sk_buff *skb); 271 #ifdef CONFIG_NETFILTER 272 __u32 nfmark; 273 struct nf_conntrack *nfct; 274 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 275 __u8 ipvs_property:1; 276 #endif 277 #ifdef CONFIG_BRIDGE_NETFILTER 278 struct nf_bridge_info *nf_bridge; 279 #endif 280 #endif /* CONFIG_NETFILTER */ 281 #ifdef CONFIG_NET_SCHED 282 __u16 tc_index; /* traffic control index */ 283 #ifdef CONFIG_NET_CLS_ACT 284 __u16 tc_verd; /* traffic control verdict */ 285 #endif 286 #endif 287 288 289 /* These elements must be at the end, see alloc_skb() for details. */ 290 unsigned int truesize; 291 atomic_t users; 292 unsigned char *head, 293 *data, 294 *tail, 295 *end; 296 }; 297 298 #ifdef __KERNEL__ 299 /* 300 * Handling routines are only of interest to the kernel 301 */ 302 #include <linux/slab.h> 303 304 #include <asm/system.h> 305 306 extern void __kfree_skb(struct sk_buff *skb); 307 extern struct sk_buff *__alloc_skb(unsigned int size, 308 gfp_t priority, int fclone); 309 static inline struct sk_buff *alloc_skb(unsigned int size, 310 gfp_t priority) 311 { 312 return __alloc_skb(size, priority, 0); 313 } 314 315 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 316 gfp_t priority) 317 { 318 return __alloc_skb(size, priority, 1); 319 } 320 321 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 322 unsigned int size, 323 gfp_t priority); 324 extern void kfree_skbmem(struct sk_buff *skb); 325 extern struct sk_buff *skb_clone(struct sk_buff *skb, 326 gfp_t priority); 327 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 328 gfp_t priority); 329 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 330 gfp_t gfp_mask); 331 extern int pskb_expand_head(struct sk_buff *skb, 332 int nhead, int ntail, 333 gfp_t gfp_mask); 334 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 335 unsigned int headroom); 336 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 337 int newheadroom, int newtailroom, 338 gfp_t priority); 339 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad); 340 #define dev_kfree_skb(a) kfree_skb(a) 341 extern void skb_over_panic(struct sk_buff *skb, int len, 342 void *here); 343 extern void skb_under_panic(struct sk_buff *skb, int len, 344 void *here); 345 346 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 347 int getfrag(void *from, char *to, int offset, 348 int len,int odd, struct sk_buff *skb), 349 void *from, int length); 350 351 struct skb_seq_state 352 { 353 __u32 lower_offset; 354 __u32 upper_offset; 355 __u32 frag_idx; 356 __u32 stepped_offset; 357 struct sk_buff *root_skb; 358 struct sk_buff *cur_skb; 359 __u8 *frag_data; 360 }; 361 362 extern void skb_prepare_seq_read(struct sk_buff *skb, 363 unsigned int from, unsigned int to, 364 struct skb_seq_state *st); 365 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 366 struct skb_seq_state *st); 367 extern void skb_abort_seq_read(struct skb_seq_state *st); 368 369 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 370 unsigned int to, struct ts_config *config, 371 struct ts_state *state); 372 373 /* Internal */ 374 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end)) 375 376 /** 377 * skb_queue_empty - check if a queue is empty 378 * @list: queue head 379 * 380 * Returns true if the queue is empty, false otherwise. 381 */ 382 static inline int skb_queue_empty(const struct sk_buff_head *list) 383 { 384 return list->next == (struct sk_buff *)list; 385 } 386 387 /** 388 * skb_get - reference buffer 389 * @skb: buffer to reference 390 * 391 * Makes another reference to a socket buffer and returns a pointer 392 * to the buffer. 393 */ 394 static inline struct sk_buff *skb_get(struct sk_buff *skb) 395 { 396 atomic_inc(&skb->users); 397 return skb; 398 } 399 400 /* 401 * If users == 1, we are the only owner and are can avoid redundant 402 * atomic change. 403 */ 404 405 /** 406 * kfree_skb - free an sk_buff 407 * @skb: buffer to free 408 * 409 * Drop a reference to the buffer and free it if the usage count has 410 * hit zero. 411 */ 412 static inline void kfree_skb(struct sk_buff *skb) 413 { 414 if (likely(atomic_read(&skb->users) == 1)) 415 smp_rmb(); 416 else if (likely(!atomic_dec_and_test(&skb->users))) 417 return; 418 __kfree_skb(skb); 419 } 420 421 /** 422 * skb_cloned - is the buffer a clone 423 * @skb: buffer to check 424 * 425 * Returns true if the buffer was generated with skb_clone() and is 426 * one of multiple shared copies of the buffer. Cloned buffers are 427 * shared data so must not be written to under normal circumstances. 428 */ 429 static inline int skb_cloned(const struct sk_buff *skb) 430 { 431 return skb->cloned && 432 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 433 } 434 435 /** 436 * skb_header_cloned - is the header a clone 437 * @skb: buffer to check 438 * 439 * Returns true if modifying the header part of the buffer requires 440 * the data to be copied. 441 */ 442 static inline int skb_header_cloned(const struct sk_buff *skb) 443 { 444 int dataref; 445 446 if (!skb->cloned) 447 return 0; 448 449 dataref = atomic_read(&skb_shinfo(skb)->dataref); 450 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 451 return dataref != 1; 452 } 453 454 /** 455 * skb_header_release - release reference to header 456 * @skb: buffer to operate on 457 * 458 * Drop a reference to the header part of the buffer. This is done 459 * by acquiring a payload reference. You must not read from the header 460 * part of skb->data after this. 461 */ 462 static inline void skb_header_release(struct sk_buff *skb) 463 { 464 BUG_ON(skb->nohdr); 465 skb->nohdr = 1; 466 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 467 } 468 469 /** 470 * skb_shared - is the buffer shared 471 * @skb: buffer to check 472 * 473 * Returns true if more than one person has a reference to this 474 * buffer. 475 */ 476 static inline int skb_shared(const struct sk_buff *skb) 477 { 478 return atomic_read(&skb->users) != 1; 479 } 480 481 /** 482 * skb_share_check - check if buffer is shared and if so clone it 483 * @skb: buffer to check 484 * @pri: priority for memory allocation 485 * 486 * If the buffer is shared the buffer is cloned and the old copy 487 * drops a reference. A new clone with a single reference is returned. 488 * If the buffer is not shared the original buffer is returned. When 489 * being called from interrupt status or with spinlocks held pri must 490 * be GFP_ATOMIC. 491 * 492 * NULL is returned on a memory allocation failure. 493 */ 494 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 495 gfp_t pri) 496 { 497 might_sleep_if(pri & __GFP_WAIT); 498 if (skb_shared(skb)) { 499 struct sk_buff *nskb = skb_clone(skb, pri); 500 kfree_skb(skb); 501 skb = nskb; 502 } 503 return skb; 504 } 505 506 /* 507 * Copy shared buffers into a new sk_buff. We effectively do COW on 508 * packets to handle cases where we have a local reader and forward 509 * and a couple of other messy ones. The normal one is tcpdumping 510 * a packet thats being forwarded. 511 */ 512 513 /** 514 * skb_unshare - make a copy of a shared buffer 515 * @skb: buffer to check 516 * @pri: priority for memory allocation 517 * 518 * If the socket buffer is a clone then this function creates a new 519 * copy of the data, drops a reference count on the old copy and returns 520 * the new copy with the reference count at 1. If the buffer is not a clone 521 * the original buffer is returned. When called with a spinlock held or 522 * from interrupt state @pri must be %GFP_ATOMIC 523 * 524 * %NULL is returned on a memory allocation failure. 525 */ 526 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 527 gfp_t pri) 528 { 529 might_sleep_if(pri & __GFP_WAIT); 530 if (skb_cloned(skb)) { 531 struct sk_buff *nskb = skb_copy(skb, pri); 532 kfree_skb(skb); /* Free our shared copy */ 533 skb = nskb; 534 } 535 return skb; 536 } 537 538 /** 539 * skb_peek 540 * @list_: list to peek at 541 * 542 * Peek an &sk_buff. Unlike most other operations you _MUST_ 543 * be careful with this one. A peek leaves the buffer on the 544 * list and someone else may run off with it. You must hold 545 * the appropriate locks or have a private queue to do this. 546 * 547 * Returns %NULL for an empty list or a pointer to the head element. 548 * The reference count is not incremented and the reference is therefore 549 * volatile. Use with caution. 550 */ 551 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 552 { 553 struct sk_buff *list = ((struct sk_buff *)list_)->next; 554 if (list == (struct sk_buff *)list_) 555 list = NULL; 556 return list; 557 } 558 559 /** 560 * skb_peek_tail 561 * @list_: list to peek at 562 * 563 * Peek an &sk_buff. Unlike most other operations you _MUST_ 564 * be careful with this one. A peek leaves the buffer on the 565 * list and someone else may run off with it. You must hold 566 * the appropriate locks or have a private queue to do this. 567 * 568 * Returns %NULL for an empty list or a pointer to the tail element. 569 * The reference count is not incremented and the reference is therefore 570 * volatile. Use with caution. 571 */ 572 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 573 { 574 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 575 if (list == (struct sk_buff *)list_) 576 list = NULL; 577 return list; 578 } 579 580 /** 581 * skb_queue_len - get queue length 582 * @list_: list to measure 583 * 584 * Return the length of an &sk_buff queue. 585 */ 586 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 587 { 588 return list_->qlen; 589 } 590 591 static inline void skb_queue_head_init(struct sk_buff_head *list) 592 { 593 spin_lock_init(&list->lock); 594 list->prev = list->next = (struct sk_buff *)list; 595 list->qlen = 0; 596 } 597 598 /* 599 * Insert an sk_buff at the start of a list. 600 * 601 * The "__skb_xxxx()" functions are the non-atomic ones that 602 * can only be called with interrupts disabled. 603 */ 604 605 /** 606 * __skb_queue_head - queue a buffer at the list head 607 * @list: list to use 608 * @newsk: buffer to queue 609 * 610 * Queue a buffer at the start of a list. This function takes no locks 611 * and you must therefore hold required locks before calling it. 612 * 613 * A buffer cannot be placed on two lists at the same time. 614 */ 615 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 616 static inline void __skb_queue_head(struct sk_buff_head *list, 617 struct sk_buff *newsk) 618 { 619 struct sk_buff *prev, *next; 620 621 list->qlen++; 622 prev = (struct sk_buff *)list; 623 next = prev->next; 624 newsk->next = next; 625 newsk->prev = prev; 626 next->prev = prev->next = newsk; 627 } 628 629 /** 630 * __skb_queue_tail - queue a buffer at the list tail 631 * @list: list to use 632 * @newsk: buffer to queue 633 * 634 * Queue a buffer at the end of a list. This function takes no locks 635 * and you must therefore hold required locks before calling it. 636 * 637 * A buffer cannot be placed on two lists at the same time. 638 */ 639 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 640 static inline void __skb_queue_tail(struct sk_buff_head *list, 641 struct sk_buff *newsk) 642 { 643 struct sk_buff *prev, *next; 644 645 list->qlen++; 646 next = (struct sk_buff *)list; 647 prev = next->prev; 648 newsk->next = next; 649 newsk->prev = prev; 650 next->prev = prev->next = newsk; 651 } 652 653 654 /** 655 * __skb_dequeue - remove from the head of the queue 656 * @list: list to dequeue from 657 * 658 * Remove the head of the list. This function does not take any locks 659 * so must be used with appropriate locks held only. The head item is 660 * returned or %NULL if the list is empty. 661 */ 662 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 663 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 664 { 665 struct sk_buff *next, *prev, *result; 666 667 prev = (struct sk_buff *) list; 668 next = prev->next; 669 result = NULL; 670 if (next != prev) { 671 result = next; 672 next = next->next; 673 list->qlen--; 674 next->prev = prev; 675 prev->next = next; 676 result->next = result->prev = NULL; 677 } 678 return result; 679 } 680 681 682 /* 683 * Insert a packet on a list. 684 */ 685 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 686 static inline void __skb_insert(struct sk_buff *newsk, 687 struct sk_buff *prev, struct sk_buff *next, 688 struct sk_buff_head *list) 689 { 690 newsk->next = next; 691 newsk->prev = prev; 692 next->prev = prev->next = newsk; 693 list->qlen++; 694 } 695 696 /* 697 * Place a packet after a given packet in a list. 698 */ 699 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 700 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 701 { 702 __skb_insert(newsk, old, old->next, list); 703 } 704 705 /* 706 * remove sk_buff from list. _Must_ be called atomically, and with 707 * the list known.. 708 */ 709 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 710 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 711 { 712 struct sk_buff *next, *prev; 713 714 list->qlen--; 715 next = skb->next; 716 prev = skb->prev; 717 skb->next = skb->prev = NULL; 718 next->prev = prev; 719 prev->next = next; 720 } 721 722 723 /* XXX: more streamlined implementation */ 724 725 /** 726 * __skb_dequeue_tail - remove from the tail of the queue 727 * @list: list to dequeue from 728 * 729 * Remove the tail of the list. This function does not take any locks 730 * so must be used with appropriate locks held only. The tail item is 731 * returned or %NULL if the list is empty. 732 */ 733 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 734 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 735 { 736 struct sk_buff *skb = skb_peek_tail(list); 737 if (skb) 738 __skb_unlink(skb, list); 739 return skb; 740 } 741 742 743 static inline int skb_is_nonlinear(const struct sk_buff *skb) 744 { 745 return skb->data_len; 746 } 747 748 static inline unsigned int skb_headlen(const struct sk_buff *skb) 749 { 750 return skb->len - skb->data_len; 751 } 752 753 static inline int skb_pagelen(const struct sk_buff *skb) 754 { 755 int i, len = 0; 756 757 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 758 len += skb_shinfo(skb)->frags[i].size; 759 return len + skb_headlen(skb); 760 } 761 762 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 763 struct page *page, int off, int size) 764 { 765 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 766 767 frag->page = page; 768 frag->page_offset = off; 769 frag->size = size; 770 skb_shinfo(skb)->nr_frags = i + 1; 771 } 772 773 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 774 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 775 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 776 777 /* 778 * Add data to an sk_buff 779 */ 780 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 781 { 782 unsigned char *tmp = skb->tail; 783 SKB_LINEAR_ASSERT(skb); 784 skb->tail += len; 785 skb->len += len; 786 return tmp; 787 } 788 789 /** 790 * skb_put - add data to a buffer 791 * @skb: buffer to use 792 * @len: amount of data to add 793 * 794 * This function extends the used data area of the buffer. If this would 795 * exceed the total buffer size the kernel will panic. A pointer to the 796 * first byte of the extra data is returned. 797 */ 798 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 799 { 800 unsigned char *tmp = skb->tail; 801 SKB_LINEAR_ASSERT(skb); 802 skb->tail += len; 803 skb->len += len; 804 if (unlikely(skb->tail>skb->end)) 805 skb_over_panic(skb, len, current_text_addr()); 806 return tmp; 807 } 808 809 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 810 { 811 skb->data -= len; 812 skb->len += len; 813 return skb->data; 814 } 815 816 /** 817 * skb_push - add data to the start of a buffer 818 * @skb: buffer to use 819 * @len: amount of data to add 820 * 821 * This function extends the used data area of the buffer at the buffer 822 * start. If this would exceed the total buffer headroom the kernel will 823 * panic. A pointer to the first byte of the extra data is returned. 824 */ 825 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 826 { 827 skb->data -= len; 828 skb->len += len; 829 if (unlikely(skb->data<skb->head)) 830 skb_under_panic(skb, len, current_text_addr()); 831 return skb->data; 832 } 833 834 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 835 { 836 skb->len -= len; 837 BUG_ON(skb->len < skb->data_len); 838 return skb->data += len; 839 } 840 841 /** 842 * skb_pull - remove data from the start of a buffer 843 * @skb: buffer to use 844 * @len: amount of data to remove 845 * 846 * This function removes data from the start of a buffer, returning 847 * the memory to the headroom. A pointer to the next data in the buffer 848 * is returned. Once the data has been pulled future pushes will overwrite 849 * the old data. 850 */ 851 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 852 { 853 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 854 } 855 856 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 857 858 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 859 { 860 if (len > skb_headlen(skb) && 861 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 862 return NULL; 863 skb->len -= len; 864 return skb->data += len; 865 } 866 867 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 868 { 869 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 870 } 871 872 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 873 { 874 if (likely(len <= skb_headlen(skb))) 875 return 1; 876 if (unlikely(len > skb->len)) 877 return 0; 878 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 879 } 880 881 /** 882 * skb_headroom - bytes at buffer head 883 * @skb: buffer to check 884 * 885 * Return the number of bytes of free space at the head of an &sk_buff. 886 */ 887 static inline int skb_headroom(const struct sk_buff *skb) 888 { 889 return skb->data - skb->head; 890 } 891 892 /** 893 * skb_tailroom - bytes at buffer end 894 * @skb: buffer to check 895 * 896 * Return the number of bytes of free space at the tail of an sk_buff 897 */ 898 static inline int skb_tailroom(const struct sk_buff *skb) 899 { 900 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 901 } 902 903 /** 904 * skb_reserve - adjust headroom 905 * @skb: buffer to alter 906 * @len: bytes to move 907 * 908 * Increase the headroom of an empty &sk_buff by reducing the tail 909 * room. This is only allowed for an empty buffer. 910 */ 911 static inline void skb_reserve(struct sk_buff *skb, unsigned int len) 912 { 913 skb->data += len; 914 skb->tail += len; 915 } 916 917 /* 918 * CPUs often take a performance hit when accessing unaligned memory 919 * locations. The actual performance hit varies, it can be small if the 920 * hardware handles it or large if we have to take an exception and fix it 921 * in software. 922 * 923 * Since an ethernet header is 14 bytes network drivers often end up with 924 * the IP header at an unaligned offset. The IP header can be aligned by 925 * shifting the start of the packet by 2 bytes. Drivers should do this 926 * with: 927 * 928 * skb_reserve(NET_IP_ALIGN); 929 * 930 * The downside to this alignment of the IP header is that the DMA is now 931 * unaligned. On some architectures the cost of an unaligned DMA is high 932 * and this cost outweighs the gains made by aligning the IP header. 933 * 934 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 935 * to be overridden. 936 */ 937 #ifndef NET_IP_ALIGN 938 #define NET_IP_ALIGN 2 939 #endif 940 941 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc); 942 943 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 944 { 945 if (!skb->data_len) { 946 skb->len = len; 947 skb->tail = skb->data + len; 948 } else 949 ___pskb_trim(skb, len, 0); 950 } 951 952 /** 953 * skb_trim - remove end from a buffer 954 * @skb: buffer to alter 955 * @len: new length 956 * 957 * Cut the length of a buffer down by removing data from the tail. If 958 * the buffer is already under the length specified it is not modified. 959 */ 960 static inline void skb_trim(struct sk_buff *skb, unsigned int len) 961 { 962 if (skb->len > len) 963 __skb_trim(skb, len); 964 } 965 966 967 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 968 { 969 if (!skb->data_len) { 970 skb->len = len; 971 skb->tail = skb->data+len; 972 return 0; 973 } 974 return ___pskb_trim(skb, len, 1); 975 } 976 977 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 978 { 979 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 980 } 981 982 /** 983 * skb_orphan - orphan a buffer 984 * @skb: buffer to orphan 985 * 986 * If a buffer currently has an owner then we call the owner's 987 * destructor function and make the @skb unowned. The buffer continues 988 * to exist but is no longer charged to its former owner. 989 */ 990 static inline void skb_orphan(struct sk_buff *skb) 991 { 992 if (skb->destructor) 993 skb->destructor(skb); 994 skb->destructor = NULL; 995 skb->sk = NULL; 996 } 997 998 /** 999 * __skb_queue_purge - empty a list 1000 * @list: list to empty 1001 * 1002 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1003 * the list and one reference dropped. This function does not take the 1004 * list lock and the caller must hold the relevant locks to use it. 1005 */ 1006 extern void skb_queue_purge(struct sk_buff_head *list); 1007 static inline void __skb_queue_purge(struct sk_buff_head *list) 1008 { 1009 struct sk_buff *skb; 1010 while ((skb = __skb_dequeue(list)) != NULL) 1011 kfree_skb(skb); 1012 } 1013 1014 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB 1015 /** 1016 * __dev_alloc_skb - allocate an skbuff for sending 1017 * @length: length to allocate 1018 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1019 * 1020 * Allocate a new &sk_buff and assign it a usage count of one. The 1021 * buffer has unspecified headroom built in. Users should allocate 1022 * the headroom they think they need without accounting for the 1023 * built in space. The built in space is used for optimisations. 1024 * 1025 * %NULL is returned in there is no free memory. 1026 */ 1027 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1028 gfp_t gfp_mask) 1029 { 1030 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask); 1031 if (likely(skb)) 1032 skb_reserve(skb, 16); 1033 return skb; 1034 } 1035 #else 1036 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask); 1037 #endif 1038 1039 /** 1040 * dev_alloc_skb - allocate an skbuff for sending 1041 * @length: length to allocate 1042 * 1043 * Allocate a new &sk_buff and assign it a usage count of one. The 1044 * buffer has unspecified headroom built in. Users should allocate 1045 * the headroom they think they need without accounting for the 1046 * built in space. The built in space is used for optimisations. 1047 * 1048 * %NULL is returned in there is no free memory. Although this function 1049 * allocates memory it can be called from an interrupt. 1050 */ 1051 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1052 { 1053 return __dev_alloc_skb(length, GFP_ATOMIC); 1054 } 1055 1056 /** 1057 * skb_cow - copy header of skb when it is required 1058 * @skb: buffer to cow 1059 * @headroom: needed headroom 1060 * 1061 * If the skb passed lacks sufficient headroom or its data part 1062 * is shared, data is reallocated. If reallocation fails, an error 1063 * is returned and original skb is not changed. 1064 * 1065 * The result is skb with writable area skb->head...skb->tail 1066 * and at least @headroom of space at head. 1067 */ 1068 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1069 { 1070 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb); 1071 1072 if (delta < 0) 1073 delta = 0; 1074 1075 if (delta || skb_cloned(skb)) 1076 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC); 1077 return 0; 1078 } 1079 1080 /** 1081 * skb_padto - pad an skbuff up to a minimal size 1082 * @skb: buffer to pad 1083 * @len: minimal length 1084 * 1085 * Pads up a buffer to ensure the trailing bytes exist and are 1086 * blanked. If the buffer already contains sufficient data it 1087 * is untouched. Returns the buffer, which may be a replacement 1088 * for the original, or NULL for out of memory - in which case 1089 * the original buffer is still freed. 1090 */ 1091 1092 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len) 1093 { 1094 unsigned int size = skb->len; 1095 if (likely(size >= len)) 1096 return skb; 1097 return skb_pad(skb, len-size); 1098 } 1099 1100 static inline int skb_add_data(struct sk_buff *skb, 1101 char __user *from, int copy) 1102 { 1103 const int off = skb->len; 1104 1105 if (skb->ip_summed == CHECKSUM_NONE) { 1106 int err = 0; 1107 unsigned int csum = csum_and_copy_from_user(from, 1108 skb_put(skb, copy), 1109 copy, 0, &err); 1110 if (!err) { 1111 skb->csum = csum_block_add(skb->csum, csum, off); 1112 return 0; 1113 } 1114 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1115 return 0; 1116 1117 __skb_trim(skb, off); 1118 return -EFAULT; 1119 } 1120 1121 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1122 struct page *page, int off) 1123 { 1124 if (i) { 1125 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1126 1127 return page == frag->page && 1128 off == frag->page_offset + frag->size; 1129 } 1130 return 0; 1131 } 1132 1133 /** 1134 * skb_linearize - convert paged skb to linear one 1135 * @skb: buffer to linarize 1136 * @gfp: allocation mode 1137 * 1138 * If there is no free memory -ENOMEM is returned, otherwise zero 1139 * is returned and the old skb data released. 1140 */ 1141 extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp); 1142 static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp) 1143 { 1144 return __skb_linearize(skb, gfp); 1145 } 1146 1147 /** 1148 * skb_postpull_rcsum - update checksum for received skb after pull 1149 * @skb: buffer to update 1150 * @start: start of data before pull 1151 * @len: length of data pulled 1152 * 1153 * After doing a pull on a received packet, you need to call this to 1154 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE 1155 * so that it can be recomputed from scratch. 1156 */ 1157 1158 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1159 const void *start, int len) 1160 { 1161 if (skb->ip_summed == CHECKSUM_HW) 1162 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1163 } 1164 1165 /** 1166 * pskb_trim_rcsum - trim received skb and update checksum 1167 * @skb: buffer to trim 1168 * @len: new length 1169 * 1170 * This is exactly the same as pskb_trim except that it ensures the 1171 * checksum of received packets are still valid after the operation. 1172 */ 1173 1174 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1175 { 1176 if (likely(len >= skb->len)) 1177 return 0; 1178 if (skb->ip_summed == CHECKSUM_HW) 1179 skb->ip_summed = CHECKSUM_NONE; 1180 return __pskb_trim(skb, len); 1181 } 1182 1183 static inline void *kmap_skb_frag(const skb_frag_t *frag) 1184 { 1185 #ifdef CONFIG_HIGHMEM 1186 BUG_ON(in_irq()); 1187 1188 local_bh_disable(); 1189 #endif 1190 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ); 1191 } 1192 1193 static inline void kunmap_skb_frag(void *vaddr) 1194 { 1195 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 1196 #ifdef CONFIG_HIGHMEM 1197 local_bh_enable(); 1198 #endif 1199 } 1200 1201 #define skb_queue_walk(queue, skb) \ 1202 for (skb = (queue)->next; \ 1203 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1204 skb = skb->next) 1205 1206 1207 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1208 int noblock, int *err); 1209 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1210 struct poll_table_struct *wait); 1211 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1212 int offset, struct iovec *to, 1213 int size); 1214 extern int skb_copy_and_csum_datagram_iovec(const 1215 struct sk_buff *skb, 1216 int hlen, 1217 struct iovec *iov); 1218 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1219 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1220 int len, unsigned int csum); 1221 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1222 void *to, int len); 1223 extern int skb_store_bits(const struct sk_buff *skb, int offset, 1224 void *from, int len); 1225 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, 1226 int offset, u8 *to, int len, 1227 unsigned int csum); 1228 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1229 extern void skb_split(struct sk_buff *skb, 1230 struct sk_buff *skb1, const u32 len); 1231 1232 extern void skb_release_data(struct sk_buff *skb); 1233 1234 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1235 int len, void *buffer) 1236 { 1237 int hlen = skb_headlen(skb); 1238 1239 if (hlen - offset >= len) 1240 return skb->data + offset; 1241 1242 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1243 return NULL; 1244 1245 return buffer; 1246 } 1247 1248 extern void skb_init(void); 1249 extern void skb_add_mtu(int mtu); 1250 1251 /** 1252 * skb_get_timestamp - get timestamp from a skb 1253 * @skb: skb to get stamp from 1254 * @stamp: pointer to struct timeval to store stamp in 1255 * 1256 * Timestamps are stored in the skb as offsets to a base timestamp. 1257 * This function converts the offset back to a struct timeval and stores 1258 * it in stamp. 1259 */ 1260 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1261 { 1262 stamp->tv_sec = skb->tstamp.off_sec; 1263 stamp->tv_usec = skb->tstamp.off_usec; 1264 } 1265 1266 /** 1267 * skb_set_timestamp - set timestamp of a skb 1268 * @skb: skb to set stamp of 1269 * @stamp: pointer to struct timeval to get stamp from 1270 * 1271 * Timestamps are stored in the skb as offsets to a base timestamp. 1272 * This function converts a struct timeval to an offset and stores 1273 * it in the skb. 1274 */ 1275 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp) 1276 { 1277 skb->tstamp.off_sec = stamp->tv_sec; 1278 skb->tstamp.off_usec = stamp->tv_usec; 1279 } 1280 1281 extern void __net_timestamp(struct sk_buff *skb); 1282 1283 #ifdef CONFIG_NETFILTER 1284 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1285 { 1286 if (nfct && atomic_dec_and_test(&nfct->use)) 1287 nfct->destroy(nfct); 1288 } 1289 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1290 { 1291 if (nfct) 1292 atomic_inc(&nfct->use); 1293 } 1294 static inline void nf_reset(struct sk_buff *skb) 1295 { 1296 nf_conntrack_put(skb->nfct); 1297 skb->nfct = NULL; 1298 } 1299 1300 #ifdef CONFIG_BRIDGE_NETFILTER 1301 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1302 { 1303 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1304 kfree(nf_bridge); 1305 } 1306 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1307 { 1308 if (nf_bridge) 1309 atomic_inc(&nf_bridge->use); 1310 } 1311 #endif /* CONFIG_BRIDGE_NETFILTER */ 1312 #else /* CONFIG_NETFILTER */ 1313 static inline void nf_reset(struct sk_buff *skb) {} 1314 #endif /* CONFIG_NETFILTER */ 1315 1316 #endif /* __KERNEL__ */ 1317 #endif /* _LINUX_SKBUFF_H */ 1318