1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/config.h> 18 #include <linux/kernel.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/poll.h> 29 #include <linux/net.h> 30 #include <net/checksum.h> 31 32 #define HAVE_ALLOC_SKB /* For the drivers to know */ 33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 #define SLAB_SKB /* Slabified skbuffs */ 35 36 #define CHECKSUM_NONE 0 37 #define CHECKSUM_HW 1 38 #define CHECKSUM_UNNECESSARY 2 39 40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 41 ~(SMP_CACHE_BYTES - 1)) 42 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \ 43 sizeof(struct skb_shared_info)) & \ 44 ~(SMP_CACHE_BYTES - 1)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * HW: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use HW, 63 * not UNNECESSARY. 64 * 65 * B. Checksumming on output. 66 * 67 * NONE: skb is checksummed by protocol or csum is not required. 68 * 69 * HW: device is required to csum packet as seen by hard_start_xmit 70 * from skb->h.raw to the end and to record the checksum 71 * at skb->h.raw+skb->csum. 72 * 73 * Device must show its capabilities in dev->features, set 74 * at device setup time. 75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 76 * everything. 77 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 79 * TCP/UDP over IPv4. Sigh. Vendors like this 80 * way by an unknown reason. Though, see comment above 81 * about CHECKSUM_UNNECESSARY. 8) 82 * 83 * Any questions? No questions, good. --ANK 84 */ 85 86 struct net_device; 87 88 #ifdef CONFIG_NETFILTER 89 struct nf_conntrack { 90 atomic_t use; 91 void (*destroy)(struct nf_conntrack *); 92 }; 93 94 #ifdef CONFIG_BRIDGE_NETFILTER 95 struct nf_bridge_info { 96 atomic_t use; 97 struct net_device *physindev; 98 struct net_device *physoutdev; 99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 100 struct net_device *netoutdev; 101 #endif 102 unsigned int mask; 103 unsigned long data[32 / sizeof(unsigned long)]; 104 }; 105 #endif 106 107 #endif 108 109 struct sk_buff_head { 110 /* These two members must be first. */ 111 struct sk_buff *next; 112 struct sk_buff *prev; 113 114 __u32 qlen; 115 spinlock_t lock; 116 }; 117 118 struct sk_buff; 119 120 /* To allow 64K frame to be packed as single skb without frag_list */ 121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 122 123 typedef struct skb_frag_struct skb_frag_t; 124 125 struct skb_frag_struct { 126 struct page *page; 127 __u16 page_offset; 128 __u16 size; 129 }; 130 131 /* This data is invariant across clones and lives at 132 * the end of the header data, ie. at skb->end. 133 */ 134 struct skb_shared_info { 135 atomic_t dataref; 136 unsigned int nr_frags; 137 unsigned short tso_size; 138 unsigned short tso_segs; 139 struct sk_buff *frag_list; 140 skb_frag_t frags[MAX_SKB_FRAGS]; 141 }; 142 143 /* We divide dataref into two halves. The higher 16 bits hold references 144 * to the payload part of skb->data. The lower 16 bits hold references to 145 * the entire skb->data. It is up to the users of the skb to agree on 146 * where the payload starts. 147 * 148 * All users must obey the rule that the skb->data reference count must be 149 * greater than or equal to the payload reference count. 150 * 151 * Holding a reference to the payload part means that the user does not 152 * care about modifications to the header part of skb->data. 153 */ 154 #define SKB_DATAREF_SHIFT 16 155 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 156 157 /** 158 * struct sk_buff - socket buffer 159 * @next: Next buffer in list 160 * @prev: Previous buffer in list 161 * @list: List we are on 162 * @sk: Socket we are owned by 163 * @stamp: Time we arrived 164 * @dev: Device we arrived on/are leaving by 165 * @input_dev: Device we arrived on 166 * @real_dev: The real device we are using 167 * @h: Transport layer header 168 * @nh: Network layer header 169 * @mac: Link layer header 170 * @dst: destination entry 171 * @sp: the security path, used for xfrm 172 * @cb: Control buffer. Free for use by every layer. Put private vars here 173 * @len: Length of actual data 174 * @data_len: Data length 175 * @mac_len: Length of link layer header 176 * @csum: Checksum 177 * @local_df: allow local fragmentation 178 * @cloned: Head may be cloned (check refcnt to be sure) 179 * @nohdr: Payload reference only, must not modify header 180 * @pkt_type: Packet class 181 * @ip_summed: Driver fed us an IP checksum 182 * @priority: Packet queueing priority 183 * @users: User count - see {datagram,tcp}.c 184 * @protocol: Packet protocol from driver 185 * @security: Security level of packet 186 * @truesize: Buffer size 187 * @head: Head of buffer 188 * @data: Data head pointer 189 * @tail: Tail pointer 190 * @end: End pointer 191 * @destructor: Destruct function 192 * @nfmark: Can be used for communication between hooks 193 * @nfcache: Cache info 194 * @nfct: Associated connection, if any 195 * @nfctinfo: Relationship of this skb to the connection 196 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 197 * @private: Data which is private to the HIPPI implementation 198 * @tc_index: Traffic control index 199 * @tc_verd: traffic control verdict 200 * @tc_classid: traffic control classid 201 */ 202 203 struct sk_buff { 204 /* These two members must be first. */ 205 struct sk_buff *next; 206 struct sk_buff *prev; 207 208 struct sk_buff_head *list; 209 struct sock *sk; 210 struct timeval stamp; 211 struct net_device *dev; 212 struct net_device *input_dev; 213 struct net_device *real_dev; 214 215 union { 216 struct tcphdr *th; 217 struct udphdr *uh; 218 struct icmphdr *icmph; 219 struct igmphdr *igmph; 220 struct iphdr *ipiph; 221 struct ipv6hdr *ipv6h; 222 unsigned char *raw; 223 } h; 224 225 union { 226 struct iphdr *iph; 227 struct ipv6hdr *ipv6h; 228 struct arphdr *arph; 229 unsigned char *raw; 230 } nh; 231 232 union { 233 unsigned char *raw; 234 } mac; 235 236 struct dst_entry *dst; 237 struct sec_path *sp; 238 239 /* 240 * This is the control buffer. It is free to use for every 241 * layer. Please put your private variables there. If you 242 * want to keep them across layers you have to do a skb_clone() 243 * first. This is owned by whoever has the skb queued ATM. 244 */ 245 char cb[40]; 246 247 unsigned int len, 248 data_len, 249 mac_len, 250 csum; 251 unsigned char local_df, 252 cloned:1, 253 nohdr:1, 254 pkt_type, 255 ip_summed; 256 __u32 priority; 257 unsigned short protocol, 258 security; 259 260 void (*destructor)(struct sk_buff *skb); 261 #ifdef CONFIG_NETFILTER 262 unsigned long nfmark; 263 __u32 nfcache; 264 __u32 nfctinfo; 265 struct nf_conntrack *nfct; 266 #ifdef CONFIG_BRIDGE_NETFILTER 267 struct nf_bridge_info *nf_bridge; 268 #endif 269 #endif /* CONFIG_NETFILTER */ 270 #if defined(CONFIG_HIPPI) 271 union { 272 __u32 ifield; 273 } private; 274 #endif 275 #ifdef CONFIG_NET_SCHED 276 __u32 tc_index; /* traffic control index */ 277 #ifdef CONFIG_NET_CLS_ACT 278 __u32 tc_verd; /* traffic control verdict */ 279 __u32 tc_classid; /* traffic control classid */ 280 #endif 281 282 #endif 283 284 285 /* These elements must be at the end, see alloc_skb() for details. */ 286 unsigned int truesize; 287 atomic_t users; 288 unsigned char *head, 289 *data, 290 *tail, 291 *end; 292 }; 293 294 #ifdef __KERNEL__ 295 /* 296 * Handling routines are only of interest to the kernel 297 */ 298 #include <linux/slab.h> 299 300 #include <asm/system.h> 301 302 extern void __kfree_skb(struct sk_buff *skb); 303 extern struct sk_buff *alloc_skb(unsigned int size, int priority); 304 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 305 unsigned int size, int priority); 306 extern void kfree_skbmem(struct sk_buff *skb); 307 extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority); 308 extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority); 309 extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask); 310 extern int pskb_expand_head(struct sk_buff *skb, 311 int nhead, int ntail, int gfp_mask); 312 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 313 unsigned int headroom); 314 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 315 int newheadroom, int newtailroom, 316 int priority); 317 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad); 318 #define dev_kfree_skb(a) kfree_skb(a) 319 extern void skb_over_panic(struct sk_buff *skb, int len, 320 void *here); 321 extern void skb_under_panic(struct sk_buff *skb, int len, 322 void *here); 323 324 /* Internal */ 325 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end)) 326 327 /** 328 * skb_queue_empty - check if a queue is empty 329 * @list: queue head 330 * 331 * Returns true if the queue is empty, false otherwise. 332 */ 333 static inline int skb_queue_empty(const struct sk_buff_head *list) 334 { 335 return list->next == (struct sk_buff *)list; 336 } 337 338 /** 339 * skb_get - reference buffer 340 * @skb: buffer to reference 341 * 342 * Makes another reference to a socket buffer and returns a pointer 343 * to the buffer. 344 */ 345 static inline struct sk_buff *skb_get(struct sk_buff *skb) 346 { 347 atomic_inc(&skb->users); 348 return skb; 349 } 350 351 /* 352 * If users == 1, we are the only owner and are can avoid redundant 353 * atomic change. 354 */ 355 356 /** 357 * kfree_skb - free an sk_buff 358 * @skb: buffer to free 359 * 360 * Drop a reference to the buffer and free it if the usage count has 361 * hit zero. 362 */ 363 static inline void kfree_skb(struct sk_buff *skb) 364 { 365 if (likely(atomic_read(&skb->users) == 1)) 366 smp_rmb(); 367 else if (likely(!atomic_dec_and_test(&skb->users))) 368 return; 369 __kfree_skb(skb); 370 } 371 372 /** 373 * skb_cloned - is the buffer a clone 374 * @skb: buffer to check 375 * 376 * Returns true if the buffer was generated with skb_clone() and is 377 * one of multiple shared copies of the buffer. Cloned buffers are 378 * shared data so must not be written to under normal circumstances. 379 */ 380 static inline int skb_cloned(const struct sk_buff *skb) 381 { 382 return skb->cloned && 383 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 384 } 385 386 /** 387 * skb_header_cloned - is the header a clone 388 * @skb: buffer to check 389 * 390 * Returns true if modifying the header part of the buffer requires 391 * the data to be copied. 392 */ 393 static inline int skb_header_cloned(const struct sk_buff *skb) 394 { 395 int dataref; 396 397 if (!skb->cloned) 398 return 0; 399 400 dataref = atomic_read(&skb_shinfo(skb)->dataref); 401 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 402 return dataref != 1; 403 } 404 405 /** 406 * skb_header_release - release reference to header 407 * @skb: buffer to operate on 408 * 409 * Drop a reference to the header part of the buffer. This is done 410 * by acquiring a payload reference. You must not read from the header 411 * part of skb->data after this. 412 */ 413 static inline void skb_header_release(struct sk_buff *skb) 414 { 415 BUG_ON(skb->nohdr); 416 skb->nohdr = 1; 417 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 418 } 419 420 /** 421 * skb_shared - is the buffer shared 422 * @skb: buffer to check 423 * 424 * Returns true if more than one person has a reference to this 425 * buffer. 426 */ 427 static inline int skb_shared(const struct sk_buff *skb) 428 { 429 return atomic_read(&skb->users) != 1; 430 } 431 432 /** 433 * skb_share_check - check if buffer is shared and if so clone it 434 * @skb: buffer to check 435 * @pri: priority for memory allocation 436 * 437 * If the buffer is shared the buffer is cloned and the old copy 438 * drops a reference. A new clone with a single reference is returned. 439 * If the buffer is not shared the original buffer is returned. When 440 * being called from interrupt status or with spinlocks held pri must 441 * be GFP_ATOMIC. 442 * 443 * NULL is returned on a memory allocation failure. 444 */ 445 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri) 446 { 447 might_sleep_if(pri & __GFP_WAIT); 448 if (skb_shared(skb)) { 449 struct sk_buff *nskb = skb_clone(skb, pri); 450 kfree_skb(skb); 451 skb = nskb; 452 } 453 return skb; 454 } 455 456 /* 457 * Copy shared buffers into a new sk_buff. We effectively do COW on 458 * packets to handle cases where we have a local reader and forward 459 * and a couple of other messy ones. The normal one is tcpdumping 460 * a packet thats being forwarded. 461 */ 462 463 /** 464 * skb_unshare - make a copy of a shared buffer 465 * @skb: buffer to check 466 * @pri: priority for memory allocation 467 * 468 * If the socket buffer is a clone then this function creates a new 469 * copy of the data, drops a reference count on the old copy and returns 470 * the new copy with the reference count at 1. If the buffer is not a clone 471 * the original buffer is returned. When called with a spinlock held or 472 * from interrupt state @pri must be %GFP_ATOMIC 473 * 474 * %NULL is returned on a memory allocation failure. 475 */ 476 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri) 477 { 478 might_sleep_if(pri & __GFP_WAIT); 479 if (skb_cloned(skb)) { 480 struct sk_buff *nskb = skb_copy(skb, pri); 481 kfree_skb(skb); /* Free our shared copy */ 482 skb = nskb; 483 } 484 return skb; 485 } 486 487 /** 488 * skb_peek 489 * @list_: list to peek at 490 * 491 * Peek an &sk_buff. Unlike most other operations you _MUST_ 492 * be careful with this one. A peek leaves the buffer on the 493 * list and someone else may run off with it. You must hold 494 * the appropriate locks or have a private queue to do this. 495 * 496 * Returns %NULL for an empty list or a pointer to the head element. 497 * The reference count is not incremented and the reference is therefore 498 * volatile. Use with caution. 499 */ 500 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 501 { 502 struct sk_buff *list = ((struct sk_buff *)list_)->next; 503 if (list == (struct sk_buff *)list_) 504 list = NULL; 505 return list; 506 } 507 508 /** 509 * skb_peek_tail 510 * @list_: list to peek at 511 * 512 * Peek an &sk_buff. Unlike most other operations you _MUST_ 513 * be careful with this one. A peek leaves the buffer on the 514 * list and someone else may run off with it. You must hold 515 * the appropriate locks or have a private queue to do this. 516 * 517 * Returns %NULL for an empty list or a pointer to the tail element. 518 * The reference count is not incremented and the reference is therefore 519 * volatile. Use with caution. 520 */ 521 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 522 { 523 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 524 if (list == (struct sk_buff *)list_) 525 list = NULL; 526 return list; 527 } 528 529 /** 530 * skb_queue_len - get queue length 531 * @list_: list to measure 532 * 533 * Return the length of an &sk_buff queue. 534 */ 535 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 536 { 537 return list_->qlen; 538 } 539 540 static inline void skb_queue_head_init(struct sk_buff_head *list) 541 { 542 spin_lock_init(&list->lock); 543 list->prev = list->next = (struct sk_buff *)list; 544 list->qlen = 0; 545 } 546 547 /* 548 * Insert an sk_buff at the start of a list. 549 * 550 * The "__skb_xxxx()" functions are the non-atomic ones that 551 * can only be called with interrupts disabled. 552 */ 553 554 /** 555 * __skb_queue_head - queue a buffer at the list head 556 * @list: list to use 557 * @newsk: buffer to queue 558 * 559 * Queue a buffer at the start of a list. This function takes no locks 560 * and you must therefore hold required locks before calling it. 561 * 562 * A buffer cannot be placed on two lists at the same time. 563 */ 564 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 565 static inline void __skb_queue_head(struct sk_buff_head *list, 566 struct sk_buff *newsk) 567 { 568 struct sk_buff *prev, *next; 569 570 newsk->list = list; 571 list->qlen++; 572 prev = (struct sk_buff *)list; 573 next = prev->next; 574 newsk->next = next; 575 newsk->prev = prev; 576 next->prev = prev->next = newsk; 577 } 578 579 /** 580 * __skb_queue_tail - queue a buffer at the list tail 581 * @list: list to use 582 * @newsk: buffer to queue 583 * 584 * Queue a buffer at the end of a list. This function takes no locks 585 * and you must therefore hold required locks before calling it. 586 * 587 * A buffer cannot be placed on two lists at the same time. 588 */ 589 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 590 static inline void __skb_queue_tail(struct sk_buff_head *list, 591 struct sk_buff *newsk) 592 { 593 struct sk_buff *prev, *next; 594 595 newsk->list = list; 596 list->qlen++; 597 next = (struct sk_buff *)list; 598 prev = next->prev; 599 newsk->next = next; 600 newsk->prev = prev; 601 next->prev = prev->next = newsk; 602 } 603 604 605 /** 606 * __skb_dequeue - remove from the head of the queue 607 * @list: list to dequeue from 608 * 609 * Remove the head of the list. This function does not take any locks 610 * so must be used with appropriate locks held only. The head item is 611 * returned or %NULL if the list is empty. 612 */ 613 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 614 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 615 { 616 struct sk_buff *next, *prev, *result; 617 618 prev = (struct sk_buff *) list; 619 next = prev->next; 620 result = NULL; 621 if (next != prev) { 622 result = next; 623 next = next->next; 624 list->qlen--; 625 next->prev = prev; 626 prev->next = next; 627 result->next = result->prev = NULL; 628 result->list = NULL; 629 } 630 return result; 631 } 632 633 634 /* 635 * Insert a packet on a list. 636 */ 637 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk); 638 static inline void __skb_insert(struct sk_buff *newsk, 639 struct sk_buff *prev, struct sk_buff *next, 640 struct sk_buff_head *list) 641 { 642 newsk->next = next; 643 newsk->prev = prev; 644 next->prev = prev->next = newsk; 645 newsk->list = list; 646 list->qlen++; 647 } 648 649 /* 650 * Place a packet after a given packet in a list. 651 */ 652 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk); 653 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk) 654 { 655 __skb_insert(newsk, old, old->next, old->list); 656 } 657 658 /* 659 * remove sk_buff from list. _Must_ be called atomically, and with 660 * the list known.. 661 */ 662 extern void skb_unlink(struct sk_buff *skb); 663 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 664 { 665 struct sk_buff *next, *prev; 666 667 list->qlen--; 668 next = skb->next; 669 prev = skb->prev; 670 skb->next = skb->prev = NULL; 671 skb->list = NULL; 672 next->prev = prev; 673 prev->next = next; 674 } 675 676 677 /* XXX: more streamlined implementation */ 678 679 /** 680 * __skb_dequeue_tail - remove from the tail of the queue 681 * @list: list to dequeue from 682 * 683 * Remove the tail of the list. This function does not take any locks 684 * so must be used with appropriate locks held only. The tail item is 685 * returned or %NULL if the list is empty. 686 */ 687 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 688 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 689 { 690 struct sk_buff *skb = skb_peek_tail(list); 691 if (skb) 692 __skb_unlink(skb, list); 693 return skb; 694 } 695 696 697 static inline int skb_is_nonlinear(const struct sk_buff *skb) 698 { 699 return skb->data_len; 700 } 701 702 static inline unsigned int skb_headlen(const struct sk_buff *skb) 703 { 704 return skb->len - skb->data_len; 705 } 706 707 static inline int skb_pagelen(const struct sk_buff *skb) 708 { 709 int i, len = 0; 710 711 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 712 len += skb_shinfo(skb)->frags[i].size; 713 return len + skb_headlen(skb); 714 } 715 716 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 717 struct page *page, int off, int size) 718 { 719 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 720 721 frag->page = page; 722 frag->page_offset = off; 723 frag->size = size; 724 skb_shinfo(skb)->nr_frags = i + 1; 725 } 726 727 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 728 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 729 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 730 731 /* 732 * Add data to an sk_buff 733 */ 734 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 735 { 736 unsigned char *tmp = skb->tail; 737 SKB_LINEAR_ASSERT(skb); 738 skb->tail += len; 739 skb->len += len; 740 return tmp; 741 } 742 743 /** 744 * skb_put - add data to a buffer 745 * @skb: buffer to use 746 * @len: amount of data to add 747 * 748 * This function extends the used data area of the buffer. If this would 749 * exceed the total buffer size the kernel will panic. A pointer to the 750 * first byte of the extra data is returned. 751 */ 752 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 753 { 754 unsigned char *tmp = skb->tail; 755 SKB_LINEAR_ASSERT(skb); 756 skb->tail += len; 757 skb->len += len; 758 if (unlikely(skb->tail>skb->end)) 759 skb_over_panic(skb, len, current_text_addr()); 760 return tmp; 761 } 762 763 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 764 { 765 skb->data -= len; 766 skb->len += len; 767 return skb->data; 768 } 769 770 /** 771 * skb_push - add data to the start of a buffer 772 * @skb: buffer to use 773 * @len: amount of data to add 774 * 775 * This function extends the used data area of the buffer at the buffer 776 * start. If this would exceed the total buffer headroom the kernel will 777 * panic. A pointer to the first byte of the extra data is returned. 778 */ 779 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 780 { 781 skb->data -= len; 782 skb->len += len; 783 if (unlikely(skb->data<skb->head)) 784 skb_under_panic(skb, len, current_text_addr()); 785 return skb->data; 786 } 787 788 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 789 { 790 skb->len -= len; 791 BUG_ON(skb->len < skb->data_len); 792 return skb->data += len; 793 } 794 795 /** 796 * skb_pull - remove data from the start of a buffer 797 * @skb: buffer to use 798 * @len: amount of data to remove 799 * 800 * This function removes data from the start of a buffer, returning 801 * the memory to the headroom. A pointer to the next data in the buffer 802 * is returned. Once the data has been pulled future pushes will overwrite 803 * the old data. 804 */ 805 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 806 { 807 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 808 } 809 810 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 811 812 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 813 { 814 if (len > skb_headlen(skb) && 815 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 816 return NULL; 817 skb->len -= len; 818 return skb->data += len; 819 } 820 821 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 822 { 823 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 824 } 825 826 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 827 { 828 if (likely(len <= skb_headlen(skb))) 829 return 1; 830 if (unlikely(len > skb->len)) 831 return 0; 832 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 833 } 834 835 /** 836 * skb_headroom - bytes at buffer head 837 * @skb: buffer to check 838 * 839 * Return the number of bytes of free space at the head of an &sk_buff. 840 */ 841 static inline int skb_headroom(const struct sk_buff *skb) 842 { 843 return skb->data - skb->head; 844 } 845 846 /** 847 * skb_tailroom - bytes at buffer end 848 * @skb: buffer to check 849 * 850 * Return the number of bytes of free space at the tail of an sk_buff 851 */ 852 static inline int skb_tailroom(const struct sk_buff *skb) 853 { 854 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 855 } 856 857 /** 858 * skb_reserve - adjust headroom 859 * @skb: buffer to alter 860 * @len: bytes to move 861 * 862 * Increase the headroom of an empty &sk_buff by reducing the tail 863 * room. This is only allowed for an empty buffer. 864 */ 865 static inline void skb_reserve(struct sk_buff *skb, unsigned int len) 866 { 867 skb->data += len; 868 skb->tail += len; 869 } 870 871 /* 872 * CPUs often take a performance hit when accessing unaligned memory 873 * locations. The actual performance hit varies, it can be small if the 874 * hardware handles it or large if we have to take an exception and fix it 875 * in software. 876 * 877 * Since an ethernet header is 14 bytes network drivers often end up with 878 * the IP header at an unaligned offset. The IP header can be aligned by 879 * shifting the start of the packet by 2 bytes. Drivers should do this 880 * with: 881 * 882 * skb_reserve(NET_IP_ALIGN); 883 * 884 * The downside to this alignment of the IP header is that the DMA is now 885 * unaligned. On some architectures the cost of an unaligned DMA is high 886 * and this cost outweighs the gains made by aligning the IP header. 887 * 888 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 889 * to be overridden. 890 */ 891 #ifndef NET_IP_ALIGN 892 #define NET_IP_ALIGN 2 893 #endif 894 895 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc); 896 897 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 898 { 899 if (!skb->data_len) { 900 skb->len = len; 901 skb->tail = skb->data + len; 902 } else 903 ___pskb_trim(skb, len, 0); 904 } 905 906 /** 907 * skb_trim - remove end from a buffer 908 * @skb: buffer to alter 909 * @len: new length 910 * 911 * Cut the length of a buffer down by removing data from the tail. If 912 * the buffer is already under the length specified it is not modified. 913 */ 914 static inline void skb_trim(struct sk_buff *skb, unsigned int len) 915 { 916 if (skb->len > len) 917 __skb_trim(skb, len); 918 } 919 920 921 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 922 { 923 if (!skb->data_len) { 924 skb->len = len; 925 skb->tail = skb->data+len; 926 return 0; 927 } 928 return ___pskb_trim(skb, len, 1); 929 } 930 931 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 932 { 933 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 934 } 935 936 /** 937 * skb_orphan - orphan a buffer 938 * @skb: buffer to orphan 939 * 940 * If a buffer currently has an owner then we call the owner's 941 * destructor function and make the @skb unowned. The buffer continues 942 * to exist but is no longer charged to its former owner. 943 */ 944 static inline void skb_orphan(struct sk_buff *skb) 945 { 946 if (skb->destructor) 947 skb->destructor(skb); 948 skb->destructor = NULL; 949 skb->sk = NULL; 950 } 951 952 /** 953 * __skb_queue_purge - empty a list 954 * @list: list to empty 955 * 956 * Delete all buffers on an &sk_buff list. Each buffer is removed from 957 * the list and one reference dropped. This function does not take the 958 * list lock and the caller must hold the relevant locks to use it. 959 */ 960 extern void skb_queue_purge(struct sk_buff_head *list); 961 static inline void __skb_queue_purge(struct sk_buff_head *list) 962 { 963 struct sk_buff *skb; 964 while ((skb = __skb_dequeue(list)) != NULL) 965 kfree_skb(skb); 966 } 967 968 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB 969 /** 970 * __dev_alloc_skb - allocate an skbuff for sending 971 * @length: length to allocate 972 * @gfp_mask: get_free_pages mask, passed to alloc_skb 973 * 974 * Allocate a new &sk_buff and assign it a usage count of one. The 975 * buffer has unspecified headroom built in. Users should allocate 976 * the headroom they think they need without accounting for the 977 * built in space. The built in space is used for optimisations. 978 * 979 * %NULL is returned in there is no free memory. 980 */ 981 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 982 int gfp_mask) 983 { 984 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask); 985 if (likely(skb)) 986 skb_reserve(skb, 16); 987 return skb; 988 } 989 #else 990 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask); 991 #endif 992 993 /** 994 * dev_alloc_skb - allocate an skbuff for sending 995 * @length: length to allocate 996 * 997 * Allocate a new &sk_buff and assign it a usage count of one. The 998 * buffer has unspecified headroom built in. Users should allocate 999 * the headroom they think they need without accounting for the 1000 * built in space. The built in space is used for optimisations. 1001 * 1002 * %NULL is returned in there is no free memory. Although this function 1003 * allocates memory it can be called from an interrupt. 1004 */ 1005 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1006 { 1007 return __dev_alloc_skb(length, GFP_ATOMIC); 1008 } 1009 1010 /** 1011 * skb_cow - copy header of skb when it is required 1012 * @skb: buffer to cow 1013 * @headroom: needed headroom 1014 * 1015 * If the skb passed lacks sufficient headroom or its data part 1016 * is shared, data is reallocated. If reallocation fails, an error 1017 * is returned and original skb is not changed. 1018 * 1019 * The result is skb with writable area skb->head...skb->tail 1020 * and at least @headroom of space at head. 1021 */ 1022 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1023 { 1024 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb); 1025 1026 if (delta < 0) 1027 delta = 0; 1028 1029 if (delta || skb_cloned(skb)) 1030 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC); 1031 return 0; 1032 } 1033 1034 /** 1035 * skb_padto - pad an skbuff up to a minimal size 1036 * @skb: buffer to pad 1037 * @len: minimal length 1038 * 1039 * Pads up a buffer to ensure the trailing bytes exist and are 1040 * blanked. If the buffer already contains sufficient data it 1041 * is untouched. Returns the buffer, which may be a replacement 1042 * for the original, or NULL for out of memory - in which case 1043 * the original buffer is still freed. 1044 */ 1045 1046 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len) 1047 { 1048 unsigned int size = skb->len; 1049 if (likely(size >= len)) 1050 return skb; 1051 return skb_pad(skb, len-size); 1052 } 1053 1054 static inline int skb_add_data(struct sk_buff *skb, 1055 char __user *from, int copy) 1056 { 1057 const int off = skb->len; 1058 1059 if (skb->ip_summed == CHECKSUM_NONE) { 1060 int err = 0; 1061 unsigned int csum = csum_and_copy_from_user(from, 1062 skb_put(skb, copy), 1063 copy, 0, &err); 1064 if (!err) { 1065 skb->csum = csum_block_add(skb->csum, csum, off); 1066 return 0; 1067 } 1068 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1069 return 0; 1070 1071 __skb_trim(skb, off); 1072 return -EFAULT; 1073 } 1074 1075 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1076 struct page *page, int off) 1077 { 1078 if (i) { 1079 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1080 1081 return page == frag->page && 1082 off == frag->page_offset + frag->size; 1083 } 1084 return 0; 1085 } 1086 1087 /** 1088 * skb_linearize - convert paged skb to linear one 1089 * @skb: buffer to linarize 1090 * @gfp: allocation mode 1091 * 1092 * If there is no free memory -ENOMEM is returned, otherwise zero 1093 * is returned and the old skb data released. 1094 */ 1095 extern int __skb_linearize(struct sk_buff *skb, int gfp); 1096 static inline int skb_linearize(struct sk_buff *skb, int gfp) 1097 { 1098 return __skb_linearize(skb, gfp); 1099 } 1100 1101 /** 1102 * skb_postpull_rcsum - update checksum for received skb after pull 1103 * @skb: buffer to update 1104 * @start: start of data before pull 1105 * @len: length of data pulled 1106 * 1107 * After doing a pull on a received packet, you need to call this to 1108 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE 1109 * so that it can be recomputed from scratch. 1110 */ 1111 1112 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1113 const void *start, int len) 1114 { 1115 if (skb->ip_summed == CHECKSUM_HW) 1116 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1117 } 1118 1119 /** 1120 * pskb_trim_rcsum - trim received skb and update checksum 1121 * @skb: buffer to trim 1122 * @len: new length 1123 * 1124 * This is exactly the same as pskb_trim except that it ensures the 1125 * checksum of received packets are still valid after the operation. 1126 */ 1127 1128 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1129 { 1130 if (len >= skb->len) 1131 return 0; 1132 if (skb->ip_summed == CHECKSUM_HW) 1133 skb->ip_summed = CHECKSUM_NONE; 1134 return __pskb_trim(skb, len); 1135 } 1136 1137 static inline void *kmap_skb_frag(const skb_frag_t *frag) 1138 { 1139 #ifdef CONFIG_HIGHMEM 1140 BUG_ON(in_irq()); 1141 1142 local_bh_disable(); 1143 #endif 1144 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ); 1145 } 1146 1147 static inline void kunmap_skb_frag(void *vaddr) 1148 { 1149 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 1150 #ifdef CONFIG_HIGHMEM 1151 local_bh_enable(); 1152 #endif 1153 } 1154 1155 #define skb_queue_walk(queue, skb) \ 1156 for (skb = (queue)->next; \ 1157 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1158 skb = skb->next) 1159 1160 1161 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1162 int noblock, int *err); 1163 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1164 struct poll_table_struct *wait); 1165 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1166 int offset, struct iovec *to, 1167 int size); 1168 extern int skb_copy_and_csum_datagram_iovec(const 1169 struct sk_buff *skb, 1170 int hlen, 1171 struct iovec *iov); 1172 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1173 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1174 int len, unsigned int csum); 1175 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1176 void *to, int len); 1177 extern int skb_store_bits(const struct sk_buff *skb, int offset, 1178 void *from, int len); 1179 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, 1180 int offset, u8 *to, int len, 1181 unsigned int csum); 1182 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1183 extern void skb_split(struct sk_buff *skb, 1184 struct sk_buff *skb1, const u32 len); 1185 1186 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1187 int len, void *buffer) 1188 { 1189 int hlen = skb_headlen(skb); 1190 1191 if (offset + len <= hlen) 1192 return skb->data + offset; 1193 1194 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1195 return NULL; 1196 1197 return buffer; 1198 } 1199 1200 extern void skb_init(void); 1201 extern void skb_add_mtu(int mtu); 1202 1203 #ifdef CONFIG_NETFILTER 1204 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1205 { 1206 if (nfct && atomic_dec_and_test(&nfct->use)) 1207 nfct->destroy(nfct); 1208 } 1209 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1210 { 1211 if (nfct) 1212 atomic_inc(&nfct->use); 1213 } 1214 static inline void nf_reset(struct sk_buff *skb) 1215 { 1216 nf_conntrack_put(skb->nfct); 1217 skb->nfct = NULL; 1218 } 1219 1220 #ifdef CONFIG_BRIDGE_NETFILTER 1221 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1222 { 1223 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1224 kfree(nf_bridge); 1225 } 1226 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1227 { 1228 if (nf_bridge) 1229 atomic_inc(&nf_bridge->use); 1230 } 1231 #endif /* CONFIG_BRIDGE_NETFILTER */ 1232 #else /* CONFIG_NETFILTER */ 1233 static inline void nf_reset(struct sk_buff *skb) {} 1234 #endif /* CONFIG_NETFILTER */ 1235 1236 #endif /* __KERNEL__ */ 1237 #endif /* _LINUX_SKBUFF_H */ 1238