xref: /linux-6.15/include/linux/skbuff.h (revision 4c236d5d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv6|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282  * ovs recirc_id. It will be set to the current chain by tc
283  * and read by ovs to recirc_id.
284  */
285 struct tc_skb_ext {
286 	__u32 chain;
287 	__u16 mru;
288 };
289 #endif
290 
291 struct sk_buff_head {
292 	/* These two members must be first. */
293 	struct sk_buff	*next;
294 	struct sk_buff	*prev;
295 
296 	__u32		qlen;
297 	spinlock_t	lock;
298 };
299 
300 struct sk_buff;
301 
302 /* To allow 64K frame to be packed as single skb without frag_list we
303  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304  * buffers which do not start on a page boundary.
305  *
306  * Since GRO uses frags we allocate at least 16 regardless of page
307  * size.
308  */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315 
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317  * segment using its current segmentation instead.
318  */
319 #define GSO_BY_FRAGS	0xFFFF
320 
321 typedef struct bio_vec skb_frag_t;
322 
323 /**
324  * skb_frag_size() - Returns the size of a skb fragment
325  * @frag: skb fragment
326  */
327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 	return frag->bv_len;
330 }
331 
332 /**
333  * skb_frag_size_set() - Sets the size of a skb fragment
334  * @frag: skb fragment
335  * @size: size of fragment
336  */
337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 	frag->bv_len = size;
340 }
341 
342 /**
343  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344  * @frag: skb fragment
345  * @delta: value to add
346  */
347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 	frag->bv_len += delta;
350 }
351 
352 /**
353  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354  * @frag: skb fragment
355  * @delta: value to subtract
356  */
357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 	frag->bv_len -= delta;
360 }
361 
362 /**
363  * skb_frag_must_loop - Test if %p is a high memory page
364  * @p: fragment's page
365  */
366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
370 		return true;
371 #endif
372 	return false;
373 }
374 
375 /**
376  *	skb_frag_foreach_page - loop over pages in a fragment
377  *
378  *	@f:		skb frag to operate on
379  *	@f_off:		offset from start of f->bv_page
380  *	@f_len:		length from f_off to loop over
381  *	@p:		(temp var) current page
382  *	@p_off:		(temp var) offset from start of current page,
383  *	                           non-zero only on first page.
384  *	@p_len:		(temp var) length in current page,
385  *				   < PAGE_SIZE only on first and last page.
386  *	@copied:	(temp var) length so far, excluding current p_len.
387  *
388  *	A fragment can hold a compound page, in which case per-page
389  *	operations, notably kmap_atomic, must be called for each
390  *	regular page.
391  */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
393 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
394 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
395 	     p_len = skb_frag_must_loop(p) ?				\
396 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
397 	     copied = 0;						\
398 	     copied < f_len;						\
399 	     copied += p_len, p++, p_off = 0,				\
400 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
401 
402 #define HAVE_HW_TIME_STAMP
403 
404 /**
405  * struct skb_shared_hwtstamps - hardware time stamps
406  * @hwtstamp:	hardware time stamp transformed into duration
407  *		since arbitrary point in time
408  *
409  * Software time stamps generated by ktime_get_real() are stored in
410  * skb->tstamp.
411  *
412  * hwtstamps can only be compared against other hwtstamps from
413  * the same device.
414  *
415  * This structure is attached to packets as part of the
416  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417  */
418 struct skb_shared_hwtstamps {
419 	ktime_t	hwtstamp;
420 };
421 
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 	/* generate hardware time stamp */
425 	SKBTX_HW_TSTAMP = 1 << 0,
426 
427 	/* generate software time stamp when queueing packet to NIC */
428 	SKBTX_SW_TSTAMP = 1 << 1,
429 
430 	/* device driver is going to provide hardware time stamp */
431 	SKBTX_IN_PROGRESS = 1 << 2,
432 
433 	/* generate wifi status information (where possible) */
434 	SKBTX_WIFI_STATUS = 1 << 4,
435 
436 	/* generate software time stamp when entering packet scheduling */
437 	SKBTX_SCHED_TSTAMP = 1 << 6,
438 };
439 
440 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
441 				 SKBTX_SCHED_TSTAMP)
442 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
443 
444 /* Definitions for flags in struct skb_shared_info */
445 enum {
446 	/* use zcopy routines */
447 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
448 
449 	/* This indicates at least one fragment might be overwritten
450 	 * (as in vmsplice(), sendfile() ...)
451 	 * If we need to compute a TX checksum, we'll need to copy
452 	 * all frags to avoid possible bad checksum
453 	 */
454 	SKBFL_SHARED_FRAG = BIT(1),
455 };
456 
457 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
458 
459 /*
460  * The callback notifies userspace to release buffers when skb DMA is done in
461  * lower device, the skb last reference should be 0 when calling this.
462  * The zerocopy_success argument is true if zero copy transmit occurred,
463  * false on data copy or out of memory error caused by data copy attempt.
464  * The ctx field is used to track device context.
465  * The desc field is used to track userspace buffer index.
466  */
467 struct ubuf_info {
468 	void (*callback)(struct sk_buff *, struct ubuf_info *,
469 			 bool zerocopy_success);
470 	union {
471 		struct {
472 			unsigned long desc;
473 			void *ctx;
474 		};
475 		struct {
476 			u32 id;
477 			u16 len;
478 			u16 zerocopy:1;
479 			u32 bytelen;
480 		};
481 	};
482 	refcount_t refcnt;
483 	u8 flags;
484 
485 	struct mmpin {
486 		struct user_struct *user;
487 		unsigned int num_pg;
488 	} mmp;
489 };
490 
491 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
492 
493 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
494 void mm_unaccount_pinned_pages(struct mmpin *mmp);
495 
496 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
497 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
498 				       struct ubuf_info *uarg);
499 
500 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501 
502 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
503 			   bool success);
504 
505 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
506 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
507 			     struct msghdr *msg, int len,
508 			     struct ubuf_info *uarg);
509 
510 /* This data is invariant across clones and lives at
511  * the end of the header data, ie. at skb->end.
512  */
513 struct skb_shared_info {
514 	__u8		flags;
515 	__u8		meta_len;
516 	__u8		nr_frags;
517 	__u8		tx_flags;
518 	unsigned short	gso_size;
519 	/* Warning: this field is not always filled in (UFO)! */
520 	unsigned short	gso_segs;
521 	struct sk_buff	*frag_list;
522 	struct skb_shared_hwtstamps hwtstamps;
523 	unsigned int	gso_type;
524 	u32		tskey;
525 
526 	/*
527 	 * Warning : all fields before dataref are cleared in __alloc_skb()
528 	 */
529 	atomic_t	dataref;
530 
531 	/* Intermediate layers must ensure that destructor_arg
532 	 * remains valid until skb destructor */
533 	void *		destructor_arg;
534 
535 	/* must be last field, see pskb_expand_head() */
536 	skb_frag_t	frags[MAX_SKB_FRAGS];
537 };
538 
539 /* We divide dataref into two halves.  The higher 16 bits hold references
540  * to the payload part of skb->data.  The lower 16 bits hold references to
541  * the entire skb->data.  A clone of a headerless skb holds the length of
542  * the header in skb->hdr_len.
543  *
544  * All users must obey the rule that the skb->data reference count must be
545  * greater than or equal to the payload reference count.
546  *
547  * Holding a reference to the payload part means that the user does not
548  * care about modifications to the header part of skb->data.
549  */
550 #define SKB_DATAREF_SHIFT 16
551 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
552 
553 
554 enum {
555 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
556 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
557 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
558 };
559 
560 enum {
561 	SKB_GSO_TCPV4 = 1 << 0,
562 
563 	/* This indicates the skb is from an untrusted source. */
564 	SKB_GSO_DODGY = 1 << 1,
565 
566 	/* This indicates the tcp segment has CWR set. */
567 	SKB_GSO_TCP_ECN = 1 << 2,
568 
569 	SKB_GSO_TCP_FIXEDID = 1 << 3,
570 
571 	SKB_GSO_TCPV6 = 1 << 4,
572 
573 	SKB_GSO_FCOE = 1 << 5,
574 
575 	SKB_GSO_GRE = 1 << 6,
576 
577 	SKB_GSO_GRE_CSUM = 1 << 7,
578 
579 	SKB_GSO_IPXIP4 = 1 << 8,
580 
581 	SKB_GSO_IPXIP6 = 1 << 9,
582 
583 	SKB_GSO_UDP_TUNNEL = 1 << 10,
584 
585 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
586 
587 	SKB_GSO_PARTIAL = 1 << 12,
588 
589 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
590 
591 	SKB_GSO_SCTP = 1 << 14,
592 
593 	SKB_GSO_ESP = 1 << 15,
594 
595 	SKB_GSO_UDP = 1 << 16,
596 
597 	SKB_GSO_UDP_L4 = 1 << 17,
598 
599 	SKB_GSO_FRAGLIST = 1 << 18,
600 };
601 
602 #if BITS_PER_LONG > 32
603 #define NET_SKBUFF_DATA_USES_OFFSET 1
604 #endif
605 
606 #ifdef NET_SKBUFF_DATA_USES_OFFSET
607 typedef unsigned int sk_buff_data_t;
608 #else
609 typedef unsigned char *sk_buff_data_t;
610 #endif
611 
612 /**
613  *	struct sk_buff - socket buffer
614  *	@next: Next buffer in list
615  *	@prev: Previous buffer in list
616  *	@tstamp: Time we arrived/left
617  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
618  *		for retransmit timer
619  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
620  *	@list: queue head
621  *	@sk: Socket we are owned by
622  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
623  *		fragmentation management
624  *	@dev: Device we arrived on/are leaving by
625  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
626  *	@cb: Control buffer. Free for use by every layer. Put private vars here
627  *	@_skb_refdst: destination entry (with norefcount bit)
628  *	@sp: the security path, used for xfrm
629  *	@len: Length of actual data
630  *	@data_len: Data length
631  *	@mac_len: Length of link layer header
632  *	@hdr_len: writable header length of cloned skb
633  *	@csum: Checksum (must include start/offset pair)
634  *	@csum_start: Offset from skb->head where checksumming should start
635  *	@csum_offset: Offset from csum_start where checksum should be stored
636  *	@priority: Packet queueing priority
637  *	@ignore_df: allow local fragmentation
638  *	@cloned: Head may be cloned (check refcnt to be sure)
639  *	@ip_summed: Driver fed us an IP checksum
640  *	@nohdr: Payload reference only, must not modify header
641  *	@pkt_type: Packet class
642  *	@fclone: skbuff clone status
643  *	@ipvs_property: skbuff is owned by ipvs
644  *	@inner_protocol_type: whether the inner protocol is
645  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
646  *	@remcsum_offload: remote checksum offload is enabled
647  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
648  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
649  *	@tc_skip_classify: do not classify packet. set by IFB device
650  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
651  *	@redirected: packet was redirected by packet classifier
652  *	@from_ingress: packet was redirected from the ingress path
653  *	@peeked: this packet has been seen already, so stats have been
654  *		done for it, don't do them again
655  *	@nf_trace: netfilter packet trace flag
656  *	@protocol: Packet protocol from driver
657  *	@destructor: Destruct function
658  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
659  *	@_nfct: Associated connection, if any (with nfctinfo bits)
660  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
661  *	@skb_iif: ifindex of device we arrived on
662  *	@tc_index: Traffic control index
663  *	@hash: the packet hash
664  *	@queue_mapping: Queue mapping for multiqueue devices
665  *	@head_frag: skb was allocated from page fragments,
666  *		not allocated by kmalloc() or vmalloc().
667  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
668  *	@active_extensions: active extensions (skb_ext_id types)
669  *	@ndisc_nodetype: router type (from link layer)
670  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
671  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
672  *		ports.
673  *	@sw_hash: indicates hash was computed in software stack
674  *	@wifi_acked_valid: wifi_acked was set
675  *	@wifi_acked: whether frame was acked on wifi or not
676  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
677  *	@encapsulation: indicates the inner headers in the skbuff are valid
678  *	@encap_hdr_csum: software checksum is needed
679  *	@csum_valid: checksum is already valid
680  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
681  *	@csum_complete_sw: checksum was completed by software
682  *	@csum_level: indicates the number of consecutive checksums found in
683  *		the packet minus one that have been verified as
684  *		CHECKSUM_UNNECESSARY (max 3)
685  *	@dst_pending_confirm: need to confirm neighbour
686  *	@decrypted: Decrypted SKB
687  *	@napi_id: id of the NAPI struct this skb came from
688  *	@sender_cpu: (aka @napi_id) source CPU in XPS
689  *	@secmark: security marking
690  *	@mark: Generic packet mark
691  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
692  *		at the tail of an sk_buff
693  *	@vlan_present: VLAN tag is present
694  *	@vlan_proto: vlan encapsulation protocol
695  *	@vlan_tci: vlan tag control information
696  *	@inner_protocol: Protocol (encapsulation)
697  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
698  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
699  *	@inner_transport_header: Inner transport layer header (encapsulation)
700  *	@inner_network_header: Network layer header (encapsulation)
701  *	@inner_mac_header: Link layer header (encapsulation)
702  *	@transport_header: Transport layer header
703  *	@network_header: Network layer header
704  *	@mac_header: Link layer header
705  *	@kcov_handle: KCOV remote handle for remote coverage collection
706  *	@tail: Tail pointer
707  *	@end: End pointer
708  *	@head: Head of buffer
709  *	@data: Data head pointer
710  *	@truesize: Buffer size
711  *	@users: User count - see {datagram,tcp}.c
712  *	@extensions: allocated extensions, valid if active_extensions is nonzero
713  */
714 
715 struct sk_buff {
716 	union {
717 		struct {
718 			/* These two members must be first. */
719 			struct sk_buff		*next;
720 			struct sk_buff		*prev;
721 
722 			union {
723 				struct net_device	*dev;
724 				/* Some protocols might use this space to store information,
725 				 * while device pointer would be NULL.
726 				 * UDP receive path is one user.
727 				 */
728 				unsigned long		dev_scratch;
729 			};
730 		};
731 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
732 		struct list_head	list;
733 	};
734 
735 	union {
736 		struct sock		*sk;
737 		int			ip_defrag_offset;
738 	};
739 
740 	union {
741 		ktime_t		tstamp;
742 		u64		skb_mstamp_ns; /* earliest departure time */
743 	};
744 	/*
745 	 * This is the control buffer. It is free to use for every
746 	 * layer. Please put your private variables there. If you
747 	 * want to keep them across layers you have to do a skb_clone()
748 	 * first. This is owned by whoever has the skb queued ATM.
749 	 */
750 	char			cb[48] __aligned(8);
751 
752 	union {
753 		struct {
754 			unsigned long	_skb_refdst;
755 			void		(*destructor)(struct sk_buff *skb);
756 		};
757 		struct list_head	tcp_tsorted_anchor;
758 	};
759 
760 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
761 	unsigned long		 _nfct;
762 #endif
763 	unsigned int		len,
764 				data_len;
765 	__u16			mac_len,
766 				hdr_len;
767 
768 	/* Following fields are _not_ copied in __copy_skb_header()
769 	 * Note that queue_mapping is here mostly to fill a hole.
770 	 */
771 	__u16			queue_mapping;
772 
773 /* if you move cloned around you also must adapt those constants */
774 #ifdef __BIG_ENDIAN_BITFIELD
775 #define CLONED_MASK	(1 << 7)
776 #else
777 #define CLONED_MASK	1
778 #endif
779 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
780 
781 	/* private: */
782 	__u8			__cloned_offset[0];
783 	/* public: */
784 	__u8			cloned:1,
785 				nohdr:1,
786 				fclone:2,
787 				peeked:1,
788 				head_frag:1,
789 				pfmemalloc:1;
790 #ifdef CONFIG_SKB_EXTENSIONS
791 	__u8			active_extensions;
792 #endif
793 	/* fields enclosed in headers_start/headers_end are copied
794 	 * using a single memcpy() in __copy_skb_header()
795 	 */
796 	/* private: */
797 	__u32			headers_start[0];
798 	/* public: */
799 
800 /* if you move pkt_type around you also must adapt those constants */
801 #ifdef __BIG_ENDIAN_BITFIELD
802 #define PKT_TYPE_MAX	(7 << 5)
803 #else
804 #define PKT_TYPE_MAX	7
805 #endif
806 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
807 
808 	/* private: */
809 	__u8			__pkt_type_offset[0];
810 	/* public: */
811 	__u8			pkt_type:3;
812 	__u8			ignore_df:1;
813 	__u8			nf_trace:1;
814 	__u8			ip_summed:2;
815 	__u8			ooo_okay:1;
816 
817 	__u8			l4_hash:1;
818 	__u8			sw_hash:1;
819 	__u8			wifi_acked_valid:1;
820 	__u8			wifi_acked:1;
821 	__u8			no_fcs:1;
822 	/* Indicates the inner headers are valid in the skbuff. */
823 	__u8			encapsulation:1;
824 	__u8			encap_hdr_csum:1;
825 	__u8			csum_valid:1;
826 
827 #ifdef __BIG_ENDIAN_BITFIELD
828 #define PKT_VLAN_PRESENT_BIT	7
829 #else
830 #define PKT_VLAN_PRESENT_BIT	0
831 #endif
832 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
833 	/* private: */
834 	__u8			__pkt_vlan_present_offset[0];
835 	/* public: */
836 	__u8			vlan_present:1;
837 	__u8			csum_complete_sw:1;
838 	__u8			csum_level:2;
839 	__u8			csum_not_inet:1;
840 	__u8			dst_pending_confirm:1;
841 #ifdef CONFIG_IPV6_NDISC_NODETYPE
842 	__u8			ndisc_nodetype:2;
843 #endif
844 
845 	__u8			ipvs_property:1;
846 	__u8			inner_protocol_type:1;
847 	__u8			remcsum_offload:1;
848 #ifdef CONFIG_NET_SWITCHDEV
849 	__u8			offload_fwd_mark:1;
850 	__u8			offload_l3_fwd_mark:1;
851 #endif
852 #ifdef CONFIG_NET_CLS_ACT
853 	__u8			tc_skip_classify:1;
854 	__u8			tc_at_ingress:1;
855 #endif
856 #ifdef CONFIG_NET_REDIRECT
857 	__u8			redirected:1;
858 	__u8			from_ingress:1;
859 #endif
860 #ifdef CONFIG_TLS_DEVICE
861 	__u8			decrypted:1;
862 #endif
863 
864 #ifdef CONFIG_NET_SCHED
865 	__u16			tc_index;	/* traffic control index */
866 #endif
867 
868 	union {
869 		__wsum		csum;
870 		struct {
871 			__u16	csum_start;
872 			__u16	csum_offset;
873 		};
874 	};
875 	__u32			priority;
876 	int			skb_iif;
877 	__u32			hash;
878 	__be16			vlan_proto;
879 	__u16			vlan_tci;
880 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
881 	union {
882 		unsigned int	napi_id;
883 		unsigned int	sender_cpu;
884 	};
885 #endif
886 #ifdef CONFIG_NETWORK_SECMARK
887 	__u32		secmark;
888 #endif
889 
890 	union {
891 		__u32		mark;
892 		__u32		reserved_tailroom;
893 	};
894 
895 	union {
896 		__be16		inner_protocol;
897 		__u8		inner_ipproto;
898 	};
899 
900 	__u16			inner_transport_header;
901 	__u16			inner_network_header;
902 	__u16			inner_mac_header;
903 
904 	__be16			protocol;
905 	__u16			transport_header;
906 	__u16			network_header;
907 	__u16			mac_header;
908 
909 #ifdef CONFIG_KCOV
910 	u64			kcov_handle;
911 #endif
912 
913 	/* private: */
914 	__u32			headers_end[0];
915 	/* public: */
916 
917 	/* These elements must be at the end, see alloc_skb() for details.  */
918 	sk_buff_data_t		tail;
919 	sk_buff_data_t		end;
920 	unsigned char		*head,
921 				*data;
922 	unsigned int		truesize;
923 	refcount_t		users;
924 
925 #ifdef CONFIG_SKB_EXTENSIONS
926 	/* only useable after checking ->active_extensions != 0 */
927 	struct skb_ext		*extensions;
928 #endif
929 };
930 
931 #ifdef __KERNEL__
932 /*
933  *	Handling routines are only of interest to the kernel
934  */
935 
936 #define SKB_ALLOC_FCLONE	0x01
937 #define SKB_ALLOC_RX		0x02
938 #define SKB_ALLOC_NAPI		0x04
939 
940 /**
941  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
942  * @skb: buffer
943  */
944 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
945 {
946 	return unlikely(skb->pfmemalloc);
947 }
948 
949 /*
950  * skb might have a dst pointer attached, refcounted or not.
951  * _skb_refdst low order bit is set if refcount was _not_ taken
952  */
953 #define SKB_DST_NOREF	1UL
954 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
955 
956 /**
957  * skb_dst - returns skb dst_entry
958  * @skb: buffer
959  *
960  * Returns skb dst_entry, regardless of reference taken or not.
961  */
962 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
963 {
964 	/* If refdst was not refcounted, check we still are in a
965 	 * rcu_read_lock section
966 	 */
967 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
968 		!rcu_read_lock_held() &&
969 		!rcu_read_lock_bh_held());
970 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
971 }
972 
973 /**
974  * skb_dst_set - sets skb dst
975  * @skb: buffer
976  * @dst: dst entry
977  *
978  * Sets skb dst, assuming a reference was taken on dst and should
979  * be released by skb_dst_drop()
980  */
981 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
982 {
983 	skb->_skb_refdst = (unsigned long)dst;
984 }
985 
986 /**
987  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
988  * @skb: buffer
989  * @dst: dst entry
990  *
991  * Sets skb dst, assuming a reference was not taken on dst.
992  * If dst entry is cached, we do not take reference and dst_release
993  * will be avoided by refdst_drop. If dst entry is not cached, we take
994  * reference, so that last dst_release can destroy the dst immediately.
995  */
996 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
997 {
998 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
999 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1000 }
1001 
1002 /**
1003  * skb_dst_is_noref - Test if skb dst isn't refcounted
1004  * @skb: buffer
1005  */
1006 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1007 {
1008 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1009 }
1010 
1011 /**
1012  * skb_rtable - Returns the skb &rtable
1013  * @skb: buffer
1014  */
1015 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1016 {
1017 	return (struct rtable *)skb_dst(skb);
1018 }
1019 
1020 /* For mangling skb->pkt_type from user space side from applications
1021  * such as nft, tc, etc, we only allow a conservative subset of
1022  * possible pkt_types to be set.
1023 */
1024 static inline bool skb_pkt_type_ok(u32 ptype)
1025 {
1026 	return ptype <= PACKET_OTHERHOST;
1027 }
1028 
1029 /**
1030  * skb_napi_id - Returns the skb's NAPI id
1031  * @skb: buffer
1032  */
1033 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1034 {
1035 #ifdef CONFIG_NET_RX_BUSY_POLL
1036 	return skb->napi_id;
1037 #else
1038 	return 0;
1039 #endif
1040 }
1041 
1042 /**
1043  * skb_unref - decrement the skb's reference count
1044  * @skb: buffer
1045  *
1046  * Returns true if we can free the skb.
1047  */
1048 static inline bool skb_unref(struct sk_buff *skb)
1049 {
1050 	if (unlikely(!skb))
1051 		return false;
1052 	if (likely(refcount_read(&skb->users) == 1))
1053 		smp_rmb();
1054 	else if (likely(!refcount_dec_and_test(&skb->users)))
1055 		return false;
1056 
1057 	return true;
1058 }
1059 
1060 void skb_release_head_state(struct sk_buff *skb);
1061 void kfree_skb(struct sk_buff *skb);
1062 void kfree_skb_list(struct sk_buff *segs);
1063 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1064 void skb_tx_error(struct sk_buff *skb);
1065 
1066 #ifdef CONFIG_TRACEPOINTS
1067 void consume_skb(struct sk_buff *skb);
1068 #else
1069 static inline void consume_skb(struct sk_buff *skb)
1070 {
1071 	return kfree_skb(skb);
1072 }
1073 #endif
1074 
1075 void __consume_stateless_skb(struct sk_buff *skb);
1076 void  __kfree_skb(struct sk_buff *skb);
1077 extern struct kmem_cache *skbuff_head_cache;
1078 
1079 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1080 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1081 		      bool *fragstolen, int *delta_truesize);
1082 
1083 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1084 			    int node);
1085 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1086 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1087 struct sk_buff *build_skb_around(struct sk_buff *skb,
1088 				 void *data, unsigned int frag_size);
1089 
1090 /**
1091  * alloc_skb - allocate a network buffer
1092  * @size: size to allocate
1093  * @priority: allocation mask
1094  *
1095  * This function is a convenient wrapper around __alloc_skb().
1096  */
1097 static inline struct sk_buff *alloc_skb(unsigned int size,
1098 					gfp_t priority)
1099 {
1100 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1101 }
1102 
1103 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1104 				     unsigned long data_len,
1105 				     int max_page_order,
1106 				     int *errcode,
1107 				     gfp_t gfp_mask);
1108 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1109 
1110 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1111 struct sk_buff_fclones {
1112 	struct sk_buff	skb1;
1113 
1114 	struct sk_buff	skb2;
1115 
1116 	refcount_t	fclone_ref;
1117 };
1118 
1119 /**
1120  *	skb_fclone_busy - check if fclone is busy
1121  *	@sk: socket
1122  *	@skb: buffer
1123  *
1124  * Returns true if skb is a fast clone, and its clone is not freed.
1125  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1126  * so we also check that this didnt happen.
1127  */
1128 static inline bool skb_fclone_busy(const struct sock *sk,
1129 				   const struct sk_buff *skb)
1130 {
1131 	const struct sk_buff_fclones *fclones;
1132 
1133 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1134 
1135 	return skb->fclone == SKB_FCLONE_ORIG &&
1136 	       refcount_read(&fclones->fclone_ref) > 1 &&
1137 	       fclones->skb2.sk == sk;
1138 }
1139 
1140 /**
1141  * alloc_skb_fclone - allocate a network buffer from fclone cache
1142  * @size: size to allocate
1143  * @priority: allocation mask
1144  *
1145  * This function is a convenient wrapper around __alloc_skb().
1146  */
1147 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1148 					       gfp_t priority)
1149 {
1150 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1151 }
1152 
1153 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1154 void skb_headers_offset_update(struct sk_buff *skb, int off);
1155 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1156 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1157 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1158 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1159 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1160 				   gfp_t gfp_mask, bool fclone);
1161 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1162 					  gfp_t gfp_mask)
1163 {
1164 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1165 }
1166 
1167 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1168 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1169 				     unsigned int headroom);
1170 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1171 				int newtailroom, gfp_t priority);
1172 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1173 				     int offset, int len);
1174 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1175 			      int offset, int len);
1176 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1177 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1178 
1179 /**
1180  *	skb_pad			-	zero pad the tail of an skb
1181  *	@skb: buffer to pad
1182  *	@pad: space to pad
1183  *
1184  *	Ensure that a buffer is followed by a padding area that is zero
1185  *	filled. Used by network drivers which may DMA or transfer data
1186  *	beyond the buffer end onto the wire.
1187  *
1188  *	May return error in out of memory cases. The skb is freed on error.
1189  */
1190 static inline int skb_pad(struct sk_buff *skb, int pad)
1191 {
1192 	return __skb_pad(skb, pad, true);
1193 }
1194 #define dev_kfree_skb(a)	consume_skb(a)
1195 
1196 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1197 			 int offset, size_t size);
1198 
1199 struct skb_seq_state {
1200 	__u32		lower_offset;
1201 	__u32		upper_offset;
1202 	__u32		frag_idx;
1203 	__u32		stepped_offset;
1204 	struct sk_buff	*root_skb;
1205 	struct sk_buff	*cur_skb;
1206 	__u8		*frag_data;
1207 	__u32		frag_off;
1208 };
1209 
1210 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1211 			  unsigned int to, struct skb_seq_state *st);
1212 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1213 			  struct skb_seq_state *st);
1214 void skb_abort_seq_read(struct skb_seq_state *st);
1215 
1216 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1217 			   unsigned int to, struct ts_config *config);
1218 
1219 /*
1220  * Packet hash types specify the type of hash in skb_set_hash.
1221  *
1222  * Hash types refer to the protocol layer addresses which are used to
1223  * construct a packet's hash. The hashes are used to differentiate or identify
1224  * flows of the protocol layer for the hash type. Hash types are either
1225  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1226  *
1227  * Properties of hashes:
1228  *
1229  * 1) Two packets in different flows have different hash values
1230  * 2) Two packets in the same flow should have the same hash value
1231  *
1232  * A hash at a higher layer is considered to be more specific. A driver should
1233  * set the most specific hash possible.
1234  *
1235  * A driver cannot indicate a more specific hash than the layer at which a hash
1236  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1237  *
1238  * A driver may indicate a hash level which is less specific than the
1239  * actual layer the hash was computed on. For instance, a hash computed
1240  * at L4 may be considered an L3 hash. This should only be done if the
1241  * driver can't unambiguously determine that the HW computed the hash at
1242  * the higher layer. Note that the "should" in the second property above
1243  * permits this.
1244  */
1245 enum pkt_hash_types {
1246 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1247 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1248 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1249 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1250 };
1251 
1252 static inline void skb_clear_hash(struct sk_buff *skb)
1253 {
1254 	skb->hash = 0;
1255 	skb->sw_hash = 0;
1256 	skb->l4_hash = 0;
1257 }
1258 
1259 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1260 {
1261 	if (!skb->l4_hash)
1262 		skb_clear_hash(skb);
1263 }
1264 
1265 static inline void
1266 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1267 {
1268 	skb->l4_hash = is_l4;
1269 	skb->sw_hash = is_sw;
1270 	skb->hash = hash;
1271 }
1272 
1273 static inline void
1274 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1275 {
1276 	/* Used by drivers to set hash from HW */
1277 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1278 }
1279 
1280 static inline void
1281 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1282 {
1283 	__skb_set_hash(skb, hash, true, is_l4);
1284 }
1285 
1286 void __skb_get_hash(struct sk_buff *skb);
1287 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1288 u32 skb_get_poff(const struct sk_buff *skb);
1289 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1290 		   const struct flow_keys_basic *keys, int hlen);
1291 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1292 			    void *data, int hlen_proto);
1293 
1294 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1295 					int thoff, u8 ip_proto)
1296 {
1297 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1298 }
1299 
1300 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1301 			     const struct flow_dissector_key *key,
1302 			     unsigned int key_count);
1303 
1304 struct bpf_flow_dissector;
1305 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1306 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1307 
1308 bool __skb_flow_dissect(const struct net *net,
1309 			const struct sk_buff *skb,
1310 			struct flow_dissector *flow_dissector,
1311 			void *target_container,
1312 			void *data, __be16 proto, int nhoff, int hlen,
1313 			unsigned int flags);
1314 
1315 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1316 				    struct flow_dissector *flow_dissector,
1317 				    void *target_container, unsigned int flags)
1318 {
1319 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1320 				  target_container, NULL, 0, 0, 0, flags);
1321 }
1322 
1323 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1324 					      struct flow_keys *flow,
1325 					      unsigned int flags)
1326 {
1327 	memset(flow, 0, sizeof(*flow));
1328 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1329 				  flow, NULL, 0, 0, 0, flags);
1330 }
1331 
1332 static inline bool
1333 skb_flow_dissect_flow_keys_basic(const struct net *net,
1334 				 const struct sk_buff *skb,
1335 				 struct flow_keys_basic *flow, void *data,
1336 				 __be16 proto, int nhoff, int hlen,
1337 				 unsigned int flags)
1338 {
1339 	memset(flow, 0, sizeof(*flow));
1340 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1341 				  data, proto, nhoff, hlen, flags);
1342 }
1343 
1344 void skb_flow_dissect_meta(const struct sk_buff *skb,
1345 			   struct flow_dissector *flow_dissector,
1346 			   void *target_container);
1347 
1348 /* Gets a skb connection tracking info, ctinfo map should be a
1349  * map of mapsize to translate enum ip_conntrack_info states
1350  * to user states.
1351  */
1352 void
1353 skb_flow_dissect_ct(const struct sk_buff *skb,
1354 		    struct flow_dissector *flow_dissector,
1355 		    void *target_container,
1356 		    u16 *ctinfo_map, size_t mapsize,
1357 		    bool post_ct);
1358 void
1359 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1360 			     struct flow_dissector *flow_dissector,
1361 			     void *target_container);
1362 
1363 void skb_flow_dissect_hash(const struct sk_buff *skb,
1364 			   struct flow_dissector *flow_dissector,
1365 			   void *target_container);
1366 
1367 static inline __u32 skb_get_hash(struct sk_buff *skb)
1368 {
1369 	if (!skb->l4_hash && !skb->sw_hash)
1370 		__skb_get_hash(skb);
1371 
1372 	return skb->hash;
1373 }
1374 
1375 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1376 {
1377 	if (!skb->l4_hash && !skb->sw_hash) {
1378 		struct flow_keys keys;
1379 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1380 
1381 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1382 	}
1383 
1384 	return skb->hash;
1385 }
1386 
1387 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1388 			   const siphash_key_t *perturb);
1389 
1390 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1391 {
1392 	return skb->hash;
1393 }
1394 
1395 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1396 {
1397 	to->hash = from->hash;
1398 	to->sw_hash = from->sw_hash;
1399 	to->l4_hash = from->l4_hash;
1400 };
1401 
1402 static inline void skb_copy_decrypted(struct sk_buff *to,
1403 				      const struct sk_buff *from)
1404 {
1405 #ifdef CONFIG_TLS_DEVICE
1406 	to->decrypted = from->decrypted;
1407 #endif
1408 }
1409 
1410 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1411 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1412 {
1413 	return skb->head + skb->end;
1414 }
1415 
1416 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1417 {
1418 	return skb->end;
1419 }
1420 #else
1421 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1422 {
1423 	return skb->end;
1424 }
1425 
1426 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1427 {
1428 	return skb->end - skb->head;
1429 }
1430 #endif
1431 
1432 /* Internal */
1433 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1434 
1435 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1436 {
1437 	return &skb_shinfo(skb)->hwtstamps;
1438 }
1439 
1440 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1441 {
1442 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1443 
1444 	return is_zcopy ? skb_uarg(skb) : NULL;
1445 }
1446 
1447 static inline void net_zcopy_get(struct ubuf_info *uarg)
1448 {
1449 	refcount_inc(&uarg->refcnt);
1450 }
1451 
1452 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1453 {
1454 	skb_shinfo(skb)->destructor_arg = uarg;
1455 	skb_shinfo(skb)->flags |= uarg->flags;
1456 }
1457 
1458 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1459 				 bool *have_ref)
1460 {
1461 	if (skb && uarg && !skb_zcopy(skb)) {
1462 		if (unlikely(have_ref && *have_ref))
1463 			*have_ref = false;
1464 		else
1465 			net_zcopy_get(uarg);
1466 		skb_zcopy_init(skb, uarg);
1467 	}
1468 }
1469 
1470 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1471 {
1472 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1473 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1474 }
1475 
1476 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1477 {
1478 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1479 }
1480 
1481 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1482 {
1483 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1484 }
1485 
1486 static inline void net_zcopy_put(struct ubuf_info *uarg)
1487 {
1488 	if (uarg)
1489 		uarg->callback(NULL, uarg, true);
1490 }
1491 
1492 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1493 {
1494 	if (uarg) {
1495 		if (uarg->callback == msg_zerocopy_callback)
1496 			msg_zerocopy_put_abort(uarg, have_uref);
1497 		else if (have_uref)
1498 			net_zcopy_put(uarg);
1499 	}
1500 }
1501 
1502 /* Release a reference on a zerocopy structure */
1503 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1504 {
1505 	struct ubuf_info *uarg = skb_zcopy(skb);
1506 
1507 	if (uarg) {
1508 		if (!skb_zcopy_is_nouarg(skb))
1509 			uarg->callback(skb, uarg, zerocopy_success);
1510 
1511 		skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1512 	}
1513 }
1514 
1515 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1516 {
1517 	skb->next = NULL;
1518 }
1519 
1520 /* Iterate through singly-linked GSO fragments of an skb. */
1521 #define skb_list_walk_safe(first, skb, next_skb)                               \
1522 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1523 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1524 
1525 static inline void skb_list_del_init(struct sk_buff *skb)
1526 {
1527 	__list_del_entry(&skb->list);
1528 	skb_mark_not_on_list(skb);
1529 }
1530 
1531 /**
1532  *	skb_queue_empty - check if a queue is empty
1533  *	@list: queue head
1534  *
1535  *	Returns true if the queue is empty, false otherwise.
1536  */
1537 static inline int skb_queue_empty(const struct sk_buff_head *list)
1538 {
1539 	return list->next == (const struct sk_buff *) list;
1540 }
1541 
1542 /**
1543  *	skb_queue_empty_lockless - check if a queue is empty
1544  *	@list: queue head
1545  *
1546  *	Returns true if the queue is empty, false otherwise.
1547  *	This variant can be used in lockless contexts.
1548  */
1549 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1550 {
1551 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1552 }
1553 
1554 
1555 /**
1556  *	skb_queue_is_last - check if skb is the last entry in the queue
1557  *	@list: queue head
1558  *	@skb: buffer
1559  *
1560  *	Returns true if @skb is the last buffer on the list.
1561  */
1562 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1563 				     const struct sk_buff *skb)
1564 {
1565 	return skb->next == (const struct sk_buff *) list;
1566 }
1567 
1568 /**
1569  *	skb_queue_is_first - check if skb is the first entry in the queue
1570  *	@list: queue head
1571  *	@skb: buffer
1572  *
1573  *	Returns true if @skb is the first buffer on the list.
1574  */
1575 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1576 				      const struct sk_buff *skb)
1577 {
1578 	return skb->prev == (const struct sk_buff *) list;
1579 }
1580 
1581 /**
1582  *	skb_queue_next - return the next packet in the queue
1583  *	@list: queue head
1584  *	@skb: current buffer
1585  *
1586  *	Return the next packet in @list after @skb.  It is only valid to
1587  *	call this if skb_queue_is_last() evaluates to false.
1588  */
1589 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1590 					     const struct sk_buff *skb)
1591 {
1592 	/* This BUG_ON may seem severe, but if we just return then we
1593 	 * are going to dereference garbage.
1594 	 */
1595 	BUG_ON(skb_queue_is_last(list, skb));
1596 	return skb->next;
1597 }
1598 
1599 /**
1600  *	skb_queue_prev - return the prev packet in the queue
1601  *	@list: queue head
1602  *	@skb: current buffer
1603  *
1604  *	Return the prev packet in @list before @skb.  It is only valid to
1605  *	call this if skb_queue_is_first() evaluates to false.
1606  */
1607 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1608 					     const struct sk_buff *skb)
1609 {
1610 	/* This BUG_ON may seem severe, but if we just return then we
1611 	 * are going to dereference garbage.
1612 	 */
1613 	BUG_ON(skb_queue_is_first(list, skb));
1614 	return skb->prev;
1615 }
1616 
1617 /**
1618  *	skb_get - reference buffer
1619  *	@skb: buffer to reference
1620  *
1621  *	Makes another reference to a socket buffer and returns a pointer
1622  *	to the buffer.
1623  */
1624 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1625 {
1626 	refcount_inc(&skb->users);
1627 	return skb;
1628 }
1629 
1630 /*
1631  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1632  */
1633 
1634 /**
1635  *	skb_cloned - is the buffer a clone
1636  *	@skb: buffer to check
1637  *
1638  *	Returns true if the buffer was generated with skb_clone() and is
1639  *	one of multiple shared copies of the buffer. Cloned buffers are
1640  *	shared data so must not be written to under normal circumstances.
1641  */
1642 static inline int skb_cloned(const struct sk_buff *skb)
1643 {
1644 	return skb->cloned &&
1645 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1646 }
1647 
1648 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1649 {
1650 	might_sleep_if(gfpflags_allow_blocking(pri));
1651 
1652 	if (skb_cloned(skb))
1653 		return pskb_expand_head(skb, 0, 0, pri);
1654 
1655 	return 0;
1656 }
1657 
1658 /**
1659  *	skb_header_cloned - is the header a clone
1660  *	@skb: buffer to check
1661  *
1662  *	Returns true if modifying the header part of the buffer requires
1663  *	the data to be copied.
1664  */
1665 static inline int skb_header_cloned(const struct sk_buff *skb)
1666 {
1667 	int dataref;
1668 
1669 	if (!skb->cloned)
1670 		return 0;
1671 
1672 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1673 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1674 	return dataref != 1;
1675 }
1676 
1677 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1678 {
1679 	might_sleep_if(gfpflags_allow_blocking(pri));
1680 
1681 	if (skb_header_cloned(skb))
1682 		return pskb_expand_head(skb, 0, 0, pri);
1683 
1684 	return 0;
1685 }
1686 
1687 /**
1688  *	__skb_header_release - release reference to header
1689  *	@skb: buffer to operate on
1690  */
1691 static inline void __skb_header_release(struct sk_buff *skb)
1692 {
1693 	skb->nohdr = 1;
1694 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1695 }
1696 
1697 
1698 /**
1699  *	skb_shared - is the buffer shared
1700  *	@skb: buffer to check
1701  *
1702  *	Returns true if more than one person has a reference to this
1703  *	buffer.
1704  */
1705 static inline int skb_shared(const struct sk_buff *skb)
1706 {
1707 	return refcount_read(&skb->users) != 1;
1708 }
1709 
1710 /**
1711  *	skb_share_check - check if buffer is shared and if so clone it
1712  *	@skb: buffer to check
1713  *	@pri: priority for memory allocation
1714  *
1715  *	If the buffer is shared the buffer is cloned and the old copy
1716  *	drops a reference. A new clone with a single reference is returned.
1717  *	If the buffer is not shared the original buffer is returned. When
1718  *	being called from interrupt status or with spinlocks held pri must
1719  *	be GFP_ATOMIC.
1720  *
1721  *	NULL is returned on a memory allocation failure.
1722  */
1723 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1724 {
1725 	might_sleep_if(gfpflags_allow_blocking(pri));
1726 	if (skb_shared(skb)) {
1727 		struct sk_buff *nskb = skb_clone(skb, pri);
1728 
1729 		if (likely(nskb))
1730 			consume_skb(skb);
1731 		else
1732 			kfree_skb(skb);
1733 		skb = nskb;
1734 	}
1735 	return skb;
1736 }
1737 
1738 /*
1739  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1740  *	packets to handle cases where we have a local reader and forward
1741  *	and a couple of other messy ones. The normal one is tcpdumping
1742  *	a packet thats being forwarded.
1743  */
1744 
1745 /**
1746  *	skb_unshare - make a copy of a shared buffer
1747  *	@skb: buffer to check
1748  *	@pri: priority for memory allocation
1749  *
1750  *	If the socket buffer is a clone then this function creates a new
1751  *	copy of the data, drops a reference count on the old copy and returns
1752  *	the new copy with the reference count at 1. If the buffer is not a clone
1753  *	the original buffer is returned. When called with a spinlock held or
1754  *	from interrupt state @pri must be %GFP_ATOMIC
1755  *
1756  *	%NULL is returned on a memory allocation failure.
1757  */
1758 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1759 					  gfp_t pri)
1760 {
1761 	might_sleep_if(gfpflags_allow_blocking(pri));
1762 	if (skb_cloned(skb)) {
1763 		struct sk_buff *nskb = skb_copy(skb, pri);
1764 
1765 		/* Free our shared copy */
1766 		if (likely(nskb))
1767 			consume_skb(skb);
1768 		else
1769 			kfree_skb(skb);
1770 		skb = nskb;
1771 	}
1772 	return skb;
1773 }
1774 
1775 /**
1776  *	skb_peek - peek at the head of an &sk_buff_head
1777  *	@list_: list to peek at
1778  *
1779  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1780  *	be careful with this one. A peek leaves the buffer on the
1781  *	list and someone else may run off with it. You must hold
1782  *	the appropriate locks or have a private queue to do this.
1783  *
1784  *	Returns %NULL for an empty list or a pointer to the head element.
1785  *	The reference count is not incremented and the reference is therefore
1786  *	volatile. Use with caution.
1787  */
1788 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1789 {
1790 	struct sk_buff *skb = list_->next;
1791 
1792 	if (skb == (struct sk_buff *)list_)
1793 		skb = NULL;
1794 	return skb;
1795 }
1796 
1797 /**
1798  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1799  *	@list_: list to peek at
1800  *
1801  *	Like skb_peek(), but the caller knows that the list is not empty.
1802  */
1803 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1804 {
1805 	return list_->next;
1806 }
1807 
1808 /**
1809  *	skb_peek_next - peek skb following the given one from a queue
1810  *	@skb: skb to start from
1811  *	@list_: list to peek at
1812  *
1813  *	Returns %NULL when the end of the list is met or a pointer to the
1814  *	next element. The reference count is not incremented and the
1815  *	reference is therefore volatile. Use with caution.
1816  */
1817 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1818 		const struct sk_buff_head *list_)
1819 {
1820 	struct sk_buff *next = skb->next;
1821 
1822 	if (next == (struct sk_buff *)list_)
1823 		next = NULL;
1824 	return next;
1825 }
1826 
1827 /**
1828  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1829  *	@list_: list to peek at
1830  *
1831  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1832  *	be careful with this one. A peek leaves the buffer on the
1833  *	list and someone else may run off with it. You must hold
1834  *	the appropriate locks or have a private queue to do this.
1835  *
1836  *	Returns %NULL for an empty list or a pointer to the tail element.
1837  *	The reference count is not incremented and the reference is therefore
1838  *	volatile. Use with caution.
1839  */
1840 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1841 {
1842 	struct sk_buff *skb = READ_ONCE(list_->prev);
1843 
1844 	if (skb == (struct sk_buff *)list_)
1845 		skb = NULL;
1846 	return skb;
1847 
1848 }
1849 
1850 /**
1851  *	skb_queue_len	- get queue length
1852  *	@list_: list to measure
1853  *
1854  *	Return the length of an &sk_buff queue.
1855  */
1856 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1857 {
1858 	return list_->qlen;
1859 }
1860 
1861 /**
1862  *	skb_queue_len_lockless	- get queue length
1863  *	@list_: list to measure
1864  *
1865  *	Return the length of an &sk_buff queue.
1866  *	This variant can be used in lockless contexts.
1867  */
1868 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1869 {
1870 	return READ_ONCE(list_->qlen);
1871 }
1872 
1873 /**
1874  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1875  *	@list: queue to initialize
1876  *
1877  *	This initializes only the list and queue length aspects of
1878  *	an sk_buff_head object.  This allows to initialize the list
1879  *	aspects of an sk_buff_head without reinitializing things like
1880  *	the spinlock.  It can also be used for on-stack sk_buff_head
1881  *	objects where the spinlock is known to not be used.
1882  */
1883 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1884 {
1885 	list->prev = list->next = (struct sk_buff *)list;
1886 	list->qlen = 0;
1887 }
1888 
1889 /*
1890  * This function creates a split out lock class for each invocation;
1891  * this is needed for now since a whole lot of users of the skb-queue
1892  * infrastructure in drivers have different locking usage (in hardirq)
1893  * than the networking core (in softirq only). In the long run either the
1894  * network layer or drivers should need annotation to consolidate the
1895  * main types of usage into 3 classes.
1896  */
1897 static inline void skb_queue_head_init(struct sk_buff_head *list)
1898 {
1899 	spin_lock_init(&list->lock);
1900 	__skb_queue_head_init(list);
1901 }
1902 
1903 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1904 		struct lock_class_key *class)
1905 {
1906 	skb_queue_head_init(list);
1907 	lockdep_set_class(&list->lock, class);
1908 }
1909 
1910 /*
1911  *	Insert an sk_buff on a list.
1912  *
1913  *	The "__skb_xxxx()" functions are the non-atomic ones that
1914  *	can only be called with interrupts disabled.
1915  */
1916 static inline void __skb_insert(struct sk_buff *newsk,
1917 				struct sk_buff *prev, struct sk_buff *next,
1918 				struct sk_buff_head *list)
1919 {
1920 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1921 	 * for the opposite READ_ONCE()
1922 	 */
1923 	WRITE_ONCE(newsk->next, next);
1924 	WRITE_ONCE(newsk->prev, prev);
1925 	WRITE_ONCE(next->prev, newsk);
1926 	WRITE_ONCE(prev->next, newsk);
1927 	list->qlen++;
1928 }
1929 
1930 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1931 				      struct sk_buff *prev,
1932 				      struct sk_buff *next)
1933 {
1934 	struct sk_buff *first = list->next;
1935 	struct sk_buff *last = list->prev;
1936 
1937 	WRITE_ONCE(first->prev, prev);
1938 	WRITE_ONCE(prev->next, first);
1939 
1940 	WRITE_ONCE(last->next, next);
1941 	WRITE_ONCE(next->prev, last);
1942 }
1943 
1944 /**
1945  *	skb_queue_splice - join two skb lists, this is designed for stacks
1946  *	@list: the new list to add
1947  *	@head: the place to add it in the first list
1948  */
1949 static inline void skb_queue_splice(const struct sk_buff_head *list,
1950 				    struct sk_buff_head *head)
1951 {
1952 	if (!skb_queue_empty(list)) {
1953 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1954 		head->qlen += list->qlen;
1955 	}
1956 }
1957 
1958 /**
1959  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1960  *	@list: the new list to add
1961  *	@head: the place to add it in the first list
1962  *
1963  *	The list at @list is reinitialised
1964  */
1965 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1966 					 struct sk_buff_head *head)
1967 {
1968 	if (!skb_queue_empty(list)) {
1969 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1970 		head->qlen += list->qlen;
1971 		__skb_queue_head_init(list);
1972 	}
1973 }
1974 
1975 /**
1976  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1977  *	@list: the new list to add
1978  *	@head: the place to add it in the first list
1979  */
1980 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1981 					 struct sk_buff_head *head)
1982 {
1983 	if (!skb_queue_empty(list)) {
1984 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1985 		head->qlen += list->qlen;
1986 	}
1987 }
1988 
1989 /**
1990  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1991  *	@list: the new list to add
1992  *	@head: the place to add it in the first list
1993  *
1994  *	Each of the lists is a queue.
1995  *	The list at @list is reinitialised
1996  */
1997 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1998 					      struct sk_buff_head *head)
1999 {
2000 	if (!skb_queue_empty(list)) {
2001 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2002 		head->qlen += list->qlen;
2003 		__skb_queue_head_init(list);
2004 	}
2005 }
2006 
2007 /**
2008  *	__skb_queue_after - queue a buffer at the list head
2009  *	@list: list to use
2010  *	@prev: place after this buffer
2011  *	@newsk: buffer to queue
2012  *
2013  *	Queue a buffer int the middle of a list. This function takes no locks
2014  *	and you must therefore hold required locks before calling it.
2015  *
2016  *	A buffer cannot be placed on two lists at the same time.
2017  */
2018 static inline void __skb_queue_after(struct sk_buff_head *list,
2019 				     struct sk_buff *prev,
2020 				     struct sk_buff *newsk)
2021 {
2022 	__skb_insert(newsk, prev, prev->next, list);
2023 }
2024 
2025 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2026 		struct sk_buff_head *list);
2027 
2028 static inline void __skb_queue_before(struct sk_buff_head *list,
2029 				      struct sk_buff *next,
2030 				      struct sk_buff *newsk)
2031 {
2032 	__skb_insert(newsk, next->prev, next, list);
2033 }
2034 
2035 /**
2036  *	__skb_queue_head - queue a buffer at the list head
2037  *	@list: list to use
2038  *	@newsk: buffer to queue
2039  *
2040  *	Queue a buffer at the start of a list. This function takes no locks
2041  *	and you must therefore hold required locks before calling it.
2042  *
2043  *	A buffer cannot be placed on two lists at the same time.
2044  */
2045 static inline void __skb_queue_head(struct sk_buff_head *list,
2046 				    struct sk_buff *newsk)
2047 {
2048 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2049 }
2050 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2051 
2052 /**
2053  *	__skb_queue_tail - queue a buffer at the list tail
2054  *	@list: list to use
2055  *	@newsk: buffer to queue
2056  *
2057  *	Queue a buffer at the end of a list. This function takes no locks
2058  *	and you must therefore hold required locks before calling it.
2059  *
2060  *	A buffer cannot be placed on two lists at the same time.
2061  */
2062 static inline void __skb_queue_tail(struct sk_buff_head *list,
2063 				   struct sk_buff *newsk)
2064 {
2065 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2066 }
2067 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2068 
2069 /*
2070  * remove sk_buff from list. _Must_ be called atomically, and with
2071  * the list known..
2072  */
2073 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2074 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2075 {
2076 	struct sk_buff *next, *prev;
2077 
2078 	WRITE_ONCE(list->qlen, list->qlen - 1);
2079 	next	   = skb->next;
2080 	prev	   = skb->prev;
2081 	skb->next  = skb->prev = NULL;
2082 	WRITE_ONCE(next->prev, prev);
2083 	WRITE_ONCE(prev->next, next);
2084 }
2085 
2086 /**
2087  *	__skb_dequeue - remove from the head of the queue
2088  *	@list: list to dequeue from
2089  *
2090  *	Remove the head of the list. This function does not take any locks
2091  *	so must be used with appropriate locks held only. The head item is
2092  *	returned or %NULL if the list is empty.
2093  */
2094 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2095 {
2096 	struct sk_buff *skb = skb_peek(list);
2097 	if (skb)
2098 		__skb_unlink(skb, list);
2099 	return skb;
2100 }
2101 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2102 
2103 /**
2104  *	__skb_dequeue_tail - remove from the tail of the queue
2105  *	@list: list to dequeue from
2106  *
2107  *	Remove the tail of the list. This function does not take any locks
2108  *	so must be used with appropriate locks held only. The tail item is
2109  *	returned or %NULL if the list is empty.
2110  */
2111 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2112 {
2113 	struct sk_buff *skb = skb_peek_tail(list);
2114 	if (skb)
2115 		__skb_unlink(skb, list);
2116 	return skb;
2117 }
2118 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2119 
2120 
2121 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2122 {
2123 	return skb->data_len;
2124 }
2125 
2126 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2127 {
2128 	return skb->len - skb->data_len;
2129 }
2130 
2131 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2132 {
2133 	unsigned int i, len = 0;
2134 
2135 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2136 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2137 	return len;
2138 }
2139 
2140 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2141 {
2142 	return skb_headlen(skb) + __skb_pagelen(skb);
2143 }
2144 
2145 /**
2146  * __skb_fill_page_desc - initialise a paged fragment in an skb
2147  * @skb: buffer containing fragment to be initialised
2148  * @i: paged fragment index to initialise
2149  * @page: the page to use for this fragment
2150  * @off: the offset to the data with @page
2151  * @size: the length of the data
2152  *
2153  * Initialises the @i'th fragment of @skb to point to &size bytes at
2154  * offset @off within @page.
2155  *
2156  * Does not take any additional reference on the fragment.
2157  */
2158 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2159 					struct page *page, int off, int size)
2160 {
2161 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2162 
2163 	/*
2164 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2165 	 * that not all callers have unique ownership of the page but rely
2166 	 * on page_is_pfmemalloc doing the right thing(tm).
2167 	 */
2168 	frag->bv_page		  = page;
2169 	frag->bv_offset		  = off;
2170 	skb_frag_size_set(frag, size);
2171 
2172 	page = compound_head(page);
2173 	if (page_is_pfmemalloc(page))
2174 		skb->pfmemalloc	= true;
2175 }
2176 
2177 /**
2178  * skb_fill_page_desc - initialise a paged fragment in an skb
2179  * @skb: buffer containing fragment to be initialised
2180  * @i: paged fragment index to initialise
2181  * @page: the page to use for this fragment
2182  * @off: the offset to the data with @page
2183  * @size: the length of the data
2184  *
2185  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2186  * @skb to point to @size bytes at offset @off within @page. In
2187  * addition updates @skb such that @i is the last fragment.
2188  *
2189  * Does not take any additional reference on the fragment.
2190  */
2191 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2192 				      struct page *page, int off, int size)
2193 {
2194 	__skb_fill_page_desc(skb, i, page, off, size);
2195 	skb_shinfo(skb)->nr_frags = i + 1;
2196 }
2197 
2198 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2199 		     int size, unsigned int truesize);
2200 
2201 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2202 			  unsigned int truesize);
2203 
2204 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2205 
2206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2207 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2208 {
2209 	return skb->head + skb->tail;
2210 }
2211 
2212 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2213 {
2214 	skb->tail = skb->data - skb->head;
2215 }
2216 
2217 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2218 {
2219 	skb_reset_tail_pointer(skb);
2220 	skb->tail += offset;
2221 }
2222 
2223 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2224 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2225 {
2226 	return skb->tail;
2227 }
2228 
2229 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2230 {
2231 	skb->tail = skb->data;
2232 }
2233 
2234 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2235 {
2236 	skb->tail = skb->data + offset;
2237 }
2238 
2239 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2240 
2241 /*
2242  *	Add data to an sk_buff
2243  */
2244 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2245 void *skb_put(struct sk_buff *skb, unsigned int len);
2246 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2247 {
2248 	void *tmp = skb_tail_pointer(skb);
2249 	SKB_LINEAR_ASSERT(skb);
2250 	skb->tail += len;
2251 	skb->len  += len;
2252 	return tmp;
2253 }
2254 
2255 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2256 {
2257 	void *tmp = __skb_put(skb, len);
2258 
2259 	memset(tmp, 0, len);
2260 	return tmp;
2261 }
2262 
2263 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2264 				   unsigned int len)
2265 {
2266 	void *tmp = __skb_put(skb, len);
2267 
2268 	memcpy(tmp, data, len);
2269 	return tmp;
2270 }
2271 
2272 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2273 {
2274 	*(u8 *)__skb_put(skb, 1) = val;
2275 }
2276 
2277 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2278 {
2279 	void *tmp = skb_put(skb, len);
2280 
2281 	memset(tmp, 0, len);
2282 
2283 	return tmp;
2284 }
2285 
2286 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2287 				 unsigned int len)
2288 {
2289 	void *tmp = skb_put(skb, len);
2290 
2291 	memcpy(tmp, data, len);
2292 
2293 	return tmp;
2294 }
2295 
2296 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2297 {
2298 	*(u8 *)skb_put(skb, 1) = val;
2299 }
2300 
2301 void *skb_push(struct sk_buff *skb, unsigned int len);
2302 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2303 {
2304 	skb->data -= len;
2305 	skb->len  += len;
2306 	return skb->data;
2307 }
2308 
2309 void *skb_pull(struct sk_buff *skb, unsigned int len);
2310 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2311 {
2312 	skb->len -= len;
2313 	BUG_ON(skb->len < skb->data_len);
2314 	return skb->data += len;
2315 }
2316 
2317 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2318 {
2319 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2320 }
2321 
2322 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2323 
2324 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2325 {
2326 	if (len > skb_headlen(skb) &&
2327 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2328 		return NULL;
2329 	skb->len -= len;
2330 	return skb->data += len;
2331 }
2332 
2333 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2334 {
2335 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2336 }
2337 
2338 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2339 {
2340 	if (likely(len <= skb_headlen(skb)))
2341 		return true;
2342 	if (unlikely(len > skb->len))
2343 		return false;
2344 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2345 }
2346 
2347 void skb_condense(struct sk_buff *skb);
2348 
2349 /**
2350  *	skb_headroom - bytes at buffer head
2351  *	@skb: buffer to check
2352  *
2353  *	Return the number of bytes of free space at the head of an &sk_buff.
2354  */
2355 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2356 {
2357 	return skb->data - skb->head;
2358 }
2359 
2360 /**
2361  *	skb_tailroom - bytes at buffer end
2362  *	@skb: buffer to check
2363  *
2364  *	Return the number of bytes of free space at the tail of an sk_buff
2365  */
2366 static inline int skb_tailroom(const struct sk_buff *skb)
2367 {
2368 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2369 }
2370 
2371 /**
2372  *	skb_availroom - bytes at buffer end
2373  *	@skb: buffer to check
2374  *
2375  *	Return the number of bytes of free space at the tail of an sk_buff
2376  *	allocated by sk_stream_alloc()
2377  */
2378 static inline int skb_availroom(const struct sk_buff *skb)
2379 {
2380 	if (skb_is_nonlinear(skb))
2381 		return 0;
2382 
2383 	return skb->end - skb->tail - skb->reserved_tailroom;
2384 }
2385 
2386 /**
2387  *	skb_reserve - adjust headroom
2388  *	@skb: buffer to alter
2389  *	@len: bytes to move
2390  *
2391  *	Increase the headroom of an empty &sk_buff by reducing the tail
2392  *	room. This is only allowed for an empty buffer.
2393  */
2394 static inline void skb_reserve(struct sk_buff *skb, int len)
2395 {
2396 	skb->data += len;
2397 	skb->tail += len;
2398 }
2399 
2400 /**
2401  *	skb_tailroom_reserve - adjust reserved_tailroom
2402  *	@skb: buffer to alter
2403  *	@mtu: maximum amount of headlen permitted
2404  *	@needed_tailroom: minimum amount of reserved_tailroom
2405  *
2406  *	Set reserved_tailroom so that headlen can be as large as possible but
2407  *	not larger than mtu and tailroom cannot be smaller than
2408  *	needed_tailroom.
2409  *	The required headroom should already have been reserved before using
2410  *	this function.
2411  */
2412 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2413 					unsigned int needed_tailroom)
2414 {
2415 	SKB_LINEAR_ASSERT(skb);
2416 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2417 		/* use at most mtu */
2418 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2419 	else
2420 		/* use up to all available space */
2421 		skb->reserved_tailroom = needed_tailroom;
2422 }
2423 
2424 #define ENCAP_TYPE_ETHER	0
2425 #define ENCAP_TYPE_IPPROTO	1
2426 
2427 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2428 					  __be16 protocol)
2429 {
2430 	skb->inner_protocol = protocol;
2431 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2432 }
2433 
2434 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2435 					 __u8 ipproto)
2436 {
2437 	skb->inner_ipproto = ipproto;
2438 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2439 }
2440 
2441 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2442 {
2443 	skb->inner_mac_header = skb->mac_header;
2444 	skb->inner_network_header = skb->network_header;
2445 	skb->inner_transport_header = skb->transport_header;
2446 }
2447 
2448 static inline void skb_reset_mac_len(struct sk_buff *skb)
2449 {
2450 	skb->mac_len = skb->network_header - skb->mac_header;
2451 }
2452 
2453 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2454 							*skb)
2455 {
2456 	return skb->head + skb->inner_transport_header;
2457 }
2458 
2459 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2460 {
2461 	return skb_inner_transport_header(skb) - skb->data;
2462 }
2463 
2464 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2465 {
2466 	skb->inner_transport_header = skb->data - skb->head;
2467 }
2468 
2469 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2470 						   const int offset)
2471 {
2472 	skb_reset_inner_transport_header(skb);
2473 	skb->inner_transport_header += offset;
2474 }
2475 
2476 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2477 {
2478 	return skb->head + skb->inner_network_header;
2479 }
2480 
2481 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2482 {
2483 	skb->inner_network_header = skb->data - skb->head;
2484 }
2485 
2486 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2487 						const int offset)
2488 {
2489 	skb_reset_inner_network_header(skb);
2490 	skb->inner_network_header += offset;
2491 }
2492 
2493 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2494 {
2495 	return skb->head + skb->inner_mac_header;
2496 }
2497 
2498 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2499 {
2500 	skb->inner_mac_header = skb->data - skb->head;
2501 }
2502 
2503 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2504 					    const int offset)
2505 {
2506 	skb_reset_inner_mac_header(skb);
2507 	skb->inner_mac_header += offset;
2508 }
2509 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2510 {
2511 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2512 }
2513 
2514 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2515 {
2516 	return skb->head + skb->transport_header;
2517 }
2518 
2519 static inline void skb_reset_transport_header(struct sk_buff *skb)
2520 {
2521 	skb->transport_header = skb->data - skb->head;
2522 }
2523 
2524 static inline void skb_set_transport_header(struct sk_buff *skb,
2525 					    const int offset)
2526 {
2527 	skb_reset_transport_header(skb);
2528 	skb->transport_header += offset;
2529 }
2530 
2531 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2532 {
2533 	return skb->head + skb->network_header;
2534 }
2535 
2536 static inline void skb_reset_network_header(struct sk_buff *skb)
2537 {
2538 	skb->network_header = skb->data - skb->head;
2539 }
2540 
2541 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2542 {
2543 	skb_reset_network_header(skb);
2544 	skb->network_header += offset;
2545 }
2546 
2547 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2548 {
2549 	return skb->head + skb->mac_header;
2550 }
2551 
2552 static inline int skb_mac_offset(const struct sk_buff *skb)
2553 {
2554 	return skb_mac_header(skb) - skb->data;
2555 }
2556 
2557 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2558 {
2559 	return skb->network_header - skb->mac_header;
2560 }
2561 
2562 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2563 {
2564 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2565 }
2566 
2567 static inline void skb_unset_mac_header(struct sk_buff *skb)
2568 {
2569 	skb->mac_header = (typeof(skb->mac_header))~0U;
2570 }
2571 
2572 static inline void skb_reset_mac_header(struct sk_buff *skb)
2573 {
2574 	skb->mac_header = skb->data - skb->head;
2575 }
2576 
2577 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2578 {
2579 	skb_reset_mac_header(skb);
2580 	skb->mac_header += offset;
2581 }
2582 
2583 static inline void skb_pop_mac_header(struct sk_buff *skb)
2584 {
2585 	skb->mac_header = skb->network_header;
2586 }
2587 
2588 static inline void skb_probe_transport_header(struct sk_buff *skb)
2589 {
2590 	struct flow_keys_basic keys;
2591 
2592 	if (skb_transport_header_was_set(skb))
2593 		return;
2594 
2595 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2596 					     NULL, 0, 0, 0, 0))
2597 		skb_set_transport_header(skb, keys.control.thoff);
2598 }
2599 
2600 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2601 {
2602 	if (skb_mac_header_was_set(skb)) {
2603 		const unsigned char *old_mac = skb_mac_header(skb);
2604 
2605 		skb_set_mac_header(skb, -skb->mac_len);
2606 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2607 	}
2608 }
2609 
2610 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2611 {
2612 	return skb->csum_start - skb_headroom(skb);
2613 }
2614 
2615 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2616 {
2617 	return skb->head + skb->csum_start;
2618 }
2619 
2620 static inline int skb_transport_offset(const struct sk_buff *skb)
2621 {
2622 	return skb_transport_header(skb) - skb->data;
2623 }
2624 
2625 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2626 {
2627 	return skb->transport_header - skb->network_header;
2628 }
2629 
2630 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2631 {
2632 	return skb->inner_transport_header - skb->inner_network_header;
2633 }
2634 
2635 static inline int skb_network_offset(const struct sk_buff *skb)
2636 {
2637 	return skb_network_header(skb) - skb->data;
2638 }
2639 
2640 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2641 {
2642 	return skb_inner_network_header(skb) - skb->data;
2643 }
2644 
2645 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2646 {
2647 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2648 }
2649 
2650 /*
2651  * CPUs often take a performance hit when accessing unaligned memory
2652  * locations. The actual performance hit varies, it can be small if the
2653  * hardware handles it or large if we have to take an exception and fix it
2654  * in software.
2655  *
2656  * Since an ethernet header is 14 bytes network drivers often end up with
2657  * the IP header at an unaligned offset. The IP header can be aligned by
2658  * shifting the start of the packet by 2 bytes. Drivers should do this
2659  * with:
2660  *
2661  * skb_reserve(skb, NET_IP_ALIGN);
2662  *
2663  * The downside to this alignment of the IP header is that the DMA is now
2664  * unaligned. On some architectures the cost of an unaligned DMA is high
2665  * and this cost outweighs the gains made by aligning the IP header.
2666  *
2667  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2668  * to be overridden.
2669  */
2670 #ifndef NET_IP_ALIGN
2671 #define NET_IP_ALIGN	2
2672 #endif
2673 
2674 /*
2675  * The networking layer reserves some headroom in skb data (via
2676  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2677  * the header has to grow. In the default case, if the header has to grow
2678  * 32 bytes or less we avoid the reallocation.
2679  *
2680  * Unfortunately this headroom changes the DMA alignment of the resulting
2681  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2682  * on some architectures. An architecture can override this value,
2683  * perhaps setting it to a cacheline in size (since that will maintain
2684  * cacheline alignment of the DMA). It must be a power of 2.
2685  *
2686  * Various parts of the networking layer expect at least 32 bytes of
2687  * headroom, you should not reduce this.
2688  *
2689  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2690  * to reduce average number of cache lines per packet.
2691  * get_rps_cpu() for example only access one 64 bytes aligned block :
2692  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2693  */
2694 #ifndef NET_SKB_PAD
2695 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2696 #endif
2697 
2698 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2699 
2700 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2701 {
2702 	if (WARN_ON(skb_is_nonlinear(skb)))
2703 		return;
2704 	skb->len = len;
2705 	skb_set_tail_pointer(skb, len);
2706 }
2707 
2708 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2709 {
2710 	__skb_set_length(skb, len);
2711 }
2712 
2713 void skb_trim(struct sk_buff *skb, unsigned int len);
2714 
2715 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2716 {
2717 	if (skb->data_len)
2718 		return ___pskb_trim(skb, len);
2719 	__skb_trim(skb, len);
2720 	return 0;
2721 }
2722 
2723 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2724 {
2725 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2726 }
2727 
2728 /**
2729  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2730  *	@skb: buffer to alter
2731  *	@len: new length
2732  *
2733  *	This is identical to pskb_trim except that the caller knows that
2734  *	the skb is not cloned so we should never get an error due to out-
2735  *	of-memory.
2736  */
2737 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2738 {
2739 	int err = pskb_trim(skb, len);
2740 	BUG_ON(err);
2741 }
2742 
2743 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2744 {
2745 	unsigned int diff = len - skb->len;
2746 
2747 	if (skb_tailroom(skb) < diff) {
2748 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2749 					   GFP_ATOMIC);
2750 		if (ret)
2751 			return ret;
2752 	}
2753 	__skb_set_length(skb, len);
2754 	return 0;
2755 }
2756 
2757 /**
2758  *	skb_orphan - orphan a buffer
2759  *	@skb: buffer to orphan
2760  *
2761  *	If a buffer currently has an owner then we call the owner's
2762  *	destructor function and make the @skb unowned. The buffer continues
2763  *	to exist but is no longer charged to its former owner.
2764  */
2765 static inline void skb_orphan(struct sk_buff *skb)
2766 {
2767 	if (skb->destructor) {
2768 		skb->destructor(skb);
2769 		skb->destructor = NULL;
2770 		skb->sk		= NULL;
2771 	} else {
2772 		BUG_ON(skb->sk);
2773 	}
2774 }
2775 
2776 /**
2777  *	skb_orphan_frags - orphan the frags contained in a buffer
2778  *	@skb: buffer to orphan frags from
2779  *	@gfp_mask: allocation mask for replacement pages
2780  *
2781  *	For each frag in the SKB which needs a destructor (i.e. has an
2782  *	owner) create a copy of that frag and release the original
2783  *	page by calling the destructor.
2784  */
2785 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2786 {
2787 	if (likely(!skb_zcopy(skb)))
2788 		return 0;
2789 	if (!skb_zcopy_is_nouarg(skb) &&
2790 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2791 		return 0;
2792 	return skb_copy_ubufs(skb, gfp_mask);
2793 }
2794 
2795 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2796 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2797 {
2798 	if (likely(!skb_zcopy(skb)))
2799 		return 0;
2800 	return skb_copy_ubufs(skb, gfp_mask);
2801 }
2802 
2803 /**
2804  *	__skb_queue_purge - empty a list
2805  *	@list: list to empty
2806  *
2807  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2808  *	the list and one reference dropped. This function does not take the
2809  *	list lock and the caller must hold the relevant locks to use it.
2810  */
2811 static inline void __skb_queue_purge(struct sk_buff_head *list)
2812 {
2813 	struct sk_buff *skb;
2814 	while ((skb = __skb_dequeue(list)) != NULL)
2815 		kfree_skb(skb);
2816 }
2817 void skb_queue_purge(struct sk_buff_head *list);
2818 
2819 unsigned int skb_rbtree_purge(struct rb_root *root);
2820 
2821 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2822 
2823 /**
2824  * netdev_alloc_frag - allocate a page fragment
2825  * @fragsz: fragment size
2826  *
2827  * Allocates a frag from a page for receive buffer.
2828  * Uses GFP_ATOMIC allocations.
2829  */
2830 static inline void *netdev_alloc_frag(unsigned int fragsz)
2831 {
2832 	return __netdev_alloc_frag_align(fragsz, ~0u);
2833 }
2834 
2835 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2836 					    unsigned int align)
2837 {
2838 	WARN_ON_ONCE(!is_power_of_2(align));
2839 	return __netdev_alloc_frag_align(fragsz, -align);
2840 }
2841 
2842 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2843 				   gfp_t gfp_mask);
2844 
2845 /**
2846  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2847  *	@dev: network device to receive on
2848  *	@length: length to allocate
2849  *
2850  *	Allocate a new &sk_buff and assign it a usage count of one. The
2851  *	buffer has unspecified headroom built in. Users should allocate
2852  *	the headroom they think they need without accounting for the
2853  *	built in space. The built in space is used for optimisations.
2854  *
2855  *	%NULL is returned if there is no free memory. Although this function
2856  *	allocates memory it can be called from an interrupt.
2857  */
2858 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2859 					       unsigned int length)
2860 {
2861 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2862 }
2863 
2864 /* legacy helper around __netdev_alloc_skb() */
2865 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2866 					      gfp_t gfp_mask)
2867 {
2868 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2869 }
2870 
2871 /* legacy helper around netdev_alloc_skb() */
2872 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2873 {
2874 	return netdev_alloc_skb(NULL, length);
2875 }
2876 
2877 
2878 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2879 		unsigned int length, gfp_t gfp)
2880 {
2881 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2882 
2883 	if (NET_IP_ALIGN && skb)
2884 		skb_reserve(skb, NET_IP_ALIGN);
2885 	return skb;
2886 }
2887 
2888 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2889 		unsigned int length)
2890 {
2891 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2892 }
2893 
2894 static inline void skb_free_frag(void *addr)
2895 {
2896 	page_frag_free(addr);
2897 }
2898 
2899 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2900 
2901 static inline void *napi_alloc_frag(unsigned int fragsz)
2902 {
2903 	return __napi_alloc_frag_align(fragsz, ~0u);
2904 }
2905 
2906 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2907 					  unsigned int align)
2908 {
2909 	WARN_ON_ONCE(!is_power_of_2(align));
2910 	return __napi_alloc_frag_align(fragsz, -align);
2911 }
2912 
2913 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2914 				 unsigned int length, gfp_t gfp_mask);
2915 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2916 					     unsigned int length)
2917 {
2918 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2919 }
2920 void napi_consume_skb(struct sk_buff *skb, int budget);
2921 
2922 void __kfree_skb_flush(void);
2923 void __kfree_skb_defer(struct sk_buff *skb);
2924 
2925 /**
2926  * __dev_alloc_pages - allocate page for network Rx
2927  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2928  * @order: size of the allocation
2929  *
2930  * Allocate a new page.
2931  *
2932  * %NULL is returned if there is no free memory.
2933 */
2934 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2935 					     unsigned int order)
2936 {
2937 	/* This piece of code contains several assumptions.
2938 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2939 	 * 2.  The expectation is the user wants a compound page.
2940 	 * 3.  If requesting a order 0 page it will not be compound
2941 	 *     due to the check to see if order has a value in prep_new_page
2942 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2943 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2944 	 */
2945 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2946 
2947 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2948 }
2949 
2950 static inline struct page *dev_alloc_pages(unsigned int order)
2951 {
2952 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2953 }
2954 
2955 /**
2956  * __dev_alloc_page - allocate a page for network Rx
2957  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2958  *
2959  * Allocate a new page.
2960  *
2961  * %NULL is returned if there is no free memory.
2962  */
2963 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2964 {
2965 	return __dev_alloc_pages(gfp_mask, 0);
2966 }
2967 
2968 static inline struct page *dev_alloc_page(void)
2969 {
2970 	return dev_alloc_pages(0);
2971 }
2972 
2973 /**
2974  * dev_page_is_reusable - check whether a page can be reused for network Rx
2975  * @page: the page to test
2976  *
2977  * A page shouldn't be considered for reusing/recycling if it was allocated
2978  * under memory pressure or at a distant memory node.
2979  *
2980  * Returns false if this page should be returned to page allocator, true
2981  * otherwise.
2982  */
2983 static inline bool dev_page_is_reusable(const struct page *page)
2984 {
2985 	return likely(page_to_nid(page) == numa_mem_id() &&
2986 		      !page_is_pfmemalloc(page));
2987 }
2988 
2989 /**
2990  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2991  *	@page: The page that was allocated from skb_alloc_page
2992  *	@skb: The skb that may need pfmemalloc set
2993  */
2994 static inline void skb_propagate_pfmemalloc(const struct page *page,
2995 					    struct sk_buff *skb)
2996 {
2997 	if (page_is_pfmemalloc(page))
2998 		skb->pfmemalloc = true;
2999 }
3000 
3001 /**
3002  * skb_frag_off() - Returns the offset of a skb fragment
3003  * @frag: the paged fragment
3004  */
3005 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3006 {
3007 	return frag->bv_offset;
3008 }
3009 
3010 /**
3011  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3012  * @frag: skb fragment
3013  * @delta: value to add
3014  */
3015 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3016 {
3017 	frag->bv_offset += delta;
3018 }
3019 
3020 /**
3021  * skb_frag_off_set() - Sets the offset of a skb fragment
3022  * @frag: skb fragment
3023  * @offset: offset of fragment
3024  */
3025 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3026 {
3027 	frag->bv_offset = offset;
3028 }
3029 
3030 /**
3031  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3032  * @fragto: skb fragment where offset is set
3033  * @fragfrom: skb fragment offset is copied from
3034  */
3035 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3036 				     const skb_frag_t *fragfrom)
3037 {
3038 	fragto->bv_offset = fragfrom->bv_offset;
3039 }
3040 
3041 /**
3042  * skb_frag_page - retrieve the page referred to by a paged fragment
3043  * @frag: the paged fragment
3044  *
3045  * Returns the &struct page associated with @frag.
3046  */
3047 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3048 {
3049 	return frag->bv_page;
3050 }
3051 
3052 /**
3053  * __skb_frag_ref - take an addition reference on a paged fragment.
3054  * @frag: the paged fragment
3055  *
3056  * Takes an additional reference on the paged fragment @frag.
3057  */
3058 static inline void __skb_frag_ref(skb_frag_t *frag)
3059 {
3060 	get_page(skb_frag_page(frag));
3061 }
3062 
3063 /**
3064  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3065  * @skb: the buffer
3066  * @f: the fragment offset.
3067  *
3068  * Takes an additional reference on the @f'th paged fragment of @skb.
3069  */
3070 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3071 {
3072 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3073 }
3074 
3075 /**
3076  * __skb_frag_unref - release a reference on a paged fragment.
3077  * @frag: the paged fragment
3078  *
3079  * Releases a reference on the paged fragment @frag.
3080  */
3081 static inline void __skb_frag_unref(skb_frag_t *frag)
3082 {
3083 	put_page(skb_frag_page(frag));
3084 }
3085 
3086 /**
3087  * skb_frag_unref - release a reference on a paged fragment of an skb.
3088  * @skb: the buffer
3089  * @f: the fragment offset
3090  *
3091  * Releases a reference on the @f'th paged fragment of @skb.
3092  */
3093 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3094 {
3095 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3096 }
3097 
3098 /**
3099  * skb_frag_address - gets the address of the data contained in a paged fragment
3100  * @frag: the paged fragment buffer
3101  *
3102  * Returns the address of the data within @frag. The page must already
3103  * be mapped.
3104  */
3105 static inline void *skb_frag_address(const skb_frag_t *frag)
3106 {
3107 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3108 }
3109 
3110 /**
3111  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3112  * @frag: the paged fragment buffer
3113  *
3114  * Returns the address of the data within @frag. Checks that the page
3115  * is mapped and returns %NULL otherwise.
3116  */
3117 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3118 {
3119 	void *ptr = page_address(skb_frag_page(frag));
3120 	if (unlikely(!ptr))
3121 		return NULL;
3122 
3123 	return ptr + skb_frag_off(frag);
3124 }
3125 
3126 /**
3127  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3128  * @fragto: skb fragment where page is set
3129  * @fragfrom: skb fragment page is copied from
3130  */
3131 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3132 				      const skb_frag_t *fragfrom)
3133 {
3134 	fragto->bv_page = fragfrom->bv_page;
3135 }
3136 
3137 /**
3138  * __skb_frag_set_page - sets the page contained in a paged fragment
3139  * @frag: the paged fragment
3140  * @page: the page to set
3141  *
3142  * Sets the fragment @frag to contain @page.
3143  */
3144 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3145 {
3146 	frag->bv_page = page;
3147 }
3148 
3149 /**
3150  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3151  * @skb: the buffer
3152  * @f: the fragment offset
3153  * @page: the page to set
3154  *
3155  * Sets the @f'th fragment of @skb to contain @page.
3156  */
3157 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3158 				     struct page *page)
3159 {
3160 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3161 }
3162 
3163 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3164 
3165 /**
3166  * skb_frag_dma_map - maps a paged fragment via the DMA API
3167  * @dev: the device to map the fragment to
3168  * @frag: the paged fragment to map
3169  * @offset: the offset within the fragment (starting at the
3170  *          fragment's own offset)
3171  * @size: the number of bytes to map
3172  * @dir: the direction of the mapping (``PCI_DMA_*``)
3173  *
3174  * Maps the page associated with @frag to @device.
3175  */
3176 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3177 					  const skb_frag_t *frag,
3178 					  size_t offset, size_t size,
3179 					  enum dma_data_direction dir)
3180 {
3181 	return dma_map_page(dev, skb_frag_page(frag),
3182 			    skb_frag_off(frag) + offset, size, dir);
3183 }
3184 
3185 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3186 					gfp_t gfp_mask)
3187 {
3188 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3189 }
3190 
3191 
3192 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3193 						  gfp_t gfp_mask)
3194 {
3195 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3196 }
3197 
3198 
3199 /**
3200  *	skb_clone_writable - is the header of a clone writable
3201  *	@skb: buffer to check
3202  *	@len: length up to which to write
3203  *
3204  *	Returns true if modifying the header part of the cloned buffer
3205  *	does not requires the data to be copied.
3206  */
3207 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3208 {
3209 	return !skb_header_cloned(skb) &&
3210 	       skb_headroom(skb) + len <= skb->hdr_len;
3211 }
3212 
3213 static inline int skb_try_make_writable(struct sk_buff *skb,
3214 					unsigned int write_len)
3215 {
3216 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3217 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3218 }
3219 
3220 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3221 			    int cloned)
3222 {
3223 	int delta = 0;
3224 
3225 	if (headroom > skb_headroom(skb))
3226 		delta = headroom - skb_headroom(skb);
3227 
3228 	if (delta || cloned)
3229 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3230 					GFP_ATOMIC);
3231 	return 0;
3232 }
3233 
3234 /**
3235  *	skb_cow - copy header of skb when it is required
3236  *	@skb: buffer to cow
3237  *	@headroom: needed headroom
3238  *
3239  *	If the skb passed lacks sufficient headroom or its data part
3240  *	is shared, data is reallocated. If reallocation fails, an error
3241  *	is returned and original skb is not changed.
3242  *
3243  *	The result is skb with writable area skb->head...skb->tail
3244  *	and at least @headroom of space at head.
3245  */
3246 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3247 {
3248 	return __skb_cow(skb, headroom, skb_cloned(skb));
3249 }
3250 
3251 /**
3252  *	skb_cow_head - skb_cow but only making the head writable
3253  *	@skb: buffer to cow
3254  *	@headroom: needed headroom
3255  *
3256  *	This function is identical to skb_cow except that we replace the
3257  *	skb_cloned check by skb_header_cloned.  It should be used when
3258  *	you only need to push on some header and do not need to modify
3259  *	the data.
3260  */
3261 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3262 {
3263 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3264 }
3265 
3266 /**
3267  *	skb_padto	- pad an skbuff up to a minimal size
3268  *	@skb: buffer to pad
3269  *	@len: minimal length
3270  *
3271  *	Pads up a buffer to ensure the trailing bytes exist and are
3272  *	blanked. If the buffer already contains sufficient data it
3273  *	is untouched. Otherwise it is extended. Returns zero on
3274  *	success. The skb is freed on error.
3275  */
3276 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3277 {
3278 	unsigned int size = skb->len;
3279 	if (likely(size >= len))
3280 		return 0;
3281 	return skb_pad(skb, len - size);
3282 }
3283 
3284 /**
3285  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3286  *	@skb: buffer to pad
3287  *	@len: minimal length
3288  *	@free_on_error: free buffer on error
3289  *
3290  *	Pads up a buffer to ensure the trailing bytes exist and are
3291  *	blanked. If the buffer already contains sufficient data it
3292  *	is untouched. Otherwise it is extended. Returns zero on
3293  *	success. The skb is freed on error if @free_on_error is true.
3294  */
3295 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3296 					       unsigned int len,
3297 					       bool free_on_error)
3298 {
3299 	unsigned int size = skb->len;
3300 
3301 	if (unlikely(size < len)) {
3302 		len -= size;
3303 		if (__skb_pad(skb, len, free_on_error))
3304 			return -ENOMEM;
3305 		__skb_put(skb, len);
3306 	}
3307 	return 0;
3308 }
3309 
3310 /**
3311  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3312  *	@skb: buffer to pad
3313  *	@len: minimal length
3314  *
3315  *	Pads up a buffer to ensure the trailing bytes exist and are
3316  *	blanked. If the buffer already contains sufficient data it
3317  *	is untouched. Otherwise it is extended. Returns zero on
3318  *	success. The skb is freed on error.
3319  */
3320 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3321 {
3322 	return __skb_put_padto(skb, len, true);
3323 }
3324 
3325 static inline int skb_add_data(struct sk_buff *skb,
3326 			       struct iov_iter *from, int copy)
3327 {
3328 	const int off = skb->len;
3329 
3330 	if (skb->ip_summed == CHECKSUM_NONE) {
3331 		__wsum csum = 0;
3332 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3333 					         &csum, from)) {
3334 			skb->csum = csum_block_add(skb->csum, csum, off);
3335 			return 0;
3336 		}
3337 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3338 		return 0;
3339 
3340 	__skb_trim(skb, off);
3341 	return -EFAULT;
3342 }
3343 
3344 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3345 				    const struct page *page, int off)
3346 {
3347 	if (skb_zcopy(skb))
3348 		return false;
3349 	if (i) {
3350 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3351 
3352 		return page == skb_frag_page(frag) &&
3353 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3354 	}
3355 	return false;
3356 }
3357 
3358 static inline int __skb_linearize(struct sk_buff *skb)
3359 {
3360 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3361 }
3362 
3363 /**
3364  *	skb_linearize - convert paged skb to linear one
3365  *	@skb: buffer to linarize
3366  *
3367  *	If there is no free memory -ENOMEM is returned, otherwise zero
3368  *	is returned and the old skb data released.
3369  */
3370 static inline int skb_linearize(struct sk_buff *skb)
3371 {
3372 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3373 }
3374 
3375 /**
3376  * skb_has_shared_frag - can any frag be overwritten
3377  * @skb: buffer to test
3378  *
3379  * Return true if the skb has at least one frag that might be modified
3380  * by an external entity (as in vmsplice()/sendfile())
3381  */
3382 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3383 {
3384 	return skb_is_nonlinear(skb) &&
3385 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3386 }
3387 
3388 /**
3389  *	skb_linearize_cow - make sure skb is linear and writable
3390  *	@skb: buffer to process
3391  *
3392  *	If there is no free memory -ENOMEM is returned, otherwise zero
3393  *	is returned and the old skb data released.
3394  */
3395 static inline int skb_linearize_cow(struct sk_buff *skb)
3396 {
3397 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3398 	       __skb_linearize(skb) : 0;
3399 }
3400 
3401 static __always_inline void
3402 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3403 		     unsigned int off)
3404 {
3405 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3406 		skb->csum = csum_block_sub(skb->csum,
3407 					   csum_partial(start, len, 0), off);
3408 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3409 		 skb_checksum_start_offset(skb) < 0)
3410 		skb->ip_summed = CHECKSUM_NONE;
3411 }
3412 
3413 /**
3414  *	skb_postpull_rcsum - update checksum for received skb after pull
3415  *	@skb: buffer to update
3416  *	@start: start of data before pull
3417  *	@len: length of data pulled
3418  *
3419  *	After doing a pull on a received packet, you need to call this to
3420  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3421  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3422  */
3423 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3424 				      const void *start, unsigned int len)
3425 {
3426 	__skb_postpull_rcsum(skb, start, len, 0);
3427 }
3428 
3429 static __always_inline void
3430 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3431 		     unsigned int off)
3432 {
3433 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3434 		skb->csum = csum_block_add(skb->csum,
3435 					   csum_partial(start, len, 0), off);
3436 }
3437 
3438 /**
3439  *	skb_postpush_rcsum - update checksum for received skb after push
3440  *	@skb: buffer to update
3441  *	@start: start of data after push
3442  *	@len: length of data pushed
3443  *
3444  *	After doing a push on a received packet, you need to call this to
3445  *	update the CHECKSUM_COMPLETE checksum.
3446  */
3447 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3448 				      const void *start, unsigned int len)
3449 {
3450 	__skb_postpush_rcsum(skb, start, len, 0);
3451 }
3452 
3453 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3454 
3455 /**
3456  *	skb_push_rcsum - push skb and update receive checksum
3457  *	@skb: buffer to update
3458  *	@len: length of data pulled
3459  *
3460  *	This function performs an skb_push on the packet and updates
3461  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3462  *	receive path processing instead of skb_push unless you know
3463  *	that the checksum difference is zero (e.g., a valid IP header)
3464  *	or you are setting ip_summed to CHECKSUM_NONE.
3465  */
3466 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3467 {
3468 	skb_push(skb, len);
3469 	skb_postpush_rcsum(skb, skb->data, len);
3470 	return skb->data;
3471 }
3472 
3473 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3474 /**
3475  *	pskb_trim_rcsum - trim received skb and update checksum
3476  *	@skb: buffer to trim
3477  *	@len: new length
3478  *
3479  *	This is exactly the same as pskb_trim except that it ensures the
3480  *	checksum of received packets are still valid after the operation.
3481  *	It can change skb pointers.
3482  */
3483 
3484 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3485 {
3486 	if (likely(len >= skb->len))
3487 		return 0;
3488 	return pskb_trim_rcsum_slow(skb, len);
3489 }
3490 
3491 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3492 {
3493 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3494 		skb->ip_summed = CHECKSUM_NONE;
3495 	__skb_trim(skb, len);
3496 	return 0;
3497 }
3498 
3499 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3500 {
3501 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3502 		skb->ip_summed = CHECKSUM_NONE;
3503 	return __skb_grow(skb, len);
3504 }
3505 
3506 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3507 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3508 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3509 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3510 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3511 
3512 #define skb_queue_walk(queue, skb) \
3513 		for (skb = (queue)->next;					\
3514 		     skb != (struct sk_buff *)(queue);				\
3515 		     skb = skb->next)
3516 
3517 #define skb_queue_walk_safe(queue, skb, tmp)					\
3518 		for (skb = (queue)->next, tmp = skb->next;			\
3519 		     skb != (struct sk_buff *)(queue);				\
3520 		     skb = tmp, tmp = skb->next)
3521 
3522 #define skb_queue_walk_from(queue, skb)						\
3523 		for (; skb != (struct sk_buff *)(queue);			\
3524 		     skb = skb->next)
3525 
3526 #define skb_rbtree_walk(skb, root)						\
3527 		for (skb = skb_rb_first(root); skb != NULL;			\
3528 		     skb = skb_rb_next(skb))
3529 
3530 #define skb_rbtree_walk_from(skb)						\
3531 		for (; skb != NULL;						\
3532 		     skb = skb_rb_next(skb))
3533 
3534 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3535 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3536 		     skb = tmp)
3537 
3538 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3539 		for (tmp = skb->next;						\
3540 		     skb != (struct sk_buff *)(queue);				\
3541 		     skb = tmp, tmp = skb->next)
3542 
3543 #define skb_queue_reverse_walk(queue, skb) \
3544 		for (skb = (queue)->prev;					\
3545 		     skb != (struct sk_buff *)(queue);				\
3546 		     skb = skb->prev)
3547 
3548 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3549 		for (skb = (queue)->prev, tmp = skb->prev;			\
3550 		     skb != (struct sk_buff *)(queue);				\
3551 		     skb = tmp, tmp = skb->prev)
3552 
3553 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3554 		for (tmp = skb->prev;						\
3555 		     skb != (struct sk_buff *)(queue);				\
3556 		     skb = tmp, tmp = skb->prev)
3557 
3558 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3559 {
3560 	return skb_shinfo(skb)->frag_list != NULL;
3561 }
3562 
3563 static inline void skb_frag_list_init(struct sk_buff *skb)
3564 {
3565 	skb_shinfo(skb)->frag_list = NULL;
3566 }
3567 
3568 #define skb_walk_frags(skb, iter)	\
3569 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3570 
3571 
3572 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3573 				int *err, long *timeo_p,
3574 				const struct sk_buff *skb);
3575 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3576 					  struct sk_buff_head *queue,
3577 					  unsigned int flags,
3578 					  int *off, int *err,
3579 					  struct sk_buff **last);
3580 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3581 					struct sk_buff_head *queue,
3582 					unsigned int flags, int *off, int *err,
3583 					struct sk_buff **last);
3584 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3585 				    struct sk_buff_head *sk_queue,
3586 				    unsigned int flags, int *off, int *err);
3587 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3588 				  int *err);
3589 __poll_t datagram_poll(struct file *file, struct socket *sock,
3590 			   struct poll_table_struct *wait);
3591 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3592 			   struct iov_iter *to, int size);
3593 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3594 					struct msghdr *msg, int size)
3595 {
3596 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3597 }
3598 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3599 				   struct msghdr *msg);
3600 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3601 			   struct iov_iter *to, int len,
3602 			   struct ahash_request *hash);
3603 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3604 				 struct iov_iter *from, int len);
3605 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3606 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3607 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3608 static inline void skb_free_datagram_locked(struct sock *sk,
3609 					    struct sk_buff *skb)
3610 {
3611 	__skb_free_datagram_locked(sk, skb, 0);
3612 }
3613 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3614 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3615 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3616 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3617 			      int len);
3618 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3619 		    struct pipe_inode_info *pipe, unsigned int len,
3620 		    unsigned int flags);
3621 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3622 			 int len);
3623 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3624 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3625 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3626 		 int len, int hlen);
3627 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3628 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3629 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3630 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3631 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3632 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3633 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3634 				 unsigned int offset);
3635 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3636 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3637 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3638 int skb_vlan_pop(struct sk_buff *skb);
3639 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3640 int skb_eth_pop(struct sk_buff *skb);
3641 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3642 		 const unsigned char *src);
3643 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3644 		  int mac_len, bool ethernet);
3645 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3646 		 bool ethernet);
3647 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3648 int skb_mpls_dec_ttl(struct sk_buff *skb);
3649 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3650 			     gfp_t gfp);
3651 
3652 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3653 {
3654 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3655 }
3656 
3657 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3658 {
3659 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3660 }
3661 
3662 struct skb_checksum_ops {
3663 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3664 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3665 };
3666 
3667 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3668 
3669 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3670 		      __wsum csum, const struct skb_checksum_ops *ops);
3671 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3672 		    __wsum csum);
3673 
3674 static inline void * __must_check
3675 __skb_header_pointer(const struct sk_buff *skb, int offset,
3676 		     int len, void *data, int hlen, void *buffer)
3677 {
3678 	if (hlen - offset >= len)
3679 		return data + offset;
3680 
3681 	if (!skb ||
3682 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3683 		return NULL;
3684 
3685 	return buffer;
3686 }
3687 
3688 static inline void * __must_check
3689 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3690 {
3691 	return __skb_header_pointer(skb, offset, len, skb->data,
3692 				    skb_headlen(skb), buffer);
3693 }
3694 
3695 /**
3696  *	skb_needs_linearize - check if we need to linearize a given skb
3697  *			      depending on the given device features.
3698  *	@skb: socket buffer to check
3699  *	@features: net device features
3700  *
3701  *	Returns true if either:
3702  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3703  *	2. skb is fragmented and the device does not support SG.
3704  */
3705 static inline bool skb_needs_linearize(struct sk_buff *skb,
3706 				       netdev_features_t features)
3707 {
3708 	return skb_is_nonlinear(skb) &&
3709 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3710 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3711 }
3712 
3713 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3714 					     void *to,
3715 					     const unsigned int len)
3716 {
3717 	memcpy(to, skb->data, len);
3718 }
3719 
3720 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3721 						    const int offset, void *to,
3722 						    const unsigned int len)
3723 {
3724 	memcpy(to, skb->data + offset, len);
3725 }
3726 
3727 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3728 					   const void *from,
3729 					   const unsigned int len)
3730 {
3731 	memcpy(skb->data, from, len);
3732 }
3733 
3734 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3735 						  const int offset,
3736 						  const void *from,
3737 						  const unsigned int len)
3738 {
3739 	memcpy(skb->data + offset, from, len);
3740 }
3741 
3742 void skb_init(void);
3743 
3744 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3745 {
3746 	return skb->tstamp;
3747 }
3748 
3749 /**
3750  *	skb_get_timestamp - get timestamp from a skb
3751  *	@skb: skb to get stamp from
3752  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3753  *
3754  *	Timestamps are stored in the skb as offsets to a base timestamp.
3755  *	This function converts the offset back to a struct timeval and stores
3756  *	it in stamp.
3757  */
3758 static inline void skb_get_timestamp(const struct sk_buff *skb,
3759 				     struct __kernel_old_timeval *stamp)
3760 {
3761 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3762 }
3763 
3764 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3765 					 struct __kernel_sock_timeval *stamp)
3766 {
3767 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3768 
3769 	stamp->tv_sec = ts.tv_sec;
3770 	stamp->tv_usec = ts.tv_nsec / 1000;
3771 }
3772 
3773 static inline void skb_get_timestampns(const struct sk_buff *skb,
3774 				       struct __kernel_old_timespec *stamp)
3775 {
3776 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3777 
3778 	stamp->tv_sec = ts.tv_sec;
3779 	stamp->tv_nsec = ts.tv_nsec;
3780 }
3781 
3782 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3783 					   struct __kernel_timespec *stamp)
3784 {
3785 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3786 
3787 	stamp->tv_sec = ts.tv_sec;
3788 	stamp->tv_nsec = ts.tv_nsec;
3789 }
3790 
3791 static inline void __net_timestamp(struct sk_buff *skb)
3792 {
3793 	skb->tstamp = ktime_get_real();
3794 }
3795 
3796 static inline ktime_t net_timedelta(ktime_t t)
3797 {
3798 	return ktime_sub(ktime_get_real(), t);
3799 }
3800 
3801 static inline ktime_t net_invalid_timestamp(void)
3802 {
3803 	return 0;
3804 }
3805 
3806 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3807 {
3808 	return skb_shinfo(skb)->meta_len;
3809 }
3810 
3811 static inline void *skb_metadata_end(const struct sk_buff *skb)
3812 {
3813 	return skb_mac_header(skb);
3814 }
3815 
3816 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3817 					  const struct sk_buff *skb_b,
3818 					  u8 meta_len)
3819 {
3820 	const void *a = skb_metadata_end(skb_a);
3821 	const void *b = skb_metadata_end(skb_b);
3822 	/* Using more efficient varaiant than plain call to memcmp(). */
3823 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3824 	u64 diffs = 0;
3825 
3826 	switch (meta_len) {
3827 #define __it(x, op) (x -= sizeof(u##op))
3828 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3829 	case 32: diffs |= __it_diff(a, b, 64);
3830 		fallthrough;
3831 	case 24: diffs |= __it_diff(a, b, 64);
3832 		fallthrough;
3833 	case 16: diffs |= __it_diff(a, b, 64);
3834 		fallthrough;
3835 	case  8: diffs |= __it_diff(a, b, 64);
3836 		break;
3837 	case 28: diffs |= __it_diff(a, b, 64);
3838 		fallthrough;
3839 	case 20: diffs |= __it_diff(a, b, 64);
3840 		fallthrough;
3841 	case 12: diffs |= __it_diff(a, b, 64);
3842 		fallthrough;
3843 	case  4: diffs |= __it_diff(a, b, 32);
3844 		break;
3845 	}
3846 	return diffs;
3847 #else
3848 	return memcmp(a - meta_len, b - meta_len, meta_len);
3849 #endif
3850 }
3851 
3852 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3853 					const struct sk_buff *skb_b)
3854 {
3855 	u8 len_a = skb_metadata_len(skb_a);
3856 	u8 len_b = skb_metadata_len(skb_b);
3857 
3858 	if (!(len_a | len_b))
3859 		return false;
3860 
3861 	return len_a != len_b ?
3862 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3863 }
3864 
3865 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3866 {
3867 	skb_shinfo(skb)->meta_len = meta_len;
3868 }
3869 
3870 static inline void skb_metadata_clear(struct sk_buff *skb)
3871 {
3872 	skb_metadata_set(skb, 0);
3873 }
3874 
3875 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3876 
3877 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3878 
3879 void skb_clone_tx_timestamp(struct sk_buff *skb);
3880 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3881 
3882 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3883 
3884 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3885 {
3886 }
3887 
3888 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3889 {
3890 	return false;
3891 }
3892 
3893 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3894 
3895 /**
3896  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3897  *
3898  * PHY drivers may accept clones of transmitted packets for
3899  * timestamping via their phy_driver.txtstamp method. These drivers
3900  * must call this function to return the skb back to the stack with a
3901  * timestamp.
3902  *
3903  * @skb: clone of the original outgoing packet
3904  * @hwtstamps: hardware time stamps
3905  *
3906  */
3907 void skb_complete_tx_timestamp(struct sk_buff *skb,
3908 			       struct skb_shared_hwtstamps *hwtstamps);
3909 
3910 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3911 		     struct skb_shared_hwtstamps *hwtstamps,
3912 		     struct sock *sk, int tstype);
3913 
3914 /**
3915  * skb_tstamp_tx - queue clone of skb with send time stamps
3916  * @orig_skb:	the original outgoing packet
3917  * @hwtstamps:	hardware time stamps, may be NULL if not available
3918  *
3919  * If the skb has a socket associated, then this function clones the
3920  * skb (thus sharing the actual data and optional structures), stores
3921  * the optional hardware time stamping information (if non NULL) or
3922  * generates a software time stamp (otherwise), then queues the clone
3923  * to the error queue of the socket.  Errors are silently ignored.
3924  */
3925 void skb_tstamp_tx(struct sk_buff *orig_skb,
3926 		   struct skb_shared_hwtstamps *hwtstamps);
3927 
3928 /**
3929  * skb_tx_timestamp() - Driver hook for transmit timestamping
3930  *
3931  * Ethernet MAC Drivers should call this function in their hard_xmit()
3932  * function immediately before giving the sk_buff to the MAC hardware.
3933  *
3934  * Specifically, one should make absolutely sure that this function is
3935  * called before TX completion of this packet can trigger.  Otherwise
3936  * the packet could potentially already be freed.
3937  *
3938  * @skb: A socket buffer.
3939  */
3940 static inline void skb_tx_timestamp(struct sk_buff *skb)
3941 {
3942 	skb_clone_tx_timestamp(skb);
3943 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3944 		skb_tstamp_tx(skb, NULL);
3945 }
3946 
3947 /**
3948  * skb_complete_wifi_ack - deliver skb with wifi status
3949  *
3950  * @skb: the original outgoing packet
3951  * @acked: ack status
3952  *
3953  */
3954 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3955 
3956 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3957 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3958 
3959 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3960 {
3961 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3962 		skb->csum_valid ||
3963 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3964 		 skb_checksum_start_offset(skb) >= 0));
3965 }
3966 
3967 /**
3968  *	skb_checksum_complete - Calculate checksum of an entire packet
3969  *	@skb: packet to process
3970  *
3971  *	This function calculates the checksum over the entire packet plus
3972  *	the value of skb->csum.  The latter can be used to supply the
3973  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3974  *	checksum.
3975  *
3976  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3977  *	this function can be used to verify that checksum on received
3978  *	packets.  In that case the function should return zero if the
3979  *	checksum is correct.  In particular, this function will return zero
3980  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3981  *	hardware has already verified the correctness of the checksum.
3982  */
3983 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3984 {
3985 	return skb_csum_unnecessary(skb) ?
3986 	       0 : __skb_checksum_complete(skb);
3987 }
3988 
3989 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3990 {
3991 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3992 		if (skb->csum_level == 0)
3993 			skb->ip_summed = CHECKSUM_NONE;
3994 		else
3995 			skb->csum_level--;
3996 	}
3997 }
3998 
3999 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4000 {
4001 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4002 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4003 			skb->csum_level++;
4004 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4005 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4006 		skb->csum_level = 0;
4007 	}
4008 }
4009 
4010 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4011 {
4012 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4013 		skb->ip_summed = CHECKSUM_NONE;
4014 		skb->csum_level = 0;
4015 	}
4016 }
4017 
4018 /* Check if we need to perform checksum complete validation.
4019  *
4020  * Returns true if checksum complete is needed, false otherwise
4021  * (either checksum is unnecessary or zero checksum is allowed).
4022  */
4023 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4024 						  bool zero_okay,
4025 						  __sum16 check)
4026 {
4027 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4028 		skb->csum_valid = 1;
4029 		__skb_decr_checksum_unnecessary(skb);
4030 		return false;
4031 	}
4032 
4033 	return true;
4034 }
4035 
4036 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4037  * in checksum_init.
4038  */
4039 #define CHECKSUM_BREAK 76
4040 
4041 /* Unset checksum-complete
4042  *
4043  * Unset checksum complete can be done when packet is being modified
4044  * (uncompressed for instance) and checksum-complete value is
4045  * invalidated.
4046  */
4047 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4048 {
4049 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4050 		skb->ip_summed = CHECKSUM_NONE;
4051 }
4052 
4053 /* Validate (init) checksum based on checksum complete.
4054  *
4055  * Return values:
4056  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4057  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4058  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4059  *   non-zero: value of invalid checksum
4060  *
4061  */
4062 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4063 						       bool complete,
4064 						       __wsum psum)
4065 {
4066 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4067 		if (!csum_fold(csum_add(psum, skb->csum))) {
4068 			skb->csum_valid = 1;
4069 			return 0;
4070 		}
4071 	}
4072 
4073 	skb->csum = psum;
4074 
4075 	if (complete || skb->len <= CHECKSUM_BREAK) {
4076 		__sum16 csum;
4077 
4078 		csum = __skb_checksum_complete(skb);
4079 		skb->csum_valid = !csum;
4080 		return csum;
4081 	}
4082 
4083 	return 0;
4084 }
4085 
4086 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4087 {
4088 	return 0;
4089 }
4090 
4091 /* Perform checksum validate (init). Note that this is a macro since we only
4092  * want to calculate the pseudo header which is an input function if necessary.
4093  * First we try to validate without any computation (checksum unnecessary) and
4094  * then calculate based on checksum complete calling the function to compute
4095  * pseudo header.
4096  *
4097  * Return values:
4098  *   0: checksum is validated or try to in skb_checksum_complete
4099  *   non-zero: value of invalid checksum
4100  */
4101 #define __skb_checksum_validate(skb, proto, complete,			\
4102 				zero_okay, check, compute_pseudo)	\
4103 ({									\
4104 	__sum16 __ret = 0;						\
4105 	skb->csum_valid = 0;						\
4106 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4107 		__ret = __skb_checksum_validate_complete(skb,		\
4108 				complete, compute_pseudo(skb, proto));	\
4109 	__ret;								\
4110 })
4111 
4112 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4113 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4114 
4115 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4116 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4117 
4118 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4119 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4120 
4121 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4122 					 compute_pseudo)		\
4123 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4124 
4125 #define skb_checksum_simple_validate(skb)				\
4126 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4127 
4128 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4129 {
4130 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4131 }
4132 
4133 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4134 {
4135 	skb->csum = ~pseudo;
4136 	skb->ip_summed = CHECKSUM_COMPLETE;
4137 }
4138 
4139 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4140 do {									\
4141 	if (__skb_checksum_convert_check(skb))				\
4142 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4143 } while (0)
4144 
4145 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4146 					      u16 start, u16 offset)
4147 {
4148 	skb->ip_summed = CHECKSUM_PARTIAL;
4149 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4150 	skb->csum_offset = offset - start;
4151 }
4152 
4153 /* Update skbuf and packet to reflect the remote checksum offload operation.
4154  * When called, ptr indicates the starting point for skb->csum when
4155  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4156  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4157  */
4158 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4159 				       int start, int offset, bool nopartial)
4160 {
4161 	__wsum delta;
4162 
4163 	if (!nopartial) {
4164 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4165 		return;
4166 	}
4167 
4168 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4169 		__skb_checksum_complete(skb);
4170 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4171 	}
4172 
4173 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4174 
4175 	/* Adjust skb->csum since we changed the packet */
4176 	skb->csum = csum_add(skb->csum, delta);
4177 }
4178 
4179 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4180 {
4181 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4182 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4183 #else
4184 	return NULL;
4185 #endif
4186 }
4187 
4188 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4189 {
4190 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4191 	return skb->_nfct;
4192 #else
4193 	return 0UL;
4194 #endif
4195 }
4196 
4197 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4198 {
4199 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4200 	skb->_nfct = nfct;
4201 #endif
4202 }
4203 
4204 #ifdef CONFIG_SKB_EXTENSIONS
4205 enum skb_ext_id {
4206 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4207 	SKB_EXT_BRIDGE_NF,
4208 #endif
4209 #ifdef CONFIG_XFRM
4210 	SKB_EXT_SEC_PATH,
4211 #endif
4212 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4213 	TC_SKB_EXT,
4214 #endif
4215 #if IS_ENABLED(CONFIG_MPTCP)
4216 	SKB_EXT_MPTCP,
4217 #endif
4218 	SKB_EXT_NUM, /* must be last */
4219 };
4220 
4221 /**
4222  *	struct skb_ext - sk_buff extensions
4223  *	@refcnt: 1 on allocation, deallocated on 0
4224  *	@offset: offset to add to @data to obtain extension address
4225  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4226  *	@data: start of extension data, variable sized
4227  *
4228  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4229  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4230  */
4231 struct skb_ext {
4232 	refcount_t refcnt;
4233 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4234 	u8 chunks;		/* same */
4235 	char data[] __aligned(8);
4236 };
4237 
4238 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4239 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4240 		    struct skb_ext *ext);
4241 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4242 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4243 void __skb_ext_put(struct skb_ext *ext);
4244 
4245 static inline void skb_ext_put(struct sk_buff *skb)
4246 {
4247 	if (skb->active_extensions)
4248 		__skb_ext_put(skb->extensions);
4249 }
4250 
4251 static inline void __skb_ext_copy(struct sk_buff *dst,
4252 				  const struct sk_buff *src)
4253 {
4254 	dst->active_extensions = src->active_extensions;
4255 
4256 	if (src->active_extensions) {
4257 		struct skb_ext *ext = src->extensions;
4258 
4259 		refcount_inc(&ext->refcnt);
4260 		dst->extensions = ext;
4261 	}
4262 }
4263 
4264 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4265 {
4266 	skb_ext_put(dst);
4267 	__skb_ext_copy(dst, src);
4268 }
4269 
4270 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4271 {
4272 	return !!ext->offset[i];
4273 }
4274 
4275 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4276 {
4277 	return skb->active_extensions & (1 << id);
4278 }
4279 
4280 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4281 {
4282 	if (skb_ext_exist(skb, id))
4283 		__skb_ext_del(skb, id);
4284 }
4285 
4286 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4287 {
4288 	if (skb_ext_exist(skb, id)) {
4289 		struct skb_ext *ext = skb->extensions;
4290 
4291 		return (void *)ext + (ext->offset[id] << 3);
4292 	}
4293 
4294 	return NULL;
4295 }
4296 
4297 static inline void skb_ext_reset(struct sk_buff *skb)
4298 {
4299 	if (unlikely(skb->active_extensions)) {
4300 		__skb_ext_put(skb->extensions);
4301 		skb->active_extensions = 0;
4302 	}
4303 }
4304 
4305 static inline bool skb_has_extensions(struct sk_buff *skb)
4306 {
4307 	return unlikely(skb->active_extensions);
4308 }
4309 #else
4310 static inline void skb_ext_put(struct sk_buff *skb) {}
4311 static inline void skb_ext_reset(struct sk_buff *skb) {}
4312 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4313 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4314 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4315 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4316 #endif /* CONFIG_SKB_EXTENSIONS */
4317 
4318 static inline void nf_reset_ct(struct sk_buff *skb)
4319 {
4320 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4321 	nf_conntrack_put(skb_nfct(skb));
4322 	skb->_nfct = 0;
4323 #endif
4324 }
4325 
4326 static inline void nf_reset_trace(struct sk_buff *skb)
4327 {
4328 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4329 	skb->nf_trace = 0;
4330 #endif
4331 }
4332 
4333 static inline void ipvs_reset(struct sk_buff *skb)
4334 {
4335 #if IS_ENABLED(CONFIG_IP_VS)
4336 	skb->ipvs_property = 0;
4337 #endif
4338 }
4339 
4340 /* Note: This doesn't put any conntrack info in dst. */
4341 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4342 			     bool copy)
4343 {
4344 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4345 	dst->_nfct = src->_nfct;
4346 	nf_conntrack_get(skb_nfct(src));
4347 #endif
4348 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4349 	if (copy)
4350 		dst->nf_trace = src->nf_trace;
4351 #endif
4352 }
4353 
4354 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4355 {
4356 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4357 	nf_conntrack_put(skb_nfct(dst));
4358 #endif
4359 	__nf_copy(dst, src, true);
4360 }
4361 
4362 #ifdef CONFIG_NETWORK_SECMARK
4363 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4364 {
4365 	to->secmark = from->secmark;
4366 }
4367 
4368 static inline void skb_init_secmark(struct sk_buff *skb)
4369 {
4370 	skb->secmark = 0;
4371 }
4372 #else
4373 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4374 { }
4375 
4376 static inline void skb_init_secmark(struct sk_buff *skb)
4377 { }
4378 #endif
4379 
4380 static inline int secpath_exists(const struct sk_buff *skb)
4381 {
4382 #ifdef CONFIG_XFRM
4383 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4384 #else
4385 	return 0;
4386 #endif
4387 }
4388 
4389 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4390 {
4391 	return !skb->destructor &&
4392 		!secpath_exists(skb) &&
4393 		!skb_nfct(skb) &&
4394 		!skb->_skb_refdst &&
4395 		!skb_has_frag_list(skb);
4396 }
4397 
4398 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4399 {
4400 	skb->queue_mapping = queue_mapping;
4401 }
4402 
4403 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4404 {
4405 	return skb->queue_mapping;
4406 }
4407 
4408 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4409 {
4410 	to->queue_mapping = from->queue_mapping;
4411 }
4412 
4413 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4414 {
4415 	skb->queue_mapping = rx_queue + 1;
4416 }
4417 
4418 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4419 {
4420 	return skb->queue_mapping - 1;
4421 }
4422 
4423 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4424 {
4425 	return skb->queue_mapping != 0;
4426 }
4427 
4428 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4429 {
4430 	skb->dst_pending_confirm = val;
4431 }
4432 
4433 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4434 {
4435 	return skb->dst_pending_confirm != 0;
4436 }
4437 
4438 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4439 {
4440 #ifdef CONFIG_XFRM
4441 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4442 #else
4443 	return NULL;
4444 #endif
4445 }
4446 
4447 /* Keeps track of mac header offset relative to skb->head.
4448  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4449  * For non-tunnel skb it points to skb_mac_header() and for
4450  * tunnel skb it points to outer mac header.
4451  * Keeps track of level of encapsulation of network headers.
4452  */
4453 struct skb_gso_cb {
4454 	union {
4455 		int	mac_offset;
4456 		int	data_offset;
4457 	};
4458 	int	encap_level;
4459 	__wsum	csum;
4460 	__u16	csum_start;
4461 };
4462 #define SKB_GSO_CB_OFFSET	32
4463 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4464 
4465 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4466 {
4467 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4468 		SKB_GSO_CB(inner_skb)->mac_offset;
4469 }
4470 
4471 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4472 {
4473 	int new_headroom, headroom;
4474 	int ret;
4475 
4476 	headroom = skb_headroom(skb);
4477 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4478 	if (ret)
4479 		return ret;
4480 
4481 	new_headroom = skb_headroom(skb);
4482 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4483 	return 0;
4484 }
4485 
4486 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4487 {
4488 	/* Do not update partial checksums if remote checksum is enabled. */
4489 	if (skb->remcsum_offload)
4490 		return;
4491 
4492 	SKB_GSO_CB(skb)->csum = res;
4493 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4494 }
4495 
4496 /* Compute the checksum for a gso segment. First compute the checksum value
4497  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4498  * then add in skb->csum (checksum from csum_start to end of packet).
4499  * skb->csum and csum_start are then updated to reflect the checksum of the
4500  * resultant packet starting from the transport header-- the resultant checksum
4501  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4502  * header.
4503  */
4504 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4505 {
4506 	unsigned char *csum_start = skb_transport_header(skb);
4507 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4508 	__wsum partial = SKB_GSO_CB(skb)->csum;
4509 
4510 	SKB_GSO_CB(skb)->csum = res;
4511 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4512 
4513 	return csum_fold(csum_partial(csum_start, plen, partial));
4514 }
4515 
4516 static inline bool skb_is_gso(const struct sk_buff *skb)
4517 {
4518 	return skb_shinfo(skb)->gso_size;
4519 }
4520 
4521 /* Note: Should be called only if skb_is_gso(skb) is true */
4522 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4523 {
4524 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4525 }
4526 
4527 /* Note: Should be called only if skb_is_gso(skb) is true */
4528 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4529 {
4530 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4531 }
4532 
4533 /* Note: Should be called only if skb_is_gso(skb) is true */
4534 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4535 {
4536 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4537 }
4538 
4539 static inline void skb_gso_reset(struct sk_buff *skb)
4540 {
4541 	skb_shinfo(skb)->gso_size = 0;
4542 	skb_shinfo(skb)->gso_segs = 0;
4543 	skb_shinfo(skb)->gso_type = 0;
4544 }
4545 
4546 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4547 					 u16 increment)
4548 {
4549 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4550 		return;
4551 	shinfo->gso_size += increment;
4552 }
4553 
4554 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4555 					 u16 decrement)
4556 {
4557 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4558 		return;
4559 	shinfo->gso_size -= decrement;
4560 }
4561 
4562 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4563 
4564 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4565 {
4566 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4567 	 * wanted then gso_type will be set. */
4568 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4569 
4570 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4571 	    unlikely(shinfo->gso_type == 0)) {
4572 		__skb_warn_lro_forwarding(skb);
4573 		return true;
4574 	}
4575 	return false;
4576 }
4577 
4578 static inline void skb_forward_csum(struct sk_buff *skb)
4579 {
4580 	/* Unfortunately we don't support this one.  Any brave souls? */
4581 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4582 		skb->ip_summed = CHECKSUM_NONE;
4583 }
4584 
4585 /**
4586  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4587  * @skb: skb to check
4588  *
4589  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4590  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4591  * use this helper, to document places where we make this assertion.
4592  */
4593 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4594 {
4595 #ifdef DEBUG
4596 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4597 #endif
4598 }
4599 
4600 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4601 
4602 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4603 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4604 				     unsigned int transport_len,
4605 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4606 
4607 /**
4608  * skb_head_is_locked - Determine if the skb->head is locked down
4609  * @skb: skb to check
4610  *
4611  * The head on skbs build around a head frag can be removed if they are
4612  * not cloned.  This function returns true if the skb head is locked down
4613  * due to either being allocated via kmalloc, or by being a clone with
4614  * multiple references to the head.
4615  */
4616 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4617 {
4618 	return !skb->head_frag || skb_cloned(skb);
4619 }
4620 
4621 /* Local Checksum Offload.
4622  * Compute outer checksum based on the assumption that the
4623  * inner checksum will be offloaded later.
4624  * See Documentation/networking/checksum-offloads.rst for
4625  * explanation of how this works.
4626  * Fill in outer checksum adjustment (e.g. with sum of outer
4627  * pseudo-header) before calling.
4628  * Also ensure that inner checksum is in linear data area.
4629  */
4630 static inline __wsum lco_csum(struct sk_buff *skb)
4631 {
4632 	unsigned char *csum_start = skb_checksum_start(skb);
4633 	unsigned char *l4_hdr = skb_transport_header(skb);
4634 	__wsum partial;
4635 
4636 	/* Start with complement of inner checksum adjustment */
4637 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4638 						    skb->csum_offset));
4639 
4640 	/* Add in checksum of our headers (incl. outer checksum
4641 	 * adjustment filled in by caller) and return result.
4642 	 */
4643 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4644 }
4645 
4646 static inline bool skb_is_redirected(const struct sk_buff *skb)
4647 {
4648 #ifdef CONFIG_NET_REDIRECT
4649 	return skb->redirected;
4650 #else
4651 	return false;
4652 #endif
4653 }
4654 
4655 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4656 {
4657 #ifdef CONFIG_NET_REDIRECT
4658 	skb->redirected = 1;
4659 	skb->from_ingress = from_ingress;
4660 	if (skb->from_ingress)
4661 		skb->tstamp = 0;
4662 #endif
4663 }
4664 
4665 static inline void skb_reset_redirect(struct sk_buff *skb)
4666 {
4667 #ifdef CONFIG_NET_REDIRECT
4668 	skb->redirected = 0;
4669 #endif
4670 }
4671 
4672 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4673 {
4674 	return skb->csum_not_inet;
4675 }
4676 
4677 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4678 				       const u64 kcov_handle)
4679 {
4680 #ifdef CONFIG_KCOV
4681 	skb->kcov_handle = kcov_handle;
4682 #endif
4683 }
4684 
4685 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4686 {
4687 #ifdef CONFIG_KCOV
4688 	return skb->kcov_handle;
4689 #else
4690 	return 0;
4691 #endif
4692 }
4693 
4694 #endif	/* __KERNEL__ */
4695 #endif	/* _LINUX_SKBUFF_H */
4696