1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <net/flow_dissector.h> 38 #include <linux/splice.h> 39 #include <linux/in6.h> 40 #include <linux/if_packet.h> 41 #include <net/flow.h> 42 43 /* The interface for checksum offload between the stack and networking drivers 44 * is as follows... 45 * 46 * A. IP checksum related features 47 * 48 * Drivers advertise checksum offload capabilities in the features of a device. 49 * From the stack's point of view these are capabilities offered by the driver, 50 * a driver typically only advertises features that it is capable of offloading 51 * to its device. 52 * 53 * The checksum related features are: 54 * 55 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 56 * IP (one's complement) checksum for any combination 57 * of protocols or protocol layering. The checksum is 58 * computed and set in a packet per the CHECKSUM_PARTIAL 59 * interface (see below). 60 * 61 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 62 * TCP or UDP packets over IPv4. These are specifically 63 * unencapsulated packets of the form IPv4|TCP or 64 * IPv4|UDP where the Protocol field in the IPv4 header 65 * is TCP or UDP. The IPv4 header may contain IP options 66 * This feature cannot be set in features for a device 67 * with NETIF_F_HW_CSUM also set. This feature is being 68 * DEPRECATED (see below). 69 * 70 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 71 * TCP or UDP packets over IPv6. These are specifically 72 * unencapsulated packets of the form IPv6|TCP or 73 * IPv4|UDP where the Next Header field in the IPv6 74 * header is either TCP or UDP. IPv6 extension headers 75 * are not supported with this feature. This feature 76 * cannot be set in features for a device with 77 * NETIF_F_HW_CSUM also set. This feature is being 78 * DEPRECATED (see below). 79 * 80 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 81 * This flag is used only used to disable the RX checksum 82 * feature for a device. The stack will accept receive 83 * checksum indication in packets received on a device 84 * regardless of whether NETIF_F_RXCSUM is set. 85 * 86 * B. Checksumming of received packets by device. Indication of checksum 87 * verification is in set skb->ip_summed. Possible values are: 88 * 89 * CHECKSUM_NONE: 90 * 91 * Device did not checksum this packet e.g. due to lack of capabilities. 92 * The packet contains full (though not verified) checksum in packet but 93 * not in skb->csum. Thus, skb->csum is undefined in this case. 94 * 95 * CHECKSUM_UNNECESSARY: 96 * 97 * The hardware you're dealing with doesn't calculate the full checksum 98 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 99 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 100 * if their checksums are okay. skb->csum is still undefined in this case 101 * though. A driver or device must never modify the checksum field in the 102 * packet even if checksum is verified. 103 * 104 * CHECKSUM_UNNECESSARY is applicable to following protocols: 105 * TCP: IPv6 and IPv4. 106 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 107 * zero UDP checksum for either IPv4 or IPv6, the networking stack 108 * may perform further validation in this case. 109 * GRE: only if the checksum is present in the header. 110 * SCTP: indicates the CRC in SCTP header has been validated. 111 * 112 * skb->csum_level indicates the number of consecutive checksums found in 113 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 114 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 115 * and a device is able to verify the checksums for UDP (possibly zero), 116 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 117 * two. If the device were only able to verify the UDP checksum and not 118 * GRE, either because it doesn't support GRE checksum of because GRE 119 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 120 * not considered in this case). 121 * 122 * CHECKSUM_COMPLETE: 123 * 124 * This is the most generic way. The device supplied checksum of the _whole_ 125 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 126 * hardware doesn't need to parse L3/L4 headers to implement this. 127 * 128 * Note: Even if device supports only some protocols, but is able to produce 129 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 130 * 131 * CHECKSUM_PARTIAL: 132 * 133 * A checksum is set up to be offloaded to a device as described in the 134 * output description for CHECKSUM_PARTIAL. This may occur on a packet 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel 136 * on the same host, or it may be set in the input path in GRO or remote 137 * checksum offload. For the purposes of checksum verification, the checksum 138 * referred to by skb->csum_start + skb->csum_offset and any preceding 139 * checksums in the packet are considered verified. Any checksums in the 140 * packet that are after the checksum being offloaded are not considered to 141 * be verified. 142 * 143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 144 * in the skb->ip_summed for a packet. Values are: 145 * 146 * CHECKSUM_PARTIAL: 147 * 148 * The driver is required to checksum the packet as seen by hard_start_xmit() 149 * from skb->csum_start up to the end, and to record/write the checksum at 150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 151 * csum_start and csum_offset values are valid values given the length and 152 * offset of the packet, however they should not attempt to validate that the 153 * checksum refers to a legitimate transport layer checksum-- it is the 154 * purview of the stack to validate that csum_start and csum_offset are set 155 * correctly. 156 * 157 * When the stack requests checksum offload for a packet, the driver MUST 158 * ensure that the checksum is set correctly. A driver can either offload the 159 * checksum calculation to the device, or call skb_checksum_help (in the case 160 * that the device does not support offload for a particular checksum). 161 * 162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 164 * checksum offload capability. If a device has limited checksum capabilities 165 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as 166 * described above) a helper function can be called to resolve 167 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper 168 * function takes a spec argument that describes the protocol layer that is 169 * supported for checksum offload and can be called for each packet. If a 170 * packet does not match the specification for offload, skb_checksum_help 171 * is called to resolve the checksum. 172 * 173 * CHECKSUM_NONE: 174 * 175 * The skb was already checksummed by the protocol, or a checksum is not 176 * required. 177 * 178 * CHECKSUM_UNNECESSARY: 179 * 180 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 181 * output. 182 * 183 * CHECKSUM_COMPLETE: 184 * Not used in checksum output. If a driver observes a packet with this value 185 * set in skbuff, if should treat as CHECKSUM_NONE being set. 186 * 187 * D. Non-IP checksum (CRC) offloads 188 * 189 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 190 * offloading the SCTP CRC in a packet. To perform this offload the stack 191 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 192 * accordingly. Note the there is no indication in the skbuff that the 193 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports 194 * both IP checksum offload and SCTP CRC offload must verify which offload 195 * is configured for a packet presumably by inspecting packet headers. 196 * 197 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 198 * offloading the FCOE CRC in a packet. To perform this offload the stack 199 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 200 * accordingly. Note the there is no indication in the skbuff that the 201 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 202 * both IP checksum offload and FCOE CRC offload must verify which offload 203 * is configured for a packet presumably by inspecting packet headers. 204 * 205 * E. Checksumming on output with GSO. 206 * 207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 210 * part of the GSO operation is implied. If a checksum is being offloaded 211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 212 * are set to refer to the outermost checksum being offload (two offloaded 213 * checksums are possible with UDP encapsulation). 214 */ 215 216 /* Don't change this without changing skb_csum_unnecessary! */ 217 #define CHECKSUM_NONE 0 218 #define CHECKSUM_UNNECESSARY 1 219 #define CHECKSUM_COMPLETE 2 220 #define CHECKSUM_PARTIAL 3 221 222 /* Maximum value in skb->csum_level */ 223 #define SKB_MAX_CSUM_LEVEL 3 224 225 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 226 #define SKB_WITH_OVERHEAD(X) \ 227 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 228 #define SKB_MAX_ORDER(X, ORDER) \ 229 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 230 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 231 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 232 233 /* return minimum truesize of one skb containing X bytes of data */ 234 #define SKB_TRUESIZE(X) ((X) + \ 235 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 236 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 237 238 struct net_device; 239 struct scatterlist; 240 struct pipe_inode_info; 241 struct iov_iter; 242 struct napi_struct; 243 244 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 245 struct nf_conntrack { 246 atomic_t use; 247 }; 248 #endif 249 250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 251 struct nf_bridge_info { 252 atomic_t use; 253 enum { 254 BRNF_PROTO_UNCHANGED, 255 BRNF_PROTO_8021Q, 256 BRNF_PROTO_PPPOE 257 } orig_proto:8; 258 u8 pkt_otherhost:1; 259 u8 in_prerouting:1; 260 u8 bridged_dnat:1; 261 __u16 frag_max_size; 262 struct net_device *physindev; 263 264 /* always valid & non-NULL from FORWARD on, for physdev match */ 265 struct net_device *physoutdev; 266 union { 267 /* prerouting: detect dnat in orig/reply direction */ 268 __be32 ipv4_daddr; 269 struct in6_addr ipv6_daddr; 270 271 /* after prerouting + nat detected: store original source 272 * mac since neigh resolution overwrites it, only used while 273 * skb is out in neigh layer. 274 */ 275 char neigh_header[8]; 276 }; 277 }; 278 #endif 279 280 struct sk_buff_head { 281 /* These two members must be first. */ 282 struct sk_buff *next; 283 struct sk_buff *prev; 284 285 __u32 qlen; 286 spinlock_t lock; 287 }; 288 289 struct sk_buff; 290 291 /* To allow 64K frame to be packed as single skb without frag_list we 292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 293 * buffers which do not start on a page boundary. 294 * 295 * Since GRO uses frags we allocate at least 16 regardless of page 296 * size. 297 */ 298 #if (65536/PAGE_SIZE + 1) < 16 299 #define MAX_SKB_FRAGS 16UL 300 #else 301 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 302 #endif 303 extern int sysctl_max_skb_frags; 304 305 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 306 * segment using its current segmentation instead. 307 */ 308 #define GSO_BY_FRAGS 0xFFFF 309 310 typedef struct skb_frag_struct skb_frag_t; 311 312 struct skb_frag_struct { 313 struct { 314 struct page *p; 315 } page; 316 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 317 __u32 page_offset; 318 __u32 size; 319 #else 320 __u16 page_offset; 321 __u16 size; 322 #endif 323 }; 324 325 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 326 { 327 return frag->size; 328 } 329 330 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 331 { 332 frag->size = size; 333 } 334 335 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 336 { 337 frag->size += delta; 338 } 339 340 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 341 { 342 frag->size -= delta; 343 } 344 345 #define HAVE_HW_TIME_STAMP 346 347 /** 348 * struct skb_shared_hwtstamps - hardware time stamps 349 * @hwtstamp: hardware time stamp transformed into duration 350 * since arbitrary point in time 351 * 352 * Software time stamps generated by ktime_get_real() are stored in 353 * skb->tstamp. 354 * 355 * hwtstamps can only be compared against other hwtstamps from 356 * the same device. 357 * 358 * This structure is attached to packets as part of the 359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 360 */ 361 struct skb_shared_hwtstamps { 362 ktime_t hwtstamp; 363 }; 364 365 /* Definitions for tx_flags in struct skb_shared_info */ 366 enum { 367 /* generate hardware time stamp */ 368 SKBTX_HW_TSTAMP = 1 << 0, 369 370 /* generate software time stamp when queueing packet to NIC */ 371 SKBTX_SW_TSTAMP = 1 << 1, 372 373 /* device driver is going to provide hardware time stamp */ 374 SKBTX_IN_PROGRESS = 1 << 2, 375 376 /* device driver supports TX zero-copy buffers */ 377 SKBTX_DEV_ZEROCOPY = 1 << 3, 378 379 /* generate wifi status information (where possible) */ 380 SKBTX_WIFI_STATUS = 1 << 4, 381 382 /* This indicates at least one fragment might be overwritten 383 * (as in vmsplice(), sendfile() ...) 384 * If we need to compute a TX checksum, we'll need to copy 385 * all frags to avoid possible bad checksum 386 */ 387 SKBTX_SHARED_FRAG = 1 << 5, 388 389 /* generate software time stamp when entering packet scheduling */ 390 SKBTX_SCHED_TSTAMP = 1 << 6, 391 }; 392 393 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 394 SKBTX_SCHED_TSTAMP) 395 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 396 397 /* 398 * The callback notifies userspace to release buffers when skb DMA is done in 399 * lower device, the skb last reference should be 0 when calling this. 400 * The zerocopy_success argument is true if zero copy transmit occurred, 401 * false on data copy or out of memory error caused by data copy attempt. 402 * The ctx field is used to track device context. 403 * The desc field is used to track userspace buffer index. 404 */ 405 struct ubuf_info { 406 void (*callback)(struct ubuf_info *, bool zerocopy_success); 407 void *ctx; 408 unsigned long desc; 409 }; 410 411 /* This data is invariant across clones and lives at 412 * the end of the header data, ie. at skb->end. 413 */ 414 struct skb_shared_info { 415 unsigned char nr_frags; 416 __u8 tx_flags; 417 unsigned short gso_size; 418 /* Warning: this field is not always filled in (UFO)! */ 419 unsigned short gso_segs; 420 unsigned short gso_type; 421 struct sk_buff *frag_list; 422 struct skb_shared_hwtstamps hwtstamps; 423 u32 tskey; 424 __be32 ip6_frag_id; 425 426 /* 427 * Warning : all fields before dataref are cleared in __alloc_skb() 428 */ 429 atomic_t dataref; 430 431 /* Intermediate layers must ensure that destructor_arg 432 * remains valid until skb destructor */ 433 void * destructor_arg; 434 435 /* must be last field, see pskb_expand_head() */ 436 skb_frag_t frags[MAX_SKB_FRAGS]; 437 }; 438 439 /* We divide dataref into two halves. The higher 16 bits hold references 440 * to the payload part of skb->data. The lower 16 bits hold references to 441 * the entire skb->data. A clone of a headerless skb holds the length of 442 * the header in skb->hdr_len. 443 * 444 * All users must obey the rule that the skb->data reference count must be 445 * greater than or equal to the payload reference count. 446 * 447 * Holding a reference to the payload part means that the user does not 448 * care about modifications to the header part of skb->data. 449 */ 450 #define SKB_DATAREF_SHIFT 16 451 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 452 453 454 enum { 455 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 456 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 457 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 458 }; 459 460 enum { 461 SKB_GSO_TCPV4 = 1 << 0, 462 SKB_GSO_UDP = 1 << 1, 463 464 /* This indicates the skb is from an untrusted source. */ 465 SKB_GSO_DODGY = 1 << 2, 466 467 /* This indicates the tcp segment has CWR set. */ 468 SKB_GSO_TCP_ECN = 1 << 3, 469 470 SKB_GSO_TCP_FIXEDID = 1 << 4, 471 472 SKB_GSO_TCPV6 = 1 << 5, 473 474 SKB_GSO_FCOE = 1 << 6, 475 476 SKB_GSO_GRE = 1 << 7, 477 478 SKB_GSO_GRE_CSUM = 1 << 8, 479 480 SKB_GSO_IPXIP4 = 1 << 9, 481 482 SKB_GSO_IPXIP6 = 1 << 10, 483 484 SKB_GSO_UDP_TUNNEL = 1 << 11, 485 486 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12, 487 488 SKB_GSO_PARTIAL = 1 << 13, 489 490 SKB_GSO_TUNNEL_REMCSUM = 1 << 14, 491 492 SKB_GSO_SCTP = 1 << 15, 493 }; 494 495 #if BITS_PER_LONG > 32 496 #define NET_SKBUFF_DATA_USES_OFFSET 1 497 #endif 498 499 #ifdef NET_SKBUFF_DATA_USES_OFFSET 500 typedef unsigned int sk_buff_data_t; 501 #else 502 typedef unsigned char *sk_buff_data_t; 503 #endif 504 505 /** 506 * struct skb_mstamp - multi resolution time stamps 507 * @stamp_us: timestamp in us resolution 508 * @stamp_jiffies: timestamp in jiffies 509 */ 510 struct skb_mstamp { 511 union { 512 u64 v64; 513 struct { 514 u32 stamp_us; 515 u32 stamp_jiffies; 516 }; 517 }; 518 }; 519 520 /** 521 * skb_mstamp_get - get current timestamp 522 * @cl: place to store timestamps 523 */ 524 static inline void skb_mstamp_get(struct skb_mstamp *cl) 525 { 526 u64 val = local_clock(); 527 528 do_div(val, NSEC_PER_USEC); 529 cl->stamp_us = (u32)val; 530 cl->stamp_jiffies = (u32)jiffies; 531 } 532 533 /** 534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 535 * @t1: pointer to newest sample 536 * @t0: pointer to oldest sample 537 */ 538 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 539 const struct skb_mstamp *t0) 540 { 541 s32 delta_us = t1->stamp_us - t0->stamp_us; 542 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 543 544 /* If delta_us is negative, this might be because interval is too big, 545 * or local_clock() drift is too big : fallback using jiffies. 546 */ 547 if (delta_us <= 0 || 548 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 549 550 delta_us = jiffies_to_usecs(delta_jiffies); 551 552 return delta_us; 553 } 554 555 static inline bool skb_mstamp_after(const struct skb_mstamp *t1, 556 const struct skb_mstamp *t0) 557 { 558 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies; 559 560 if (!diff) 561 diff = t1->stamp_us - t0->stamp_us; 562 return diff > 0; 563 } 564 565 /** 566 * struct sk_buff - socket buffer 567 * @next: Next buffer in list 568 * @prev: Previous buffer in list 569 * @tstamp: Time we arrived/left 570 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 571 * @sk: Socket we are owned by 572 * @dev: Device we arrived on/are leaving by 573 * @cb: Control buffer. Free for use by every layer. Put private vars here 574 * @_skb_refdst: destination entry (with norefcount bit) 575 * @sp: the security path, used for xfrm 576 * @len: Length of actual data 577 * @data_len: Data length 578 * @mac_len: Length of link layer header 579 * @hdr_len: writable header length of cloned skb 580 * @csum: Checksum (must include start/offset pair) 581 * @csum_start: Offset from skb->head where checksumming should start 582 * @csum_offset: Offset from csum_start where checksum should be stored 583 * @priority: Packet queueing priority 584 * @ignore_df: allow local fragmentation 585 * @cloned: Head may be cloned (check refcnt to be sure) 586 * @ip_summed: Driver fed us an IP checksum 587 * @nohdr: Payload reference only, must not modify header 588 * @nfctinfo: Relationship of this skb to the connection 589 * @pkt_type: Packet class 590 * @fclone: skbuff clone status 591 * @ipvs_property: skbuff is owned by ipvs 592 * @peeked: this packet has been seen already, so stats have been 593 * done for it, don't do them again 594 * @nf_trace: netfilter packet trace flag 595 * @protocol: Packet protocol from driver 596 * @destructor: Destruct function 597 * @nfct: Associated connection, if any 598 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 599 * @skb_iif: ifindex of device we arrived on 600 * @tc_index: Traffic control index 601 * @tc_verd: traffic control verdict 602 * @hash: the packet hash 603 * @queue_mapping: Queue mapping for multiqueue devices 604 * @xmit_more: More SKBs are pending for this queue 605 * @ndisc_nodetype: router type (from link layer) 606 * @ooo_okay: allow the mapping of a socket to a queue to be changed 607 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 608 * ports. 609 * @sw_hash: indicates hash was computed in software stack 610 * @wifi_acked_valid: wifi_acked was set 611 * @wifi_acked: whether frame was acked on wifi or not 612 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 613 * @napi_id: id of the NAPI struct this skb came from 614 * @secmark: security marking 615 * @mark: Generic packet mark 616 * @vlan_proto: vlan encapsulation protocol 617 * @vlan_tci: vlan tag control information 618 * @inner_protocol: Protocol (encapsulation) 619 * @inner_transport_header: Inner transport layer header (encapsulation) 620 * @inner_network_header: Network layer header (encapsulation) 621 * @inner_mac_header: Link layer header (encapsulation) 622 * @transport_header: Transport layer header 623 * @network_header: Network layer header 624 * @mac_header: Link layer header 625 * @tail: Tail pointer 626 * @end: End pointer 627 * @head: Head of buffer 628 * @data: Data head pointer 629 * @truesize: Buffer size 630 * @users: User count - see {datagram,tcp}.c 631 */ 632 633 struct sk_buff { 634 union { 635 struct { 636 /* These two members must be first. */ 637 struct sk_buff *next; 638 struct sk_buff *prev; 639 640 union { 641 ktime_t tstamp; 642 struct skb_mstamp skb_mstamp; 643 }; 644 }; 645 struct rb_node rbnode; /* used in netem & tcp stack */ 646 }; 647 struct sock *sk; 648 struct net_device *dev; 649 650 /* 651 * This is the control buffer. It is free to use for every 652 * layer. Please put your private variables there. If you 653 * want to keep them across layers you have to do a skb_clone() 654 * first. This is owned by whoever has the skb queued ATM. 655 */ 656 char cb[48] __aligned(8); 657 658 unsigned long _skb_refdst; 659 void (*destructor)(struct sk_buff *skb); 660 #ifdef CONFIG_XFRM 661 struct sec_path *sp; 662 #endif 663 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 664 struct nf_conntrack *nfct; 665 #endif 666 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 667 struct nf_bridge_info *nf_bridge; 668 #endif 669 unsigned int len, 670 data_len; 671 __u16 mac_len, 672 hdr_len; 673 674 /* Following fields are _not_ copied in __copy_skb_header() 675 * Note that queue_mapping is here mostly to fill a hole. 676 */ 677 kmemcheck_bitfield_begin(flags1); 678 __u16 queue_mapping; 679 680 /* if you move cloned around you also must adapt those constants */ 681 #ifdef __BIG_ENDIAN_BITFIELD 682 #define CLONED_MASK (1 << 7) 683 #else 684 #define CLONED_MASK 1 685 #endif 686 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 687 688 __u8 __cloned_offset[0]; 689 __u8 cloned:1, 690 nohdr:1, 691 fclone:2, 692 peeked:1, 693 head_frag:1, 694 xmit_more:1, 695 __unused:1; /* one bit hole */ 696 kmemcheck_bitfield_end(flags1); 697 698 /* fields enclosed in headers_start/headers_end are copied 699 * using a single memcpy() in __copy_skb_header() 700 */ 701 /* private: */ 702 __u32 headers_start[0]; 703 /* public: */ 704 705 /* if you move pkt_type around you also must adapt those constants */ 706 #ifdef __BIG_ENDIAN_BITFIELD 707 #define PKT_TYPE_MAX (7 << 5) 708 #else 709 #define PKT_TYPE_MAX 7 710 #endif 711 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 712 713 __u8 __pkt_type_offset[0]; 714 __u8 pkt_type:3; 715 __u8 pfmemalloc:1; 716 __u8 ignore_df:1; 717 __u8 nfctinfo:3; 718 719 __u8 nf_trace:1; 720 __u8 ip_summed:2; 721 __u8 ooo_okay:1; 722 __u8 l4_hash:1; 723 __u8 sw_hash:1; 724 __u8 wifi_acked_valid:1; 725 __u8 wifi_acked:1; 726 727 __u8 no_fcs:1; 728 /* Indicates the inner headers are valid in the skbuff. */ 729 __u8 encapsulation:1; 730 __u8 encap_hdr_csum:1; 731 __u8 csum_valid:1; 732 __u8 csum_complete_sw:1; 733 __u8 csum_level:2; 734 __u8 csum_bad:1; 735 736 #ifdef CONFIG_IPV6_NDISC_NODETYPE 737 __u8 ndisc_nodetype:2; 738 #endif 739 __u8 ipvs_property:1; 740 __u8 inner_protocol_type:1; 741 __u8 remcsum_offload:1; 742 #ifdef CONFIG_NET_SWITCHDEV 743 __u8 offload_fwd_mark:1; 744 #endif 745 /* 2, 4 or 5 bit hole */ 746 747 #ifdef CONFIG_NET_SCHED 748 __u16 tc_index; /* traffic control index */ 749 #ifdef CONFIG_NET_CLS_ACT 750 __u16 tc_verd; /* traffic control verdict */ 751 #endif 752 #endif 753 754 union { 755 __wsum csum; 756 struct { 757 __u16 csum_start; 758 __u16 csum_offset; 759 }; 760 }; 761 __u32 priority; 762 int skb_iif; 763 __u32 hash; 764 __be16 vlan_proto; 765 __u16 vlan_tci; 766 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 767 union { 768 unsigned int napi_id; 769 unsigned int sender_cpu; 770 }; 771 #endif 772 #ifdef CONFIG_NETWORK_SECMARK 773 __u32 secmark; 774 #endif 775 776 union { 777 __u32 mark; 778 __u32 reserved_tailroom; 779 }; 780 781 union { 782 __be16 inner_protocol; 783 __u8 inner_ipproto; 784 }; 785 786 __u16 inner_transport_header; 787 __u16 inner_network_header; 788 __u16 inner_mac_header; 789 790 __be16 protocol; 791 __u16 transport_header; 792 __u16 network_header; 793 __u16 mac_header; 794 795 /* private: */ 796 __u32 headers_end[0]; 797 /* public: */ 798 799 /* These elements must be at the end, see alloc_skb() for details. */ 800 sk_buff_data_t tail; 801 sk_buff_data_t end; 802 unsigned char *head, 803 *data; 804 unsigned int truesize; 805 atomic_t users; 806 }; 807 808 #ifdef __KERNEL__ 809 /* 810 * Handling routines are only of interest to the kernel 811 */ 812 #include <linux/slab.h> 813 814 815 #define SKB_ALLOC_FCLONE 0x01 816 #define SKB_ALLOC_RX 0x02 817 #define SKB_ALLOC_NAPI 0x04 818 819 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 820 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 821 { 822 return unlikely(skb->pfmemalloc); 823 } 824 825 /* 826 * skb might have a dst pointer attached, refcounted or not. 827 * _skb_refdst low order bit is set if refcount was _not_ taken 828 */ 829 #define SKB_DST_NOREF 1UL 830 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 831 832 /** 833 * skb_dst - returns skb dst_entry 834 * @skb: buffer 835 * 836 * Returns skb dst_entry, regardless of reference taken or not. 837 */ 838 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 839 { 840 /* If refdst was not refcounted, check we still are in a 841 * rcu_read_lock section 842 */ 843 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 844 !rcu_read_lock_held() && 845 !rcu_read_lock_bh_held()); 846 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 847 } 848 849 /** 850 * skb_dst_set - sets skb dst 851 * @skb: buffer 852 * @dst: dst entry 853 * 854 * Sets skb dst, assuming a reference was taken on dst and should 855 * be released by skb_dst_drop() 856 */ 857 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 858 { 859 skb->_skb_refdst = (unsigned long)dst; 860 } 861 862 /** 863 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 864 * @skb: buffer 865 * @dst: dst entry 866 * 867 * Sets skb dst, assuming a reference was not taken on dst. 868 * If dst entry is cached, we do not take reference and dst_release 869 * will be avoided by refdst_drop. If dst entry is not cached, we take 870 * reference, so that last dst_release can destroy the dst immediately. 871 */ 872 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 873 { 874 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 875 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 876 } 877 878 /** 879 * skb_dst_is_noref - Test if skb dst isn't refcounted 880 * @skb: buffer 881 */ 882 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 883 { 884 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 885 } 886 887 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 888 { 889 return (struct rtable *)skb_dst(skb); 890 } 891 892 /* For mangling skb->pkt_type from user space side from applications 893 * such as nft, tc, etc, we only allow a conservative subset of 894 * possible pkt_types to be set. 895 */ 896 static inline bool skb_pkt_type_ok(u32 ptype) 897 { 898 return ptype <= PACKET_OTHERHOST; 899 } 900 901 void kfree_skb(struct sk_buff *skb); 902 void kfree_skb_list(struct sk_buff *segs); 903 void skb_tx_error(struct sk_buff *skb); 904 void consume_skb(struct sk_buff *skb); 905 void __kfree_skb(struct sk_buff *skb); 906 extern struct kmem_cache *skbuff_head_cache; 907 908 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 909 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 910 bool *fragstolen, int *delta_truesize); 911 912 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 913 int node); 914 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 915 struct sk_buff *build_skb(void *data, unsigned int frag_size); 916 static inline struct sk_buff *alloc_skb(unsigned int size, 917 gfp_t priority) 918 { 919 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 920 } 921 922 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 923 unsigned long data_len, 924 int max_page_order, 925 int *errcode, 926 gfp_t gfp_mask); 927 928 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 929 struct sk_buff_fclones { 930 struct sk_buff skb1; 931 932 struct sk_buff skb2; 933 934 atomic_t fclone_ref; 935 }; 936 937 /** 938 * skb_fclone_busy - check if fclone is busy 939 * @skb: buffer 940 * 941 * Returns true if skb is a fast clone, and its clone is not freed. 942 * Some drivers call skb_orphan() in their ndo_start_xmit(), 943 * so we also check that this didnt happen. 944 */ 945 static inline bool skb_fclone_busy(const struct sock *sk, 946 const struct sk_buff *skb) 947 { 948 const struct sk_buff_fclones *fclones; 949 950 fclones = container_of(skb, struct sk_buff_fclones, skb1); 951 952 return skb->fclone == SKB_FCLONE_ORIG && 953 atomic_read(&fclones->fclone_ref) > 1 && 954 fclones->skb2.sk == sk; 955 } 956 957 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 958 gfp_t priority) 959 { 960 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 961 } 962 963 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 964 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 965 { 966 return __alloc_skb_head(priority, -1); 967 } 968 969 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 970 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 971 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 972 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 973 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 974 gfp_t gfp_mask, bool fclone); 975 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 976 gfp_t gfp_mask) 977 { 978 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 979 } 980 981 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 982 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 983 unsigned int headroom); 984 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 985 int newtailroom, gfp_t priority); 986 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 987 int offset, int len); 988 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 989 int len); 990 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 991 int skb_pad(struct sk_buff *skb, int pad); 992 #define dev_kfree_skb(a) consume_skb(a) 993 994 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 995 int getfrag(void *from, char *to, int offset, 996 int len, int odd, struct sk_buff *skb), 997 void *from, int length); 998 999 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1000 int offset, size_t size); 1001 1002 struct skb_seq_state { 1003 __u32 lower_offset; 1004 __u32 upper_offset; 1005 __u32 frag_idx; 1006 __u32 stepped_offset; 1007 struct sk_buff *root_skb; 1008 struct sk_buff *cur_skb; 1009 __u8 *frag_data; 1010 }; 1011 1012 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1013 unsigned int to, struct skb_seq_state *st); 1014 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1015 struct skb_seq_state *st); 1016 void skb_abort_seq_read(struct skb_seq_state *st); 1017 1018 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1019 unsigned int to, struct ts_config *config); 1020 1021 /* 1022 * Packet hash types specify the type of hash in skb_set_hash. 1023 * 1024 * Hash types refer to the protocol layer addresses which are used to 1025 * construct a packet's hash. The hashes are used to differentiate or identify 1026 * flows of the protocol layer for the hash type. Hash types are either 1027 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1028 * 1029 * Properties of hashes: 1030 * 1031 * 1) Two packets in different flows have different hash values 1032 * 2) Two packets in the same flow should have the same hash value 1033 * 1034 * A hash at a higher layer is considered to be more specific. A driver should 1035 * set the most specific hash possible. 1036 * 1037 * A driver cannot indicate a more specific hash than the layer at which a hash 1038 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1039 * 1040 * A driver may indicate a hash level which is less specific than the 1041 * actual layer the hash was computed on. For instance, a hash computed 1042 * at L4 may be considered an L3 hash. This should only be done if the 1043 * driver can't unambiguously determine that the HW computed the hash at 1044 * the higher layer. Note that the "should" in the second property above 1045 * permits this. 1046 */ 1047 enum pkt_hash_types { 1048 PKT_HASH_TYPE_NONE, /* Undefined type */ 1049 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1050 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1051 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1052 }; 1053 1054 static inline void skb_clear_hash(struct sk_buff *skb) 1055 { 1056 skb->hash = 0; 1057 skb->sw_hash = 0; 1058 skb->l4_hash = 0; 1059 } 1060 1061 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1062 { 1063 if (!skb->l4_hash) 1064 skb_clear_hash(skb); 1065 } 1066 1067 static inline void 1068 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1069 { 1070 skb->l4_hash = is_l4; 1071 skb->sw_hash = is_sw; 1072 skb->hash = hash; 1073 } 1074 1075 static inline void 1076 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1077 { 1078 /* Used by drivers to set hash from HW */ 1079 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1080 } 1081 1082 static inline void 1083 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1084 { 1085 __skb_set_hash(skb, hash, true, is_l4); 1086 } 1087 1088 void __skb_get_hash(struct sk_buff *skb); 1089 u32 __skb_get_hash_symmetric(struct sk_buff *skb); 1090 u32 skb_get_poff(const struct sk_buff *skb); 1091 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1092 const struct flow_keys *keys, int hlen); 1093 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1094 void *data, int hlen_proto); 1095 1096 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1097 int thoff, u8 ip_proto) 1098 { 1099 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1100 } 1101 1102 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1103 const struct flow_dissector_key *key, 1104 unsigned int key_count); 1105 1106 bool __skb_flow_dissect(const struct sk_buff *skb, 1107 struct flow_dissector *flow_dissector, 1108 void *target_container, 1109 void *data, __be16 proto, int nhoff, int hlen, 1110 unsigned int flags); 1111 1112 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1113 struct flow_dissector *flow_dissector, 1114 void *target_container, unsigned int flags) 1115 { 1116 return __skb_flow_dissect(skb, flow_dissector, target_container, 1117 NULL, 0, 0, 0, flags); 1118 } 1119 1120 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1121 struct flow_keys *flow, 1122 unsigned int flags) 1123 { 1124 memset(flow, 0, sizeof(*flow)); 1125 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1126 NULL, 0, 0, 0, flags); 1127 } 1128 1129 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1130 void *data, __be16 proto, 1131 int nhoff, int hlen, 1132 unsigned int flags) 1133 { 1134 memset(flow, 0, sizeof(*flow)); 1135 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1136 data, proto, nhoff, hlen, flags); 1137 } 1138 1139 static inline __u32 skb_get_hash(struct sk_buff *skb) 1140 { 1141 if (!skb->l4_hash && !skb->sw_hash) 1142 __skb_get_hash(skb); 1143 1144 return skb->hash; 1145 } 1146 1147 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1148 1149 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1150 { 1151 if (!skb->l4_hash && !skb->sw_hash) { 1152 struct flow_keys keys; 1153 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1154 1155 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1156 } 1157 1158 return skb->hash; 1159 } 1160 1161 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1162 1163 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1164 { 1165 if (!skb->l4_hash && !skb->sw_hash) { 1166 struct flow_keys keys; 1167 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1168 1169 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1170 } 1171 1172 return skb->hash; 1173 } 1174 1175 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1176 1177 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1178 { 1179 return skb->hash; 1180 } 1181 1182 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1183 { 1184 to->hash = from->hash; 1185 to->sw_hash = from->sw_hash; 1186 to->l4_hash = from->l4_hash; 1187 }; 1188 1189 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1190 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1191 { 1192 return skb->head + skb->end; 1193 } 1194 1195 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1196 { 1197 return skb->end; 1198 } 1199 #else 1200 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1201 { 1202 return skb->end; 1203 } 1204 1205 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1206 { 1207 return skb->end - skb->head; 1208 } 1209 #endif 1210 1211 /* Internal */ 1212 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1213 1214 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1215 { 1216 return &skb_shinfo(skb)->hwtstamps; 1217 } 1218 1219 /** 1220 * skb_queue_empty - check if a queue is empty 1221 * @list: queue head 1222 * 1223 * Returns true if the queue is empty, false otherwise. 1224 */ 1225 static inline int skb_queue_empty(const struct sk_buff_head *list) 1226 { 1227 return list->next == (const struct sk_buff *) list; 1228 } 1229 1230 /** 1231 * skb_queue_is_last - check if skb is the last entry in the queue 1232 * @list: queue head 1233 * @skb: buffer 1234 * 1235 * Returns true if @skb is the last buffer on the list. 1236 */ 1237 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1238 const struct sk_buff *skb) 1239 { 1240 return skb->next == (const struct sk_buff *) list; 1241 } 1242 1243 /** 1244 * skb_queue_is_first - check if skb is the first entry in the queue 1245 * @list: queue head 1246 * @skb: buffer 1247 * 1248 * Returns true if @skb is the first buffer on the list. 1249 */ 1250 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1251 const struct sk_buff *skb) 1252 { 1253 return skb->prev == (const struct sk_buff *) list; 1254 } 1255 1256 /** 1257 * skb_queue_next - return the next packet in the queue 1258 * @list: queue head 1259 * @skb: current buffer 1260 * 1261 * Return the next packet in @list after @skb. It is only valid to 1262 * call this if skb_queue_is_last() evaluates to false. 1263 */ 1264 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1265 const struct sk_buff *skb) 1266 { 1267 /* This BUG_ON may seem severe, but if we just return then we 1268 * are going to dereference garbage. 1269 */ 1270 BUG_ON(skb_queue_is_last(list, skb)); 1271 return skb->next; 1272 } 1273 1274 /** 1275 * skb_queue_prev - return the prev packet in the queue 1276 * @list: queue head 1277 * @skb: current buffer 1278 * 1279 * Return the prev packet in @list before @skb. It is only valid to 1280 * call this if skb_queue_is_first() evaluates to false. 1281 */ 1282 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1283 const struct sk_buff *skb) 1284 { 1285 /* This BUG_ON may seem severe, but if we just return then we 1286 * are going to dereference garbage. 1287 */ 1288 BUG_ON(skb_queue_is_first(list, skb)); 1289 return skb->prev; 1290 } 1291 1292 /** 1293 * skb_get - reference buffer 1294 * @skb: buffer to reference 1295 * 1296 * Makes another reference to a socket buffer and returns a pointer 1297 * to the buffer. 1298 */ 1299 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1300 { 1301 atomic_inc(&skb->users); 1302 return skb; 1303 } 1304 1305 /* 1306 * If users == 1, we are the only owner and are can avoid redundant 1307 * atomic change. 1308 */ 1309 1310 /** 1311 * skb_cloned - is the buffer a clone 1312 * @skb: buffer to check 1313 * 1314 * Returns true if the buffer was generated with skb_clone() and is 1315 * one of multiple shared copies of the buffer. Cloned buffers are 1316 * shared data so must not be written to under normal circumstances. 1317 */ 1318 static inline int skb_cloned(const struct sk_buff *skb) 1319 { 1320 return skb->cloned && 1321 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1322 } 1323 1324 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1325 { 1326 might_sleep_if(gfpflags_allow_blocking(pri)); 1327 1328 if (skb_cloned(skb)) 1329 return pskb_expand_head(skb, 0, 0, pri); 1330 1331 return 0; 1332 } 1333 1334 /** 1335 * skb_header_cloned - is the header a clone 1336 * @skb: buffer to check 1337 * 1338 * Returns true if modifying the header part of the buffer requires 1339 * the data to be copied. 1340 */ 1341 static inline int skb_header_cloned(const struct sk_buff *skb) 1342 { 1343 int dataref; 1344 1345 if (!skb->cloned) 1346 return 0; 1347 1348 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1349 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1350 return dataref != 1; 1351 } 1352 1353 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1354 { 1355 might_sleep_if(gfpflags_allow_blocking(pri)); 1356 1357 if (skb_header_cloned(skb)) 1358 return pskb_expand_head(skb, 0, 0, pri); 1359 1360 return 0; 1361 } 1362 1363 /** 1364 * skb_header_release - release reference to header 1365 * @skb: buffer to operate on 1366 * 1367 * Drop a reference to the header part of the buffer. This is done 1368 * by acquiring a payload reference. You must not read from the header 1369 * part of skb->data after this. 1370 * Note : Check if you can use __skb_header_release() instead. 1371 */ 1372 static inline void skb_header_release(struct sk_buff *skb) 1373 { 1374 BUG_ON(skb->nohdr); 1375 skb->nohdr = 1; 1376 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1377 } 1378 1379 /** 1380 * __skb_header_release - release reference to header 1381 * @skb: buffer to operate on 1382 * 1383 * Variant of skb_header_release() assuming skb is private to caller. 1384 * We can avoid one atomic operation. 1385 */ 1386 static inline void __skb_header_release(struct sk_buff *skb) 1387 { 1388 skb->nohdr = 1; 1389 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1390 } 1391 1392 1393 /** 1394 * skb_shared - is the buffer shared 1395 * @skb: buffer to check 1396 * 1397 * Returns true if more than one person has a reference to this 1398 * buffer. 1399 */ 1400 static inline int skb_shared(const struct sk_buff *skb) 1401 { 1402 return atomic_read(&skb->users) != 1; 1403 } 1404 1405 /** 1406 * skb_share_check - check if buffer is shared and if so clone it 1407 * @skb: buffer to check 1408 * @pri: priority for memory allocation 1409 * 1410 * If the buffer is shared the buffer is cloned and the old copy 1411 * drops a reference. A new clone with a single reference is returned. 1412 * If the buffer is not shared the original buffer is returned. When 1413 * being called from interrupt status or with spinlocks held pri must 1414 * be GFP_ATOMIC. 1415 * 1416 * NULL is returned on a memory allocation failure. 1417 */ 1418 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1419 { 1420 might_sleep_if(gfpflags_allow_blocking(pri)); 1421 if (skb_shared(skb)) { 1422 struct sk_buff *nskb = skb_clone(skb, pri); 1423 1424 if (likely(nskb)) 1425 consume_skb(skb); 1426 else 1427 kfree_skb(skb); 1428 skb = nskb; 1429 } 1430 return skb; 1431 } 1432 1433 /* 1434 * Copy shared buffers into a new sk_buff. We effectively do COW on 1435 * packets to handle cases where we have a local reader and forward 1436 * and a couple of other messy ones. The normal one is tcpdumping 1437 * a packet thats being forwarded. 1438 */ 1439 1440 /** 1441 * skb_unshare - make a copy of a shared buffer 1442 * @skb: buffer to check 1443 * @pri: priority for memory allocation 1444 * 1445 * If the socket buffer is a clone then this function creates a new 1446 * copy of the data, drops a reference count on the old copy and returns 1447 * the new copy with the reference count at 1. If the buffer is not a clone 1448 * the original buffer is returned. When called with a spinlock held or 1449 * from interrupt state @pri must be %GFP_ATOMIC 1450 * 1451 * %NULL is returned on a memory allocation failure. 1452 */ 1453 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1454 gfp_t pri) 1455 { 1456 might_sleep_if(gfpflags_allow_blocking(pri)); 1457 if (skb_cloned(skb)) { 1458 struct sk_buff *nskb = skb_copy(skb, pri); 1459 1460 /* Free our shared copy */ 1461 if (likely(nskb)) 1462 consume_skb(skb); 1463 else 1464 kfree_skb(skb); 1465 skb = nskb; 1466 } 1467 return skb; 1468 } 1469 1470 /** 1471 * skb_peek - peek at the head of an &sk_buff_head 1472 * @list_: list to peek at 1473 * 1474 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1475 * be careful with this one. A peek leaves the buffer on the 1476 * list and someone else may run off with it. You must hold 1477 * the appropriate locks or have a private queue to do this. 1478 * 1479 * Returns %NULL for an empty list or a pointer to the head element. 1480 * The reference count is not incremented and the reference is therefore 1481 * volatile. Use with caution. 1482 */ 1483 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1484 { 1485 struct sk_buff *skb = list_->next; 1486 1487 if (skb == (struct sk_buff *)list_) 1488 skb = NULL; 1489 return skb; 1490 } 1491 1492 /** 1493 * skb_peek_next - peek skb following the given one from a queue 1494 * @skb: skb to start from 1495 * @list_: list to peek at 1496 * 1497 * Returns %NULL when the end of the list is met or a pointer to the 1498 * next element. The reference count is not incremented and the 1499 * reference is therefore volatile. Use with caution. 1500 */ 1501 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1502 const struct sk_buff_head *list_) 1503 { 1504 struct sk_buff *next = skb->next; 1505 1506 if (next == (struct sk_buff *)list_) 1507 next = NULL; 1508 return next; 1509 } 1510 1511 /** 1512 * skb_peek_tail - peek at the tail of an &sk_buff_head 1513 * @list_: list to peek at 1514 * 1515 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1516 * be careful with this one. A peek leaves the buffer on the 1517 * list and someone else may run off with it. You must hold 1518 * the appropriate locks or have a private queue to do this. 1519 * 1520 * Returns %NULL for an empty list or a pointer to the tail element. 1521 * The reference count is not incremented and the reference is therefore 1522 * volatile. Use with caution. 1523 */ 1524 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1525 { 1526 struct sk_buff *skb = list_->prev; 1527 1528 if (skb == (struct sk_buff *)list_) 1529 skb = NULL; 1530 return skb; 1531 1532 } 1533 1534 /** 1535 * skb_queue_len - get queue length 1536 * @list_: list to measure 1537 * 1538 * Return the length of an &sk_buff queue. 1539 */ 1540 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1541 { 1542 return list_->qlen; 1543 } 1544 1545 /** 1546 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1547 * @list: queue to initialize 1548 * 1549 * This initializes only the list and queue length aspects of 1550 * an sk_buff_head object. This allows to initialize the list 1551 * aspects of an sk_buff_head without reinitializing things like 1552 * the spinlock. It can also be used for on-stack sk_buff_head 1553 * objects where the spinlock is known to not be used. 1554 */ 1555 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1556 { 1557 list->prev = list->next = (struct sk_buff *)list; 1558 list->qlen = 0; 1559 } 1560 1561 /* 1562 * This function creates a split out lock class for each invocation; 1563 * this is needed for now since a whole lot of users of the skb-queue 1564 * infrastructure in drivers have different locking usage (in hardirq) 1565 * than the networking core (in softirq only). In the long run either the 1566 * network layer or drivers should need annotation to consolidate the 1567 * main types of usage into 3 classes. 1568 */ 1569 static inline void skb_queue_head_init(struct sk_buff_head *list) 1570 { 1571 spin_lock_init(&list->lock); 1572 __skb_queue_head_init(list); 1573 } 1574 1575 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1576 struct lock_class_key *class) 1577 { 1578 skb_queue_head_init(list); 1579 lockdep_set_class(&list->lock, class); 1580 } 1581 1582 /* 1583 * Insert an sk_buff on a list. 1584 * 1585 * The "__skb_xxxx()" functions are the non-atomic ones that 1586 * can only be called with interrupts disabled. 1587 */ 1588 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1589 struct sk_buff_head *list); 1590 static inline void __skb_insert(struct sk_buff *newsk, 1591 struct sk_buff *prev, struct sk_buff *next, 1592 struct sk_buff_head *list) 1593 { 1594 newsk->next = next; 1595 newsk->prev = prev; 1596 next->prev = prev->next = newsk; 1597 list->qlen++; 1598 } 1599 1600 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1601 struct sk_buff *prev, 1602 struct sk_buff *next) 1603 { 1604 struct sk_buff *first = list->next; 1605 struct sk_buff *last = list->prev; 1606 1607 first->prev = prev; 1608 prev->next = first; 1609 1610 last->next = next; 1611 next->prev = last; 1612 } 1613 1614 /** 1615 * skb_queue_splice - join two skb lists, this is designed for stacks 1616 * @list: the new list to add 1617 * @head: the place to add it in the first list 1618 */ 1619 static inline void skb_queue_splice(const struct sk_buff_head *list, 1620 struct sk_buff_head *head) 1621 { 1622 if (!skb_queue_empty(list)) { 1623 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1624 head->qlen += list->qlen; 1625 } 1626 } 1627 1628 /** 1629 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1630 * @list: the new list to add 1631 * @head: the place to add it in the first list 1632 * 1633 * The list at @list is reinitialised 1634 */ 1635 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1636 struct sk_buff_head *head) 1637 { 1638 if (!skb_queue_empty(list)) { 1639 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1640 head->qlen += list->qlen; 1641 __skb_queue_head_init(list); 1642 } 1643 } 1644 1645 /** 1646 * skb_queue_splice_tail - join two skb lists, each list being a queue 1647 * @list: the new list to add 1648 * @head: the place to add it in the first list 1649 */ 1650 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1651 struct sk_buff_head *head) 1652 { 1653 if (!skb_queue_empty(list)) { 1654 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1655 head->qlen += list->qlen; 1656 } 1657 } 1658 1659 /** 1660 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1661 * @list: the new list to add 1662 * @head: the place to add it in the first list 1663 * 1664 * Each of the lists is a queue. 1665 * The list at @list is reinitialised 1666 */ 1667 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1668 struct sk_buff_head *head) 1669 { 1670 if (!skb_queue_empty(list)) { 1671 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1672 head->qlen += list->qlen; 1673 __skb_queue_head_init(list); 1674 } 1675 } 1676 1677 /** 1678 * __skb_queue_after - queue a buffer at the list head 1679 * @list: list to use 1680 * @prev: place after this buffer 1681 * @newsk: buffer to queue 1682 * 1683 * Queue a buffer int the middle of a list. This function takes no locks 1684 * and you must therefore hold required locks before calling it. 1685 * 1686 * A buffer cannot be placed on two lists at the same time. 1687 */ 1688 static inline void __skb_queue_after(struct sk_buff_head *list, 1689 struct sk_buff *prev, 1690 struct sk_buff *newsk) 1691 { 1692 __skb_insert(newsk, prev, prev->next, list); 1693 } 1694 1695 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1696 struct sk_buff_head *list); 1697 1698 static inline void __skb_queue_before(struct sk_buff_head *list, 1699 struct sk_buff *next, 1700 struct sk_buff *newsk) 1701 { 1702 __skb_insert(newsk, next->prev, next, list); 1703 } 1704 1705 /** 1706 * __skb_queue_head - queue a buffer at the list head 1707 * @list: list to use 1708 * @newsk: buffer to queue 1709 * 1710 * Queue a buffer at the start of a list. This function takes no locks 1711 * and you must therefore hold required locks before calling it. 1712 * 1713 * A buffer cannot be placed on two lists at the same time. 1714 */ 1715 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1716 static inline void __skb_queue_head(struct sk_buff_head *list, 1717 struct sk_buff *newsk) 1718 { 1719 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1720 } 1721 1722 /** 1723 * __skb_queue_tail - queue a buffer at the list tail 1724 * @list: list to use 1725 * @newsk: buffer to queue 1726 * 1727 * Queue a buffer at the end of a list. This function takes no locks 1728 * and you must therefore hold required locks before calling it. 1729 * 1730 * A buffer cannot be placed on two lists at the same time. 1731 */ 1732 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1733 static inline void __skb_queue_tail(struct sk_buff_head *list, 1734 struct sk_buff *newsk) 1735 { 1736 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1737 } 1738 1739 /* 1740 * remove sk_buff from list. _Must_ be called atomically, and with 1741 * the list known.. 1742 */ 1743 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1744 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1745 { 1746 struct sk_buff *next, *prev; 1747 1748 list->qlen--; 1749 next = skb->next; 1750 prev = skb->prev; 1751 skb->next = skb->prev = NULL; 1752 next->prev = prev; 1753 prev->next = next; 1754 } 1755 1756 /** 1757 * __skb_dequeue - remove from the head of the queue 1758 * @list: list to dequeue from 1759 * 1760 * Remove the head of the list. This function does not take any locks 1761 * so must be used with appropriate locks held only. The head item is 1762 * returned or %NULL if the list is empty. 1763 */ 1764 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1765 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1766 { 1767 struct sk_buff *skb = skb_peek(list); 1768 if (skb) 1769 __skb_unlink(skb, list); 1770 return skb; 1771 } 1772 1773 /** 1774 * __skb_dequeue_tail - remove from the tail of the queue 1775 * @list: list to dequeue from 1776 * 1777 * Remove the tail of the list. This function does not take any locks 1778 * so must be used with appropriate locks held only. The tail item is 1779 * returned or %NULL if the list is empty. 1780 */ 1781 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1782 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1783 { 1784 struct sk_buff *skb = skb_peek_tail(list); 1785 if (skb) 1786 __skb_unlink(skb, list); 1787 return skb; 1788 } 1789 1790 1791 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1792 { 1793 return skb->data_len; 1794 } 1795 1796 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1797 { 1798 return skb->len - skb->data_len; 1799 } 1800 1801 static inline int skb_pagelen(const struct sk_buff *skb) 1802 { 1803 int i, len = 0; 1804 1805 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1806 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1807 return len + skb_headlen(skb); 1808 } 1809 1810 /** 1811 * __skb_fill_page_desc - initialise a paged fragment in an skb 1812 * @skb: buffer containing fragment to be initialised 1813 * @i: paged fragment index to initialise 1814 * @page: the page to use for this fragment 1815 * @off: the offset to the data with @page 1816 * @size: the length of the data 1817 * 1818 * Initialises the @i'th fragment of @skb to point to &size bytes at 1819 * offset @off within @page. 1820 * 1821 * Does not take any additional reference on the fragment. 1822 */ 1823 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1824 struct page *page, int off, int size) 1825 { 1826 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1827 1828 /* 1829 * Propagate page pfmemalloc to the skb if we can. The problem is 1830 * that not all callers have unique ownership of the page but rely 1831 * on page_is_pfmemalloc doing the right thing(tm). 1832 */ 1833 frag->page.p = page; 1834 frag->page_offset = off; 1835 skb_frag_size_set(frag, size); 1836 1837 page = compound_head(page); 1838 if (page_is_pfmemalloc(page)) 1839 skb->pfmemalloc = true; 1840 } 1841 1842 /** 1843 * skb_fill_page_desc - initialise a paged fragment in an skb 1844 * @skb: buffer containing fragment to be initialised 1845 * @i: paged fragment index to initialise 1846 * @page: the page to use for this fragment 1847 * @off: the offset to the data with @page 1848 * @size: the length of the data 1849 * 1850 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1851 * @skb to point to @size bytes at offset @off within @page. In 1852 * addition updates @skb such that @i is the last fragment. 1853 * 1854 * Does not take any additional reference on the fragment. 1855 */ 1856 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1857 struct page *page, int off, int size) 1858 { 1859 __skb_fill_page_desc(skb, i, page, off, size); 1860 skb_shinfo(skb)->nr_frags = i + 1; 1861 } 1862 1863 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1864 int size, unsigned int truesize); 1865 1866 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1867 unsigned int truesize); 1868 1869 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1870 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1871 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1872 1873 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1874 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1875 { 1876 return skb->head + skb->tail; 1877 } 1878 1879 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1880 { 1881 skb->tail = skb->data - skb->head; 1882 } 1883 1884 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1885 { 1886 skb_reset_tail_pointer(skb); 1887 skb->tail += offset; 1888 } 1889 1890 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1891 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1892 { 1893 return skb->tail; 1894 } 1895 1896 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1897 { 1898 skb->tail = skb->data; 1899 } 1900 1901 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1902 { 1903 skb->tail = skb->data + offset; 1904 } 1905 1906 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1907 1908 /* 1909 * Add data to an sk_buff 1910 */ 1911 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1912 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1913 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1914 { 1915 unsigned char *tmp = skb_tail_pointer(skb); 1916 SKB_LINEAR_ASSERT(skb); 1917 skb->tail += len; 1918 skb->len += len; 1919 return tmp; 1920 } 1921 1922 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1923 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1924 { 1925 skb->data -= len; 1926 skb->len += len; 1927 return skb->data; 1928 } 1929 1930 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1931 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1932 { 1933 skb->len -= len; 1934 BUG_ON(skb->len < skb->data_len); 1935 return skb->data += len; 1936 } 1937 1938 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1939 { 1940 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1941 } 1942 1943 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1944 1945 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1946 { 1947 if (len > skb_headlen(skb) && 1948 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1949 return NULL; 1950 skb->len -= len; 1951 return skb->data += len; 1952 } 1953 1954 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1955 { 1956 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1957 } 1958 1959 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1960 { 1961 if (likely(len <= skb_headlen(skb))) 1962 return 1; 1963 if (unlikely(len > skb->len)) 1964 return 0; 1965 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1966 } 1967 1968 /** 1969 * skb_headroom - bytes at buffer head 1970 * @skb: buffer to check 1971 * 1972 * Return the number of bytes of free space at the head of an &sk_buff. 1973 */ 1974 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1975 { 1976 return skb->data - skb->head; 1977 } 1978 1979 /** 1980 * skb_tailroom - bytes at buffer end 1981 * @skb: buffer to check 1982 * 1983 * Return the number of bytes of free space at the tail of an sk_buff 1984 */ 1985 static inline int skb_tailroom(const struct sk_buff *skb) 1986 { 1987 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1988 } 1989 1990 /** 1991 * skb_availroom - bytes at buffer end 1992 * @skb: buffer to check 1993 * 1994 * Return the number of bytes of free space at the tail of an sk_buff 1995 * allocated by sk_stream_alloc() 1996 */ 1997 static inline int skb_availroom(const struct sk_buff *skb) 1998 { 1999 if (skb_is_nonlinear(skb)) 2000 return 0; 2001 2002 return skb->end - skb->tail - skb->reserved_tailroom; 2003 } 2004 2005 /** 2006 * skb_reserve - adjust headroom 2007 * @skb: buffer to alter 2008 * @len: bytes to move 2009 * 2010 * Increase the headroom of an empty &sk_buff by reducing the tail 2011 * room. This is only allowed for an empty buffer. 2012 */ 2013 static inline void skb_reserve(struct sk_buff *skb, int len) 2014 { 2015 skb->data += len; 2016 skb->tail += len; 2017 } 2018 2019 /** 2020 * skb_tailroom_reserve - adjust reserved_tailroom 2021 * @skb: buffer to alter 2022 * @mtu: maximum amount of headlen permitted 2023 * @needed_tailroom: minimum amount of reserved_tailroom 2024 * 2025 * Set reserved_tailroom so that headlen can be as large as possible but 2026 * not larger than mtu and tailroom cannot be smaller than 2027 * needed_tailroom. 2028 * The required headroom should already have been reserved before using 2029 * this function. 2030 */ 2031 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2032 unsigned int needed_tailroom) 2033 { 2034 SKB_LINEAR_ASSERT(skb); 2035 if (mtu < skb_tailroom(skb) - needed_tailroom) 2036 /* use at most mtu */ 2037 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2038 else 2039 /* use up to all available space */ 2040 skb->reserved_tailroom = needed_tailroom; 2041 } 2042 2043 #define ENCAP_TYPE_ETHER 0 2044 #define ENCAP_TYPE_IPPROTO 1 2045 2046 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2047 __be16 protocol) 2048 { 2049 skb->inner_protocol = protocol; 2050 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2051 } 2052 2053 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2054 __u8 ipproto) 2055 { 2056 skb->inner_ipproto = ipproto; 2057 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2058 } 2059 2060 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2061 { 2062 skb->inner_mac_header = skb->mac_header; 2063 skb->inner_network_header = skb->network_header; 2064 skb->inner_transport_header = skb->transport_header; 2065 } 2066 2067 static inline void skb_reset_mac_len(struct sk_buff *skb) 2068 { 2069 skb->mac_len = skb->network_header - skb->mac_header; 2070 } 2071 2072 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2073 *skb) 2074 { 2075 return skb->head + skb->inner_transport_header; 2076 } 2077 2078 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2079 { 2080 return skb_inner_transport_header(skb) - skb->data; 2081 } 2082 2083 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2084 { 2085 skb->inner_transport_header = skb->data - skb->head; 2086 } 2087 2088 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2089 const int offset) 2090 { 2091 skb_reset_inner_transport_header(skb); 2092 skb->inner_transport_header += offset; 2093 } 2094 2095 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2096 { 2097 return skb->head + skb->inner_network_header; 2098 } 2099 2100 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2101 { 2102 skb->inner_network_header = skb->data - skb->head; 2103 } 2104 2105 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2106 const int offset) 2107 { 2108 skb_reset_inner_network_header(skb); 2109 skb->inner_network_header += offset; 2110 } 2111 2112 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2113 { 2114 return skb->head + skb->inner_mac_header; 2115 } 2116 2117 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2118 { 2119 skb->inner_mac_header = skb->data - skb->head; 2120 } 2121 2122 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2123 const int offset) 2124 { 2125 skb_reset_inner_mac_header(skb); 2126 skb->inner_mac_header += offset; 2127 } 2128 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2129 { 2130 return skb->transport_header != (typeof(skb->transport_header))~0U; 2131 } 2132 2133 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2134 { 2135 return skb->head + skb->transport_header; 2136 } 2137 2138 static inline void skb_reset_transport_header(struct sk_buff *skb) 2139 { 2140 skb->transport_header = skb->data - skb->head; 2141 } 2142 2143 static inline void skb_set_transport_header(struct sk_buff *skb, 2144 const int offset) 2145 { 2146 skb_reset_transport_header(skb); 2147 skb->transport_header += offset; 2148 } 2149 2150 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2151 { 2152 return skb->head + skb->network_header; 2153 } 2154 2155 static inline void skb_reset_network_header(struct sk_buff *skb) 2156 { 2157 skb->network_header = skb->data - skb->head; 2158 } 2159 2160 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2161 { 2162 skb_reset_network_header(skb); 2163 skb->network_header += offset; 2164 } 2165 2166 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2167 { 2168 return skb->head + skb->mac_header; 2169 } 2170 2171 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2172 { 2173 return skb->mac_header != (typeof(skb->mac_header))~0U; 2174 } 2175 2176 static inline void skb_reset_mac_header(struct sk_buff *skb) 2177 { 2178 skb->mac_header = skb->data - skb->head; 2179 } 2180 2181 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2182 { 2183 skb_reset_mac_header(skb); 2184 skb->mac_header += offset; 2185 } 2186 2187 static inline void skb_pop_mac_header(struct sk_buff *skb) 2188 { 2189 skb->mac_header = skb->network_header; 2190 } 2191 2192 static inline void skb_probe_transport_header(struct sk_buff *skb, 2193 const int offset_hint) 2194 { 2195 struct flow_keys keys; 2196 2197 if (skb_transport_header_was_set(skb)) 2198 return; 2199 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2200 skb_set_transport_header(skb, keys.control.thoff); 2201 else 2202 skb_set_transport_header(skb, offset_hint); 2203 } 2204 2205 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2206 { 2207 if (skb_mac_header_was_set(skb)) { 2208 const unsigned char *old_mac = skb_mac_header(skb); 2209 2210 skb_set_mac_header(skb, -skb->mac_len); 2211 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2212 } 2213 } 2214 2215 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2216 { 2217 return skb->csum_start - skb_headroom(skb); 2218 } 2219 2220 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2221 { 2222 return skb->head + skb->csum_start; 2223 } 2224 2225 static inline int skb_transport_offset(const struct sk_buff *skb) 2226 { 2227 return skb_transport_header(skb) - skb->data; 2228 } 2229 2230 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2231 { 2232 return skb->transport_header - skb->network_header; 2233 } 2234 2235 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2236 { 2237 return skb->inner_transport_header - skb->inner_network_header; 2238 } 2239 2240 static inline int skb_network_offset(const struct sk_buff *skb) 2241 { 2242 return skb_network_header(skb) - skb->data; 2243 } 2244 2245 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2246 { 2247 return skb_inner_network_header(skb) - skb->data; 2248 } 2249 2250 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2251 { 2252 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2253 } 2254 2255 /* 2256 * CPUs often take a performance hit when accessing unaligned memory 2257 * locations. The actual performance hit varies, it can be small if the 2258 * hardware handles it or large if we have to take an exception and fix it 2259 * in software. 2260 * 2261 * Since an ethernet header is 14 bytes network drivers often end up with 2262 * the IP header at an unaligned offset. The IP header can be aligned by 2263 * shifting the start of the packet by 2 bytes. Drivers should do this 2264 * with: 2265 * 2266 * skb_reserve(skb, NET_IP_ALIGN); 2267 * 2268 * The downside to this alignment of the IP header is that the DMA is now 2269 * unaligned. On some architectures the cost of an unaligned DMA is high 2270 * and this cost outweighs the gains made by aligning the IP header. 2271 * 2272 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2273 * to be overridden. 2274 */ 2275 #ifndef NET_IP_ALIGN 2276 #define NET_IP_ALIGN 2 2277 #endif 2278 2279 /* 2280 * The networking layer reserves some headroom in skb data (via 2281 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2282 * the header has to grow. In the default case, if the header has to grow 2283 * 32 bytes or less we avoid the reallocation. 2284 * 2285 * Unfortunately this headroom changes the DMA alignment of the resulting 2286 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2287 * on some architectures. An architecture can override this value, 2288 * perhaps setting it to a cacheline in size (since that will maintain 2289 * cacheline alignment of the DMA). It must be a power of 2. 2290 * 2291 * Various parts of the networking layer expect at least 32 bytes of 2292 * headroom, you should not reduce this. 2293 * 2294 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2295 * to reduce average number of cache lines per packet. 2296 * get_rps_cpus() for example only access one 64 bytes aligned block : 2297 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2298 */ 2299 #ifndef NET_SKB_PAD 2300 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2301 #endif 2302 2303 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2304 2305 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2306 { 2307 if (unlikely(skb_is_nonlinear(skb))) { 2308 WARN_ON(1); 2309 return; 2310 } 2311 skb->len = len; 2312 skb_set_tail_pointer(skb, len); 2313 } 2314 2315 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2316 { 2317 __skb_set_length(skb, len); 2318 } 2319 2320 void skb_trim(struct sk_buff *skb, unsigned int len); 2321 2322 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2323 { 2324 if (skb->data_len) 2325 return ___pskb_trim(skb, len); 2326 __skb_trim(skb, len); 2327 return 0; 2328 } 2329 2330 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2331 { 2332 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2333 } 2334 2335 /** 2336 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2337 * @skb: buffer to alter 2338 * @len: new length 2339 * 2340 * This is identical to pskb_trim except that the caller knows that 2341 * the skb is not cloned so we should never get an error due to out- 2342 * of-memory. 2343 */ 2344 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2345 { 2346 int err = pskb_trim(skb, len); 2347 BUG_ON(err); 2348 } 2349 2350 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2351 { 2352 unsigned int diff = len - skb->len; 2353 2354 if (skb_tailroom(skb) < diff) { 2355 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2356 GFP_ATOMIC); 2357 if (ret) 2358 return ret; 2359 } 2360 __skb_set_length(skb, len); 2361 return 0; 2362 } 2363 2364 /** 2365 * skb_orphan - orphan a buffer 2366 * @skb: buffer to orphan 2367 * 2368 * If a buffer currently has an owner then we call the owner's 2369 * destructor function and make the @skb unowned. The buffer continues 2370 * to exist but is no longer charged to its former owner. 2371 */ 2372 static inline void skb_orphan(struct sk_buff *skb) 2373 { 2374 if (skb->destructor) { 2375 skb->destructor(skb); 2376 skb->destructor = NULL; 2377 skb->sk = NULL; 2378 } else { 2379 BUG_ON(skb->sk); 2380 } 2381 } 2382 2383 /** 2384 * skb_orphan_frags - orphan the frags contained in a buffer 2385 * @skb: buffer to orphan frags from 2386 * @gfp_mask: allocation mask for replacement pages 2387 * 2388 * For each frag in the SKB which needs a destructor (i.e. has an 2389 * owner) create a copy of that frag and release the original 2390 * page by calling the destructor. 2391 */ 2392 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2393 { 2394 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2395 return 0; 2396 return skb_copy_ubufs(skb, gfp_mask); 2397 } 2398 2399 /** 2400 * __skb_queue_purge - empty a list 2401 * @list: list to empty 2402 * 2403 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2404 * the list and one reference dropped. This function does not take the 2405 * list lock and the caller must hold the relevant locks to use it. 2406 */ 2407 void skb_queue_purge(struct sk_buff_head *list); 2408 static inline void __skb_queue_purge(struct sk_buff_head *list) 2409 { 2410 struct sk_buff *skb; 2411 while ((skb = __skb_dequeue(list)) != NULL) 2412 kfree_skb(skb); 2413 } 2414 2415 void skb_rbtree_purge(struct rb_root *root); 2416 2417 void *netdev_alloc_frag(unsigned int fragsz); 2418 2419 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2420 gfp_t gfp_mask); 2421 2422 /** 2423 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2424 * @dev: network device to receive on 2425 * @length: length to allocate 2426 * 2427 * Allocate a new &sk_buff and assign it a usage count of one. The 2428 * buffer has unspecified headroom built in. Users should allocate 2429 * the headroom they think they need without accounting for the 2430 * built in space. The built in space is used for optimisations. 2431 * 2432 * %NULL is returned if there is no free memory. Although this function 2433 * allocates memory it can be called from an interrupt. 2434 */ 2435 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2436 unsigned int length) 2437 { 2438 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2439 } 2440 2441 /* legacy helper around __netdev_alloc_skb() */ 2442 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2443 gfp_t gfp_mask) 2444 { 2445 return __netdev_alloc_skb(NULL, length, gfp_mask); 2446 } 2447 2448 /* legacy helper around netdev_alloc_skb() */ 2449 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2450 { 2451 return netdev_alloc_skb(NULL, length); 2452 } 2453 2454 2455 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2456 unsigned int length, gfp_t gfp) 2457 { 2458 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2459 2460 if (NET_IP_ALIGN && skb) 2461 skb_reserve(skb, NET_IP_ALIGN); 2462 return skb; 2463 } 2464 2465 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2466 unsigned int length) 2467 { 2468 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2469 } 2470 2471 static inline void skb_free_frag(void *addr) 2472 { 2473 __free_page_frag(addr); 2474 } 2475 2476 void *napi_alloc_frag(unsigned int fragsz); 2477 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2478 unsigned int length, gfp_t gfp_mask); 2479 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2480 unsigned int length) 2481 { 2482 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2483 } 2484 void napi_consume_skb(struct sk_buff *skb, int budget); 2485 2486 void __kfree_skb_flush(void); 2487 void __kfree_skb_defer(struct sk_buff *skb); 2488 2489 /** 2490 * __dev_alloc_pages - allocate page for network Rx 2491 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2492 * @order: size of the allocation 2493 * 2494 * Allocate a new page. 2495 * 2496 * %NULL is returned if there is no free memory. 2497 */ 2498 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2499 unsigned int order) 2500 { 2501 /* This piece of code contains several assumptions. 2502 * 1. This is for device Rx, therefor a cold page is preferred. 2503 * 2. The expectation is the user wants a compound page. 2504 * 3. If requesting a order 0 page it will not be compound 2505 * due to the check to see if order has a value in prep_new_page 2506 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2507 * code in gfp_to_alloc_flags that should be enforcing this. 2508 */ 2509 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2510 2511 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2512 } 2513 2514 static inline struct page *dev_alloc_pages(unsigned int order) 2515 { 2516 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2517 } 2518 2519 /** 2520 * __dev_alloc_page - allocate a page for network Rx 2521 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2522 * 2523 * Allocate a new page. 2524 * 2525 * %NULL is returned if there is no free memory. 2526 */ 2527 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2528 { 2529 return __dev_alloc_pages(gfp_mask, 0); 2530 } 2531 2532 static inline struct page *dev_alloc_page(void) 2533 { 2534 return dev_alloc_pages(0); 2535 } 2536 2537 /** 2538 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2539 * @page: The page that was allocated from skb_alloc_page 2540 * @skb: The skb that may need pfmemalloc set 2541 */ 2542 static inline void skb_propagate_pfmemalloc(struct page *page, 2543 struct sk_buff *skb) 2544 { 2545 if (page_is_pfmemalloc(page)) 2546 skb->pfmemalloc = true; 2547 } 2548 2549 /** 2550 * skb_frag_page - retrieve the page referred to by a paged fragment 2551 * @frag: the paged fragment 2552 * 2553 * Returns the &struct page associated with @frag. 2554 */ 2555 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2556 { 2557 return frag->page.p; 2558 } 2559 2560 /** 2561 * __skb_frag_ref - take an addition reference on a paged fragment. 2562 * @frag: the paged fragment 2563 * 2564 * Takes an additional reference on the paged fragment @frag. 2565 */ 2566 static inline void __skb_frag_ref(skb_frag_t *frag) 2567 { 2568 get_page(skb_frag_page(frag)); 2569 } 2570 2571 /** 2572 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2573 * @skb: the buffer 2574 * @f: the fragment offset. 2575 * 2576 * Takes an additional reference on the @f'th paged fragment of @skb. 2577 */ 2578 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2579 { 2580 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2581 } 2582 2583 /** 2584 * __skb_frag_unref - release a reference on a paged fragment. 2585 * @frag: the paged fragment 2586 * 2587 * Releases a reference on the paged fragment @frag. 2588 */ 2589 static inline void __skb_frag_unref(skb_frag_t *frag) 2590 { 2591 put_page(skb_frag_page(frag)); 2592 } 2593 2594 /** 2595 * skb_frag_unref - release a reference on a paged fragment of an skb. 2596 * @skb: the buffer 2597 * @f: the fragment offset 2598 * 2599 * Releases a reference on the @f'th paged fragment of @skb. 2600 */ 2601 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2602 { 2603 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2604 } 2605 2606 /** 2607 * skb_frag_address - gets the address of the data contained in a paged fragment 2608 * @frag: the paged fragment buffer 2609 * 2610 * Returns the address of the data within @frag. The page must already 2611 * be mapped. 2612 */ 2613 static inline void *skb_frag_address(const skb_frag_t *frag) 2614 { 2615 return page_address(skb_frag_page(frag)) + frag->page_offset; 2616 } 2617 2618 /** 2619 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2620 * @frag: the paged fragment buffer 2621 * 2622 * Returns the address of the data within @frag. Checks that the page 2623 * is mapped and returns %NULL otherwise. 2624 */ 2625 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2626 { 2627 void *ptr = page_address(skb_frag_page(frag)); 2628 if (unlikely(!ptr)) 2629 return NULL; 2630 2631 return ptr + frag->page_offset; 2632 } 2633 2634 /** 2635 * __skb_frag_set_page - sets the page contained in a paged fragment 2636 * @frag: the paged fragment 2637 * @page: the page to set 2638 * 2639 * Sets the fragment @frag to contain @page. 2640 */ 2641 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2642 { 2643 frag->page.p = page; 2644 } 2645 2646 /** 2647 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2648 * @skb: the buffer 2649 * @f: the fragment offset 2650 * @page: the page to set 2651 * 2652 * Sets the @f'th fragment of @skb to contain @page. 2653 */ 2654 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2655 struct page *page) 2656 { 2657 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2658 } 2659 2660 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2661 2662 /** 2663 * skb_frag_dma_map - maps a paged fragment via the DMA API 2664 * @dev: the device to map the fragment to 2665 * @frag: the paged fragment to map 2666 * @offset: the offset within the fragment (starting at the 2667 * fragment's own offset) 2668 * @size: the number of bytes to map 2669 * @dir: the direction of the mapping (%PCI_DMA_*) 2670 * 2671 * Maps the page associated with @frag to @device. 2672 */ 2673 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2674 const skb_frag_t *frag, 2675 size_t offset, size_t size, 2676 enum dma_data_direction dir) 2677 { 2678 return dma_map_page(dev, skb_frag_page(frag), 2679 frag->page_offset + offset, size, dir); 2680 } 2681 2682 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2683 gfp_t gfp_mask) 2684 { 2685 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2686 } 2687 2688 2689 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2690 gfp_t gfp_mask) 2691 { 2692 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2693 } 2694 2695 2696 /** 2697 * skb_clone_writable - is the header of a clone writable 2698 * @skb: buffer to check 2699 * @len: length up to which to write 2700 * 2701 * Returns true if modifying the header part of the cloned buffer 2702 * does not requires the data to be copied. 2703 */ 2704 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2705 { 2706 return !skb_header_cloned(skb) && 2707 skb_headroom(skb) + len <= skb->hdr_len; 2708 } 2709 2710 static inline int skb_try_make_writable(struct sk_buff *skb, 2711 unsigned int write_len) 2712 { 2713 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2714 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2715 } 2716 2717 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2718 int cloned) 2719 { 2720 int delta = 0; 2721 2722 if (headroom > skb_headroom(skb)) 2723 delta = headroom - skb_headroom(skb); 2724 2725 if (delta || cloned) 2726 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2727 GFP_ATOMIC); 2728 return 0; 2729 } 2730 2731 /** 2732 * skb_cow - copy header of skb when it is required 2733 * @skb: buffer to cow 2734 * @headroom: needed headroom 2735 * 2736 * If the skb passed lacks sufficient headroom or its data part 2737 * is shared, data is reallocated. If reallocation fails, an error 2738 * is returned and original skb is not changed. 2739 * 2740 * The result is skb with writable area skb->head...skb->tail 2741 * and at least @headroom of space at head. 2742 */ 2743 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2744 { 2745 return __skb_cow(skb, headroom, skb_cloned(skb)); 2746 } 2747 2748 /** 2749 * skb_cow_head - skb_cow but only making the head writable 2750 * @skb: buffer to cow 2751 * @headroom: needed headroom 2752 * 2753 * This function is identical to skb_cow except that we replace the 2754 * skb_cloned check by skb_header_cloned. It should be used when 2755 * you only need to push on some header and do not need to modify 2756 * the data. 2757 */ 2758 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2759 { 2760 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2761 } 2762 2763 /** 2764 * skb_padto - pad an skbuff up to a minimal size 2765 * @skb: buffer to pad 2766 * @len: minimal length 2767 * 2768 * Pads up a buffer to ensure the trailing bytes exist and are 2769 * blanked. If the buffer already contains sufficient data it 2770 * is untouched. Otherwise it is extended. Returns zero on 2771 * success. The skb is freed on error. 2772 */ 2773 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2774 { 2775 unsigned int size = skb->len; 2776 if (likely(size >= len)) 2777 return 0; 2778 return skb_pad(skb, len - size); 2779 } 2780 2781 /** 2782 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2783 * @skb: buffer to pad 2784 * @len: minimal length 2785 * 2786 * Pads up a buffer to ensure the trailing bytes exist and are 2787 * blanked. If the buffer already contains sufficient data it 2788 * is untouched. Otherwise it is extended. Returns zero on 2789 * success. The skb is freed on error. 2790 */ 2791 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2792 { 2793 unsigned int size = skb->len; 2794 2795 if (unlikely(size < len)) { 2796 len -= size; 2797 if (skb_pad(skb, len)) 2798 return -ENOMEM; 2799 __skb_put(skb, len); 2800 } 2801 return 0; 2802 } 2803 2804 static inline int skb_add_data(struct sk_buff *skb, 2805 struct iov_iter *from, int copy) 2806 { 2807 const int off = skb->len; 2808 2809 if (skb->ip_summed == CHECKSUM_NONE) { 2810 __wsum csum = 0; 2811 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2812 &csum, from) == copy) { 2813 skb->csum = csum_block_add(skb->csum, csum, off); 2814 return 0; 2815 } 2816 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2817 return 0; 2818 2819 __skb_trim(skb, off); 2820 return -EFAULT; 2821 } 2822 2823 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2824 const struct page *page, int off) 2825 { 2826 if (i) { 2827 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2828 2829 return page == skb_frag_page(frag) && 2830 off == frag->page_offset + skb_frag_size(frag); 2831 } 2832 return false; 2833 } 2834 2835 static inline int __skb_linearize(struct sk_buff *skb) 2836 { 2837 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2838 } 2839 2840 /** 2841 * skb_linearize - convert paged skb to linear one 2842 * @skb: buffer to linarize 2843 * 2844 * If there is no free memory -ENOMEM is returned, otherwise zero 2845 * is returned and the old skb data released. 2846 */ 2847 static inline int skb_linearize(struct sk_buff *skb) 2848 { 2849 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2850 } 2851 2852 /** 2853 * skb_has_shared_frag - can any frag be overwritten 2854 * @skb: buffer to test 2855 * 2856 * Return true if the skb has at least one frag that might be modified 2857 * by an external entity (as in vmsplice()/sendfile()) 2858 */ 2859 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2860 { 2861 return skb_is_nonlinear(skb) && 2862 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2863 } 2864 2865 /** 2866 * skb_linearize_cow - make sure skb is linear and writable 2867 * @skb: buffer to process 2868 * 2869 * If there is no free memory -ENOMEM is returned, otherwise zero 2870 * is returned and the old skb data released. 2871 */ 2872 static inline int skb_linearize_cow(struct sk_buff *skb) 2873 { 2874 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2875 __skb_linearize(skb) : 0; 2876 } 2877 2878 static __always_inline void 2879 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2880 unsigned int off) 2881 { 2882 if (skb->ip_summed == CHECKSUM_COMPLETE) 2883 skb->csum = csum_block_sub(skb->csum, 2884 csum_partial(start, len, 0), off); 2885 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2886 skb_checksum_start_offset(skb) < 0) 2887 skb->ip_summed = CHECKSUM_NONE; 2888 } 2889 2890 /** 2891 * skb_postpull_rcsum - update checksum for received skb after pull 2892 * @skb: buffer to update 2893 * @start: start of data before pull 2894 * @len: length of data pulled 2895 * 2896 * After doing a pull on a received packet, you need to call this to 2897 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2898 * CHECKSUM_NONE so that it can be recomputed from scratch. 2899 */ 2900 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2901 const void *start, unsigned int len) 2902 { 2903 __skb_postpull_rcsum(skb, start, len, 0); 2904 } 2905 2906 static __always_inline void 2907 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2908 unsigned int off) 2909 { 2910 if (skb->ip_summed == CHECKSUM_COMPLETE) 2911 skb->csum = csum_block_add(skb->csum, 2912 csum_partial(start, len, 0), off); 2913 } 2914 2915 /** 2916 * skb_postpush_rcsum - update checksum for received skb after push 2917 * @skb: buffer to update 2918 * @start: start of data after push 2919 * @len: length of data pushed 2920 * 2921 * After doing a push on a received packet, you need to call this to 2922 * update the CHECKSUM_COMPLETE checksum. 2923 */ 2924 static inline void skb_postpush_rcsum(struct sk_buff *skb, 2925 const void *start, unsigned int len) 2926 { 2927 __skb_postpush_rcsum(skb, start, len, 0); 2928 } 2929 2930 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2931 2932 /** 2933 * skb_push_rcsum - push skb and update receive checksum 2934 * @skb: buffer to update 2935 * @len: length of data pulled 2936 * 2937 * This function performs an skb_push on the packet and updates 2938 * the CHECKSUM_COMPLETE checksum. It should be used on 2939 * receive path processing instead of skb_push unless you know 2940 * that the checksum difference is zero (e.g., a valid IP header) 2941 * or you are setting ip_summed to CHECKSUM_NONE. 2942 */ 2943 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb, 2944 unsigned int len) 2945 { 2946 skb_push(skb, len); 2947 skb_postpush_rcsum(skb, skb->data, len); 2948 return skb->data; 2949 } 2950 2951 /** 2952 * pskb_trim_rcsum - trim received skb and update checksum 2953 * @skb: buffer to trim 2954 * @len: new length 2955 * 2956 * This is exactly the same as pskb_trim except that it ensures the 2957 * checksum of received packets are still valid after the operation. 2958 */ 2959 2960 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2961 { 2962 if (likely(len >= skb->len)) 2963 return 0; 2964 if (skb->ip_summed == CHECKSUM_COMPLETE) 2965 skb->ip_summed = CHECKSUM_NONE; 2966 return __pskb_trim(skb, len); 2967 } 2968 2969 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2970 { 2971 if (skb->ip_summed == CHECKSUM_COMPLETE) 2972 skb->ip_summed = CHECKSUM_NONE; 2973 __skb_trim(skb, len); 2974 return 0; 2975 } 2976 2977 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 2978 { 2979 if (skb->ip_summed == CHECKSUM_COMPLETE) 2980 skb->ip_summed = CHECKSUM_NONE; 2981 return __skb_grow(skb, len); 2982 } 2983 2984 #define skb_queue_walk(queue, skb) \ 2985 for (skb = (queue)->next; \ 2986 skb != (struct sk_buff *)(queue); \ 2987 skb = skb->next) 2988 2989 #define skb_queue_walk_safe(queue, skb, tmp) \ 2990 for (skb = (queue)->next, tmp = skb->next; \ 2991 skb != (struct sk_buff *)(queue); \ 2992 skb = tmp, tmp = skb->next) 2993 2994 #define skb_queue_walk_from(queue, skb) \ 2995 for (; skb != (struct sk_buff *)(queue); \ 2996 skb = skb->next) 2997 2998 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2999 for (tmp = skb->next; \ 3000 skb != (struct sk_buff *)(queue); \ 3001 skb = tmp, tmp = skb->next) 3002 3003 #define skb_queue_reverse_walk(queue, skb) \ 3004 for (skb = (queue)->prev; \ 3005 skb != (struct sk_buff *)(queue); \ 3006 skb = skb->prev) 3007 3008 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3009 for (skb = (queue)->prev, tmp = skb->prev; \ 3010 skb != (struct sk_buff *)(queue); \ 3011 skb = tmp, tmp = skb->prev) 3012 3013 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3014 for (tmp = skb->prev; \ 3015 skb != (struct sk_buff *)(queue); \ 3016 skb = tmp, tmp = skb->prev) 3017 3018 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3019 { 3020 return skb_shinfo(skb)->frag_list != NULL; 3021 } 3022 3023 static inline void skb_frag_list_init(struct sk_buff *skb) 3024 { 3025 skb_shinfo(skb)->frag_list = NULL; 3026 } 3027 3028 #define skb_walk_frags(skb, iter) \ 3029 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3030 3031 3032 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3033 const struct sk_buff *skb); 3034 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3035 int *peeked, int *off, int *err, 3036 struct sk_buff **last); 3037 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3038 int *peeked, int *off, int *err); 3039 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3040 int *err); 3041 unsigned int datagram_poll(struct file *file, struct socket *sock, 3042 struct poll_table_struct *wait); 3043 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3044 struct iov_iter *to, int size); 3045 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3046 struct msghdr *msg, int size) 3047 { 3048 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3049 } 3050 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3051 struct msghdr *msg); 3052 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3053 struct iov_iter *from, int len); 3054 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3055 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3056 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3057 static inline void skb_free_datagram_locked(struct sock *sk, 3058 struct sk_buff *skb) 3059 { 3060 __skb_free_datagram_locked(sk, skb, 0); 3061 } 3062 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3063 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3064 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3065 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3066 int len, __wsum csum); 3067 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3068 struct pipe_inode_info *pipe, unsigned int len, 3069 unsigned int flags); 3070 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3071 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3072 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3073 int len, int hlen); 3074 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3075 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3076 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3077 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3078 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3079 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3080 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3081 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3082 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3083 int skb_vlan_pop(struct sk_buff *skb); 3084 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3085 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3086 gfp_t gfp); 3087 3088 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3089 { 3090 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3091 } 3092 3093 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3094 { 3095 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3096 } 3097 3098 struct skb_checksum_ops { 3099 __wsum (*update)(const void *mem, int len, __wsum wsum); 3100 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3101 }; 3102 3103 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3104 __wsum csum, const struct skb_checksum_ops *ops); 3105 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3106 __wsum csum); 3107 3108 static inline void * __must_check 3109 __skb_header_pointer(const struct sk_buff *skb, int offset, 3110 int len, void *data, int hlen, void *buffer) 3111 { 3112 if (hlen - offset >= len) 3113 return data + offset; 3114 3115 if (!skb || 3116 skb_copy_bits(skb, offset, buffer, len) < 0) 3117 return NULL; 3118 3119 return buffer; 3120 } 3121 3122 static inline void * __must_check 3123 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3124 { 3125 return __skb_header_pointer(skb, offset, len, skb->data, 3126 skb_headlen(skb), buffer); 3127 } 3128 3129 /** 3130 * skb_needs_linearize - check if we need to linearize a given skb 3131 * depending on the given device features. 3132 * @skb: socket buffer to check 3133 * @features: net device features 3134 * 3135 * Returns true if either: 3136 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3137 * 2. skb is fragmented and the device does not support SG. 3138 */ 3139 static inline bool skb_needs_linearize(struct sk_buff *skb, 3140 netdev_features_t features) 3141 { 3142 return skb_is_nonlinear(skb) && 3143 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3144 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3145 } 3146 3147 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3148 void *to, 3149 const unsigned int len) 3150 { 3151 memcpy(to, skb->data, len); 3152 } 3153 3154 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3155 const int offset, void *to, 3156 const unsigned int len) 3157 { 3158 memcpy(to, skb->data + offset, len); 3159 } 3160 3161 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3162 const void *from, 3163 const unsigned int len) 3164 { 3165 memcpy(skb->data, from, len); 3166 } 3167 3168 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3169 const int offset, 3170 const void *from, 3171 const unsigned int len) 3172 { 3173 memcpy(skb->data + offset, from, len); 3174 } 3175 3176 void skb_init(void); 3177 3178 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3179 { 3180 return skb->tstamp; 3181 } 3182 3183 /** 3184 * skb_get_timestamp - get timestamp from a skb 3185 * @skb: skb to get stamp from 3186 * @stamp: pointer to struct timeval to store stamp in 3187 * 3188 * Timestamps are stored in the skb as offsets to a base timestamp. 3189 * This function converts the offset back to a struct timeval and stores 3190 * it in stamp. 3191 */ 3192 static inline void skb_get_timestamp(const struct sk_buff *skb, 3193 struct timeval *stamp) 3194 { 3195 *stamp = ktime_to_timeval(skb->tstamp); 3196 } 3197 3198 static inline void skb_get_timestampns(const struct sk_buff *skb, 3199 struct timespec *stamp) 3200 { 3201 *stamp = ktime_to_timespec(skb->tstamp); 3202 } 3203 3204 static inline void __net_timestamp(struct sk_buff *skb) 3205 { 3206 skb->tstamp = ktime_get_real(); 3207 } 3208 3209 static inline ktime_t net_timedelta(ktime_t t) 3210 { 3211 return ktime_sub(ktime_get_real(), t); 3212 } 3213 3214 static inline ktime_t net_invalid_timestamp(void) 3215 { 3216 return ktime_set(0, 0); 3217 } 3218 3219 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3220 3221 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3222 3223 void skb_clone_tx_timestamp(struct sk_buff *skb); 3224 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3225 3226 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3227 3228 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3229 { 3230 } 3231 3232 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3233 { 3234 return false; 3235 } 3236 3237 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3238 3239 /** 3240 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3241 * 3242 * PHY drivers may accept clones of transmitted packets for 3243 * timestamping via their phy_driver.txtstamp method. These drivers 3244 * must call this function to return the skb back to the stack with a 3245 * timestamp. 3246 * 3247 * @skb: clone of the the original outgoing packet 3248 * @hwtstamps: hardware time stamps 3249 * 3250 */ 3251 void skb_complete_tx_timestamp(struct sk_buff *skb, 3252 struct skb_shared_hwtstamps *hwtstamps); 3253 3254 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3255 struct skb_shared_hwtstamps *hwtstamps, 3256 struct sock *sk, int tstype); 3257 3258 /** 3259 * skb_tstamp_tx - queue clone of skb with send time stamps 3260 * @orig_skb: the original outgoing packet 3261 * @hwtstamps: hardware time stamps, may be NULL if not available 3262 * 3263 * If the skb has a socket associated, then this function clones the 3264 * skb (thus sharing the actual data and optional structures), stores 3265 * the optional hardware time stamping information (if non NULL) or 3266 * generates a software time stamp (otherwise), then queues the clone 3267 * to the error queue of the socket. Errors are silently ignored. 3268 */ 3269 void skb_tstamp_tx(struct sk_buff *orig_skb, 3270 struct skb_shared_hwtstamps *hwtstamps); 3271 3272 static inline void sw_tx_timestamp(struct sk_buff *skb) 3273 { 3274 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 3275 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 3276 skb_tstamp_tx(skb, NULL); 3277 } 3278 3279 /** 3280 * skb_tx_timestamp() - Driver hook for transmit timestamping 3281 * 3282 * Ethernet MAC Drivers should call this function in their hard_xmit() 3283 * function immediately before giving the sk_buff to the MAC hardware. 3284 * 3285 * Specifically, one should make absolutely sure that this function is 3286 * called before TX completion of this packet can trigger. Otherwise 3287 * the packet could potentially already be freed. 3288 * 3289 * @skb: A socket buffer. 3290 */ 3291 static inline void skb_tx_timestamp(struct sk_buff *skb) 3292 { 3293 skb_clone_tx_timestamp(skb); 3294 sw_tx_timestamp(skb); 3295 } 3296 3297 /** 3298 * skb_complete_wifi_ack - deliver skb with wifi status 3299 * 3300 * @skb: the original outgoing packet 3301 * @acked: ack status 3302 * 3303 */ 3304 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3305 3306 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3307 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3308 3309 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3310 { 3311 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3312 skb->csum_valid || 3313 (skb->ip_summed == CHECKSUM_PARTIAL && 3314 skb_checksum_start_offset(skb) >= 0)); 3315 } 3316 3317 /** 3318 * skb_checksum_complete - Calculate checksum of an entire packet 3319 * @skb: packet to process 3320 * 3321 * This function calculates the checksum over the entire packet plus 3322 * the value of skb->csum. The latter can be used to supply the 3323 * checksum of a pseudo header as used by TCP/UDP. It returns the 3324 * checksum. 3325 * 3326 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3327 * this function can be used to verify that checksum on received 3328 * packets. In that case the function should return zero if the 3329 * checksum is correct. In particular, this function will return zero 3330 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3331 * hardware has already verified the correctness of the checksum. 3332 */ 3333 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3334 { 3335 return skb_csum_unnecessary(skb) ? 3336 0 : __skb_checksum_complete(skb); 3337 } 3338 3339 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3340 { 3341 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3342 if (skb->csum_level == 0) 3343 skb->ip_summed = CHECKSUM_NONE; 3344 else 3345 skb->csum_level--; 3346 } 3347 } 3348 3349 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3350 { 3351 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3352 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3353 skb->csum_level++; 3354 } else if (skb->ip_summed == CHECKSUM_NONE) { 3355 skb->ip_summed = CHECKSUM_UNNECESSARY; 3356 skb->csum_level = 0; 3357 } 3358 } 3359 3360 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3361 { 3362 /* Mark current checksum as bad (typically called from GRO 3363 * path). In the case that ip_summed is CHECKSUM_NONE 3364 * this must be the first checksum encountered in the packet. 3365 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3366 * checksum after the last one validated. For UDP, a zero 3367 * checksum can not be marked as bad. 3368 */ 3369 3370 if (skb->ip_summed == CHECKSUM_NONE || 3371 skb->ip_summed == CHECKSUM_UNNECESSARY) 3372 skb->csum_bad = 1; 3373 } 3374 3375 /* Check if we need to perform checksum complete validation. 3376 * 3377 * Returns true if checksum complete is needed, false otherwise 3378 * (either checksum is unnecessary or zero checksum is allowed). 3379 */ 3380 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3381 bool zero_okay, 3382 __sum16 check) 3383 { 3384 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3385 skb->csum_valid = 1; 3386 __skb_decr_checksum_unnecessary(skb); 3387 return false; 3388 } 3389 3390 return true; 3391 } 3392 3393 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3394 * in checksum_init. 3395 */ 3396 #define CHECKSUM_BREAK 76 3397 3398 /* Unset checksum-complete 3399 * 3400 * Unset checksum complete can be done when packet is being modified 3401 * (uncompressed for instance) and checksum-complete value is 3402 * invalidated. 3403 */ 3404 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3405 { 3406 if (skb->ip_summed == CHECKSUM_COMPLETE) 3407 skb->ip_summed = CHECKSUM_NONE; 3408 } 3409 3410 /* Validate (init) checksum based on checksum complete. 3411 * 3412 * Return values: 3413 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3414 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3415 * checksum is stored in skb->csum for use in __skb_checksum_complete 3416 * non-zero: value of invalid checksum 3417 * 3418 */ 3419 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3420 bool complete, 3421 __wsum psum) 3422 { 3423 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3424 if (!csum_fold(csum_add(psum, skb->csum))) { 3425 skb->csum_valid = 1; 3426 return 0; 3427 } 3428 } else if (skb->csum_bad) { 3429 /* ip_summed == CHECKSUM_NONE in this case */ 3430 return (__force __sum16)1; 3431 } 3432 3433 skb->csum = psum; 3434 3435 if (complete || skb->len <= CHECKSUM_BREAK) { 3436 __sum16 csum; 3437 3438 csum = __skb_checksum_complete(skb); 3439 skb->csum_valid = !csum; 3440 return csum; 3441 } 3442 3443 return 0; 3444 } 3445 3446 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3447 { 3448 return 0; 3449 } 3450 3451 /* Perform checksum validate (init). Note that this is a macro since we only 3452 * want to calculate the pseudo header which is an input function if necessary. 3453 * First we try to validate without any computation (checksum unnecessary) and 3454 * then calculate based on checksum complete calling the function to compute 3455 * pseudo header. 3456 * 3457 * Return values: 3458 * 0: checksum is validated or try to in skb_checksum_complete 3459 * non-zero: value of invalid checksum 3460 */ 3461 #define __skb_checksum_validate(skb, proto, complete, \ 3462 zero_okay, check, compute_pseudo) \ 3463 ({ \ 3464 __sum16 __ret = 0; \ 3465 skb->csum_valid = 0; \ 3466 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3467 __ret = __skb_checksum_validate_complete(skb, \ 3468 complete, compute_pseudo(skb, proto)); \ 3469 __ret; \ 3470 }) 3471 3472 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3473 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3474 3475 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3476 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3477 3478 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3479 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3480 3481 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3482 compute_pseudo) \ 3483 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3484 3485 #define skb_checksum_simple_validate(skb) \ 3486 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3487 3488 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3489 { 3490 return (skb->ip_summed == CHECKSUM_NONE && 3491 skb->csum_valid && !skb->csum_bad); 3492 } 3493 3494 static inline void __skb_checksum_convert(struct sk_buff *skb, 3495 __sum16 check, __wsum pseudo) 3496 { 3497 skb->csum = ~pseudo; 3498 skb->ip_summed = CHECKSUM_COMPLETE; 3499 } 3500 3501 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3502 do { \ 3503 if (__skb_checksum_convert_check(skb)) \ 3504 __skb_checksum_convert(skb, check, \ 3505 compute_pseudo(skb, proto)); \ 3506 } while (0) 3507 3508 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3509 u16 start, u16 offset) 3510 { 3511 skb->ip_summed = CHECKSUM_PARTIAL; 3512 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3513 skb->csum_offset = offset - start; 3514 } 3515 3516 /* Update skbuf and packet to reflect the remote checksum offload operation. 3517 * When called, ptr indicates the starting point for skb->csum when 3518 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3519 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3520 */ 3521 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3522 int start, int offset, bool nopartial) 3523 { 3524 __wsum delta; 3525 3526 if (!nopartial) { 3527 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3528 return; 3529 } 3530 3531 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3532 __skb_checksum_complete(skb); 3533 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3534 } 3535 3536 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3537 3538 /* Adjust skb->csum since we changed the packet */ 3539 skb->csum = csum_add(skb->csum, delta); 3540 } 3541 3542 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3543 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3544 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3545 { 3546 if (nfct && atomic_dec_and_test(&nfct->use)) 3547 nf_conntrack_destroy(nfct); 3548 } 3549 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3550 { 3551 if (nfct) 3552 atomic_inc(&nfct->use); 3553 } 3554 #endif 3555 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3556 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3557 { 3558 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3559 kfree(nf_bridge); 3560 } 3561 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3562 { 3563 if (nf_bridge) 3564 atomic_inc(&nf_bridge->use); 3565 } 3566 #endif /* CONFIG_BRIDGE_NETFILTER */ 3567 static inline void nf_reset(struct sk_buff *skb) 3568 { 3569 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3570 nf_conntrack_put(skb->nfct); 3571 skb->nfct = NULL; 3572 #endif 3573 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3574 nf_bridge_put(skb->nf_bridge); 3575 skb->nf_bridge = NULL; 3576 #endif 3577 } 3578 3579 static inline void nf_reset_trace(struct sk_buff *skb) 3580 { 3581 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3582 skb->nf_trace = 0; 3583 #endif 3584 } 3585 3586 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3587 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3588 bool copy) 3589 { 3590 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3591 dst->nfct = src->nfct; 3592 nf_conntrack_get(src->nfct); 3593 if (copy) 3594 dst->nfctinfo = src->nfctinfo; 3595 #endif 3596 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3597 dst->nf_bridge = src->nf_bridge; 3598 nf_bridge_get(src->nf_bridge); 3599 #endif 3600 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3601 if (copy) 3602 dst->nf_trace = src->nf_trace; 3603 #endif 3604 } 3605 3606 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3607 { 3608 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3609 nf_conntrack_put(dst->nfct); 3610 #endif 3611 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3612 nf_bridge_put(dst->nf_bridge); 3613 #endif 3614 __nf_copy(dst, src, true); 3615 } 3616 3617 #ifdef CONFIG_NETWORK_SECMARK 3618 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3619 { 3620 to->secmark = from->secmark; 3621 } 3622 3623 static inline void skb_init_secmark(struct sk_buff *skb) 3624 { 3625 skb->secmark = 0; 3626 } 3627 #else 3628 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3629 { } 3630 3631 static inline void skb_init_secmark(struct sk_buff *skb) 3632 { } 3633 #endif 3634 3635 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3636 { 3637 return !skb->destructor && 3638 #if IS_ENABLED(CONFIG_XFRM) 3639 !skb->sp && 3640 #endif 3641 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3642 !skb->nfct && 3643 #endif 3644 !skb->_skb_refdst && 3645 !skb_has_frag_list(skb); 3646 } 3647 3648 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3649 { 3650 skb->queue_mapping = queue_mapping; 3651 } 3652 3653 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3654 { 3655 return skb->queue_mapping; 3656 } 3657 3658 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3659 { 3660 to->queue_mapping = from->queue_mapping; 3661 } 3662 3663 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3664 { 3665 skb->queue_mapping = rx_queue + 1; 3666 } 3667 3668 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3669 { 3670 return skb->queue_mapping - 1; 3671 } 3672 3673 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3674 { 3675 return skb->queue_mapping != 0; 3676 } 3677 3678 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3679 { 3680 #ifdef CONFIG_XFRM 3681 return skb->sp; 3682 #else 3683 return NULL; 3684 #endif 3685 } 3686 3687 /* Keeps track of mac header offset relative to skb->head. 3688 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3689 * For non-tunnel skb it points to skb_mac_header() and for 3690 * tunnel skb it points to outer mac header. 3691 * Keeps track of level of encapsulation of network headers. 3692 */ 3693 struct skb_gso_cb { 3694 union { 3695 int mac_offset; 3696 int data_offset; 3697 }; 3698 int encap_level; 3699 __wsum csum; 3700 __u16 csum_start; 3701 }; 3702 #define SKB_SGO_CB_OFFSET 32 3703 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3704 3705 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3706 { 3707 return (skb_mac_header(inner_skb) - inner_skb->head) - 3708 SKB_GSO_CB(inner_skb)->mac_offset; 3709 } 3710 3711 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3712 { 3713 int new_headroom, headroom; 3714 int ret; 3715 3716 headroom = skb_headroom(skb); 3717 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3718 if (ret) 3719 return ret; 3720 3721 new_headroom = skb_headroom(skb); 3722 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3723 return 0; 3724 } 3725 3726 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3727 { 3728 /* Do not update partial checksums if remote checksum is enabled. */ 3729 if (skb->remcsum_offload) 3730 return; 3731 3732 SKB_GSO_CB(skb)->csum = res; 3733 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3734 } 3735 3736 /* Compute the checksum for a gso segment. First compute the checksum value 3737 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3738 * then add in skb->csum (checksum from csum_start to end of packet). 3739 * skb->csum and csum_start are then updated to reflect the checksum of the 3740 * resultant packet starting from the transport header-- the resultant checksum 3741 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3742 * header. 3743 */ 3744 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3745 { 3746 unsigned char *csum_start = skb_transport_header(skb); 3747 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3748 __wsum partial = SKB_GSO_CB(skb)->csum; 3749 3750 SKB_GSO_CB(skb)->csum = res; 3751 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3752 3753 return csum_fold(csum_partial(csum_start, plen, partial)); 3754 } 3755 3756 static inline bool skb_is_gso(const struct sk_buff *skb) 3757 { 3758 return skb_shinfo(skb)->gso_size; 3759 } 3760 3761 /* Note: Should be called only if skb_is_gso(skb) is true */ 3762 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3763 { 3764 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3765 } 3766 3767 static inline void skb_gso_reset(struct sk_buff *skb) 3768 { 3769 skb_shinfo(skb)->gso_size = 0; 3770 skb_shinfo(skb)->gso_segs = 0; 3771 skb_shinfo(skb)->gso_type = 0; 3772 } 3773 3774 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3775 3776 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3777 { 3778 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3779 * wanted then gso_type will be set. */ 3780 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3781 3782 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3783 unlikely(shinfo->gso_type == 0)) { 3784 __skb_warn_lro_forwarding(skb); 3785 return true; 3786 } 3787 return false; 3788 } 3789 3790 static inline void skb_forward_csum(struct sk_buff *skb) 3791 { 3792 /* Unfortunately we don't support this one. Any brave souls? */ 3793 if (skb->ip_summed == CHECKSUM_COMPLETE) 3794 skb->ip_summed = CHECKSUM_NONE; 3795 } 3796 3797 /** 3798 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3799 * @skb: skb to check 3800 * 3801 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3802 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3803 * use this helper, to document places where we make this assertion. 3804 */ 3805 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3806 { 3807 #ifdef DEBUG 3808 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3809 #endif 3810 } 3811 3812 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3813 3814 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3815 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3816 unsigned int transport_len, 3817 __sum16(*skb_chkf)(struct sk_buff *skb)); 3818 3819 /** 3820 * skb_head_is_locked - Determine if the skb->head is locked down 3821 * @skb: skb to check 3822 * 3823 * The head on skbs build around a head frag can be removed if they are 3824 * not cloned. This function returns true if the skb head is locked down 3825 * due to either being allocated via kmalloc, or by being a clone with 3826 * multiple references to the head. 3827 */ 3828 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3829 { 3830 return !skb->head_frag || skb_cloned(skb); 3831 } 3832 3833 /** 3834 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3835 * 3836 * @skb: GSO skb 3837 * 3838 * skb_gso_network_seglen is used to determine the real size of the 3839 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3840 * 3841 * The MAC/L2 header is not accounted for. 3842 */ 3843 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3844 { 3845 unsigned int hdr_len = skb_transport_header(skb) - 3846 skb_network_header(skb); 3847 return hdr_len + skb_gso_transport_seglen(skb); 3848 } 3849 3850 /* Local Checksum Offload. 3851 * Compute outer checksum based on the assumption that the 3852 * inner checksum will be offloaded later. 3853 * See Documentation/networking/checksum-offloads.txt for 3854 * explanation of how this works. 3855 * Fill in outer checksum adjustment (e.g. with sum of outer 3856 * pseudo-header) before calling. 3857 * Also ensure that inner checksum is in linear data area. 3858 */ 3859 static inline __wsum lco_csum(struct sk_buff *skb) 3860 { 3861 unsigned char *csum_start = skb_checksum_start(skb); 3862 unsigned char *l4_hdr = skb_transport_header(skb); 3863 __wsum partial; 3864 3865 /* Start with complement of inner checksum adjustment */ 3866 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3867 skb->csum_offset)); 3868 3869 /* Add in checksum of our headers (incl. outer checksum 3870 * adjustment filled in by caller) and return result. 3871 */ 3872 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3873 } 3874 3875 #endif /* __KERNEL__ */ 3876 #endif /* _LINUX_SKBUFF_H */ 3877