xref: /linux-6.15/include/linux/skbuff.h (revision 4e485d06)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
471 
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 					struct ubuf_info *uarg);
475 
476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477 {
478 	refcount_inc(&uarg->refcnt);
479 }
480 
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483 
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485 
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 			     struct msghdr *msg, int len,
488 			     struct ubuf_info *uarg);
489 
490 /* This data is invariant across clones and lives at
491  * the end of the header data, ie. at skb->end.
492  */
493 struct skb_shared_info {
494 	__u8		__unused;
495 	__u8		meta_len;
496 	__u8		nr_frags;
497 	__u8		tx_flags;
498 	unsigned short	gso_size;
499 	/* Warning: this field is not always filled in (UFO)! */
500 	unsigned short	gso_segs;
501 	struct sk_buff	*frag_list;
502 	struct skb_shared_hwtstamps hwtstamps;
503 	unsigned int	gso_type;
504 	u32		tskey;
505 
506 	/*
507 	 * Warning : all fields before dataref are cleared in __alloc_skb()
508 	 */
509 	atomic_t	dataref;
510 
511 	/* Intermediate layers must ensure that destructor_arg
512 	 * remains valid until skb destructor */
513 	void *		destructor_arg;
514 
515 	/* must be last field, see pskb_expand_head() */
516 	skb_frag_t	frags[MAX_SKB_FRAGS];
517 };
518 
519 /* We divide dataref into two halves.  The higher 16 bits hold references
520  * to the payload part of skb->data.  The lower 16 bits hold references to
521  * the entire skb->data.  A clone of a headerless skb holds the length of
522  * the header in skb->hdr_len.
523  *
524  * All users must obey the rule that the skb->data reference count must be
525  * greater than or equal to the payload reference count.
526  *
527  * Holding a reference to the payload part means that the user does not
528  * care about modifications to the header part of skb->data.
529  */
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532 
533 
534 enum {
535 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
536 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
537 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
538 };
539 
540 enum {
541 	SKB_GSO_TCPV4 = 1 << 0,
542 
543 	/* This indicates the skb is from an untrusted source. */
544 	SKB_GSO_DODGY = 1 << 1,
545 
546 	/* This indicates the tcp segment has CWR set. */
547 	SKB_GSO_TCP_ECN = 1 << 2,
548 
549 	SKB_GSO_TCP_FIXEDID = 1 << 3,
550 
551 	SKB_GSO_TCPV6 = 1 << 4,
552 
553 	SKB_GSO_FCOE = 1 << 5,
554 
555 	SKB_GSO_GRE = 1 << 6,
556 
557 	SKB_GSO_GRE_CSUM = 1 << 7,
558 
559 	SKB_GSO_IPXIP4 = 1 << 8,
560 
561 	SKB_GSO_IPXIP6 = 1 << 9,
562 
563 	SKB_GSO_UDP_TUNNEL = 1 << 10,
564 
565 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566 
567 	SKB_GSO_PARTIAL = 1 << 12,
568 
569 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570 
571 	SKB_GSO_SCTP = 1 << 14,
572 
573 	SKB_GSO_ESP = 1 << 15,
574 
575 	SKB_GSO_UDP = 1 << 16,
576 
577 	SKB_GSO_UDP_L4 = 1 << 17,
578 };
579 
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
582 #endif
583 
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
586 #else
587 typedef unsigned char *sk_buff_data_t;
588 #endif
589 
590 /**
591  *	struct sk_buff - socket buffer
592  *	@next: Next buffer in list
593  *	@prev: Previous buffer in list
594  *	@tstamp: Time we arrived/left
595  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
596  *	@sk: Socket we are owned by
597  *	@dev: Device we arrived on/are leaving by
598  *	@cb: Control buffer. Free for use by every layer. Put private vars here
599  *	@_skb_refdst: destination entry (with norefcount bit)
600  *	@sp: the security path, used for xfrm
601  *	@len: Length of actual data
602  *	@data_len: Data length
603  *	@mac_len: Length of link layer header
604  *	@hdr_len: writable header length of cloned skb
605  *	@csum: Checksum (must include start/offset pair)
606  *	@csum_start: Offset from skb->head where checksumming should start
607  *	@csum_offset: Offset from csum_start where checksum should be stored
608  *	@priority: Packet queueing priority
609  *	@ignore_df: allow local fragmentation
610  *	@cloned: Head may be cloned (check refcnt to be sure)
611  *	@ip_summed: Driver fed us an IP checksum
612  *	@nohdr: Payload reference only, must not modify header
613  *	@pkt_type: Packet class
614  *	@fclone: skbuff clone status
615  *	@ipvs_property: skbuff is owned by ipvs
616  *	@tc_skip_classify: do not classify packet. set by IFB device
617  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
618  *	@tc_redirected: packet was redirected by a tc action
619  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620  *	@peeked: this packet has been seen already, so stats have been
621  *		done for it, don't do them again
622  *	@nf_trace: netfilter packet trace flag
623  *	@protocol: Packet protocol from driver
624  *	@destructor: Destruct function
625  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626  *	@_nfct: Associated connection, if any (with nfctinfo bits)
627  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628  *	@skb_iif: ifindex of device we arrived on
629  *	@tc_index: Traffic control index
630  *	@hash: the packet hash
631  *	@queue_mapping: Queue mapping for multiqueue devices
632  *	@xmit_more: More SKBs are pending for this queue
633  *	@ndisc_nodetype: router type (from link layer)
634  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
635  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
636  *		ports.
637  *	@sw_hash: indicates hash was computed in software stack
638  *	@wifi_acked_valid: wifi_acked was set
639  *	@wifi_acked: whether frame was acked on wifi or not
640  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
641  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
642  *	@dst_pending_confirm: need to confirm neighbour
643   *	@napi_id: id of the NAPI struct this skb came from
644  *	@secmark: security marking
645  *	@mark: Generic packet mark
646  *	@vlan_proto: vlan encapsulation protocol
647  *	@vlan_tci: vlan tag control information
648  *	@inner_protocol: Protocol (encapsulation)
649  *	@inner_transport_header: Inner transport layer header (encapsulation)
650  *	@inner_network_header: Network layer header (encapsulation)
651  *	@inner_mac_header: Link layer header (encapsulation)
652  *	@transport_header: Transport layer header
653  *	@network_header: Network layer header
654  *	@mac_header: Link layer header
655  *	@tail: Tail pointer
656  *	@end: End pointer
657  *	@head: Head of buffer
658  *	@data: Data head pointer
659  *	@truesize: Buffer size
660  *	@users: User count - see {datagram,tcp}.c
661  */
662 
663 struct sk_buff {
664 	union {
665 		struct {
666 			/* These two members must be first. */
667 			struct sk_buff		*next;
668 			struct sk_buff		*prev;
669 
670 			union {
671 				struct net_device	*dev;
672 				/* Some protocols might use this space to store information,
673 				 * while device pointer would be NULL.
674 				 * UDP receive path is one user.
675 				 */
676 				unsigned long		dev_scratch;
677 				int			ip_defrag_offset;
678 			};
679 		};
680 		struct rb_node		rbnode; /* used in netem & tcp stack */
681 		struct list_head	list;
682 	};
683 	struct sock		*sk;
684 
685 	union {
686 		ktime_t		tstamp;
687 		u64		skb_mstamp;
688 	};
689 	/*
690 	 * This is the control buffer. It is free to use for every
691 	 * layer. Please put your private variables there. If you
692 	 * want to keep them across layers you have to do a skb_clone()
693 	 * first. This is owned by whoever has the skb queued ATM.
694 	 */
695 	char			cb[48] __aligned(8);
696 
697 	union {
698 		struct {
699 			unsigned long	_skb_refdst;
700 			void		(*destructor)(struct sk_buff *skb);
701 		};
702 		struct list_head	tcp_tsorted_anchor;
703 	};
704 
705 #ifdef CONFIG_XFRM
706 	struct	sec_path	*sp;
707 #endif
708 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
709 	unsigned long		 _nfct;
710 #endif
711 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
712 	struct nf_bridge_info	*nf_bridge;
713 #endif
714 	unsigned int		len,
715 				data_len;
716 	__u16			mac_len,
717 				hdr_len;
718 
719 	/* Following fields are _not_ copied in __copy_skb_header()
720 	 * Note that queue_mapping is here mostly to fill a hole.
721 	 */
722 	__u16			queue_mapping;
723 
724 /* if you move cloned around you also must adapt those constants */
725 #ifdef __BIG_ENDIAN_BITFIELD
726 #define CLONED_MASK	(1 << 7)
727 #else
728 #define CLONED_MASK	1
729 #endif
730 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
731 
732 	__u8			__cloned_offset[0];
733 	__u8			cloned:1,
734 				nohdr:1,
735 				fclone:2,
736 				peeked:1,
737 				head_frag:1,
738 				xmit_more:1,
739 				__unused:1; /* one bit hole */
740 
741 	/* fields enclosed in headers_start/headers_end are copied
742 	 * using a single memcpy() in __copy_skb_header()
743 	 */
744 	/* private: */
745 	__u32			headers_start[0];
746 	/* public: */
747 
748 /* if you move pkt_type around you also must adapt those constants */
749 #ifdef __BIG_ENDIAN_BITFIELD
750 #define PKT_TYPE_MAX	(7 << 5)
751 #else
752 #define PKT_TYPE_MAX	7
753 #endif
754 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
755 
756 	__u8			__pkt_type_offset[0];
757 	__u8			pkt_type:3;
758 	__u8			pfmemalloc:1;
759 	__u8			ignore_df:1;
760 
761 	__u8			nf_trace:1;
762 	__u8			ip_summed:2;
763 	__u8			ooo_okay:1;
764 	__u8			l4_hash:1;
765 	__u8			sw_hash:1;
766 	__u8			wifi_acked_valid:1;
767 	__u8			wifi_acked:1;
768 
769 	__u8			no_fcs:1;
770 	/* Indicates the inner headers are valid in the skbuff. */
771 	__u8			encapsulation:1;
772 	__u8			encap_hdr_csum:1;
773 	__u8			csum_valid:1;
774 	__u8			csum_complete_sw:1;
775 	__u8			csum_level:2;
776 	__u8			csum_not_inet:1;
777 
778 	__u8			dst_pending_confirm:1;
779 #ifdef CONFIG_IPV6_NDISC_NODETYPE
780 	__u8			ndisc_nodetype:2;
781 #endif
782 	__u8			ipvs_property:1;
783 	__u8			inner_protocol_type:1;
784 	__u8			remcsum_offload:1;
785 #ifdef CONFIG_NET_SWITCHDEV
786 	__u8			offload_fwd_mark:1;
787 	__u8			offload_mr_fwd_mark:1;
788 #endif
789 #ifdef CONFIG_NET_CLS_ACT
790 	__u8			tc_skip_classify:1;
791 	__u8			tc_at_ingress:1;
792 	__u8			tc_redirected:1;
793 	__u8			tc_from_ingress:1;
794 #endif
795 
796 #ifdef CONFIG_NET_SCHED
797 	__u16			tc_index;	/* traffic control index */
798 #endif
799 
800 	union {
801 		__wsum		csum;
802 		struct {
803 			__u16	csum_start;
804 			__u16	csum_offset;
805 		};
806 	};
807 	__u32			priority;
808 	int			skb_iif;
809 	__u32			hash;
810 	__be16			vlan_proto;
811 	__u16			vlan_tci;
812 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
813 	union {
814 		unsigned int	napi_id;
815 		unsigned int	sender_cpu;
816 	};
817 #endif
818 #ifdef CONFIG_NETWORK_SECMARK
819 	__u32		secmark;
820 #endif
821 
822 	union {
823 		__u32		mark;
824 		__u32		reserved_tailroom;
825 	};
826 
827 	union {
828 		__be16		inner_protocol;
829 		__u8		inner_ipproto;
830 	};
831 
832 	__u16			inner_transport_header;
833 	__u16			inner_network_header;
834 	__u16			inner_mac_header;
835 
836 	__be16			protocol;
837 	__u16			transport_header;
838 	__u16			network_header;
839 	__u16			mac_header;
840 
841 	/* private: */
842 	__u32			headers_end[0];
843 	/* public: */
844 
845 	/* These elements must be at the end, see alloc_skb() for details.  */
846 	sk_buff_data_t		tail;
847 	sk_buff_data_t		end;
848 	unsigned char		*head,
849 				*data;
850 	unsigned int		truesize;
851 	refcount_t		users;
852 };
853 
854 #ifdef __KERNEL__
855 /*
856  *	Handling routines are only of interest to the kernel
857  */
858 
859 #define SKB_ALLOC_FCLONE	0x01
860 #define SKB_ALLOC_RX		0x02
861 #define SKB_ALLOC_NAPI		0x04
862 
863 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
864 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
865 {
866 	return unlikely(skb->pfmemalloc);
867 }
868 
869 /*
870  * skb might have a dst pointer attached, refcounted or not.
871  * _skb_refdst low order bit is set if refcount was _not_ taken
872  */
873 #define SKB_DST_NOREF	1UL
874 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
875 
876 #define SKB_NFCT_PTRMASK	~(7UL)
877 /**
878  * skb_dst - returns skb dst_entry
879  * @skb: buffer
880  *
881  * Returns skb dst_entry, regardless of reference taken or not.
882  */
883 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
884 {
885 	/* If refdst was not refcounted, check we still are in a
886 	 * rcu_read_lock section
887 	 */
888 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
889 		!rcu_read_lock_held() &&
890 		!rcu_read_lock_bh_held());
891 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
892 }
893 
894 /**
895  * skb_dst_set - sets skb dst
896  * @skb: buffer
897  * @dst: dst entry
898  *
899  * Sets skb dst, assuming a reference was taken on dst and should
900  * be released by skb_dst_drop()
901  */
902 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
903 {
904 	skb->_skb_refdst = (unsigned long)dst;
905 }
906 
907 /**
908  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
909  * @skb: buffer
910  * @dst: dst entry
911  *
912  * Sets skb dst, assuming a reference was not taken on dst.
913  * If dst entry is cached, we do not take reference and dst_release
914  * will be avoided by refdst_drop. If dst entry is not cached, we take
915  * reference, so that last dst_release can destroy the dst immediately.
916  */
917 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
918 {
919 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
920 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
921 }
922 
923 /**
924  * skb_dst_is_noref - Test if skb dst isn't refcounted
925  * @skb: buffer
926  */
927 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
928 {
929 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
930 }
931 
932 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
933 {
934 	return (struct rtable *)skb_dst(skb);
935 }
936 
937 /* For mangling skb->pkt_type from user space side from applications
938  * such as nft, tc, etc, we only allow a conservative subset of
939  * possible pkt_types to be set.
940 */
941 static inline bool skb_pkt_type_ok(u32 ptype)
942 {
943 	return ptype <= PACKET_OTHERHOST;
944 }
945 
946 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
947 {
948 #ifdef CONFIG_NET_RX_BUSY_POLL
949 	return skb->napi_id;
950 #else
951 	return 0;
952 #endif
953 }
954 
955 /* decrement the reference count and return true if we can free the skb */
956 static inline bool skb_unref(struct sk_buff *skb)
957 {
958 	if (unlikely(!skb))
959 		return false;
960 	if (likely(refcount_read(&skb->users) == 1))
961 		smp_rmb();
962 	else if (likely(!refcount_dec_and_test(&skb->users)))
963 		return false;
964 
965 	return true;
966 }
967 
968 void skb_release_head_state(struct sk_buff *skb);
969 void kfree_skb(struct sk_buff *skb);
970 void kfree_skb_list(struct sk_buff *segs);
971 void skb_tx_error(struct sk_buff *skb);
972 void consume_skb(struct sk_buff *skb);
973 void __consume_stateless_skb(struct sk_buff *skb);
974 void  __kfree_skb(struct sk_buff *skb);
975 extern struct kmem_cache *skbuff_head_cache;
976 
977 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
978 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
979 		      bool *fragstolen, int *delta_truesize);
980 
981 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
982 			    int node);
983 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
984 struct sk_buff *build_skb(void *data, unsigned int frag_size);
985 static inline struct sk_buff *alloc_skb(unsigned int size,
986 					gfp_t priority)
987 {
988 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
989 }
990 
991 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
992 				     unsigned long data_len,
993 				     int max_page_order,
994 				     int *errcode,
995 				     gfp_t gfp_mask);
996 
997 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
998 struct sk_buff_fclones {
999 	struct sk_buff	skb1;
1000 
1001 	struct sk_buff	skb2;
1002 
1003 	refcount_t	fclone_ref;
1004 };
1005 
1006 /**
1007  *	skb_fclone_busy - check if fclone is busy
1008  *	@sk: socket
1009  *	@skb: buffer
1010  *
1011  * Returns true if skb is a fast clone, and its clone is not freed.
1012  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1013  * so we also check that this didnt happen.
1014  */
1015 static inline bool skb_fclone_busy(const struct sock *sk,
1016 				   const struct sk_buff *skb)
1017 {
1018 	const struct sk_buff_fclones *fclones;
1019 
1020 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1021 
1022 	return skb->fclone == SKB_FCLONE_ORIG &&
1023 	       refcount_read(&fclones->fclone_ref) > 1 &&
1024 	       fclones->skb2.sk == sk;
1025 }
1026 
1027 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1028 					       gfp_t priority)
1029 {
1030 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1031 }
1032 
1033 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1034 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1035 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1036 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1037 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1038 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1039 				   gfp_t gfp_mask, bool fclone);
1040 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1041 					  gfp_t gfp_mask)
1042 {
1043 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1044 }
1045 
1046 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1047 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1048 				     unsigned int headroom);
1049 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1050 				int newtailroom, gfp_t priority);
1051 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1052 				     int offset, int len);
1053 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1054 			      int offset, int len);
1055 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1056 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1057 
1058 /**
1059  *	skb_pad			-	zero pad the tail of an skb
1060  *	@skb: buffer to pad
1061  *	@pad: space to pad
1062  *
1063  *	Ensure that a buffer is followed by a padding area that is zero
1064  *	filled. Used by network drivers which may DMA or transfer data
1065  *	beyond the buffer end onto the wire.
1066  *
1067  *	May return error in out of memory cases. The skb is freed on error.
1068  */
1069 static inline int skb_pad(struct sk_buff *skb, int pad)
1070 {
1071 	return __skb_pad(skb, pad, true);
1072 }
1073 #define dev_kfree_skb(a)	consume_skb(a)
1074 
1075 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1076 			    int getfrag(void *from, char *to, int offset,
1077 					int len, int odd, struct sk_buff *skb),
1078 			    void *from, int length);
1079 
1080 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1081 			 int offset, size_t size);
1082 
1083 struct skb_seq_state {
1084 	__u32		lower_offset;
1085 	__u32		upper_offset;
1086 	__u32		frag_idx;
1087 	__u32		stepped_offset;
1088 	struct sk_buff	*root_skb;
1089 	struct sk_buff	*cur_skb;
1090 	__u8		*frag_data;
1091 };
1092 
1093 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1094 			  unsigned int to, struct skb_seq_state *st);
1095 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1096 			  struct skb_seq_state *st);
1097 void skb_abort_seq_read(struct skb_seq_state *st);
1098 
1099 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1100 			   unsigned int to, struct ts_config *config);
1101 
1102 /*
1103  * Packet hash types specify the type of hash in skb_set_hash.
1104  *
1105  * Hash types refer to the protocol layer addresses which are used to
1106  * construct a packet's hash. The hashes are used to differentiate or identify
1107  * flows of the protocol layer for the hash type. Hash types are either
1108  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1109  *
1110  * Properties of hashes:
1111  *
1112  * 1) Two packets in different flows have different hash values
1113  * 2) Two packets in the same flow should have the same hash value
1114  *
1115  * A hash at a higher layer is considered to be more specific. A driver should
1116  * set the most specific hash possible.
1117  *
1118  * A driver cannot indicate a more specific hash than the layer at which a hash
1119  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1120  *
1121  * A driver may indicate a hash level which is less specific than the
1122  * actual layer the hash was computed on. For instance, a hash computed
1123  * at L4 may be considered an L3 hash. This should only be done if the
1124  * driver can't unambiguously determine that the HW computed the hash at
1125  * the higher layer. Note that the "should" in the second property above
1126  * permits this.
1127  */
1128 enum pkt_hash_types {
1129 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1130 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1131 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1132 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1133 };
1134 
1135 static inline void skb_clear_hash(struct sk_buff *skb)
1136 {
1137 	skb->hash = 0;
1138 	skb->sw_hash = 0;
1139 	skb->l4_hash = 0;
1140 }
1141 
1142 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1143 {
1144 	if (!skb->l4_hash)
1145 		skb_clear_hash(skb);
1146 }
1147 
1148 static inline void
1149 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1150 {
1151 	skb->l4_hash = is_l4;
1152 	skb->sw_hash = is_sw;
1153 	skb->hash = hash;
1154 }
1155 
1156 static inline void
1157 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1158 {
1159 	/* Used by drivers to set hash from HW */
1160 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1161 }
1162 
1163 static inline void
1164 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1165 {
1166 	__skb_set_hash(skb, hash, true, is_l4);
1167 }
1168 
1169 void __skb_get_hash(struct sk_buff *skb);
1170 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1171 u32 skb_get_poff(const struct sk_buff *skb);
1172 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1173 		   const struct flow_keys_basic *keys, int hlen);
1174 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1175 			    void *data, int hlen_proto);
1176 
1177 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1178 					int thoff, u8 ip_proto)
1179 {
1180 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1181 }
1182 
1183 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1184 			     const struct flow_dissector_key *key,
1185 			     unsigned int key_count);
1186 
1187 bool __skb_flow_dissect(const struct sk_buff *skb,
1188 			struct flow_dissector *flow_dissector,
1189 			void *target_container,
1190 			void *data, __be16 proto, int nhoff, int hlen,
1191 			unsigned int flags);
1192 
1193 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1194 				    struct flow_dissector *flow_dissector,
1195 				    void *target_container, unsigned int flags)
1196 {
1197 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1198 				  NULL, 0, 0, 0, flags);
1199 }
1200 
1201 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1202 					      struct flow_keys *flow,
1203 					      unsigned int flags)
1204 {
1205 	memset(flow, 0, sizeof(*flow));
1206 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1207 				  NULL, 0, 0, 0, flags);
1208 }
1209 
1210 static inline bool
1211 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1212 				 struct flow_keys_basic *flow, void *data,
1213 				 __be16 proto, int nhoff, int hlen,
1214 				 unsigned int flags)
1215 {
1216 	memset(flow, 0, sizeof(*flow));
1217 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1218 				  data, proto, nhoff, hlen, flags);
1219 }
1220 
1221 void
1222 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1223 			     struct flow_dissector *flow_dissector,
1224 			     void *target_container);
1225 
1226 static inline __u32 skb_get_hash(struct sk_buff *skb)
1227 {
1228 	if (!skb->l4_hash && !skb->sw_hash)
1229 		__skb_get_hash(skb);
1230 
1231 	return skb->hash;
1232 }
1233 
1234 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1235 {
1236 	if (!skb->l4_hash && !skb->sw_hash) {
1237 		struct flow_keys keys;
1238 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1239 
1240 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1241 	}
1242 
1243 	return skb->hash;
1244 }
1245 
1246 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1247 
1248 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1249 {
1250 	return skb->hash;
1251 }
1252 
1253 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1254 {
1255 	to->hash = from->hash;
1256 	to->sw_hash = from->sw_hash;
1257 	to->l4_hash = from->l4_hash;
1258 };
1259 
1260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1261 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1262 {
1263 	return skb->head + skb->end;
1264 }
1265 
1266 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1267 {
1268 	return skb->end;
1269 }
1270 #else
1271 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1272 {
1273 	return skb->end;
1274 }
1275 
1276 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1277 {
1278 	return skb->end - skb->head;
1279 }
1280 #endif
1281 
1282 /* Internal */
1283 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1284 
1285 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1286 {
1287 	return &skb_shinfo(skb)->hwtstamps;
1288 }
1289 
1290 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1291 {
1292 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1293 
1294 	return is_zcopy ? skb_uarg(skb) : NULL;
1295 }
1296 
1297 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1298 {
1299 	if (skb && uarg && !skb_zcopy(skb)) {
1300 		sock_zerocopy_get(uarg);
1301 		skb_shinfo(skb)->destructor_arg = uarg;
1302 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1303 	}
1304 }
1305 
1306 /* Release a reference on a zerocopy structure */
1307 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1308 {
1309 	struct ubuf_info *uarg = skb_zcopy(skb);
1310 
1311 	if (uarg) {
1312 		if (uarg->callback == sock_zerocopy_callback) {
1313 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1314 			sock_zerocopy_put(uarg);
1315 		} else {
1316 			uarg->callback(uarg, zerocopy);
1317 		}
1318 
1319 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1320 	}
1321 }
1322 
1323 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1324 static inline void skb_zcopy_abort(struct sk_buff *skb)
1325 {
1326 	struct ubuf_info *uarg = skb_zcopy(skb);
1327 
1328 	if (uarg) {
1329 		sock_zerocopy_put_abort(uarg);
1330 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1331 	}
1332 }
1333 
1334 /**
1335  *	skb_queue_empty - check if a queue is empty
1336  *	@list: queue head
1337  *
1338  *	Returns true if the queue is empty, false otherwise.
1339  */
1340 static inline int skb_queue_empty(const struct sk_buff_head *list)
1341 {
1342 	return list->next == (const struct sk_buff *) list;
1343 }
1344 
1345 /**
1346  *	skb_queue_is_last - check if skb is the last entry in the queue
1347  *	@list: queue head
1348  *	@skb: buffer
1349  *
1350  *	Returns true if @skb is the last buffer on the list.
1351  */
1352 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1353 				     const struct sk_buff *skb)
1354 {
1355 	return skb->next == (const struct sk_buff *) list;
1356 }
1357 
1358 /**
1359  *	skb_queue_is_first - check if skb is the first entry in the queue
1360  *	@list: queue head
1361  *	@skb: buffer
1362  *
1363  *	Returns true if @skb is the first buffer on the list.
1364  */
1365 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1366 				      const struct sk_buff *skb)
1367 {
1368 	return skb->prev == (const struct sk_buff *) list;
1369 }
1370 
1371 /**
1372  *	skb_queue_next - return the next packet in the queue
1373  *	@list: queue head
1374  *	@skb: current buffer
1375  *
1376  *	Return the next packet in @list after @skb.  It is only valid to
1377  *	call this if skb_queue_is_last() evaluates to false.
1378  */
1379 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1380 					     const struct sk_buff *skb)
1381 {
1382 	/* This BUG_ON may seem severe, but if we just return then we
1383 	 * are going to dereference garbage.
1384 	 */
1385 	BUG_ON(skb_queue_is_last(list, skb));
1386 	return skb->next;
1387 }
1388 
1389 /**
1390  *	skb_queue_prev - return the prev packet in the queue
1391  *	@list: queue head
1392  *	@skb: current buffer
1393  *
1394  *	Return the prev packet in @list before @skb.  It is only valid to
1395  *	call this if skb_queue_is_first() evaluates to false.
1396  */
1397 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1398 					     const struct sk_buff *skb)
1399 {
1400 	/* This BUG_ON may seem severe, but if we just return then we
1401 	 * are going to dereference garbage.
1402 	 */
1403 	BUG_ON(skb_queue_is_first(list, skb));
1404 	return skb->prev;
1405 }
1406 
1407 /**
1408  *	skb_get - reference buffer
1409  *	@skb: buffer to reference
1410  *
1411  *	Makes another reference to a socket buffer and returns a pointer
1412  *	to the buffer.
1413  */
1414 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1415 {
1416 	refcount_inc(&skb->users);
1417 	return skb;
1418 }
1419 
1420 /*
1421  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1422  */
1423 
1424 /**
1425  *	skb_cloned - is the buffer a clone
1426  *	@skb: buffer to check
1427  *
1428  *	Returns true if the buffer was generated with skb_clone() and is
1429  *	one of multiple shared copies of the buffer. Cloned buffers are
1430  *	shared data so must not be written to under normal circumstances.
1431  */
1432 static inline int skb_cloned(const struct sk_buff *skb)
1433 {
1434 	return skb->cloned &&
1435 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1436 }
1437 
1438 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1439 {
1440 	might_sleep_if(gfpflags_allow_blocking(pri));
1441 
1442 	if (skb_cloned(skb))
1443 		return pskb_expand_head(skb, 0, 0, pri);
1444 
1445 	return 0;
1446 }
1447 
1448 /**
1449  *	skb_header_cloned - is the header a clone
1450  *	@skb: buffer to check
1451  *
1452  *	Returns true if modifying the header part of the buffer requires
1453  *	the data to be copied.
1454  */
1455 static inline int skb_header_cloned(const struct sk_buff *skb)
1456 {
1457 	int dataref;
1458 
1459 	if (!skb->cloned)
1460 		return 0;
1461 
1462 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1463 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1464 	return dataref != 1;
1465 }
1466 
1467 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1468 {
1469 	might_sleep_if(gfpflags_allow_blocking(pri));
1470 
1471 	if (skb_header_cloned(skb))
1472 		return pskb_expand_head(skb, 0, 0, pri);
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  *	__skb_header_release - release reference to header
1479  *	@skb: buffer to operate on
1480  */
1481 static inline void __skb_header_release(struct sk_buff *skb)
1482 {
1483 	skb->nohdr = 1;
1484 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1485 }
1486 
1487 
1488 /**
1489  *	skb_shared - is the buffer shared
1490  *	@skb: buffer to check
1491  *
1492  *	Returns true if more than one person has a reference to this
1493  *	buffer.
1494  */
1495 static inline int skb_shared(const struct sk_buff *skb)
1496 {
1497 	return refcount_read(&skb->users) != 1;
1498 }
1499 
1500 /**
1501  *	skb_share_check - check if buffer is shared and if so clone it
1502  *	@skb: buffer to check
1503  *	@pri: priority for memory allocation
1504  *
1505  *	If the buffer is shared the buffer is cloned and the old copy
1506  *	drops a reference. A new clone with a single reference is returned.
1507  *	If the buffer is not shared the original buffer is returned. When
1508  *	being called from interrupt status or with spinlocks held pri must
1509  *	be GFP_ATOMIC.
1510  *
1511  *	NULL is returned on a memory allocation failure.
1512  */
1513 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1514 {
1515 	might_sleep_if(gfpflags_allow_blocking(pri));
1516 	if (skb_shared(skb)) {
1517 		struct sk_buff *nskb = skb_clone(skb, pri);
1518 
1519 		if (likely(nskb))
1520 			consume_skb(skb);
1521 		else
1522 			kfree_skb(skb);
1523 		skb = nskb;
1524 	}
1525 	return skb;
1526 }
1527 
1528 /*
1529  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1530  *	packets to handle cases where we have a local reader and forward
1531  *	and a couple of other messy ones. The normal one is tcpdumping
1532  *	a packet thats being forwarded.
1533  */
1534 
1535 /**
1536  *	skb_unshare - make a copy of a shared buffer
1537  *	@skb: buffer to check
1538  *	@pri: priority for memory allocation
1539  *
1540  *	If the socket buffer is a clone then this function creates a new
1541  *	copy of the data, drops a reference count on the old copy and returns
1542  *	the new copy with the reference count at 1. If the buffer is not a clone
1543  *	the original buffer is returned. When called with a spinlock held or
1544  *	from interrupt state @pri must be %GFP_ATOMIC
1545  *
1546  *	%NULL is returned on a memory allocation failure.
1547  */
1548 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1549 					  gfp_t pri)
1550 {
1551 	might_sleep_if(gfpflags_allow_blocking(pri));
1552 	if (skb_cloned(skb)) {
1553 		struct sk_buff *nskb = skb_copy(skb, pri);
1554 
1555 		/* Free our shared copy */
1556 		if (likely(nskb))
1557 			consume_skb(skb);
1558 		else
1559 			kfree_skb(skb);
1560 		skb = nskb;
1561 	}
1562 	return skb;
1563 }
1564 
1565 /**
1566  *	skb_peek - peek at the head of an &sk_buff_head
1567  *	@list_: list to peek at
1568  *
1569  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1570  *	be careful with this one. A peek leaves the buffer on the
1571  *	list and someone else may run off with it. You must hold
1572  *	the appropriate locks or have a private queue to do this.
1573  *
1574  *	Returns %NULL for an empty list or a pointer to the head element.
1575  *	The reference count is not incremented and the reference is therefore
1576  *	volatile. Use with caution.
1577  */
1578 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1579 {
1580 	struct sk_buff *skb = list_->next;
1581 
1582 	if (skb == (struct sk_buff *)list_)
1583 		skb = NULL;
1584 	return skb;
1585 }
1586 
1587 /**
1588  *	skb_peek_next - peek skb following the given one from a queue
1589  *	@skb: skb to start from
1590  *	@list_: list to peek at
1591  *
1592  *	Returns %NULL when the end of the list is met or a pointer to the
1593  *	next element. The reference count is not incremented and the
1594  *	reference is therefore volatile. Use with caution.
1595  */
1596 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1597 		const struct sk_buff_head *list_)
1598 {
1599 	struct sk_buff *next = skb->next;
1600 
1601 	if (next == (struct sk_buff *)list_)
1602 		next = NULL;
1603 	return next;
1604 }
1605 
1606 /**
1607  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1608  *	@list_: list to peek at
1609  *
1610  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1611  *	be careful with this one. A peek leaves the buffer on the
1612  *	list and someone else may run off with it. You must hold
1613  *	the appropriate locks or have a private queue to do this.
1614  *
1615  *	Returns %NULL for an empty list or a pointer to the tail element.
1616  *	The reference count is not incremented and the reference is therefore
1617  *	volatile. Use with caution.
1618  */
1619 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1620 {
1621 	struct sk_buff *skb = list_->prev;
1622 
1623 	if (skb == (struct sk_buff *)list_)
1624 		skb = NULL;
1625 	return skb;
1626 
1627 }
1628 
1629 /**
1630  *	skb_queue_len	- get queue length
1631  *	@list_: list to measure
1632  *
1633  *	Return the length of an &sk_buff queue.
1634  */
1635 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1636 {
1637 	return list_->qlen;
1638 }
1639 
1640 /**
1641  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1642  *	@list: queue to initialize
1643  *
1644  *	This initializes only the list and queue length aspects of
1645  *	an sk_buff_head object.  This allows to initialize the list
1646  *	aspects of an sk_buff_head without reinitializing things like
1647  *	the spinlock.  It can also be used for on-stack sk_buff_head
1648  *	objects where the spinlock is known to not be used.
1649  */
1650 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1651 {
1652 	list->prev = list->next = (struct sk_buff *)list;
1653 	list->qlen = 0;
1654 }
1655 
1656 /*
1657  * This function creates a split out lock class for each invocation;
1658  * this is needed for now since a whole lot of users of the skb-queue
1659  * infrastructure in drivers have different locking usage (in hardirq)
1660  * than the networking core (in softirq only). In the long run either the
1661  * network layer or drivers should need annotation to consolidate the
1662  * main types of usage into 3 classes.
1663  */
1664 static inline void skb_queue_head_init(struct sk_buff_head *list)
1665 {
1666 	spin_lock_init(&list->lock);
1667 	__skb_queue_head_init(list);
1668 }
1669 
1670 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1671 		struct lock_class_key *class)
1672 {
1673 	skb_queue_head_init(list);
1674 	lockdep_set_class(&list->lock, class);
1675 }
1676 
1677 /*
1678  *	Insert an sk_buff on a list.
1679  *
1680  *	The "__skb_xxxx()" functions are the non-atomic ones that
1681  *	can only be called with interrupts disabled.
1682  */
1683 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1684 		struct sk_buff_head *list);
1685 static inline void __skb_insert(struct sk_buff *newsk,
1686 				struct sk_buff *prev, struct sk_buff *next,
1687 				struct sk_buff_head *list)
1688 {
1689 	newsk->next = next;
1690 	newsk->prev = prev;
1691 	next->prev  = prev->next = newsk;
1692 	list->qlen++;
1693 }
1694 
1695 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1696 				      struct sk_buff *prev,
1697 				      struct sk_buff *next)
1698 {
1699 	struct sk_buff *first = list->next;
1700 	struct sk_buff *last = list->prev;
1701 
1702 	first->prev = prev;
1703 	prev->next = first;
1704 
1705 	last->next = next;
1706 	next->prev = last;
1707 }
1708 
1709 /**
1710  *	skb_queue_splice - join two skb lists, this is designed for stacks
1711  *	@list: the new list to add
1712  *	@head: the place to add it in the first list
1713  */
1714 static inline void skb_queue_splice(const struct sk_buff_head *list,
1715 				    struct sk_buff_head *head)
1716 {
1717 	if (!skb_queue_empty(list)) {
1718 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1719 		head->qlen += list->qlen;
1720 	}
1721 }
1722 
1723 /**
1724  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1725  *	@list: the new list to add
1726  *	@head: the place to add it in the first list
1727  *
1728  *	The list at @list is reinitialised
1729  */
1730 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1731 					 struct sk_buff_head *head)
1732 {
1733 	if (!skb_queue_empty(list)) {
1734 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1735 		head->qlen += list->qlen;
1736 		__skb_queue_head_init(list);
1737 	}
1738 }
1739 
1740 /**
1741  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1742  *	@list: the new list to add
1743  *	@head: the place to add it in the first list
1744  */
1745 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1746 					 struct sk_buff_head *head)
1747 {
1748 	if (!skb_queue_empty(list)) {
1749 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1750 		head->qlen += list->qlen;
1751 	}
1752 }
1753 
1754 /**
1755  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1756  *	@list: the new list to add
1757  *	@head: the place to add it in the first list
1758  *
1759  *	Each of the lists is a queue.
1760  *	The list at @list is reinitialised
1761  */
1762 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1763 					      struct sk_buff_head *head)
1764 {
1765 	if (!skb_queue_empty(list)) {
1766 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1767 		head->qlen += list->qlen;
1768 		__skb_queue_head_init(list);
1769 	}
1770 }
1771 
1772 /**
1773  *	__skb_queue_after - queue a buffer at the list head
1774  *	@list: list to use
1775  *	@prev: place after this buffer
1776  *	@newsk: buffer to queue
1777  *
1778  *	Queue a buffer int the middle of a list. This function takes no locks
1779  *	and you must therefore hold required locks before calling it.
1780  *
1781  *	A buffer cannot be placed on two lists at the same time.
1782  */
1783 static inline void __skb_queue_after(struct sk_buff_head *list,
1784 				     struct sk_buff *prev,
1785 				     struct sk_buff *newsk)
1786 {
1787 	__skb_insert(newsk, prev, prev->next, list);
1788 }
1789 
1790 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1791 		struct sk_buff_head *list);
1792 
1793 static inline void __skb_queue_before(struct sk_buff_head *list,
1794 				      struct sk_buff *next,
1795 				      struct sk_buff *newsk)
1796 {
1797 	__skb_insert(newsk, next->prev, next, list);
1798 }
1799 
1800 /**
1801  *	__skb_queue_head - queue a buffer at the list head
1802  *	@list: list to use
1803  *	@newsk: buffer to queue
1804  *
1805  *	Queue a buffer at the start of a list. This function takes no locks
1806  *	and you must therefore hold required locks before calling it.
1807  *
1808  *	A buffer cannot be placed on two lists at the same time.
1809  */
1810 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1811 static inline void __skb_queue_head(struct sk_buff_head *list,
1812 				    struct sk_buff *newsk)
1813 {
1814 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1815 }
1816 
1817 /**
1818  *	__skb_queue_tail - queue a buffer at the list tail
1819  *	@list: list to use
1820  *	@newsk: buffer to queue
1821  *
1822  *	Queue a buffer at the end of a list. This function takes no locks
1823  *	and you must therefore hold required locks before calling it.
1824  *
1825  *	A buffer cannot be placed on two lists at the same time.
1826  */
1827 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1828 static inline void __skb_queue_tail(struct sk_buff_head *list,
1829 				   struct sk_buff *newsk)
1830 {
1831 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1832 }
1833 
1834 /*
1835  * remove sk_buff from list. _Must_ be called atomically, and with
1836  * the list known..
1837  */
1838 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1839 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1840 {
1841 	struct sk_buff *next, *prev;
1842 
1843 	list->qlen--;
1844 	next	   = skb->next;
1845 	prev	   = skb->prev;
1846 	skb->next  = skb->prev = NULL;
1847 	next->prev = prev;
1848 	prev->next = next;
1849 }
1850 
1851 /**
1852  *	__skb_dequeue - remove from the head of the queue
1853  *	@list: list to dequeue from
1854  *
1855  *	Remove the head of the list. This function does not take any locks
1856  *	so must be used with appropriate locks held only. The head item is
1857  *	returned or %NULL if the list is empty.
1858  */
1859 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1860 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1861 {
1862 	struct sk_buff *skb = skb_peek(list);
1863 	if (skb)
1864 		__skb_unlink(skb, list);
1865 	return skb;
1866 }
1867 
1868 /**
1869  *	__skb_dequeue_tail - remove from the tail of the queue
1870  *	@list: list to dequeue from
1871  *
1872  *	Remove the tail of the list. This function does not take any locks
1873  *	so must be used with appropriate locks held only. The tail item is
1874  *	returned or %NULL if the list is empty.
1875  */
1876 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1877 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1878 {
1879 	struct sk_buff *skb = skb_peek_tail(list);
1880 	if (skb)
1881 		__skb_unlink(skb, list);
1882 	return skb;
1883 }
1884 
1885 
1886 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1887 {
1888 	return skb->data_len;
1889 }
1890 
1891 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1892 {
1893 	return skb->len - skb->data_len;
1894 }
1895 
1896 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1897 {
1898 	unsigned int i, len = 0;
1899 
1900 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1901 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1902 	return len;
1903 }
1904 
1905 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1906 {
1907 	return skb_headlen(skb) + __skb_pagelen(skb);
1908 }
1909 
1910 /**
1911  * __skb_fill_page_desc - initialise a paged fragment in an skb
1912  * @skb: buffer containing fragment to be initialised
1913  * @i: paged fragment index to initialise
1914  * @page: the page to use for this fragment
1915  * @off: the offset to the data with @page
1916  * @size: the length of the data
1917  *
1918  * Initialises the @i'th fragment of @skb to point to &size bytes at
1919  * offset @off within @page.
1920  *
1921  * Does not take any additional reference on the fragment.
1922  */
1923 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1924 					struct page *page, int off, int size)
1925 {
1926 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1927 
1928 	/*
1929 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1930 	 * that not all callers have unique ownership of the page but rely
1931 	 * on page_is_pfmemalloc doing the right thing(tm).
1932 	 */
1933 	frag->page.p		  = page;
1934 	frag->page_offset	  = off;
1935 	skb_frag_size_set(frag, size);
1936 
1937 	page = compound_head(page);
1938 	if (page_is_pfmemalloc(page))
1939 		skb->pfmemalloc	= true;
1940 }
1941 
1942 /**
1943  * skb_fill_page_desc - initialise a paged fragment in an skb
1944  * @skb: buffer containing fragment to be initialised
1945  * @i: paged fragment index to initialise
1946  * @page: the page to use for this fragment
1947  * @off: the offset to the data with @page
1948  * @size: the length of the data
1949  *
1950  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1951  * @skb to point to @size bytes at offset @off within @page. In
1952  * addition updates @skb such that @i is the last fragment.
1953  *
1954  * Does not take any additional reference on the fragment.
1955  */
1956 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1957 				      struct page *page, int off, int size)
1958 {
1959 	__skb_fill_page_desc(skb, i, page, off, size);
1960 	skb_shinfo(skb)->nr_frags = i + 1;
1961 }
1962 
1963 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1964 		     int size, unsigned int truesize);
1965 
1966 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1967 			  unsigned int truesize);
1968 
1969 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1970 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1971 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1972 
1973 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1974 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1975 {
1976 	return skb->head + skb->tail;
1977 }
1978 
1979 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1980 {
1981 	skb->tail = skb->data - skb->head;
1982 }
1983 
1984 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1985 {
1986 	skb_reset_tail_pointer(skb);
1987 	skb->tail += offset;
1988 }
1989 
1990 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1991 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1992 {
1993 	return skb->tail;
1994 }
1995 
1996 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1997 {
1998 	skb->tail = skb->data;
1999 }
2000 
2001 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2002 {
2003 	skb->tail = skb->data + offset;
2004 }
2005 
2006 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2007 
2008 /*
2009  *	Add data to an sk_buff
2010  */
2011 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2012 void *skb_put(struct sk_buff *skb, unsigned int len);
2013 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2014 {
2015 	void *tmp = skb_tail_pointer(skb);
2016 	SKB_LINEAR_ASSERT(skb);
2017 	skb->tail += len;
2018 	skb->len  += len;
2019 	return tmp;
2020 }
2021 
2022 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2023 {
2024 	void *tmp = __skb_put(skb, len);
2025 
2026 	memset(tmp, 0, len);
2027 	return tmp;
2028 }
2029 
2030 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2031 				   unsigned int len)
2032 {
2033 	void *tmp = __skb_put(skb, len);
2034 
2035 	memcpy(tmp, data, len);
2036 	return tmp;
2037 }
2038 
2039 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2040 {
2041 	*(u8 *)__skb_put(skb, 1) = val;
2042 }
2043 
2044 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2045 {
2046 	void *tmp = skb_put(skb, len);
2047 
2048 	memset(tmp, 0, len);
2049 
2050 	return tmp;
2051 }
2052 
2053 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2054 				 unsigned int len)
2055 {
2056 	void *tmp = skb_put(skb, len);
2057 
2058 	memcpy(tmp, data, len);
2059 
2060 	return tmp;
2061 }
2062 
2063 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2064 {
2065 	*(u8 *)skb_put(skb, 1) = val;
2066 }
2067 
2068 void *skb_push(struct sk_buff *skb, unsigned int len);
2069 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2070 {
2071 	skb->data -= len;
2072 	skb->len  += len;
2073 	return skb->data;
2074 }
2075 
2076 void *skb_pull(struct sk_buff *skb, unsigned int len);
2077 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2078 {
2079 	skb->len -= len;
2080 	BUG_ON(skb->len < skb->data_len);
2081 	return skb->data += len;
2082 }
2083 
2084 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2085 {
2086 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2087 }
2088 
2089 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2090 
2091 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2092 {
2093 	if (len > skb_headlen(skb) &&
2094 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2095 		return NULL;
2096 	skb->len -= len;
2097 	return skb->data += len;
2098 }
2099 
2100 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2101 {
2102 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2103 }
2104 
2105 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2106 {
2107 	if (likely(len <= skb_headlen(skb)))
2108 		return 1;
2109 	if (unlikely(len > skb->len))
2110 		return 0;
2111 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2112 }
2113 
2114 void skb_condense(struct sk_buff *skb);
2115 
2116 /**
2117  *	skb_headroom - bytes at buffer head
2118  *	@skb: buffer to check
2119  *
2120  *	Return the number of bytes of free space at the head of an &sk_buff.
2121  */
2122 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2123 {
2124 	return skb->data - skb->head;
2125 }
2126 
2127 /**
2128  *	skb_tailroom - bytes at buffer end
2129  *	@skb: buffer to check
2130  *
2131  *	Return the number of bytes of free space at the tail of an sk_buff
2132  */
2133 static inline int skb_tailroom(const struct sk_buff *skb)
2134 {
2135 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2136 }
2137 
2138 /**
2139  *	skb_availroom - bytes at buffer end
2140  *	@skb: buffer to check
2141  *
2142  *	Return the number of bytes of free space at the tail of an sk_buff
2143  *	allocated by sk_stream_alloc()
2144  */
2145 static inline int skb_availroom(const struct sk_buff *skb)
2146 {
2147 	if (skb_is_nonlinear(skb))
2148 		return 0;
2149 
2150 	return skb->end - skb->tail - skb->reserved_tailroom;
2151 }
2152 
2153 /**
2154  *	skb_reserve - adjust headroom
2155  *	@skb: buffer to alter
2156  *	@len: bytes to move
2157  *
2158  *	Increase the headroom of an empty &sk_buff by reducing the tail
2159  *	room. This is only allowed for an empty buffer.
2160  */
2161 static inline void skb_reserve(struct sk_buff *skb, int len)
2162 {
2163 	skb->data += len;
2164 	skb->tail += len;
2165 }
2166 
2167 /**
2168  *	skb_tailroom_reserve - adjust reserved_tailroom
2169  *	@skb: buffer to alter
2170  *	@mtu: maximum amount of headlen permitted
2171  *	@needed_tailroom: minimum amount of reserved_tailroom
2172  *
2173  *	Set reserved_tailroom so that headlen can be as large as possible but
2174  *	not larger than mtu and tailroom cannot be smaller than
2175  *	needed_tailroom.
2176  *	The required headroom should already have been reserved before using
2177  *	this function.
2178  */
2179 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2180 					unsigned int needed_tailroom)
2181 {
2182 	SKB_LINEAR_ASSERT(skb);
2183 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2184 		/* use at most mtu */
2185 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2186 	else
2187 		/* use up to all available space */
2188 		skb->reserved_tailroom = needed_tailroom;
2189 }
2190 
2191 #define ENCAP_TYPE_ETHER	0
2192 #define ENCAP_TYPE_IPPROTO	1
2193 
2194 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2195 					  __be16 protocol)
2196 {
2197 	skb->inner_protocol = protocol;
2198 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2199 }
2200 
2201 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2202 					 __u8 ipproto)
2203 {
2204 	skb->inner_ipproto = ipproto;
2205 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2206 }
2207 
2208 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2209 {
2210 	skb->inner_mac_header = skb->mac_header;
2211 	skb->inner_network_header = skb->network_header;
2212 	skb->inner_transport_header = skb->transport_header;
2213 }
2214 
2215 static inline void skb_reset_mac_len(struct sk_buff *skb)
2216 {
2217 	skb->mac_len = skb->network_header - skb->mac_header;
2218 }
2219 
2220 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2221 							*skb)
2222 {
2223 	return skb->head + skb->inner_transport_header;
2224 }
2225 
2226 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2227 {
2228 	return skb_inner_transport_header(skb) - skb->data;
2229 }
2230 
2231 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2232 {
2233 	skb->inner_transport_header = skb->data - skb->head;
2234 }
2235 
2236 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2237 						   const int offset)
2238 {
2239 	skb_reset_inner_transport_header(skb);
2240 	skb->inner_transport_header += offset;
2241 }
2242 
2243 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2244 {
2245 	return skb->head + skb->inner_network_header;
2246 }
2247 
2248 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2249 {
2250 	skb->inner_network_header = skb->data - skb->head;
2251 }
2252 
2253 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2254 						const int offset)
2255 {
2256 	skb_reset_inner_network_header(skb);
2257 	skb->inner_network_header += offset;
2258 }
2259 
2260 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2261 {
2262 	return skb->head + skb->inner_mac_header;
2263 }
2264 
2265 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2266 {
2267 	skb->inner_mac_header = skb->data - skb->head;
2268 }
2269 
2270 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2271 					    const int offset)
2272 {
2273 	skb_reset_inner_mac_header(skb);
2274 	skb->inner_mac_header += offset;
2275 }
2276 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2277 {
2278 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2279 }
2280 
2281 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2282 {
2283 	return skb->head + skb->transport_header;
2284 }
2285 
2286 static inline void skb_reset_transport_header(struct sk_buff *skb)
2287 {
2288 	skb->transport_header = skb->data - skb->head;
2289 }
2290 
2291 static inline void skb_set_transport_header(struct sk_buff *skb,
2292 					    const int offset)
2293 {
2294 	skb_reset_transport_header(skb);
2295 	skb->transport_header += offset;
2296 }
2297 
2298 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2299 {
2300 	return skb->head + skb->network_header;
2301 }
2302 
2303 static inline void skb_reset_network_header(struct sk_buff *skb)
2304 {
2305 	skb->network_header = skb->data - skb->head;
2306 }
2307 
2308 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2309 {
2310 	skb_reset_network_header(skb);
2311 	skb->network_header += offset;
2312 }
2313 
2314 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2315 {
2316 	return skb->head + skb->mac_header;
2317 }
2318 
2319 static inline int skb_mac_offset(const struct sk_buff *skb)
2320 {
2321 	return skb_mac_header(skb) - skb->data;
2322 }
2323 
2324 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2325 {
2326 	return skb->network_header - skb->mac_header;
2327 }
2328 
2329 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2330 {
2331 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2332 }
2333 
2334 static inline void skb_reset_mac_header(struct sk_buff *skb)
2335 {
2336 	skb->mac_header = skb->data - skb->head;
2337 }
2338 
2339 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2340 {
2341 	skb_reset_mac_header(skb);
2342 	skb->mac_header += offset;
2343 }
2344 
2345 static inline void skb_pop_mac_header(struct sk_buff *skb)
2346 {
2347 	skb->mac_header = skb->network_header;
2348 }
2349 
2350 static inline void skb_probe_transport_header(struct sk_buff *skb,
2351 					      const int offset_hint)
2352 {
2353 	struct flow_keys_basic keys;
2354 
2355 	if (skb_transport_header_was_set(skb))
2356 		return;
2357 
2358 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0))
2359 		skb_set_transport_header(skb, keys.control.thoff);
2360 	else
2361 		skb_set_transport_header(skb, offset_hint);
2362 }
2363 
2364 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2365 {
2366 	if (skb_mac_header_was_set(skb)) {
2367 		const unsigned char *old_mac = skb_mac_header(skb);
2368 
2369 		skb_set_mac_header(skb, -skb->mac_len);
2370 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2371 	}
2372 }
2373 
2374 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2375 {
2376 	return skb->csum_start - skb_headroom(skb);
2377 }
2378 
2379 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2380 {
2381 	return skb->head + skb->csum_start;
2382 }
2383 
2384 static inline int skb_transport_offset(const struct sk_buff *skb)
2385 {
2386 	return skb_transport_header(skb) - skb->data;
2387 }
2388 
2389 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2390 {
2391 	return skb->transport_header - skb->network_header;
2392 }
2393 
2394 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2395 {
2396 	return skb->inner_transport_header - skb->inner_network_header;
2397 }
2398 
2399 static inline int skb_network_offset(const struct sk_buff *skb)
2400 {
2401 	return skb_network_header(skb) - skb->data;
2402 }
2403 
2404 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2405 {
2406 	return skb_inner_network_header(skb) - skb->data;
2407 }
2408 
2409 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2410 {
2411 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2412 }
2413 
2414 /*
2415  * CPUs often take a performance hit when accessing unaligned memory
2416  * locations. The actual performance hit varies, it can be small if the
2417  * hardware handles it or large if we have to take an exception and fix it
2418  * in software.
2419  *
2420  * Since an ethernet header is 14 bytes network drivers often end up with
2421  * the IP header at an unaligned offset. The IP header can be aligned by
2422  * shifting the start of the packet by 2 bytes. Drivers should do this
2423  * with:
2424  *
2425  * skb_reserve(skb, NET_IP_ALIGN);
2426  *
2427  * The downside to this alignment of the IP header is that the DMA is now
2428  * unaligned. On some architectures the cost of an unaligned DMA is high
2429  * and this cost outweighs the gains made by aligning the IP header.
2430  *
2431  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2432  * to be overridden.
2433  */
2434 #ifndef NET_IP_ALIGN
2435 #define NET_IP_ALIGN	2
2436 #endif
2437 
2438 /*
2439  * The networking layer reserves some headroom in skb data (via
2440  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2441  * the header has to grow. In the default case, if the header has to grow
2442  * 32 bytes or less we avoid the reallocation.
2443  *
2444  * Unfortunately this headroom changes the DMA alignment of the resulting
2445  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2446  * on some architectures. An architecture can override this value,
2447  * perhaps setting it to a cacheline in size (since that will maintain
2448  * cacheline alignment of the DMA). It must be a power of 2.
2449  *
2450  * Various parts of the networking layer expect at least 32 bytes of
2451  * headroom, you should not reduce this.
2452  *
2453  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2454  * to reduce average number of cache lines per packet.
2455  * get_rps_cpus() for example only access one 64 bytes aligned block :
2456  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2457  */
2458 #ifndef NET_SKB_PAD
2459 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2460 #endif
2461 
2462 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2463 
2464 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2465 {
2466 	if (unlikely(skb_is_nonlinear(skb))) {
2467 		WARN_ON(1);
2468 		return;
2469 	}
2470 	skb->len = len;
2471 	skb_set_tail_pointer(skb, len);
2472 }
2473 
2474 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2475 {
2476 	__skb_set_length(skb, len);
2477 }
2478 
2479 void skb_trim(struct sk_buff *skb, unsigned int len);
2480 
2481 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2482 {
2483 	if (skb->data_len)
2484 		return ___pskb_trim(skb, len);
2485 	__skb_trim(skb, len);
2486 	return 0;
2487 }
2488 
2489 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2490 {
2491 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2492 }
2493 
2494 /**
2495  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2496  *	@skb: buffer to alter
2497  *	@len: new length
2498  *
2499  *	This is identical to pskb_trim except that the caller knows that
2500  *	the skb is not cloned so we should never get an error due to out-
2501  *	of-memory.
2502  */
2503 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2504 {
2505 	int err = pskb_trim(skb, len);
2506 	BUG_ON(err);
2507 }
2508 
2509 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2510 {
2511 	unsigned int diff = len - skb->len;
2512 
2513 	if (skb_tailroom(skb) < diff) {
2514 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2515 					   GFP_ATOMIC);
2516 		if (ret)
2517 			return ret;
2518 	}
2519 	__skb_set_length(skb, len);
2520 	return 0;
2521 }
2522 
2523 /**
2524  *	skb_orphan - orphan a buffer
2525  *	@skb: buffer to orphan
2526  *
2527  *	If a buffer currently has an owner then we call the owner's
2528  *	destructor function and make the @skb unowned. The buffer continues
2529  *	to exist but is no longer charged to its former owner.
2530  */
2531 static inline void skb_orphan(struct sk_buff *skb)
2532 {
2533 	if (skb->destructor) {
2534 		skb->destructor(skb);
2535 		skb->destructor = NULL;
2536 		skb->sk		= NULL;
2537 	} else {
2538 		BUG_ON(skb->sk);
2539 	}
2540 }
2541 
2542 /**
2543  *	skb_orphan_frags - orphan the frags contained in a buffer
2544  *	@skb: buffer to orphan frags from
2545  *	@gfp_mask: allocation mask for replacement pages
2546  *
2547  *	For each frag in the SKB which needs a destructor (i.e. has an
2548  *	owner) create a copy of that frag and release the original
2549  *	page by calling the destructor.
2550  */
2551 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2552 {
2553 	if (likely(!skb_zcopy(skb)))
2554 		return 0;
2555 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2556 		return 0;
2557 	return skb_copy_ubufs(skb, gfp_mask);
2558 }
2559 
2560 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2561 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2562 {
2563 	if (likely(!skb_zcopy(skb)))
2564 		return 0;
2565 	return skb_copy_ubufs(skb, gfp_mask);
2566 }
2567 
2568 /**
2569  *	__skb_queue_purge - empty a list
2570  *	@list: list to empty
2571  *
2572  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2573  *	the list and one reference dropped. This function does not take the
2574  *	list lock and the caller must hold the relevant locks to use it.
2575  */
2576 void skb_queue_purge(struct sk_buff_head *list);
2577 static inline void __skb_queue_purge(struct sk_buff_head *list)
2578 {
2579 	struct sk_buff *skb;
2580 	while ((skb = __skb_dequeue(list)) != NULL)
2581 		kfree_skb(skb);
2582 }
2583 
2584 void skb_rbtree_purge(struct rb_root *root);
2585 
2586 void *netdev_alloc_frag(unsigned int fragsz);
2587 
2588 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2589 				   gfp_t gfp_mask);
2590 
2591 /**
2592  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2593  *	@dev: network device to receive on
2594  *	@length: length to allocate
2595  *
2596  *	Allocate a new &sk_buff and assign it a usage count of one. The
2597  *	buffer has unspecified headroom built in. Users should allocate
2598  *	the headroom they think they need without accounting for the
2599  *	built in space. The built in space is used for optimisations.
2600  *
2601  *	%NULL is returned if there is no free memory. Although this function
2602  *	allocates memory it can be called from an interrupt.
2603  */
2604 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2605 					       unsigned int length)
2606 {
2607 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2608 }
2609 
2610 /* legacy helper around __netdev_alloc_skb() */
2611 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2612 					      gfp_t gfp_mask)
2613 {
2614 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2615 }
2616 
2617 /* legacy helper around netdev_alloc_skb() */
2618 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2619 {
2620 	return netdev_alloc_skb(NULL, length);
2621 }
2622 
2623 
2624 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2625 		unsigned int length, gfp_t gfp)
2626 {
2627 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2628 
2629 	if (NET_IP_ALIGN && skb)
2630 		skb_reserve(skb, NET_IP_ALIGN);
2631 	return skb;
2632 }
2633 
2634 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2635 		unsigned int length)
2636 {
2637 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2638 }
2639 
2640 static inline void skb_free_frag(void *addr)
2641 {
2642 	page_frag_free(addr);
2643 }
2644 
2645 void *napi_alloc_frag(unsigned int fragsz);
2646 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2647 				 unsigned int length, gfp_t gfp_mask);
2648 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2649 					     unsigned int length)
2650 {
2651 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2652 }
2653 void napi_consume_skb(struct sk_buff *skb, int budget);
2654 
2655 void __kfree_skb_flush(void);
2656 void __kfree_skb_defer(struct sk_buff *skb);
2657 
2658 /**
2659  * __dev_alloc_pages - allocate page for network Rx
2660  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2661  * @order: size of the allocation
2662  *
2663  * Allocate a new page.
2664  *
2665  * %NULL is returned if there is no free memory.
2666 */
2667 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2668 					     unsigned int order)
2669 {
2670 	/* This piece of code contains several assumptions.
2671 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2672 	 * 2.  The expectation is the user wants a compound page.
2673 	 * 3.  If requesting a order 0 page it will not be compound
2674 	 *     due to the check to see if order has a value in prep_new_page
2675 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2676 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2677 	 */
2678 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2679 
2680 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2681 }
2682 
2683 static inline struct page *dev_alloc_pages(unsigned int order)
2684 {
2685 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2686 }
2687 
2688 /**
2689  * __dev_alloc_page - allocate a page for network Rx
2690  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2691  *
2692  * Allocate a new page.
2693  *
2694  * %NULL is returned if there is no free memory.
2695  */
2696 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2697 {
2698 	return __dev_alloc_pages(gfp_mask, 0);
2699 }
2700 
2701 static inline struct page *dev_alloc_page(void)
2702 {
2703 	return dev_alloc_pages(0);
2704 }
2705 
2706 /**
2707  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2708  *	@page: The page that was allocated from skb_alloc_page
2709  *	@skb: The skb that may need pfmemalloc set
2710  */
2711 static inline void skb_propagate_pfmemalloc(struct page *page,
2712 					     struct sk_buff *skb)
2713 {
2714 	if (page_is_pfmemalloc(page))
2715 		skb->pfmemalloc = true;
2716 }
2717 
2718 /**
2719  * skb_frag_page - retrieve the page referred to by a paged fragment
2720  * @frag: the paged fragment
2721  *
2722  * Returns the &struct page associated with @frag.
2723  */
2724 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2725 {
2726 	return frag->page.p;
2727 }
2728 
2729 /**
2730  * __skb_frag_ref - take an addition reference on a paged fragment.
2731  * @frag: the paged fragment
2732  *
2733  * Takes an additional reference on the paged fragment @frag.
2734  */
2735 static inline void __skb_frag_ref(skb_frag_t *frag)
2736 {
2737 	get_page(skb_frag_page(frag));
2738 }
2739 
2740 /**
2741  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2742  * @skb: the buffer
2743  * @f: the fragment offset.
2744  *
2745  * Takes an additional reference on the @f'th paged fragment of @skb.
2746  */
2747 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2748 {
2749 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2750 }
2751 
2752 /**
2753  * __skb_frag_unref - release a reference on a paged fragment.
2754  * @frag: the paged fragment
2755  *
2756  * Releases a reference on the paged fragment @frag.
2757  */
2758 static inline void __skb_frag_unref(skb_frag_t *frag)
2759 {
2760 	put_page(skb_frag_page(frag));
2761 }
2762 
2763 /**
2764  * skb_frag_unref - release a reference on a paged fragment of an skb.
2765  * @skb: the buffer
2766  * @f: the fragment offset
2767  *
2768  * Releases a reference on the @f'th paged fragment of @skb.
2769  */
2770 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2771 {
2772 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2773 }
2774 
2775 /**
2776  * skb_frag_address - gets the address of the data contained in a paged fragment
2777  * @frag: the paged fragment buffer
2778  *
2779  * Returns the address of the data within @frag. The page must already
2780  * be mapped.
2781  */
2782 static inline void *skb_frag_address(const skb_frag_t *frag)
2783 {
2784 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2785 }
2786 
2787 /**
2788  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2789  * @frag: the paged fragment buffer
2790  *
2791  * Returns the address of the data within @frag. Checks that the page
2792  * is mapped and returns %NULL otherwise.
2793  */
2794 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2795 {
2796 	void *ptr = page_address(skb_frag_page(frag));
2797 	if (unlikely(!ptr))
2798 		return NULL;
2799 
2800 	return ptr + frag->page_offset;
2801 }
2802 
2803 /**
2804  * __skb_frag_set_page - sets the page contained in a paged fragment
2805  * @frag: the paged fragment
2806  * @page: the page to set
2807  *
2808  * Sets the fragment @frag to contain @page.
2809  */
2810 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2811 {
2812 	frag->page.p = page;
2813 }
2814 
2815 /**
2816  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2817  * @skb: the buffer
2818  * @f: the fragment offset
2819  * @page: the page to set
2820  *
2821  * Sets the @f'th fragment of @skb to contain @page.
2822  */
2823 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2824 				     struct page *page)
2825 {
2826 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2827 }
2828 
2829 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2830 
2831 /**
2832  * skb_frag_dma_map - maps a paged fragment via the DMA API
2833  * @dev: the device to map the fragment to
2834  * @frag: the paged fragment to map
2835  * @offset: the offset within the fragment (starting at the
2836  *          fragment's own offset)
2837  * @size: the number of bytes to map
2838  * @dir: the direction of the mapping (``PCI_DMA_*``)
2839  *
2840  * Maps the page associated with @frag to @device.
2841  */
2842 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2843 					  const skb_frag_t *frag,
2844 					  size_t offset, size_t size,
2845 					  enum dma_data_direction dir)
2846 {
2847 	return dma_map_page(dev, skb_frag_page(frag),
2848 			    frag->page_offset + offset, size, dir);
2849 }
2850 
2851 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2852 					gfp_t gfp_mask)
2853 {
2854 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2855 }
2856 
2857 
2858 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2859 						  gfp_t gfp_mask)
2860 {
2861 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2862 }
2863 
2864 
2865 /**
2866  *	skb_clone_writable - is the header of a clone writable
2867  *	@skb: buffer to check
2868  *	@len: length up to which to write
2869  *
2870  *	Returns true if modifying the header part of the cloned buffer
2871  *	does not requires the data to be copied.
2872  */
2873 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2874 {
2875 	return !skb_header_cloned(skb) &&
2876 	       skb_headroom(skb) + len <= skb->hdr_len;
2877 }
2878 
2879 static inline int skb_try_make_writable(struct sk_buff *skb,
2880 					unsigned int write_len)
2881 {
2882 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2883 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2884 }
2885 
2886 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2887 			    int cloned)
2888 {
2889 	int delta = 0;
2890 
2891 	if (headroom > skb_headroom(skb))
2892 		delta = headroom - skb_headroom(skb);
2893 
2894 	if (delta || cloned)
2895 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2896 					GFP_ATOMIC);
2897 	return 0;
2898 }
2899 
2900 /**
2901  *	skb_cow - copy header of skb when it is required
2902  *	@skb: buffer to cow
2903  *	@headroom: needed headroom
2904  *
2905  *	If the skb passed lacks sufficient headroom or its data part
2906  *	is shared, data is reallocated. If reallocation fails, an error
2907  *	is returned and original skb is not changed.
2908  *
2909  *	The result is skb with writable area skb->head...skb->tail
2910  *	and at least @headroom of space at head.
2911  */
2912 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2913 {
2914 	return __skb_cow(skb, headroom, skb_cloned(skb));
2915 }
2916 
2917 /**
2918  *	skb_cow_head - skb_cow but only making the head writable
2919  *	@skb: buffer to cow
2920  *	@headroom: needed headroom
2921  *
2922  *	This function is identical to skb_cow except that we replace the
2923  *	skb_cloned check by skb_header_cloned.  It should be used when
2924  *	you only need to push on some header and do not need to modify
2925  *	the data.
2926  */
2927 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2928 {
2929 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2930 }
2931 
2932 /**
2933  *	skb_padto	- pad an skbuff up to a minimal size
2934  *	@skb: buffer to pad
2935  *	@len: minimal length
2936  *
2937  *	Pads up a buffer to ensure the trailing bytes exist and are
2938  *	blanked. If the buffer already contains sufficient data it
2939  *	is untouched. Otherwise it is extended. Returns zero on
2940  *	success. The skb is freed on error.
2941  */
2942 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2943 {
2944 	unsigned int size = skb->len;
2945 	if (likely(size >= len))
2946 		return 0;
2947 	return skb_pad(skb, len - size);
2948 }
2949 
2950 /**
2951  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2952  *	@skb: buffer to pad
2953  *	@len: minimal length
2954  *	@free_on_error: free buffer on error
2955  *
2956  *	Pads up a buffer to ensure the trailing bytes exist and are
2957  *	blanked. If the buffer already contains sufficient data it
2958  *	is untouched. Otherwise it is extended. Returns zero on
2959  *	success. The skb is freed on error if @free_on_error is true.
2960  */
2961 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2962 				  bool free_on_error)
2963 {
2964 	unsigned int size = skb->len;
2965 
2966 	if (unlikely(size < len)) {
2967 		len -= size;
2968 		if (__skb_pad(skb, len, free_on_error))
2969 			return -ENOMEM;
2970 		__skb_put(skb, len);
2971 	}
2972 	return 0;
2973 }
2974 
2975 /**
2976  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2977  *	@skb: buffer to pad
2978  *	@len: minimal length
2979  *
2980  *	Pads up a buffer to ensure the trailing bytes exist and are
2981  *	blanked. If the buffer already contains sufficient data it
2982  *	is untouched. Otherwise it is extended. Returns zero on
2983  *	success. The skb is freed on error.
2984  */
2985 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2986 {
2987 	return __skb_put_padto(skb, len, true);
2988 }
2989 
2990 static inline int skb_add_data(struct sk_buff *skb,
2991 			       struct iov_iter *from, int copy)
2992 {
2993 	const int off = skb->len;
2994 
2995 	if (skb->ip_summed == CHECKSUM_NONE) {
2996 		__wsum csum = 0;
2997 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2998 					         &csum, from)) {
2999 			skb->csum = csum_block_add(skb->csum, csum, off);
3000 			return 0;
3001 		}
3002 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3003 		return 0;
3004 
3005 	__skb_trim(skb, off);
3006 	return -EFAULT;
3007 }
3008 
3009 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3010 				    const struct page *page, int off)
3011 {
3012 	if (skb_zcopy(skb))
3013 		return false;
3014 	if (i) {
3015 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3016 
3017 		return page == skb_frag_page(frag) &&
3018 		       off == frag->page_offset + skb_frag_size(frag);
3019 	}
3020 	return false;
3021 }
3022 
3023 static inline int __skb_linearize(struct sk_buff *skb)
3024 {
3025 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3026 }
3027 
3028 /**
3029  *	skb_linearize - convert paged skb to linear one
3030  *	@skb: buffer to linarize
3031  *
3032  *	If there is no free memory -ENOMEM is returned, otherwise zero
3033  *	is returned and the old skb data released.
3034  */
3035 static inline int skb_linearize(struct sk_buff *skb)
3036 {
3037 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3038 }
3039 
3040 /**
3041  * skb_has_shared_frag - can any frag be overwritten
3042  * @skb: buffer to test
3043  *
3044  * Return true if the skb has at least one frag that might be modified
3045  * by an external entity (as in vmsplice()/sendfile())
3046  */
3047 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3048 {
3049 	return skb_is_nonlinear(skb) &&
3050 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3051 }
3052 
3053 /**
3054  *	skb_linearize_cow - make sure skb is linear and writable
3055  *	@skb: buffer to process
3056  *
3057  *	If there is no free memory -ENOMEM is returned, otherwise zero
3058  *	is returned and the old skb data released.
3059  */
3060 static inline int skb_linearize_cow(struct sk_buff *skb)
3061 {
3062 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3063 	       __skb_linearize(skb) : 0;
3064 }
3065 
3066 static __always_inline void
3067 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3068 		     unsigned int off)
3069 {
3070 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3071 		skb->csum = csum_block_sub(skb->csum,
3072 					   csum_partial(start, len, 0), off);
3073 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3074 		 skb_checksum_start_offset(skb) < 0)
3075 		skb->ip_summed = CHECKSUM_NONE;
3076 }
3077 
3078 /**
3079  *	skb_postpull_rcsum - update checksum for received skb after pull
3080  *	@skb: buffer to update
3081  *	@start: start of data before pull
3082  *	@len: length of data pulled
3083  *
3084  *	After doing a pull on a received packet, you need to call this to
3085  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3086  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3087  */
3088 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3089 				      const void *start, unsigned int len)
3090 {
3091 	__skb_postpull_rcsum(skb, start, len, 0);
3092 }
3093 
3094 static __always_inline void
3095 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3096 		     unsigned int off)
3097 {
3098 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3099 		skb->csum = csum_block_add(skb->csum,
3100 					   csum_partial(start, len, 0), off);
3101 }
3102 
3103 /**
3104  *	skb_postpush_rcsum - update checksum for received skb after push
3105  *	@skb: buffer to update
3106  *	@start: start of data after push
3107  *	@len: length of data pushed
3108  *
3109  *	After doing a push on a received packet, you need to call this to
3110  *	update the CHECKSUM_COMPLETE checksum.
3111  */
3112 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3113 				      const void *start, unsigned int len)
3114 {
3115 	__skb_postpush_rcsum(skb, start, len, 0);
3116 }
3117 
3118 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3119 
3120 /**
3121  *	skb_push_rcsum - push skb and update receive checksum
3122  *	@skb: buffer to update
3123  *	@len: length of data pulled
3124  *
3125  *	This function performs an skb_push on the packet and updates
3126  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3127  *	receive path processing instead of skb_push unless you know
3128  *	that the checksum difference is zero (e.g., a valid IP header)
3129  *	or you are setting ip_summed to CHECKSUM_NONE.
3130  */
3131 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3132 {
3133 	skb_push(skb, len);
3134 	skb_postpush_rcsum(skb, skb->data, len);
3135 	return skb->data;
3136 }
3137 
3138 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3139 /**
3140  *	pskb_trim_rcsum - trim received skb and update checksum
3141  *	@skb: buffer to trim
3142  *	@len: new length
3143  *
3144  *	This is exactly the same as pskb_trim except that it ensures the
3145  *	checksum of received packets are still valid after the operation.
3146  */
3147 
3148 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3149 {
3150 	if (likely(len >= skb->len))
3151 		return 0;
3152 	return pskb_trim_rcsum_slow(skb, len);
3153 }
3154 
3155 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3156 {
3157 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3158 		skb->ip_summed = CHECKSUM_NONE;
3159 	__skb_trim(skb, len);
3160 	return 0;
3161 }
3162 
3163 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3164 {
3165 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3166 		skb->ip_summed = CHECKSUM_NONE;
3167 	return __skb_grow(skb, len);
3168 }
3169 
3170 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3171 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3172 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3173 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3174 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3175 
3176 #define skb_queue_walk(queue, skb) \
3177 		for (skb = (queue)->next;					\
3178 		     skb != (struct sk_buff *)(queue);				\
3179 		     skb = skb->next)
3180 
3181 #define skb_queue_walk_safe(queue, skb, tmp)					\
3182 		for (skb = (queue)->next, tmp = skb->next;			\
3183 		     skb != (struct sk_buff *)(queue);				\
3184 		     skb = tmp, tmp = skb->next)
3185 
3186 #define skb_queue_walk_from(queue, skb)						\
3187 		for (; skb != (struct sk_buff *)(queue);			\
3188 		     skb = skb->next)
3189 
3190 #define skb_rbtree_walk(skb, root)						\
3191 		for (skb = skb_rb_first(root); skb != NULL;			\
3192 		     skb = skb_rb_next(skb))
3193 
3194 #define skb_rbtree_walk_from(skb)						\
3195 		for (; skb != NULL;						\
3196 		     skb = skb_rb_next(skb))
3197 
3198 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3199 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3200 		     skb = tmp)
3201 
3202 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3203 		for (tmp = skb->next;						\
3204 		     skb != (struct sk_buff *)(queue);				\
3205 		     skb = tmp, tmp = skb->next)
3206 
3207 #define skb_queue_reverse_walk(queue, skb) \
3208 		for (skb = (queue)->prev;					\
3209 		     skb != (struct sk_buff *)(queue);				\
3210 		     skb = skb->prev)
3211 
3212 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3213 		for (skb = (queue)->prev, tmp = skb->prev;			\
3214 		     skb != (struct sk_buff *)(queue);				\
3215 		     skb = tmp, tmp = skb->prev)
3216 
3217 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3218 		for (tmp = skb->prev;						\
3219 		     skb != (struct sk_buff *)(queue);				\
3220 		     skb = tmp, tmp = skb->prev)
3221 
3222 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3223 {
3224 	return skb_shinfo(skb)->frag_list != NULL;
3225 }
3226 
3227 static inline void skb_frag_list_init(struct sk_buff *skb)
3228 {
3229 	skb_shinfo(skb)->frag_list = NULL;
3230 }
3231 
3232 #define skb_walk_frags(skb, iter)	\
3233 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3234 
3235 
3236 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3237 				const struct sk_buff *skb);
3238 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3239 					  struct sk_buff_head *queue,
3240 					  unsigned int flags,
3241 					  void (*destructor)(struct sock *sk,
3242 							   struct sk_buff *skb),
3243 					  int *peeked, int *off, int *err,
3244 					  struct sk_buff **last);
3245 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3246 					void (*destructor)(struct sock *sk,
3247 							   struct sk_buff *skb),
3248 					int *peeked, int *off, int *err,
3249 					struct sk_buff **last);
3250 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3251 				    void (*destructor)(struct sock *sk,
3252 						       struct sk_buff *skb),
3253 				    int *peeked, int *off, int *err);
3254 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3255 				  int *err);
3256 __poll_t datagram_poll_mask(struct socket *sock, __poll_t events);
3257 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3258 			   struct iov_iter *to, int size);
3259 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3260 					struct msghdr *msg, int size)
3261 {
3262 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3263 }
3264 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3265 				   struct msghdr *msg);
3266 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3267 				 struct iov_iter *from, int len);
3268 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3269 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3270 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3271 static inline void skb_free_datagram_locked(struct sock *sk,
3272 					    struct sk_buff *skb)
3273 {
3274 	__skb_free_datagram_locked(sk, skb, 0);
3275 }
3276 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3277 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3278 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3279 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3280 			      int len, __wsum csum);
3281 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3282 		    struct pipe_inode_info *pipe, unsigned int len,
3283 		    unsigned int flags);
3284 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3285 			 int len);
3286 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3287 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3288 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3289 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3290 		 int len, int hlen);
3291 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3292 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3293 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3294 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3295 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3296 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3297 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3298 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3299 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3300 int skb_vlan_pop(struct sk_buff *skb);
3301 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3302 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3303 			     gfp_t gfp);
3304 
3305 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3306 {
3307 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3308 }
3309 
3310 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3311 {
3312 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3313 }
3314 
3315 struct skb_checksum_ops {
3316 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3317 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3318 };
3319 
3320 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3321 
3322 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3323 		      __wsum csum, const struct skb_checksum_ops *ops);
3324 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3325 		    __wsum csum);
3326 
3327 static inline void * __must_check
3328 __skb_header_pointer(const struct sk_buff *skb, int offset,
3329 		     int len, void *data, int hlen, void *buffer)
3330 {
3331 	if (hlen - offset >= len)
3332 		return data + offset;
3333 
3334 	if (!skb ||
3335 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3336 		return NULL;
3337 
3338 	return buffer;
3339 }
3340 
3341 static inline void * __must_check
3342 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3343 {
3344 	return __skb_header_pointer(skb, offset, len, skb->data,
3345 				    skb_headlen(skb), buffer);
3346 }
3347 
3348 /**
3349  *	skb_needs_linearize - check if we need to linearize a given skb
3350  *			      depending on the given device features.
3351  *	@skb: socket buffer to check
3352  *	@features: net device features
3353  *
3354  *	Returns true if either:
3355  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3356  *	2. skb is fragmented and the device does not support SG.
3357  */
3358 static inline bool skb_needs_linearize(struct sk_buff *skb,
3359 				       netdev_features_t features)
3360 {
3361 	return skb_is_nonlinear(skb) &&
3362 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3363 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3364 }
3365 
3366 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3367 					     void *to,
3368 					     const unsigned int len)
3369 {
3370 	memcpy(to, skb->data, len);
3371 }
3372 
3373 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3374 						    const int offset, void *to,
3375 						    const unsigned int len)
3376 {
3377 	memcpy(to, skb->data + offset, len);
3378 }
3379 
3380 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3381 					   const void *from,
3382 					   const unsigned int len)
3383 {
3384 	memcpy(skb->data, from, len);
3385 }
3386 
3387 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3388 						  const int offset,
3389 						  const void *from,
3390 						  const unsigned int len)
3391 {
3392 	memcpy(skb->data + offset, from, len);
3393 }
3394 
3395 void skb_init(void);
3396 
3397 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3398 {
3399 	return skb->tstamp;
3400 }
3401 
3402 /**
3403  *	skb_get_timestamp - get timestamp from a skb
3404  *	@skb: skb to get stamp from
3405  *	@stamp: pointer to struct timeval to store stamp in
3406  *
3407  *	Timestamps are stored in the skb as offsets to a base timestamp.
3408  *	This function converts the offset back to a struct timeval and stores
3409  *	it in stamp.
3410  */
3411 static inline void skb_get_timestamp(const struct sk_buff *skb,
3412 				     struct timeval *stamp)
3413 {
3414 	*stamp = ktime_to_timeval(skb->tstamp);
3415 }
3416 
3417 static inline void skb_get_timestampns(const struct sk_buff *skb,
3418 				       struct timespec *stamp)
3419 {
3420 	*stamp = ktime_to_timespec(skb->tstamp);
3421 }
3422 
3423 static inline void __net_timestamp(struct sk_buff *skb)
3424 {
3425 	skb->tstamp = ktime_get_real();
3426 }
3427 
3428 static inline ktime_t net_timedelta(ktime_t t)
3429 {
3430 	return ktime_sub(ktime_get_real(), t);
3431 }
3432 
3433 static inline ktime_t net_invalid_timestamp(void)
3434 {
3435 	return 0;
3436 }
3437 
3438 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3439 {
3440 	return skb_shinfo(skb)->meta_len;
3441 }
3442 
3443 static inline void *skb_metadata_end(const struct sk_buff *skb)
3444 {
3445 	return skb_mac_header(skb);
3446 }
3447 
3448 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3449 					  const struct sk_buff *skb_b,
3450 					  u8 meta_len)
3451 {
3452 	const void *a = skb_metadata_end(skb_a);
3453 	const void *b = skb_metadata_end(skb_b);
3454 	/* Using more efficient varaiant than plain call to memcmp(). */
3455 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3456 	u64 diffs = 0;
3457 
3458 	switch (meta_len) {
3459 #define __it(x, op) (x -= sizeof(u##op))
3460 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3461 	case 32: diffs |= __it_diff(a, b, 64);
3462 	case 24: diffs |= __it_diff(a, b, 64);
3463 	case 16: diffs |= __it_diff(a, b, 64);
3464 	case  8: diffs |= __it_diff(a, b, 64);
3465 		break;
3466 	case 28: diffs |= __it_diff(a, b, 64);
3467 	case 20: diffs |= __it_diff(a, b, 64);
3468 	case 12: diffs |= __it_diff(a, b, 64);
3469 	case  4: diffs |= __it_diff(a, b, 32);
3470 		break;
3471 	}
3472 	return diffs;
3473 #else
3474 	return memcmp(a - meta_len, b - meta_len, meta_len);
3475 #endif
3476 }
3477 
3478 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3479 					const struct sk_buff *skb_b)
3480 {
3481 	u8 len_a = skb_metadata_len(skb_a);
3482 	u8 len_b = skb_metadata_len(skb_b);
3483 
3484 	if (!(len_a | len_b))
3485 		return false;
3486 
3487 	return len_a != len_b ?
3488 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3489 }
3490 
3491 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3492 {
3493 	skb_shinfo(skb)->meta_len = meta_len;
3494 }
3495 
3496 static inline void skb_metadata_clear(struct sk_buff *skb)
3497 {
3498 	skb_metadata_set(skb, 0);
3499 }
3500 
3501 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3502 
3503 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3504 
3505 void skb_clone_tx_timestamp(struct sk_buff *skb);
3506 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3507 
3508 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3509 
3510 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3511 {
3512 }
3513 
3514 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3515 {
3516 	return false;
3517 }
3518 
3519 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3520 
3521 /**
3522  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3523  *
3524  * PHY drivers may accept clones of transmitted packets for
3525  * timestamping via their phy_driver.txtstamp method. These drivers
3526  * must call this function to return the skb back to the stack with a
3527  * timestamp.
3528  *
3529  * @skb: clone of the the original outgoing packet
3530  * @hwtstamps: hardware time stamps
3531  *
3532  */
3533 void skb_complete_tx_timestamp(struct sk_buff *skb,
3534 			       struct skb_shared_hwtstamps *hwtstamps);
3535 
3536 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3537 		     struct skb_shared_hwtstamps *hwtstamps,
3538 		     struct sock *sk, int tstype);
3539 
3540 /**
3541  * skb_tstamp_tx - queue clone of skb with send time stamps
3542  * @orig_skb:	the original outgoing packet
3543  * @hwtstamps:	hardware time stamps, may be NULL if not available
3544  *
3545  * If the skb has a socket associated, then this function clones the
3546  * skb (thus sharing the actual data and optional structures), stores
3547  * the optional hardware time stamping information (if non NULL) or
3548  * generates a software time stamp (otherwise), then queues the clone
3549  * to the error queue of the socket.  Errors are silently ignored.
3550  */
3551 void skb_tstamp_tx(struct sk_buff *orig_skb,
3552 		   struct skb_shared_hwtstamps *hwtstamps);
3553 
3554 /**
3555  * skb_tx_timestamp() - Driver hook for transmit timestamping
3556  *
3557  * Ethernet MAC Drivers should call this function in their hard_xmit()
3558  * function immediately before giving the sk_buff to the MAC hardware.
3559  *
3560  * Specifically, one should make absolutely sure that this function is
3561  * called before TX completion of this packet can trigger.  Otherwise
3562  * the packet could potentially already be freed.
3563  *
3564  * @skb: A socket buffer.
3565  */
3566 static inline void skb_tx_timestamp(struct sk_buff *skb)
3567 {
3568 	skb_clone_tx_timestamp(skb);
3569 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3570 		skb_tstamp_tx(skb, NULL);
3571 }
3572 
3573 /**
3574  * skb_complete_wifi_ack - deliver skb with wifi status
3575  *
3576  * @skb: the original outgoing packet
3577  * @acked: ack status
3578  *
3579  */
3580 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3581 
3582 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3583 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3584 
3585 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3586 {
3587 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3588 		skb->csum_valid ||
3589 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3590 		 skb_checksum_start_offset(skb) >= 0));
3591 }
3592 
3593 /**
3594  *	skb_checksum_complete - Calculate checksum of an entire packet
3595  *	@skb: packet to process
3596  *
3597  *	This function calculates the checksum over the entire packet plus
3598  *	the value of skb->csum.  The latter can be used to supply the
3599  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3600  *	checksum.
3601  *
3602  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3603  *	this function can be used to verify that checksum on received
3604  *	packets.  In that case the function should return zero if the
3605  *	checksum is correct.  In particular, this function will return zero
3606  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3607  *	hardware has already verified the correctness of the checksum.
3608  */
3609 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3610 {
3611 	return skb_csum_unnecessary(skb) ?
3612 	       0 : __skb_checksum_complete(skb);
3613 }
3614 
3615 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3616 {
3617 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3618 		if (skb->csum_level == 0)
3619 			skb->ip_summed = CHECKSUM_NONE;
3620 		else
3621 			skb->csum_level--;
3622 	}
3623 }
3624 
3625 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3626 {
3627 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3628 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3629 			skb->csum_level++;
3630 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3631 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3632 		skb->csum_level = 0;
3633 	}
3634 }
3635 
3636 /* Check if we need to perform checksum complete validation.
3637  *
3638  * Returns true if checksum complete is needed, false otherwise
3639  * (either checksum is unnecessary or zero checksum is allowed).
3640  */
3641 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3642 						  bool zero_okay,
3643 						  __sum16 check)
3644 {
3645 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3646 		skb->csum_valid = 1;
3647 		__skb_decr_checksum_unnecessary(skb);
3648 		return false;
3649 	}
3650 
3651 	return true;
3652 }
3653 
3654 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3655  * in checksum_init.
3656  */
3657 #define CHECKSUM_BREAK 76
3658 
3659 /* Unset checksum-complete
3660  *
3661  * Unset checksum complete can be done when packet is being modified
3662  * (uncompressed for instance) and checksum-complete value is
3663  * invalidated.
3664  */
3665 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3666 {
3667 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3668 		skb->ip_summed = CHECKSUM_NONE;
3669 }
3670 
3671 /* Validate (init) checksum based on checksum complete.
3672  *
3673  * Return values:
3674  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3675  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3676  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3677  *   non-zero: value of invalid checksum
3678  *
3679  */
3680 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3681 						       bool complete,
3682 						       __wsum psum)
3683 {
3684 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3685 		if (!csum_fold(csum_add(psum, skb->csum))) {
3686 			skb->csum_valid = 1;
3687 			return 0;
3688 		}
3689 	}
3690 
3691 	skb->csum = psum;
3692 
3693 	if (complete || skb->len <= CHECKSUM_BREAK) {
3694 		__sum16 csum;
3695 
3696 		csum = __skb_checksum_complete(skb);
3697 		skb->csum_valid = !csum;
3698 		return csum;
3699 	}
3700 
3701 	return 0;
3702 }
3703 
3704 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3705 {
3706 	return 0;
3707 }
3708 
3709 /* Perform checksum validate (init). Note that this is a macro since we only
3710  * want to calculate the pseudo header which is an input function if necessary.
3711  * First we try to validate without any computation (checksum unnecessary) and
3712  * then calculate based on checksum complete calling the function to compute
3713  * pseudo header.
3714  *
3715  * Return values:
3716  *   0: checksum is validated or try to in skb_checksum_complete
3717  *   non-zero: value of invalid checksum
3718  */
3719 #define __skb_checksum_validate(skb, proto, complete,			\
3720 				zero_okay, check, compute_pseudo)	\
3721 ({									\
3722 	__sum16 __ret = 0;						\
3723 	skb->csum_valid = 0;						\
3724 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3725 		__ret = __skb_checksum_validate_complete(skb,		\
3726 				complete, compute_pseudo(skb, proto));	\
3727 	__ret;								\
3728 })
3729 
3730 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3731 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3732 
3733 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3734 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3735 
3736 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3737 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3738 
3739 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3740 					 compute_pseudo)		\
3741 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3742 
3743 #define skb_checksum_simple_validate(skb)				\
3744 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3745 
3746 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3747 {
3748 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3749 }
3750 
3751 static inline void __skb_checksum_convert(struct sk_buff *skb,
3752 					  __sum16 check, __wsum pseudo)
3753 {
3754 	skb->csum = ~pseudo;
3755 	skb->ip_summed = CHECKSUM_COMPLETE;
3756 }
3757 
3758 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3759 do {									\
3760 	if (__skb_checksum_convert_check(skb))				\
3761 		__skb_checksum_convert(skb, check,			\
3762 				       compute_pseudo(skb, proto));	\
3763 } while (0)
3764 
3765 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3766 					      u16 start, u16 offset)
3767 {
3768 	skb->ip_summed = CHECKSUM_PARTIAL;
3769 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3770 	skb->csum_offset = offset - start;
3771 }
3772 
3773 /* Update skbuf and packet to reflect the remote checksum offload operation.
3774  * When called, ptr indicates the starting point for skb->csum when
3775  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3776  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3777  */
3778 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3779 				       int start, int offset, bool nopartial)
3780 {
3781 	__wsum delta;
3782 
3783 	if (!nopartial) {
3784 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3785 		return;
3786 	}
3787 
3788 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3789 		__skb_checksum_complete(skb);
3790 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3791 	}
3792 
3793 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3794 
3795 	/* Adjust skb->csum since we changed the packet */
3796 	skb->csum = csum_add(skb->csum, delta);
3797 }
3798 
3799 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3800 {
3801 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3802 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3803 #else
3804 	return NULL;
3805 #endif
3806 }
3807 
3808 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3809 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3810 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3811 {
3812 	if (nfct && atomic_dec_and_test(&nfct->use))
3813 		nf_conntrack_destroy(nfct);
3814 }
3815 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3816 {
3817 	if (nfct)
3818 		atomic_inc(&nfct->use);
3819 }
3820 #endif
3821 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3822 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3823 {
3824 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3825 		kfree(nf_bridge);
3826 }
3827 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3828 {
3829 	if (nf_bridge)
3830 		refcount_inc(&nf_bridge->use);
3831 }
3832 #endif /* CONFIG_BRIDGE_NETFILTER */
3833 static inline void nf_reset(struct sk_buff *skb)
3834 {
3835 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3836 	nf_conntrack_put(skb_nfct(skb));
3837 	skb->_nfct = 0;
3838 #endif
3839 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3840 	nf_bridge_put(skb->nf_bridge);
3841 	skb->nf_bridge = NULL;
3842 #endif
3843 }
3844 
3845 static inline void nf_reset_trace(struct sk_buff *skb)
3846 {
3847 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3848 	skb->nf_trace = 0;
3849 #endif
3850 }
3851 
3852 static inline void ipvs_reset(struct sk_buff *skb)
3853 {
3854 #if IS_ENABLED(CONFIG_IP_VS)
3855 	skb->ipvs_property = 0;
3856 #endif
3857 }
3858 
3859 /* Note: This doesn't put any conntrack and bridge info in dst. */
3860 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3861 			     bool copy)
3862 {
3863 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3864 	dst->_nfct = src->_nfct;
3865 	nf_conntrack_get(skb_nfct(src));
3866 #endif
3867 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3868 	dst->nf_bridge  = src->nf_bridge;
3869 	nf_bridge_get(src->nf_bridge);
3870 #endif
3871 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3872 	if (copy)
3873 		dst->nf_trace = src->nf_trace;
3874 #endif
3875 }
3876 
3877 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3878 {
3879 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3880 	nf_conntrack_put(skb_nfct(dst));
3881 #endif
3882 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3883 	nf_bridge_put(dst->nf_bridge);
3884 #endif
3885 	__nf_copy(dst, src, true);
3886 }
3887 
3888 #ifdef CONFIG_NETWORK_SECMARK
3889 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3890 {
3891 	to->secmark = from->secmark;
3892 }
3893 
3894 static inline void skb_init_secmark(struct sk_buff *skb)
3895 {
3896 	skb->secmark = 0;
3897 }
3898 #else
3899 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3900 { }
3901 
3902 static inline void skb_init_secmark(struct sk_buff *skb)
3903 { }
3904 #endif
3905 
3906 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3907 {
3908 	return !skb->destructor &&
3909 #if IS_ENABLED(CONFIG_XFRM)
3910 		!skb->sp &&
3911 #endif
3912 		!skb_nfct(skb) &&
3913 		!skb->_skb_refdst &&
3914 		!skb_has_frag_list(skb);
3915 }
3916 
3917 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3918 {
3919 	skb->queue_mapping = queue_mapping;
3920 }
3921 
3922 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3923 {
3924 	return skb->queue_mapping;
3925 }
3926 
3927 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3928 {
3929 	to->queue_mapping = from->queue_mapping;
3930 }
3931 
3932 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3933 {
3934 	skb->queue_mapping = rx_queue + 1;
3935 }
3936 
3937 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3938 {
3939 	return skb->queue_mapping - 1;
3940 }
3941 
3942 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3943 {
3944 	return skb->queue_mapping != 0;
3945 }
3946 
3947 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3948 {
3949 	skb->dst_pending_confirm = val;
3950 }
3951 
3952 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3953 {
3954 	return skb->dst_pending_confirm != 0;
3955 }
3956 
3957 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3958 {
3959 #ifdef CONFIG_XFRM
3960 	return skb->sp;
3961 #else
3962 	return NULL;
3963 #endif
3964 }
3965 
3966 /* Keeps track of mac header offset relative to skb->head.
3967  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3968  * For non-tunnel skb it points to skb_mac_header() and for
3969  * tunnel skb it points to outer mac header.
3970  * Keeps track of level of encapsulation of network headers.
3971  */
3972 struct skb_gso_cb {
3973 	union {
3974 		int	mac_offset;
3975 		int	data_offset;
3976 	};
3977 	int	encap_level;
3978 	__wsum	csum;
3979 	__u16	csum_start;
3980 };
3981 #define SKB_SGO_CB_OFFSET	32
3982 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3983 
3984 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3985 {
3986 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3987 		SKB_GSO_CB(inner_skb)->mac_offset;
3988 }
3989 
3990 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3991 {
3992 	int new_headroom, headroom;
3993 	int ret;
3994 
3995 	headroom = skb_headroom(skb);
3996 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3997 	if (ret)
3998 		return ret;
3999 
4000 	new_headroom = skb_headroom(skb);
4001 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4002 	return 0;
4003 }
4004 
4005 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4006 {
4007 	/* Do not update partial checksums if remote checksum is enabled. */
4008 	if (skb->remcsum_offload)
4009 		return;
4010 
4011 	SKB_GSO_CB(skb)->csum = res;
4012 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4013 }
4014 
4015 /* Compute the checksum for a gso segment. First compute the checksum value
4016  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4017  * then add in skb->csum (checksum from csum_start to end of packet).
4018  * skb->csum and csum_start are then updated to reflect the checksum of the
4019  * resultant packet starting from the transport header-- the resultant checksum
4020  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4021  * header.
4022  */
4023 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4024 {
4025 	unsigned char *csum_start = skb_transport_header(skb);
4026 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4027 	__wsum partial = SKB_GSO_CB(skb)->csum;
4028 
4029 	SKB_GSO_CB(skb)->csum = res;
4030 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4031 
4032 	return csum_fold(csum_partial(csum_start, plen, partial));
4033 }
4034 
4035 static inline bool skb_is_gso(const struct sk_buff *skb)
4036 {
4037 	return skb_shinfo(skb)->gso_size;
4038 }
4039 
4040 /* Note: Should be called only if skb_is_gso(skb) is true */
4041 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4042 {
4043 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4044 }
4045 
4046 /* Note: Should be called only if skb_is_gso(skb) is true */
4047 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4048 {
4049 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4050 }
4051 
4052 static inline void skb_gso_reset(struct sk_buff *skb)
4053 {
4054 	skb_shinfo(skb)->gso_size = 0;
4055 	skb_shinfo(skb)->gso_segs = 0;
4056 	skb_shinfo(skb)->gso_type = 0;
4057 }
4058 
4059 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4060 					 u16 increment)
4061 {
4062 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4063 		return;
4064 	shinfo->gso_size += increment;
4065 }
4066 
4067 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4068 					 u16 decrement)
4069 {
4070 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4071 		return;
4072 	shinfo->gso_size -= decrement;
4073 }
4074 
4075 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4076 
4077 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4078 {
4079 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4080 	 * wanted then gso_type will be set. */
4081 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4082 
4083 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4084 	    unlikely(shinfo->gso_type == 0)) {
4085 		__skb_warn_lro_forwarding(skb);
4086 		return true;
4087 	}
4088 	return false;
4089 }
4090 
4091 static inline void skb_forward_csum(struct sk_buff *skb)
4092 {
4093 	/* Unfortunately we don't support this one.  Any brave souls? */
4094 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4095 		skb->ip_summed = CHECKSUM_NONE;
4096 }
4097 
4098 /**
4099  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4100  * @skb: skb to check
4101  *
4102  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4103  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4104  * use this helper, to document places where we make this assertion.
4105  */
4106 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4107 {
4108 #ifdef DEBUG
4109 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4110 #endif
4111 }
4112 
4113 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4114 
4115 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4116 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4117 				     unsigned int transport_len,
4118 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4119 
4120 /**
4121  * skb_head_is_locked - Determine if the skb->head is locked down
4122  * @skb: skb to check
4123  *
4124  * The head on skbs build around a head frag can be removed if they are
4125  * not cloned.  This function returns true if the skb head is locked down
4126  * due to either being allocated via kmalloc, or by being a clone with
4127  * multiple references to the head.
4128  */
4129 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4130 {
4131 	return !skb->head_frag || skb_cloned(skb);
4132 }
4133 
4134 /* Local Checksum Offload.
4135  * Compute outer checksum based on the assumption that the
4136  * inner checksum will be offloaded later.
4137  * See Documentation/networking/checksum-offloads.txt for
4138  * explanation of how this works.
4139  * Fill in outer checksum adjustment (e.g. with sum of outer
4140  * pseudo-header) before calling.
4141  * Also ensure that inner checksum is in linear data area.
4142  */
4143 static inline __wsum lco_csum(struct sk_buff *skb)
4144 {
4145 	unsigned char *csum_start = skb_checksum_start(skb);
4146 	unsigned char *l4_hdr = skb_transport_header(skb);
4147 	__wsum partial;
4148 
4149 	/* Start with complement of inner checksum adjustment */
4150 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4151 						    skb->csum_offset));
4152 
4153 	/* Add in checksum of our headers (incl. outer checksum
4154 	 * adjustment filled in by caller) and return result.
4155 	 */
4156 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4157 }
4158 
4159 #endif	/* __KERNEL__ */
4160 #endif	/* _LINUX_SKBUFF_H */
4161