xref: /linux-6.15/include/linux/skbuff.h (revision 4a8e43fe)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t		use;
121 	unsigned int		mask;
122 	struct net_device	*physindev;
123 	struct net_device	*physoutdev;
124 	unsigned long		data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* device driver supports TX zero-copy buffers */
229 	SKBTX_DEV_ZEROCOPY = 1 << 3,
230 
231 	/* generate wifi status information (where possible) */
232 	SKBTX_WIFI_STATUS = 1 << 4,
233 };
234 
235 /*
236  * The callback notifies userspace to release buffers when skb DMA is done in
237  * lower device, the skb last reference should be 0 when calling this.
238  * The ctx field is used to track device context.
239  * The desc field is used to track userspace buffer index.
240  */
241 struct ubuf_info {
242 	void (*callback)(struct ubuf_info *);
243 	void *ctx;
244 	unsigned long desc;
245 };
246 
247 /* This data is invariant across clones and lives at
248  * the end of the header data, ie. at skb->end.
249  */
250 struct skb_shared_info {
251 	unsigned char	nr_frags;
252 	__u8		tx_flags;
253 	unsigned short	gso_size;
254 	/* Warning: this field is not always filled in (UFO)! */
255 	unsigned short	gso_segs;
256 	unsigned short  gso_type;
257 	struct sk_buff	*frag_list;
258 	struct skb_shared_hwtstamps hwtstamps;
259 	__be32          ip6_frag_id;
260 
261 	/*
262 	 * Warning : all fields before dataref are cleared in __alloc_skb()
263 	 */
264 	atomic_t	dataref;
265 
266 	/* Intermediate layers must ensure that destructor_arg
267 	 * remains valid until skb destructor */
268 	void *		destructor_arg;
269 
270 	/* must be last field, see pskb_expand_head() */
271 	skb_frag_t	frags[MAX_SKB_FRAGS];
272 };
273 
274 /* We divide dataref into two halves.  The higher 16 bits hold references
275  * to the payload part of skb->data.  The lower 16 bits hold references to
276  * the entire skb->data.  A clone of a headerless skb holds the length of
277  * the header in skb->hdr_len.
278  *
279  * All users must obey the rule that the skb->data reference count must be
280  * greater than or equal to the payload reference count.
281  *
282  * Holding a reference to the payload part means that the user does not
283  * care about modifications to the header part of skb->data.
284  */
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
287 
288 
289 enum {
290 	SKB_FCLONE_UNAVAILABLE,
291 	SKB_FCLONE_ORIG,
292 	SKB_FCLONE_CLONE,
293 };
294 
295 enum {
296 	SKB_GSO_TCPV4 = 1 << 0,
297 	SKB_GSO_UDP = 1 << 1,
298 
299 	/* This indicates the skb is from an untrusted source. */
300 	SKB_GSO_DODGY = 1 << 2,
301 
302 	/* This indicates the tcp segment has CWR set. */
303 	SKB_GSO_TCP_ECN = 1 << 3,
304 
305 	SKB_GSO_TCPV6 = 1 << 4,
306 
307 	SKB_GSO_FCOE = 1 << 5,
308 };
309 
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
313 
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
319 
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
324 
325 /**
326  *	struct sk_buff - socket buffer
327  *	@next: Next buffer in list
328  *	@prev: Previous buffer in list
329  *	@tstamp: Time we arrived
330  *	@sk: Socket we are owned by
331  *	@dev: Device we arrived on/are leaving by
332  *	@cb: Control buffer. Free for use by every layer. Put private vars here
333  *	@_skb_refdst: destination entry (with norefcount bit)
334  *	@sp: the security path, used for xfrm
335  *	@len: Length of actual data
336  *	@data_len: Data length
337  *	@mac_len: Length of link layer header
338  *	@hdr_len: writable header length of cloned skb
339  *	@csum: Checksum (must include start/offset pair)
340  *	@csum_start: Offset from skb->head where checksumming should start
341  *	@csum_offset: Offset from csum_start where checksum should be stored
342  *	@priority: Packet queueing priority
343  *	@local_df: allow local fragmentation
344  *	@cloned: Head may be cloned (check refcnt to be sure)
345  *	@ip_summed: Driver fed us an IP checksum
346  *	@nohdr: Payload reference only, must not modify header
347  *	@nfctinfo: Relationship of this skb to the connection
348  *	@pkt_type: Packet class
349  *	@fclone: skbuff clone status
350  *	@ipvs_property: skbuff is owned by ipvs
351  *	@peeked: this packet has been seen already, so stats have been
352  *		done for it, don't do them again
353  *	@nf_trace: netfilter packet trace flag
354  *	@protocol: Packet protocol from driver
355  *	@destructor: Destruct function
356  *	@nfct: Associated connection, if any
357  *	@nfct_reasm: netfilter conntrack re-assembly pointer
358  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359  *	@skb_iif: ifindex of device we arrived on
360  *	@tc_index: Traffic control index
361  *	@tc_verd: traffic control verdict
362  *	@rxhash: the packet hash computed on receive
363  *	@queue_mapping: Queue mapping for multiqueue devices
364  *	@ndisc_nodetype: router type (from link layer)
365  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
366  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367  *		ports.
368  *	@wifi_acked_valid: wifi_acked was set
369  *	@wifi_acked: whether frame was acked on wifi or not
370  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
371  *	@dma_cookie: a cookie to one of several possible DMA operations
372  *		done by skb DMA functions
373  *	@secmark: security marking
374  *	@mark: Generic packet mark
375  *	@dropcount: total number of sk_receive_queue overflows
376  *	@vlan_tci: vlan tag control information
377  *	@transport_header: Transport layer header
378  *	@network_header: Network layer header
379  *	@mac_header: Link layer header
380  *	@tail: Tail pointer
381  *	@end: End pointer
382  *	@head: Head of buffer
383  *	@data: Data head pointer
384  *	@truesize: Buffer size
385  *	@users: User count - see {datagram,tcp}.c
386  */
387 
388 struct sk_buff {
389 	/* These two members must be first. */
390 	struct sk_buff		*next;
391 	struct sk_buff		*prev;
392 
393 	ktime_t			tstamp;
394 
395 	struct sock		*sk;
396 	struct net_device	*dev;
397 
398 	/*
399 	 * This is the control buffer. It is free to use for every
400 	 * layer. Please put your private variables there. If you
401 	 * want to keep them across layers you have to do a skb_clone()
402 	 * first. This is owned by whoever has the skb queued ATM.
403 	 */
404 	char			cb[48] __aligned(8);
405 
406 	unsigned long		_skb_refdst;
407 #ifdef CONFIG_XFRM
408 	struct	sec_path	*sp;
409 #endif
410 	unsigned int		len,
411 				data_len;
412 	__u16			mac_len,
413 				hdr_len;
414 	union {
415 		__wsum		csum;
416 		struct {
417 			__u16	csum_start;
418 			__u16	csum_offset;
419 		};
420 	};
421 	__u32			priority;
422 	kmemcheck_bitfield_begin(flags1);
423 	__u8			local_df:1,
424 				cloned:1,
425 				ip_summed:2,
426 				nohdr:1,
427 				nfctinfo:3;
428 	__u8			pkt_type:3,
429 				fclone:2,
430 				ipvs_property:1,
431 				peeked:1,
432 				nf_trace:1;
433 	kmemcheck_bitfield_end(flags1);
434 	__be16			protocol;
435 
436 	void			(*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 	struct nf_conntrack	*nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 	struct sk_buff		*nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 	struct nf_bridge_info	*nf_bridge;
445 #endif
446 
447 	int			skb_iif;
448 
449 	__u32			rxhash;
450 
451 	__u16			vlan_tci;
452 
453 #ifdef CONFIG_NET_SCHED
454 	__u16			tc_index;	/* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 	__u16			tc_verd;	/* traffic control verdict */
457 #endif
458 #endif
459 
460 	__u16			queue_mapping;
461 	kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 	__u8			ndisc_nodetype:2;
464 #endif
465 	__u8			pfmemalloc:1;
466 	__u8			ooo_okay:1;
467 	__u8			l4_rxhash:1;
468 	__u8			wifi_acked_valid:1;
469 	__u8			wifi_acked:1;
470 	__u8			no_fcs:1;
471 	__u8			head_frag:1;
472 	/* 8/10 bit hole (depending on ndisc_nodetype presence) */
473 	kmemcheck_bitfield_end(flags2);
474 
475 #ifdef CONFIG_NET_DMA
476 	dma_cookie_t		dma_cookie;
477 #endif
478 #ifdef CONFIG_NETWORK_SECMARK
479 	__u32			secmark;
480 #endif
481 	union {
482 		__u32		mark;
483 		__u32		dropcount;
484 		__u32		avail_size;
485 	};
486 
487 	sk_buff_data_t		transport_header;
488 	sk_buff_data_t		network_header;
489 	sk_buff_data_t		mac_header;
490 	/* These elements must be at the end, see alloc_skb() for details.  */
491 	sk_buff_data_t		tail;
492 	sk_buff_data_t		end;
493 	unsigned char		*head,
494 				*data;
495 	unsigned int		truesize;
496 	atomic_t		users;
497 };
498 
499 #ifdef __KERNEL__
500 /*
501  *	Handling routines are only of interest to the kernel
502  */
503 #include <linux/slab.h>
504 
505 
506 #define SKB_ALLOC_FCLONE	0x01
507 #define SKB_ALLOC_RX		0x02
508 
509 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
510 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
511 {
512 	return unlikely(skb->pfmemalloc);
513 }
514 
515 /*
516  * skb might have a dst pointer attached, refcounted or not.
517  * _skb_refdst low order bit is set if refcount was _not_ taken
518  */
519 #define SKB_DST_NOREF	1UL
520 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
521 
522 /**
523  * skb_dst - returns skb dst_entry
524  * @skb: buffer
525  *
526  * Returns skb dst_entry, regardless of reference taken or not.
527  */
528 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
529 {
530 	/* If refdst was not refcounted, check we still are in a
531 	 * rcu_read_lock section
532 	 */
533 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
534 		!rcu_read_lock_held() &&
535 		!rcu_read_lock_bh_held());
536 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
537 }
538 
539 /**
540  * skb_dst_set - sets skb dst
541  * @skb: buffer
542  * @dst: dst entry
543  *
544  * Sets skb dst, assuming a reference was taken on dst and should
545  * be released by skb_dst_drop()
546  */
547 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
548 {
549 	skb->_skb_refdst = (unsigned long)dst;
550 }
551 
552 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
553 
554 /**
555  * skb_dst_is_noref - Test if skb dst isn't refcounted
556  * @skb: buffer
557  */
558 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
559 {
560 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
561 }
562 
563 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
564 {
565 	return (struct rtable *)skb_dst(skb);
566 }
567 
568 extern void kfree_skb(struct sk_buff *skb);
569 extern void consume_skb(struct sk_buff *skb);
570 extern void	       __kfree_skb(struct sk_buff *skb);
571 extern struct kmem_cache *skbuff_head_cache;
572 
573 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
574 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
575 			     bool *fragstolen, int *delta_truesize);
576 
577 extern struct sk_buff *__alloc_skb(unsigned int size,
578 				   gfp_t priority, int flags, int node);
579 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
580 static inline struct sk_buff *alloc_skb(unsigned int size,
581 					gfp_t priority)
582 {
583 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
584 }
585 
586 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
587 					       gfp_t priority)
588 {
589 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
590 }
591 
592 extern void skb_recycle(struct sk_buff *skb);
593 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
594 
595 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
596 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
597 extern struct sk_buff *skb_clone(struct sk_buff *skb,
598 				 gfp_t priority);
599 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
600 				gfp_t priority);
601 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
602 				 int headroom, gfp_t gfp_mask);
603 
604 extern int	       pskb_expand_head(struct sk_buff *skb,
605 					int nhead, int ntail,
606 					gfp_t gfp_mask);
607 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
608 					    unsigned int headroom);
609 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
610 				       int newheadroom, int newtailroom,
611 				       gfp_t priority);
612 extern int	       skb_to_sgvec(struct sk_buff *skb,
613 				    struct scatterlist *sg, int offset,
614 				    int len);
615 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
616 				    struct sk_buff **trailer);
617 extern int	       skb_pad(struct sk_buff *skb, int pad);
618 #define dev_kfree_skb(a)	consume_skb(a)
619 
620 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
621 			int getfrag(void *from, char *to, int offset,
622 			int len,int odd, struct sk_buff *skb),
623 			void *from, int length);
624 
625 struct skb_seq_state {
626 	__u32		lower_offset;
627 	__u32		upper_offset;
628 	__u32		frag_idx;
629 	__u32		stepped_offset;
630 	struct sk_buff	*root_skb;
631 	struct sk_buff	*cur_skb;
632 	__u8		*frag_data;
633 };
634 
635 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
636 					   unsigned int from, unsigned int to,
637 					   struct skb_seq_state *st);
638 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
639 				   struct skb_seq_state *st);
640 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
641 
642 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
643 				    unsigned int to, struct ts_config *config,
644 				    struct ts_state *state);
645 
646 extern void __skb_get_rxhash(struct sk_buff *skb);
647 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
648 {
649 	if (!skb->rxhash)
650 		__skb_get_rxhash(skb);
651 
652 	return skb->rxhash;
653 }
654 
655 #ifdef NET_SKBUFF_DATA_USES_OFFSET
656 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
657 {
658 	return skb->head + skb->end;
659 }
660 
661 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
662 {
663 	return skb->end;
664 }
665 #else
666 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
667 {
668 	return skb->end;
669 }
670 
671 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
672 {
673 	return skb->end - skb->head;
674 }
675 #endif
676 
677 /* Internal */
678 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
679 
680 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
681 {
682 	return &skb_shinfo(skb)->hwtstamps;
683 }
684 
685 /**
686  *	skb_queue_empty - check if a queue is empty
687  *	@list: queue head
688  *
689  *	Returns true if the queue is empty, false otherwise.
690  */
691 static inline int skb_queue_empty(const struct sk_buff_head *list)
692 {
693 	return list->next == (struct sk_buff *)list;
694 }
695 
696 /**
697  *	skb_queue_is_last - check if skb is the last entry in the queue
698  *	@list: queue head
699  *	@skb: buffer
700  *
701  *	Returns true if @skb is the last buffer on the list.
702  */
703 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
704 				     const struct sk_buff *skb)
705 {
706 	return skb->next == (struct sk_buff *)list;
707 }
708 
709 /**
710  *	skb_queue_is_first - check if skb is the first entry in the queue
711  *	@list: queue head
712  *	@skb: buffer
713  *
714  *	Returns true if @skb is the first buffer on the list.
715  */
716 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
717 				      const struct sk_buff *skb)
718 {
719 	return skb->prev == (struct sk_buff *)list;
720 }
721 
722 /**
723  *	skb_queue_next - return the next packet in the queue
724  *	@list: queue head
725  *	@skb: current buffer
726  *
727  *	Return the next packet in @list after @skb.  It is only valid to
728  *	call this if skb_queue_is_last() evaluates to false.
729  */
730 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
731 					     const struct sk_buff *skb)
732 {
733 	/* This BUG_ON may seem severe, but if we just return then we
734 	 * are going to dereference garbage.
735 	 */
736 	BUG_ON(skb_queue_is_last(list, skb));
737 	return skb->next;
738 }
739 
740 /**
741  *	skb_queue_prev - return the prev packet in the queue
742  *	@list: queue head
743  *	@skb: current buffer
744  *
745  *	Return the prev packet in @list before @skb.  It is only valid to
746  *	call this if skb_queue_is_first() evaluates to false.
747  */
748 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
749 					     const struct sk_buff *skb)
750 {
751 	/* This BUG_ON may seem severe, but if we just return then we
752 	 * are going to dereference garbage.
753 	 */
754 	BUG_ON(skb_queue_is_first(list, skb));
755 	return skb->prev;
756 }
757 
758 /**
759  *	skb_get - reference buffer
760  *	@skb: buffer to reference
761  *
762  *	Makes another reference to a socket buffer and returns a pointer
763  *	to the buffer.
764  */
765 static inline struct sk_buff *skb_get(struct sk_buff *skb)
766 {
767 	atomic_inc(&skb->users);
768 	return skb;
769 }
770 
771 /*
772  * If users == 1, we are the only owner and are can avoid redundant
773  * atomic change.
774  */
775 
776 /**
777  *	skb_cloned - is the buffer a clone
778  *	@skb: buffer to check
779  *
780  *	Returns true if the buffer was generated with skb_clone() and is
781  *	one of multiple shared copies of the buffer. Cloned buffers are
782  *	shared data so must not be written to under normal circumstances.
783  */
784 static inline int skb_cloned(const struct sk_buff *skb)
785 {
786 	return skb->cloned &&
787 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
788 }
789 
790 /**
791  *	skb_header_cloned - is the header a clone
792  *	@skb: buffer to check
793  *
794  *	Returns true if modifying the header part of the buffer requires
795  *	the data to be copied.
796  */
797 static inline int skb_header_cloned(const struct sk_buff *skb)
798 {
799 	int dataref;
800 
801 	if (!skb->cloned)
802 		return 0;
803 
804 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
805 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
806 	return dataref != 1;
807 }
808 
809 /**
810  *	skb_header_release - release reference to header
811  *	@skb: buffer to operate on
812  *
813  *	Drop a reference to the header part of the buffer.  This is done
814  *	by acquiring a payload reference.  You must not read from the header
815  *	part of skb->data after this.
816  */
817 static inline void skb_header_release(struct sk_buff *skb)
818 {
819 	BUG_ON(skb->nohdr);
820 	skb->nohdr = 1;
821 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
822 }
823 
824 /**
825  *	skb_shared - is the buffer shared
826  *	@skb: buffer to check
827  *
828  *	Returns true if more than one person has a reference to this
829  *	buffer.
830  */
831 static inline int skb_shared(const struct sk_buff *skb)
832 {
833 	return atomic_read(&skb->users) != 1;
834 }
835 
836 /**
837  *	skb_share_check - check if buffer is shared and if so clone it
838  *	@skb: buffer to check
839  *	@pri: priority for memory allocation
840  *
841  *	If the buffer is shared the buffer is cloned and the old copy
842  *	drops a reference. A new clone with a single reference is returned.
843  *	If the buffer is not shared the original buffer is returned. When
844  *	being called from interrupt status or with spinlocks held pri must
845  *	be GFP_ATOMIC.
846  *
847  *	NULL is returned on a memory allocation failure.
848  */
849 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
850 {
851 	might_sleep_if(pri & __GFP_WAIT);
852 	if (skb_shared(skb)) {
853 		struct sk_buff *nskb = skb_clone(skb, pri);
854 
855 		if (likely(nskb))
856 			consume_skb(skb);
857 		else
858 			kfree_skb(skb);
859 		skb = nskb;
860 	}
861 	return skb;
862 }
863 
864 /*
865  *	Copy shared buffers into a new sk_buff. We effectively do COW on
866  *	packets to handle cases where we have a local reader and forward
867  *	and a couple of other messy ones. The normal one is tcpdumping
868  *	a packet thats being forwarded.
869  */
870 
871 /**
872  *	skb_unshare - make a copy of a shared buffer
873  *	@skb: buffer to check
874  *	@pri: priority for memory allocation
875  *
876  *	If the socket buffer is a clone then this function creates a new
877  *	copy of the data, drops a reference count on the old copy and returns
878  *	the new copy with the reference count at 1. If the buffer is not a clone
879  *	the original buffer is returned. When called with a spinlock held or
880  *	from interrupt state @pri must be %GFP_ATOMIC
881  *
882  *	%NULL is returned on a memory allocation failure.
883  */
884 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
885 					  gfp_t pri)
886 {
887 	might_sleep_if(pri & __GFP_WAIT);
888 	if (skb_cloned(skb)) {
889 		struct sk_buff *nskb = skb_copy(skb, pri);
890 		kfree_skb(skb);	/* Free our shared copy */
891 		skb = nskb;
892 	}
893 	return skb;
894 }
895 
896 /**
897  *	skb_peek - peek at the head of an &sk_buff_head
898  *	@list_: list to peek at
899  *
900  *	Peek an &sk_buff. Unlike most other operations you _MUST_
901  *	be careful with this one. A peek leaves the buffer on the
902  *	list and someone else may run off with it. You must hold
903  *	the appropriate locks or have a private queue to do this.
904  *
905  *	Returns %NULL for an empty list or a pointer to the head element.
906  *	The reference count is not incremented and the reference is therefore
907  *	volatile. Use with caution.
908  */
909 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
910 {
911 	struct sk_buff *skb = list_->next;
912 
913 	if (skb == (struct sk_buff *)list_)
914 		skb = NULL;
915 	return skb;
916 }
917 
918 /**
919  *	skb_peek_next - peek skb following the given one from a queue
920  *	@skb: skb to start from
921  *	@list_: list to peek at
922  *
923  *	Returns %NULL when the end of the list is met or a pointer to the
924  *	next element. The reference count is not incremented and the
925  *	reference is therefore volatile. Use with caution.
926  */
927 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
928 		const struct sk_buff_head *list_)
929 {
930 	struct sk_buff *next = skb->next;
931 
932 	if (next == (struct sk_buff *)list_)
933 		next = NULL;
934 	return next;
935 }
936 
937 /**
938  *	skb_peek_tail - peek at the tail of an &sk_buff_head
939  *	@list_: list to peek at
940  *
941  *	Peek an &sk_buff. Unlike most other operations you _MUST_
942  *	be careful with this one. A peek leaves the buffer on the
943  *	list and someone else may run off with it. You must hold
944  *	the appropriate locks or have a private queue to do this.
945  *
946  *	Returns %NULL for an empty list or a pointer to the tail element.
947  *	The reference count is not incremented and the reference is therefore
948  *	volatile. Use with caution.
949  */
950 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
951 {
952 	struct sk_buff *skb = list_->prev;
953 
954 	if (skb == (struct sk_buff *)list_)
955 		skb = NULL;
956 	return skb;
957 
958 }
959 
960 /**
961  *	skb_queue_len	- get queue length
962  *	@list_: list to measure
963  *
964  *	Return the length of an &sk_buff queue.
965  */
966 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
967 {
968 	return list_->qlen;
969 }
970 
971 /**
972  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
973  *	@list: queue to initialize
974  *
975  *	This initializes only the list and queue length aspects of
976  *	an sk_buff_head object.  This allows to initialize the list
977  *	aspects of an sk_buff_head without reinitializing things like
978  *	the spinlock.  It can also be used for on-stack sk_buff_head
979  *	objects where the spinlock is known to not be used.
980  */
981 static inline void __skb_queue_head_init(struct sk_buff_head *list)
982 {
983 	list->prev = list->next = (struct sk_buff *)list;
984 	list->qlen = 0;
985 }
986 
987 /*
988  * This function creates a split out lock class for each invocation;
989  * this is needed for now since a whole lot of users of the skb-queue
990  * infrastructure in drivers have different locking usage (in hardirq)
991  * than the networking core (in softirq only). In the long run either the
992  * network layer or drivers should need annotation to consolidate the
993  * main types of usage into 3 classes.
994  */
995 static inline void skb_queue_head_init(struct sk_buff_head *list)
996 {
997 	spin_lock_init(&list->lock);
998 	__skb_queue_head_init(list);
999 }
1000 
1001 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1002 		struct lock_class_key *class)
1003 {
1004 	skb_queue_head_init(list);
1005 	lockdep_set_class(&list->lock, class);
1006 }
1007 
1008 /*
1009  *	Insert an sk_buff on a list.
1010  *
1011  *	The "__skb_xxxx()" functions are the non-atomic ones that
1012  *	can only be called with interrupts disabled.
1013  */
1014 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1015 static inline void __skb_insert(struct sk_buff *newsk,
1016 				struct sk_buff *prev, struct sk_buff *next,
1017 				struct sk_buff_head *list)
1018 {
1019 	newsk->next = next;
1020 	newsk->prev = prev;
1021 	next->prev  = prev->next = newsk;
1022 	list->qlen++;
1023 }
1024 
1025 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1026 				      struct sk_buff *prev,
1027 				      struct sk_buff *next)
1028 {
1029 	struct sk_buff *first = list->next;
1030 	struct sk_buff *last = list->prev;
1031 
1032 	first->prev = prev;
1033 	prev->next = first;
1034 
1035 	last->next = next;
1036 	next->prev = last;
1037 }
1038 
1039 /**
1040  *	skb_queue_splice - join two skb lists, this is designed for stacks
1041  *	@list: the new list to add
1042  *	@head: the place to add it in the first list
1043  */
1044 static inline void skb_queue_splice(const struct sk_buff_head *list,
1045 				    struct sk_buff_head *head)
1046 {
1047 	if (!skb_queue_empty(list)) {
1048 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1049 		head->qlen += list->qlen;
1050 	}
1051 }
1052 
1053 /**
1054  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1055  *	@list: the new list to add
1056  *	@head: the place to add it in the first list
1057  *
1058  *	The list at @list is reinitialised
1059  */
1060 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1061 					 struct sk_buff_head *head)
1062 {
1063 	if (!skb_queue_empty(list)) {
1064 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1065 		head->qlen += list->qlen;
1066 		__skb_queue_head_init(list);
1067 	}
1068 }
1069 
1070 /**
1071  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1072  *	@list: the new list to add
1073  *	@head: the place to add it in the first list
1074  */
1075 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1076 					 struct sk_buff_head *head)
1077 {
1078 	if (!skb_queue_empty(list)) {
1079 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1080 		head->qlen += list->qlen;
1081 	}
1082 }
1083 
1084 /**
1085  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1086  *	@list: the new list to add
1087  *	@head: the place to add it in the first list
1088  *
1089  *	Each of the lists is a queue.
1090  *	The list at @list is reinitialised
1091  */
1092 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1093 					      struct sk_buff_head *head)
1094 {
1095 	if (!skb_queue_empty(list)) {
1096 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1097 		head->qlen += list->qlen;
1098 		__skb_queue_head_init(list);
1099 	}
1100 }
1101 
1102 /**
1103  *	__skb_queue_after - queue a buffer at the list head
1104  *	@list: list to use
1105  *	@prev: place after this buffer
1106  *	@newsk: buffer to queue
1107  *
1108  *	Queue a buffer int the middle of a list. This function takes no locks
1109  *	and you must therefore hold required locks before calling it.
1110  *
1111  *	A buffer cannot be placed on two lists at the same time.
1112  */
1113 static inline void __skb_queue_after(struct sk_buff_head *list,
1114 				     struct sk_buff *prev,
1115 				     struct sk_buff *newsk)
1116 {
1117 	__skb_insert(newsk, prev, prev->next, list);
1118 }
1119 
1120 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1121 		       struct sk_buff_head *list);
1122 
1123 static inline void __skb_queue_before(struct sk_buff_head *list,
1124 				      struct sk_buff *next,
1125 				      struct sk_buff *newsk)
1126 {
1127 	__skb_insert(newsk, next->prev, next, list);
1128 }
1129 
1130 /**
1131  *	__skb_queue_head - queue a buffer at the list head
1132  *	@list: list to use
1133  *	@newsk: buffer to queue
1134  *
1135  *	Queue a buffer at the start of a list. This function takes no locks
1136  *	and you must therefore hold required locks before calling it.
1137  *
1138  *	A buffer cannot be placed on two lists at the same time.
1139  */
1140 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1141 static inline void __skb_queue_head(struct sk_buff_head *list,
1142 				    struct sk_buff *newsk)
1143 {
1144 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1145 }
1146 
1147 /**
1148  *	__skb_queue_tail - queue a buffer at the list tail
1149  *	@list: list to use
1150  *	@newsk: buffer to queue
1151  *
1152  *	Queue a buffer at the end of a list. This function takes no locks
1153  *	and you must therefore hold required locks before calling it.
1154  *
1155  *	A buffer cannot be placed on two lists at the same time.
1156  */
1157 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1158 static inline void __skb_queue_tail(struct sk_buff_head *list,
1159 				   struct sk_buff *newsk)
1160 {
1161 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1162 }
1163 
1164 /*
1165  * remove sk_buff from list. _Must_ be called atomically, and with
1166  * the list known..
1167  */
1168 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1169 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1170 {
1171 	struct sk_buff *next, *prev;
1172 
1173 	list->qlen--;
1174 	next	   = skb->next;
1175 	prev	   = skb->prev;
1176 	skb->next  = skb->prev = NULL;
1177 	next->prev = prev;
1178 	prev->next = next;
1179 }
1180 
1181 /**
1182  *	__skb_dequeue - remove from the head of the queue
1183  *	@list: list to dequeue from
1184  *
1185  *	Remove the head of the list. This function does not take any locks
1186  *	so must be used with appropriate locks held only. The head item is
1187  *	returned or %NULL if the list is empty.
1188  */
1189 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1190 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1191 {
1192 	struct sk_buff *skb = skb_peek(list);
1193 	if (skb)
1194 		__skb_unlink(skb, list);
1195 	return skb;
1196 }
1197 
1198 /**
1199  *	__skb_dequeue_tail - remove from the tail of the queue
1200  *	@list: list to dequeue from
1201  *
1202  *	Remove the tail of the list. This function does not take any locks
1203  *	so must be used with appropriate locks held only. The tail item is
1204  *	returned or %NULL if the list is empty.
1205  */
1206 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1207 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1208 {
1209 	struct sk_buff *skb = skb_peek_tail(list);
1210 	if (skb)
1211 		__skb_unlink(skb, list);
1212 	return skb;
1213 }
1214 
1215 
1216 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1217 {
1218 	return skb->data_len;
1219 }
1220 
1221 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1222 {
1223 	return skb->len - skb->data_len;
1224 }
1225 
1226 static inline int skb_pagelen(const struct sk_buff *skb)
1227 {
1228 	int i, len = 0;
1229 
1230 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1231 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1232 	return len + skb_headlen(skb);
1233 }
1234 
1235 /**
1236  * __skb_fill_page_desc - initialise a paged fragment in an skb
1237  * @skb: buffer containing fragment to be initialised
1238  * @i: paged fragment index to initialise
1239  * @page: the page to use for this fragment
1240  * @off: the offset to the data with @page
1241  * @size: the length of the data
1242  *
1243  * Initialises the @i'th fragment of @skb to point to &size bytes at
1244  * offset @off within @page.
1245  *
1246  * Does not take any additional reference on the fragment.
1247  */
1248 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1249 					struct page *page, int off, int size)
1250 {
1251 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1252 
1253 	/*
1254 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1255 	 * that not all callers have unique ownership of the page. If
1256 	 * pfmemalloc is set, we check the mapping as a mapping implies
1257 	 * page->index is set (index and pfmemalloc share space).
1258 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1259 	 * do not lose pfmemalloc information as the pages would not be
1260 	 * allocated using __GFP_MEMALLOC.
1261 	 */
1262 	if (page->pfmemalloc && !page->mapping)
1263 		skb->pfmemalloc	= true;
1264 	frag->page.p		  = page;
1265 	frag->page_offset	  = off;
1266 	skb_frag_size_set(frag, size);
1267 }
1268 
1269 /**
1270  * skb_fill_page_desc - initialise a paged fragment in an skb
1271  * @skb: buffer containing fragment to be initialised
1272  * @i: paged fragment index to initialise
1273  * @page: the page to use for this fragment
1274  * @off: the offset to the data with @page
1275  * @size: the length of the data
1276  *
1277  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1278  * @skb to point to &size bytes at offset @off within @page. In
1279  * addition updates @skb such that @i is the last fragment.
1280  *
1281  * Does not take any additional reference on the fragment.
1282  */
1283 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1284 				      struct page *page, int off, int size)
1285 {
1286 	__skb_fill_page_desc(skb, i, page, off, size);
1287 	skb_shinfo(skb)->nr_frags = i + 1;
1288 }
1289 
1290 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1291 			    int off, int size, unsigned int truesize);
1292 
1293 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1294 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1295 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1296 
1297 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1298 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1299 {
1300 	return skb->head + skb->tail;
1301 }
1302 
1303 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1304 {
1305 	skb->tail = skb->data - skb->head;
1306 }
1307 
1308 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1309 {
1310 	skb_reset_tail_pointer(skb);
1311 	skb->tail += offset;
1312 }
1313 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1314 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1315 {
1316 	return skb->tail;
1317 }
1318 
1319 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1320 {
1321 	skb->tail = skb->data;
1322 }
1323 
1324 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1325 {
1326 	skb->tail = skb->data + offset;
1327 }
1328 
1329 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1330 
1331 /*
1332  *	Add data to an sk_buff
1333  */
1334 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1335 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1336 {
1337 	unsigned char *tmp = skb_tail_pointer(skb);
1338 	SKB_LINEAR_ASSERT(skb);
1339 	skb->tail += len;
1340 	skb->len  += len;
1341 	return tmp;
1342 }
1343 
1344 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1345 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1346 {
1347 	skb->data -= len;
1348 	skb->len  += len;
1349 	return skb->data;
1350 }
1351 
1352 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1353 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1354 {
1355 	skb->len -= len;
1356 	BUG_ON(skb->len < skb->data_len);
1357 	return skb->data += len;
1358 }
1359 
1360 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1361 {
1362 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1363 }
1364 
1365 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1366 
1367 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1368 {
1369 	if (len > skb_headlen(skb) &&
1370 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1371 		return NULL;
1372 	skb->len -= len;
1373 	return skb->data += len;
1374 }
1375 
1376 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1377 {
1378 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1379 }
1380 
1381 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1382 {
1383 	if (likely(len <= skb_headlen(skb)))
1384 		return 1;
1385 	if (unlikely(len > skb->len))
1386 		return 0;
1387 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1388 }
1389 
1390 /**
1391  *	skb_headroom - bytes at buffer head
1392  *	@skb: buffer to check
1393  *
1394  *	Return the number of bytes of free space at the head of an &sk_buff.
1395  */
1396 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1397 {
1398 	return skb->data - skb->head;
1399 }
1400 
1401 /**
1402  *	skb_tailroom - bytes at buffer end
1403  *	@skb: buffer to check
1404  *
1405  *	Return the number of bytes of free space at the tail of an sk_buff
1406  */
1407 static inline int skb_tailroom(const struct sk_buff *skb)
1408 {
1409 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1410 }
1411 
1412 /**
1413  *	skb_availroom - bytes at buffer end
1414  *	@skb: buffer to check
1415  *
1416  *	Return the number of bytes of free space at the tail of an sk_buff
1417  *	allocated by sk_stream_alloc()
1418  */
1419 static inline int skb_availroom(const struct sk_buff *skb)
1420 {
1421 	return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1422 }
1423 
1424 /**
1425  *	skb_reserve - adjust headroom
1426  *	@skb: buffer to alter
1427  *	@len: bytes to move
1428  *
1429  *	Increase the headroom of an empty &sk_buff by reducing the tail
1430  *	room. This is only allowed for an empty buffer.
1431  */
1432 static inline void skb_reserve(struct sk_buff *skb, int len)
1433 {
1434 	skb->data += len;
1435 	skb->tail += len;
1436 }
1437 
1438 static inline void skb_reset_mac_len(struct sk_buff *skb)
1439 {
1440 	skb->mac_len = skb->network_header - skb->mac_header;
1441 }
1442 
1443 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1444 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1445 {
1446 	return skb->head + skb->transport_header;
1447 }
1448 
1449 static inline void skb_reset_transport_header(struct sk_buff *skb)
1450 {
1451 	skb->transport_header = skb->data - skb->head;
1452 }
1453 
1454 static inline void skb_set_transport_header(struct sk_buff *skb,
1455 					    const int offset)
1456 {
1457 	skb_reset_transport_header(skb);
1458 	skb->transport_header += offset;
1459 }
1460 
1461 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1462 {
1463 	return skb->head + skb->network_header;
1464 }
1465 
1466 static inline void skb_reset_network_header(struct sk_buff *skb)
1467 {
1468 	skb->network_header = skb->data - skb->head;
1469 }
1470 
1471 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1472 {
1473 	skb_reset_network_header(skb);
1474 	skb->network_header += offset;
1475 }
1476 
1477 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1478 {
1479 	return skb->head + skb->mac_header;
1480 }
1481 
1482 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1483 {
1484 	return skb->mac_header != ~0U;
1485 }
1486 
1487 static inline void skb_reset_mac_header(struct sk_buff *skb)
1488 {
1489 	skb->mac_header = skb->data - skb->head;
1490 }
1491 
1492 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1493 {
1494 	skb_reset_mac_header(skb);
1495 	skb->mac_header += offset;
1496 }
1497 
1498 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1499 
1500 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1501 {
1502 	return skb->transport_header;
1503 }
1504 
1505 static inline void skb_reset_transport_header(struct sk_buff *skb)
1506 {
1507 	skb->transport_header = skb->data;
1508 }
1509 
1510 static inline void skb_set_transport_header(struct sk_buff *skb,
1511 					    const int offset)
1512 {
1513 	skb->transport_header = skb->data + offset;
1514 }
1515 
1516 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1517 {
1518 	return skb->network_header;
1519 }
1520 
1521 static inline void skb_reset_network_header(struct sk_buff *skb)
1522 {
1523 	skb->network_header = skb->data;
1524 }
1525 
1526 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1527 {
1528 	skb->network_header = skb->data + offset;
1529 }
1530 
1531 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1532 {
1533 	return skb->mac_header;
1534 }
1535 
1536 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1537 {
1538 	return skb->mac_header != NULL;
1539 }
1540 
1541 static inline void skb_reset_mac_header(struct sk_buff *skb)
1542 {
1543 	skb->mac_header = skb->data;
1544 }
1545 
1546 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1547 {
1548 	skb->mac_header = skb->data + offset;
1549 }
1550 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1551 
1552 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1553 {
1554 	if (skb_mac_header_was_set(skb)) {
1555 		const unsigned char *old_mac = skb_mac_header(skb);
1556 
1557 		skb_set_mac_header(skb, -skb->mac_len);
1558 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1559 	}
1560 }
1561 
1562 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1563 {
1564 	return skb->csum_start - skb_headroom(skb);
1565 }
1566 
1567 static inline int skb_transport_offset(const struct sk_buff *skb)
1568 {
1569 	return skb_transport_header(skb) - skb->data;
1570 }
1571 
1572 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1573 {
1574 	return skb->transport_header - skb->network_header;
1575 }
1576 
1577 static inline int skb_network_offset(const struct sk_buff *skb)
1578 {
1579 	return skb_network_header(skb) - skb->data;
1580 }
1581 
1582 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1583 {
1584 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1585 }
1586 
1587 /*
1588  * CPUs often take a performance hit when accessing unaligned memory
1589  * locations. The actual performance hit varies, it can be small if the
1590  * hardware handles it or large if we have to take an exception and fix it
1591  * in software.
1592  *
1593  * Since an ethernet header is 14 bytes network drivers often end up with
1594  * the IP header at an unaligned offset. The IP header can be aligned by
1595  * shifting the start of the packet by 2 bytes. Drivers should do this
1596  * with:
1597  *
1598  * skb_reserve(skb, NET_IP_ALIGN);
1599  *
1600  * The downside to this alignment of the IP header is that the DMA is now
1601  * unaligned. On some architectures the cost of an unaligned DMA is high
1602  * and this cost outweighs the gains made by aligning the IP header.
1603  *
1604  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1605  * to be overridden.
1606  */
1607 #ifndef NET_IP_ALIGN
1608 #define NET_IP_ALIGN	2
1609 #endif
1610 
1611 /*
1612  * The networking layer reserves some headroom in skb data (via
1613  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1614  * the header has to grow. In the default case, if the header has to grow
1615  * 32 bytes or less we avoid the reallocation.
1616  *
1617  * Unfortunately this headroom changes the DMA alignment of the resulting
1618  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1619  * on some architectures. An architecture can override this value,
1620  * perhaps setting it to a cacheline in size (since that will maintain
1621  * cacheline alignment of the DMA). It must be a power of 2.
1622  *
1623  * Various parts of the networking layer expect at least 32 bytes of
1624  * headroom, you should not reduce this.
1625  *
1626  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1627  * to reduce average number of cache lines per packet.
1628  * get_rps_cpus() for example only access one 64 bytes aligned block :
1629  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1630  */
1631 #ifndef NET_SKB_PAD
1632 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1633 #endif
1634 
1635 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1636 
1637 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1638 {
1639 	if (unlikely(skb_is_nonlinear(skb))) {
1640 		WARN_ON(1);
1641 		return;
1642 	}
1643 	skb->len = len;
1644 	skb_set_tail_pointer(skb, len);
1645 }
1646 
1647 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1648 
1649 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1650 {
1651 	if (skb->data_len)
1652 		return ___pskb_trim(skb, len);
1653 	__skb_trim(skb, len);
1654 	return 0;
1655 }
1656 
1657 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1658 {
1659 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1660 }
1661 
1662 /**
1663  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1664  *	@skb: buffer to alter
1665  *	@len: new length
1666  *
1667  *	This is identical to pskb_trim except that the caller knows that
1668  *	the skb is not cloned so we should never get an error due to out-
1669  *	of-memory.
1670  */
1671 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1672 {
1673 	int err = pskb_trim(skb, len);
1674 	BUG_ON(err);
1675 }
1676 
1677 /**
1678  *	skb_orphan - orphan a buffer
1679  *	@skb: buffer to orphan
1680  *
1681  *	If a buffer currently has an owner then we call the owner's
1682  *	destructor function and make the @skb unowned. The buffer continues
1683  *	to exist but is no longer charged to its former owner.
1684  */
1685 static inline void skb_orphan(struct sk_buff *skb)
1686 {
1687 	if (skb->destructor)
1688 		skb->destructor(skb);
1689 	skb->destructor = NULL;
1690 	skb->sk		= NULL;
1691 }
1692 
1693 /**
1694  *	skb_orphan_frags - orphan the frags contained in a buffer
1695  *	@skb: buffer to orphan frags from
1696  *	@gfp_mask: allocation mask for replacement pages
1697  *
1698  *	For each frag in the SKB which needs a destructor (i.e. has an
1699  *	owner) create a copy of that frag and release the original
1700  *	page by calling the destructor.
1701  */
1702 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1703 {
1704 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1705 		return 0;
1706 	return skb_copy_ubufs(skb, gfp_mask);
1707 }
1708 
1709 /**
1710  *	__skb_queue_purge - empty a list
1711  *	@list: list to empty
1712  *
1713  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1714  *	the list and one reference dropped. This function does not take the
1715  *	list lock and the caller must hold the relevant locks to use it.
1716  */
1717 extern void skb_queue_purge(struct sk_buff_head *list);
1718 static inline void __skb_queue_purge(struct sk_buff_head *list)
1719 {
1720 	struct sk_buff *skb;
1721 	while ((skb = __skb_dequeue(list)) != NULL)
1722 		kfree_skb(skb);
1723 }
1724 
1725 extern void *netdev_alloc_frag(unsigned int fragsz);
1726 
1727 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1728 					  unsigned int length,
1729 					  gfp_t gfp_mask);
1730 
1731 /**
1732  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1733  *	@dev: network device to receive on
1734  *	@length: length to allocate
1735  *
1736  *	Allocate a new &sk_buff and assign it a usage count of one. The
1737  *	buffer has unspecified headroom built in. Users should allocate
1738  *	the headroom they think they need without accounting for the
1739  *	built in space. The built in space is used for optimisations.
1740  *
1741  *	%NULL is returned if there is no free memory. Although this function
1742  *	allocates memory it can be called from an interrupt.
1743  */
1744 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1745 					       unsigned int length)
1746 {
1747 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1748 }
1749 
1750 /* legacy helper around __netdev_alloc_skb() */
1751 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1752 					      gfp_t gfp_mask)
1753 {
1754 	return __netdev_alloc_skb(NULL, length, gfp_mask);
1755 }
1756 
1757 /* legacy helper around netdev_alloc_skb() */
1758 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1759 {
1760 	return netdev_alloc_skb(NULL, length);
1761 }
1762 
1763 
1764 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1765 		unsigned int length, gfp_t gfp)
1766 {
1767 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1768 
1769 	if (NET_IP_ALIGN && skb)
1770 		skb_reserve(skb, NET_IP_ALIGN);
1771 	return skb;
1772 }
1773 
1774 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1775 		unsigned int length)
1776 {
1777 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1778 }
1779 
1780 /*
1781  *	__skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1782  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1783  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1784  *	@order: size of the allocation
1785  *
1786  * 	Allocate a new page.
1787  *
1788  * 	%NULL is returned if there is no free memory.
1789 */
1790 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1791 					      struct sk_buff *skb,
1792 					      unsigned int order)
1793 {
1794 	struct page *page;
1795 
1796 	gfp_mask |= __GFP_COLD;
1797 
1798 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1799 		gfp_mask |= __GFP_MEMALLOC;
1800 
1801 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1802 	if (skb && page && page->pfmemalloc)
1803 		skb->pfmemalloc = true;
1804 
1805 	return page;
1806 }
1807 
1808 /**
1809  *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1810  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1811  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1812  *
1813  * 	Allocate a new page.
1814  *
1815  * 	%NULL is returned if there is no free memory.
1816  */
1817 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1818 					     struct sk_buff *skb)
1819 {
1820 	return __skb_alloc_pages(gfp_mask, skb, 0);
1821 }
1822 
1823 /**
1824  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1825  *	@page: The page that was allocated from skb_alloc_page
1826  *	@skb: The skb that may need pfmemalloc set
1827  */
1828 static inline void skb_propagate_pfmemalloc(struct page *page,
1829 					     struct sk_buff *skb)
1830 {
1831 	if (page && page->pfmemalloc)
1832 		skb->pfmemalloc = true;
1833 }
1834 
1835 /**
1836  * skb_frag_page - retrieve the page refered to by a paged fragment
1837  * @frag: the paged fragment
1838  *
1839  * Returns the &struct page associated with @frag.
1840  */
1841 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1842 {
1843 	return frag->page.p;
1844 }
1845 
1846 /**
1847  * __skb_frag_ref - take an addition reference on a paged fragment.
1848  * @frag: the paged fragment
1849  *
1850  * Takes an additional reference on the paged fragment @frag.
1851  */
1852 static inline void __skb_frag_ref(skb_frag_t *frag)
1853 {
1854 	get_page(skb_frag_page(frag));
1855 }
1856 
1857 /**
1858  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1859  * @skb: the buffer
1860  * @f: the fragment offset.
1861  *
1862  * Takes an additional reference on the @f'th paged fragment of @skb.
1863  */
1864 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1865 {
1866 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1867 }
1868 
1869 /**
1870  * __skb_frag_unref - release a reference on a paged fragment.
1871  * @frag: the paged fragment
1872  *
1873  * Releases a reference on the paged fragment @frag.
1874  */
1875 static inline void __skb_frag_unref(skb_frag_t *frag)
1876 {
1877 	put_page(skb_frag_page(frag));
1878 }
1879 
1880 /**
1881  * skb_frag_unref - release a reference on a paged fragment of an skb.
1882  * @skb: the buffer
1883  * @f: the fragment offset
1884  *
1885  * Releases a reference on the @f'th paged fragment of @skb.
1886  */
1887 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1888 {
1889 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1890 }
1891 
1892 /**
1893  * skb_frag_address - gets the address of the data contained in a paged fragment
1894  * @frag: the paged fragment buffer
1895  *
1896  * Returns the address of the data within @frag. The page must already
1897  * be mapped.
1898  */
1899 static inline void *skb_frag_address(const skb_frag_t *frag)
1900 {
1901 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1902 }
1903 
1904 /**
1905  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1906  * @frag: the paged fragment buffer
1907  *
1908  * Returns the address of the data within @frag. Checks that the page
1909  * is mapped and returns %NULL otherwise.
1910  */
1911 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1912 {
1913 	void *ptr = page_address(skb_frag_page(frag));
1914 	if (unlikely(!ptr))
1915 		return NULL;
1916 
1917 	return ptr + frag->page_offset;
1918 }
1919 
1920 /**
1921  * __skb_frag_set_page - sets the page contained in a paged fragment
1922  * @frag: the paged fragment
1923  * @page: the page to set
1924  *
1925  * Sets the fragment @frag to contain @page.
1926  */
1927 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1928 {
1929 	frag->page.p = page;
1930 }
1931 
1932 /**
1933  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1934  * @skb: the buffer
1935  * @f: the fragment offset
1936  * @page: the page to set
1937  *
1938  * Sets the @f'th fragment of @skb to contain @page.
1939  */
1940 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1941 				     struct page *page)
1942 {
1943 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1944 }
1945 
1946 /**
1947  * skb_frag_dma_map - maps a paged fragment via the DMA API
1948  * @dev: the device to map the fragment to
1949  * @frag: the paged fragment to map
1950  * @offset: the offset within the fragment (starting at the
1951  *          fragment's own offset)
1952  * @size: the number of bytes to map
1953  * @dir: the direction of the mapping (%PCI_DMA_*)
1954  *
1955  * Maps the page associated with @frag to @device.
1956  */
1957 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1958 					  const skb_frag_t *frag,
1959 					  size_t offset, size_t size,
1960 					  enum dma_data_direction dir)
1961 {
1962 	return dma_map_page(dev, skb_frag_page(frag),
1963 			    frag->page_offset + offset, size, dir);
1964 }
1965 
1966 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1967 					gfp_t gfp_mask)
1968 {
1969 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1970 }
1971 
1972 /**
1973  *	skb_clone_writable - is the header of a clone writable
1974  *	@skb: buffer to check
1975  *	@len: length up to which to write
1976  *
1977  *	Returns true if modifying the header part of the cloned buffer
1978  *	does not requires the data to be copied.
1979  */
1980 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1981 {
1982 	return !skb_header_cloned(skb) &&
1983 	       skb_headroom(skb) + len <= skb->hdr_len;
1984 }
1985 
1986 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1987 			    int cloned)
1988 {
1989 	int delta = 0;
1990 
1991 	if (headroom > skb_headroom(skb))
1992 		delta = headroom - skb_headroom(skb);
1993 
1994 	if (delta || cloned)
1995 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1996 					GFP_ATOMIC);
1997 	return 0;
1998 }
1999 
2000 /**
2001  *	skb_cow - copy header of skb when it is required
2002  *	@skb: buffer to cow
2003  *	@headroom: needed headroom
2004  *
2005  *	If the skb passed lacks sufficient headroom or its data part
2006  *	is shared, data is reallocated. If reallocation fails, an error
2007  *	is returned and original skb is not changed.
2008  *
2009  *	The result is skb with writable area skb->head...skb->tail
2010  *	and at least @headroom of space at head.
2011  */
2012 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2013 {
2014 	return __skb_cow(skb, headroom, skb_cloned(skb));
2015 }
2016 
2017 /**
2018  *	skb_cow_head - skb_cow but only making the head writable
2019  *	@skb: buffer to cow
2020  *	@headroom: needed headroom
2021  *
2022  *	This function is identical to skb_cow except that we replace the
2023  *	skb_cloned check by skb_header_cloned.  It should be used when
2024  *	you only need to push on some header and do not need to modify
2025  *	the data.
2026  */
2027 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2028 {
2029 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2030 }
2031 
2032 /**
2033  *	skb_padto	- pad an skbuff up to a minimal size
2034  *	@skb: buffer to pad
2035  *	@len: minimal length
2036  *
2037  *	Pads up a buffer to ensure the trailing bytes exist and are
2038  *	blanked. If the buffer already contains sufficient data it
2039  *	is untouched. Otherwise it is extended. Returns zero on
2040  *	success. The skb is freed on error.
2041  */
2042 
2043 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2044 {
2045 	unsigned int size = skb->len;
2046 	if (likely(size >= len))
2047 		return 0;
2048 	return skb_pad(skb, len - size);
2049 }
2050 
2051 static inline int skb_add_data(struct sk_buff *skb,
2052 			       char __user *from, int copy)
2053 {
2054 	const int off = skb->len;
2055 
2056 	if (skb->ip_summed == CHECKSUM_NONE) {
2057 		int err = 0;
2058 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2059 							    copy, 0, &err);
2060 		if (!err) {
2061 			skb->csum = csum_block_add(skb->csum, csum, off);
2062 			return 0;
2063 		}
2064 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
2065 		return 0;
2066 
2067 	__skb_trim(skb, off);
2068 	return -EFAULT;
2069 }
2070 
2071 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2072 				    const struct page *page, int off)
2073 {
2074 	if (i) {
2075 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2076 
2077 		return page == skb_frag_page(frag) &&
2078 		       off == frag->page_offset + skb_frag_size(frag);
2079 	}
2080 	return false;
2081 }
2082 
2083 static inline int __skb_linearize(struct sk_buff *skb)
2084 {
2085 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2086 }
2087 
2088 /**
2089  *	skb_linearize - convert paged skb to linear one
2090  *	@skb: buffer to linarize
2091  *
2092  *	If there is no free memory -ENOMEM is returned, otherwise zero
2093  *	is returned and the old skb data released.
2094  */
2095 static inline int skb_linearize(struct sk_buff *skb)
2096 {
2097 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2098 }
2099 
2100 /**
2101  *	skb_linearize_cow - make sure skb is linear and writable
2102  *	@skb: buffer to process
2103  *
2104  *	If there is no free memory -ENOMEM is returned, otherwise zero
2105  *	is returned and the old skb data released.
2106  */
2107 static inline int skb_linearize_cow(struct sk_buff *skb)
2108 {
2109 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2110 	       __skb_linearize(skb) : 0;
2111 }
2112 
2113 /**
2114  *	skb_postpull_rcsum - update checksum for received skb after pull
2115  *	@skb: buffer to update
2116  *	@start: start of data before pull
2117  *	@len: length of data pulled
2118  *
2119  *	After doing a pull on a received packet, you need to call this to
2120  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2121  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2122  */
2123 
2124 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2125 				      const void *start, unsigned int len)
2126 {
2127 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2128 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2129 }
2130 
2131 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2132 
2133 /**
2134  *	pskb_trim_rcsum - trim received skb and update checksum
2135  *	@skb: buffer to trim
2136  *	@len: new length
2137  *
2138  *	This is exactly the same as pskb_trim except that it ensures the
2139  *	checksum of received packets are still valid after the operation.
2140  */
2141 
2142 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2143 {
2144 	if (likely(len >= skb->len))
2145 		return 0;
2146 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2147 		skb->ip_summed = CHECKSUM_NONE;
2148 	return __pskb_trim(skb, len);
2149 }
2150 
2151 #define skb_queue_walk(queue, skb) \
2152 		for (skb = (queue)->next;					\
2153 		     skb != (struct sk_buff *)(queue);				\
2154 		     skb = skb->next)
2155 
2156 #define skb_queue_walk_safe(queue, skb, tmp)					\
2157 		for (skb = (queue)->next, tmp = skb->next;			\
2158 		     skb != (struct sk_buff *)(queue);				\
2159 		     skb = tmp, tmp = skb->next)
2160 
2161 #define skb_queue_walk_from(queue, skb)						\
2162 		for (; skb != (struct sk_buff *)(queue);			\
2163 		     skb = skb->next)
2164 
2165 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2166 		for (tmp = skb->next;						\
2167 		     skb != (struct sk_buff *)(queue);				\
2168 		     skb = tmp, tmp = skb->next)
2169 
2170 #define skb_queue_reverse_walk(queue, skb) \
2171 		for (skb = (queue)->prev;					\
2172 		     skb != (struct sk_buff *)(queue);				\
2173 		     skb = skb->prev)
2174 
2175 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2176 		for (skb = (queue)->prev, tmp = skb->prev;			\
2177 		     skb != (struct sk_buff *)(queue);				\
2178 		     skb = tmp, tmp = skb->prev)
2179 
2180 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2181 		for (tmp = skb->prev;						\
2182 		     skb != (struct sk_buff *)(queue);				\
2183 		     skb = tmp, tmp = skb->prev)
2184 
2185 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2186 {
2187 	return skb_shinfo(skb)->frag_list != NULL;
2188 }
2189 
2190 static inline void skb_frag_list_init(struct sk_buff *skb)
2191 {
2192 	skb_shinfo(skb)->frag_list = NULL;
2193 }
2194 
2195 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2196 {
2197 	frag->next = skb_shinfo(skb)->frag_list;
2198 	skb_shinfo(skb)->frag_list = frag;
2199 }
2200 
2201 #define skb_walk_frags(skb, iter)	\
2202 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2203 
2204 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2205 					   int *peeked, int *off, int *err);
2206 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2207 					 int noblock, int *err);
2208 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2209 				     struct poll_table_struct *wait);
2210 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2211 					       int offset, struct iovec *to,
2212 					       int size);
2213 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2214 							int hlen,
2215 							struct iovec *iov);
2216 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2217 						    int offset,
2218 						    const struct iovec *from,
2219 						    int from_offset,
2220 						    int len);
2221 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2222 						     int offset,
2223 						     const struct iovec *to,
2224 						     int to_offset,
2225 						     int size);
2226 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2227 extern void	       skb_free_datagram_locked(struct sock *sk,
2228 						struct sk_buff *skb);
2229 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2230 					 unsigned int flags);
2231 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2232 				    int len, __wsum csum);
2233 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2234 				     void *to, int len);
2235 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2236 				      const void *from, int len);
2237 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2238 					      int offset, u8 *to, int len,
2239 					      __wsum csum);
2240 extern int             skb_splice_bits(struct sk_buff *skb,
2241 						unsigned int offset,
2242 						struct pipe_inode_info *pipe,
2243 						unsigned int len,
2244 						unsigned int flags);
2245 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2246 extern void	       skb_split(struct sk_buff *skb,
2247 				 struct sk_buff *skb1, const u32 len);
2248 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2249 				 int shiftlen);
2250 
2251 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2252 				   netdev_features_t features);
2253 
2254 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2255 				       int len, void *buffer)
2256 {
2257 	int hlen = skb_headlen(skb);
2258 
2259 	if (hlen - offset >= len)
2260 		return skb->data + offset;
2261 
2262 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2263 		return NULL;
2264 
2265 	return buffer;
2266 }
2267 
2268 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2269 					     void *to,
2270 					     const unsigned int len)
2271 {
2272 	memcpy(to, skb->data, len);
2273 }
2274 
2275 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2276 						    const int offset, void *to,
2277 						    const unsigned int len)
2278 {
2279 	memcpy(to, skb->data + offset, len);
2280 }
2281 
2282 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2283 					   const void *from,
2284 					   const unsigned int len)
2285 {
2286 	memcpy(skb->data, from, len);
2287 }
2288 
2289 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2290 						  const int offset,
2291 						  const void *from,
2292 						  const unsigned int len)
2293 {
2294 	memcpy(skb->data + offset, from, len);
2295 }
2296 
2297 extern void skb_init(void);
2298 
2299 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2300 {
2301 	return skb->tstamp;
2302 }
2303 
2304 /**
2305  *	skb_get_timestamp - get timestamp from a skb
2306  *	@skb: skb to get stamp from
2307  *	@stamp: pointer to struct timeval to store stamp in
2308  *
2309  *	Timestamps are stored in the skb as offsets to a base timestamp.
2310  *	This function converts the offset back to a struct timeval and stores
2311  *	it in stamp.
2312  */
2313 static inline void skb_get_timestamp(const struct sk_buff *skb,
2314 				     struct timeval *stamp)
2315 {
2316 	*stamp = ktime_to_timeval(skb->tstamp);
2317 }
2318 
2319 static inline void skb_get_timestampns(const struct sk_buff *skb,
2320 				       struct timespec *stamp)
2321 {
2322 	*stamp = ktime_to_timespec(skb->tstamp);
2323 }
2324 
2325 static inline void __net_timestamp(struct sk_buff *skb)
2326 {
2327 	skb->tstamp = ktime_get_real();
2328 }
2329 
2330 static inline ktime_t net_timedelta(ktime_t t)
2331 {
2332 	return ktime_sub(ktime_get_real(), t);
2333 }
2334 
2335 static inline ktime_t net_invalid_timestamp(void)
2336 {
2337 	return ktime_set(0, 0);
2338 }
2339 
2340 extern void skb_timestamping_init(void);
2341 
2342 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2343 
2344 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2345 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2346 
2347 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2348 
2349 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2350 {
2351 }
2352 
2353 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2354 {
2355 	return false;
2356 }
2357 
2358 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2359 
2360 /**
2361  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2362  *
2363  * PHY drivers may accept clones of transmitted packets for
2364  * timestamping via their phy_driver.txtstamp method. These drivers
2365  * must call this function to return the skb back to the stack, with
2366  * or without a timestamp.
2367  *
2368  * @skb: clone of the the original outgoing packet
2369  * @hwtstamps: hardware time stamps, may be NULL if not available
2370  *
2371  */
2372 void skb_complete_tx_timestamp(struct sk_buff *skb,
2373 			       struct skb_shared_hwtstamps *hwtstamps);
2374 
2375 /**
2376  * skb_tstamp_tx - queue clone of skb with send time stamps
2377  * @orig_skb:	the original outgoing packet
2378  * @hwtstamps:	hardware time stamps, may be NULL if not available
2379  *
2380  * If the skb has a socket associated, then this function clones the
2381  * skb (thus sharing the actual data and optional structures), stores
2382  * the optional hardware time stamping information (if non NULL) or
2383  * generates a software time stamp (otherwise), then queues the clone
2384  * to the error queue of the socket.  Errors are silently ignored.
2385  */
2386 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2387 			struct skb_shared_hwtstamps *hwtstamps);
2388 
2389 static inline void sw_tx_timestamp(struct sk_buff *skb)
2390 {
2391 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2392 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2393 		skb_tstamp_tx(skb, NULL);
2394 }
2395 
2396 /**
2397  * skb_tx_timestamp() - Driver hook for transmit timestamping
2398  *
2399  * Ethernet MAC Drivers should call this function in their hard_xmit()
2400  * function immediately before giving the sk_buff to the MAC hardware.
2401  *
2402  * @skb: A socket buffer.
2403  */
2404 static inline void skb_tx_timestamp(struct sk_buff *skb)
2405 {
2406 	skb_clone_tx_timestamp(skb);
2407 	sw_tx_timestamp(skb);
2408 }
2409 
2410 /**
2411  * skb_complete_wifi_ack - deliver skb with wifi status
2412  *
2413  * @skb: the original outgoing packet
2414  * @acked: ack status
2415  *
2416  */
2417 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2418 
2419 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2420 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2421 
2422 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2423 {
2424 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2425 }
2426 
2427 /**
2428  *	skb_checksum_complete - Calculate checksum of an entire packet
2429  *	@skb: packet to process
2430  *
2431  *	This function calculates the checksum over the entire packet plus
2432  *	the value of skb->csum.  The latter can be used to supply the
2433  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2434  *	checksum.
2435  *
2436  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2437  *	this function can be used to verify that checksum on received
2438  *	packets.  In that case the function should return zero if the
2439  *	checksum is correct.  In particular, this function will return zero
2440  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2441  *	hardware has already verified the correctness of the checksum.
2442  */
2443 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2444 {
2445 	return skb_csum_unnecessary(skb) ?
2446 	       0 : __skb_checksum_complete(skb);
2447 }
2448 
2449 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2450 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2451 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2452 {
2453 	if (nfct && atomic_dec_and_test(&nfct->use))
2454 		nf_conntrack_destroy(nfct);
2455 }
2456 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2457 {
2458 	if (nfct)
2459 		atomic_inc(&nfct->use);
2460 }
2461 #endif
2462 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2463 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2464 {
2465 	if (skb)
2466 		atomic_inc(&skb->users);
2467 }
2468 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2469 {
2470 	if (skb)
2471 		kfree_skb(skb);
2472 }
2473 #endif
2474 #ifdef CONFIG_BRIDGE_NETFILTER
2475 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2476 {
2477 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2478 		kfree(nf_bridge);
2479 }
2480 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2481 {
2482 	if (nf_bridge)
2483 		atomic_inc(&nf_bridge->use);
2484 }
2485 #endif /* CONFIG_BRIDGE_NETFILTER */
2486 static inline void nf_reset(struct sk_buff *skb)
2487 {
2488 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2489 	nf_conntrack_put(skb->nfct);
2490 	skb->nfct = NULL;
2491 #endif
2492 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2493 	nf_conntrack_put_reasm(skb->nfct_reasm);
2494 	skb->nfct_reasm = NULL;
2495 #endif
2496 #ifdef CONFIG_BRIDGE_NETFILTER
2497 	nf_bridge_put(skb->nf_bridge);
2498 	skb->nf_bridge = NULL;
2499 #endif
2500 }
2501 
2502 /* Note: This doesn't put any conntrack and bridge info in dst. */
2503 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2504 {
2505 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2506 	dst->nfct = src->nfct;
2507 	nf_conntrack_get(src->nfct);
2508 	dst->nfctinfo = src->nfctinfo;
2509 #endif
2510 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2511 	dst->nfct_reasm = src->nfct_reasm;
2512 	nf_conntrack_get_reasm(src->nfct_reasm);
2513 #endif
2514 #ifdef CONFIG_BRIDGE_NETFILTER
2515 	dst->nf_bridge  = src->nf_bridge;
2516 	nf_bridge_get(src->nf_bridge);
2517 #endif
2518 }
2519 
2520 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2521 {
2522 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2523 	nf_conntrack_put(dst->nfct);
2524 #endif
2525 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2526 	nf_conntrack_put_reasm(dst->nfct_reasm);
2527 #endif
2528 #ifdef CONFIG_BRIDGE_NETFILTER
2529 	nf_bridge_put(dst->nf_bridge);
2530 #endif
2531 	__nf_copy(dst, src);
2532 }
2533 
2534 #ifdef CONFIG_NETWORK_SECMARK
2535 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2536 {
2537 	to->secmark = from->secmark;
2538 }
2539 
2540 static inline void skb_init_secmark(struct sk_buff *skb)
2541 {
2542 	skb->secmark = 0;
2543 }
2544 #else
2545 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2546 { }
2547 
2548 static inline void skb_init_secmark(struct sk_buff *skb)
2549 { }
2550 #endif
2551 
2552 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2553 {
2554 	skb->queue_mapping = queue_mapping;
2555 }
2556 
2557 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2558 {
2559 	return skb->queue_mapping;
2560 }
2561 
2562 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2563 {
2564 	to->queue_mapping = from->queue_mapping;
2565 }
2566 
2567 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2568 {
2569 	skb->queue_mapping = rx_queue + 1;
2570 }
2571 
2572 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2573 {
2574 	return skb->queue_mapping - 1;
2575 }
2576 
2577 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2578 {
2579 	return skb->queue_mapping != 0;
2580 }
2581 
2582 extern u16 __skb_tx_hash(const struct net_device *dev,
2583 			 const struct sk_buff *skb,
2584 			 unsigned int num_tx_queues);
2585 
2586 #ifdef CONFIG_XFRM
2587 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2588 {
2589 	return skb->sp;
2590 }
2591 #else
2592 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2593 {
2594 	return NULL;
2595 }
2596 #endif
2597 
2598 static inline bool skb_is_gso(const struct sk_buff *skb)
2599 {
2600 	return skb_shinfo(skb)->gso_size;
2601 }
2602 
2603 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2604 {
2605 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2606 }
2607 
2608 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2609 
2610 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2611 {
2612 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2613 	 * wanted then gso_type will be set. */
2614 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2615 
2616 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2617 	    unlikely(shinfo->gso_type == 0)) {
2618 		__skb_warn_lro_forwarding(skb);
2619 		return true;
2620 	}
2621 	return false;
2622 }
2623 
2624 static inline void skb_forward_csum(struct sk_buff *skb)
2625 {
2626 	/* Unfortunately we don't support this one.  Any brave souls? */
2627 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2628 		skb->ip_summed = CHECKSUM_NONE;
2629 }
2630 
2631 /**
2632  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2633  * @skb: skb to check
2634  *
2635  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2636  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2637  * use this helper, to document places where we make this assertion.
2638  */
2639 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2640 {
2641 #ifdef DEBUG
2642 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2643 #endif
2644 }
2645 
2646 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2647 
2648 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2649 {
2650 	if (irqs_disabled())
2651 		return false;
2652 
2653 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2654 		return false;
2655 
2656 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2657 		return false;
2658 
2659 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2660 	if (skb_end_offset(skb) < skb_size)
2661 		return false;
2662 
2663 	if (skb_shared(skb) || skb_cloned(skb))
2664 		return false;
2665 
2666 	return true;
2667 }
2668 
2669 /**
2670  * skb_head_is_locked - Determine if the skb->head is locked down
2671  * @skb: skb to check
2672  *
2673  * The head on skbs build around a head frag can be removed if they are
2674  * not cloned.  This function returns true if the skb head is locked down
2675  * due to either being allocated via kmalloc, or by being a clone with
2676  * multiple references to the head.
2677  */
2678 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2679 {
2680 	return !skb->head_frag || skb_cloned(skb);
2681 }
2682 #endif	/* __KERNEL__ */
2683 #endif	/* _LINUX_SKBUFF_H */
2684