xref: /linux-6.15/include/linux/skbuff.h (revision 4e57b681)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 
33 #define HAVE_ALLOC_SKB		/* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35 #define SLAB_SKB 		/* Slabified skbuffs 	   */
36 
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_HW 1
39 #define CHECKSUM_UNNECESSARY 2
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
44 				  sizeof(struct skb_shared_info)) & \
45 				  ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
48 
49 /* A. Checksumming of received packets by device.
50  *
51  *	NONE: device failed to checksum this packet.
52  *		skb->csum is undefined.
53  *
54  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
55  *		skb->csum is undefined.
56  *	      It is bad option, but, unfortunately, many of vendors do this.
57  *	      Apparently with secret goal to sell you new device, when you
58  *	      will add new protocol to your host. F.e. IPv6. 8)
59  *
60  *	HW: the most generic way. Device supplied checksum of _all_
61  *	    the packet as seen by netif_rx in skb->csum.
62  *	    NOTE: Even if device supports only some protocols, but
63  *	    is able to produce some skb->csum, it MUST use HW,
64  *	    not UNNECESSARY.
65  *
66  * B. Checksumming on output.
67  *
68  *	NONE: skb is checksummed by protocol or csum is not required.
69  *
70  *	HW: device is required to csum packet as seen by hard_start_xmit
71  *	from skb->h.raw to the end and to record the checksum
72  *	at skb->h.raw+skb->csum.
73  *
74  *	Device must show its capabilities in dev->features, set
75  *	at device setup time.
76  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
77  *			  everything.
78  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
79  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80  *			  TCP/UDP over IPv4. Sigh. Vendors like this
81  *			  way by an unknown reason. Though, see comment above
82  *			  about CHECKSUM_UNNECESSARY. 8)
83  *
84  *	Any questions? No questions, good. 		--ANK
85  */
86 
87 struct net_device;
88 
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 	atomic_t use;
92 	void (*destroy)(struct nf_conntrack *);
93 };
94 
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 	atomic_t use;
98 	struct net_device *physindev;
99 	struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 	struct net_device *netoutdev;
102 #endif
103 	unsigned int mask;
104 	unsigned long data[32 / sizeof(unsigned long)];
105 };
106 #endif
107 
108 #endif
109 
110 struct sk_buff_head {
111 	/* These two members must be first. */
112 	struct sk_buff	*next;
113 	struct sk_buff	*prev;
114 
115 	__u32		qlen;
116 	spinlock_t	lock;
117 };
118 
119 struct sk_buff;
120 
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123 
124 typedef struct skb_frag_struct skb_frag_t;
125 
126 struct skb_frag_struct {
127 	struct page *page;
128 	__u16 page_offset;
129 	__u16 size;
130 };
131 
132 /* This data is invariant across clones and lives at
133  * the end of the header data, ie. at skb->end.
134  */
135 struct skb_shared_info {
136 	atomic_t	dataref;
137 	unsigned int	nr_frags;
138 	unsigned short	tso_size;
139 	unsigned short	tso_segs;
140 	unsigned short  ufo_size;
141 	unsigned int    ip6_frag_id;
142 	struct sk_buff	*frag_list;
143 	skb_frag_t	frags[MAX_SKB_FRAGS];
144 };
145 
146 /* We divide dataref into two halves.  The higher 16 bits hold references
147  * to the payload part of skb->data.  The lower 16 bits hold references to
148  * the entire skb->data.  It is up to the users of the skb to agree on
149  * where the payload starts.
150  *
151  * All users must obey the rule that the skb->data reference count must be
152  * greater than or equal to the payload reference count.
153  *
154  * Holding a reference to the payload part means that the user does not
155  * care about modifications to the header part of skb->data.
156  */
157 #define SKB_DATAREF_SHIFT 16
158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
159 
160 struct skb_timeval {
161 	u32	off_sec;
162 	u32	off_usec;
163 };
164 
165 
166 enum {
167 	SKB_FCLONE_UNAVAILABLE,
168 	SKB_FCLONE_ORIG,
169 	SKB_FCLONE_CLONE,
170 };
171 
172 /**
173  *	struct sk_buff - socket buffer
174  *	@next: Next buffer in list
175  *	@prev: Previous buffer in list
176  *	@sk: Socket we are owned by
177  *	@tstamp: Time we arrived
178  *	@dev: Device we arrived on/are leaving by
179  *	@input_dev: Device we arrived on
180  *	@h: Transport layer header
181  *	@nh: Network layer header
182  *	@mac: Link layer header
183  *	@dst: destination entry
184  *	@sp: the security path, used for xfrm
185  *	@cb: Control buffer. Free for use by every layer. Put private vars here
186  *	@len: Length of actual data
187  *	@data_len: Data length
188  *	@mac_len: Length of link layer header
189  *	@csum: Checksum
190  *	@local_df: allow local fragmentation
191  *	@cloned: Head may be cloned (check refcnt to be sure)
192  *	@nohdr: Payload reference only, must not modify header
193  *	@pkt_type: Packet class
194  *	@fclone: skbuff clone status
195  *	@ip_summed: Driver fed us an IP checksum
196  *	@priority: Packet queueing priority
197  *	@users: User count - see {datagram,tcp}.c
198  *	@protocol: Packet protocol from driver
199  *	@truesize: Buffer size
200  *	@head: Head of buffer
201  *	@data: Data head pointer
202  *	@tail: Tail pointer
203  *	@end: End pointer
204  *	@destructor: Destruct function
205  *	@nfmark: Can be used for communication between hooks
206  *	@nfct: Associated connection, if any
207  *	@ipvs_property: skbuff is owned by ipvs
208  *	@nfctinfo: Relationship of this skb to the connection
209  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
210  *	@tc_index: Traffic control index
211  *	@tc_verd: traffic control verdict
212  */
213 
214 struct sk_buff {
215 	/* These two members must be first. */
216 	struct sk_buff		*next;
217 	struct sk_buff		*prev;
218 
219 	struct sock		*sk;
220 	struct skb_timeval	tstamp;
221 	struct net_device	*dev;
222 	struct net_device	*input_dev;
223 
224 	union {
225 		struct tcphdr	*th;
226 		struct udphdr	*uh;
227 		struct icmphdr	*icmph;
228 		struct igmphdr	*igmph;
229 		struct iphdr	*ipiph;
230 		struct ipv6hdr	*ipv6h;
231 		unsigned char	*raw;
232 	} h;
233 
234 	union {
235 		struct iphdr	*iph;
236 		struct ipv6hdr	*ipv6h;
237 		struct arphdr	*arph;
238 		unsigned char	*raw;
239 	} nh;
240 
241 	union {
242 	  	unsigned char 	*raw;
243 	} mac;
244 
245 	struct  dst_entry	*dst;
246 	struct	sec_path	*sp;
247 
248 	/*
249 	 * This is the control buffer. It is free to use for every
250 	 * layer. Please put your private variables there. If you
251 	 * want to keep them across layers you have to do a skb_clone()
252 	 * first. This is owned by whoever has the skb queued ATM.
253 	 */
254 	char			cb[40];
255 
256 	unsigned int		len,
257 				data_len,
258 				mac_len,
259 				csum;
260 	__u32			priority;
261 	__u8			local_df:1,
262 				cloned:1,
263 				ip_summed:2,
264 				nohdr:1,
265 				nfctinfo:3;
266 	__u8			pkt_type:3,
267 				fclone:2;
268 	__be16			protocol;
269 
270 	void			(*destructor)(struct sk_buff *skb);
271 #ifdef CONFIG_NETFILTER
272 	__u32			nfmark;
273 	struct nf_conntrack	*nfct;
274 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
275 	__u8			ipvs_property:1;
276 #endif
277 #ifdef CONFIG_BRIDGE_NETFILTER
278 	struct nf_bridge_info	*nf_bridge;
279 #endif
280 #endif /* CONFIG_NETFILTER */
281 #ifdef CONFIG_NET_SCHED
282 	__u16			tc_index;	/* traffic control index */
283 #ifdef CONFIG_NET_CLS_ACT
284 	__u16			tc_verd;	/* traffic control verdict */
285 #endif
286 #endif
287 
288 
289 	/* These elements must be at the end, see alloc_skb() for details.  */
290 	unsigned int		truesize;
291 	atomic_t		users;
292 	unsigned char		*head,
293 				*data,
294 				*tail,
295 				*end;
296 };
297 
298 #ifdef __KERNEL__
299 /*
300  *	Handling routines are only of interest to the kernel
301  */
302 #include <linux/slab.h>
303 
304 #include <asm/system.h>
305 
306 extern void	       __kfree_skb(struct sk_buff *skb);
307 extern struct sk_buff *__alloc_skb(unsigned int size,
308 				   gfp_t priority, int fclone);
309 static inline struct sk_buff *alloc_skb(unsigned int size,
310 					gfp_t priority)
311 {
312 	return __alloc_skb(size, priority, 0);
313 }
314 
315 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
316 					       gfp_t priority)
317 {
318 	return __alloc_skb(size, priority, 1);
319 }
320 
321 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
322 					    unsigned int size,
323 					    gfp_t priority);
324 extern void	       kfree_skbmem(struct sk_buff *skb);
325 extern struct sk_buff *skb_clone(struct sk_buff *skb,
326 				 gfp_t priority);
327 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
328 				gfp_t priority);
329 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
330 				 gfp_t gfp_mask);
331 extern int	       pskb_expand_head(struct sk_buff *skb,
332 					int nhead, int ntail,
333 					gfp_t gfp_mask);
334 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
335 					    unsigned int headroom);
336 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
337 				       int newheadroom, int newtailroom,
338 				       gfp_t priority);
339 extern struct sk_buff *		skb_pad(struct sk_buff *skb, int pad);
340 #define dev_kfree_skb(a)	kfree_skb(a)
341 extern void	      skb_over_panic(struct sk_buff *skb, int len,
342 				     void *here);
343 extern void	      skb_under_panic(struct sk_buff *skb, int len,
344 				      void *here);
345 
346 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
347 			int getfrag(void *from, char *to, int offset,
348 			int len,int odd, struct sk_buff *skb),
349 			void *from, int length);
350 
351 struct skb_seq_state
352 {
353 	__u32		lower_offset;
354 	__u32		upper_offset;
355 	__u32		frag_idx;
356 	__u32		stepped_offset;
357 	struct sk_buff	*root_skb;
358 	struct sk_buff	*cur_skb;
359 	__u8		*frag_data;
360 };
361 
362 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
363 					   unsigned int from, unsigned int to,
364 					   struct skb_seq_state *st);
365 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
366 				   struct skb_seq_state *st);
367 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
368 
369 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
370 				    unsigned int to, struct ts_config *config,
371 				    struct ts_state *state);
372 
373 /* Internal */
374 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
375 
376 /**
377  *	skb_queue_empty - check if a queue is empty
378  *	@list: queue head
379  *
380  *	Returns true if the queue is empty, false otherwise.
381  */
382 static inline int skb_queue_empty(const struct sk_buff_head *list)
383 {
384 	return list->next == (struct sk_buff *)list;
385 }
386 
387 /**
388  *	skb_get - reference buffer
389  *	@skb: buffer to reference
390  *
391  *	Makes another reference to a socket buffer and returns a pointer
392  *	to the buffer.
393  */
394 static inline struct sk_buff *skb_get(struct sk_buff *skb)
395 {
396 	atomic_inc(&skb->users);
397 	return skb;
398 }
399 
400 /*
401  * If users == 1, we are the only owner and are can avoid redundant
402  * atomic change.
403  */
404 
405 /**
406  *	kfree_skb - free an sk_buff
407  *	@skb: buffer to free
408  *
409  *	Drop a reference to the buffer and free it if the usage count has
410  *	hit zero.
411  */
412 static inline void kfree_skb(struct sk_buff *skb)
413 {
414 	if (likely(atomic_read(&skb->users) == 1))
415 		smp_rmb();
416 	else if (likely(!atomic_dec_and_test(&skb->users)))
417 		return;
418 	__kfree_skb(skb);
419 }
420 
421 /**
422  *	skb_cloned - is the buffer a clone
423  *	@skb: buffer to check
424  *
425  *	Returns true if the buffer was generated with skb_clone() and is
426  *	one of multiple shared copies of the buffer. Cloned buffers are
427  *	shared data so must not be written to under normal circumstances.
428  */
429 static inline int skb_cloned(const struct sk_buff *skb)
430 {
431 	return skb->cloned &&
432 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
433 }
434 
435 /**
436  *	skb_header_cloned - is the header a clone
437  *	@skb: buffer to check
438  *
439  *	Returns true if modifying the header part of the buffer requires
440  *	the data to be copied.
441  */
442 static inline int skb_header_cloned(const struct sk_buff *skb)
443 {
444 	int dataref;
445 
446 	if (!skb->cloned)
447 		return 0;
448 
449 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
450 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
451 	return dataref != 1;
452 }
453 
454 /**
455  *	skb_header_release - release reference to header
456  *	@skb: buffer to operate on
457  *
458  *	Drop a reference to the header part of the buffer.  This is done
459  *	by acquiring a payload reference.  You must not read from the header
460  *	part of skb->data after this.
461  */
462 static inline void skb_header_release(struct sk_buff *skb)
463 {
464 	BUG_ON(skb->nohdr);
465 	skb->nohdr = 1;
466 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
467 }
468 
469 /**
470  *	skb_shared - is the buffer shared
471  *	@skb: buffer to check
472  *
473  *	Returns true if more than one person has a reference to this
474  *	buffer.
475  */
476 static inline int skb_shared(const struct sk_buff *skb)
477 {
478 	return atomic_read(&skb->users) != 1;
479 }
480 
481 /**
482  *	skb_share_check - check if buffer is shared and if so clone it
483  *	@skb: buffer to check
484  *	@pri: priority for memory allocation
485  *
486  *	If the buffer is shared the buffer is cloned and the old copy
487  *	drops a reference. A new clone with a single reference is returned.
488  *	If the buffer is not shared the original buffer is returned. When
489  *	being called from interrupt status or with spinlocks held pri must
490  *	be GFP_ATOMIC.
491  *
492  *	NULL is returned on a memory allocation failure.
493  */
494 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
495 					      gfp_t pri)
496 {
497 	might_sleep_if(pri & __GFP_WAIT);
498 	if (skb_shared(skb)) {
499 		struct sk_buff *nskb = skb_clone(skb, pri);
500 		kfree_skb(skb);
501 		skb = nskb;
502 	}
503 	return skb;
504 }
505 
506 /*
507  *	Copy shared buffers into a new sk_buff. We effectively do COW on
508  *	packets to handle cases where we have a local reader and forward
509  *	and a couple of other messy ones. The normal one is tcpdumping
510  *	a packet thats being forwarded.
511  */
512 
513 /**
514  *	skb_unshare - make a copy of a shared buffer
515  *	@skb: buffer to check
516  *	@pri: priority for memory allocation
517  *
518  *	If the socket buffer is a clone then this function creates a new
519  *	copy of the data, drops a reference count on the old copy and returns
520  *	the new copy with the reference count at 1. If the buffer is not a clone
521  *	the original buffer is returned. When called with a spinlock held or
522  *	from interrupt state @pri must be %GFP_ATOMIC
523  *
524  *	%NULL is returned on a memory allocation failure.
525  */
526 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
527 					  gfp_t pri)
528 {
529 	might_sleep_if(pri & __GFP_WAIT);
530 	if (skb_cloned(skb)) {
531 		struct sk_buff *nskb = skb_copy(skb, pri);
532 		kfree_skb(skb);	/* Free our shared copy */
533 		skb = nskb;
534 	}
535 	return skb;
536 }
537 
538 /**
539  *	skb_peek
540  *	@list_: list to peek at
541  *
542  *	Peek an &sk_buff. Unlike most other operations you _MUST_
543  *	be careful with this one. A peek leaves the buffer on the
544  *	list and someone else may run off with it. You must hold
545  *	the appropriate locks or have a private queue to do this.
546  *
547  *	Returns %NULL for an empty list or a pointer to the head element.
548  *	The reference count is not incremented and the reference is therefore
549  *	volatile. Use with caution.
550  */
551 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
552 {
553 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
554 	if (list == (struct sk_buff *)list_)
555 		list = NULL;
556 	return list;
557 }
558 
559 /**
560  *	skb_peek_tail
561  *	@list_: list to peek at
562  *
563  *	Peek an &sk_buff. Unlike most other operations you _MUST_
564  *	be careful with this one. A peek leaves the buffer on the
565  *	list and someone else may run off with it. You must hold
566  *	the appropriate locks or have a private queue to do this.
567  *
568  *	Returns %NULL for an empty list or a pointer to the tail element.
569  *	The reference count is not incremented and the reference is therefore
570  *	volatile. Use with caution.
571  */
572 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
573 {
574 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
575 	if (list == (struct sk_buff *)list_)
576 		list = NULL;
577 	return list;
578 }
579 
580 /**
581  *	skb_queue_len	- get queue length
582  *	@list_: list to measure
583  *
584  *	Return the length of an &sk_buff queue.
585  */
586 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
587 {
588 	return list_->qlen;
589 }
590 
591 static inline void skb_queue_head_init(struct sk_buff_head *list)
592 {
593 	spin_lock_init(&list->lock);
594 	list->prev = list->next = (struct sk_buff *)list;
595 	list->qlen = 0;
596 }
597 
598 /*
599  *	Insert an sk_buff at the start of a list.
600  *
601  *	The "__skb_xxxx()" functions are the non-atomic ones that
602  *	can only be called with interrupts disabled.
603  */
604 
605 /**
606  *	__skb_queue_head - queue a buffer at the list head
607  *	@list: list to use
608  *	@newsk: buffer to queue
609  *
610  *	Queue a buffer at the start of a list. This function takes no locks
611  *	and you must therefore hold required locks before calling it.
612  *
613  *	A buffer cannot be placed on two lists at the same time.
614  */
615 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
616 static inline void __skb_queue_head(struct sk_buff_head *list,
617 				    struct sk_buff *newsk)
618 {
619 	struct sk_buff *prev, *next;
620 
621 	list->qlen++;
622 	prev = (struct sk_buff *)list;
623 	next = prev->next;
624 	newsk->next = next;
625 	newsk->prev = prev;
626 	next->prev  = prev->next = newsk;
627 }
628 
629 /**
630  *	__skb_queue_tail - queue a buffer at the list tail
631  *	@list: list to use
632  *	@newsk: buffer to queue
633  *
634  *	Queue a buffer at the end of a list. This function takes no locks
635  *	and you must therefore hold required locks before calling it.
636  *
637  *	A buffer cannot be placed on two lists at the same time.
638  */
639 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
640 static inline void __skb_queue_tail(struct sk_buff_head *list,
641 				   struct sk_buff *newsk)
642 {
643 	struct sk_buff *prev, *next;
644 
645 	list->qlen++;
646 	next = (struct sk_buff *)list;
647 	prev = next->prev;
648 	newsk->next = next;
649 	newsk->prev = prev;
650 	next->prev  = prev->next = newsk;
651 }
652 
653 
654 /**
655  *	__skb_dequeue - remove from the head of the queue
656  *	@list: list to dequeue from
657  *
658  *	Remove the head of the list. This function does not take any locks
659  *	so must be used with appropriate locks held only. The head item is
660  *	returned or %NULL if the list is empty.
661  */
662 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
663 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
664 {
665 	struct sk_buff *next, *prev, *result;
666 
667 	prev = (struct sk_buff *) list;
668 	next = prev->next;
669 	result = NULL;
670 	if (next != prev) {
671 		result	     = next;
672 		next	     = next->next;
673 		list->qlen--;
674 		next->prev   = prev;
675 		prev->next   = next;
676 		result->next = result->prev = NULL;
677 	}
678 	return result;
679 }
680 
681 
682 /*
683  *	Insert a packet on a list.
684  */
685 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
686 static inline void __skb_insert(struct sk_buff *newsk,
687 				struct sk_buff *prev, struct sk_buff *next,
688 				struct sk_buff_head *list)
689 {
690 	newsk->next = next;
691 	newsk->prev = prev;
692 	next->prev  = prev->next = newsk;
693 	list->qlen++;
694 }
695 
696 /*
697  *	Place a packet after a given packet in a list.
698  */
699 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
700 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
701 {
702 	__skb_insert(newsk, old, old->next, list);
703 }
704 
705 /*
706  * remove sk_buff from list. _Must_ be called atomically, and with
707  * the list known..
708  */
709 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
710 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
711 {
712 	struct sk_buff *next, *prev;
713 
714 	list->qlen--;
715 	next	   = skb->next;
716 	prev	   = skb->prev;
717 	skb->next  = skb->prev = NULL;
718 	next->prev = prev;
719 	prev->next = next;
720 }
721 
722 
723 /* XXX: more streamlined implementation */
724 
725 /**
726  *	__skb_dequeue_tail - remove from the tail of the queue
727  *	@list: list to dequeue from
728  *
729  *	Remove the tail of the list. This function does not take any locks
730  *	so must be used with appropriate locks held only. The tail item is
731  *	returned or %NULL if the list is empty.
732  */
733 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
734 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
735 {
736 	struct sk_buff *skb = skb_peek_tail(list);
737 	if (skb)
738 		__skb_unlink(skb, list);
739 	return skb;
740 }
741 
742 
743 static inline int skb_is_nonlinear(const struct sk_buff *skb)
744 {
745 	return skb->data_len;
746 }
747 
748 static inline unsigned int skb_headlen(const struct sk_buff *skb)
749 {
750 	return skb->len - skb->data_len;
751 }
752 
753 static inline int skb_pagelen(const struct sk_buff *skb)
754 {
755 	int i, len = 0;
756 
757 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
758 		len += skb_shinfo(skb)->frags[i].size;
759 	return len + skb_headlen(skb);
760 }
761 
762 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
763 				      struct page *page, int off, int size)
764 {
765 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
766 
767 	frag->page		  = page;
768 	frag->page_offset	  = off;
769 	frag->size		  = size;
770 	skb_shinfo(skb)->nr_frags = i + 1;
771 }
772 
773 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
774 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
775 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
776 
777 /*
778  *	Add data to an sk_buff
779  */
780 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
781 {
782 	unsigned char *tmp = skb->tail;
783 	SKB_LINEAR_ASSERT(skb);
784 	skb->tail += len;
785 	skb->len  += len;
786 	return tmp;
787 }
788 
789 /**
790  *	skb_put - add data to a buffer
791  *	@skb: buffer to use
792  *	@len: amount of data to add
793  *
794  *	This function extends the used data area of the buffer. If this would
795  *	exceed the total buffer size the kernel will panic. A pointer to the
796  *	first byte of the extra data is returned.
797  */
798 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
799 {
800 	unsigned char *tmp = skb->tail;
801 	SKB_LINEAR_ASSERT(skb);
802 	skb->tail += len;
803 	skb->len  += len;
804 	if (unlikely(skb->tail>skb->end))
805 		skb_over_panic(skb, len, current_text_addr());
806 	return tmp;
807 }
808 
809 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
810 {
811 	skb->data -= len;
812 	skb->len  += len;
813 	return skb->data;
814 }
815 
816 /**
817  *	skb_push - add data to the start of a buffer
818  *	@skb: buffer to use
819  *	@len: amount of data to add
820  *
821  *	This function extends the used data area of the buffer at the buffer
822  *	start. If this would exceed the total buffer headroom the kernel will
823  *	panic. A pointer to the first byte of the extra data is returned.
824  */
825 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
826 {
827 	skb->data -= len;
828 	skb->len  += len;
829 	if (unlikely(skb->data<skb->head))
830 		skb_under_panic(skb, len, current_text_addr());
831 	return skb->data;
832 }
833 
834 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
835 {
836 	skb->len -= len;
837 	BUG_ON(skb->len < skb->data_len);
838 	return skb->data += len;
839 }
840 
841 /**
842  *	skb_pull - remove data from the start of a buffer
843  *	@skb: buffer to use
844  *	@len: amount of data to remove
845  *
846  *	This function removes data from the start of a buffer, returning
847  *	the memory to the headroom. A pointer to the next data in the buffer
848  *	is returned. Once the data has been pulled future pushes will overwrite
849  *	the old data.
850  */
851 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
852 {
853 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
854 }
855 
856 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
857 
858 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
859 {
860 	if (len > skb_headlen(skb) &&
861 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
862 		return NULL;
863 	skb->len -= len;
864 	return skb->data += len;
865 }
866 
867 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
868 {
869 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
870 }
871 
872 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
873 {
874 	if (likely(len <= skb_headlen(skb)))
875 		return 1;
876 	if (unlikely(len > skb->len))
877 		return 0;
878 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
879 }
880 
881 /**
882  *	skb_headroom - bytes at buffer head
883  *	@skb: buffer to check
884  *
885  *	Return the number of bytes of free space at the head of an &sk_buff.
886  */
887 static inline int skb_headroom(const struct sk_buff *skb)
888 {
889 	return skb->data - skb->head;
890 }
891 
892 /**
893  *	skb_tailroom - bytes at buffer end
894  *	@skb: buffer to check
895  *
896  *	Return the number of bytes of free space at the tail of an sk_buff
897  */
898 static inline int skb_tailroom(const struct sk_buff *skb)
899 {
900 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
901 }
902 
903 /**
904  *	skb_reserve - adjust headroom
905  *	@skb: buffer to alter
906  *	@len: bytes to move
907  *
908  *	Increase the headroom of an empty &sk_buff by reducing the tail
909  *	room. This is only allowed for an empty buffer.
910  */
911 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
912 {
913 	skb->data += len;
914 	skb->tail += len;
915 }
916 
917 /*
918  * CPUs often take a performance hit when accessing unaligned memory
919  * locations. The actual performance hit varies, it can be small if the
920  * hardware handles it or large if we have to take an exception and fix it
921  * in software.
922  *
923  * Since an ethernet header is 14 bytes network drivers often end up with
924  * the IP header at an unaligned offset. The IP header can be aligned by
925  * shifting the start of the packet by 2 bytes. Drivers should do this
926  * with:
927  *
928  * skb_reserve(NET_IP_ALIGN);
929  *
930  * The downside to this alignment of the IP header is that the DMA is now
931  * unaligned. On some architectures the cost of an unaligned DMA is high
932  * and this cost outweighs the gains made by aligning the IP header.
933  *
934  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
935  * to be overridden.
936  */
937 #ifndef NET_IP_ALIGN
938 #define NET_IP_ALIGN	2
939 #endif
940 
941 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
942 
943 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
944 {
945 	if (!skb->data_len) {
946 		skb->len  = len;
947 		skb->tail = skb->data + len;
948 	} else
949 		___pskb_trim(skb, len, 0);
950 }
951 
952 /**
953  *	skb_trim - remove end from a buffer
954  *	@skb: buffer to alter
955  *	@len: new length
956  *
957  *	Cut the length of a buffer down by removing data from the tail. If
958  *	the buffer is already under the length specified it is not modified.
959  */
960 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
961 {
962 	if (skb->len > len)
963 		__skb_trim(skb, len);
964 }
965 
966 
967 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
968 {
969 	if (!skb->data_len) {
970 		skb->len  = len;
971 		skb->tail = skb->data+len;
972 		return 0;
973 	}
974 	return ___pskb_trim(skb, len, 1);
975 }
976 
977 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
978 {
979 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
980 }
981 
982 /**
983  *	skb_orphan - orphan a buffer
984  *	@skb: buffer to orphan
985  *
986  *	If a buffer currently has an owner then we call the owner's
987  *	destructor function and make the @skb unowned. The buffer continues
988  *	to exist but is no longer charged to its former owner.
989  */
990 static inline void skb_orphan(struct sk_buff *skb)
991 {
992 	if (skb->destructor)
993 		skb->destructor(skb);
994 	skb->destructor = NULL;
995 	skb->sk		= NULL;
996 }
997 
998 /**
999  *	__skb_queue_purge - empty a list
1000  *	@list: list to empty
1001  *
1002  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1003  *	the list and one reference dropped. This function does not take the
1004  *	list lock and the caller must hold the relevant locks to use it.
1005  */
1006 extern void skb_queue_purge(struct sk_buff_head *list);
1007 static inline void __skb_queue_purge(struct sk_buff_head *list)
1008 {
1009 	struct sk_buff *skb;
1010 	while ((skb = __skb_dequeue(list)) != NULL)
1011 		kfree_skb(skb);
1012 }
1013 
1014 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1015 /**
1016  *	__dev_alloc_skb - allocate an skbuff for sending
1017  *	@length: length to allocate
1018  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1019  *
1020  *	Allocate a new &sk_buff and assign it a usage count of one. The
1021  *	buffer has unspecified headroom built in. Users should allocate
1022  *	the headroom they think they need without accounting for the
1023  *	built in space. The built in space is used for optimisations.
1024  *
1025  *	%NULL is returned in there is no free memory.
1026  */
1027 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1028 					      gfp_t gfp_mask)
1029 {
1030 	struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1031 	if (likely(skb))
1032 		skb_reserve(skb, 16);
1033 	return skb;
1034 }
1035 #else
1036 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1037 #endif
1038 
1039 /**
1040  *	dev_alloc_skb - allocate an skbuff for sending
1041  *	@length: length to allocate
1042  *
1043  *	Allocate a new &sk_buff and assign it a usage count of one. The
1044  *	buffer has unspecified headroom built in. Users should allocate
1045  *	the headroom they think they need without accounting for the
1046  *	built in space. The built in space is used for optimisations.
1047  *
1048  *	%NULL is returned in there is no free memory. Although this function
1049  *	allocates memory it can be called from an interrupt.
1050  */
1051 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1052 {
1053 	return __dev_alloc_skb(length, GFP_ATOMIC);
1054 }
1055 
1056 /**
1057  *	skb_cow - copy header of skb when it is required
1058  *	@skb: buffer to cow
1059  *	@headroom: needed headroom
1060  *
1061  *	If the skb passed lacks sufficient headroom or its data part
1062  *	is shared, data is reallocated. If reallocation fails, an error
1063  *	is returned and original skb is not changed.
1064  *
1065  *	The result is skb with writable area skb->head...skb->tail
1066  *	and at least @headroom of space at head.
1067  */
1068 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1069 {
1070 	int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1071 
1072 	if (delta < 0)
1073 		delta = 0;
1074 
1075 	if (delta || skb_cloned(skb))
1076 		return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1077 	return 0;
1078 }
1079 
1080 /**
1081  *	skb_padto	- pad an skbuff up to a minimal size
1082  *	@skb: buffer to pad
1083  *	@len: minimal length
1084  *
1085  *	Pads up a buffer to ensure the trailing bytes exist and are
1086  *	blanked. If the buffer already contains sufficient data it
1087  *	is untouched. Returns the buffer, which may be a replacement
1088  *	for the original, or NULL for out of memory - in which case
1089  *	the original buffer is still freed.
1090  */
1091 
1092 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1093 {
1094 	unsigned int size = skb->len;
1095 	if (likely(size >= len))
1096 		return skb;
1097 	return skb_pad(skb, len-size);
1098 }
1099 
1100 static inline int skb_add_data(struct sk_buff *skb,
1101 			       char __user *from, int copy)
1102 {
1103 	const int off = skb->len;
1104 
1105 	if (skb->ip_summed == CHECKSUM_NONE) {
1106 		int err = 0;
1107 		unsigned int csum = csum_and_copy_from_user(from,
1108 							    skb_put(skb, copy),
1109 							    copy, 0, &err);
1110 		if (!err) {
1111 			skb->csum = csum_block_add(skb->csum, csum, off);
1112 			return 0;
1113 		}
1114 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1115 		return 0;
1116 
1117 	__skb_trim(skb, off);
1118 	return -EFAULT;
1119 }
1120 
1121 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1122 				   struct page *page, int off)
1123 {
1124 	if (i) {
1125 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1126 
1127 		return page == frag->page &&
1128 		       off == frag->page_offset + frag->size;
1129 	}
1130 	return 0;
1131 }
1132 
1133 /**
1134  *	skb_linearize - convert paged skb to linear one
1135  *	@skb: buffer to linarize
1136  *	@gfp: allocation mode
1137  *
1138  *	If there is no free memory -ENOMEM is returned, otherwise zero
1139  *	is returned and the old skb data released.
1140  */
1141 extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp);
1142 static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp)
1143 {
1144 	return __skb_linearize(skb, gfp);
1145 }
1146 
1147 /**
1148  *	skb_postpull_rcsum - update checksum for received skb after pull
1149  *	@skb: buffer to update
1150  *	@start: start of data before pull
1151  *	@len: length of data pulled
1152  *
1153  *	After doing a pull on a received packet, you need to call this to
1154  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1155  *	so that it can be recomputed from scratch.
1156  */
1157 
1158 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1159 					 const void *start, int len)
1160 {
1161 	if (skb->ip_summed == CHECKSUM_HW)
1162 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1163 }
1164 
1165 /**
1166  *	pskb_trim_rcsum - trim received skb and update checksum
1167  *	@skb: buffer to trim
1168  *	@len: new length
1169  *
1170  *	This is exactly the same as pskb_trim except that it ensures the
1171  *	checksum of received packets are still valid after the operation.
1172  */
1173 
1174 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1175 {
1176 	if (likely(len >= skb->len))
1177 		return 0;
1178 	if (skb->ip_summed == CHECKSUM_HW)
1179 		skb->ip_summed = CHECKSUM_NONE;
1180 	return __pskb_trim(skb, len);
1181 }
1182 
1183 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1184 {
1185 #ifdef CONFIG_HIGHMEM
1186 	BUG_ON(in_irq());
1187 
1188 	local_bh_disable();
1189 #endif
1190 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1191 }
1192 
1193 static inline void kunmap_skb_frag(void *vaddr)
1194 {
1195 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1196 #ifdef CONFIG_HIGHMEM
1197 	local_bh_enable();
1198 #endif
1199 }
1200 
1201 #define skb_queue_walk(queue, skb) \
1202 		for (skb = (queue)->next;					\
1203 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1204 		     skb = skb->next)
1205 
1206 
1207 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1208 					 int noblock, int *err);
1209 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1210 				     struct poll_table_struct *wait);
1211 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1212 					       int offset, struct iovec *to,
1213 					       int size);
1214 extern int	       skb_copy_and_csum_datagram_iovec(const
1215 							struct sk_buff *skb,
1216 							int hlen,
1217 							struct iovec *iov);
1218 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1219 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1220 				    int len, unsigned int csum);
1221 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1222 				     void *to, int len);
1223 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1224 				      void *from, int len);
1225 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1226 					      int offset, u8 *to, int len,
1227 					      unsigned int csum);
1228 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1229 extern void	       skb_split(struct sk_buff *skb,
1230 				 struct sk_buff *skb1, const u32 len);
1231 
1232 extern void	       skb_release_data(struct sk_buff *skb);
1233 
1234 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1235 				       int len, void *buffer)
1236 {
1237 	int hlen = skb_headlen(skb);
1238 
1239 	if (hlen - offset >= len)
1240 		return skb->data + offset;
1241 
1242 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1243 		return NULL;
1244 
1245 	return buffer;
1246 }
1247 
1248 extern void skb_init(void);
1249 extern void skb_add_mtu(int mtu);
1250 
1251 /**
1252  *	skb_get_timestamp - get timestamp from a skb
1253  *	@skb: skb to get stamp from
1254  *	@stamp: pointer to struct timeval to store stamp in
1255  *
1256  *	Timestamps are stored in the skb as offsets to a base timestamp.
1257  *	This function converts the offset back to a struct timeval and stores
1258  *	it in stamp.
1259  */
1260 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1261 {
1262 	stamp->tv_sec  = skb->tstamp.off_sec;
1263 	stamp->tv_usec = skb->tstamp.off_usec;
1264 }
1265 
1266 /**
1267  * 	skb_set_timestamp - set timestamp of a skb
1268  *	@skb: skb to set stamp of
1269  *	@stamp: pointer to struct timeval to get stamp from
1270  *
1271  *	Timestamps are stored in the skb as offsets to a base timestamp.
1272  *	This function converts a struct timeval to an offset and stores
1273  *	it in the skb.
1274  */
1275 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1276 {
1277 	skb->tstamp.off_sec  = stamp->tv_sec;
1278 	skb->tstamp.off_usec = stamp->tv_usec;
1279 }
1280 
1281 extern void __net_timestamp(struct sk_buff *skb);
1282 
1283 #ifdef CONFIG_NETFILTER
1284 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1285 {
1286 	if (nfct && atomic_dec_and_test(&nfct->use))
1287 		nfct->destroy(nfct);
1288 }
1289 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1290 {
1291 	if (nfct)
1292 		atomic_inc(&nfct->use);
1293 }
1294 static inline void nf_reset(struct sk_buff *skb)
1295 {
1296 	nf_conntrack_put(skb->nfct);
1297 	skb->nfct = NULL;
1298 }
1299 
1300 #ifdef CONFIG_BRIDGE_NETFILTER
1301 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1302 {
1303 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1304 		kfree(nf_bridge);
1305 }
1306 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1307 {
1308 	if (nf_bridge)
1309 		atomic_inc(&nf_bridge->use);
1310 }
1311 #endif /* CONFIG_BRIDGE_NETFILTER */
1312 #else /* CONFIG_NETFILTER */
1313 static inline void nf_reset(struct sk_buff *skb) {}
1314 #endif /* CONFIG_NETFILTER */
1315 
1316 #endif	/* __KERNEL__ */
1317 #endif	/* _LINUX_SKBUFF_H */
1318