xref: /linux-6.15/include/linux/skbuff.h (revision 4bedea94)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <net/checksum.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 #define SLAB_SKB 		/* Slabified skbuffs 	   */
35 
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_HW 1
38 #define CHECKSUM_UNNECESSARY 2
39 
40 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
41 				 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
43 				  sizeof(struct skb_shared_info)) & \
44 				  ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	HW: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use HW,
63  *	    not UNNECESSARY.
64  *
65  * B. Checksumming on output.
66  *
67  *	NONE: skb is checksummed by protocol or csum is not required.
68  *
69  *	HW: device is required to csum packet as seen by hard_start_xmit
70  *	from skb->h.raw to the end and to record the checksum
71  *	at skb->h.raw+skb->csum.
72  *
73  *	Device must show its capabilities in dev->features, set
74  *	at device setup time.
75  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
76  *			  everything.
77  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
78  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79  *			  TCP/UDP over IPv4. Sigh. Vendors like this
80  *			  way by an unknown reason. Though, see comment above
81  *			  about CHECKSUM_UNNECESSARY. 8)
82  *
83  *	Any questions? No questions, good. 		--ANK
84  */
85 
86 struct net_device;
87 
88 #ifdef CONFIG_NETFILTER
89 struct nf_conntrack {
90 	atomic_t use;
91 	void (*destroy)(struct nf_conntrack *);
92 };
93 
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
96 	atomic_t use;
97 	struct net_device *physindev;
98 	struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 	struct net_device *netoutdev;
101 #endif
102 	unsigned int mask;
103 	unsigned long data[32 / sizeof(unsigned long)];
104 };
105 #endif
106 
107 #endif
108 
109 struct sk_buff_head {
110 	/* These two members must be first. */
111 	struct sk_buff	*next;
112 	struct sk_buff	*prev;
113 
114 	__u32		qlen;
115 	spinlock_t	lock;
116 };
117 
118 struct sk_buff;
119 
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122 
123 typedef struct skb_frag_struct skb_frag_t;
124 
125 struct skb_frag_struct {
126 	struct page *page;
127 	__u16 page_offset;
128 	__u16 size;
129 };
130 
131 /* This data is invariant across clones and lives at
132  * the end of the header data, ie. at skb->end.
133  */
134 struct skb_shared_info {
135 	atomic_t	dataref;
136 	unsigned int	nr_frags;
137 	unsigned short	tso_size;
138 	unsigned short	tso_segs;
139 	struct sk_buff	*frag_list;
140 	skb_frag_t	frags[MAX_SKB_FRAGS];
141 };
142 
143 /* We divide dataref into two halves.  The higher 16 bits hold references
144  * to the payload part of skb->data.  The lower 16 bits hold references to
145  * the entire skb->data.  It is up to the users of the skb to agree on
146  * where the payload starts.
147  *
148  * All users must obey the rule that the skb->data reference count must be
149  * greater than or equal to the payload reference count.
150  *
151  * Holding a reference to the payload part means that the user does not
152  * care about modifications to the header part of skb->data.
153  */
154 #define SKB_DATAREF_SHIFT 16
155 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
156 
157 /**
158  *	struct sk_buff - socket buffer
159  *	@next: Next buffer in list
160  *	@prev: Previous buffer in list
161  *	@list: List we are on
162  *	@sk: Socket we are owned by
163  *	@stamp: Time we arrived
164  *	@dev: Device we arrived on/are leaving by
165  *	@input_dev: Device we arrived on
166  *      @real_dev: The real device we are using
167  *	@h: Transport layer header
168  *	@nh: Network layer header
169  *	@mac: Link layer header
170  *	@dst: destination entry
171  *	@sp: the security path, used for xfrm
172  *	@cb: Control buffer. Free for use by every layer. Put private vars here
173  *	@len: Length of actual data
174  *	@data_len: Data length
175  *	@mac_len: Length of link layer header
176  *	@csum: Checksum
177  *	@local_df: allow local fragmentation
178  *	@cloned: Head may be cloned (check refcnt to be sure)
179  *	@nohdr: Payload reference only, must not modify header
180  *	@pkt_type: Packet class
181  *	@ip_summed: Driver fed us an IP checksum
182  *	@priority: Packet queueing priority
183  *	@users: User count - see {datagram,tcp}.c
184  *	@protocol: Packet protocol from driver
185  *	@security: Security level of packet
186  *	@truesize: Buffer size
187  *	@head: Head of buffer
188  *	@data: Data head pointer
189  *	@tail: Tail pointer
190  *	@end: End pointer
191  *	@destructor: Destruct function
192  *	@nfmark: Can be used for communication between hooks
193  *	@nfcache: Cache info
194  *	@nfct: Associated connection, if any
195  *	@nfctinfo: Relationship of this skb to the connection
196  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
197  *      @private: Data which is private to the HIPPI implementation
198  *	@tc_index: Traffic control index
199  *	@tc_verd: traffic control verdict
200  *	@tc_classid: traffic control classid
201  */
202 
203 struct sk_buff {
204 	/* These two members must be first. */
205 	struct sk_buff		*next;
206 	struct sk_buff		*prev;
207 
208 	struct sk_buff_head	*list;
209 	struct sock		*sk;
210 	struct timeval		stamp;
211 	struct net_device	*dev;
212 	struct net_device	*input_dev;
213 	struct net_device	*real_dev;
214 
215 	union {
216 		struct tcphdr	*th;
217 		struct udphdr	*uh;
218 		struct icmphdr	*icmph;
219 		struct igmphdr	*igmph;
220 		struct iphdr	*ipiph;
221 		struct ipv6hdr	*ipv6h;
222 		unsigned char	*raw;
223 	} h;
224 
225 	union {
226 		struct iphdr	*iph;
227 		struct ipv6hdr	*ipv6h;
228 		struct arphdr	*arph;
229 		unsigned char	*raw;
230 	} nh;
231 
232 	union {
233 	  	unsigned char 	*raw;
234 	} mac;
235 
236 	struct  dst_entry	*dst;
237 	struct	sec_path	*sp;
238 
239 	/*
240 	 * This is the control buffer. It is free to use for every
241 	 * layer. Please put your private variables there. If you
242 	 * want to keep them across layers you have to do a skb_clone()
243 	 * first. This is owned by whoever has the skb queued ATM.
244 	 */
245 	char			cb[40];
246 
247 	unsigned int		len,
248 				data_len,
249 				mac_len,
250 				csum;
251 	unsigned char		local_df,
252 				cloned:1,
253 				nohdr:1,
254 				pkt_type,
255 				ip_summed;
256 	__u32			priority;
257 	unsigned short		protocol,
258 				security;
259 
260 	void			(*destructor)(struct sk_buff *skb);
261 #ifdef CONFIG_NETFILTER
262         unsigned long		nfmark;
263 	__u32			nfcache;
264 	__u32			nfctinfo;
265 	struct nf_conntrack	*nfct;
266 #ifdef CONFIG_BRIDGE_NETFILTER
267 	struct nf_bridge_info	*nf_bridge;
268 #endif
269 #endif /* CONFIG_NETFILTER */
270 #if defined(CONFIG_HIPPI)
271 	union {
272 		__u32		ifield;
273 	} private;
274 #endif
275 #ifdef CONFIG_NET_SCHED
276        __u32			tc_index;        /* traffic control index */
277 #ifdef CONFIG_NET_CLS_ACT
278 	__u32           tc_verd;               /* traffic control verdict */
279 	__u32           tc_classid;            /* traffic control classid */
280 #endif
281 
282 #endif
283 
284 
285 	/* These elements must be at the end, see alloc_skb() for details.  */
286 	unsigned int		truesize;
287 	atomic_t		users;
288 	unsigned char		*head,
289 				*data,
290 				*tail,
291 				*end;
292 };
293 
294 #ifdef __KERNEL__
295 /*
296  *	Handling routines are only of interest to the kernel
297  */
298 #include <linux/slab.h>
299 
300 #include <asm/system.h>
301 
302 extern void	       __kfree_skb(struct sk_buff *skb);
303 extern struct sk_buff *alloc_skb(unsigned int size, int priority);
304 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
305 					    unsigned int size, int priority);
306 extern void	       kfree_skbmem(struct sk_buff *skb);
307 extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority);
308 extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority);
309 extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask);
310 extern int	       pskb_expand_head(struct sk_buff *skb,
311 					int nhead, int ntail, int gfp_mask);
312 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
313 					    unsigned int headroom);
314 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
315 				       int newheadroom, int newtailroom,
316 				       int priority);
317 extern struct sk_buff *		skb_pad(struct sk_buff *skb, int pad);
318 #define dev_kfree_skb(a)	kfree_skb(a)
319 extern void	      skb_over_panic(struct sk_buff *skb, int len,
320 				     void *here);
321 extern void	      skb_under_panic(struct sk_buff *skb, int len,
322 				      void *here);
323 
324 /* Internal */
325 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
326 
327 /**
328  *	skb_queue_empty - check if a queue is empty
329  *	@list: queue head
330  *
331  *	Returns true if the queue is empty, false otherwise.
332  */
333 static inline int skb_queue_empty(const struct sk_buff_head *list)
334 {
335 	return list->next == (struct sk_buff *)list;
336 }
337 
338 /**
339  *	skb_get - reference buffer
340  *	@skb: buffer to reference
341  *
342  *	Makes another reference to a socket buffer and returns a pointer
343  *	to the buffer.
344  */
345 static inline struct sk_buff *skb_get(struct sk_buff *skb)
346 {
347 	atomic_inc(&skb->users);
348 	return skb;
349 }
350 
351 /*
352  * If users == 1, we are the only owner and are can avoid redundant
353  * atomic change.
354  */
355 
356 /**
357  *	kfree_skb - free an sk_buff
358  *	@skb: buffer to free
359  *
360  *	Drop a reference to the buffer and free it if the usage count has
361  *	hit zero.
362  */
363 static inline void kfree_skb(struct sk_buff *skb)
364 {
365 	if (likely(atomic_read(&skb->users) == 1))
366 		smp_rmb();
367 	else if (likely(!atomic_dec_and_test(&skb->users)))
368 		return;
369 	__kfree_skb(skb);
370 }
371 
372 /**
373  *	skb_cloned - is the buffer a clone
374  *	@skb: buffer to check
375  *
376  *	Returns true if the buffer was generated with skb_clone() and is
377  *	one of multiple shared copies of the buffer. Cloned buffers are
378  *	shared data so must not be written to under normal circumstances.
379  */
380 static inline int skb_cloned(const struct sk_buff *skb)
381 {
382 	return skb->cloned &&
383 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
384 }
385 
386 /**
387  *	skb_header_cloned - is the header a clone
388  *	@skb: buffer to check
389  *
390  *	Returns true if modifying the header part of the buffer requires
391  *	the data to be copied.
392  */
393 static inline int skb_header_cloned(const struct sk_buff *skb)
394 {
395 	int dataref;
396 
397 	if (!skb->cloned)
398 		return 0;
399 
400 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
401 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
402 	return dataref != 1;
403 }
404 
405 /**
406  *	skb_header_release - release reference to header
407  *	@skb: buffer to operate on
408  *
409  *	Drop a reference to the header part of the buffer.  This is done
410  *	by acquiring a payload reference.  You must not read from the header
411  *	part of skb->data after this.
412  */
413 static inline void skb_header_release(struct sk_buff *skb)
414 {
415 	BUG_ON(skb->nohdr);
416 	skb->nohdr = 1;
417 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
418 }
419 
420 /**
421  *	skb_shared - is the buffer shared
422  *	@skb: buffer to check
423  *
424  *	Returns true if more than one person has a reference to this
425  *	buffer.
426  */
427 static inline int skb_shared(const struct sk_buff *skb)
428 {
429 	return atomic_read(&skb->users) != 1;
430 }
431 
432 /**
433  *	skb_share_check - check if buffer is shared and if so clone it
434  *	@skb: buffer to check
435  *	@pri: priority for memory allocation
436  *
437  *	If the buffer is shared the buffer is cloned and the old copy
438  *	drops a reference. A new clone with a single reference is returned.
439  *	If the buffer is not shared the original buffer is returned. When
440  *	being called from interrupt status or with spinlocks held pri must
441  *	be GFP_ATOMIC.
442  *
443  *	NULL is returned on a memory allocation failure.
444  */
445 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
446 {
447 	might_sleep_if(pri & __GFP_WAIT);
448 	if (skb_shared(skb)) {
449 		struct sk_buff *nskb = skb_clone(skb, pri);
450 		kfree_skb(skb);
451 		skb = nskb;
452 	}
453 	return skb;
454 }
455 
456 /*
457  *	Copy shared buffers into a new sk_buff. We effectively do COW on
458  *	packets to handle cases where we have a local reader and forward
459  *	and a couple of other messy ones. The normal one is tcpdumping
460  *	a packet thats being forwarded.
461  */
462 
463 /**
464  *	skb_unshare - make a copy of a shared buffer
465  *	@skb: buffer to check
466  *	@pri: priority for memory allocation
467  *
468  *	If the socket buffer is a clone then this function creates a new
469  *	copy of the data, drops a reference count on the old copy and returns
470  *	the new copy with the reference count at 1. If the buffer is not a clone
471  *	the original buffer is returned. When called with a spinlock held or
472  *	from interrupt state @pri must be %GFP_ATOMIC
473  *
474  *	%NULL is returned on a memory allocation failure.
475  */
476 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
477 {
478 	might_sleep_if(pri & __GFP_WAIT);
479 	if (skb_cloned(skb)) {
480 		struct sk_buff *nskb = skb_copy(skb, pri);
481 		kfree_skb(skb);	/* Free our shared copy */
482 		skb = nskb;
483 	}
484 	return skb;
485 }
486 
487 /**
488  *	skb_peek
489  *	@list_: list to peek at
490  *
491  *	Peek an &sk_buff. Unlike most other operations you _MUST_
492  *	be careful with this one. A peek leaves the buffer on the
493  *	list and someone else may run off with it. You must hold
494  *	the appropriate locks or have a private queue to do this.
495  *
496  *	Returns %NULL for an empty list or a pointer to the head element.
497  *	The reference count is not incremented and the reference is therefore
498  *	volatile. Use with caution.
499  */
500 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
501 {
502 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
503 	if (list == (struct sk_buff *)list_)
504 		list = NULL;
505 	return list;
506 }
507 
508 /**
509  *	skb_peek_tail
510  *	@list_: list to peek at
511  *
512  *	Peek an &sk_buff. Unlike most other operations you _MUST_
513  *	be careful with this one. A peek leaves the buffer on the
514  *	list and someone else may run off with it. You must hold
515  *	the appropriate locks or have a private queue to do this.
516  *
517  *	Returns %NULL for an empty list or a pointer to the tail element.
518  *	The reference count is not incremented and the reference is therefore
519  *	volatile. Use with caution.
520  */
521 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
522 {
523 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
524 	if (list == (struct sk_buff *)list_)
525 		list = NULL;
526 	return list;
527 }
528 
529 /**
530  *	skb_queue_len	- get queue length
531  *	@list_: list to measure
532  *
533  *	Return the length of an &sk_buff queue.
534  */
535 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
536 {
537 	return list_->qlen;
538 }
539 
540 static inline void skb_queue_head_init(struct sk_buff_head *list)
541 {
542 	spin_lock_init(&list->lock);
543 	list->prev = list->next = (struct sk_buff *)list;
544 	list->qlen = 0;
545 }
546 
547 /*
548  *	Insert an sk_buff at the start of a list.
549  *
550  *	The "__skb_xxxx()" functions are the non-atomic ones that
551  *	can only be called with interrupts disabled.
552  */
553 
554 /**
555  *	__skb_queue_head - queue a buffer at the list head
556  *	@list: list to use
557  *	@newsk: buffer to queue
558  *
559  *	Queue a buffer at the start of a list. This function takes no locks
560  *	and you must therefore hold required locks before calling it.
561  *
562  *	A buffer cannot be placed on two lists at the same time.
563  */
564 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
565 static inline void __skb_queue_head(struct sk_buff_head *list,
566 				    struct sk_buff *newsk)
567 {
568 	struct sk_buff *prev, *next;
569 
570 	newsk->list = list;
571 	list->qlen++;
572 	prev = (struct sk_buff *)list;
573 	next = prev->next;
574 	newsk->next = next;
575 	newsk->prev = prev;
576 	next->prev  = prev->next = newsk;
577 }
578 
579 /**
580  *	__skb_queue_tail - queue a buffer at the list tail
581  *	@list: list to use
582  *	@newsk: buffer to queue
583  *
584  *	Queue a buffer at the end of a list. This function takes no locks
585  *	and you must therefore hold required locks before calling it.
586  *
587  *	A buffer cannot be placed on two lists at the same time.
588  */
589 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
590 static inline void __skb_queue_tail(struct sk_buff_head *list,
591 				   struct sk_buff *newsk)
592 {
593 	struct sk_buff *prev, *next;
594 
595 	newsk->list = list;
596 	list->qlen++;
597 	next = (struct sk_buff *)list;
598 	prev = next->prev;
599 	newsk->next = next;
600 	newsk->prev = prev;
601 	next->prev  = prev->next = newsk;
602 }
603 
604 
605 /**
606  *	__skb_dequeue - remove from the head of the queue
607  *	@list: list to dequeue from
608  *
609  *	Remove the head of the list. This function does not take any locks
610  *	so must be used with appropriate locks held only. The head item is
611  *	returned or %NULL if the list is empty.
612  */
613 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
614 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
615 {
616 	struct sk_buff *next, *prev, *result;
617 
618 	prev = (struct sk_buff *) list;
619 	next = prev->next;
620 	result = NULL;
621 	if (next != prev) {
622 		result	     = next;
623 		next	     = next->next;
624 		list->qlen--;
625 		next->prev   = prev;
626 		prev->next   = next;
627 		result->next = result->prev = NULL;
628 		result->list = NULL;
629 	}
630 	return result;
631 }
632 
633 
634 /*
635  *	Insert a packet on a list.
636  */
637 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk);
638 static inline void __skb_insert(struct sk_buff *newsk,
639 				struct sk_buff *prev, struct sk_buff *next,
640 				struct sk_buff_head *list)
641 {
642 	newsk->next = next;
643 	newsk->prev = prev;
644 	next->prev  = prev->next = newsk;
645 	newsk->list = list;
646 	list->qlen++;
647 }
648 
649 /*
650  *	Place a packet after a given packet in a list.
651  */
652 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk);
653 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
654 {
655 	__skb_insert(newsk, old, old->next, old->list);
656 }
657 
658 /*
659  * remove sk_buff from list. _Must_ be called atomically, and with
660  * the list known..
661  */
662 extern void	   skb_unlink(struct sk_buff *skb);
663 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
664 {
665 	struct sk_buff *next, *prev;
666 
667 	list->qlen--;
668 	next	   = skb->next;
669 	prev	   = skb->prev;
670 	skb->next  = skb->prev = NULL;
671 	skb->list  = NULL;
672 	next->prev = prev;
673 	prev->next = next;
674 }
675 
676 
677 /* XXX: more streamlined implementation */
678 
679 /**
680  *	__skb_dequeue_tail - remove from the tail of the queue
681  *	@list: list to dequeue from
682  *
683  *	Remove the tail of the list. This function does not take any locks
684  *	so must be used with appropriate locks held only. The tail item is
685  *	returned or %NULL if the list is empty.
686  */
687 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
688 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
689 {
690 	struct sk_buff *skb = skb_peek_tail(list);
691 	if (skb)
692 		__skb_unlink(skb, list);
693 	return skb;
694 }
695 
696 
697 static inline int skb_is_nonlinear(const struct sk_buff *skb)
698 {
699 	return skb->data_len;
700 }
701 
702 static inline unsigned int skb_headlen(const struct sk_buff *skb)
703 {
704 	return skb->len - skb->data_len;
705 }
706 
707 static inline int skb_pagelen(const struct sk_buff *skb)
708 {
709 	int i, len = 0;
710 
711 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
712 		len += skb_shinfo(skb)->frags[i].size;
713 	return len + skb_headlen(skb);
714 }
715 
716 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
717 				      struct page *page, int off, int size)
718 {
719 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
720 
721 	frag->page		  = page;
722 	frag->page_offset	  = off;
723 	frag->size		  = size;
724 	skb_shinfo(skb)->nr_frags = i + 1;
725 }
726 
727 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
728 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
729 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
730 
731 /*
732  *	Add data to an sk_buff
733  */
734 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
735 {
736 	unsigned char *tmp = skb->tail;
737 	SKB_LINEAR_ASSERT(skb);
738 	skb->tail += len;
739 	skb->len  += len;
740 	return tmp;
741 }
742 
743 /**
744  *	skb_put - add data to a buffer
745  *	@skb: buffer to use
746  *	@len: amount of data to add
747  *
748  *	This function extends the used data area of the buffer. If this would
749  *	exceed the total buffer size the kernel will panic. A pointer to the
750  *	first byte of the extra data is returned.
751  */
752 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
753 {
754 	unsigned char *tmp = skb->tail;
755 	SKB_LINEAR_ASSERT(skb);
756 	skb->tail += len;
757 	skb->len  += len;
758 	if (unlikely(skb->tail>skb->end))
759 		skb_over_panic(skb, len, current_text_addr());
760 	return tmp;
761 }
762 
763 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
764 {
765 	skb->data -= len;
766 	skb->len  += len;
767 	return skb->data;
768 }
769 
770 /**
771  *	skb_push - add data to the start of a buffer
772  *	@skb: buffer to use
773  *	@len: amount of data to add
774  *
775  *	This function extends the used data area of the buffer at the buffer
776  *	start. If this would exceed the total buffer headroom the kernel will
777  *	panic. A pointer to the first byte of the extra data is returned.
778  */
779 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
780 {
781 	skb->data -= len;
782 	skb->len  += len;
783 	if (unlikely(skb->data<skb->head))
784 		skb_under_panic(skb, len, current_text_addr());
785 	return skb->data;
786 }
787 
788 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
789 {
790 	skb->len -= len;
791 	BUG_ON(skb->len < skb->data_len);
792 	return skb->data += len;
793 }
794 
795 /**
796  *	skb_pull - remove data from the start of a buffer
797  *	@skb: buffer to use
798  *	@len: amount of data to remove
799  *
800  *	This function removes data from the start of a buffer, returning
801  *	the memory to the headroom. A pointer to the next data in the buffer
802  *	is returned. Once the data has been pulled future pushes will overwrite
803  *	the old data.
804  */
805 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
806 {
807 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
808 }
809 
810 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
811 
812 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
813 {
814 	if (len > skb_headlen(skb) &&
815 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
816 		return NULL;
817 	skb->len -= len;
818 	return skb->data += len;
819 }
820 
821 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
822 {
823 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
824 }
825 
826 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
827 {
828 	if (likely(len <= skb_headlen(skb)))
829 		return 1;
830 	if (unlikely(len > skb->len))
831 		return 0;
832 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
833 }
834 
835 /**
836  *	skb_headroom - bytes at buffer head
837  *	@skb: buffer to check
838  *
839  *	Return the number of bytes of free space at the head of an &sk_buff.
840  */
841 static inline int skb_headroom(const struct sk_buff *skb)
842 {
843 	return skb->data - skb->head;
844 }
845 
846 /**
847  *	skb_tailroom - bytes at buffer end
848  *	@skb: buffer to check
849  *
850  *	Return the number of bytes of free space at the tail of an sk_buff
851  */
852 static inline int skb_tailroom(const struct sk_buff *skb)
853 {
854 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
855 }
856 
857 /**
858  *	skb_reserve - adjust headroom
859  *	@skb: buffer to alter
860  *	@len: bytes to move
861  *
862  *	Increase the headroom of an empty &sk_buff by reducing the tail
863  *	room. This is only allowed for an empty buffer.
864  */
865 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
866 {
867 	skb->data += len;
868 	skb->tail += len;
869 }
870 
871 /*
872  * CPUs often take a performance hit when accessing unaligned memory
873  * locations. The actual performance hit varies, it can be small if the
874  * hardware handles it or large if we have to take an exception and fix it
875  * in software.
876  *
877  * Since an ethernet header is 14 bytes network drivers often end up with
878  * the IP header at an unaligned offset. The IP header can be aligned by
879  * shifting the start of the packet by 2 bytes. Drivers should do this
880  * with:
881  *
882  * skb_reserve(NET_IP_ALIGN);
883  *
884  * The downside to this alignment of the IP header is that the DMA is now
885  * unaligned. On some architectures the cost of an unaligned DMA is high
886  * and this cost outweighs the gains made by aligning the IP header.
887  *
888  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
889  * to be overridden.
890  */
891 #ifndef NET_IP_ALIGN
892 #define NET_IP_ALIGN	2
893 #endif
894 
895 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
896 
897 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
898 {
899 	if (!skb->data_len) {
900 		skb->len  = len;
901 		skb->tail = skb->data + len;
902 	} else
903 		___pskb_trim(skb, len, 0);
904 }
905 
906 /**
907  *	skb_trim - remove end from a buffer
908  *	@skb: buffer to alter
909  *	@len: new length
910  *
911  *	Cut the length of a buffer down by removing data from the tail. If
912  *	the buffer is already under the length specified it is not modified.
913  */
914 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
915 {
916 	if (skb->len > len)
917 		__skb_trim(skb, len);
918 }
919 
920 
921 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
922 {
923 	if (!skb->data_len) {
924 		skb->len  = len;
925 		skb->tail = skb->data+len;
926 		return 0;
927 	}
928 	return ___pskb_trim(skb, len, 1);
929 }
930 
931 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
932 {
933 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
934 }
935 
936 /**
937  *	skb_orphan - orphan a buffer
938  *	@skb: buffer to orphan
939  *
940  *	If a buffer currently has an owner then we call the owner's
941  *	destructor function and make the @skb unowned. The buffer continues
942  *	to exist but is no longer charged to its former owner.
943  */
944 static inline void skb_orphan(struct sk_buff *skb)
945 {
946 	if (skb->destructor)
947 		skb->destructor(skb);
948 	skb->destructor = NULL;
949 	skb->sk		= NULL;
950 }
951 
952 /**
953  *	__skb_queue_purge - empty a list
954  *	@list: list to empty
955  *
956  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
957  *	the list and one reference dropped. This function does not take the
958  *	list lock and the caller must hold the relevant locks to use it.
959  */
960 extern void skb_queue_purge(struct sk_buff_head *list);
961 static inline void __skb_queue_purge(struct sk_buff_head *list)
962 {
963 	struct sk_buff *skb;
964 	while ((skb = __skb_dequeue(list)) != NULL)
965 		kfree_skb(skb);
966 }
967 
968 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
969 /**
970  *	__dev_alloc_skb - allocate an skbuff for sending
971  *	@length: length to allocate
972  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
973  *
974  *	Allocate a new &sk_buff and assign it a usage count of one. The
975  *	buffer has unspecified headroom built in. Users should allocate
976  *	the headroom they think they need without accounting for the
977  *	built in space. The built in space is used for optimisations.
978  *
979  *	%NULL is returned in there is no free memory.
980  */
981 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
982 					      int gfp_mask)
983 {
984 	struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
985 	if (likely(skb))
986 		skb_reserve(skb, 16);
987 	return skb;
988 }
989 #else
990 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
991 #endif
992 
993 /**
994  *	dev_alloc_skb - allocate an skbuff for sending
995  *	@length: length to allocate
996  *
997  *	Allocate a new &sk_buff and assign it a usage count of one. The
998  *	buffer has unspecified headroom built in. Users should allocate
999  *	the headroom they think they need without accounting for the
1000  *	built in space. The built in space is used for optimisations.
1001  *
1002  *	%NULL is returned in there is no free memory. Although this function
1003  *	allocates memory it can be called from an interrupt.
1004  */
1005 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1006 {
1007 	return __dev_alloc_skb(length, GFP_ATOMIC);
1008 }
1009 
1010 /**
1011  *	skb_cow - copy header of skb when it is required
1012  *	@skb: buffer to cow
1013  *	@headroom: needed headroom
1014  *
1015  *	If the skb passed lacks sufficient headroom or its data part
1016  *	is shared, data is reallocated. If reallocation fails, an error
1017  *	is returned and original skb is not changed.
1018  *
1019  *	The result is skb with writable area skb->head...skb->tail
1020  *	and at least @headroom of space at head.
1021  */
1022 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1023 {
1024 	int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1025 
1026 	if (delta < 0)
1027 		delta = 0;
1028 
1029 	if (delta || skb_cloned(skb))
1030 		return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1031 	return 0;
1032 }
1033 
1034 /**
1035  *	skb_padto	- pad an skbuff up to a minimal size
1036  *	@skb: buffer to pad
1037  *	@len: minimal length
1038  *
1039  *	Pads up a buffer to ensure the trailing bytes exist and are
1040  *	blanked. If the buffer already contains sufficient data it
1041  *	is untouched. Returns the buffer, which may be a replacement
1042  *	for the original, or NULL for out of memory - in which case
1043  *	the original buffer is still freed.
1044  */
1045 
1046 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1047 {
1048 	unsigned int size = skb->len;
1049 	if (likely(size >= len))
1050 		return skb;
1051 	return skb_pad(skb, len-size);
1052 }
1053 
1054 static inline int skb_add_data(struct sk_buff *skb,
1055 			       char __user *from, int copy)
1056 {
1057 	const int off = skb->len;
1058 
1059 	if (skb->ip_summed == CHECKSUM_NONE) {
1060 		int err = 0;
1061 		unsigned int csum = csum_and_copy_from_user(from,
1062 							    skb_put(skb, copy),
1063 							    copy, 0, &err);
1064 		if (!err) {
1065 			skb->csum = csum_block_add(skb->csum, csum, off);
1066 			return 0;
1067 		}
1068 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1069 		return 0;
1070 
1071 	__skb_trim(skb, off);
1072 	return -EFAULT;
1073 }
1074 
1075 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1076 				   struct page *page, int off)
1077 {
1078 	if (i) {
1079 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1080 
1081 		return page == frag->page &&
1082 		       off == frag->page_offset + frag->size;
1083 	}
1084 	return 0;
1085 }
1086 
1087 /**
1088  *	skb_linearize - convert paged skb to linear one
1089  *	@skb: buffer to linarize
1090  *	@gfp: allocation mode
1091  *
1092  *	If there is no free memory -ENOMEM is returned, otherwise zero
1093  *	is returned and the old skb data released.
1094  */
1095 extern int __skb_linearize(struct sk_buff *skb, int gfp);
1096 static inline int skb_linearize(struct sk_buff *skb, int gfp)
1097 {
1098 	return __skb_linearize(skb, gfp);
1099 }
1100 
1101 /**
1102  *	skb_postpull_rcsum - update checksum for received skb after pull
1103  *	@skb: buffer to update
1104  *	@start: start of data before pull
1105  *	@len: length of data pulled
1106  *
1107  *	After doing a pull on a received packet, you need to call this to
1108  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1109  *	so that it can be recomputed from scratch.
1110  */
1111 
1112 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1113 					 const void *start, int len)
1114 {
1115 	if (skb->ip_summed == CHECKSUM_HW)
1116 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1117 }
1118 
1119 /**
1120  *	pskb_trim_rcsum - trim received skb and update checksum
1121  *	@skb: buffer to trim
1122  *	@len: new length
1123  *
1124  *	This is exactly the same as pskb_trim except that it ensures the
1125  *	checksum of received packets are still valid after the operation.
1126  */
1127 
1128 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1129 {
1130 	if (len >= skb->len)
1131 		return 0;
1132 	if (skb->ip_summed == CHECKSUM_HW)
1133 		skb->ip_summed = CHECKSUM_NONE;
1134 	return __pskb_trim(skb, len);
1135 }
1136 
1137 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1138 {
1139 #ifdef CONFIG_HIGHMEM
1140 	BUG_ON(in_irq());
1141 
1142 	local_bh_disable();
1143 #endif
1144 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1145 }
1146 
1147 static inline void kunmap_skb_frag(void *vaddr)
1148 {
1149 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1150 #ifdef CONFIG_HIGHMEM
1151 	local_bh_enable();
1152 #endif
1153 }
1154 
1155 #define skb_queue_walk(queue, skb) \
1156 		for (skb = (queue)->next;					\
1157 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1158 		     skb = skb->next)
1159 
1160 
1161 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1162 					 int noblock, int *err);
1163 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1164 				     struct poll_table_struct *wait);
1165 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1166 					       int offset, struct iovec *to,
1167 					       int size);
1168 extern int	       skb_copy_and_csum_datagram_iovec(const
1169 							struct sk_buff *skb,
1170 							int hlen,
1171 							struct iovec *iov);
1172 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1173 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1174 				    int len, unsigned int csum);
1175 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1176 				     void *to, int len);
1177 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1178 				      void *from, int len);
1179 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1180 					      int offset, u8 *to, int len,
1181 					      unsigned int csum);
1182 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1183 extern void	       skb_split(struct sk_buff *skb,
1184 				 struct sk_buff *skb1, const u32 len);
1185 
1186 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1187 				       int len, void *buffer)
1188 {
1189 	int hlen = skb_headlen(skb);
1190 
1191 	if (offset + len <= hlen)
1192 		return skb->data + offset;
1193 
1194 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1195 		return NULL;
1196 
1197 	return buffer;
1198 }
1199 
1200 extern void skb_init(void);
1201 extern void skb_add_mtu(int mtu);
1202 
1203 #ifdef CONFIG_NETFILTER
1204 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1205 {
1206 	if (nfct && atomic_dec_and_test(&nfct->use))
1207 		nfct->destroy(nfct);
1208 }
1209 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1210 {
1211 	if (nfct)
1212 		atomic_inc(&nfct->use);
1213 }
1214 static inline void nf_reset(struct sk_buff *skb)
1215 {
1216 	nf_conntrack_put(skb->nfct);
1217 	skb->nfct = NULL;
1218 }
1219 
1220 #ifdef CONFIG_BRIDGE_NETFILTER
1221 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1222 {
1223 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1224 		kfree(nf_bridge);
1225 }
1226 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1227 {
1228 	if (nf_bridge)
1229 		atomic_inc(&nf_bridge->use);
1230 }
1231 #endif /* CONFIG_BRIDGE_NETFILTER */
1232 #else /* CONFIG_NETFILTER */
1233 static inline void nf_reset(struct sk_buff *skb) {}
1234 #endif /* CONFIG_NETFILTER */
1235 
1236 #endif	/* __KERNEL__ */
1237 #endif	/* _LINUX_SKBUFF_H */
1238