xref: /linux-6.15/include/linux/skbuff.h (revision 4e108d4f)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281  * ovs recirc_id. It will be set to the current chain by tc
282  * and read by ovs to recirc_id.
283  */
284 struct tc_skb_ext {
285 	__u32 chain;
286 };
287 #endif
288 
289 struct sk_buff_head {
290 	/* These two members must be first. */
291 	struct sk_buff	*next;
292 	struct sk_buff	*prev;
293 
294 	__u32		qlen;
295 	spinlock_t	lock;
296 };
297 
298 struct sk_buff;
299 
300 /* To allow 64K frame to be packed as single skb without frag_list we
301  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
302  * buffers which do not start on a page boundary.
303  *
304  * Since GRO uses frags we allocate at least 16 regardless of page
305  * size.
306  */
307 #if (65536/PAGE_SIZE + 1) < 16
308 #define MAX_SKB_FRAGS 16UL
309 #else
310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
311 #endif
312 extern int sysctl_max_skb_frags;
313 
314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
315  * segment using its current segmentation instead.
316  */
317 #define GSO_BY_FRAGS	0xFFFF
318 
319 typedef struct bio_vec skb_frag_t;
320 
321 /**
322  * skb_frag_size() - Returns the size of a skb fragment
323  * @frag: skb fragment
324  */
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->bv_len;
328 }
329 
330 /**
331  * skb_frag_size_set() - Sets the size of a skb fragment
332  * @frag: skb fragment
333  * @size: size of fragment
334  */
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->bv_len = size;
338 }
339 
340 /**
341  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
342  * @frag: skb fragment
343  * @delta: value to add
344  */
345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
346 {
347 	frag->bv_len += delta;
348 }
349 
350 /**
351  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
352  * @frag: skb fragment
353  * @delta: value to subtract
354  */
355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
356 {
357 	frag->bv_len -= delta;
358 }
359 
360 /**
361  * skb_frag_must_loop - Test if %p is a high memory page
362  * @p: fragment's page
363  */
364 static inline bool skb_frag_must_loop(struct page *p)
365 {
366 #if defined(CONFIG_HIGHMEM)
367 	if (PageHighMem(p))
368 		return true;
369 #endif
370 	return false;
371 }
372 
373 /**
374  *	skb_frag_foreach_page - loop over pages in a fragment
375  *
376  *	@f:		skb frag to operate on
377  *	@f_off:		offset from start of f->bv_page
378  *	@f_len:		length from f_off to loop over
379  *	@p:		(temp var) current page
380  *	@p_off:		(temp var) offset from start of current page,
381  *	                           non-zero only on first page.
382  *	@p_len:		(temp var) length in current page,
383  *				   < PAGE_SIZE only on first and last page.
384  *	@copied:	(temp var) length so far, excluding current p_len.
385  *
386  *	A fragment can hold a compound page, in which case per-page
387  *	operations, notably kmap_atomic, must be called for each
388  *	regular page.
389  */
390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
391 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
392 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
393 	     p_len = skb_frag_must_loop(p) ?				\
394 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
395 	     copied = 0;						\
396 	     copied < f_len;						\
397 	     copied += p_len, p++, p_off = 0,				\
398 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
399 
400 #define HAVE_HW_TIME_STAMP
401 
402 /**
403  * struct skb_shared_hwtstamps - hardware time stamps
404  * @hwtstamp:	hardware time stamp transformed into duration
405  *		since arbitrary point in time
406  *
407  * Software time stamps generated by ktime_get_real() are stored in
408  * skb->tstamp.
409  *
410  * hwtstamps can only be compared against other hwtstamps from
411  * the same device.
412  *
413  * This structure is attached to packets as part of the
414  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
415  */
416 struct skb_shared_hwtstamps {
417 	ktime_t	hwtstamp;
418 };
419 
420 /* Definitions for tx_flags in struct skb_shared_info */
421 enum {
422 	/* generate hardware time stamp */
423 	SKBTX_HW_TSTAMP = 1 << 0,
424 
425 	/* generate software time stamp when queueing packet to NIC */
426 	SKBTX_SW_TSTAMP = 1 << 1,
427 
428 	/* device driver is going to provide hardware time stamp */
429 	SKBTX_IN_PROGRESS = 1 << 2,
430 
431 	/* device driver supports TX zero-copy buffers */
432 	SKBTX_DEV_ZEROCOPY = 1 << 3,
433 
434 	/* generate wifi status information (where possible) */
435 	SKBTX_WIFI_STATUS = 1 << 4,
436 
437 	/* This indicates at least one fragment might be overwritten
438 	 * (as in vmsplice(), sendfile() ...)
439 	 * If we need to compute a TX checksum, we'll need to copy
440 	 * all frags to avoid possible bad checksum
441 	 */
442 	SKBTX_SHARED_FRAG = 1 << 5,
443 
444 	/* generate software time stamp when entering packet scheduling */
445 	SKBTX_SCHED_TSTAMP = 1 << 6,
446 };
447 
448 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
449 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
450 				 SKBTX_SCHED_TSTAMP)
451 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
452 
453 /*
454  * The callback notifies userspace to release buffers when skb DMA is done in
455  * lower device, the skb last reference should be 0 when calling this.
456  * The zerocopy_success argument is true if zero copy transmit occurred,
457  * false on data copy or out of memory error caused by data copy attempt.
458  * The ctx field is used to track device context.
459  * The desc field is used to track userspace buffer index.
460  */
461 struct ubuf_info {
462 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
463 	union {
464 		struct {
465 			unsigned long desc;
466 			void *ctx;
467 		};
468 		struct {
469 			u32 id;
470 			u16 len;
471 			u16 zerocopy:1;
472 			u32 bytelen;
473 		};
474 	};
475 	refcount_t refcnt;
476 
477 	struct mmpin {
478 		struct user_struct *user;
479 		unsigned int num_pg;
480 	} mmp;
481 };
482 
483 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
484 
485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
486 void mm_unaccount_pinned_pages(struct mmpin *mmp);
487 
488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
490 					struct ubuf_info *uarg);
491 
492 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
493 {
494 	refcount_inc(&uarg->refcnt);
495 }
496 
497 void sock_zerocopy_put(struct ubuf_info *uarg);
498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
499 
500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
501 
502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
504 			     struct msghdr *msg, int len,
505 			     struct ubuf_info *uarg);
506 
507 /* This data is invariant across clones and lives at
508  * the end of the header data, ie. at skb->end.
509  */
510 struct skb_shared_info {
511 	__u8		__unused;
512 	__u8		meta_len;
513 	__u8		nr_frags;
514 	__u8		tx_flags;
515 	unsigned short	gso_size;
516 	/* Warning: this field is not always filled in (UFO)! */
517 	unsigned short	gso_segs;
518 	struct sk_buff	*frag_list;
519 	struct skb_shared_hwtstamps hwtstamps;
520 	unsigned int	gso_type;
521 	u32		tskey;
522 
523 	/*
524 	 * Warning : all fields before dataref are cleared in __alloc_skb()
525 	 */
526 	atomic_t	dataref;
527 
528 	/* Intermediate layers must ensure that destructor_arg
529 	 * remains valid until skb destructor */
530 	void *		destructor_arg;
531 
532 	/* must be last field, see pskb_expand_head() */
533 	skb_frag_t	frags[MAX_SKB_FRAGS];
534 };
535 
536 /* We divide dataref into two halves.  The higher 16 bits hold references
537  * to the payload part of skb->data.  The lower 16 bits hold references to
538  * the entire skb->data.  A clone of a headerless skb holds the length of
539  * the header in skb->hdr_len.
540  *
541  * All users must obey the rule that the skb->data reference count must be
542  * greater than or equal to the payload reference count.
543  *
544  * Holding a reference to the payload part means that the user does not
545  * care about modifications to the header part of skb->data.
546  */
547 #define SKB_DATAREF_SHIFT 16
548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
549 
550 
551 enum {
552 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
553 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
554 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
555 };
556 
557 enum {
558 	SKB_GSO_TCPV4 = 1 << 0,
559 
560 	/* This indicates the skb is from an untrusted source. */
561 	SKB_GSO_DODGY = 1 << 1,
562 
563 	/* This indicates the tcp segment has CWR set. */
564 	SKB_GSO_TCP_ECN = 1 << 2,
565 
566 	SKB_GSO_TCP_FIXEDID = 1 << 3,
567 
568 	SKB_GSO_TCPV6 = 1 << 4,
569 
570 	SKB_GSO_FCOE = 1 << 5,
571 
572 	SKB_GSO_GRE = 1 << 6,
573 
574 	SKB_GSO_GRE_CSUM = 1 << 7,
575 
576 	SKB_GSO_IPXIP4 = 1 << 8,
577 
578 	SKB_GSO_IPXIP6 = 1 << 9,
579 
580 	SKB_GSO_UDP_TUNNEL = 1 << 10,
581 
582 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
583 
584 	SKB_GSO_PARTIAL = 1 << 12,
585 
586 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
587 
588 	SKB_GSO_SCTP = 1 << 14,
589 
590 	SKB_GSO_ESP = 1 << 15,
591 
592 	SKB_GSO_UDP = 1 << 16,
593 
594 	SKB_GSO_UDP_L4 = 1 << 17,
595 
596 	SKB_GSO_FRAGLIST = 1 << 18,
597 };
598 
599 #if BITS_PER_LONG > 32
600 #define NET_SKBUFF_DATA_USES_OFFSET 1
601 #endif
602 
603 #ifdef NET_SKBUFF_DATA_USES_OFFSET
604 typedef unsigned int sk_buff_data_t;
605 #else
606 typedef unsigned char *sk_buff_data_t;
607 #endif
608 
609 /**
610  *	struct sk_buff - socket buffer
611  *	@next: Next buffer in list
612  *	@prev: Previous buffer in list
613  *	@tstamp: Time we arrived/left
614  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
615  *		for retransmit timer
616  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
617  *	@list: queue head
618  *	@sk: Socket we are owned by
619  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
620  *		fragmentation management
621  *	@dev: Device we arrived on/are leaving by
622  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
623  *	@cb: Control buffer. Free for use by every layer. Put private vars here
624  *	@_skb_refdst: destination entry (with norefcount bit)
625  *	@sp: the security path, used for xfrm
626  *	@len: Length of actual data
627  *	@data_len: Data length
628  *	@mac_len: Length of link layer header
629  *	@hdr_len: writable header length of cloned skb
630  *	@csum: Checksum (must include start/offset pair)
631  *	@csum_start: Offset from skb->head where checksumming should start
632  *	@csum_offset: Offset from csum_start where checksum should be stored
633  *	@priority: Packet queueing priority
634  *	@ignore_df: allow local fragmentation
635  *	@cloned: Head may be cloned (check refcnt to be sure)
636  *	@ip_summed: Driver fed us an IP checksum
637  *	@nohdr: Payload reference only, must not modify header
638  *	@pkt_type: Packet class
639  *	@fclone: skbuff clone status
640  *	@ipvs_property: skbuff is owned by ipvs
641  *	@inner_protocol_type: whether the inner protocol is
642  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
643  *	@remcsum_offload: remote checksum offload is enabled
644  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
645  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
646  *	@tc_skip_classify: do not classify packet. set by IFB device
647  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
648  *	@redirected: packet was redirected by packet classifier
649  *	@from_ingress: packet was redirected from the ingress path
650  *	@peeked: this packet has been seen already, so stats have been
651  *		done for it, don't do them again
652  *	@nf_trace: netfilter packet trace flag
653  *	@protocol: Packet protocol from driver
654  *	@destructor: Destruct function
655  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
656  *	@_nfct: Associated connection, if any (with nfctinfo bits)
657  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
658  *	@skb_iif: ifindex of device we arrived on
659  *	@tc_index: Traffic control index
660  *	@hash: the packet hash
661  *	@queue_mapping: Queue mapping for multiqueue devices
662  *	@head_frag: skb was allocated from page fragments,
663  *		not allocated by kmalloc() or vmalloc().
664  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
665  *	@active_extensions: active extensions (skb_ext_id types)
666  *	@ndisc_nodetype: router type (from link layer)
667  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
668  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
669  *		ports.
670  *	@sw_hash: indicates hash was computed in software stack
671  *	@wifi_acked_valid: wifi_acked was set
672  *	@wifi_acked: whether frame was acked on wifi or not
673  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
674  *	@encapsulation: indicates the inner headers in the skbuff are valid
675  *	@encap_hdr_csum: software checksum is needed
676  *	@csum_valid: checksum is already valid
677  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
678  *	@csum_complete_sw: checksum was completed by software
679  *	@csum_level: indicates the number of consecutive checksums found in
680  *		the packet minus one that have been verified as
681  *		CHECKSUM_UNNECESSARY (max 3)
682  *	@dst_pending_confirm: need to confirm neighbour
683  *	@decrypted: Decrypted SKB
684  *	@napi_id: id of the NAPI struct this skb came from
685  *	@sender_cpu: (aka @napi_id) source CPU in XPS
686  *	@secmark: security marking
687  *	@mark: Generic packet mark
688  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
689  *		at the tail of an sk_buff
690  *	@vlan_present: VLAN tag is present
691  *	@vlan_proto: vlan encapsulation protocol
692  *	@vlan_tci: vlan tag control information
693  *	@inner_protocol: Protocol (encapsulation)
694  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
695  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
696  *	@inner_transport_header: Inner transport layer header (encapsulation)
697  *	@inner_network_header: Network layer header (encapsulation)
698  *	@inner_mac_header: Link layer header (encapsulation)
699  *	@transport_header: Transport layer header
700  *	@network_header: Network layer header
701  *	@mac_header: Link layer header
702  *	@tail: Tail pointer
703  *	@end: End pointer
704  *	@head: Head of buffer
705  *	@data: Data head pointer
706  *	@truesize: Buffer size
707  *	@users: User count - see {datagram,tcp}.c
708  *	@extensions: allocated extensions, valid if active_extensions is nonzero
709  */
710 
711 struct sk_buff {
712 	union {
713 		struct {
714 			/* These two members must be first. */
715 			struct sk_buff		*next;
716 			struct sk_buff		*prev;
717 
718 			union {
719 				struct net_device	*dev;
720 				/* Some protocols might use this space to store information,
721 				 * while device pointer would be NULL.
722 				 * UDP receive path is one user.
723 				 */
724 				unsigned long		dev_scratch;
725 			};
726 		};
727 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
728 		struct list_head	list;
729 	};
730 
731 	union {
732 		struct sock		*sk;
733 		int			ip_defrag_offset;
734 	};
735 
736 	union {
737 		ktime_t		tstamp;
738 		u64		skb_mstamp_ns; /* earliest departure time */
739 	};
740 	/*
741 	 * This is the control buffer. It is free to use for every
742 	 * layer. Please put your private variables there. If you
743 	 * want to keep them across layers you have to do a skb_clone()
744 	 * first. This is owned by whoever has the skb queued ATM.
745 	 */
746 	char			cb[48] __aligned(8);
747 
748 	union {
749 		struct {
750 			unsigned long	_skb_refdst;
751 			void		(*destructor)(struct sk_buff *skb);
752 		};
753 		struct list_head	tcp_tsorted_anchor;
754 	};
755 
756 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
757 	unsigned long		 _nfct;
758 #endif
759 	unsigned int		len,
760 				data_len;
761 	__u16			mac_len,
762 				hdr_len;
763 
764 	/* Following fields are _not_ copied in __copy_skb_header()
765 	 * Note that queue_mapping is here mostly to fill a hole.
766 	 */
767 	__u16			queue_mapping;
768 
769 /* if you move cloned around you also must adapt those constants */
770 #ifdef __BIG_ENDIAN_BITFIELD
771 #define CLONED_MASK	(1 << 7)
772 #else
773 #define CLONED_MASK	1
774 #endif
775 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
776 
777 	/* private: */
778 	__u8			__cloned_offset[0];
779 	/* public: */
780 	__u8			cloned:1,
781 				nohdr:1,
782 				fclone:2,
783 				peeked:1,
784 				head_frag:1,
785 				pfmemalloc:1;
786 #ifdef CONFIG_SKB_EXTENSIONS
787 	__u8			active_extensions;
788 #endif
789 	/* fields enclosed in headers_start/headers_end are copied
790 	 * using a single memcpy() in __copy_skb_header()
791 	 */
792 	/* private: */
793 	__u32			headers_start[0];
794 	/* public: */
795 
796 /* if you move pkt_type around you also must adapt those constants */
797 #ifdef __BIG_ENDIAN_BITFIELD
798 #define PKT_TYPE_MAX	(7 << 5)
799 #else
800 #define PKT_TYPE_MAX	7
801 #endif
802 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
803 
804 	/* private: */
805 	__u8			__pkt_type_offset[0];
806 	/* public: */
807 	__u8			pkt_type:3;
808 	__u8			ignore_df:1;
809 	__u8			nf_trace:1;
810 	__u8			ip_summed:2;
811 	__u8			ooo_okay:1;
812 
813 	__u8			l4_hash:1;
814 	__u8			sw_hash:1;
815 	__u8			wifi_acked_valid:1;
816 	__u8			wifi_acked:1;
817 	__u8			no_fcs:1;
818 	/* Indicates the inner headers are valid in the skbuff. */
819 	__u8			encapsulation:1;
820 	__u8			encap_hdr_csum:1;
821 	__u8			csum_valid:1;
822 
823 #ifdef __BIG_ENDIAN_BITFIELD
824 #define PKT_VLAN_PRESENT_BIT	7
825 #else
826 #define PKT_VLAN_PRESENT_BIT	0
827 #endif
828 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
829 	/* private: */
830 	__u8			__pkt_vlan_present_offset[0];
831 	/* public: */
832 	__u8			vlan_present:1;
833 	__u8			csum_complete_sw:1;
834 	__u8			csum_level:2;
835 	__u8			csum_not_inet:1;
836 	__u8			dst_pending_confirm:1;
837 #ifdef CONFIG_IPV6_NDISC_NODETYPE
838 	__u8			ndisc_nodetype:2;
839 #endif
840 
841 	__u8			ipvs_property:1;
842 	__u8			inner_protocol_type:1;
843 	__u8			remcsum_offload:1;
844 #ifdef CONFIG_NET_SWITCHDEV
845 	__u8			offload_fwd_mark:1;
846 	__u8			offload_l3_fwd_mark:1;
847 #endif
848 #ifdef CONFIG_NET_CLS_ACT
849 	__u8			tc_skip_classify:1;
850 	__u8			tc_at_ingress:1;
851 #endif
852 #ifdef CONFIG_NET_REDIRECT
853 	__u8			redirected:1;
854 	__u8			from_ingress:1;
855 #endif
856 #ifdef CONFIG_TLS_DEVICE
857 	__u8			decrypted:1;
858 #endif
859 
860 #ifdef CONFIG_NET_SCHED
861 	__u16			tc_index;	/* traffic control index */
862 #endif
863 
864 	union {
865 		__wsum		csum;
866 		struct {
867 			__u16	csum_start;
868 			__u16	csum_offset;
869 		};
870 	};
871 	__u32			priority;
872 	int			skb_iif;
873 	__u32			hash;
874 	__be16			vlan_proto;
875 	__u16			vlan_tci;
876 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
877 	union {
878 		unsigned int	napi_id;
879 		unsigned int	sender_cpu;
880 	};
881 #endif
882 #ifdef CONFIG_NETWORK_SECMARK
883 	__u32		secmark;
884 #endif
885 
886 	union {
887 		__u32		mark;
888 		__u32		reserved_tailroom;
889 	};
890 
891 	union {
892 		__be16		inner_protocol;
893 		__u8		inner_ipproto;
894 	};
895 
896 	__u16			inner_transport_header;
897 	__u16			inner_network_header;
898 	__u16			inner_mac_header;
899 
900 	__be16			protocol;
901 	__u16			transport_header;
902 	__u16			network_header;
903 	__u16			mac_header;
904 
905 	/* private: */
906 	__u32			headers_end[0];
907 	/* public: */
908 
909 	/* These elements must be at the end, see alloc_skb() for details.  */
910 	sk_buff_data_t		tail;
911 	sk_buff_data_t		end;
912 	unsigned char		*head,
913 				*data;
914 	unsigned int		truesize;
915 	refcount_t		users;
916 
917 #ifdef CONFIG_SKB_EXTENSIONS
918 	/* only useable after checking ->active_extensions != 0 */
919 	struct skb_ext		*extensions;
920 #endif
921 };
922 
923 #ifdef __KERNEL__
924 /*
925  *	Handling routines are only of interest to the kernel
926  */
927 
928 #define SKB_ALLOC_FCLONE	0x01
929 #define SKB_ALLOC_RX		0x02
930 #define SKB_ALLOC_NAPI		0x04
931 
932 /**
933  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
934  * @skb: buffer
935  */
936 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
937 {
938 	return unlikely(skb->pfmemalloc);
939 }
940 
941 /*
942  * skb might have a dst pointer attached, refcounted or not.
943  * _skb_refdst low order bit is set if refcount was _not_ taken
944  */
945 #define SKB_DST_NOREF	1UL
946 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
947 
948 /**
949  * skb_dst - returns skb dst_entry
950  * @skb: buffer
951  *
952  * Returns skb dst_entry, regardless of reference taken or not.
953  */
954 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
955 {
956 	/* If refdst was not refcounted, check we still are in a
957 	 * rcu_read_lock section
958 	 */
959 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
960 		!rcu_read_lock_held() &&
961 		!rcu_read_lock_bh_held());
962 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
963 }
964 
965 /**
966  * skb_dst_set - sets skb dst
967  * @skb: buffer
968  * @dst: dst entry
969  *
970  * Sets skb dst, assuming a reference was taken on dst and should
971  * be released by skb_dst_drop()
972  */
973 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
974 {
975 	skb->_skb_refdst = (unsigned long)dst;
976 }
977 
978 /**
979  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
980  * @skb: buffer
981  * @dst: dst entry
982  *
983  * Sets skb dst, assuming a reference was not taken on dst.
984  * If dst entry is cached, we do not take reference and dst_release
985  * will be avoided by refdst_drop. If dst entry is not cached, we take
986  * reference, so that last dst_release can destroy the dst immediately.
987  */
988 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
989 {
990 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
991 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
992 }
993 
994 /**
995  * skb_dst_is_noref - Test if skb dst isn't refcounted
996  * @skb: buffer
997  */
998 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
999 {
1000 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1001 }
1002 
1003 /**
1004  * skb_rtable - Returns the skb &rtable
1005  * @skb: buffer
1006  */
1007 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1008 {
1009 	return (struct rtable *)skb_dst(skb);
1010 }
1011 
1012 /* For mangling skb->pkt_type from user space side from applications
1013  * such as nft, tc, etc, we only allow a conservative subset of
1014  * possible pkt_types to be set.
1015 */
1016 static inline bool skb_pkt_type_ok(u32 ptype)
1017 {
1018 	return ptype <= PACKET_OTHERHOST;
1019 }
1020 
1021 /**
1022  * skb_napi_id - Returns the skb's NAPI id
1023  * @skb: buffer
1024  */
1025 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1026 {
1027 #ifdef CONFIG_NET_RX_BUSY_POLL
1028 	return skb->napi_id;
1029 #else
1030 	return 0;
1031 #endif
1032 }
1033 
1034 /**
1035  * skb_unref - decrement the skb's reference count
1036  * @skb: buffer
1037  *
1038  * Returns true if we can free the skb.
1039  */
1040 static inline bool skb_unref(struct sk_buff *skb)
1041 {
1042 	if (unlikely(!skb))
1043 		return false;
1044 	if (likely(refcount_read(&skb->users) == 1))
1045 		smp_rmb();
1046 	else if (likely(!refcount_dec_and_test(&skb->users)))
1047 		return false;
1048 
1049 	return true;
1050 }
1051 
1052 void skb_release_head_state(struct sk_buff *skb);
1053 void kfree_skb(struct sk_buff *skb);
1054 void kfree_skb_list(struct sk_buff *segs);
1055 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1056 void skb_tx_error(struct sk_buff *skb);
1057 void consume_skb(struct sk_buff *skb);
1058 void __consume_stateless_skb(struct sk_buff *skb);
1059 void  __kfree_skb(struct sk_buff *skb);
1060 extern struct kmem_cache *skbuff_head_cache;
1061 
1062 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1063 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1064 		      bool *fragstolen, int *delta_truesize);
1065 
1066 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1067 			    int node);
1068 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1069 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1070 struct sk_buff *build_skb_around(struct sk_buff *skb,
1071 				 void *data, unsigned int frag_size);
1072 
1073 /**
1074  * alloc_skb - allocate a network buffer
1075  * @size: size to allocate
1076  * @priority: allocation mask
1077  *
1078  * This function is a convenient wrapper around __alloc_skb().
1079  */
1080 static inline struct sk_buff *alloc_skb(unsigned int size,
1081 					gfp_t priority)
1082 {
1083 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1084 }
1085 
1086 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1087 				     unsigned long data_len,
1088 				     int max_page_order,
1089 				     int *errcode,
1090 				     gfp_t gfp_mask);
1091 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1092 
1093 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1094 struct sk_buff_fclones {
1095 	struct sk_buff	skb1;
1096 
1097 	struct sk_buff	skb2;
1098 
1099 	refcount_t	fclone_ref;
1100 };
1101 
1102 /**
1103  *	skb_fclone_busy - check if fclone is busy
1104  *	@sk: socket
1105  *	@skb: buffer
1106  *
1107  * Returns true if skb is a fast clone, and its clone is not freed.
1108  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1109  * so we also check that this didnt happen.
1110  */
1111 static inline bool skb_fclone_busy(const struct sock *sk,
1112 				   const struct sk_buff *skb)
1113 {
1114 	const struct sk_buff_fclones *fclones;
1115 
1116 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1117 
1118 	return skb->fclone == SKB_FCLONE_ORIG &&
1119 	       refcount_read(&fclones->fclone_ref) > 1 &&
1120 	       fclones->skb2.sk == sk;
1121 }
1122 
1123 /**
1124  * alloc_skb_fclone - allocate a network buffer from fclone cache
1125  * @size: size to allocate
1126  * @priority: allocation mask
1127  *
1128  * This function is a convenient wrapper around __alloc_skb().
1129  */
1130 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1131 					       gfp_t priority)
1132 {
1133 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1134 }
1135 
1136 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1137 void skb_headers_offset_update(struct sk_buff *skb, int off);
1138 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1139 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1140 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1141 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1142 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1143 				   gfp_t gfp_mask, bool fclone);
1144 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1145 					  gfp_t gfp_mask)
1146 {
1147 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1148 }
1149 
1150 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1151 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1152 				     unsigned int headroom);
1153 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1154 				int newtailroom, gfp_t priority);
1155 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1156 				     int offset, int len);
1157 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1158 			      int offset, int len);
1159 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1160 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1161 
1162 /**
1163  *	skb_pad			-	zero pad the tail of an skb
1164  *	@skb: buffer to pad
1165  *	@pad: space to pad
1166  *
1167  *	Ensure that a buffer is followed by a padding area that is zero
1168  *	filled. Used by network drivers which may DMA or transfer data
1169  *	beyond the buffer end onto the wire.
1170  *
1171  *	May return error in out of memory cases. The skb is freed on error.
1172  */
1173 static inline int skb_pad(struct sk_buff *skb, int pad)
1174 {
1175 	return __skb_pad(skb, pad, true);
1176 }
1177 #define dev_kfree_skb(a)	consume_skb(a)
1178 
1179 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1180 			 int offset, size_t size);
1181 
1182 struct skb_seq_state {
1183 	__u32		lower_offset;
1184 	__u32		upper_offset;
1185 	__u32		frag_idx;
1186 	__u32		stepped_offset;
1187 	struct sk_buff	*root_skb;
1188 	struct sk_buff	*cur_skb;
1189 	__u8		*frag_data;
1190 };
1191 
1192 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1193 			  unsigned int to, struct skb_seq_state *st);
1194 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1195 			  struct skb_seq_state *st);
1196 void skb_abort_seq_read(struct skb_seq_state *st);
1197 
1198 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1199 			   unsigned int to, struct ts_config *config);
1200 
1201 /*
1202  * Packet hash types specify the type of hash in skb_set_hash.
1203  *
1204  * Hash types refer to the protocol layer addresses which are used to
1205  * construct a packet's hash. The hashes are used to differentiate or identify
1206  * flows of the protocol layer for the hash type. Hash types are either
1207  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1208  *
1209  * Properties of hashes:
1210  *
1211  * 1) Two packets in different flows have different hash values
1212  * 2) Two packets in the same flow should have the same hash value
1213  *
1214  * A hash at a higher layer is considered to be more specific. A driver should
1215  * set the most specific hash possible.
1216  *
1217  * A driver cannot indicate a more specific hash than the layer at which a hash
1218  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1219  *
1220  * A driver may indicate a hash level which is less specific than the
1221  * actual layer the hash was computed on. For instance, a hash computed
1222  * at L4 may be considered an L3 hash. This should only be done if the
1223  * driver can't unambiguously determine that the HW computed the hash at
1224  * the higher layer. Note that the "should" in the second property above
1225  * permits this.
1226  */
1227 enum pkt_hash_types {
1228 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1229 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1230 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1231 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1232 };
1233 
1234 static inline void skb_clear_hash(struct sk_buff *skb)
1235 {
1236 	skb->hash = 0;
1237 	skb->sw_hash = 0;
1238 	skb->l4_hash = 0;
1239 }
1240 
1241 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1242 {
1243 	if (!skb->l4_hash)
1244 		skb_clear_hash(skb);
1245 }
1246 
1247 static inline void
1248 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1249 {
1250 	skb->l4_hash = is_l4;
1251 	skb->sw_hash = is_sw;
1252 	skb->hash = hash;
1253 }
1254 
1255 static inline void
1256 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1257 {
1258 	/* Used by drivers to set hash from HW */
1259 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1260 }
1261 
1262 static inline void
1263 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1264 {
1265 	__skb_set_hash(skb, hash, true, is_l4);
1266 }
1267 
1268 void __skb_get_hash(struct sk_buff *skb);
1269 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1270 u32 skb_get_poff(const struct sk_buff *skb);
1271 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1272 		   const struct flow_keys_basic *keys, int hlen);
1273 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1274 			    void *data, int hlen_proto);
1275 
1276 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1277 					int thoff, u8 ip_proto)
1278 {
1279 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1280 }
1281 
1282 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1283 			     const struct flow_dissector_key *key,
1284 			     unsigned int key_count);
1285 
1286 struct bpf_flow_dissector;
1287 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1288 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1289 
1290 bool __skb_flow_dissect(const struct net *net,
1291 			const struct sk_buff *skb,
1292 			struct flow_dissector *flow_dissector,
1293 			void *target_container,
1294 			void *data, __be16 proto, int nhoff, int hlen,
1295 			unsigned int flags);
1296 
1297 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1298 				    struct flow_dissector *flow_dissector,
1299 				    void *target_container, unsigned int flags)
1300 {
1301 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1302 				  target_container, NULL, 0, 0, 0, flags);
1303 }
1304 
1305 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1306 					      struct flow_keys *flow,
1307 					      unsigned int flags)
1308 {
1309 	memset(flow, 0, sizeof(*flow));
1310 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1311 				  flow, NULL, 0, 0, 0, flags);
1312 }
1313 
1314 static inline bool
1315 skb_flow_dissect_flow_keys_basic(const struct net *net,
1316 				 const struct sk_buff *skb,
1317 				 struct flow_keys_basic *flow, void *data,
1318 				 __be16 proto, int nhoff, int hlen,
1319 				 unsigned int flags)
1320 {
1321 	memset(flow, 0, sizeof(*flow));
1322 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1323 				  data, proto, nhoff, hlen, flags);
1324 }
1325 
1326 void skb_flow_dissect_meta(const struct sk_buff *skb,
1327 			   struct flow_dissector *flow_dissector,
1328 			   void *target_container);
1329 
1330 /* Gets a skb connection tracking info, ctinfo map should be a
1331  * a map of mapsize to translate enum ip_conntrack_info states
1332  * to user states.
1333  */
1334 void
1335 skb_flow_dissect_ct(const struct sk_buff *skb,
1336 		    struct flow_dissector *flow_dissector,
1337 		    void *target_container,
1338 		    u16 *ctinfo_map,
1339 		    size_t mapsize);
1340 void
1341 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1342 			     struct flow_dissector *flow_dissector,
1343 			     void *target_container);
1344 
1345 static inline __u32 skb_get_hash(struct sk_buff *skb)
1346 {
1347 	if (!skb->l4_hash && !skb->sw_hash)
1348 		__skb_get_hash(skb);
1349 
1350 	return skb->hash;
1351 }
1352 
1353 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1354 {
1355 	if (!skb->l4_hash && !skb->sw_hash) {
1356 		struct flow_keys keys;
1357 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1358 
1359 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1360 	}
1361 
1362 	return skb->hash;
1363 }
1364 
1365 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1366 			   const siphash_key_t *perturb);
1367 
1368 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1369 {
1370 	return skb->hash;
1371 }
1372 
1373 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1374 {
1375 	to->hash = from->hash;
1376 	to->sw_hash = from->sw_hash;
1377 	to->l4_hash = from->l4_hash;
1378 };
1379 
1380 static inline void skb_copy_decrypted(struct sk_buff *to,
1381 				      const struct sk_buff *from)
1382 {
1383 #ifdef CONFIG_TLS_DEVICE
1384 	to->decrypted = from->decrypted;
1385 #endif
1386 }
1387 
1388 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1389 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1390 {
1391 	return skb->head + skb->end;
1392 }
1393 
1394 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1395 {
1396 	return skb->end;
1397 }
1398 #else
1399 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1400 {
1401 	return skb->end;
1402 }
1403 
1404 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1405 {
1406 	return skb->end - skb->head;
1407 }
1408 #endif
1409 
1410 /* Internal */
1411 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1412 
1413 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1414 {
1415 	return &skb_shinfo(skb)->hwtstamps;
1416 }
1417 
1418 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1419 {
1420 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1421 
1422 	return is_zcopy ? skb_uarg(skb) : NULL;
1423 }
1424 
1425 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1426 				 bool *have_ref)
1427 {
1428 	if (skb && uarg && !skb_zcopy(skb)) {
1429 		if (unlikely(have_ref && *have_ref))
1430 			*have_ref = false;
1431 		else
1432 			sock_zerocopy_get(uarg);
1433 		skb_shinfo(skb)->destructor_arg = uarg;
1434 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1435 	}
1436 }
1437 
1438 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1439 {
1440 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1441 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1442 }
1443 
1444 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1445 {
1446 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1447 }
1448 
1449 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1450 {
1451 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1452 }
1453 
1454 /* Release a reference on a zerocopy structure */
1455 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1456 {
1457 	struct ubuf_info *uarg = skb_zcopy(skb);
1458 
1459 	if (uarg) {
1460 		if (skb_zcopy_is_nouarg(skb)) {
1461 			/* no notification callback */
1462 		} else if (uarg->callback == sock_zerocopy_callback) {
1463 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1464 			sock_zerocopy_put(uarg);
1465 		} else {
1466 			uarg->callback(uarg, zerocopy);
1467 		}
1468 
1469 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1470 	}
1471 }
1472 
1473 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1474 static inline void skb_zcopy_abort(struct sk_buff *skb)
1475 {
1476 	struct ubuf_info *uarg = skb_zcopy(skb);
1477 
1478 	if (uarg) {
1479 		sock_zerocopy_put_abort(uarg, false);
1480 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1481 	}
1482 }
1483 
1484 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1485 {
1486 	skb->next = NULL;
1487 }
1488 
1489 /* Iterate through singly-linked GSO fragments of an skb. */
1490 #define skb_list_walk_safe(first, skb, next_skb)                               \
1491 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1492 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1493 
1494 static inline void skb_list_del_init(struct sk_buff *skb)
1495 {
1496 	__list_del_entry(&skb->list);
1497 	skb_mark_not_on_list(skb);
1498 }
1499 
1500 /**
1501  *	skb_queue_empty - check if a queue is empty
1502  *	@list: queue head
1503  *
1504  *	Returns true if the queue is empty, false otherwise.
1505  */
1506 static inline int skb_queue_empty(const struct sk_buff_head *list)
1507 {
1508 	return list->next == (const struct sk_buff *) list;
1509 }
1510 
1511 /**
1512  *	skb_queue_empty_lockless - check if a queue is empty
1513  *	@list: queue head
1514  *
1515  *	Returns true if the queue is empty, false otherwise.
1516  *	This variant can be used in lockless contexts.
1517  */
1518 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1519 {
1520 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1521 }
1522 
1523 
1524 /**
1525  *	skb_queue_is_last - check if skb is the last entry in the queue
1526  *	@list: queue head
1527  *	@skb: buffer
1528  *
1529  *	Returns true if @skb is the last buffer on the list.
1530  */
1531 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1532 				     const struct sk_buff *skb)
1533 {
1534 	return skb->next == (const struct sk_buff *) list;
1535 }
1536 
1537 /**
1538  *	skb_queue_is_first - check if skb is the first entry in the queue
1539  *	@list: queue head
1540  *	@skb: buffer
1541  *
1542  *	Returns true if @skb is the first buffer on the list.
1543  */
1544 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1545 				      const struct sk_buff *skb)
1546 {
1547 	return skb->prev == (const struct sk_buff *) list;
1548 }
1549 
1550 /**
1551  *	skb_queue_next - return the next packet in the queue
1552  *	@list: queue head
1553  *	@skb: current buffer
1554  *
1555  *	Return the next packet in @list after @skb.  It is only valid to
1556  *	call this if skb_queue_is_last() evaluates to false.
1557  */
1558 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1559 					     const struct sk_buff *skb)
1560 {
1561 	/* This BUG_ON may seem severe, but if we just return then we
1562 	 * are going to dereference garbage.
1563 	 */
1564 	BUG_ON(skb_queue_is_last(list, skb));
1565 	return skb->next;
1566 }
1567 
1568 /**
1569  *	skb_queue_prev - return the prev packet in the queue
1570  *	@list: queue head
1571  *	@skb: current buffer
1572  *
1573  *	Return the prev packet in @list before @skb.  It is only valid to
1574  *	call this if skb_queue_is_first() evaluates to false.
1575  */
1576 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1577 					     const struct sk_buff *skb)
1578 {
1579 	/* This BUG_ON may seem severe, but if we just return then we
1580 	 * are going to dereference garbage.
1581 	 */
1582 	BUG_ON(skb_queue_is_first(list, skb));
1583 	return skb->prev;
1584 }
1585 
1586 /**
1587  *	skb_get - reference buffer
1588  *	@skb: buffer to reference
1589  *
1590  *	Makes another reference to a socket buffer and returns a pointer
1591  *	to the buffer.
1592  */
1593 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1594 {
1595 	refcount_inc(&skb->users);
1596 	return skb;
1597 }
1598 
1599 /*
1600  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1601  */
1602 
1603 /**
1604  *	skb_cloned - is the buffer a clone
1605  *	@skb: buffer to check
1606  *
1607  *	Returns true if the buffer was generated with skb_clone() and is
1608  *	one of multiple shared copies of the buffer. Cloned buffers are
1609  *	shared data so must not be written to under normal circumstances.
1610  */
1611 static inline int skb_cloned(const struct sk_buff *skb)
1612 {
1613 	return skb->cloned &&
1614 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1615 }
1616 
1617 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1618 {
1619 	might_sleep_if(gfpflags_allow_blocking(pri));
1620 
1621 	if (skb_cloned(skb))
1622 		return pskb_expand_head(skb, 0, 0, pri);
1623 
1624 	return 0;
1625 }
1626 
1627 /**
1628  *	skb_header_cloned - is the header a clone
1629  *	@skb: buffer to check
1630  *
1631  *	Returns true if modifying the header part of the buffer requires
1632  *	the data to be copied.
1633  */
1634 static inline int skb_header_cloned(const struct sk_buff *skb)
1635 {
1636 	int dataref;
1637 
1638 	if (!skb->cloned)
1639 		return 0;
1640 
1641 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1642 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1643 	return dataref != 1;
1644 }
1645 
1646 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1647 {
1648 	might_sleep_if(gfpflags_allow_blocking(pri));
1649 
1650 	if (skb_header_cloned(skb))
1651 		return pskb_expand_head(skb, 0, 0, pri);
1652 
1653 	return 0;
1654 }
1655 
1656 /**
1657  *	__skb_header_release - release reference to header
1658  *	@skb: buffer to operate on
1659  */
1660 static inline void __skb_header_release(struct sk_buff *skb)
1661 {
1662 	skb->nohdr = 1;
1663 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1664 }
1665 
1666 
1667 /**
1668  *	skb_shared - is the buffer shared
1669  *	@skb: buffer to check
1670  *
1671  *	Returns true if more than one person has a reference to this
1672  *	buffer.
1673  */
1674 static inline int skb_shared(const struct sk_buff *skb)
1675 {
1676 	return refcount_read(&skb->users) != 1;
1677 }
1678 
1679 /**
1680  *	skb_share_check - check if buffer is shared and if so clone it
1681  *	@skb: buffer to check
1682  *	@pri: priority for memory allocation
1683  *
1684  *	If the buffer is shared the buffer is cloned and the old copy
1685  *	drops a reference. A new clone with a single reference is returned.
1686  *	If the buffer is not shared the original buffer is returned. When
1687  *	being called from interrupt status or with spinlocks held pri must
1688  *	be GFP_ATOMIC.
1689  *
1690  *	NULL is returned on a memory allocation failure.
1691  */
1692 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1693 {
1694 	might_sleep_if(gfpflags_allow_blocking(pri));
1695 	if (skb_shared(skb)) {
1696 		struct sk_buff *nskb = skb_clone(skb, pri);
1697 
1698 		if (likely(nskb))
1699 			consume_skb(skb);
1700 		else
1701 			kfree_skb(skb);
1702 		skb = nskb;
1703 	}
1704 	return skb;
1705 }
1706 
1707 /*
1708  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1709  *	packets to handle cases where we have a local reader and forward
1710  *	and a couple of other messy ones. The normal one is tcpdumping
1711  *	a packet thats being forwarded.
1712  */
1713 
1714 /**
1715  *	skb_unshare - make a copy of a shared buffer
1716  *	@skb: buffer to check
1717  *	@pri: priority for memory allocation
1718  *
1719  *	If the socket buffer is a clone then this function creates a new
1720  *	copy of the data, drops a reference count on the old copy and returns
1721  *	the new copy with the reference count at 1. If the buffer is not a clone
1722  *	the original buffer is returned. When called with a spinlock held or
1723  *	from interrupt state @pri must be %GFP_ATOMIC
1724  *
1725  *	%NULL is returned on a memory allocation failure.
1726  */
1727 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1728 					  gfp_t pri)
1729 {
1730 	might_sleep_if(gfpflags_allow_blocking(pri));
1731 	if (skb_cloned(skb)) {
1732 		struct sk_buff *nskb = skb_copy(skb, pri);
1733 
1734 		/* Free our shared copy */
1735 		if (likely(nskb))
1736 			consume_skb(skb);
1737 		else
1738 			kfree_skb(skb);
1739 		skb = nskb;
1740 	}
1741 	return skb;
1742 }
1743 
1744 /**
1745  *	skb_peek - peek at the head of an &sk_buff_head
1746  *	@list_: list to peek at
1747  *
1748  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1749  *	be careful with this one. A peek leaves the buffer on the
1750  *	list and someone else may run off with it. You must hold
1751  *	the appropriate locks or have a private queue to do this.
1752  *
1753  *	Returns %NULL for an empty list or a pointer to the head element.
1754  *	The reference count is not incremented and the reference is therefore
1755  *	volatile. Use with caution.
1756  */
1757 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1758 {
1759 	struct sk_buff *skb = list_->next;
1760 
1761 	if (skb == (struct sk_buff *)list_)
1762 		skb = NULL;
1763 	return skb;
1764 }
1765 
1766 /**
1767  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1768  *	@list_: list to peek at
1769  *
1770  *	Like skb_peek(), but the caller knows that the list is not empty.
1771  */
1772 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1773 {
1774 	return list_->next;
1775 }
1776 
1777 /**
1778  *	skb_peek_next - peek skb following the given one from a queue
1779  *	@skb: skb to start from
1780  *	@list_: list to peek at
1781  *
1782  *	Returns %NULL when the end of the list is met or a pointer to the
1783  *	next element. The reference count is not incremented and the
1784  *	reference is therefore volatile. Use with caution.
1785  */
1786 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1787 		const struct sk_buff_head *list_)
1788 {
1789 	struct sk_buff *next = skb->next;
1790 
1791 	if (next == (struct sk_buff *)list_)
1792 		next = NULL;
1793 	return next;
1794 }
1795 
1796 /**
1797  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1798  *	@list_: list to peek at
1799  *
1800  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1801  *	be careful with this one. A peek leaves the buffer on the
1802  *	list and someone else may run off with it. You must hold
1803  *	the appropriate locks or have a private queue to do this.
1804  *
1805  *	Returns %NULL for an empty list or a pointer to the tail element.
1806  *	The reference count is not incremented and the reference is therefore
1807  *	volatile. Use with caution.
1808  */
1809 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1810 {
1811 	struct sk_buff *skb = READ_ONCE(list_->prev);
1812 
1813 	if (skb == (struct sk_buff *)list_)
1814 		skb = NULL;
1815 	return skb;
1816 
1817 }
1818 
1819 /**
1820  *	skb_queue_len	- get queue length
1821  *	@list_: list to measure
1822  *
1823  *	Return the length of an &sk_buff queue.
1824  */
1825 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1826 {
1827 	return list_->qlen;
1828 }
1829 
1830 /**
1831  *	skb_queue_len_lockless	- get queue length
1832  *	@list_: list to measure
1833  *
1834  *	Return the length of an &sk_buff queue.
1835  *	This variant can be used in lockless contexts.
1836  */
1837 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1838 {
1839 	return READ_ONCE(list_->qlen);
1840 }
1841 
1842 /**
1843  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1844  *	@list: queue to initialize
1845  *
1846  *	This initializes only the list and queue length aspects of
1847  *	an sk_buff_head object.  This allows to initialize the list
1848  *	aspects of an sk_buff_head without reinitializing things like
1849  *	the spinlock.  It can also be used for on-stack sk_buff_head
1850  *	objects where the spinlock is known to not be used.
1851  */
1852 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1853 {
1854 	list->prev = list->next = (struct sk_buff *)list;
1855 	list->qlen = 0;
1856 }
1857 
1858 /*
1859  * This function creates a split out lock class for each invocation;
1860  * this is needed for now since a whole lot of users of the skb-queue
1861  * infrastructure in drivers have different locking usage (in hardirq)
1862  * than the networking core (in softirq only). In the long run either the
1863  * network layer or drivers should need annotation to consolidate the
1864  * main types of usage into 3 classes.
1865  */
1866 static inline void skb_queue_head_init(struct sk_buff_head *list)
1867 {
1868 	spin_lock_init(&list->lock);
1869 	__skb_queue_head_init(list);
1870 }
1871 
1872 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1873 		struct lock_class_key *class)
1874 {
1875 	skb_queue_head_init(list);
1876 	lockdep_set_class(&list->lock, class);
1877 }
1878 
1879 /*
1880  *	Insert an sk_buff on a list.
1881  *
1882  *	The "__skb_xxxx()" functions are the non-atomic ones that
1883  *	can only be called with interrupts disabled.
1884  */
1885 static inline void __skb_insert(struct sk_buff *newsk,
1886 				struct sk_buff *prev, struct sk_buff *next,
1887 				struct sk_buff_head *list)
1888 {
1889 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1890 	 * for the opposite READ_ONCE()
1891 	 */
1892 	WRITE_ONCE(newsk->next, next);
1893 	WRITE_ONCE(newsk->prev, prev);
1894 	WRITE_ONCE(next->prev, newsk);
1895 	WRITE_ONCE(prev->next, newsk);
1896 	list->qlen++;
1897 }
1898 
1899 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1900 				      struct sk_buff *prev,
1901 				      struct sk_buff *next)
1902 {
1903 	struct sk_buff *first = list->next;
1904 	struct sk_buff *last = list->prev;
1905 
1906 	WRITE_ONCE(first->prev, prev);
1907 	WRITE_ONCE(prev->next, first);
1908 
1909 	WRITE_ONCE(last->next, next);
1910 	WRITE_ONCE(next->prev, last);
1911 }
1912 
1913 /**
1914  *	skb_queue_splice - join two skb lists, this is designed for stacks
1915  *	@list: the new list to add
1916  *	@head: the place to add it in the first list
1917  */
1918 static inline void skb_queue_splice(const struct sk_buff_head *list,
1919 				    struct sk_buff_head *head)
1920 {
1921 	if (!skb_queue_empty(list)) {
1922 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1923 		head->qlen += list->qlen;
1924 	}
1925 }
1926 
1927 /**
1928  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1929  *	@list: the new list to add
1930  *	@head: the place to add it in the first list
1931  *
1932  *	The list at @list is reinitialised
1933  */
1934 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1935 					 struct sk_buff_head *head)
1936 {
1937 	if (!skb_queue_empty(list)) {
1938 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1939 		head->qlen += list->qlen;
1940 		__skb_queue_head_init(list);
1941 	}
1942 }
1943 
1944 /**
1945  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1946  *	@list: the new list to add
1947  *	@head: the place to add it in the first list
1948  */
1949 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1950 					 struct sk_buff_head *head)
1951 {
1952 	if (!skb_queue_empty(list)) {
1953 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1954 		head->qlen += list->qlen;
1955 	}
1956 }
1957 
1958 /**
1959  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1960  *	@list: the new list to add
1961  *	@head: the place to add it in the first list
1962  *
1963  *	Each of the lists is a queue.
1964  *	The list at @list is reinitialised
1965  */
1966 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1967 					      struct sk_buff_head *head)
1968 {
1969 	if (!skb_queue_empty(list)) {
1970 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1971 		head->qlen += list->qlen;
1972 		__skb_queue_head_init(list);
1973 	}
1974 }
1975 
1976 /**
1977  *	__skb_queue_after - queue a buffer at the list head
1978  *	@list: list to use
1979  *	@prev: place after this buffer
1980  *	@newsk: buffer to queue
1981  *
1982  *	Queue a buffer int the middle of a list. This function takes no locks
1983  *	and you must therefore hold required locks before calling it.
1984  *
1985  *	A buffer cannot be placed on two lists at the same time.
1986  */
1987 static inline void __skb_queue_after(struct sk_buff_head *list,
1988 				     struct sk_buff *prev,
1989 				     struct sk_buff *newsk)
1990 {
1991 	__skb_insert(newsk, prev, prev->next, list);
1992 }
1993 
1994 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1995 		struct sk_buff_head *list);
1996 
1997 static inline void __skb_queue_before(struct sk_buff_head *list,
1998 				      struct sk_buff *next,
1999 				      struct sk_buff *newsk)
2000 {
2001 	__skb_insert(newsk, next->prev, next, list);
2002 }
2003 
2004 /**
2005  *	__skb_queue_head - queue a buffer at the list head
2006  *	@list: list to use
2007  *	@newsk: buffer to queue
2008  *
2009  *	Queue a buffer at the start of a list. This function takes no locks
2010  *	and you must therefore hold required locks before calling it.
2011  *
2012  *	A buffer cannot be placed on two lists at the same time.
2013  */
2014 static inline void __skb_queue_head(struct sk_buff_head *list,
2015 				    struct sk_buff *newsk)
2016 {
2017 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2018 }
2019 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2020 
2021 /**
2022  *	__skb_queue_tail - queue a buffer at the list tail
2023  *	@list: list to use
2024  *	@newsk: buffer to queue
2025  *
2026  *	Queue a buffer at the end of a list. This function takes no locks
2027  *	and you must therefore hold required locks before calling it.
2028  *
2029  *	A buffer cannot be placed on two lists at the same time.
2030  */
2031 static inline void __skb_queue_tail(struct sk_buff_head *list,
2032 				   struct sk_buff *newsk)
2033 {
2034 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2035 }
2036 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2037 
2038 /*
2039  * remove sk_buff from list. _Must_ be called atomically, and with
2040  * the list known..
2041  */
2042 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2043 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2044 {
2045 	struct sk_buff *next, *prev;
2046 
2047 	WRITE_ONCE(list->qlen, list->qlen - 1);
2048 	next	   = skb->next;
2049 	prev	   = skb->prev;
2050 	skb->next  = skb->prev = NULL;
2051 	WRITE_ONCE(next->prev, prev);
2052 	WRITE_ONCE(prev->next, next);
2053 }
2054 
2055 /**
2056  *	__skb_dequeue - remove from the head of the queue
2057  *	@list: list to dequeue from
2058  *
2059  *	Remove the head of the list. This function does not take any locks
2060  *	so must be used with appropriate locks held only. The head item is
2061  *	returned or %NULL if the list is empty.
2062  */
2063 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2064 {
2065 	struct sk_buff *skb = skb_peek(list);
2066 	if (skb)
2067 		__skb_unlink(skb, list);
2068 	return skb;
2069 }
2070 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2071 
2072 /**
2073  *	__skb_dequeue_tail - remove from the tail of the queue
2074  *	@list: list to dequeue from
2075  *
2076  *	Remove the tail of the list. This function does not take any locks
2077  *	so must be used with appropriate locks held only. The tail item is
2078  *	returned or %NULL if the list is empty.
2079  */
2080 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2081 {
2082 	struct sk_buff *skb = skb_peek_tail(list);
2083 	if (skb)
2084 		__skb_unlink(skb, list);
2085 	return skb;
2086 }
2087 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2088 
2089 
2090 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2091 {
2092 	return skb->data_len;
2093 }
2094 
2095 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2096 {
2097 	return skb->len - skb->data_len;
2098 }
2099 
2100 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2101 {
2102 	unsigned int i, len = 0;
2103 
2104 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2105 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2106 	return len;
2107 }
2108 
2109 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2110 {
2111 	return skb_headlen(skb) + __skb_pagelen(skb);
2112 }
2113 
2114 /**
2115  * __skb_fill_page_desc - initialise a paged fragment in an skb
2116  * @skb: buffer containing fragment to be initialised
2117  * @i: paged fragment index to initialise
2118  * @page: the page to use for this fragment
2119  * @off: the offset to the data with @page
2120  * @size: the length of the data
2121  *
2122  * Initialises the @i'th fragment of @skb to point to &size bytes at
2123  * offset @off within @page.
2124  *
2125  * Does not take any additional reference on the fragment.
2126  */
2127 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2128 					struct page *page, int off, int size)
2129 {
2130 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2131 
2132 	/*
2133 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2134 	 * that not all callers have unique ownership of the page but rely
2135 	 * on page_is_pfmemalloc doing the right thing(tm).
2136 	 */
2137 	frag->bv_page		  = page;
2138 	frag->bv_offset		  = off;
2139 	skb_frag_size_set(frag, size);
2140 
2141 	page = compound_head(page);
2142 	if (page_is_pfmemalloc(page))
2143 		skb->pfmemalloc	= true;
2144 }
2145 
2146 /**
2147  * skb_fill_page_desc - initialise a paged fragment in an skb
2148  * @skb: buffer containing fragment to be initialised
2149  * @i: paged fragment index to initialise
2150  * @page: the page to use for this fragment
2151  * @off: the offset to the data with @page
2152  * @size: the length of the data
2153  *
2154  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2155  * @skb to point to @size bytes at offset @off within @page. In
2156  * addition updates @skb such that @i is the last fragment.
2157  *
2158  * Does not take any additional reference on the fragment.
2159  */
2160 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2161 				      struct page *page, int off, int size)
2162 {
2163 	__skb_fill_page_desc(skb, i, page, off, size);
2164 	skb_shinfo(skb)->nr_frags = i + 1;
2165 }
2166 
2167 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2168 		     int size, unsigned int truesize);
2169 
2170 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2171 			  unsigned int truesize);
2172 
2173 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2174 
2175 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2176 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2177 {
2178 	return skb->head + skb->tail;
2179 }
2180 
2181 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2182 {
2183 	skb->tail = skb->data - skb->head;
2184 }
2185 
2186 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2187 {
2188 	skb_reset_tail_pointer(skb);
2189 	skb->tail += offset;
2190 }
2191 
2192 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2193 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2194 {
2195 	return skb->tail;
2196 }
2197 
2198 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2199 {
2200 	skb->tail = skb->data;
2201 }
2202 
2203 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2204 {
2205 	skb->tail = skb->data + offset;
2206 }
2207 
2208 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2209 
2210 /*
2211  *	Add data to an sk_buff
2212  */
2213 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2214 void *skb_put(struct sk_buff *skb, unsigned int len);
2215 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2216 {
2217 	void *tmp = skb_tail_pointer(skb);
2218 	SKB_LINEAR_ASSERT(skb);
2219 	skb->tail += len;
2220 	skb->len  += len;
2221 	return tmp;
2222 }
2223 
2224 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2225 {
2226 	void *tmp = __skb_put(skb, len);
2227 
2228 	memset(tmp, 0, len);
2229 	return tmp;
2230 }
2231 
2232 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2233 				   unsigned int len)
2234 {
2235 	void *tmp = __skb_put(skb, len);
2236 
2237 	memcpy(tmp, data, len);
2238 	return tmp;
2239 }
2240 
2241 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2242 {
2243 	*(u8 *)__skb_put(skb, 1) = val;
2244 }
2245 
2246 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2247 {
2248 	void *tmp = skb_put(skb, len);
2249 
2250 	memset(tmp, 0, len);
2251 
2252 	return tmp;
2253 }
2254 
2255 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2256 				 unsigned int len)
2257 {
2258 	void *tmp = skb_put(skb, len);
2259 
2260 	memcpy(tmp, data, len);
2261 
2262 	return tmp;
2263 }
2264 
2265 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2266 {
2267 	*(u8 *)skb_put(skb, 1) = val;
2268 }
2269 
2270 void *skb_push(struct sk_buff *skb, unsigned int len);
2271 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2272 {
2273 	skb->data -= len;
2274 	skb->len  += len;
2275 	return skb->data;
2276 }
2277 
2278 void *skb_pull(struct sk_buff *skb, unsigned int len);
2279 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2280 {
2281 	skb->len -= len;
2282 	BUG_ON(skb->len < skb->data_len);
2283 	return skb->data += len;
2284 }
2285 
2286 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2287 {
2288 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2289 }
2290 
2291 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2292 
2293 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2294 {
2295 	if (len > skb_headlen(skb) &&
2296 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2297 		return NULL;
2298 	skb->len -= len;
2299 	return skb->data += len;
2300 }
2301 
2302 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2303 {
2304 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2305 }
2306 
2307 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2308 {
2309 	if (likely(len <= skb_headlen(skb)))
2310 		return true;
2311 	if (unlikely(len > skb->len))
2312 		return false;
2313 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2314 }
2315 
2316 void skb_condense(struct sk_buff *skb);
2317 
2318 /**
2319  *	skb_headroom - bytes at buffer head
2320  *	@skb: buffer to check
2321  *
2322  *	Return the number of bytes of free space at the head of an &sk_buff.
2323  */
2324 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2325 {
2326 	return skb->data - skb->head;
2327 }
2328 
2329 /**
2330  *	skb_tailroom - bytes at buffer end
2331  *	@skb: buffer to check
2332  *
2333  *	Return the number of bytes of free space at the tail of an sk_buff
2334  */
2335 static inline int skb_tailroom(const struct sk_buff *skb)
2336 {
2337 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2338 }
2339 
2340 /**
2341  *	skb_availroom - bytes at buffer end
2342  *	@skb: buffer to check
2343  *
2344  *	Return the number of bytes of free space at the tail of an sk_buff
2345  *	allocated by sk_stream_alloc()
2346  */
2347 static inline int skb_availroom(const struct sk_buff *skb)
2348 {
2349 	if (skb_is_nonlinear(skb))
2350 		return 0;
2351 
2352 	return skb->end - skb->tail - skb->reserved_tailroom;
2353 }
2354 
2355 /**
2356  *	skb_reserve - adjust headroom
2357  *	@skb: buffer to alter
2358  *	@len: bytes to move
2359  *
2360  *	Increase the headroom of an empty &sk_buff by reducing the tail
2361  *	room. This is only allowed for an empty buffer.
2362  */
2363 static inline void skb_reserve(struct sk_buff *skb, int len)
2364 {
2365 	skb->data += len;
2366 	skb->tail += len;
2367 }
2368 
2369 /**
2370  *	skb_tailroom_reserve - adjust reserved_tailroom
2371  *	@skb: buffer to alter
2372  *	@mtu: maximum amount of headlen permitted
2373  *	@needed_tailroom: minimum amount of reserved_tailroom
2374  *
2375  *	Set reserved_tailroom so that headlen can be as large as possible but
2376  *	not larger than mtu and tailroom cannot be smaller than
2377  *	needed_tailroom.
2378  *	The required headroom should already have been reserved before using
2379  *	this function.
2380  */
2381 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2382 					unsigned int needed_tailroom)
2383 {
2384 	SKB_LINEAR_ASSERT(skb);
2385 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2386 		/* use at most mtu */
2387 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2388 	else
2389 		/* use up to all available space */
2390 		skb->reserved_tailroom = needed_tailroom;
2391 }
2392 
2393 #define ENCAP_TYPE_ETHER	0
2394 #define ENCAP_TYPE_IPPROTO	1
2395 
2396 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2397 					  __be16 protocol)
2398 {
2399 	skb->inner_protocol = protocol;
2400 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2401 }
2402 
2403 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2404 					 __u8 ipproto)
2405 {
2406 	skb->inner_ipproto = ipproto;
2407 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2408 }
2409 
2410 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2411 {
2412 	skb->inner_mac_header = skb->mac_header;
2413 	skb->inner_network_header = skb->network_header;
2414 	skb->inner_transport_header = skb->transport_header;
2415 }
2416 
2417 static inline void skb_reset_mac_len(struct sk_buff *skb)
2418 {
2419 	skb->mac_len = skb->network_header - skb->mac_header;
2420 }
2421 
2422 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2423 							*skb)
2424 {
2425 	return skb->head + skb->inner_transport_header;
2426 }
2427 
2428 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2429 {
2430 	return skb_inner_transport_header(skb) - skb->data;
2431 }
2432 
2433 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2434 {
2435 	skb->inner_transport_header = skb->data - skb->head;
2436 }
2437 
2438 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2439 						   const int offset)
2440 {
2441 	skb_reset_inner_transport_header(skb);
2442 	skb->inner_transport_header += offset;
2443 }
2444 
2445 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2446 {
2447 	return skb->head + skb->inner_network_header;
2448 }
2449 
2450 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2451 {
2452 	skb->inner_network_header = skb->data - skb->head;
2453 }
2454 
2455 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2456 						const int offset)
2457 {
2458 	skb_reset_inner_network_header(skb);
2459 	skb->inner_network_header += offset;
2460 }
2461 
2462 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2463 {
2464 	return skb->head + skb->inner_mac_header;
2465 }
2466 
2467 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2468 {
2469 	skb->inner_mac_header = skb->data - skb->head;
2470 }
2471 
2472 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2473 					    const int offset)
2474 {
2475 	skb_reset_inner_mac_header(skb);
2476 	skb->inner_mac_header += offset;
2477 }
2478 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2479 {
2480 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2481 }
2482 
2483 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2484 {
2485 	return skb->head + skb->transport_header;
2486 }
2487 
2488 static inline void skb_reset_transport_header(struct sk_buff *skb)
2489 {
2490 	skb->transport_header = skb->data - skb->head;
2491 }
2492 
2493 static inline void skb_set_transport_header(struct sk_buff *skb,
2494 					    const int offset)
2495 {
2496 	skb_reset_transport_header(skb);
2497 	skb->transport_header += offset;
2498 }
2499 
2500 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2501 {
2502 	return skb->head + skb->network_header;
2503 }
2504 
2505 static inline void skb_reset_network_header(struct sk_buff *skb)
2506 {
2507 	skb->network_header = skb->data - skb->head;
2508 }
2509 
2510 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2511 {
2512 	skb_reset_network_header(skb);
2513 	skb->network_header += offset;
2514 }
2515 
2516 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2517 {
2518 	return skb->head + skb->mac_header;
2519 }
2520 
2521 static inline int skb_mac_offset(const struct sk_buff *skb)
2522 {
2523 	return skb_mac_header(skb) - skb->data;
2524 }
2525 
2526 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2527 {
2528 	return skb->network_header - skb->mac_header;
2529 }
2530 
2531 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2532 {
2533 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2534 }
2535 
2536 static inline void skb_reset_mac_header(struct sk_buff *skb)
2537 {
2538 	skb->mac_header = skb->data - skb->head;
2539 }
2540 
2541 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2542 {
2543 	skb_reset_mac_header(skb);
2544 	skb->mac_header += offset;
2545 }
2546 
2547 static inline void skb_pop_mac_header(struct sk_buff *skb)
2548 {
2549 	skb->mac_header = skb->network_header;
2550 }
2551 
2552 static inline void skb_probe_transport_header(struct sk_buff *skb)
2553 {
2554 	struct flow_keys_basic keys;
2555 
2556 	if (skb_transport_header_was_set(skb))
2557 		return;
2558 
2559 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2560 					     NULL, 0, 0, 0, 0))
2561 		skb_set_transport_header(skb, keys.control.thoff);
2562 }
2563 
2564 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2565 {
2566 	if (skb_mac_header_was_set(skb)) {
2567 		const unsigned char *old_mac = skb_mac_header(skb);
2568 
2569 		skb_set_mac_header(skb, -skb->mac_len);
2570 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2571 	}
2572 }
2573 
2574 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2575 {
2576 	return skb->csum_start - skb_headroom(skb);
2577 }
2578 
2579 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2580 {
2581 	return skb->head + skb->csum_start;
2582 }
2583 
2584 static inline int skb_transport_offset(const struct sk_buff *skb)
2585 {
2586 	return skb_transport_header(skb) - skb->data;
2587 }
2588 
2589 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2590 {
2591 	return skb->transport_header - skb->network_header;
2592 }
2593 
2594 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2595 {
2596 	return skb->inner_transport_header - skb->inner_network_header;
2597 }
2598 
2599 static inline int skb_network_offset(const struct sk_buff *skb)
2600 {
2601 	return skb_network_header(skb) - skb->data;
2602 }
2603 
2604 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2605 {
2606 	return skb_inner_network_header(skb) - skb->data;
2607 }
2608 
2609 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2610 {
2611 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2612 }
2613 
2614 /*
2615  * CPUs often take a performance hit when accessing unaligned memory
2616  * locations. The actual performance hit varies, it can be small if the
2617  * hardware handles it or large if we have to take an exception and fix it
2618  * in software.
2619  *
2620  * Since an ethernet header is 14 bytes network drivers often end up with
2621  * the IP header at an unaligned offset. The IP header can be aligned by
2622  * shifting the start of the packet by 2 bytes. Drivers should do this
2623  * with:
2624  *
2625  * skb_reserve(skb, NET_IP_ALIGN);
2626  *
2627  * The downside to this alignment of the IP header is that the DMA is now
2628  * unaligned. On some architectures the cost of an unaligned DMA is high
2629  * and this cost outweighs the gains made by aligning the IP header.
2630  *
2631  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2632  * to be overridden.
2633  */
2634 #ifndef NET_IP_ALIGN
2635 #define NET_IP_ALIGN	2
2636 #endif
2637 
2638 /*
2639  * The networking layer reserves some headroom in skb data (via
2640  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2641  * the header has to grow. In the default case, if the header has to grow
2642  * 32 bytes or less we avoid the reallocation.
2643  *
2644  * Unfortunately this headroom changes the DMA alignment of the resulting
2645  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2646  * on some architectures. An architecture can override this value,
2647  * perhaps setting it to a cacheline in size (since that will maintain
2648  * cacheline alignment of the DMA). It must be a power of 2.
2649  *
2650  * Various parts of the networking layer expect at least 32 bytes of
2651  * headroom, you should not reduce this.
2652  *
2653  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2654  * to reduce average number of cache lines per packet.
2655  * get_rps_cpus() for example only access one 64 bytes aligned block :
2656  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2657  */
2658 #ifndef NET_SKB_PAD
2659 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2660 #endif
2661 
2662 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2663 
2664 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2665 {
2666 	if (WARN_ON(skb_is_nonlinear(skb)))
2667 		return;
2668 	skb->len = len;
2669 	skb_set_tail_pointer(skb, len);
2670 }
2671 
2672 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2673 {
2674 	__skb_set_length(skb, len);
2675 }
2676 
2677 void skb_trim(struct sk_buff *skb, unsigned int len);
2678 
2679 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2680 {
2681 	if (skb->data_len)
2682 		return ___pskb_trim(skb, len);
2683 	__skb_trim(skb, len);
2684 	return 0;
2685 }
2686 
2687 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2688 {
2689 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2690 }
2691 
2692 /**
2693  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2694  *	@skb: buffer to alter
2695  *	@len: new length
2696  *
2697  *	This is identical to pskb_trim except that the caller knows that
2698  *	the skb is not cloned so we should never get an error due to out-
2699  *	of-memory.
2700  */
2701 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2702 {
2703 	int err = pskb_trim(skb, len);
2704 	BUG_ON(err);
2705 }
2706 
2707 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2708 {
2709 	unsigned int diff = len - skb->len;
2710 
2711 	if (skb_tailroom(skb) < diff) {
2712 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2713 					   GFP_ATOMIC);
2714 		if (ret)
2715 			return ret;
2716 	}
2717 	__skb_set_length(skb, len);
2718 	return 0;
2719 }
2720 
2721 /**
2722  *	skb_orphan - orphan a buffer
2723  *	@skb: buffer to orphan
2724  *
2725  *	If a buffer currently has an owner then we call the owner's
2726  *	destructor function and make the @skb unowned. The buffer continues
2727  *	to exist but is no longer charged to its former owner.
2728  */
2729 static inline void skb_orphan(struct sk_buff *skb)
2730 {
2731 	if (skb->destructor) {
2732 		skb->destructor(skb);
2733 		skb->destructor = NULL;
2734 		skb->sk		= NULL;
2735 	} else {
2736 		BUG_ON(skb->sk);
2737 	}
2738 }
2739 
2740 /**
2741  *	skb_orphan_frags - orphan the frags contained in a buffer
2742  *	@skb: buffer to orphan frags from
2743  *	@gfp_mask: allocation mask for replacement pages
2744  *
2745  *	For each frag in the SKB which needs a destructor (i.e. has an
2746  *	owner) create a copy of that frag and release the original
2747  *	page by calling the destructor.
2748  */
2749 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2750 {
2751 	if (likely(!skb_zcopy(skb)))
2752 		return 0;
2753 	if (!skb_zcopy_is_nouarg(skb) &&
2754 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2755 		return 0;
2756 	return skb_copy_ubufs(skb, gfp_mask);
2757 }
2758 
2759 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2760 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2761 {
2762 	if (likely(!skb_zcopy(skb)))
2763 		return 0;
2764 	return skb_copy_ubufs(skb, gfp_mask);
2765 }
2766 
2767 /**
2768  *	__skb_queue_purge - empty a list
2769  *	@list: list to empty
2770  *
2771  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2772  *	the list and one reference dropped. This function does not take the
2773  *	list lock and the caller must hold the relevant locks to use it.
2774  */
2775 static inline void __skb_queue_purge(struct sk_buff_head *list)
2776 {
2777 	struct sk_buff *skb;
2778 	while ((skb = __skb_dequeue(list)) != NULL)
2779 		kfree_skb(skb);
2780 }
2781 void skb_queue_purge(struct sk_buff_head *list);
2782 
2783 unsigned int skb_rbtree_purge(struct rb_root *root);
2784 
2785 void *netdev_alloc_frag(unsigned int fragsz);
2786 
2787 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2788 				   gfp_t gfp_mask);
2789 
2790 /**
2791  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2792  *	@dev: network device to receive on
2793  *	@length: length to allocate
2794  *
2795  *	Allocate a new &sk_buff and assign it a usage count of one. The
2796  *	buffer has unspecified headroom built in. Users should allocate
2797  *	the headroom they think they need without accounting for the
2798  *	built in space. The built in space is used for optimisations.
2799  *
2800  *	%NULL is returned if there is no free memory. Although this function
2801  *	allocates memory it can be called from an interrupt.
2802  */
2803 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2804 					       unsigned int length)
2805 {
2806 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2807 }
2808 
2809 /* legacy helper around __netdev_alloc_skb() */
2810 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2811 					      gfp_t gfp_mask)
2812 {
2813 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2814 }
2815 
2816 /* legacy helper around netdev_alloc_skb() */
2817 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2818 {
2819 	return netdev_alloc_skb(NULL, length);
2820 }
2821 
2822 
2823 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2824 		unsigned int length, gfp_t gfp)
2825 {
2826 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2827 
2828 	if (NET_IP_ALIGN && skb)
2829 		skb_reserve(skb, NET_IP_ALIGN);
2830 	return skb;
2831 }
2832 
2833 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2834 		unsigned int length)
2835 {
2836 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2837 }
2838 
2839 static inline void skb_free_frag(void *addr)
2840 {
2841 	page_frag_free(addr);
2842 }
2843 
2844 void *napi_alloc_frag(unsigned int fragsz);
2845 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2846 				 unsigned int length, gfp_t gfp_mask);
2847 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2848 					     unsigned int length)
2849 {
2850 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2851 }
2852 void napi_consume_skb(struct sk_buff *skb, int budget);
2853 
2854 void __kfree_skb_flush(void);
2855 void __kfree_skb_defer(struct sk_buff *skb);
2856 
2857 /**
2858  * __dev_alloc_pages - allocate page for network Rx
2859  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2860  * @order: size of the allocation
2861  *
2862  * Allocate a new page.
2863  *
2864  * %NULL is returned if there is no free memory.
2865 */
2866 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2867 					     unsigned int order)
2868 {
2869 	/* This piece of code contains several assumptions.
2870 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2871 	 * 2.  The expectation is the user wants a compound page.
2872 	 * 3.  If requesting a order 0 page it will not be compound
2873 	 *     due to the check to see if order has a value in prep_new_page
2874 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2875 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2876 	 */
2877 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2878 
2879 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2880 }
2881 
2882 static inline struct page *dev_alloc_pages(unsigned int order)
2883 {
2884 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2885 }
2886 
2887 /**
2888  * __dev_alloc_page - allocate a page for network Rx
2889  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2890  *
2891  * Allocate a new page.
2892  *
2893  * %NULL is returned if there is no free memory.
2894  */
2895 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2896 {
2897 	return __dev_alloc_pages(gfp_mask, 0);
2898 }
2899 
2900 static inline struct page *dev_alloc_page(void)
2901 {
2902 	return dev_alloc_pages(0);
2903 }
2904 
2905 /**
2906  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2907  *	@page: The page that was allocated from skb_alloc_page
2908  *	@skb: The skb that may need pfmemalloc set
2909  */
2910 static inline void skb_propagate_pfmemalloc(struct page *page,
2911 					     struct sk_buff *skb)
2912 {
2913 	if (page_is_pfmemalloc(page))
2914 		skb->pfmemalloc = true;
2915 }
2916 
2917 /**
2918  * skb_frag_off() - Returns the offset of a skb fragment
2919  * @frag: the paged fragment
2920  */
2921 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2922 {
2923 	return frag->bv_offset;
2924 }
2925 
2926 /**
2927  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2928  * @frag: skb fragment
2929  * @delta: value to add
2930  */
2931 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2932 {
2933 	frag->bv_offset += delta;
2934 }
2935 
2936 /**
2937  * skb_frag_off_set() - Sets the offset of a skb fragment
2938  * @frag: skb fragment
2939  * @offset: offset of fragment
2940  */
2941 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2942 {
2943 	frag->bv_offset = offset;
2944 }
2945 
2946 /**
2947  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2948  * @fragto: skb fragment where offset is set
2949  * @fragfrom: skb fragment offset is copied from
2950  */
2951 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2952 				     const skb_frag_t *fragfrom)
2953 {
2954 	fragto->bv_offset = fragfrom->bv_offset;
2955 }
2956 
2957 /**
2958  * skb_frag_page - retrieve the page referred to by a paged fragment
2959  * @frag: the paged fragment
2960  *
2961  * Returns the &struct page associated with @frag.
2962  */
2963 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2964 {
2965 	return frag->bv_page;
2966 }
2967 
2968 /**
2969  * __skb_frag_ref - take an addition reference on a paged fragment.
2970  * @frag: the paged fragment
2971  *
2972  * Takes an additional reference on the paged fragment @frag.
2973  */
2974 static inline void __skb_frag_ref(skb_frag_t *frag)
2975 {
2976 	get_page(skb_frag_page(frag));
2977 }
2978 
2979 /**
2980  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2981  * @skb: the buffer
2982  * @f: the fragment offset.
2983  *
2984  * Takes an additional reference on the @f'th paged fragment of @skb.
2985  */
2986 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2987 {
2988 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2989 }
2990 
2991 /**
2992  * __skb_frag_unref - release a reference on a paged fragment.
2993  * @frag: the paged fragment
2994  *
2995  * Releases a reference on the paged fragment @frag.
2996  */
2997 static inline void __skb_frag_unref(skb_frag_t *frag)
2998 {
2999 	put_page(skb_frag_page(frag));
3000 }
3001 
3002 /**
3003  * skb_frag_unref - release a reference on a paged fragment of an skb.
3004  * @skb: the buffer
3005  * @f: the fragment offset
3006  *
3007  * Releases a reference on the @f'th paged fragment of @skb.
3008  */
3009 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3010 {
3011 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3012 }
3013 
3014 /**
3015  * skb_frag_address - gets the address of the data contained in a paged fragment
3016  * @frag: the paged fragment buffer
3017  *
3018  * Returns the address of the data within @frag. The page must already
3019  * be mapped.
3020  */
3021 static inline void *skb_frag_address(const skb_frag_t *frag)
3022 {
3023 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3024 }
3025 
3026 /**
3027  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3028  * @frag: the paged fragment buffer
3029  *
3030  * Returns the address of the data within @frag. Checks that the page
3031  * is mapped and returns %NULL otherwise.
3032  */
3033 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3034 {
3035 	void *ptr = page_address(skb_frag_page(frag));
3036 	if (unlikely(!ptr))
3037 		return NULL;
3038 
3039 	return ptr + skb_frag_off(frag);
3040 }
3041 
3042 /**
3043  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3044  * @fragto: skb fragment where page is set
3045  * @fragfrom: skb fragment page is copied from
3046  */
3047 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3048 				      const skb_frag_t *fragfrom)
3049 {
3050 	fragto->bv_page = fragfrom->bv_page;
3051 }
3052 
3053 /**
3054  * __skb_frag_set_page - sets the page contained in a paged fragment
3055  * @frag: the paged fragment
3056  * @page: the page to set
3057  *
3058  * Sets the fragment @frag to contain @page.
3059  */
3060 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3061 {
3062 	frag->bv_page = page;
3063 }
3064 
3065 /**
3066  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3067  * @skb: the buffer
3068  * @f: the fragment offset
3069  * @page: the page to set
3070  *
3071  * Sets the @f'th fragment of @skb to contain @page.
3072  */
3073 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3074 				     struct page *page)
3075 {
3076 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3077 }
3078 
3079 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3080 
3081 /**
3082  * skb_frag_dma_map - maps a paged fragment via the DMA API
3083  * @dev: the device to map the fragment to
3084  * @frag: the paged fragment to map
3085  * @offset: the offset within the fragment (starting at the
3086  *          fragment's own offset)
3087  * @size: the number of bytes to map
3088  * @dir: the direction of the mapping (``PCI_DMA_*``)
3089  *
3090  * Maps the page associated with @frag to @device.
3091  */
3092 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3093 					  const skb_frag_t *frag,
3094 					  size_t offset, size_t size,
3095 					  enum dma_data_direction dir)
3096 {
3097 	return dma_map_page(dev, skb_frag_page(frag),
3098 			    skb_frag_off(frag) + offset, size, dir);
3099 }
3100 
3101 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3102 					gfp_t gfp_mask)
3103 {
3104 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3105 }
3106 
3107 
3108 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3109 						  gfp_t gfp_mask)
3110 {
3111 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3112 }
3113 
3114 
3115 /**
3116  *	skb_clone_writable - is the header of a clone writable
3117  *	@skb: buffer to check
3118  *	@len: length up to which to write
3119  *
3120  *	Returns true if modifying the header part of the cloned buffer
3121  *	does not requires the data to be copied.
3122  */
3123 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3124 {
3125 	return !skb_header_cloned(skb) &&
3126 	       skb_headroom(skb) + len <= skb->hdr_len;
3127 }
3128 
3129 static inline int skb_try_make_writable(struct sk_buff *skb,
3130 					unsigned int write_len)
3131 {
3132 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3133 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3134 }
3135 
3136 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3137 			    int cloned)
3138 {
3139 	int delta = 0;
3140 
3141 	if (headroom > skb_headroom(skb))
3142 		delta = headroom - skb_headroom(skb);
3143 
3144 	if (delta || cloned)
3145 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3146 					GFP_ATOMIC);
3147 	return 0;
3148 }
3149 
3150 /**
3151  *	skb_cow - copy header of skb when it is required
3152  *	@skb: buffer to cow
3153  *	@headroom: needed headroom
3154  *
3155  *	If the skb passed lacks sufficient headroom or its data part
3156  *	is shared, data is reallocated. If reallocation fails, an error
3157  *	is returned and original skb is not changed.
3158  *
3159  *	The result is skb with writable area skb->head...skb->tail
3160  *	and at least @headroom of space at head.
3161  */
3162 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3163 {
3164 	return __skb_cow(skb, headroom, skb_cloned(skb));
3165 }
3166 
3167 /**
3168  *	skb_cow_head - skb_cow but only making the head writable
3169  *	@skb: buffer to cow
3170  *	@headroom: needed headroom
3171  *
3172  *	This function is identical to skb_cow except that we replace the
3173  *	skb_cloned check by skb_header_cloned.  It should be used when
3174  *	you only need to push on some header and do not need to modify
3175  *	the data.
3176  */
3177 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3178 {
3179 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3180 }
3181 
3182 /**
3183  *	skb_padto	- pad an skbuff up to a minimal size
3184  *	@skb: buffer to pad
3185  *	@len: minimal length
3186  *
3187  *	Pads up a buffer to ensure the trailing bytes exist and are
3188  *	blanked. If the buffer already contains sufficient data it
3189  *	is untouched. Otherwise it is extended. Returns zero on
3190  *	success. The skb is freed on error.
3191  */
3192 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3193 {
3194 	unsigned int size = skb->len;
3195 	if (likely(size >= len))
3196 		return 0;
3197 	return skb_pad(skb, len - size);
3198 }
3199 
3200 /**
3201  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3202  *	@skb: buffer to pad
3203  *	@len: minimal length
3204  *	@free_on_error: free buffer on error
3205  *
3206  *	Pads up a buffer to ensure the trailing bytes exist and are
3207  *	blanked. If the buffer already contains sufficient data it
3208  *	is untouched. Otherwise it is extended. Returns zero on
3209  *	success. The skb is freed on error if @free_on_error is true.
3210  */
3211 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3212 				  bool free_on_error)
3213 {
3214 	unsigned int size = skb->len;
3215 
3216 	if (unlikely(size < len)) {
3217 		len -= size;
3218 		if (__skb_pad(skb, len, free_on_error))
3219 			return -ENOMEM;
3220 		__skb_put(skb, len);
3221 	}
3222 	return 0;
3223 }
3224 
3225 /**
3226  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3227  *	@skb: buffer to pad
3228  *	@len: minimal length
3229  *
3230  *	Pads up a buffer to ensure the trailing bytes exist and are
3231  *	blanked. If the buffer already contains sufficient data it
3232  *	is untouched. Otherwise it is extended. Returns zero on
3233  *	success. The skb is freed on error.
3234  */
3235 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3236 {
3237 	return __skb_put_padto(skb, len, true);
3238 }
3239 
3240 static inline int skb_add_data(struct sk_buff *skb,
3241 			       struct iov_iter *from, int copy)
3242 {
3243 	const int off = skb->len;
3244 
3245 	if (skb->ip_summed == CHECKSUM_NONE) {
3246 		__wsum csum = 0;
3247 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3248 					         &csum, from)) {
3249 			skb->csum = csum_block_add(skb->csum, csum, off);
3250 			return 0;
3251 		}
3252 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3253 		return 0;
3254 
3255 	__skb_trim(skb, off);
3256 	return -EFAULT;
3257 }
3258 
3259 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3260 				    const struct page *page, int off)
3261 {
3262 	if (skb_zcopy(skb))
3263 		return false;
3264 	if (i) {
3265 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3266 
3267 		return page == skb_frag_page(frag) &&
3268 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3269 	}
3270 	return false;
3271 }
3272 
3273 static inline int __skb_linearize(struct sk_buff *skb)
3274 {
3275 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3276 }
3277 
3278 /**
3279  *	skb_linearize - convert paged skb to linear one
3280  *	@skb: buffer to linarize
3281  *
3282  *	If there is no free memory -ENOMEM is returned, otherwise zero
3283  *	is returned and the old skb data released.
3284  */
3285 static inline int skb_linearize(struct sk_buff *skb)
3286 {
3287 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3288 }
3289 
3290 /**
3291  * skb_has_shared_frag - can any frag be overwritten
3292  * @skb: buffer to test
3293  *
3294  * Return true if the skb has at least one frag that might be modified
3295  * by an external entity (as in vmsplice()/sendfile())
3296  */
3297 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3298 {
3299 	return skb_is_nonlinear(skb) &&
3300 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3301 }
3302 
3303 /**
3304  *	skb_linearize_cow - make sure skb is linear and writable
3305  *	@skb: buffer to process
3306  *
3307  *	If there is no free memory -ENOMEM is returned, otherwise zero
3308  *	is returned and the old skb data released.
3309  */
3310 static inline int skb_linearize_cow(struct sk_buff *skb)
3311 {
3312 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3313 	       __skb_linearize(skb) : 0;
3314 }
3315 
3316 static __always_inline void
3317 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3318 		     unsigned int off)
3319 {
3320 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3321 		skb->csum = csum_block_sub(skb->csum,
3322 					   csum_partial(start, len, 0), off);
3323 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3324 		 skb_checksum_start_offset(skb) < 0)
3325 		skb->ip_summed = CHECKSUM_NONE;
3326 }
3327 
3328 /**
3329  *	skb_postpull_rcsum - update checksum for received skb after pull
3330  *	@skb: buffer to update
3331  *	@start: start of data before pull
3332  *	@len: length of data pulled
3333  *
3334  *	After doing a pull on a received packet, you need to call this to
3335  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3336  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3337  */
3338 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3339 				      const void *start, unsigned int len)
3340 {
3341 	__skb_postpull_rcsum(skb, start, len, 0);
3342 }
3343 
3344 static __always_inline void
3345 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3346 		     unsigned int off)
3347 {
3348 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3349 		skb->csum = csum_block_add(skb->csum,
3350 					   csum_partial(start, len, 0), off);
3351 }
3352 
3353 /**
3354  *	skb_postpush_rcsum - update checksum for received skb after push
3355  *	@skb: buffer to update
3356  *	@start: start of data after push
3357  *	@len: length of data pushed
3358  *
3359  *	After doing a push on a received packet, you need to call this to
3360  *	update the CHECKSUM_COMPLETE checksum.
3361  */
3362 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3363 				      const void *start, unsigned int len)
3364 {
3365 	__skb_postpush_rcsum(skb, start, len, 0);
3366 }
3367 
3368 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3369 
3370 /**
3371  *	skb_push_rcsum - push skb and update receive checksum
3372  *	@skb: buffer to update
3373  *	@len: length of data pulled
3374  *
3375  *	This function performs an skb_push on the packet and updates
3376  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3377  *	receive path processing instead of skb_push unless you know
3378  *	that the checksum difference is zero (e.g., a valid IP header)
3379  *	or you are setting ip_summed to CHECKSUM_NONE.
3380  */
3381 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3382 {
3383 	skb_push(skb, len);
3384 	skb_postpush_rcsum(skb, skb->data, len);
3385 	return skb->data;
3386 }
3387 
3388 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3389 /**
3390  *	pskb_trim_rcsum - trim received skb and update checksum
3391  *	@skb: buffer to trim
3392  *	@len: new length
3393  *
3394  *	This is exactly the same as pskb_trim except that it ensures the
3395  *	checksum of received packets are still valid after the operation.
3396  *	It can change skb pointers.
3397  */
3398 
3399 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3400 {
3401 	if (likely(len >= skb->len))
3402 		return 0;
3403 	return pskb_trim_rcsum_slow(skb, len);
3404 }
3405 
3406 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3407 {
3408 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3409 		skb->ip_summed = CHECKSUM_NONE;
3410 	__skb_trim(skb, len);
3411 	return 0;
3412 }
3413 
3414 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3415 {
3416 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3417 		skb->ip_summed = CHECKSUM_NONE;
3418 	return __skb_grow(skb, len);
3419 }
3420 
3421 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3422 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3423 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3424 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3425 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3426 
3427 #define skb_queue_walk(queue, skb) \
3428 		for (skb = (queue)->next;					\
3429 		     skb != (struct sk_buff *)(queue);				\
3430 		     skb = skb->next)
3431 
3432 #define skb_queue_walk_safe(queue, skb, tmp)					\
3433 		for (skb = (queue)->next, tmp = skb->next;			\
3434 		     skb != (struct sk_buff *)(queue);				\
3435 		     skb = tmp, tmp = skb->next)
3436 
3437 #define skb_queue_walk_from(queue, skb)						\
3438 		for (; skb != (struct sk_buff *)(queue);			\
3439 		     skb = skb->next)
3440 
3441 #define skb_rbtree_walk(skb, root)						\
3442 		for (skb = skb_rb_first(root); skb != NULL;			\
3443 		     skb = skb_rb_next(skb))
3444 
3445 #define skb_rbtree_walk_from(skb)						\
3446 		for (; skb != NULL;						\
3447 		     skb = skb_rb_next(skb))
3448 
3449 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3450 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3451 		     skb = tmp)
3452 
3453 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3454 		for (tmp = skb->next;						\
3455 		     skb != (struct sk_buff *)(queue);				\
3456 		     skb = tmp, tmp = skb->next)
3457 
3458 #define skb_queue_reverse_walk(queue, skb) \
3459 		for (skb = (queue)->prev;					\
3460 		     skb != (struct sk_buff *)(queue);				\
3461 		     skb = skb->prev)
3462 
3463 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3464 		for (skb = (queue)->prev, tmp = skb->prev;			\
3465 		     skb != (struct sk_buff *)(queue);				\
3466 		     skb = tmp, tmp = skb->prev)
3467 
3468 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3469 		for (tmp = skb->prev;						\
3470 		     skb != (struct sk_buff *)(queue);				\
3471 		     skb = tmp, tmp = skb->prev)
3472 
3473 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3474 {
3475 	return skb_shinfo(skb)->frag_list != NULL;
3476 }
3477 
3478 static inline void skb_frag_list_init(struct sk_buff *skb)
3479 {
3480 	skb_shinfo(skb)->frag_list = NULL;
3481 }
3482 
3483 #define skb_walk_frags(skb, iter)	\
3484 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3485 
3486 
3487 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3488 				int *err, long *timeo_p,
3489 				const struct sk_buff *skb);
3490 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3491 					  struct sk_buff_head *queue,
3492 					  unsigned int flags,
3493 					  int *off, int *err,
3494 					  struct sk_buff **last);
3495 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3496 					struct sk_buff_head *queue,
3497 					unsigned int flags, int *off, int *err,
3498 					struct sk_buff **last);
3499 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3500 				    struct sk_buff_head *sk_queue,
3501 				    unsigned int flags, int *off, int *err);
3502 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3503 				  int *err);
3504 __poll_t datagram_poll(struct file *file, struct socket *sock,
3505 			   struct poll_table_struct *wait);
3506 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3507 			   struct iov_iter *to, int size);
3508 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3509 					struct msghdr *msg, int size)
3510 {
3511 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3512 }
3513 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3514 				   struct msghdr *msg);
3515 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3516 			   struct iov_iter *to, int len,
3517 			   struct ahash_request *hash);
3518 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3519 				 struct iov_iter *from, int len);
3520 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3521 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3522 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3523 static inline void skb_free_datagram_locked(struct sock *sk,
3524 					    struct sk_buff *skb)
3525 {
3526 	__skb_free_datagram_locked(sk, skb, 0);
3527 }
3528 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3529 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3530 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3531 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3532 			      int len, __wsum csum);
3533 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3534 		    struct pipe_inode_info *pipe, unsigned int len,
3535 		    unsigned int flags);
3536 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3537 			 int len);
3538 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3539 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3540 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3541 		 int len, int hlen);
3542 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3543 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3544 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3545 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3546 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3547 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3548 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3549 				 unsigned int offset);
3550 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3551 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3552 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3553 int skb_vlan_pop(struct sk_buff *skb);
3554 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3555 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3556 		  int mac_len, bool ethernet);
3557 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3558 		 bool ethernet);
3559 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3560 int skb_mpls_dec_ttl(struct sk_buff *skb);
3561 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3562 			     gfp_t gfp);
3563 
3564 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3565 {
3566 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3567 }
3568 
3569 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3570 {
3571 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3572 }
3573 
3574 struct skb_checksum_ops {
3575 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3576 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3577 };
3578 
3579 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3580 
3581 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3582 		      __wsum csum, const struct skb_checksum_ops *ops);
3583 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3584 		    __wsum csum);
3585 
3586 static inline void * __must_check
3587 __skb_header_pointer(const struct sk_buff *skb, int offset,
3588 		     int len, void *data, int hlen, void *buffer)
3589 {
3590 	if (hlen - offset >= len)
3591 		return data + offset;
3592 
3593 	if (!skb ||
3594 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3595 		return NULL;
3596 
3597 	return buffer;
3598 }
3599 
3600 static inline void * __must_check
3601 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3602 {
3603 	return __skb_header_pointer(skb, offset, len, skb->data,
3604 				    skb_headlen(skb), buffer);
3605 }
3606 
3607 /**
3608  *	skb_needs_linearize - check if we need to linearize a given skb
3609  *			      depending on the given device features.
3610  *	@skb: socket buffer to check
3611  *	@features: net device features
3612  *
3613  *	Returns true if either:
3614  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3615  *	2. skb is fragmented and the device does not support SG.
3616  */
3617 static inline bool skb_needs_linearize(struct sk_buff *skb,
3618 				       netdev_features_t features)
3619 {
3620 	return skb_is_nonlinear(skb) &&
3621 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3622 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3623 }
3624 
3625 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3626 					     void *to,
3627 					     const unsigned int len)
3628 {
3629 	memcpy(to, skb->data, len);
3630 }
3631 
3632 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3633 						    const int offset, void *to,
3634 						    const unsigned int len)
3635 {
3636 	memcpy(to, skb->data + offset, len);
3637 }
3638 
3639 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3640 					   const void *from,
3641 					   const unsigned int len)
3642 {
3643 	memcpy(skb->data, from, len);
3644 }
3645 
3646 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3647 						  const int offset,
3648 						  const void *from,
3649 						  const unsigned int len)
3650 {
3651 	memcpy(skb->data + offset, from, len);
3652 }
3653 
3654 void skb_init(void);
3655 
3656 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3657 {
3658 	return skb->tstamp;
3659 }
3660 
3661 /**
3662  *	skb_get_timestamp - get timestamp from a skb
3663  *	@skb: skb to get stamp from
3664  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3665  *
3666  *	Timestamps are stored in the skb as offsets to a base timestamp.
3667  *	This function converts the offset back to a struct timeval and stores
3668  *	it in stamp.
3669  */
3670 static inline void skb_get_timestamp(const struct sk_buff *skb,
3671 				     struct __kernel_old_timeval *stamp)
3672 {
3673 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3674 }
3675 
3676 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3677 					 struct __kernel_sock_timeval *stamp)
3678 {
3679 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3680 
3681 	stamp->tv_sec = ts.tv_sec;
3682 	stamp->tv_usec = ts.tv_nsec / 1000;
3683 }
3684 
3685 static inline void skb_get_timestampns(const struct sk_buff *skb,
3686 				       struct __kernel_old_timespec *stamp)
3687 {
3688 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3689 
3690 	stamp->tv_sec = ts.tv_sec;
3691 	stamp->tv_nsec = ts.tv_nsec;
3692 }
3693 
3694 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3695 					   struct __kernel_timespec *stamp)
3696 {
3697 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3698 
3699 	stamp->tv_sec = ts.tv_sec;
3700 	stamp->tv_nsec = ts.tv_nsec;
3701 }
3702 
3703 static inline void __net_timestamp(struct sk_buff *skb)
3704 {
3705 	skb->tstamp = ktime_get_real();
3706 }
3707 
3708 static inline ktime_t net_timedelta(ktime_t t)
3709 {
3710 	return ktime_sub(ktime_get_real(), t);
3711 }
3712 
3713 static inline ktime_t net_invalid_timestamp(void)
3714 {
3715 	return 0;
3716 }
3717 
3718 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3719 {
3720 	return skb_shinfo(skb)->meta_len;
3721 }
3722 
3723 static inline void *skb_metadata_end(const struct sk_buff *skb)
3724 {
3725 	return skb_mac_header(skb);
3726 }
3727 
3728 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3729 					  const struct sk_buff *skb_b,
3730 					  u8 meta_len)
3731 {
3732 	const void *a = skb_metadata_end(skb_a);
3733 	const void *b = skb_metadata_end(skb_b);
3734 	/* Using more efficient varaiant than plain call to memcmp(). */
3735 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3736 	u64 diffs = 0;
3737 
3738 	switch (meta_len) {
3739 #define __it(x, op) (x -= sizeof(u##op))
3740 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3741 	case 32: diffs |= __it_diff(a, b, 64);
3742 		 /* fall through */
3743 	case 24: diffs |= __it_diff(a, b, 64);
3744 		 /* fall through */
3745 	case 16: diffs |= __it_diff(a, b, 64);
3746 		 /* fall through */
3747 	case  8: diffs |= __it_diff(a, b, 64);
3748 		break;
3749 	case 28: diffs |= __it_diff(a, b, 64);
3750 		 /* fall through */
3751 	case 20: diffs |= __it_diff(a, b, 64);
3752 		 /* fall through */
3753 	case 12: diffs |= __it_diff(a, b, 64);
3754 		 /* fall through */
3755 	case  4: diffs |= __it_diff(a, b, 32);
3756 		break;
3757 	}
3758 	return diffs;
3759 #else
3760 	return memcmp(a - meta_len, b - meta_len, meta_len);
3761 #endif
3762 }
3763 
3764 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3765 					const struct sk_buff *skb_b)
3766 {
3767 	u8 len_a = skb_metadata_len(skb_a);
3768 	u8 len_b = skb_metadata_len(skb_b);
3769 
3770 	if (!(len_a | len_b))
3771 		return false;
3772 
3773 	return len_a != len_b ?
3774 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3775 }
3776 
3777 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3778 {
3779 	skb_shinfo(skb)->meta_len = meta_len;
3780 }
3781 
3782 static inline void skb_metadata_clear(struct sk_buff *skb)
3783 {
3784 	skb_metadata_set(skb, 0);
3785 }
3786 
3787 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3788 
3789 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3790 
3791 void skb_clone_tx_timestamp(struct sk_buff *skb);
3792 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3793 
3794 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3795 
3796 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3797 {
3798 }
3799 
3800 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3801 {
3802 	return false;
3803 }
3804 
3805 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3806 
3807 /**
3808  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3809  *
3810  * PHY drivers may accept clones of transmitted packets for
3811  * timestamping via their phy_driver.txtstamp method. These drivers
3812  * must call this function to return the skb back to the stack with a
3813  * timestamp.
3814  *
3815  * @skb: clone of the the original outgoing packet
3816  * @hwtstamps: hardware time stamps
3817  *
3818  */
3819 void skb_complete_tx_timestamp(struct sk_buff *skb,
3820 			       struct skb_shared_hwtstamps *hwtstamps);
3821 
3822 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3823 		     struct skb_shared_hwtstamps *hwtstamps,
3824 		     struct sock *sk, int tstype);
3825 
3826 /**
3827  * skb_tstamp_tx - queue clone of skb with send time stamps
3828  * @orig_skb:	the original outgoing packet
3829  * @hwtstamps:	hardware time stamps, may be NULL if not available
3830  *
3831  * If the skb has a socket associated, then this function clones the
3832  * skb (thus sharing the actual data and optional structures), stores
3833  * the optional hardware time stamping information (if non NULL) or
3834  * generates a software time stamp (otherwise), then queues the clone
3835  * to the error queue of the socket.  Errors are silently ignored.
3836  */
3837 void skb_tstamp_tx(struct sk_buff *orig_skb,
3838 		   struct skb_shared_hwtstamps *hwtstamps);
3839 
3840 /**
3841  * skb_tx_timestamp() - Driver hook for transmit timestamping
3842  *
3843  * Ethernet MAC Drivers should call this function in their hard_xmit()
3844  * function immediately before giving the sk_buff to the MAC hardware.
3845  *
3846  * Specifically, one should make absolutely sure that this function is
3847  * called before TX completion of this packet can trigger.  Otherwise
3848  * the packet could potentially already be freed.
3849  *
3850  * @skb: A socket buffer.
3851  */
3852 static inline void skb_tx_timestamp(struct sk_buff *skb)
3853 {
3854 	skb_clone_tx_timestamp(skb);
3855 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3856 		skb_tstamp_tx(skb, NULL);
3857 }
3858 
3859 /**
3860  * skb_complete_wifi_ack - deliver skb with wifi status
3861  *
3862  * @skb: the original outgoing packet
3863  * @acked: ack status
3864  *
3865  */
3866 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3867 
3868 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3869 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3870 
3871 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3872 {
3873 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3874 		skb->csum_valid ||
3875 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3876 		 skb_checksum_start_offset(skb) >= 0));
3877 }
3878 
3879 /**
3880  *	skb_checksum_complete - Calculate checksum of an entire packet
3881  *	@skb: packet to process
3882  *
3883  *	This function calculates the checksum over the entire packet plus
3884  *	the value of skb->csum.  The latter can be used to supply the
3885  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3886  *	checksum.
3887  *
3888  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3889  *	this function can be used to verify that checksum on received
3890  *	packets.  In that case the function should return zero if the
3891  *	checksum is correct.  In particular, this function will return zero
3892  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3893  *	hardware has already verified the correctness of the checksum.
3894  */
3895 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3896 {
3897 	return skb_csum_unnecessary(skb) ?
3898 	       0 : __skb_checksum_complete(skb);
3899 }
3900 
3901 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3902 {
3903 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3904 		if (skb->csum_level == 0)
3905 			skb->ip_summed = CHECKSUM_NONE;
3906 		else
3907 			skb->csum_level--;
3908 	}
3909 }
3910 
3911 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3912 {
3913 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3914 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3915 			skb->csum_level++;
3916 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3917 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3918 		skb->csum_level = 0;
3919 	}
3920 }
3921 
3922 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3923 {
3924 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3925 		skb->ip_summed = CHECKSUM_NONE;
3926 		skb->csum_level = 0;
3927 	}
3928 }
3929 
3930 /* Check if we need to perform checksum complete validation.
3931  *
3932  * Returns true if checksum complete is needed, false otherwise
3933  * (either checksum is unnecessary or zero checksum is allowed).
3934  */
3935 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3936 						  bool zero_okay,
3937 						  __sum16 check)
3938 {
3939 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3940 		skb->csum_valid = 1;
3941 		__skb_decr_checksum_unnecessary(skb);
3942 		return false;
3943 	}
3944 
3945 	return true;
3946 }
3947 
3948 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3949  * in checksum_init.
3950  */
3951 #define CHECKSUM_BREAK 76
3952 
3953 /* Unset checksum-complete
3954  *
3955  * Unset checksum complete can be done when packet is being modified
3956  * (uncompressed for instance) and checksum-complete value is
3957  * invalidated.
3958  */
3959 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3960 {
3961 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3962 		skb->ip_summed = CHECKSUM_NONE;
3963 }
3964 
3965 /* Validate (init) checksum based on checksum complete.
3966  *
3967  * Return values:
3968  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3969  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3970  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3971  *   non-zero: value of invalid checksum
3972  *
3973  */
3974 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3975 						       bool complete,
3976 						       __wsum psum)
3977 {
3978 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3979 		if (!csum_fold(csum_add(psum, skb->csum))) {
3980 			skb->csum_valid = 1;
3981 			return 0;
3982 		}
3983 	}
3984 
3985 	skb->csum = psum;
3986 
3987 	if (complete || skb->len <= CHECKSUM_BREAK) {
3988 		__sum16 csum;
3989 
3990 		csum = __skb_checksum_complete(skb);
3991 		skb->csum_valid = !csum;
3992 		return csum;
3993 	}
3994 
3995 	return 0;
3996 }
3997 
3998 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3999 {
4000 	return 0;
4001 }
4002 
4003 /* Perform checksum validate (init). Note that this is a macro since we only
4004  * want to calculate the pseudo header which is an input function if necessary.
4005  * First we try to validate without any computation (checksum unnecessary) and
4006  * then calculate based on checksum complete calling the function to compute
4007  * pseudo header.
4008  *
4009  * Return values:
4010  *   0: checksum is validated or try to in skb_checksum_complete
4011  *   non-zero: value of invalid checksum
4012  */
4013 #define __skb_checksum_validate(skb, proto, complete,			\
4014 				zero_okay, check, compute_pseudo)	\
4015 ({									\
4016 	__sum16 __ret = 0;						\
4017 	skb->csum_valid = 0;						\
4018 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4019 		__ret = __skb_checksum_validate_complete(skb,		\
4020 				complete, compute_pseudo(skb, proto));	\
4021 	__ret;								\
4022 })
4023 
4024 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4025 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4026 
4027 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4028 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4029 
4030 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4031 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4032 
4033 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4034 					 compute_pseudo)		\
4035 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4036 
4037 #define skb_checksum_simple_validate(skb)				\
4038 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4039 
4040 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4041 {
4042 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4043 }
4044 
4045 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4046 {
4047 	skb->csum = ~pseudo;
4048 	skb->ip_summed = CHECKSUM_COMPLETE;
4049 }
4050 
4051 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4052 do {									\
4053 	if (__skb_checksum_convert_check(skb))				\
4054 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4055 } while (0)
4056 
4057 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4058 					      u16 start, u16 offset)
4059 {
4060 	skb->ip_summed = CHECKSUM_PARTIAL;
4061 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4062 	skb->csum_offset = offset - start;
4063 }
4064 
4065 /* Update skbuf and packet to reflect the remote checksum offload operation.
4066  * When called, ptr indicates the starting point for skb->csum when
4067  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4068  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4069  */
4070 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4071 				       int start, int offset, bool nopartial)
4072 {
4073 	__wsum delta;
4074 
4075 	if (!nopartial) {
4076 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4077 		return;
4078 	}
4079 
4080 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4081 		__skb_checksum_complete(skb);
4082 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4083 	}
4084 
4085 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4086 
4087 	/* Adjust skb->csum since we changed the packet */
4088 	skb->csum = csum_add(skb->csum, delta);
4089 }
4090 
4091 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4092 {
4093 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4094 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4095 #else
4096 	return NULL;
4097 #endif
4098 }
4099 
4100 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4101 {
4102 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4103 	return skb->_nfct;
4104 #else
4105 	return 0UL;
4106 #endif
4107 }
4108 
4109 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4110 {
4111 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4112 	skb->_nfct = nfct;
4113 #endif
4114 }
4115 
4116 #ifdef CONFIG_SKB_EXTENSIONS
4117 enum skb_ext_id {
4118 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4119 	SKB_EXT_BRIDGE_NF,
4120 #endif
4121 #ifdef CONFIG_XFRM
4122 	SKB_EXT_SEC_PATH,
4123 #endif
4124 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4125 	TC_SKB_EXT,
4126 #endif
4127 #if IS_ENABLED(CONFIG_MPTCP)
4128 	SKB_EXT_MPTCP,
4129 #endif
4130 	SKB_EXT_NUM, /* must be last */
4131 };
4132 
4133 /**
4134  *	struct skb_ext - sk_buff extensions
4135  *	@refcnt: 1 on allocation, deallocated on 0
4136  *	@offset: offset to add to @data to obtain extension address
4137  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4138  *	@data: start of extension data, variable sized
4139  *
4140  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4141  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4142  */
4143 struct skb_ext {
4144 	refcount_t refcnt;
4145 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4146 	u8 chunks;		/* same */
4147 	char data[] __aligned(8);
4148 };
4149 
4150 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4151 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4152 		    struct skb_ext *ext);
4153 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4154 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4155 void __skb_ext_put(struct skb_ext *ext);
4156 
4157 static inline void skb_ext_put(struct sk_buff *skb)
4158 {
4159 	if (skb->active_extensions)
4160 		__skb_ext_put(skb->extensions);
4161 }
4162 
4163 static inline void __skb_ext_copy(struct sk_buff *dst,
4164 				  const struct sk_buff *src)
4165 {
4166 	dst->active_extensions = src->active_extensions;
4167 
4168 	if (src->active_extensions) {
4169 		struct skb_ext *ext = src->extensions;
4170 
4171 		refcount_inc(&ext->refcnt);
4172 		dst->extensions = ext;
4173 	}
4174 }
4175 
4176 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4177 {
4178 	skb_ext_put(dst);
4179 	__skb_ext_copy(dst, src);
4180 }
4181 
4182 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4183 {
4184 	return !!ext->offset[i];
4185 }
4186 
4187 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4188 {
4189 	return skb->active_extensions & (1 << id);
4190 }
4191 
4192 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4193 {
4194 	if (skb_ext_exist(skb, id))
4195 		__skb_ext_del(skb, id);
4196 }
4197 
4198 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4199 {
4200 	if (skb_ext_exist(skb, id)) {
4201 		struct skb_ext *ext = skb->extensions;
4202 
4203 		return (void *)ext + (ext->offset[id] << 3);
4204 	}
4205 
4206 	return NULL;
4207 }
4208 
4209 static inline void skb_ext_reset(struct sk_buff *skb)
4210 {
4211 	if (unlikely(skb->active_extensions)) {
4212 		__skb_ext_put(skb->extensions);
4213 		skb->active_extensions = 0;
4214 	}
4215 }
4216 
4217 static inline bool skb_has_extensions(struct sk_buff *skb)
4218 {
4219 	return unlikely(skb->active_extensions);
4220 }
4221 #else
4222 static inline void skb_ext_put(struct sk_buff *skb) {}
4223 static inline void skb_ext_reset(struct sk_buff *skb) {}
4224 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4225 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4226 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4227 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4228 #endif /* CONFIG_SKB_EXTENSIONS */
4229 
4230 static inline void nf_reset_ct(struct sk_buff *skb)
4231 {
4232 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4233 	nf_conntrack_put(skb_nfct(skb));
4234 	skb->_nfct = 0;
4235 #endif
4236 }
4237 
4238 static inline void nf_reset_trace(struct sk_buff *skb)
4239 {
4240 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4241 	skb->nf_trace = 0;
4242 #endif
4243 }
4244 
4245 static inline void ipvs_reset(struct sk_buff *skb)
4246 {
4247 #if IS_ENABLED(CONFIG_IP_VS)
4248 	skb->ipvs_property = 0;
4249 #endif
4250 }
4251 
4252 /* Note: This doesn't put any conntrack info in dst. */
4253 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4254 			     bool copy)
4255 {
4256 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4257 	dst->_nfct = src->_nfct;
4258 	nf_conntrack_get(skb_nfct(src));
4259 #endif
4260 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4261 	if (copy)
4262 		dst->nf_trace = src->nf_trace;
4263 #endif
4264 }
4265 
4266 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4267 {
4268 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4269 	nf_conntrack_put(skb_nfct(dst));
4270 #endif
4271 	__nf_copy(dst, src, true);
4272 }
4273 
4274 #ifdef CONFIG_NETWORK_SECMARK
4275 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4276 {
4277 	to->secmark = from->secmark;
4278 }
4279 
4280 static inline void skb_init_secmark(struct sk_buff *skb)
4281 {
4282 	skb->secmark = 0;
4283 }
4284 #else
4285 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4286 { }
4287 
4288 static inline void skb_init_secmark(struct sk_buff *skb)
4289 { }
4290 #endif
4291 
4292 static inline int secpath_exists(const struct sk_buff *skb)
4293 {
4294 #ifdef CONFIG_XFRM
4295 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4296 #else
4297 	return 0;
4298 #endif
4299 }
4300 
4301 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4302 {
4303 	return !skb->destructor &&
4304 		!secpath_exists(skb) &&
4305 		!skb_nfct(skb) &&
4306 		!skb->_skb_refdst &&
4307 		!skb_has_frag_list(skb);
4308 }
4309 
4310 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4311 {
4312 	skb->queue_mapping = queue_mapping;
4313 }
4314 
4315 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4316 {
4317 	return skb->queue_mapping;
4318 }
4319 
4320 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4321 {
4322 	to->queue_mapping = from->queue_mapping;
4323 }
4324 
4325 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4326 {
4327 	skb->queue_mapping = rx_queue + 1;
4328 }
4329 
4330 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4331 {
4332 	return skb->queue_mapping - 1;
4333 }
4334 
4335 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4336 {
4337 	return skb->queue_mapping != 0;
4338 }
4339 
4340 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4341 {
4342 	skb->dst_pending_confirm = val;
4343 }
4344 
4345 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4346 {
4347 	return skb->dst_pending_confirm != 0;
4348 }
4349 
4350 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4351 {
4352 #ifdef CONFIG_XFRM
4353 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4354 #else
4355 	return NULL;
4356 #endif
4357 }
4358 
4359 /* Keeps track of mac header offset relative to skb->head.
4360  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4361  * For non-tunnel skb it points to skb_mac_header() and for
4362  * tunnel skb it points to outer mac header.
4363  * Keeps track of level of encapsulation of network headers.
4364  */
4365 struct skb_gso_cb {
4366 	union {
4367 		int	mac_offset;
4368 		int	data_offset;
4369 	};
4370 	int	encap_level;
4371 	__wsum	csum;
4372 	__u16	csum_start;
4373 };
4374 #define SKB_GSO_CB_OFFSET	32
4375 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4376 
4377 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4378 {
4379 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4380 		SKB_GSO_CB(inner_skb)->mac_offset;
4381 }
4382 
4383 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4384 {
4385 	int new_headroom, headroom;
4386 	int ret;
4387 
4388 	headroom = skb_headroom(skb);
4389 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4390 	if (ret)
4391 		return ret;
4392 
4393 	new_headroom = skb_headroom(skb);
4394 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4395 	return 0;
4396 }
4397 
4398 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4399 {
4400 	/* Do not update partial checksums if remote checksum is enabled. */
4401 	if (skb->remcsum_offload)
4402 		return;
4403 
4404 	SKB_GSO_CB(skb)->csum = res;
4405 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4406 }
4407 
4408 /* Compute the checksum for a gso segment. First compute the checksum value
4409  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4410  * then add in skb->csum (checksum from csum_start to end of packet).
4411  * skb->csum and csum_start are then updated to reflect the checksum of the
4412  * resultant packet starting from the transport header-- the resultant checksum
4413  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4414  * header.
4415  */
4416 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4417 {
4418 	unsigned char *csum_start = skb_transport_header(skb);
4419 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4420 	__wsum partial = SKB_GSO_CB(skb)->csum;
4421 
4422 	SKB_GSO_CB(skb)->csum = res;
4423 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4424 
4425 	return csum_fold(csum_partial(csum_start, plen, partial));
4426 }
4427 
4428 static inline bool skb_is_gso(const struct sk_buff *skb)
4429 {
4430 	return skb_shinfo(skb)->gso_size;
4431 }
4432 
4433 /* Note: Should be called only if skb_is_gso(skb) is true */
4434 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4435 {
4436 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4437 }
4438 
4439 /* Note: Should be called only if skb_is_gso(skb) is true */
4440 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4441 {
4442 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4443 }
4444 
4445 /* Note: Should be called only if skb_is_gso(skb) is true */
4446 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4447 {
4448 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4449 }
4450 
4451 static inline void skb_gso_reset(struct sk_buff *skb)
4452 {
4453 	skb_shinfo(skb)->gso_size = 0;
4454 	skb_shinfo(skb)->gso_segs = 0;
4455 	skb_shinfo(skb)->gso_type = 0;
4456 }
4457 
4458 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4459 					 u16 increment)
4460 {
4461 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4462 		return;
4463 	shinfo->gso_size += increment;
4464 }
4465 
4466 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4467 					 u16 decrement)
4468 {
4469 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4470 		return;
4471 	shinfo->gso_size -= decrement;
4472 }
4473 
4474 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4475 
4476 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4477 {
4478 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4479 	 * wanted then gso_type will be set. */
4480 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4481 
4482 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4483 	    unlikely(shinfo->gso_type == 0)) {
4484 		__skb_warn_lro_forwarding(skb);
4485 		return true;
4486 	}
4487 	return false;
4488 }
4489 
4490 static inline void skb_forward_csum(struct sk_buff *skb)
4491 {
4492 	/* Unfortunately we don't support this one.  Any brave souls? */
4493 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4494 		skb->ip_summed = CHECKSUM_NONE;
4495 }
4496 
4497 /**
4498  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4499  * @skb: skb to check
4500  *
4501  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4502  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4503  * use this helper, to document places where we make this assertion.
4504  */
4505 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4506 {
4507 #ifdef DEBUG
4508 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4509 #endif
4510 }
4511 
4512 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4513 
4514 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4515 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4516 				     unsigned int transport_len,
4517 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4518 
4519 /**
4520  * skb_head_is_locked - Determine if the skb->head is locked down
4521  * @skb: skb to check
4522  *
4523  * The head on skbs build around a head frag can be removed if they are
4524  * not cloned.  This function returns true if the skb head is locked down
4525  * due to either being allocated via kmalloc, or by being a clone with
4526  * multiple references to the head.
4527  */
4528 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4529 {
4530 	return !skb->head_frag || skb_cloned(skb);
4531 }
4532 
4533 /* Local Checksum Offload.
4534  * Compute outer checksum based on the assumption that the
4535  * inner checksum will be offloaded later.
4536  * See Documentation/networking/checksum-offloads.rst for
4537  * explanation of how this works.
4538  * Fill in outer checksum adjustment (e.g. with sum of outer
4539  * pseudo-header) before calling.
4540  * Also ensure that inner checksum is in linear data area.
4541  */
4542 static inline __wsum lco_csum(struct sk_buff *skb)
4543 {
4544 	unsigned char *csum_start = skb_checksum_start(skb);
4545 	unsigned char *l4_hdr = skb_transport_header(skb);
4546 	__wsum partial;
4547 
4548 	/* Start with complement of inner checksum adjustment */
4549 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4550 						    skb->csum_offset));
4551 
4552 	/* Add in checksum of our headers (incl. outer checksum
4553 	 * adjustment filled in by caller) and return result.
4554 	 */
4555 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4556 }
4557 
4558 static inline bool skb_is_redirected(const struct sk_buff *skb)
4559 {
4560 #ifdef CONFIG_NET_REDIRECT
4561 	return skb->redirected;
4562 #else
4563 	return false;
4564 #endif
4565 }
4566 
4567 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4568 {
4569 #ifdef CONFIG_NET_REDIRECT
4570 	skb->redirected = 1;
4571 	skb->from_ingress = from_ingress;
4572 	if (skb->from_ingress)
4573 		skb->tstamp = 0;
4574 #endif
4575 }
4576 
4577 static inline void skb_reset_redirect(struct sk_buff *skb)
4578 {
4579 #ifdef CONFIG_NET_REDIRECT
4580 	skb->redirected = 0;
4581 #endif
4582 }
4583 
4584 #endif	/* __KERNEL__ */
4585 #endif	/* _LINUX_SKBUFF_H */
4586