xref: /linux-6.15/include/linux/skbuff.h (revision 4dc7ccf7)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /**
167  * struct skb_shared_tx - instructions for time stamping of outgoing packets
168  * @hardware:		generate hardware time stamp
169  * @software:		generate software time stamp
170  * @in_progress:	device driver is going to provide
171  *			hardware time stamp
172  * @flags:		all shared_tx flags
173  *
174  * These flags are attached to packets as part of the
175  * &skb_shared_info. Use skb_tx() to get a pointer.
176  */
177 union skb_shared_tx {
178 	struct {
179 		__u8	hardware:1,
180 			software:1,
181 			in_progress:1;
182 	};
183 	__u8 flags;
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	atomic_t	dataref;
191 	unsigned short	nr_frags;
192 	unsigned short	gso_size;
193 	/* Warning: this field is not always filled in (UFO)! */
194 	unsigned short	gso_segs;
195 	unsigned short  gso_type;
196 	__be32          ip6_frag_id;
197 	union skb_shared_tx tx_flags;
198 	struct sk_buff	*frag_list;
199 	struct skb_shared_hwtstamps hwtstamps;
200 	skb_frag_t	frags[MAX_SKB_FRAGS];
201 	/* Intermediate layers must ensure that destructor_arg
202 	 * remains valid until skb destructor */
203 	void *		destructor_arg;
204 };
205 
206 /* We divide dataref into two halves.  The higher 16 bits hold references
207  * to the payload part of skb->data.  The lower 16 bits hold references to
208  * the entire skb->data.  A clone of a headerless skb holds the length of
209  * the header in skb->hdr_len.
210  *
211  * All users must obey the rule that the skb->data reference count must be
212  * greater than or equal to the payload reference count.
213  *
214  * Holding a reference to the payload part means that the user does not
215  * care about modifications to the header part of skb->data.
216  */
217 #define SKB_DATAREF_SHIFT 16
218 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
219 
220 
221 enum {
222 	SKB_FCLONE_UNAVAILABLE,
223 	SKB_FCLONE_ORIG,
224 	SKB_FCLONE_CLONE,
225 };
226 
227 enum {
228 	SKB_GSO_TCPV4 = 1 << 0,
229 	SKB_GSO_UDP = 1 << 1,
230 
231 	/* This indicates the skb is from an untrusted source. */
232 	SKB_GSO_DODGY = 1 << 2,
233 
234 	/* This indicates the tcp segment has CWR set. */
235 	SKB_GSO_TCP_ECN = 1 << 3,
236 
237 	SKB_GSO_TCPV6 = 1 << 4,
238 
239 	SKB_GSO_FCOE = 1 << 5,
240 };
241 
242 #if BITS_PER_LONG > 32
243 #define NET_SKBUFF_DATA_USES_OFFSET 1
244 #endif
245 
246 #ifdef NET_SKBUFF_DATA_USES_OFFSET
247 typedef unsigned int sk_buff_data_t;
248 #else
249 typedef unsigned char *sk_buff_data_t;
250 #endif
251 
252 /**
253  *	struct sk_buff - socket buffer
254  *	@next: Next buffer in list
255  *	@prev: Previous buffer in list
256  *	@sk: Socket we are owned by
257  *	@tstamp: Time we arrived
258  *	@dev: Device we arrived on/are leaving by
259  *	@transport_header: Transport layer header
260  *	@network_header: Network layer header
261  *	@mac_header: Link layer header
262  *	@_skb_dst: destination entry
263  *	@sp: the security path, used for xfrm
264  *	@cb: Control buffer. Free for use by every layer. Put private vars here
265  *	@len: Length of actual data
266  *	@data_len: Data length
267  *	@mac_len: Length of link layer header
268  *	@hdr_len: writable header length of cloned skb
269  *	@csum: Checksum (must include start/offset pair)
270  *	@csum_start: Offset from skb->head where checksumming should start
271  *	@csum_offset: Offset from csum_start where checksum should be stored
272  *	@local_df: allow local fragmentation
273  *	@cloned: Head may be cloned (check refcnt to be sure)
274  *	@nohdr: Payload reference only, must not modify header
275  *	@pkt_type: Packet class
276  *	@fclone: skbuff clone status
277  *	@ip_summed: Driver fed us an IP checksum
278  *	@priority: Packet queueing priority
279  *	@users: User count - see {datagram,tcp}.c
280  *	@protocol: Packet protocol from driver
281  *	@truesize: Buffer size
282  *	@head: Head of buffer
283  *	@data: Data head pointer
284  *	@tail: Tail pointer
285  *	@end: End pointer
286  *	@destructor: Destruct function
287  *	@mark: Generic packet mark
288  *	@nfct: Associated connection, if any
289  *	@ipvs_property: skbuff is owned by ipvs
290  *	@peeked: this packet has been seen already, so stats have been
291  *		done for it, don't do them again
292  *	@nf_trace: netfilter packet trace flag
293  *	@nfctinfo: Relationship of this skb to the connection
294  *	@nfct_reasm: netfilter conntrack re-assembly pointer
295  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
296  *	@skb_iif: ifindex of device we arrived on
297  *	@queue_mapping: Queue mapping for multiqueue devices
298  *	@tc_index: Traffic control index
299  *	@tc_verd: traffic control verdict
300  *	@ndisc_nodetype: router type (from link layer)
301  *	@dma_cookie: a cookie to one of several possible DMA operations
302  *		done by skb DMA functions
303  *	@secmark: security marking
304  *	@vlan_tci: vlan tag control information
305  */
306 
307 struct sk_buff {
308 	/* These two members must be first. */
309 	struct sk_buff		*next;
310 	struct sk_buff		*prev;
311 
312 	ktime_t			tstamp;
313 
314 	struct sock		*sk;
315 	struct net_device	*dev;
316 
317 	/*
318 	 * This is the control buffer. It is free to use for every
319 	 * layer. Please put your private variables there. If you
320 	 * want to keep them across layers you have to do a skb_clone()
321 	 * first. This is owned by whoever has the skb queued ATM.
322 	 */
323 	char			cb[48] __aligned(8);
324 
325 	unsigned long		_skb_dst;
326 #ifdef CONFIG_XFRM
327 	struct	sec_path	*sp;
328 #endif
329 	unsigned int		len,
330 				data_len;
331 	__u16			mac_len,
332 				hdr_len;
333 	union {
334 		__wsum		csum;
335 		struct {
336 			__u16	csum_start;
337 			__u16	csum_offset;
338 		};
339 	};
340 	__u32			priority;
341 	kmemcheck_bitfield_begin(flags1);
342 	__u8			local_df:1,
343 				cloned:1,
344 				ip_summed:2,
345 				nohdr:1,
346 				nfctinfo:3;
347 	__u8			pkt_type:3,
348 				fclone:2,
349 				ipvs_property:1,
350 				peeked:1,
351 				nf_trace:1;
352 	kmemcheck_bitfield_end(flags1);
353 	__be16			protocol;
354 
355 	void			(*destructor)(struct sk_buff *skb);
356 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
357 	struct nf_conntrack	*nfct;
358 	struct sk_buff		*nfct_reasm;
359 #endif
360 #ifdef CONFIG_BRIDGE_NETFILTER
361 	struct nf_bridge_info	*nf_bridge;
362 #endif
363 
364 	int			skb_iif;
365 #ifdef CONFIG_NET_SCHED
366 	__u16			tc_index;	/* traffic control index */
367 #ifdef CONFIG_NET_CLS_ACT
368 	__u16			tc_verd;	/* traffic control verdict */
369 #endif
370 #endif
371 
372 	kmemcheck_bitfield_begin(flags2);
373 	__u16			queue_mapping:16;
374 #ifdef CONFIG_IPV6_NDISC_NODETYPE
375 	__u8			ndisc_nodetype:2;
376 #endif
377 	kmemcheck_bitfield_end(flags2);
378 
379 	/* 0/14 bit hole */
380 
381 #ifdef CONFIG_NET_DMA
382 	dma_cookie_t		dma_cookie;
383 #endif
384 #ifdef CONFIG_NETWORK_SECMARK
385 	__u32			secmark;
386 #endif
387 	union {
388 		__u32		mark;
389 		__u32		dropcount;
390 	};
391 
392 	__u16			vlan_tci;
393 
394 	sk_buff_data_t		transport_header;
395 	sk_buff_data_t		network_header;
396 	sk_buff_data_t		mac_header;
397 	/* These elements must be at the end, see alloc_skb() for details.  */
398 	sk_buff_data_t		tail;
399 	sk_buff_data_t		end;
400 	unsigned char		*head,
401 				*data;
402 	unsigned int		truesize;
403 	atomic_t		users;
404 };
405 
406 #ifdef __KERNEL__
407 /*
408  *	Handling routines are only of interest to the kernel
409  */
410 #include <linux/slab.h>
411 
412 #include <asm/system.h>
413 
414 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
415 {
416 	return (struct dst_entry *)skb->_skb_dst;
417 }
418 
419 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
420 {
421 	skb->_skb_dst = (unsigned long)dst;
422 }
423 
424 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
425 {
426 	return (struct rtable *)skb_dst(skb);
427 }
428 
429 extern void kfree_skb(struct sk_buff *skb);
430 extern void consume_skb(struct sk_buff *skb);
431 extern void	       __kfree_skb(struct sk_buff *skb);
432 extern struct sk_buff *__alloc_skb(unsigned int size,
433 				   gfp_t priority, int fclone, int node);
434 static inline struct sk_buff *alloc_skb(unsigned int size,
435 					gfp_t priority)
436 {
437 	return __alloc_skb(size, priority, 0, -1);
438 }
439 
440 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
441 					       gfp_t priority)
442 {
443 	return __alloc_skb(size, priority, 1, -1);
444 }
445 
446 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
447 
448 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
449 extern struct sk_buff *skb_clone(struct sk_buff *skb,
450 				 gfp_t priority);
451 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
452 				gfp_t priority);
453 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
454 				 gfp_t gfp_mask);
455 extern int	       pskb_expand_head(struct sk_buff *skb,
456 					int nhead, int ntail,
457 					gfp_t gfp_mask);
458 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
459 					    unsigned int headroom);
460 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
461 				       int newheadroom, int newtailroom,
462 				       gfp_t priority);
463 extern int	       skb_to_sgvec(struct sk_buff *skb,
464 				    struct scatterlist *sg, int offset,
465 				    int len);
466 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
467 				    struct sk_buff **trailer);
468 extern int	       skb_pad(struct sk_buff *skb, int pad);
469 #define dev_kfree_skb(a)	consume_skb(a)
470 #define dev_consume_skb(a)	kfree_skb_clean(a)
471 extern void	      skb_over_panic(struct sk_buff *skb, int len,
472 				     void *here);
473 extern void	      skb_under_panic(struct sk_buff *skb, int len,
474 				      void *here);
475 
476 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
477 			int getfrag(void *from, char *to, int offset,
478 			int len,int odd, struct sk_buff *skb),
479 			void *from, int length);
480 
481 struct skb_seq_state {
482 	__u32		lower_offset;
483 	__u32		upper_offset;
484 	__u32		frag_idx;
485 	__u32		stepped_offset;
486 	struct sk_buff	*root_skb;
487 	struct sk_buff	*cur_skb;
488 	__u8		*frag_data;
489 };
490 
491 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
492 					   unsigned int from, unsigned int to,
493 					   struct skb_seq_state *st);
494 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
495 				   struct skb_seq_state *st);
496 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
497 
498 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
499 				    unsigned int to, struct ts_config *config,
500 				    struct ts_state *state);
501 
502 #ifdef NET_SKBUFF_DATA_USES_OFFSET
503 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
504 {
505 	return skb->head + skb->end;
506 }
507 #else
508 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
509 {
510 	return skb->end;
511 }
512 #endif
513 
514 /* Internal */
515 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
516 
517 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
518 {
519 	return &skb_shinfo(skb)->hwtstamps;
520 }
521 
522 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
523 {
524 	return &skb_shinfo(skb)->tx_flags;
525 }
526 
527 /**
528  *	skb_queue_empty - check if a queue is empty
529  *	@list: queue head
530  *
531  *	Returns true if the queue is empty, false otherwise.
532  */
533 static inline int skb_queue_empty(const struct sk_buff_head *list)
534 {
535 	return list->next == (struct sk_buff *)list;
536 }
537 
538 /**
539  *	skb_queue_is_last - check if skb is the last entry in the queue
540  *	@list: queue head
541  *	@skb: buffer
542  *
543  *	Returns true if @skb is the last buffer on the list.
544  */
545 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
546 				     const struct sk_buff *skb)
547 {
548 	return (skb->next == (struct sk_buff *) list);
549 }
550 
551 /**
552  *	skb_queue_is_first - check if skb is the first entry in the queue
553  *	@list: queue head
554  *	@skb: buffer
555  *
556  *	Returns true if @skb is the first buffer on the list.
557  */
558 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
559 				      const struct sk_buff *skb)
560 {
561 	return (skb->prev == (struct sk_buff *) list);
562 }
563 
564 /**
565  *	skb_queue_next - return the next packet in the queue
566  *	@list: queue head
567  *	@skb: current buffer
568  *
569  *	Return the next packet in @list after @skb.  It is only valid to
570  *	call this if skb_queue_is_last() evaluates to false.
571  */
572 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
573 					     const struct sk_buff *skb)
574 {
575 	/* This BUG_ON may seem severe, but if we just return then we
576 	 * are going to dereference garbage.
577 	 */
578 	BUG_ON(skb_queue_is_last(list, skb));
579 	return skb->next;
580 }
581 
582 /**
583  *	skb_queue_prev - return the prev packet in the queue
584  *	@list: queue head
585  *	@skb: current buffer
586  *
587  *	Return the prev packet in @list before @skb.  It is only valid to
588  *	call this if skb_queue_is_first() evaluates to false.
589  */
590 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
591 					     const struct sk_buff *skb)
592 {
593 	/* This BUG_ON may seem severe, but if we just return then we
594 	 * are going to dereference garbage.
595 	 */
596 	BUG_ON(skb_queue_is_first(list, skb));
597 	return skb->prev;
598 }
599 
600 /**
601  *	skb_get - reference buffer
602  *	@skb: buffer to reference
603  *
604  *	Makes another reference to a socket buffer and returns a pointer
605  *	to the buffer.
606  */
607 static inline struct sk_buff *skb_get(struct sk_buff *skb)
608 {
609 	atomic_inc(&skb->users);
610 	return skb;
611 }
612 
613 /*
614  * If users == 1, we are the only owner and are can avoid redundant
615  * atomic change.
616  */
617 
618 /**
619  *	skb_cloned - is the buffer a clone
620  *	@skb: buffer to check
621  *
622  *	Returns true if the buffer was generated with skb_clone() and is
623  *	one of multiple shared copies of the buffer. Cloned buffers are
624  *	shared data so must not be written to under normal circumstances.
625  */
626 static inline int skb_cloned(const struct sk_buff *skb)
627 {
628 	return skb->cloned &&
629 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
630 }
631 
632 /**
633  *	skb_header_cloned - is the header a clone
634  *	@skb: buffer to check
635  *
636  *	Returns true if modifying the header part of the buffer requires
637  *	the data to be copied.
638  */
639 static inline int skb_header_cloned(const struct sk_buff *skb)
640 {
641 	int dataref;
642 
643 	if (!skb->cloned)
644 		return 0;
645 
646 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
647 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
648 	return dataref != 1;
649 }
650 
651 /**
652  *	skb_header_release - release reference to header
653  *	@skb: buffer to operate on
654  *
655  *	Drop a reference to the header part of the buffer.  This is done
656  *	by acquiring a payload reference.  You must not read from the header
657  *	part of skb->data after this.
658  */
659 static inline void skb_header_release(struct sk_buff *skb)
660 {
661 	BUG_ON(skb->nohdr);
662 	skb->nohdr = 1;
663 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
664 }
665 
666 /**
667  *	skb_shared - is the buffer shared
668  *	@skb: buffer to check
669  *
670  *	Returns true if more than one person has a reference to this
671  *	buffer.
672  */
673 static inline int skb_shared(const struct sk_buff *skb)
674 {
675 	return atomic_read(&skb->users) != 1;
676 }
677 
678 /**
679  *	skb_share_check - check if buffer is shared and if so clone it
680  *	@skb: buffer to check
681  *	@pri: priority for memory allocation
682  *
683  *	If the buffer is shared the buffer is cloned and the old copy
684  *	drops a reference. A new clone with a single reference is returned.
685  *	If the buffer is not shared the original buffer is returned. When
686  *	being called from interrupt status or with spinlocks held pri must
687  *	be GFP_ATOMIC.
688  *
689  *	NULL is returned on a memory allocation failure.
690  */
691 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
692 					      gfp_t pri)
693 {
694 	might_sleep_if(pri & __GFP_WAIT);
695 	if (skb_shared(skb)) {
696 		struct sk_buff *nskb = skb_clone(skb, pri);
697 		kfree_skb(skb);
698 		skb = nskb;
699 	}
700 	return skb;
701 }
702 
703 /*
704  *	Copy shared buffers into a new sk_buff. We effectively do COW on
705  *	packets to handle cases where we have a local reader and forward
706  *	and a couple of other messy ones. The normal one is tcpdumping
707  *	a packet thats being forwarded.
708  */
709 
710 /**
711  *	skb_unshare - make a copy of a shared buffer
712  *	@skb: buffer to check
713  *	@pri: priority for memory allocation
714  *
715  *	If the socket buffer is a clone then this function creates a new
716  *	copy of the data, drops a reference count on the old copy and returns
717  *	the new copy with the reference count at 1. If the buffer is not a clone
718  *	the original buffer is returned. When called with a spinlock held or
719  *	from interrupt state @pri must be %GFP_ATOMIC
720  *
721  *	%NULL is returned on a memory allocation failure.
722  */
723 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
724 					  gfp_t pri)
725 {
726 	might_sleep_if(pri & __GFP_WAIT);
727 	if (skb_cloned(skb)) {
728 		struct sk_buff *nskb = skb_copy(skb, pri);
729 		kfree_skb(skb);	/* Free our shared copy */
730 		skb = nskb;
731 	}
732 	return skb;
733 }
734 
735 /**
736  *	skb_peek - peek at the head of an &sk_buff_head
737  *	@list_: list to peek at
738  *
739  *	Peek an &sk_buff. Unlike most other operations you _MUST_
740  *	be careful with this one. A peek leaves the buffer on the
741  *	list and someone else may run off with it. You must hold
742  *	the appropriate locks or have a private queue to do this.
743  *
744  *	Returns %NULL for an empty list or a pointer to the head element.
745  *	The reference count is not incremented and the reference is therefore
746  *	volatile. Use with caution.
747  */
748 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
749 {
750 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
751 	if (list == (struct sk_buff *)list_)
752 		list = NULL;
753 	return list;
754 }
755 
756 /**
757  *	skb_peek_tail - peek at the tail of an &sk_buff_head
758  *	@list_: list to peek at
759  *
760  *	Peek an &sk_buff. Unlike most other operations you _MUST_
761  *	be careful with this one. A peek leaves the buffer on the
762  *	list and someone else may run off with it. You must hold
763  *	the appropriate locks or have a private queue to do this.
764  *
765  *	Returns %NULL for an empty list or a pointer to the tail element.
766  *	The reference count is not incremented and the reference is therefore
767  *	volatile. Use with caution.
768  */
769 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
770 {
771 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
772 	if (list == (struct sk_buff *)list_)
773 		list = NULL;
774 	return list;
775 }
776 
777 /**
778  *	skb_queue_len	- get queue length
779  *	@list_: list to measure
780  *
781  *	Return the length of an &sk_buff queue.
782  */
783 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
784 {
785 	return list_->qlen;
786 }
787 
788 /**
789  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
790  *	@list: queue to initialize
791  *
792  *	This initializes only the list and queue length aspects of
793  *	an sk_buff_head object.  This allows to initialize the list
794  *	aspects of an sk_buff_head without reinitializing things like
795  *	the spinlock.  It can also be used for on-stack sk_buff_head
796  *	objects where the spinlock is known to not be used.
797  */
798 static inline void __skb_queue_head_init(struct sk_buff_head *list)
799 {
800 	list->prev = list->next = (struct sk_buff *)list;
801 	list->qlen = 0;
802 }
803 
804 /*
805  * This function creates a split out lock class for each invocation;
806  * this is needed for now since a whole lot of users of the skb-queue
807  * infrastructure in drivers have different locking usage (in hardirq)
808  * than the networking core (in softirq only). In the long run either the
809  * network layer or drivers should need annotation to consolidate the
810  * main types of usage into 3 classes.
811  */
812 static inline void skb_queue_head_init(struct sk_buff_head *list)
813 {
814 	spin_lock_init(&list->lock);
815 	__skb_queue_head_init(list);
816 }
817 
818 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
819 		struct lock_class_key *class)
820 {
821 	skb_queue_head_init(list);
822 	lockdep_set_class(&list->lock, class);
823 }
824 
825 /*
826  *	Insert an sk_buff on a list.
827  *
828  *	The "__skb_xxxx()" functions are the non-atomic ones that
829  *	can only be called with interrupts disabled.
830  */
831 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
832 static inline void __skb_insert(struct sk_buff *newsk,
833 				struct sk_buff *prev, struct sk_buff *next,
834 				struct sk_buff_head *list)
835 {
836 	newsk->next = next;
837 	newsk->prev = prev;
838 	next->prev  = prev->next = newsk;
839 	list->qlen++;
840 }
841 
842 static inline void __skb_queue_splice(const struct sk_buff_head *list,
843 				      struct sk_buff *prev,
844 				      struct sk_buff *next)
845 {
846 	struct sk_buff *first = list->next;
847 	struct sk_buff *last = list->prev;
848 
849 	first->prev = prev;
850 	prev->next = first;
851 
852 	last->next = next;
853 	next->prev = last;
854 }
855 
856 /**
857  *	skb_queue_splice - join two skb lists, this is designed for stacks
858  *	@list: the new list to add
859  *	@head: the place to add it in the first list
860  */
861 static inline void skb_queue_splice(const struct sk_buff_head *list,
862 				    struct sk_buff_head *head)
863 {
864 	if (!skb_queue_empty(list)) {
865 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
866 		head->qlen += list->qlen;
867 	}
868 }
869 
870 /**
871  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
872  *	@list: the new list to add
873  *	@head: the place to add it in the first list
874  *
875  *	The list at @list is reinitialised
876  */
877 static inline void skb_queue_splice_init(struct sk_buff_head *list,
878 					 struct sk_buff_head *head)
879 {
880 	if (!skb_queue_empty(list)) {
881 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
882 		head->qlen += list->qlen;
883 		__skb_queue_head_init(list);
884 	}
885 }
886 
887 /**
888  *	skb_queue_splice_tail - join two skb lists, each list being a queue
889  *	@list: the new list to add
890  *	@head: the place to add it in the first list
891  */
892 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
893 					 struct sk_buff_head *head)
894 {
895 	if (!skb_queue_empty(list)) {
896 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
897 		head->qlen += list->qlen;
898 	}
899 }
900 
901 /**
902  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
903  *	@list: the new list to add
904  *	@head: the place to add it in the first list
905  *
906  *	Each of the lists is a queue.
907  *	The list at @list is reinitialised
908  */
909 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
910 					      struct sk_buff_head *head)
911 {
912 	if (!skb_queue_empty(list)) {
913 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
914 		head->qlen += list->qlen;
915 		__skb_queue_head_init(list);
916 	}
917 }
918 
919 /**
920  *	__skb_queue_after - queue a buffer at the list head
921  *	@list: list to use
922  *	@prev: place after this buffer
923  *	@newsk: buffer to queue
924  *
925  *	Queue a buffer int the middle of a list. This function takes no locks
926  *	and you must therefore hold required locks before calling it.
927  *
928  *	A buffer cannot be placed on two lists at the same time.
929  */
930 static inline void __skb_queue_after(struct sk_buff_head *list,
931 				     struct sk_buff *prev,
932 				     struct sk_buff *newsk)
933 {
934 	__skb_insert(newsk, prev, prev->next, list);
935 }
936 
937 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
938 		       struct sk_buff_head *list);
939 
940 static inline void __skb_queue_before(struct sk_buff_head *list,
941 				      struct sk_buff *next,
942 				      struct sk_buff *newsk)
943 {
944 	__skb_insert(newsk, next->prev, next, list);
945 }
946 
947 /**
948  *	__skb_queue_head - queue a buffer at the list head
949  *	@list: list to use
950  *	@newsk: buffer to queue
951  *
952  *	Queue a buffer at the start of a list. This function takes no locks
953  *	and you must therefore hold required locks before calling it.
954  *
955  *	A buffer cannot be placed on two lists at the same time.
956  */
957 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
958 static inline void __skb_queue_head(struct sk_buff_head *list,
959 				    struct sk_buff *newsk)
960 {
961 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
962 }
963 
964 /**
965  *	__skb_queue_tail - queue a buffer at the list tail
966  *	@list: list to use
967  *	@newsk: buffer to queue
968  *
969  *	Queue a buffer at the end of a list. This function takes no locks
970  *	and you must therefore hold required locks before calling it.
971  *
972  *	A buffer cannot be placed on two lists at the same time.
973  */
974 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
975 static inline void __skb_queue_tail(struct sk_buff_head *list,
976 				   struct sk_buff *newsk)
977 {
978 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
979 }
980 
981 /*
982  * remove sk_buff from list. _Must_ be called atomically, and with
983  * the list known..
984  */
985 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
986 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
987 {
988 	struct sk_buff *next, *prev;
989 
990 	list->qlen--;
991 	next	   = skb->next;
992 	prev	   = skb->prev;
993 	skb->next  = skb->prev = NULL;
994 	next->prev = prev;
995 	prev->next = next;
996 }
997 
998 /**
999  *	__skb_dequeue - remove from the head of the queue
1000  *	@list: list to dequeue from
1001  *
1002  *	Remove the head of the list. This function does not take any locks
1003  *	so must be used with appropriate locks held only. The head item is
1004  *	returned or %NULL if the list is empty.
1005  */
1006 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1007 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1008 {
1009 	struct sk_buff *skb = skb_peek(list);
1010 	if (skb)
1011 		__skb_unlink(skb, list);
1012 	return skb;
1013 }
1014 
1015 /**
1016  *	__skb_dequeue_tail - remove from the tail of the queue
1017  *	@list: list to dequeue from
1018  *
1019  *	Remove the tail of the list. This function does not take any locks
1020  *	so must be used with appropriate locks held only. The tail item is
1021  *	returned or %NULL if the list is empty.
1022  */
1023 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1024 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1025 {
1026 	struct sk_buff *skb = skb_peek_tail(list);
1027 	if (skb)
1028 		__skb_unlink(skb, list);
1029 	return skb;
1030 }
1031 
1032 
1033 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1034 {
1035 	return skb->data_len;
1036 }
1037 
1038 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1039 {
1040 	return skb->len - skb->data_len;
1041 }
1042 
1043 static inline int skb_pagelen(const struct sk_buff *skb)
1044 {
1045 	int i, len = 0;
1046 
1047 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1048 		len += skb_shinfo(skb)->frags[i].size;
1049 	return len + skb_headlen(skb);
1050 }
1051 
1052 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1053 				      struct page *page, int off, int size)
1054 {
1055 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1056 
1057 	frag->page		  = page;
1058 	frag->page_offset	  = off;
1059 	frag->size		  = size;
1060 	skb_shinfo(skb)->nr_frags = i + 1;
1061 }
1062 
1063 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1064 			    int off, int size);
1065 
1066 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1067 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1068 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1069 
1070 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1071 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1072 {
1073 	return skb->head + skb->tail;
1074 }
1075 
1076 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1077 {
1078 	skb->tail = skb->data - skb->head;
1079 }
1080 
1081 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1082 {
1083 	skb_reset_tail_pointer(skb);
1084 	skb->tail += offset;
1085 }
1086 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1087 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1088 {
1089 	return skb->tail;
1090 }
1091 
1092 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1093 {
1094 	skb->tail = skb->data;
1095 }
1096 
1097 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1098 {
1099 	skb->tail = skb->data + offset;
1100 }
1101 
1102 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1103 
1104 /*
1105  *	Add data to an sk_buff
1106  */
1107 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1108 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1109 {
1110 	unsigned char *tmp = skb_tail_pointer(skb);
1111 	SKB_LINEAR_ASSERT(skb);
1112 	skb->tail += len;
1113 	skb->len  += len;
1114 	return tmp;
1115 }
1116 
1117 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1118 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1119 {
1120 	skb->data -= len;
1121 	skb->len  += len;
1122 	return skb->data;
1123 }
1124 
1125 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1126 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1127 {
1128 	skb->len -= len;
1129 	BUG_ON(skb->len < skb->data_len);
1130 	return skb->data += len;
1131 }
1132 
1133 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1134 
1135 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1136 {
1137 	if (len > skb_headlen(skb) &&
1138 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1139 		return NULL;
1140 	skb->len -= len;
1141 	return skb->data += len;
1142 }
1143 
1144 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1145 {
1146 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1147 }
1148 
1149 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1150 {
1151 	if (likely(len <= skb_headlen(skb)))
1152 		return 1;
1153 	if (unlikely(len > skb->len))
1154 		return 0;
1155 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1156 }
1157 
1158 /**
1159  *	skb_headroom - bytes at buffer head
1160  *	@skb: buffer to check
1161  *
1162  *	Return the number of bytes of free space at the head of an &sk_buff.
1163  */
1164 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1165 {
1166 	return skb->data - skb->head;
1167 }
1168 
1169 /**
1170  *	skb_tailroom - bytes at buffer end
1171  *	@skb: buffer to check
1172  *
1173  *	Return the number of bytes of free space at the tail of an sk_buff
1174  */
1175 static inline int skb_tailroom(const struct sk_buff *skb)
1176 {
1177 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1178 }
1179 
1180 /**
1181  *	skb_reserve - adjust headroom
1182  *	@skb: buffer to alter
1183  *	@len: bytes to move
1184  *
1185  *	Increase the headroom of an empty &sk_buff by reducing the tail
1186  *	room. This is only allowed for an empty buffer.
1187  */
1188 static inline void skb_reserve(struct sk_buff *skb, int len)
1189 {
1190 	skb->data += len;
1191 	skb->tail += len;
1192 }
1193 
1194 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1195 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1196 {
1197 	return skb->head + skb->transport_header;
1198 }
1199 
1200 static inline void skb_reset_transport_header(struct sk_buff *skb)
1201 {
1202 	skb->transport_header = skb->data - skb->head;
1203 }
1204 
1205 static inline void skb_set_transport_header(struct sk_buff *skb,
1206 					    const int offset)
1207 {
1208 	skb_reset_transport_header(skb);
1209 	skb->transport_header += offset;
1210 }
1211 
1212 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1213 {
1214 	return skb->head + skb->network_header;
1215 }
1216 
1217 static inline void skb_reset_network_header(struct sk_buff *skb)
1218 {
1219 	skb->network_header = skb->data - skb->head;
1220 }
1221 
1222 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1223 {
1224 	skb_reset_network_header(skb);
1225 	skb->network_header += offset;
1226 }
1227 
1228 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1229 {
1230 	return skb->head + skb->mac_header;
1231 }
1232 
1233 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1234 {
1235 	return skb->mac_header != ~0U;
1236 }
1237 
1238 static inline void skb_reset_mac_header(struct sk_buff *skb)
1239 {
1240 	skb->mac_header = skb->data - skb->head;
1241 }
1242 
1243 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1244 {
1245 	skb_reset_mac_header(skb);
1246 	skb->mac_header += offset;
1247 }
1248 
1249 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1250 
1251 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1252 {
1253 	return skb->transport_header;
1254 }
1255 
1256 static inline void skb_reset_transport_header(struct sk_buff *skb)
1257 {
1258 	skb->transport_header = skb->data;
1259 }
1260 
1261 static inline void skb_set_transport_header(struct sk_buff *skb,
1262 					    const int offset)
1263 {
1264 	skb->transport_header = skb->data + offset;
1265 }
1266 
1267 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1268 {
1269 	return skb->network_header;
1270 }
1271 
1272 static inline void skb_reset_network_header(struct sk_buff *skb)
1273 {
1274 	skb->network_header = skb->data;
1275 }
1276 
1277 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1278 {
1279 	skb->network_header = skb->data + offset;
1280 }
1281 
1282 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1283 {
1284 	return skb->mac_header;
1285 }
1286 
1287 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1288 {
1289 	return skb->mac_header != NULL;
1290 }
1291 
1292 static inline void skb_reset_mac_header(struct sk_buff *skb)
1293 {
1294 	skb->mac_header = skb->data;
1295 }
1296 
1297 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1298 {
1299 	skb->mac_header = skb->data + offset;
1300 }
1301 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1302 
1303 static inline int skb_transport_offset(const struct sk_buff *skb)
1304 {
1305 	return skb_transport_header(skb) - skb->data;
1306 }
1307 
1308 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1309 {
1310 	return skb->transport_header - skb->network_header;
1311 }
1312 
1313 static inline int skb_network_offset(const struct sk_buff *skb)
1314 {
1315 	return skb_network_header(skb) - skb->data;
1316 }
1317 
1318 /*
1319  * CPUs often take a performance hit when accessing unaligned memory
1320  * locations. The actual performance hit varies, it can be small if the
1321  * hardware handles it or large if we have to take an exception and fix it
1322  * in software.
1323  *
1324  * Since an ethernet header is 14 bytes network drivers often end up with
1325  * the IP header at an unaligned offset. The IP header can be aligned by
1326  * shifting the start of the packet by 2 bytes. Drivers should do this
1327  * with:
1328  *
1329  * skb_reserve(skb, NET_IP_ALIGN);
1330  *
1331  * The downside to this alignment of the IP header is that the DMA is now
1332  * unaligned. On some architectures the cost of an unaligned DMA is high
1333  * and this cost outweighs the gains made by aligning the IP header.
1334  *
1335  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1336  * to be overridden.
1337  */
1338 #ifndef NET_IP_ALIGN
1339 #define NET_IP_ALIGN	2
1340 #endif
1341 
1342 /*
1343  * The networking layer reserves some headroom in skb data (via
1344  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1345  * the header has to grow. In the default case, if the header has to grow
1346  * 32 bytes or less we avoid the reallocation.
1347  *
1348  * Unfortunately this headroom changes the DMA alignment of the resulting
1349  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1350  * on some architectures. An architecture can override this value,
1351  * perhaps setting it to a cacheline in size (since that will maintain
1352  * cacheline alignment of the DMA). It must be a power of 2.
1353  *
1354  * Various parts of the networking layer expect at least 32 bytes of
1355  * headroom, you should not reduce this.
1356  */
1357 #ifndef NET_SKB_PAD
1358 #define NET_SKB_PAD	32
1359 #endif
1360 
1361 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1362 
1363 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1364 {
1365 	if (unlikely(skb->data_len)) {
1366 		WARN_ON(1);
1367 		return;
1368 	}
1369 	skb->len = len;
1370 	skb_set_tail_pointer(skb, len);
1371 }
1372 
1373 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1374 
1375 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1376 {
1377 	if (skb->data_len)
1378 		return ___pskb_trim(skb, len);
1379 	__skb_trim(skb, len);
1380 	return 0;
1381 }
1382 
1383 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1384 {
1385 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1386 }
1387 
1388 /**
1389  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1390  *	@skb: buffer to alter
1391  *	@len: new length
1392  *
1393  *	This is identical to pskb_trim except that the caller knows that
1394  *	the skb is not cloned so we should never get an error due to out-
1395  *	of-memory.
1396  */
1397 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1398 {
1399 	int err = pskb_trim(skb, len);
1400 	BUG_ON(err);
1401 }
1402 
1403 /**
1404  *	skb_orphan - orphan a buffer
1405  *	@skb: buffer to orphan
1406  *
1407  *	If a buffer currently has an owner then we call the owner's
1408  *	destructor function and make the @skb unowned. The buffer continues
1409  *	to exist but is no longer charged to its former owner.
1410  */
1411 static inline void skb_orphan(struct sk_buff *skb)
1412 {
1413 	if (skb->destructor)
1414 		skb->destructor(skb);
1415 	skb->destructor = NULL;
1416 	skb->sk		= NULL;
1417 }
1418 
1419 /**
1420  *	__skb_queue_purge - empty a list
1421  *	@list: list to empty
1422  *
1423  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1424  *	the list and one reference dropped. This function does not take the
1425  *	list lock and the caller must hold the relevant locks to use it.
1426  */
1427 extern void skb_queue_purge(struct sk_buff_head *list);
1428 static inline void __skb_queue_purge(struct sk_buff_head *list)
1429 {
1430 	struct sk_buff *skb;
1431 	while ((skb = __skb_dequeue(list)) != NULL)
1432 		kfree_skb(skb);
1433 }
1434 
1435 /**
1436  *	__dev_alloc_skb - allocate an skbuff for receiving
1437  *	@length: length to allocate
1438  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1439  *
1440  *	Allocate a new &sk_buff and assign it a usage count of one. The
1441  *	buffer has unspecified headroom built in. Users should allocate
1442  *	the headroom they think they need without accounting for the
1443  *	built in space. The built in space is used for optimisations.
1444  *
1445  *	%NULL is returned if there is no free memory.
1446  */
1447 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1448 					      gfp_t gfp_mask)
1449 {
1450 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1451 	if (likely(skb))
1452 		skb_reserve(skb, NET_SKB_PAD);
1453 	return skb;
1454 }
1455 
1456 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1457 
1458 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1459 		unsigned int length, gfp_t gfp_mask);
1460 
1461 /**
1462  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1463  *	@dev: network device to receive on
1464  *	@length: length to allocate
1465  *
1466  *	Allocate a new &sk_buff and assign it a usage count of one. The
1467  *	buffer has unspecified headroom built in. Users should allocate
1468  *	the headroom they think they need without accounting for the
1469  *	built in space. The built in space is used for optimisations.
1470  *
1471  *	%NULL is returned if there is no free memory. Although this function
1472  *	allocates memory it can be called from an interrupt.
1473  */
1474 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1475 		unsigned int length)
1476 {
1477 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1478 }
1479 
1480 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1481 		unsigned int length)
1482 {
1483 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1484 
1485 	if (NET_IP_ALIGN && skb)
1486 		skb_reserve(skb, NET_IP_ALIGN);
1487 	return skb;
1488 }
1489 
1490 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1491 
1492 /**
1493  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1494  *	@dev: network device to receive on
1495  *
1496  * 	Allocate a new page node local to the specified device.
1497  *
1498  * 	%NULL is returned if there is no free memory.
1499  */
1500 static inline struct page *netdev_alloc_page(struct net_device *dev)
1501 {
1502 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1503 }
1504 
1505 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1506 {
1507 	__free_page(page);
1508 }
1509 
1510 /**
1511  *	skb_clone_writable - is the header of a clone writable
1512  *	@skb: buffer to check
1513  *	@len: length up to which to write
1514  *
1515  *	Returns true if modifying the header part of the cloned buffer
1516  *	does not requires the data to be copied.
1517  */
1518 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1519 {
1520 	return !skb_header_cloned(skb) &&
1521 	       skb_headroom(skb) + len <= skb->hdr_len;
1522 }
1523 
1524 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1525 			    int cloned)
1526 {
1527 	int delta = 0;
1528 
1529 	if (headroom < NET_SKB_PAD)
1530 		headroom = NET_SKB_PAD;
1531 	if (headroom > skb_headroom(skb))
1532 		delta = headroom - skb_headroom(skb);
1533 
1534 	if (delta || cloned)
1535 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1536 					GFP_ATOMIC);
1537 	return 0;
1538 }
1539 
1540 /**
1541  *	skb_cow - copy header of skb when it is required
1542  *	@skb: buffer to cow
1543  *	@headroom: needed headroom
1544  *
1545  *	If the skb passed lacks sufficient headroom or its data part
1546  *	is shared, data is reallocated. If reallocation fails, an error
1547  *	is returned and original skb is not changed.
1548  *
1549  *	The result is skb with writable area skb->head...skb->tail
1550  *	and at least @headroom of space at head.
1551  */
1552 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1553 {
1554 	return __skb_cow(skb, headroom, skb_cloned(skb));
1555 }
1556 
1557 /**
1558  *	skb_cow_head - skb_cow but only making the head writable
1559  *	@skb: buffer to cow
1560  *	@headroom: needed headroom
1561  *
1562  *	This function is identical to skb_cow except that we replace the
1563  *	skb_cloned check by skb_header_cloned.  It should be used when
1564  *	you only need to push on some header and do not need to modify
1565  *	the data.
1566  */
1567 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1568 {
1569 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1570 }
1571 
1572 /**
1573  *	skb_padto	- pad an skbuff up to a minimal size
1574  *	@skb: buffer to pad
1575  *	@len: minimal length
1576  *
1577  *	Pads up a buffer to ensure the trailing bytes exist and are
1578  *	blanked. If the buffer already contains sufficient data it
1579  *	is untouched. Otherwise it is extended. Returns zero on
1580  *	success. The skb is freed on error.
1581  */
1582 
1583 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1584 {
1585 	unsigned int size = skb->len;
1586 	if (likely(size >= len))
1587 		return 0;
1588 	return skb_pad(skb, len - size);
1589 }
1590 
1591 static inline int skb_add_data(struct sk_buff *skb,
1592 			       char __user *from, int copy)
1593 {
1594 	const int off = skb->len;
1595 
1596 	if (skb->ip_summed == CHECKSUM_NONE) {
1597 		int err = 0;
1598 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1599 							    copy, 0, &err);
1600 		if (!err) {
1601 			skb->csum = csum_block_add(skb->csum, csum, off);
1602 			return 0;
1603 		}
1604 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1605 		return 0;
1606 
1607 	__skb_trim(skb, off);
1608 	return -EFAULT;
1609 }
1610 
1611 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1612 				   struct page *page, int off)
1613 {
1614 	if (i) {
1615 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1616 
1617 		return page == frag->page &&
1618 		       off == frag->page_offset + frag->size;
1619 	}
1620 	return 0;
1621 }
1622 
1623 static inline int __skb_linearize(struct sk_buff *skb)
1624 {
1625 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1626 }
1627 
1628 /**
1629  *	skb_linearize - convert paged skb to linear one
1630  *	@skb: buffer to linarize
1631  *
1632  *	If there is no free memory -ENOMEM is returned, otherwise zero
1633  *	is returned and the old skb data released.
1634  */
1635 static inline int skb_linearize(struct sk_buff *skb)
1636 {
1637 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1638 }
1639 
1640 /**
1641  *	skb_linearize_cow - make sure skb is linear and writable
1642  *	@skb: buffer to process
1643  *
1644  *	If there is no free memory -ENOMEM is returned, otherwise zero
1645  *	is returned and the old skb data released.
1646  */
1647 static inline int skb_linearize_cow(struct sk_buff *skb)
1648 {
1649 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1650 	       __skb_linearize(skb) : 0;
1651 }
1652 
1653 /**
1654  *	skb_postpull_rcsum - update checksum for received skb after pull
1655  *	@skb: buffer to update
1656  *	@start: start of data before pull
1657  *	@len: length of data pulled
1658  *
1659  *	After doing a pull on a received packet, you need to call this to
1660  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1661  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1662  */
1663 
1664 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1665 				      const void *start, unsigned int len)
1666 {
1667 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1668 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1669 }
1670 
1671 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1672 
1673 /**
1674  *	pskb_trim_rcsum - trim received skb and update checksum
1675  *	@skb: buffer to trim
1676  *	@len: new length
1677  *
1678  *	This is exactly the same as pskb_trim except that it ensures the
1679  *	checksum of received packets are still valid after the operation.
1680  */
1681 
1682 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1683 {
1684 	if (likely(len >= skb->len))
1685 		return 0;
1686 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1687 		skb->ip_summed = CHECKSUM_NONE;
1688 	return __pskb_trim(skb, len);
1689 }
1690 
1691 #define skb_queue_walk(queue, skb) \
1692 		for (skb = (queue)->next;					\
1693 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1694 		     skb = skb->next)
1695 
1696 #define skb_queue_walk_safe(queue, skb, tmp)					\
1697 		for (skb = (queue)->next, tmp = skb->next;			\
1698 		     skb != (struct sk_buff *)(queue);				\
1699 		     skb = tmp, tmp = skb->next)
1700 
1701 #define skb_queue_walk_from(queue, skb)						\
1702 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1703 		     skb = skb->next)
1704 
1705 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1706 		for (tmp = skb->next;						\
1707 		     skb != (struct sk_buff *)(queue);				\
1708 		     skb = tmp, tmp = skb->next)
1709 
1710 #define skb_queue_reverse_walk(queue, skb) \
1711 		for (skb = (queue)->prev;					\
1712 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1713 		     skb = skb->prev)
1714 
1715 
1716 static inline bool skb_has_frags(const struct sk_buff *skb)
1717 {
1718 	return skb_shinfo(skb)->frag_list != NULL;
1719 }
1720 
1721 static inline void skb_frag_list_init(struct sk_buff *skb)
1722 {
1723 	skb_shinfo(skb)->frag_list = NULL;
1724 }
1725 
1726 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1727 {
1728 	frag->next = skb_shinfo(skb)->frag_list;
1729 	skb_shinfo(skb)->frag_list = frag;
1730 }
1731 
1732 #define skb_walk_frags(skb, iter)	\
1733 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1734 
1735 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1736 					   int *peeked, int *err);
1737 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1738 					 int noblock, int *err);
1739 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1740 				     struct poll_table_struct *wait);
1741 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1742 					       int offset, struct iovec *to,
1743 					       int size);
1744 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1745 							int hlen,
1746 							struct iovec *iov);
1747 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1748 						    int offset,
1749 						    const struct iovec *from,
1750 						    int from_offset,
1751 						    int len);
1752 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1753 						     int offset,
1754 						     const struct iovec *to,
1755 						     int to_offset,
1756 						     int size);
1757 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1758 extern void	       skb_free_datagram_locked(struct sock *sk,
1759 						struct sk_buff *skb);
1760 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1761 					 unsigned int flags);
1762 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1763 				    int len, __wsum csum);
1764 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1765 				     void *to, int len);
1766 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1767 				      const void *from, int len);
1768 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1769 					      int offset, u8 *to, int len,
1770 					      __wsum csum);
1771 extern int             skb_splice_bits(struct sk_buff *skb,
1772 						unsigned int offset,
1773 						struct pipe_inode_info *pipe,
1774 						unsigned int len,
1775 						unsigned int flags);
1776 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1777 extern void	       skb_split(struct sk_buff *skb,
1778 				 struct sk_buff *skb1, const u32 len);
1779 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1780 				 int shiftlen);
1781 
1782 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1783 
1784 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1785 				       int len, void *buffer)
1786 {
1787 	int hlen = skb_headlen(skb);
1788 
1789 	if (hlen - offset >= len)
1790 		return skb->data + offset;
1791 
1792 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1793 		return NULL;
1794 
1795 	return buffer;
1796 }
1797 
1798 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1799 					     void *to,
1800 					     const unsigned int len)
1801 {
1802 	memcpy(to, skb->data, len);
1803 }
1804 
1805 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1806 						    const int offset, void *to,
1807 						    const unsigned int len)
1808 {
1809 	memcpy(to, skb->data + offset, len);
1810 }
1811 
1812 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1813 					   const void *from,
1814 					   const unsigned int len)
1815 {
1816 	memcpy(skb->data, from, len);
1817 }
1818 
1819 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1820 						  const int offset,
1821 						  const void *from,
1822 						  const unsigned int len)
1823 {
1824 	memcpy(skb->data + offset, from, len);
1825 }
1826 
1827 extern void skb_init(void);
1828 
1829 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1830 {
1831 	return skb->tstamp;
1832 }
1833 
1834 /**
1835  *	skb_get_timestamp - get timestamp from a skb
1836  *	@skb: skb to get stamp from
1837  *	@stamp: pointer to struct timeval to store stamp in
1838  *
1839  *	Timestamps are stored in the skb as offsets to a base timestamp.
1840  *	This function converts the offset back to a struct timeval and stores
1841  *	it in stamp.
1842  */
1843 static inline void skb_get_timestamp(const struct sk_buff *skb,
1844 				     struct timeval *stamp)
1845 {
1846 	*stamp = ktime_to_timeval(skb->tstamp);
1847 }
1848 
1849 static inline void skb_get_timestampns(const struct sk_buff *skb,
1850 				       struct timespec *stamp)
1851 {
1852 	*stamp = ktime_to_timespec(skb->tstamp);
1853 }
1854 
1855 static inline void __net_timestamp(struct sk_buff *skb)
1856 {
1857 	skb->tstamp = ktime_get_real();
1858 }
1859 
1860 static inline ktime_t net_timedelta(ktime_t t)
1861 {
1862 	return ktime_sub(ktime_get_real(), t);
1863 }
1864 
1865 static inline ktime_t net_invalid_timestamp(void)
1866 {
1867 	return ktime_set(0, 0);
1868 }
1869 
1870 /**
1871  * skb_tstamp_tx - queue clone of skb with send time stamps
1872  * @orig_skb:	the original outgoing packet
1873  * @hwtstamps:	hardware time stamps, may be NULL if not available
1874  *
1875  * If the skb has a socket associated, then this function clones the
1876  * skb (thus sharing the actual data and optional structures), stores
1877  * the optional hardware time stamping information (if non NULL) or
1878  * generates a software time stamp (otherwise), then queues the clone
1879  * to the error queue of the socket.  Errors are silently ignored.
1880  */
1881 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1882 			struct skb_shared_hwtstamps *hwtstamps);
1883 
1884 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1885 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1886 
1887 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1888 {
1889 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1890 }
1891 
1892 /**
1893  *	skb_checksum_complete - Calculate checksum of an entire packet
1894  *	@skb: packet to process
1895  *
1896  *	This function calculates the checksum over the entire packet plus
1897  *	the value of skb->csum.  The latter can be used to supply the
1898  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1899  *	checksum.
1900  *
1901  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1902  *	this function can be used to verify that checksum on received
1903  *	packets.  In that case the function should return zero if the
1904  *	checksum is correct.  In particular, this function will return zero
1905  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1906  *	hardware has already verified the correctness of the checksum.
1907  */
1908 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1909 {
1910 	return skb_csum_unnecessary(skb) ?
1911 	       0 : __skb_checksum_complete(skb);
1912 }
1913 
1914 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1915 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1916 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1917 {
1918 	if (nfct && atomic_dec_and_test(&nfct->use))
1919 		nf_conntrack_destroy(nfct);
1920 }
1921 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1922 {
1923 	if (nfct)
1924 		atomic_inc(&nfct->use);
1925 }
1926 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1927 {
1928 	if (skb)
1929 		atomic_inc(&skb->users);
1930 }
1931 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1932 {
1933 	if (skb)
1934 		kfree_skb(skb);
1935 }
1936 #endif
1937 #ifdef CONFIG_BRIDGE_NETFILTER
1938 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1939 {
1940 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1941 		kfree(nf_bridge);
1942 }
1943 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1944 {
1945 	if (nf_bridge)
1946 		atomic_inc(&nf_bridge->use);
1947 }
1948 #endif /* CONFIG_BRIDGE_NETFILTER */
1949 static inline void nf_reset(struct sk_buff *skb)
1950 {
1951 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1952 	nf_conntrack_put(skb->nfct);
1953 	skb->nfct = NULL;
1954 	nf_conntrack_put_reasm(skb->nfct_reasm);
1955 	skb->nfct_reasm = NULL;
1956 #endif
1957 #ifdef CONFIG_BRIDGE_NETFILTER
1958 	nf_bridge_put(skb->nf_bridge);
1959 	skb->nf_bridge = NULL;
1960 #endif
1961 }
1962 
1963 /* Note: This doesn't put any conntrack and bridge info in dst. */
1964 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1965 {
1966 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1967 	dst->nfct = src->nfct;
1968 	nf_conntrack_get(src->nfct);
1969 	dst->nfctinfo = src->nfctinfo;
1970 	dst->nfct_reasm = src->nfct_reasm;
1971 	nf_conntrack_get_reasm(src->nfct_reasm);
1972 #endif
1973 #ifdef CONFIG_BRIDGE_NETFILTER
1974 	dst->nf_bridge  = src->nf_bridge;
1975 	nf_bridge_get(src->nf_bridge);
1976 #endif
1977 }
1978 
1979 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1980 {
1981 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1982 	nf_conntrack_put(dst->nfct);
1983 	nf_conntrack_put_reasm(dst->nfct_reasm);
1984 #endif
1985 #ifdef CONFIG_BRIDGE_NETFILTER
1986 	nf_bridge_put(dst->nf_bridge);
1987 #endif
1988 	__nf_copy(dst, src);
1989 }
1990 
1991 #ifdef CONFIG_NETWORK_SECMARK
1992 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1993 {
1994 	to->secmark = from->secmark;
1995 }
1996 
1997 static inline void skb_init_secmark(struct sk_buff *skb)
1998 {
1999 	skb->secmark = 0;
2000 }
2001 #else
2002 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2003 { }
2004 
2005 static inline void skb_init_secmark(struct sk_buff *skb)
2006 { }
2007 #endif
2008 
2009 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2010 {
2011 	skb->queue_mapping = queue_mapping;
2012 }
2013 
2014 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2015 {
2016 	return skb->queue_mapping;
2017 }
2018 
2019 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2020 {
2021 	to->queue_mapping = from->queue_mapping;
2022 }
2023 
2024 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2025 {
2026 	skb->queue_mapping = rx_queue + 1;
2027 }
2028 
2029 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2030 {
2031 	return skb->queue_mapping - 1;
2032 }
2033 
2034 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2035 {
2036 	return (skb->queue_mapping != 0);
2037 }
2038 
2039 extern u16 skb_tx_hash(const struct net_device *dev,
2040 		       const struct sk_buff *skb);
2041 
2042 #ifdef CONFIG_XFRM
2043 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2044 {
2045 	return skb->sp;
2046 }
2047 #else
2048 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2049 {
2050 	return NULL;
2051 }
2052 #endif
2053 
2054 static inline int skb_is_gso(const struct sk_buff *skb)
2055 {
2056 	return skb_shinfo(skb)->gso_size;
2057 }
2058 
2059 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2060 {
2061 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2062 }
2063 
2064 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2065 
2066 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2067 {
2068 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2069 	 * wanted then gso_type will be set. */
2070 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2071 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2072 		__skb_warn_lro_forwarding(skb);
2073 		return true;
2074 	}
2075 	return false;
2076 }
2077 
2078 static inline void skb_forward_csum(struct sk_buff *skb)
2079 {
2080 	/* Unfortunately we don't support this one.  Any brave souls? */
2081 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2082 		skb->ip_summed = CHECKSUM_NONE;
2083 }
2084 
2085 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2086 #endif	/* __KERNEL__ */
2087 #endif	/* _LINUX_SKBUFF_H */
2088