xref: /linux-6.15/include/linux/skbuff.h (revision 44d65ea1)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <linux/if_packet.h>
41 #include <net/flow.h>
42 
43 /* The interface for checksum offload between the stack and networking drivers
44  * is as follows...
45  *
46  * A. IP checksum related features
47  *
48  * Drivers advertise checksum offload capabilities in the features of a device.
49  * From the stack's point of view these are capabilities offered by the driver,
50  * a driver typically only advertises features that it is capable of offloading
51  * to its device.
52  *
53  * The checksum related features are:
54  *
55  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
56  *			  IP (one's complement) checksum for any combination
57  *			  of protocols or protocol layering. The checksum is
58  *			  computed and set in a packet per the CHECKSUM_PARTIAL
59  *			  interface (see below).
60  *
61  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
62  *			  TCP or UDP packets over IPv4. These are specifically
63  *			  unencapsulated packets of the form IPv4|TCP or
64  *			  IPv4|UDP where the Protocol field in the IPv4 header
65  *			  is TCP or UDP. The IPv4 header may contain IP options
66  *			  This feature cannot be set in features for a device
67  *			  with NETIF_F_HW_CSUM also set. This feature is being
68  *			  DEPRECATED (see below).
69  *
70  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
71  *			  TCP or UDP packets over IPv6. These are specifically
72  *			  unencapsulated packets of the form IPv6|TCP or
73  *			  IPv4|UDP where the Next Header field in the IPv6
74  *			  header is either TCP or UDP. IPv6 extension headers
75  *			  are not supported with this feature. This feature
76  *			  cannot be set in features for a device with
77  *			  NETIF_F_HW_CSUM also set. This feature is being
78  *			  DEPRECATED (see below).
79  *
80  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
81  *			 This flag is used only used to disable the RX checksum
82  *			 feature for a device. The stack will accept receive
83  *			 checksum indication in packets received on a device
84  *			 regardless of whether NETIF_F_RXCSUM is set.
85  *
86  * B. Checksumming of received packets by device. Indication of checksum
87  *    verification is in set skb->ip_summed. Possible values are:
88  *
89  * CHECKSUM_NONE:
90  *
91  *   Device did not checksum this packet e.g. due to lack of capabilities.
92  *   The packet contains full (though not verified) checksum in packet but
93  *   not in skb->csum. Thus, skb->csum is undefined in this case.
94  *
95  * CHECKSUM_UNNECESSARY:
96  *
97  *   The hardware you're dealing with doesn't calculate the full checksum
98  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
99  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
100  *   if their checksums are okay. skb->csum is still undefined in this case
101  *   though. A driver or device must never modify the checksum field in the
102  *   packet even if checksum is verified.
103  *
104  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
105  *     TCP: IPv6 and IPv4.
106  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
107  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
108  *       may perform further validation in this case.
109  *     GRE: only if the checksum is present in the header.
110  *     SCTP: indicates the CRC in SCTP header has been validated.
111  *
112  *   skb->csum_level indicates the number of consecutive checksums found in
113  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
114  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
115  *   and a device is able to verify the checksums for UDP (possibly zero),
116  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
117  *   two. If the device were only able to verify the UDP checksum and not
118  *   GRE, either because it doesn't support GRE checksum of because GRE
119  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
120  *   not considered in this case).
121  *
122  * CHECKSUM_COMPLETE:
123  *
124  *   This is the most generic way. The device supplied checksum of the _whole_
125  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
126  *   hardware doesn't need to parse L3/L4 headers to implement this.
127  *
128  *   Note: Even if device supports only some protocols, but is able to produce
129  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
130  *
131  * CHECKSUM_PARTIAL:
132  *
133  *   A checksum is set up to be offloaded to a device as described in the
134  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
135  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
136  *   on the same host, or it may be set in the input path in GRO or remote
137  *   checksum offload. For the purposes of checksum verification, the checksum
138  *   referred to by skb->csum_start + skb->csum_offset and any preceding
139  *   checksums in the packet are considered verified. Any checksums in the
140  *   packet that are after the checksum being offloaded are not considered to
141  *   be verified.
142  *
143  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144  *    in the skb->ip_summed for a packet. Values are:
145  *
146  * CHECKSUM_PARTIAL:
147  *
148  *   The driver is required to checksum the packet as seen by hard_start_xmit()
149  *   from skb->csum_start up to the end, and to record/write the checksum at
150  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
151  *   csum_start and csum_offset values are valid values given the length and
152  *   offset of the packet, however they should not attempt to validate that the
153  *   checksum refers to a legitimate transport layer checksum-- it is the
154  *   purview of the stack to validate that csum_start and csum_offset are set
155  *   correctly.
156  *
157  *   When the stack requests checksum offload for a packet, the driver MUST
158  *   ensure that the checksum is set correctly. A driver can either offload the
159  *   checksum calculation to the device, or call skb_checksum_help (in the case
160  *   that the device does not support offload for a particular checksum).
161  *
162  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164  *   checksum offload capability. If a	device has limited checksum capabilities
165  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
166  *   described above) a helper function can be called to resolve
167  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
168  *   function takes a spec argument that describes the protocol layer that is
169  *   supported for checksum offload and can be called for each packet. If a
170  *   packet does not match the specification for offload, skb_checksum_help
171  *   is called to resolve the checksum.
172  *
173  * CHECKSUM_NONE:
174  *
175  *   The skb was already checksummed by the protocol, or a checksum is not
176  *   required.
177  *
178  * CHECKSUM_UNNECESSARY:
179  *
180  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
181  *   output.
182  *
183  * CHECKSUM_COMPLETE:
184  *   Not used in checksum output. If a driver observes a packet with this value
185  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
186  *
187  * D. Non-IP checksum (CRC) offloads
188  *
189  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
190  *     offloading the SCTP CRC in a packet. To perform this offload the stack
191  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
192  *     accordingly. Note the there is no indication in the skbuff that the
193  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
194  *     both IP checksum offload and SCTP CRC offload must verify which offload
195  *     is configured for a packet presumably by inspecting packet headers.
196  *
197  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
198  *     offloading the FCOE CRC in a packet. To perform this offload the stack
199  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
200  *     accordingly. Note the there is no indication in the skbuff that the
201  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
202  *     both IP checksum offload and FCOE CRC offload must verify which offload
203  *     is configured for a packet presumably by inspecting packet headers.
204  *
205  * E. Checksumming on output with GSO.
206  *
207  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
208  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
209  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
210  * part of the GSO operation is implied. If a checksum is being offloaded
211  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
212  * are set to refer to the outermost checksum being offload (two offloaded
213  * checksums are possible with UDP encapsulation).
214  */
215 
216 /* Don't change this without changing skb_csum_unnecessary! */
217 #define CHECKSUM_NONE		0
218 #define CHECKSUM_UNNECESSARY	1
219 #define CHECKSUM_COMPLETE	2
220 #define CHECKSUM_PARTIAL	3
221 
222 /* Maximum value in skb->csum_level */
223 #define SKB_MAX_CSUM_LEVEL	3
224 
225 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
226 #define SKB_WITH_OVERHEAD(X)	\
227 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
228 #define SKB_MAX_ORDER(X, ORDER) \
229 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
230 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
231 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
232 
233 /* return minimum truesize of one skb containing X bytes of data */
234 #define SKB_TRUESIZE(X) ((X) +						\
235 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
236 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
237 
238 struct net_device;
239 struct scatterlist;
240 struct pipe_inode_info;
241 struct iov_iter;
242 struct napi_struct;
243 
244 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
245 struct nf_conntrack {
246 	atomic_t use;
247 };
248 #endif
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	atomic_t		use;
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 struct sk_buff_head {
281 	/* These two members must be first. */
282 	struct sk_buff	*next;
283 	struct sk_buff	*prev;
284 
285 	__u32		qlen;
286 	spinlock_t	lock;
287 };
288 
289 struct sk_buff;
290 
291 /* To allow 64K frame to be packed as single skb without frag_list we
292  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
293  * buffers which do not start on a page boundary.
294  *
295  * Since GRO uses frags we allocate at least 16 regardless of page
296  * size.
297  */
298 #if (65536/PAGE_SIZE + 1) < 16
299 #define MAX_SKB_FRAGS 16UL
300 #else
301 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
302 #endif
303 extern int sysctl_max_skb_frags;
304 
305 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
306  * segment using its current segmentation instead.
307  */
308 #define GSO_BY_FRAGS	0xFFFF
309 
310 typedef struct skb_frag_struct skb_frag_t;
311 
312 struct skb_frag_struct {
313 	struct {
314 		struct page *p;
315 	} page;
316 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
317 	__u32 page_offset;
318 	__u32 size;
319 #else
320 	__u16 page_offset;
321 	__u16 size;
322 #endif
323 };
324 
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->size;
328 }
329 
330 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
331 {
332 	frag->size = size;
333 }
334 
335 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
336 {
337 	frag->size += delta;
338 }
339 
340 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
341 {
342 	frag->size -= delta;
343 }
344 
345 #define HAVE_HW_TIME_STAMP
346 
347 /**
348  * struct skb_shared_hwtstamps - hardware time stamps
349  * @hwtstamp:	hardware time stamp transformed into duration
350  *		since arbitrary point in time
351  *
352  * Software time stamps generated by ktime_get_real() are stored in
353  * skb->tstamp.
354  *
355  * hwtstamps can only be compared against other hwtstamps from
356  * the same device.
357  *
358  * This structure is attached to packets as part of the
359  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
360  */
361 struct skb_shared_hwtstamps {
362 	ktime_t	hwtstamp;
363 };
364 
365 /* Definitions for tx_flags in struct skb_shared_info */
366 enum {
367 	/* generate hardware time stamp */
368 	SKBTX_HW_TSTAMP = 1 << 0,
369 
370 	/* generate software time stamp when queueing packet to NIC */
371 	SKBTX_SW_TSTAMP = 1 << 1,
372 
373 	/* device driver is going to provide hardware time stamp */
374 	SKBTX_IN_PROGRESS = 1 << 2,
375 
376 	/* device driver supports TX zero-copy buffers */
377 	SKBTX_DEV_ZEROCOPY = 1 << 3,
378 
379 	/* generate wifi status information (where possible) */
380 	SKBTX_WIFI_STATUS = 1 << 4,
381 
382 	/* This indicates at least one fragment might be overwritten
383 	 * (as in vmsplice(), sendfile() ...)
384 	 * If we need to compute a TX checksum, we'll need to copy
385 	 * all frags to avoid possible bad checksum
386 	 */
387 	SKBTX_SHARED_FRAG = 1 << 5,
388 
389 	/* generate software time stamp when entering packet scheduling */
390 	SKBTX_SCHED_TSTAMP = 1 << 6,
391 };
392 
393 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
394 				 SKBTX_SCHED_TSTAMP)
395 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
396 
397 /*
398  * The callback notifies userspace to release buffers when skb DMA is done in
399  * lower device, the skb last reference should be 0 when calling this.
400  * The zerocopy_success argument is true if zero copy transmit occurred,
401  * false on data copy or out of memory error caused by data copy attempt.
402  * The ctx field is used to track device context.
403  * The desc field is used to track userspace buffer index.
404  */
405 struct ubuf_info {
406 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
407 	void *ctx;
408 	unsigned long desc;
409 };
410 
411 /* This data is invariant across clones and lives at
412  * the end of the header data, ie. at skb->end.
413  */
414 struct skb_shared_info {
415 	unsigned char	nr_frags;
416 	__u8		tx_flags;
417 	unsigned short	gso_size;
418 	/* Warning: this field is not always filled in (UFO)! */
419 	unsigned short	gso_segs;
420 	unsigned short  gso_type;
421 	struct sk_buff	*frag_list;
422 	struct skb_shared_hwtstamps hwtstamps;
423 	u32		tskey;
424 	__be32          ip6_frag_id;
425 
426 	/*
427 	 * Warning : all fields before dataref are cleared in __alloc_skb()
428 	 */
429 	atomic_t	dataref;
430 
431 	/* Intermediate layers must ensure that destructor_arg
432 	 * remains valid until skb destructor */
433 	void *		destructor_arg;
434 
435 	/* must be last field, see pskb_expand_head() */
436 	skb_frag_t	frags[MAX_SKB_FRAGS];
437 };
438 
439 /* We divide dataref into two halves.  The higher 16 bits hold references
440  * to the payload part of skb->data.  The lower 16 bits hold references to
441  * the entire skb->data.  A clone of a headerless skb holds the length of
442  * the header in skb->hdr_len.
443  *
444  * All users must obey the rule that the skb->data reference count must be
445  * greater than or equal to the payload reference count.
446  *
447  * Holding a reference to the payload part means that the user does not
448  * care about modifications to the header part of skb->data.
449  */
450 #define SKB_DATAREF_SHIFT 16
451 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
452 
453 
454 enum {
455 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
456 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
457 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
458 };
459 
460 enum {
461 	SKB_GSO_TCPV4 = 1 << 0,
462 	SKB_GSO_UDP = 1 << 1,
463 
464 	/* This indicates the skb is from an untrusted source. */
465 	SKB_GSO_DODGY = 1 << 2,
466 
467 	/* This indicates the tcp segment has CWR set. */
468 	SKB_GSO_TCP_ECN = 1 << 3,
469 
470 	SKB_GSO_TCP_FIXEDID = 1 << 4,
471 
472 	SKB_GSO_TCPV6 = 1 << 5,
473 
474 	SKB_GSO_FCOE = 1 << 6,
475 
476 	SKB_GSO_GRE = 1 << 7,
477 
478 	SKB_GSO_GRE_CSUM = 1 << 8,
479 
480 	SKB_GSO_IPXIP4 = 1 << 9,
481 
482 	SKB_GSO_IPXIP6 = 1 << 10,
483 
484 	SKB_GSO_UDP_TUNNEL = 1 << 11,
485 
486 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
487 
488 	SKB_GSO_PARTIAL = 1 << 13,
489 
490 	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
491 
492 	SKB_GSO_SCTP = 1 << 15,
493 };
494 
495 #if BITS_PER_LONG > 32
496 #define NET_SKBUFF_DATA_USES_OFFSET 1
497 #endif
498 
499 #ifdef NET_SKBUFF_DATA_USES_OFFSET
500 typedef unsigned int sk_buff_data_t;
501 #else
502 typedef unsigned char *sk_buff_data_t;
503 #endif
504 
505 /**
506  * struct skb_mstamp - multi resolution time stamps
507  * @stamp_us: timestamp in us resolution
508  * @stamp_jiffies: timestamp in jiffies
509  */
510 struct skb_mstamp {
511 	union {
512 		u64		v64;
513 		struct {
514 			u32	stamp_us;
515 			u32	stamp_jiffies;
516 		};
517 	};
518 };
519 
520 /**
521  * skb_mstamp_get - get current timestamp
522  * @cl: place to store timestamps
523  */
524 static inline void skb_mstamp_get(struct skb_mstamp *cl)
525 {
526 	u64 val = local_clock();
527 
528 	do_div(val, NSEC_PER_USEC);
529 	cl->stamp_us = (u32)val;
530 	cl->stamp_jiffies = (u32)jiffies;
531 }
532 
533 /**
534  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
535  * @t1: pointer to newest sample
536  * @t0: pointer to oldest sample
537  */
538 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
539 				      const struct skb_mstamp *t0)
540 {
541 	s32 delta_us = t1->stamp_us - t0->stamp_us;
542 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
543 
544 	/* If delta_us is negative, this might be because interval is too big,
545 	 * or local_clock() drift is too big : fallback using jiffies.
546 	 */
547 	if (delta_us <= 0 ||
548 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
549 
550 		delta_us = jiffies_to_usecs(delta_jiffies);
551 
552 	return delta_us;
553 }
554 
555 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
556 				    const struct skb_mstamp *t0)
557 {
558 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
559 
560 	if (!diff)
561 		diff = t1->stamp_us - t0->stamp_us;
562 	return diff > 0;
563 }
564 
565 /**
566  *	struct sk_buff - socket buffer
567  *	@next: Next buffer in list
568  *	@prev: Previous buffer in list
569  *	@tstamp: Time we arrived/left
570  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
571  *	@sk: Socket we are owned by
572  *	@dev: Device we arrived on/are leaving by
573  *	@cb: Control buffer. Free for use by every layer. Put private vars here
574  *	@_skb_refdst: destination entry (with norefcount bit)
575  *	@sp: the security path, used for xfrm
576  *	@len: Length of actual data
577  *	@data_len: Data length
578  *	@mac_len: Length of link layer header
579  *	@hdr_len: writable header length of cloned skb
580  *	@csum: Checksum (must include start/offset pair)
581  *	@csum_start: Offset from skb->head where checksumming should start
582  *	@csum_offset: Offset from csum_start where checksum should be stored
583  *	@priority: Packet queueing priority
584  *	@ignore_df: allow local fragmentation
585  *	@cloned: Head may be cloned (check refcnt to be sure)
586  *	@ip_summed: Driver fed us an IP checksum
587  *	@nohdr: Payload reference only, must not modify header
588  *	@nfctinfo: Relationship of this skb to the connection
589  *	@pkt_type: Packet class
590  *	@fclone: skbuff clone status
591  *	@ipvs_property: skbuff is owned by ipvs
592  *	@peeked: this packet has been seen already, so stats have been
593  *		done for it, don't do them again
594  *	@nf_trace: netfilter packet trace flag
595  *	@protocol: Packet protocol from driver
596  *	@destructor: Destruct function
597  *	@nfct: Associated connection, if any
598  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
599  *	@skb_iif: ifindex of device we arrived on
600  *	@tc_index: Traffic control index
601  *	@tc_verd: traffic control verdict
602  *	@hash: the packet hash
603  *	@queue_mapping: Queue mapping for multiqueue devices
604  *	@xmit_more: More SKBs are pending for this queue
605  *	@ndisc_nodetype: router type (from link layer)
606  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
607  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
608  *		ports.
609  *	@sw_hash: indicates hash was computed in software stack
610  *	@wifi_acked_valid: wifi_acked was set
611  *	@wifi_acked: whether frame was acked on wifi or not
612  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
613   *	@napi_id: id of the NAPI struct this skb came from
614  *	@secmark: security marking
615  *	@mark: Generic packet mark
616  *	@vlan_proto: vlan encapsulation protocol
617  *	@vlan_tci: vlan tag control information
618  *	@inner_protocol: Protocol (encapsulation)
619  *	@inner_transport_header: Inner transport layer header (encapsulation)
620  *	@inner_network_header: Network layer header (encapsulation)
621  *	@inner_mac_header: Link layer header (encapsulation)
622  *	@transport_header: Transport layer header
623  *	@network_header: Network layer header
624  *	@mac_header: Link layer header
625  *	@tail: Tail pointer
626  *	@end: End pointer
627  *	@head: Head of buffer
628  *	@data: Data head pointer
629  *	@truesize: Buffer size
630  *	@users: User count - see {datagram,tcp}.c
631  */
632 
633 struct sk_buff {
634 	union {
635 		struct {
636 			/* These two members must be first. */
637 			struct sk_buff		*next;
638 			struct sk_buff		*prev;
639 
640 			union {
641 				ktime_t		tstamp;
642 				struct skb_mstamp skb_mstamp;
643 			};
644 		};
645 		struct rb_node	rbnode; /* used in netem & tcp stack */
646 	};
647 	struct sock		*sk;
648 	struct net_device	*dev;
649 
650 	/*
651 	 * This is the control buffer. It is free to use for every
652 	 * layer. Please put your private variables there. If you
653 	 * want to keep them across layers you have to do a skb_clone()
654 	 * first. This is owned by whoever has the skb queued ATM.
655 	 */
656 	char			cb[48] __aligned(8);
657 
658 	unsigned long		_skb_refdst;
659 	void			(*destructor)(struct sk_buff *skb);
660 #ifdef CONFIG_XFRM
661 	struct	sec_path	*sp;
662 #endif
663 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
664 	struct nf_conntrack	*nfct;
665 #endif
666 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
667 	struct nf_bridge_info	*nf_bridge;
668 #endif
669 	unsigned int		len,
670 				data_len;
671 	__u16			mac_len,
672 				hdr_len;
673 
674 	/* Following fields are _not_ copied in __copy_skb_header()
675 	 * Note that queue_mapping is here mostly to fill a hole.
676 	 */
677 	kmemcheck_bitfield_begin(flags1);
678 	__u16			queue_mapping;
679 
680 /* if you move cloned around you also must adapt those constants */
681 #ifdef __BIG_ENDIAN_BITFIELD
682 #define CLONED_MASK	(1 << 7)
683 #else
684 #define CLONED_MASK	1
685 #endif
686 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
687 
688 	__u8			__cloned_offset[0];
689 	__u8			cloned:1,
690 				nohdr:1,
691 				fclone:2,
692 				peeked:1,
693 				head_frag:1,
694 				xmit_more:1,
695 				__unused:1; /* one bit hole */
696 	kmemcheck_bitfield_end(flags1);
697 
698 	/* fields enclosed in headers_start/headers_end are copied
699 	 * using a single memcpy() in __copy_skb_header()
700 	 */
701 	/* private: */
702 	__u32			headers_start[0];
703 	/* public: */
704 
705 /* if you move pkt_type around you also must adapt those constants */
706 #ifdef __BIG_ENDIAN_BITFIELD
707 #define PKT_TYPE_MAX	(7 << 5)
708 #else
709 #define PKT_TYPE_MAX	7
710 #endif
711 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
712 
713 	__u8			__pkt_type_offset[0];
714 	__u8			pkt_type:3;
715 	__u8			pfmemalloc:1;
716 	__u8			ignore_df:1;
717 	__u8			nfctinfo:3;
718 
719 	__u8			nf_trace:1;
720 	__u8			ip_summed:2;
721 	__u8			ooo_okay:1;
722 	__u8			l4_hash:1;
723 	__u8			sw_hash:1;
724 	__u8			wifi_acked_valid:1;
725 	__u8			wifi_acked:1;
726 
727 	__u8			no_fcs:1;
728 	/* Indicates the inner headers are valid in the skbuff. */
729 	__u8			encapsulation:1;
730 	__u8			encap_hdr_csum:1;
731 	__u8			csum_valid:1;
732 	__u8			csum_complete_sw:1;
733 	__u8			csum_level:2;
734 	__u8			csum_bad:1;
735 
736 #ifdef CONFIG_IPV6_NDISC_NODETYPE
737 	__u8			ndisc_nodetype:2;
738 #endif
739 	__u8			ipvs_property:1;
740 	__u8			inner_protocol_type:1;
741 	__u8			remcsum_offload:1;
742 #ifdef CONFIG_NET_SWITCHDEV
743 	__u8			offload_fwd_mark:1;
744 #endif
745 	/* 2, 4 or 5 bit hole */
746 
747 #ifdef CONFIG_NET_SCHED
748 	__u16			tc_index;	/* traffic control index */
749 #ifdef CONFIG_NET_CLS_ACT
750 	__u16			tc_verd;	/* traffic control verdict */
751 #endif
752 #endif
753 
754 	union {
755 		__wsum		csum;
756 		struct {
757 			__u16	csum_start;
758 			__u16	csum_offset;
759 		};
760 	};
761 	__u32			priority;
762 	int			skb_iif;
763 	__u32			hash;
764 	__be16			vlan_proto;
765 	__u16			vlan_tci;
766 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
767 	union {
768 		unsigned int	napi_id;
769 		unsigned int	sender_cpu;
770 	};
771 #endif
772 #ifdef CONFIG_NETWORK_SECMARK
773 	__u32		secmark;
774 #endif
775 
776 	union {
777 		__u32		mark;
778 		__u32		reserved_tailroom;
779 	};
780 
781 	union {
782 		__be16		inner_protocol;
783 		__u8		inner_ipproto;
784 	};
785 
786 	__u16			inner_transport_header;
787 	__u16			inner_network_header;
788 	__u16			inner_mac_header;
789 
790 	__be16			protocol;
791 	__u16			transport_header;
792 	__u16			network_header;
793 	__u16			mac_header;
794 
795 	/* private: */
796 	__u32			headers_end[0];
797 	/* public: */
798 
799 	/* These elements must be at the end, see alloc_skb() for details.  */
800 	sk_buff_data_t		tail;
801 	sk_buff_data_t		end;
802 	unsigned char		*head,
803 				*data;
804 	unsigned int		truesize;
805 	atomic_t		users;
806 };
807 
808 #ifdef __KERNEL__
809 /*
810  *	Handling routines are only of interest to the kernel
811  */
812 #include <linux/slab.h>
813 
814 
815 #define SKB_ALLOC_FCLONE	0x01
816 #define SKB_ALLOC_RX		0x02
817 #define SKB_ALLOC_NAPI		0x04
818 
819 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
820 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
821 {
822 	return unlikely(skb->pfmemalloc);
823 }
824 
825 /*
826  * skb might have a dst pointer attached, refcounted or not.
827  * _skb_refdst low order bit is set if refcount was _not_ taken
828  */
829 #define SKB_DST_NOREF	1UL
830 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
831 
832 /**
833  * skb_dst - returns skb dst_entry
834  * @skb: buffer
835  *
836  * Returns skb dst_entry, regardless of reference taken or not.
837  */
838 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
839 {
840 	/* If refdst was not refcounted, check we still are in a
841 	 * rcu_read_lock section
842 	 */
843 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
844 		!rcu_read_lock_held() &&
845 		!rcu_read_lock_bh_held());
846 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
847 }
848 
849 /**
850  * skb_dst_set - sets skb dst
851  * @skb: buffer
852  * @dst: dst entry
853  *
854  * Sets skb dst, assuming a reference was taken on dst and should
855  * be released by skb_dst_drop()
856  */
857 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
858 {
859 	skb->_skb_refdst = (unsigned long)dst;
860 }
861 
862 /**
863  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
864  * @skb: buffer
865  * @dst: dst entry
866  *
867  * Sets skb dst, assuming a reference was not taken on dst.
868  * If dst entry is cached, we do not take reference and dst_release
869  * will be avoided by refdst_drop. If dst entry is not cached, we take
870  * reference, so that last dst_release can destroy the dst immediately.
871  */
872 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
873 {
874 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
875 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
876 }
877 
878 /**
879  * skb_dst_is_noref - Test if skb dst isn't refcounted
880  * @skb: buffer
881  */
882 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
883 {
884 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
885 }
886 
887 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
888 {
889 	return (struct rtable *)skb_dst(skb);
890 }
891 
892 /* For mangling skb->pkt_type from user space side from applications
893  * such as nft, tc, etc, we only allow a conservative subset of
894  * possible pkt_types to be set.
895 */
896 static inline bool skb_pkt_type_ok(u32 ptype)
897 {
898 	return ptype <= PACKET_OTHERHOST;
899 }
900 
901 void kfree_skb(struct sk_buff *skb);
902 void kfree_skb_list(struct sk_buff *segs);
903 void skb_tx_error(struct sk_buff *skb);
904 void consume_skb(struct sk_buff *skb);
905 void  __kfree_skb(struct sk_buff *skb);
906 extern struct kmem_cache *skbuff_head_cache;
907 
908 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
909 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
910 		      bool *fragstolen, int *delta_truesize);
911 
912 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
913 			    int node);
914 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
915 struct sk_buff *build_skb(void *data, unsigned int frag_size);
916 static inline struct sk_buff *alloc_skb(unsigned int size,
917 					gfp_t priority)
918 {
919 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
920 }
921 
922 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
923 				     unsigned long data_len,
924 				     int max_page_order,
925 				     int *errcode,
926 				     gfp_t gfp_mask);
927 
928 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
929 struct sk_buff_fclones {
930 	struct sk_buff	skb1;
931 
932 	struct sk_buff	skb2;
933 
934 	atomic_t	fclone_ref;
935 };
936 
937 /**
938  *	skb_fclone_busy - check if fclone is busy
939  *	@skb: buffer
940  *
941  * Returns true if skb is a fast clone, and its clone is not freed.
942  * Some drivers call skb_orphan() in their ndo_start_xmit(),
943  * so we also check that this didnt happen.
944  */
945 static inline bool skb_fclone_busy(const struct sock *sk,
946 				   const struct sk_buff *skb)
947 {
948 	const struct sk_buff_fclones *fclones;
949 
950 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
951 
952 	return skb->fclone == SKB_FCLONE_ORIG &&
953 	       atomic_read(&fclones->fclone_ref) > 1 &&
954 	       fclones->skb2.sk == sk;
955 }
956 
957 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
958 					       gfp_t priority)
959 {
960 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
961 }
962 
963 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
964 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
965 {
966 	return __alloc_skb_head(priority, -1);
967 }
968 
969 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
970 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
971 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
972 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
973 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
974 				   gfp_t gfp_mask, bool fclone);
975 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
976 					  gfp_t gfp_mask)
977 {
978 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
979 }
980 
981 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
982 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
983 				     unsigned int headroom);
984 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
985 				int newtailroom, gfp_t priority);
986 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
987 			int offset, int len);
988 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
989 		 int len);
990 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
991 int skb_pad(struct sk_buff *skb, int pad);
992 #define dev_kfree_skb(a)	consume_skb(a)
993 
994 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
995 			    int getfrag(void *from, char *to, int offset,
996 					int len, int odd, struct sk_buff *skb),
997 			    void *from, int length);
998 
999 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1000 			 int offset, size_t size);
1001 
1002 struct skb_seq_state {
1003 	__u32		lower_offset;
1004 	__u32		upper_offset;
1005 	__u32		frag_idx;
1006 	__u32		stepped_offset;
1007 	struct sk_buff	*root_skb;
1008 	struct sk_buff	*cur_skb;
1009 	__u8		*frag_data;
1010 };
1011 
1012 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1013 			  unsigned int to, struct skb_seq_state *st);
1014 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1015 			  struct skb_seq_state *st);
1016 void skb_abort_seq_read(struct skb_seq_state *st);
1017 
1018 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1019 			   unsigned int to, struct ts_config *config);
1020 
1021 /*
1022  * Packet hash types specify the type of hash in skb_set_hash.
1023  *
1024  * Hash types refer to the protocol layer addresses which are used to
1025  * construct a packet's hash. The hashes are used to differentiate or identify
1026  * flows of the protocol layer for the hash type. Hash types are either
1027  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1028  *
1029  * Properties of hashes:
1030  *
1031  * 1) Two packets in different flows have different hash values
1032  * 2) Two packets in the same flow should have the same hash value
1033  *
1034  * A hash at a higher layer is considered to be more specific. A driver should
1035  * set the most specific hash possible.
1036  *
1037  * A driver cannot indicate a more specific hash than the layer at which a hash
1038  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1039  *
1040  * A driver may indicate a hash level which is less specific than the
1041  * actual layer the hash was computed on. For instance, a hash computed
1042  * at L4 may be considered an L3 hash. This should only be done if the
1043  * driver can't unambiguously determine that the HW computed the hash at
1044  * the higher layer. Note that the "should" in the second property above
1045  * permits this.
1046  */
1047 enum pkt_hash_types {
1048 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1049 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1050 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1051 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1052 };
1053 
1054 static inline void skb_clear_hash(struct sk_buff *skb)
1055 {
1056 	skb->hash = 0;
1057 	skb->sw_hash = 0;
1058 	skb->l4_hash = 0;
1059 }
1060 
1061 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1062 {
1063 	if (!skb->l4_hash)
1064 		skb_clear_hash(skb);
1065 }
1066 
1067 static inline void
1068 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1069 {
1070 	skb->l4_hash = is_l4;
1071 	skb->sw_hash = is_sw;
1072 	skb->hash = hash;
1073 }
1074 
1075 static inline void
1076 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1077 {
1078 	/* Used by drivers to set hash from HW */
1079 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1080 }
1081 
1082 static inline void
1083 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1084 {
1085 	__skb_set_hash(skb, hash, true, is_l4);
1086 }
1087 
1088 void __skb_get_hash(struct sk_buff *skb);
1089 u32 __skb_get_hash_symmetric(struct sk_buff *skb);
1090 u32 skb_get_poff(const struct sk_buff *skb);
1091 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1092 		   const struct flow_keys *keys, int hlen);
1093 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1094 			    void *data, int hlen_proto);
1095 
1096 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1097 					int thoff, u8 ip_proto)
1098 {
1099 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1100 }
1101 
1102 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1103 			     const struct flow_dissector_key *key,
1104 			     unsigned int key_count);
1105 
1106 bool __skb_flow_dissect(const struct sk_buff *skb,
1107 			struct flow_dissector *flow_dissector,
1108 			void *target_container,
1109 			void *data, __be16 proto, int nhoff, int hlen,
1110 			unsigned int flags);
1111 
1112 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1113 				    struct flow_dissector *flow_dissector,
1114 				    void *target_container, unsigned int flags)
1115 {
1116 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1117 				  NULL, 0, 0, 0, flags);
1118 }
1119 
1120 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1121 					      struct flow_keys *flow,
1122 					      unsigned int flags)
1123 {
1124 	memset(flow, 0, sizeof(*flow));
1125 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1126 				  NULL, 0, 0, 0, flags);
1127 }
1128 
1129 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1130 						  void *data, __be16 proto,
1131 						  int nhoff, int hlen,
1132 						  unsigned int flags)
1133 {
1134 	memset(flow, 0, sizeof(*flow));
1135 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1136 				  data, proto, nhoff, hlen, flags);
1137 }
1138 
1139 static inline __u32 skb_get_hash(struct sk_buff *skb)
1140 {
1141 	if (!skb->l4_hash && !skb->sw_hash)
1142 		__skb_get_hash(skb);
1143 
1144 	return skb->hash;
1145 }
1146 
1147 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1148 
1149 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1150 {
1151 	if (!skb->l4_hash && !skb->sw_hash) {
1152 		struct flow_keys keys;
1153 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1154 
1155 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1156 	}
1157 
1158 	return skb->hash;
1159 }
1160 
1161 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1162 
1163 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1164 {
1165 	if (!skb->l4_hash && !skb->sw_hash) {
1166 		struct flow_keys keys;
1167 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1168 
1169 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1170 	}
1171 
1172 	return skb->hash;
1173 }
1174 
1175 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1176 
1177 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1178 {
1179 	return skb->hash;
1180 }
1181 
1182 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1183 {
1184 	to->hash = from->hash;
1185 	to->sw_hash = from->sw_hash;
1186 	to->l4_hash = from->l4_hash;
1187 };
1188 
1189 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1190 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1191 {
1192 	return skb->head + skb->end;
1193 }
1194 
1195 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1196 {
1197 	return skb->end;
1198 }
1199 #else
1200 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1201 {
1202 	return skb->end;
1203 }
1204 
1205 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1206 {
1207 	return skb->end - skb->head;
1208 }
1209 #endif
1210 
1211 /* Internal */
1212 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1213 
1214 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1215 {
1216 	return &skb_shinfo(skb)->hwtstamps;
1217 }
1218 
1219 /**
1220  *	skb_queue_empty - check if a queue is empty
1221  *	@list: queue head
1222  *
1223  *	Returns true if the queue is empty, false otherwise.
1224  */
1225 static inline int skb_queue_empty(const struct sk_buff_head *list)
1226 {
1227 	return list->next == (const struct sk_buff *) list;
1228 }
1229 
1230 /**
1231  *	skb_queue_is_last - check if skb is the last entry in the queue
1232  *	@list: queue head
1233  *	@skb: buffer
1234  *
1235  *	Returns true if @skb is the last buffer on the list.
1236  */
1237 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1238 				     const struct sk_buff *skb)
1239 {
1240 	return skb->next == (const struct sk_buff *) list;
1241 }
1242 
1243 /**
1244  *	skb_queue_is_first - check if skb is the first entry in the queue
1245  *	@list: queue head
1246  *	@skb: buffer
1247  *
1248  *	Returns true if @skb is the first buffer on the list.
1249  */
1250 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1251 				      const struct sk_buff *skb)
1252 {
1253 	return skb->prev == (const struct sk_buff *) list;
1254 }
1255 
1256 /**
1257  *	skb_queue_next - return the next packet in the queue
1258  *	@list: queue head
1259  *	@skb: current buffer
1260  *
1261  *	Return the next packet in @list after @skb.  It is only valid to
1262  *	call this if skb_queue_is_last() evaluates to false.
1263  */
1264 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1265 					     const struct sk_buff *skb)
1266 {
1267 	/* This BUG_ON may seem severe, but if we just return then we
1268 	 * are going to dereference garbage.
1269 	 */
1270 	BUG_ON(skb_queue_is_last(list, skb));
1271 	return skb->next;
1272 }
1273 
1274 /**
1275  *	skb_queue_prev - return the prev packet in the queue
1276  *	@list: queue head
1277  *	@skb: current buffer
1278  *
1279  *	Return the prev packet in @list before @skb.  It is only valid to
1280  *	call this if skb_queue_is_first() evaluates to false.
1281  */
1282 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1283 					     const struct sk_buff *skb)
1284 {
1285 	/* This BUG_ON may seem severe, but if we just return then we
1286 	 * are going to dereference garbage.
1287 	 */
1288 	BUG_ON(skb_queue_is_first(list, skb));
1289 	return skb->prev;
1290 }
1291 
1292 /**
1293  *	skb_get - reference buffer
1294  *	@skb: buffer to reference
1295  *
1296  *	Makes another reference to a socket buffer and returns a pointer
1297  *	to the buffer.
1298  */
1299 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1300 {
1301 	atomic_inc(&skb->users);
1302 	return skb;
1303 }
1304 
1305 /*
1306  * If users == 1, we are the only owner and are can avoid redundant
1307  * atomic change.
1308  */
1309 
1310 /**
1311  *	skb_cloned - is the buffer a clone
1312  *	@skb: buffer to check
1313  *
1314  *	Returns true if the buffer was generated with skb_clone() and is
1315  *	one of multiple shared copies of the buffer. Cloned buffers are
1316  *	shared data so must not be written to under normal circumstances.
1317  */
1318 static inline int skb_cloned(const struct sk_buff *skb)
1319 {
1320 	return skb->cloned &&
1321 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1322 }
1323 
1324 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1325 {
1326 	might_sleep_if(gfpflags_allow_blocking(pri));
1327 
1328 	if (skb_cloned(skb))
1329 		return pskb_expand_head(skb, 0, 0, pri);
1330 
1331 	return 0;
1332 }
1333 
1334 /**
1335  *	skb_header_cloned - is the header a clone
1336  *	@skb: buffer to check
1337  *
1338  *	Returns true if modifying the header part of the buffer requires
1339  *	the data to be copied.
1340  */
1341 static inline int skb_header_cloned(const struct sk_buff *skb)
1342 {
1343 	int dataref;
1344 
1345 	if (!skb->cloned)
1346 		return 0;
1347 
1348 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1349 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1350 	return dataref != 1;
1351 }
1352 
1353 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1354 {
1355 	might_sleep_if(gfpflags_allow_blocking(pri));
1356 
1357 	if (skb_header_cloned(skb))
1358 		return pskb_expand_head(skb, 0, 0, pri);
1359 
1360 	return 0;
1361 }
1362 
1363 /**
1364  *	skb_header_release - release reference to header
1365  *	@skb: buffer to operate on
1366  *
1367  *	Drop a reference to the header part of the buffer.  This is done
1368  *	by acquiring a payload reference.  You must not read from the header
1369  *	part of skb->data after this.
1370  *	Note : Check if you can use __skb_header_release() instead.
1371  */
1372 static inline void skb_header_release(struct sk_buff *skb)
1373 {
1374 	BUG_ON(skb->nohdr);
1375 	skb->nohdr = 1;
1376 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1377 }
1378 
1379 /**
1380  *	__skb_header_release - release reference to header
1381  *	@skb: buffer to operate on
1382  *
1383  *	Variant of skb_header_release() assuming skb is private to caller.
1384  *	We can avoid one atomic operation.
1385  */
1386 static inline void __skb_header_release(struct sk_buff *skb)
1387 {
1388 	skb->nohdr = 1;
1389 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1390 }
1391 
1392 
1393 /**
1394  *	skb_shared - is the buffer shared
1395  *	@skb: buffer to check
1396  *
1397  *	Returns true if more than one person has a reference to this
1398  *	buffer.
1399  */
1400 static inline int skb_shared(const struct sk_buff *skb)
1401 {
1402 	return atomic_read(&skb->users) != 1;
1403 }
1404 
1405 /**
1406  *	skb_share_check - check if buffer is shared and if so clone it
1407  *	@skb: buffer to check
1408  *	@pri: priority for memory allocation
1409  *
1410  *	If the buffer is shared the buffer is cloned and the old copy
1411  *	drops a reference. A new clone with a single reference is returned.
1412  *	If the buffer is not shared the original buffer is returned. When
1413  *	being called from interrupt status or with spinlocks held pri must
1414  *	be GFP_ATOMIC.
1415  *
1416  *	NULL is returned on a memory allocation failure.
1417  */
1418 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1419 {
1420 	might_sleep_if(gfpflags_allow_blocking(pri));
1421 	if (skb_shared(skb)) {
1422 		struct sk_buff *nskb = skb_clone(skb, pri);
1423 
1424 		if (likely(nskb))
1425 			consume_skb(skb);
1426 		else
1427 			kfree_skb(skb);
1428 		skb = nskb;
1429 	}
1430 	return skb;
1431 }
1432 
1433 /*
1434  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1435  *	packets to handle cases where we have a local reader and forward
1436  *	and a couple of other messy ones. The normal one is tcpdumping
1437  *	a packet thats being forwarded.
1438  */
1439 
1440 /**
1441  *	skb_unshare - make a copy of a shared buffer
1442  *	@skb: buffer to check
1443  *	@pri: priority for memory allocation
1444  *
1445  *	If the socket buffer is a clone then this function creates a new
1446  *	copy of the data, drops a reference count on the old copy and returns
1447  *	the new copy with the reference count at 1. If the buffer is not a clone
1448  *	the original buffer is returned. When called with a spinlock held or
1449  *	from interrupt state @pri must be %GFP_ATOMIC
1450  *
1451  *	%NULL is returned on a memory allocation failure.
1452  */
1453 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1454 					  gfp_t pri)
1455 {
1456 	might_sleep_if(gfpflags_allow_blocking(pri));
1457 	if (skb_cloned(skb)) {
1458 		struct sk_buff *nskb = skb_copy(skb, pri);
1459 
1460 		/* Free our shared copy */
1461 		if (likely(nskb))
1462 			consume_skb(skb);
1463 		else
1464 			kfree_skb(skb);
1465 		skb = nskb;
1466 	}
1467 	return skb;
1468 }
1469 
1470 /**
1471  *	skb_peek - peek at the head of an &sk_buff_head
1472  *	@list_: list to peek at
1473  *
1474  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1475  *	be careful with this one. A peek leaves the buffer on the
1476  *	list and someone else may run off with it. You must hold
1477  *	the appropriate locks or have a private queue to do this.
1478  *
1479  *	Returns %NULL for an empty list or a pointer to the head element.
1480  *	The reference count is not incremented and the reference is therefore
1481  *	volatile. Use with caution.
1482  */
1483 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1484 {
1485 	struct sk_buff *skb = list_->next;
1486 
1487 	if (skb == (struct sk_buff *)list_)
1488 		skb = NULL;
1489 	return skb;
1490 }
1491 
1492 /**
1493  *	skb_peek_next - peek skb following the given one from a queue
1494  *	@skb: skb to start from
1495  *	@list_: list to peek at
1496  *
1497  *	Returns %NULL when the end of the list is met or a pointer to the
1498  *	next element. The reference count is not incremented and the
1499  *	reference is therefore volatile. Use with caution.
1500  */
1501 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1502 		const struct sk_buff_head *list_)
1503 {
1504 	struct sk_buff *next = skb->next;
1505 
1506 	if (next == (struct sk_buff *)list_)
1507 		next = NULL;
1508 	return next;
1509 }
1510 
1511 /**
1512  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1513  *	@list_: list to peek at
1514  *
1515  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1516  *	be careful with this one. A peek leaves the buffer on the
1517  *	list and someone else may run off with it. You must hold
1518  *	the appropriate locks or have a private queue to do this.
1519  *
1520  *	Returns %NULL for an empty list or a pointer to the tail element.
1521  *	The reference count is not incremented and the reference is therefore
1522  *	volatile. Use with caution.
1523  */
1524 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1525 {
1526 	struct sk_buff *skb = list_->prev;
1527 
1528 	if (skb == (struct sk_buff *)list_)
1529 		skb = NULL;
1530 	return skb;
1531 
1532 }
1533 
1534 /**
1535  *	skb_queue_len	- get queue length
1536  *	@list_: list to measure
1537  *
1538  *	Return the length of an &sk_buff queue.
1539  */
1540 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1541 {
1542 	return list_->qlen;
1543 }
1544 
1545 /**
1546  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1547  *	@list: queue to initialize
1548  *
1549  *	This initializes only the list and queue length aspects of
1550  *	an sk_buff_head object.  This allows to initialize the list
1551  *	aspects of an sk_buff_head without reinitializing things like
1552  *	the spinlock.  It can also be used for on-stack sk_buff_head
1553  *	objects where the spinlock is known to not be used.
1554  */
1555 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1556 {
1557 	list->prev = list->next = (struct sk_buff *)list;
1558 	list->qlen = 0;
1559 }
1560 
1561 /*
1562  * This function creates a split out lock class for each invocation;
1563  * this is needed for now since a whole lot of users of the skb-queue
1564  * infrastructure in drivers have different locking usage (in hardirq)
1565  * than the networking core (in softirq only). In the long run either the
1566  * network layer or drivers should need annotation to consolidate the
1567  * main types of usage into 3 classes.
1568  */
1569 static inline void skb_queue_head_init(struct sk_buff_head *list)
1570 {
1571 	spin_lock_init(&list->lock);
1572 	__skb_queue_head_init(list);
1573 }
1574 
1575 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1576 		struct lock_class_key *class)
1577 {
1578 	skb_queue_head_init(list);
1579 	lockdep_set_class(&list->lock, class);
1580 }
1581 
1582 /*
1583  *	Insert an sk_buff on a list.
1584  *
1585  *	The "__skb_xxxx()" functions are the non-atomic ones that
1586  *	can only be called with interrupts disabled.
1587  */
1588 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1589 		struct sk_buff_head *list);
1590 static inline void __skb_insert(struct sk_buff *newsk,
1591 				struct sk_buff *prev, struct sk_buff *next,
1592 				struct sk_buff_head *list)
1593 {
1594 	newsk->next = next;
1595 	newsk->prev = prev;
1596 	next->prev  = prev->next = newsk;
1597 	list->qlen++;
1598 }
1599 
1600 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1601 				      struct sk_buff *prev,
1602 				      struct sk_buff *next)
1603 {
1604 	struct sk_buff *first = list->next;
1605 	struct sk_buff *last = list->prev;
1606 
1607 	first->prev = prev;
1608 	prev->next = first;
1609 
1610 	last->next = next;
1611 	next->prev = last;
1612 }
1613 
1614 /**
1615  *	skb_queue_splice - join two skb lists, this is designed for stacks
1616  *	@list: the new list to add
1617  *	@head: the place to add it in the first list
1618  */
1619 static inline void skb_queue_splice(const struct sk_buff_head *list,
1620 				    struct sk_buff_head *head)
1621 {
1622 	if (!skb_queue_empty(list)) {
1623 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1624 		head->qlen += list->qlen;
1625 	}
1626 }
1627 
1628 /**
1629  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1630  *	@list: the new list to add
1631  *	@head: the place to add it in the first list
1632  *
1633  *	The list at @list is reinitialised
1634  */
1635 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1636 					 struct sk_buff_head *head)
1637 {
1638 	if (!skb_queue_empty(list)) {
1639 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1640 		head->qlen += list->qlen;
1641 		__skb_queue_head_init(list);
1642 	}
1643 }
1644 
1645 /**
1646  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1647  *	@list: the new list to add
1648  *	@head: the place to add it in the first list
1649  */
1650 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1651 					 struct sk_buff_head *head)
1652 {
1653 	if (!skb_queue_empty(list)) {
1654 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1655 		head->qlen += list->qlen;
1656 	}
1657 }
1658 
1659 /**
1660  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1661  *	@list: the new list to add
1662  *	@head: the place to add it in the first list
1663  *
1664  *	Each of the lists is a queue.
1665  *	The list at @list is reinitialised
1666  */
1667 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1668 					      struct sk_buff_head *head)
1669 {
1670 	if (!skb_queue_empty(list)) {
1671 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1672 		head->qlen += list->qlen;
1673 		__skb_queue_head_init(list);
1674 	}
1675 }
1676 
1677 /**
1678  *	__skb_queue_after - queue a buffer at the list head
1679  *	@list: list to use
1680  *	@prev: place after this buffer
1681  *	@newsk: buffer to queue
1682  *
1683  *	Queue a buffer int the middle of a list. This function takes no locks
1684  *	and you must therefore hold required locks before calling it.
1685  *
1686  *	A buffer cannot be placed on two lists at the same time.
1687  */
1688 static inline void __skb_queue_after(struct sk_buff_head *list,
1689 				     struct sk_buff *prev,
1690 				     struct sk_buff *newsk)
1691 {
1692 	__skb_insert(newsk, prev, prev->next, list);
1693 }
1694 
1695 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1696 		struct sk_buff_head *list);
1697 
1698 static inline void __skb_queue_before(struct sk_buff_head *list,
1699 				      struct sk_buff *next,
1700 				      struct sk_buff *newsk)
1701 {
1702 	__skb_insert(newsk, next->prev, next, list);
1703 }
1704 
1705 /**
1706  *	__skb_queue_head - queue a buffer at the list head
1707  *	@list: list to use
1708  *	@newsk: buffer to queue
1709  *
1710  *	Queue a buffer at the start of a list. This function takes no locks
1711  *	and you must therefore hold required locks before calling it.
1712  *
1713  *	A buffer cannot be placed on two lists at the same time.
1714  */
1715 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1716 static inline void __skb_queue_head(struct sk_buff_head *list,
1717 				    struct sk_buff *newsk)
1718 {
1719 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1720 }
1721 
1722 /**
1723  *	__skb_queue_tail - queue a buffer at the list tail
1724  *	@list: list to use
1725  *	@newsk: buffer to queue
1726  *
1727  *	Queue a buffer at the end of a list. This function takes no locks
1728  *	and you must therefore hold required locks before calling it.
1729  *
1730  *	A buffer cannot be placed on two lists at the same time.
1731  */
1732 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1733 static inline void __skb_queue_tail(struct sk_buff_head *list,
1734 				   struct sk_buff *newsk)
1735 {
1736 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1737 }
1738 
1739 /*
1740  * remove sk_buff from list. _Must_ be called atomically, and with
1741  * the list known..
1742  */
1743 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1744 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1745 {
1746 	struct sk_buff *next, *prev;
1747 
1748 	list->qlen--;
1749 	next	   = skb->next;
1750 	prev	   = skb->prev;
1751 	skb->next  = skb->prev = NULL;
1752 	next->prev = prev;
1753 	prev->next = next;
1754 }
1755 
1756 /**
1757  *	__skb_dequeue - remove from the head of the queue
1758  *	@list: list to dequeue from
1759  *
1760  *	Remove the head of the list. This function does not take any locks
1761  *	so must be used with appropriate locks held only. The head item is
1762  *	returned or %NULL if the list is empty.
1763  */
1764 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1765 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1766 {
1767 	struct sk_buff *skb = skb_peek(list);
1768 	if (skb)
1769 		__skb_unlink(skb, list);
1770 	return skb;
1771 }
1772 
1773 /**
1774  *	__skb_dequeue_tail - remove from the tail of the queue
1775  *	@list: list to dequeue from
1776  *
1777  *	Remove the tail of the list. This function does not take any locks
1778  *	so must be used with appropriate locks held only. The tail item is
1779  *	returned or %NULL if the list is empty.
1780  */
1781 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1782 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1783 {
1784 	struct sk_buff *skb = skb_peek_tail(list);
1785 	if (skb)
1786 		__skb_unlink(skb, list);
1787 	return skb;
1788 }
1789 
1790 
1791 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1792 {
1793 	return skb->data_len;
1794 }
1795 
1796 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1797 {
1798 	return skb->len - skb->data_len;
1799 }
1800 
1801 static inline int skb_pagelen(const struct sk_buff *skb)
1802 {
1803 	int i, len = 0;
1804 
1805 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1806 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1807 	return len + skb_headlen(skb);
1808 }
1809 
1810 /**
1811  * __skb_fill_page_desc - initialise a paged fragment in an skb
1812  * @skb: buffer containing fragment to be initialised
1813  * @i: paged fragment index to initialise
1814  * @page: the page to use for this fragment
1815  * @off: the offset to the data with @page
1816  * @size: the length of the data
1817  *
1818  * Initialises the @i'th fragment of @skb to point to &size bytes at
1819  * offset @off within @page.
1820  *
1821  * Does not take any additional reference on the fragment.
1822  */
1823 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1824 					struct page *page, int off, int size)
1825 {
1826 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1827 
1828 	/*
1829 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1830 	 * that not all callers have unique ownership of the page but rely
1831 	 * on page_is_pfmemalloc doing the right thing(tm).
1832 	 */
1833 	frag->page.p		  = page;
1834 	frag->page_offset	  = off;
1835 	skb_frag_size_set(frag, size);
1836 
1837 	page = compound_head(page);
1838 	if (page_is_pfmemalloc(page))
1839 		skb->pfmemalloc	= true;
1840 }
1841 
1842 /**
1843  * skb_fill_page_desc - initialise a paged fragment in an skb
1844  * @skb: buffer containing fragment to be initialised
1845  * @i: paged fragment index to initialise
1846  * @page: the page to use for this fragment
1847  * @off: the offset to the data with @page
1848  * @size: the length of the data
1849  *
1850  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1851  * @skb to point to @size bytes at offset @off within @page. In
1852  * addition updates @skb such that @i is the last fragment.
1853  *
1854  * Does not take any additional reference on the fragment.
1855  */
1856 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1857 				      struct page *page, int off, int size)
1858 {
1859 	__skb_fill_page_desc(skb, i, page, off, size);
1860 	skb_shinfo(skb)->nr_frags = i + 1;
1861 }
1862 
1863 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1864 		     int size, unsigned int truesize);
1865 
1866 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1867 			  unsigned int truesize);
1868 
1869 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1870 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1871 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1872 
1873 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1874 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1875 {
1876 	return skb->head + skb->tail;
1877 }
1878 
1879 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1880 {
1881 	skb->tail = skb->data - skb->head;
1882 }
1883 
1884 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1885 {
1886 	skb_reset_tail_pointer(skb);
1887 	skb->tail += offset;
1888 }
1889 
1890 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1891 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1892 {
1893 	return skb->tail;
1894 }
1895 
1896 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1897 {
1898 	skb->tail = skb->data;
1899 }
1900 
1901 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1902 {
1903 	skb->tail = skb->data + offset;
1904 }
1905 
1906 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1907 
1908 /*
1909  *	Add data to an sk_buff
1910  */
1911 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1912 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1913 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1914 {
1915 	unsigned char *tmp = skb_tail_pointer(skb);
1916 	SKB_LINEAR_ASSERT(skb);
1917 	skb->tail += len;
1918 	skb->len  += len;
1919 	return tmp;
1920 }
1921 
1922 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1923 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1924 {
1925 	skb->data -= len;
1926 	skb->len  += len;
1927 	return skb->data;
1928 }
1929 
1930 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1931 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1932 {
1933 	skb->len -= len;
1934 	BUG_ON(skb->len < skb->data_len);
1935 	return skb->data += len;
1936 }
1937 
1938 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1939 {
1940 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1941 }
1942 
1943 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1944 
1945 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1946 {
1947 	if (len > skb_headlen(skb) &&
1948 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1949 		return NULL;
1950 	skb->len -= len;
1951 	return skb->data += len;
1952 }
1953 
1954 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1955 {
1956 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1957 }
1958 
1959 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1960 {
1961 	if (likely(len <= skb_headlen(skb)))
1962 		return 1;
1963 	if (unlikely(len > skb->len))
1964 		return 0;
1965 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1966 }
1967 
1968 /**
1969  *	skb_headroom - bytes at buffer head
1970  *	@skb: buffer to check
1971  *
1972  *	Return the number of bytes of free space at the head of an &sk_buff.
1973  */
1974 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1975 {
1976 	return skb->data - skb->head;
1977 }
1978 
1979 /**
1980  *	skb_tailroom - bytes at buffer end
1981  *	@skb: buffer to check
1982  *
1983  *	Return the number of bytes of free space at the tail of an sk_buff
1984  */
1985 static inline int skb_tailroom(const struct sk_buff *skb)
1986 {
1987 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1988 }
1989 
1990 /**
1991  *	skb_availroom - bytes at buffer end
1992  *	@skb: buffer to check
1993  *
1994  *	Return the number of bytes of free space at the tail of an sk_buff
1995  *	allocated by sk_stream_alloc()
1996  */
1997 static inline int skb_availroom(const struct sk_buff *skb)
1998 {
1999 	if (skb_is_nonlinear(skb))
2000 		return 0;
2001 
2002 	return skb->end - skb->tail - skb->reserved_tailroom;
2003 }
2004 
2005 /**
2006  *	skb_reserve - adjust headroom
2007  *	@skb: buffer to alter
2008  *	@len: bytes to move
2009  *
2010  *	Increase the headroom of an empty &sk_buff by reducing the tail
2011  *	room. This is only allowed for an empty buffer.
2012  */
2013 static inline void skb_reserve(struct sk_buff *skb, int len)
2014 {
2015 	skb->data += len;
2016 	skb->tail += len;
2017 }
2018 
2019 /**
2020  *	skb_tailroom_reserve - adjust reserved_tailroom
2021  *	@skb: buffer to alter
2022  *	@mtu: maximum amount of headlen permitted
2023  *	@needed_tailroom: minimum amount of reserved_tailroom
2024  *
2025  *	Set reserved_tailroom so that headlen can be as large as possible but
2026  *	not larger than mtu and tailroom cannot be smaller than
2027  *	needed_tailroom.
2028  *	The required headroom should already have been reserved before using
2029  *	this function.
2030  */
2031 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2032 					unsigned int needed_tailroom)
2033 {
2034 	SKB_LINEAR_ASSERT(skb);
2035 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2036 		/* use at most mtu */
2037 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2038 	else
2039 		/* use up to all available space */
2040 		skb->reserved_tailroom = needed_tailroom;
2041 }
2042 
2043 #define ENCAP_TYPE_ETHER	0
2044 #define ENCAP_TYPE_IPPROTO	1
2045 
2046 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2047 					  __be16 protocol)
2048 {
2049 	skb->inner_protocol = protocol;
2050 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2051 }
2052 
2053 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2054 					 __u8 ipproto)
2055 {
2056 	skb->inner_ipproto = ipproto;
2057 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2058 }
2059 
2060 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2061 {
2062 	skb->inner_mac_header = skb->mac_header;
2063 	skb->inner_network_header = skb->network_header;
2064 	skb->inner_transport_header = skb->transport_header;
2065 }
2066 
2067 static inline void skb_reset_mac_len(struct sk_buff *skb)
2068 {
2069 	skb->mac_len = skb->network_header - skb->mac_header;
2070 }
2071 
2072 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2073 							*skb)
2074 {
2075 	return skb->head + skb->inner_transport_header;
2076 }
2077 
2078 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2079 {
2080 	return skb_inner_transport_header(skb) - skb->data;
2081 }
2082 
2083 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2084 {
2085 	skb->inner_transport_header = skb->data - skb->head;
2086 }
2087 
2088 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2089 						   const int offset)
2090 {
2091 	skb_reset_inner_transport_header(skb);
2092 	skb->inner_transport_header += offset;
2093 }
2094 
2095 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2096 {
2097 	return skb->head + skb->inner_network_header;
2098 }
2099 
2100 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2101 {
2102 	skb->inner_network_header = skb->data - skb->head;
2103 }
2104 
2105 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2106 						const int offset)
2107 {
2108 	skb_reset_inner_network_header(skb);
2109 	skb->inner_network_header += offset;
2110 }
2111 
2112 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2113 {
2114 	return skb->head + skb->inner_mac_header;
2115 }
2116 
2117 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2118 {
2119 	skb->inner_mac_header = skb->data - skb->head;
2120 }
2121 
2122 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2123 					    const int offset)
2124 {
2125 	skb_reset_inner_mac_header(skb);
2126 	skb->inner_mac_header += offset;
2127 }
2128 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2129 {
2130 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2131 }
2132 
2133 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2134 {
2135 	return skb->head + skb->transport_header;
2136 }
2137 
2138 static inline void skb_reset_transport_header(struct sk_buff *skb)
2139 {
2140 	skb->transport_header = skb->data - skb->head;
2141 }
2142 
2143 static inline void skb_set_transport_header(struct sk_buff *skb,
2144 					    const int offset)
2145 {
2146 	skb_reset_transport_header(skb);
2147 	skb->transport_header += offset;
2148 }
2149 
2150 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2151 {
2152 	return skb->head + skb->network_header;
2153 }
2154 
2155 static inline void skb_reset_network_header(struct sk_buff *skb)
2156 {
2157 	skb->network_header = skb->data - skb->head;
2158 }
2159 
2160 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2161 {
2162 	skb_reset_network_header(skb);
2163 	skb->network_header += offset;
2164 }
2165 
2166 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2167 {
2168 	return skb->head + skb->mac_header;
2169 }
2170 
2171 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2172 {
2173 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2174 }
2175 
2176 static inline void skb_reset_mac_header(struct sk_buff *skb)
2177 {
2178 	skb->mac_header = skb->data - skb->head;
2179 }
2180 
2181 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2182 {
2183 	skb_reset_mac_header(skb);
2184 	skb->mac_header += offset;
2185 }
2186 
2187 static inline void skb_pop_mac_header(struct sk_buff *skb)
2188 {
2189 	skb->mac_header = skb->network_header;
2190 }
2191 
2192 static inline void skb_probe_transport_header(struct sk_buff *skb,
2193 					      const int offset_hint)
2194 {
2195 	struct flow_keys keys;
2196 
2197 	if (skb_transport_header_was_set(skb))
2198 		return;
2199 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2200 		skb_set_transport_header(skb, keys.control.thoff);
2201 	else
2202 		skb_set_transport_header(skb, offset_hint);
2203 }
2204 
2205 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2206 {
2207 	if (skb_mac_header_was_set(skb)) {
2208 		const unsigned char *old_mac = skb_mac_header(skb);
2209 
2210 		skb_set_mac_header(skb, -skb->mac_len);
2211 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2212 	}
2213 }
2214 
2215 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2216 {
2217 	return skb->csum_start - skb_headroom(skb);
2218 }
2219 
2220 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2221 {
2222 	return skb->head + skb->csum_start;
2223 }
2224 
2225 static inline int skb_transport_offset(const struct sk_buff *skb)
2226 {
2227 	return skb_transport_header(skb) - skb->data;
2228 }
2229 
2230 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2231 {
2232 	return skb->transport_header - skb->network_header;
2233 }
2234 
2235 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2236 {
2237 	return skb->inner_transport_header - skb->inner_network_header;
2238 }
2239 
2240 static inline int skb_network_offset(const struct sk_buff *skb)
2241 {
2242 	return skb_network_header(skb) - skb->data;
2243 }
2244 
2245 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2246 {
2247 	return skb_inner_network_header(skb) - skb->data;
2248 }
2249 
2250 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2251 {
2252 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2253 }
2254 
2255 /*
2256  * CPUs often take a performance hit when accessing unaligned memory
2257  * locations. The actual performance hit varies, it can be small if the
2258  * hardware handles it or large if we have to take an exception and fix it
2259  * in software.
2260  *
2261  * Since an ethernet header is 14 bytes network drivers often end up with
2262  * the IP header at an unaligned offset. The IP header can be aligned by
2263  * shifting the start of the packet by 2 bytes. Drivers should do this
2264  * with:
2265  *
2266  * skb_reserve(skb, NET_IP_ALIGN);
2267  *
2268  * The downside to this alignment of the IP header is that the DMA is now
2269  * unaligned. On some architectures the cost of an unaligned DMA is high
2270  * and this cost outweighs the gains made by aligning the IP header.
2271  *
2272  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2273  * to be overridden.
2274  */
2275 #ifndef NET_IP_ALIGN
2276 #define NET_IP_ALIGN	2
2277 #endif
2278 
2279 /*
2280  * The networking layer reserves some headroom in skb data (via
2281  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2282  * the header has to grow. In the default case, if the header has to grow
2283  * 32 bytes or less we avoid the reallocation.
2284  *
2285  * Unfortunately this headroom changes the DMA alignment of the resulting
2286  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2287  * on some architectures. An architecture can override this value,
2288  * perhaps setting it to a cacheline in size (since that will maintain
2289  * cacheline alignment of the DMA). It must be a power of 2.
2290  *
2291  * Various parts of the networking layer expect at least 32 bytes of
2292  * headroom, you should not reduce this.
2293  *
2294  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2295  * to reduce average number of cache lines per packet.
2296  * get_rps_cpus() for example only access one 64 bytes aligned block :
2297  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2298  */
2299 #ifndef NET_SKB_PAD
2300 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2301 #endif
2302 
2303 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2304 
2305 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2306 {
2307 	if (unlikely(skb_is_nonlinear(skb))) {
2308 		WARN_ON(1);
2309 		return;
2310 	}
2311 	skb->len = len;
2312 	skb_set_tail_pointer(skb, len);
2313 }
2314 
2315 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2316 {
2317 	__skb_set_length(skb, len);
2318 }
2319 
2320 void skb_trim(struct sk_buff *skb, unsigned int len);
2321 
2322 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2323 {
2324 	if (skb->data_len)
2325 		return ___pskb_trim(skb, len);
2326 	__skb_trim(skb, len);
2327 	return 0;
2328 }
2329 
2330 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2331 {
2332 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2333 }
2334 
2335 /**
2336  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2337  *	@skb: buffer to alter
2338  *	@len: new length
2339  *
2340  *	This is identical to pskb_trim except that the caller knows that
2341  *	the skb is not cloned so we should never get an error due to out-
2342  *	of-memory.
2343  */
2344 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2345 {
2346 	int err = pskb_trim(skb, len);
2347 	BUG_ON(err);
2348 }
2349 
2350 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2351 {
2352 	unsigned int diff = len - skb->len;
2353 
2354 	if (skb_tailroom(skb) < diff) {
2355 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2356 					   GFP_ATOMIC);
2357 		if (ret)
2358 			return ret;
2359 	}
2360 	__skb_set_length(skb, len);
2361 	return 0;
2362 }
2363 
2364 /**
2365  *	skb_orphan - orphan a buffer
2366  *	@skb: buffer to orphan
2367  *
2368  *	If a buffer currently has an owner then we call the owner's
2369  *	destructor function and make the @skb unowned. The buffer continues
2370  *	to exist but is no longer charged to its former owner.
2371  */
2372 static inline void skb_orphan(struct sk_buff *skb)
2373 {
2374 	if (skb->destructor) {
2375 		skb->destructor(skb);
2376 		skb->destructor = NULL;
2377 		skb->sk		= NULL;
2378 	} else {
2379 		BUG_ON(skb->sk);
2380 	}
2381 }
2382 
2383 /**
2384  *	skb_orphan_frags - orphan the frags contained in a buffer
2385  *	@skb: buffer to orphan frags from
2386  *	@gfp_mask: allocation mask for replacement pages
2387  *
2388  *	For each frag in the SKB which needs a destructor (i.e. has an
2389  *	owner) create a copy of that frag and release the original
2390  *	page by calling the destructor.
2391  */
2392 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2393 {
2394 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2395 		return 0;
2396 	return skb_copy_ubufs(skb, gfp_mask);
2397 }
2398 
2399 /**
2400  *	__skb_queue_purge - empty a list
2401  *	@list: list to empty
2402  *
2403  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2404  *	the list and one reference dropped. This function does not take the
2405  *	list lock and the caller must hold the relevant locks to use it.
2406  */
2407 void skb_queue_purge(struct sk_buff_head *list);
2408 static inline void __skb_queue_purge(struct sk_buff_head *list)
2409 {
2410 	struct sk_buff *skb;
2411 	while ((skb = __skb_dequeue(list)) != NULL)
2412 		kfree_skb(skb);
2413 }
2414 
2415 void skb_rbtree_purge(struct rb_root *root);
2416 
2417 void *netdev_alloc_frag(unsigned int fragsz);
2418 
2419 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2420 				   gfp_t gfp_mask);
2421 
2422 /**
2423  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2424  *	@dev: network device to receive on
2425  *	@length: length to allocate
2426  *
2427  *	Allocate a new &sk_buff and assign it a usage count of one. The
2428  *	buffer has unspecified headroom built in. Users should allocate
2429  *	the headroom they think they need without accounting for the
2430  *	built in space. The built in space is used for optimisations.
2431  *
2432  *	%NULL is returned if there is no free memory. Although this function
2433  *	allocates memory it can be called from an interrupt.
2434  */
2435 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2436 					       unsigned int length)
2437 {
2438 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2439 }
2440 
2441 /* legacy helper around __netdev_alloc_skb() */
2442 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2443 					      gfp_t gfp_mask)
2444 {
2445 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2446 }
2447 
2448 /* legacy helper around netdev_alloc_skb() */
2449 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2450 {
2451 	return netdev_alloc_skb(NULL, length);
2452 }
2453 
2454 
2455 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2456 		unsigned int length, gfp_t gfp)
2457 {
2458 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2459 
2460 	if (NET_IP_ALIGN && skb)
2461 		skb_reserve(skb, NET_IP_ALIGN);
2462 	return skb;
2463 }
2464 
2465 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2466 		unsigned int length)
2467 {
2468 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2469 }
2470 
2471 static inline void skb_free_frag(void *addr)
2472 {
2473 	__free_page_frag(addr);
2474 }
2475 
2476 void *napi_alloc_frag(unsigned int fragsz);
2477 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2478 				 unsigned int length, gfp_t gfp_mask);
2479 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2480 					     unsigned int length)
2481 {
2482 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2483 }
2484 void napi_consume_skb(struct sk_buff *skb, int budget);
2485 
2486 void __kfree_skb_flush(void);
2487 void __kfree_skb_defer(struct sk_buff *skb);
2488 
2489 /**
2490  * __dev_alloc_pages - allocate page for network Rx
2491  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2492  * @order: size of the allocation
2493  *
2494  * Allocate a new page.
2495  *
2496  * %NULL is returned if there is no free memory.
2497 */
2498 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2499 					     unsigned int order)
2500 {
2501 	/* This piece of code contains several assumptions.
2502 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2503 	 * 2.  The expectation is the user wants a compound page.
2504 	 * 3.  If requesting a order 0 page it will not be compound
2505 	 *     due to the check to see if order has a value in prep_new_page
2506 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2507 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2508 	 */
2509 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2510 
2511 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2512 }
2513 
2514 static inline struct page *dev_alloc_pages(unsigned int order)
2515 {
2516 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2517 }
2518 
2519 /**
2520  * __dev_alloc_page - allocate a page for network Rx
2521  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2522  *
2523  * Allocate a new page.
2524  *
2525  * %NULL is returned if there is no free memory.
2526  */
2527 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2528 {
2529 	return __dev_alloc_pages(gfp_mask, 0);
2530 }
2531 
2532 static inline struct page *dev_alloc_page(void)
2533 {
2534 	return dev_alloc_pages(0);
2535 }
2536 
2537 /**
2538  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2539  *	@page: The page that was allocated from skb_alloc_page
2540  *	@skb: The skb that may need pfmemalloc set
2541  */
2542 static inline void skb_propagate_pfmemalloc(struct page *page,
2543 					     struct sk_buff *skb)
2544 {
2545 	if (page_is_pfmemalloc(page))
2546 		skb->pfmemalloc = true;
2547 }
2548 
2549 /**
2550  * skb_frag_page - retrieve the page referred to by a paged fragment
2551  * @frag: the paged fragment
2552  *
2553  * Returns the &struct page associated with @frag.
2554  */
2555 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2556 {
2557 	return frag->page.p;
2558 }
2559 
2560 /**
2561  * __skb_frag_ref - take an addition reference on a paged fragment.
2562  * @frag: the paged fragment
2563  *
2564  * Takes an additional reference on the paged fragment @frag.
2565  */
2566 static inline void __skb_frag_ref(skb_frag_t *frag)
2567 {
2568 	get_page(skb_frag_page(frag));
2569 }
2570 
2571 /**
2572  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2573  * @skb: the buffer
2574  * @f: the fragment offset.
2575  *
2576  * Takes an additional reference on the @f'th paged fragment of @skb.
2577  */
2578 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2579 {
2580 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2581 }
2582 
2583 /**
2584  * __skb_frag_unref - release a reference on a paged fragment.
2585  * @frag: the paged fragment
2586  *
2587  * Releases a reference on the paged fragment @frag.
2588  */
2589 static inline void __skb_frag_unref(skb_frag_t *frag)
2590 {
2591 	put_page(skb_frag_page(frag));
2592 }
2593 
2594 /**
2595  * skb_frag_unref - release a reference on a paged fragment of an skb.
2596  * @skb: the buffer
2597  * @f: the fragment offset
2598  *
2599  * Releases a reference on the @f'th paged fragment of @skb.
2600  */
2601 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2602 {
2603 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2604 }
2605 
2606 /**
2607  * skb_frag_address - gets the address of the data contained in a paged fragment
2608  * @frag: the paged fragment buffer
2609  *
2610  * Returns the address of the data within @frag. The page must already
2611  * be mapped.
2612  */
2613 static inline void *skb_frag_address(const skb_frag_t *frag)
2614 {
2615 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2616 }
2617 
2618 /**
2619  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2620  * @frag: the paged fragment buffer
2621  *
2622  * Returns the address of the data within @frag. Checks that the page
2623  * is mapped and returns %NULL otherwise.
2624  */
2625 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2626 {
2627 	void *ptr = page_address(skb_frag_page(frag));
2628 	if (unlikely(!ptr))
2629 		return NULL;
2630 
2631 	return ptr + frag->page_offset;
2632 }
2633 
2634 /**
2635  * __skb_frag_set_page - sets the page contained in a paged fragment
2636  * @frag: the paged fragment
2637  * @page: the page to set
2638  *
2639  * Sets the fragment @frag to contain @page.
2640  */
2641 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2642 {
2643 	frag->page.p = page;
2644 }
2645 
2646 /**
2647  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2648  * @skb: the buffer
2649  * @f: the fragment offset
2650  * @page: the page to set
2651  *
2652  * Sets the @f'th fragment of @skb to contain @page.
2653  */
2654 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2655 				     struct page *page)
2656 {
2657 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2658 }
2659 
2660 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2661 
2662 /**
2663  * skb_frag_dma_map - maps a paged fragment via the DMA API
2664  * @dev: the device to map the fragment to
2665  * @frag: the paged fragment to map
2666  * @offset: the offset within the fragment (starting at the
2667  *          fragment's own offset)
2668  * @size: the number of bytes to map
2669  * @dir: the direction of the mapping (%PCI_DMA_*)
2670  *
2671  * Maps the page associated with @frag to @device.
2672  */
2673 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2674 					  const skb_frag_t *frag,
2675 					  size_t offset, size_t size,
2676 					  enum dma_data_direction dir)
2677 {
2678 	return dma_map_page(dev, skb_frag_page(frag),
2679 			    frag->page_offset + offset, size, dir);
2680 }
2681 
2682 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2683 					gfp_t gfp_mask)
2684 {
2685 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2686 }
2687 
2688 
2689 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2690 						  gfp_t gfp_mask)
2691 {
2692 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2693 }
2694 
2695 
2696 /**
2697  *	skb_clone_writable - is the header of a clone writable
2698  *	@skb: buffer to check
2699  *	@len: length up to which to write
2700  *
2701  *	Returns true if modifying the header part of the cloned buffer
2702  *	does not requires the data to be copied.
2703  */
2704 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2705 {
2706 	return !skb_header_cloned(skb) &&
2707 	       skb_headroom(skb) + len <= skb->hdr_len;
2708 }
2709 
2710 static inline int skb_try_make_writable(struct sk_buff *skb,
2711 					unsigned int write_len)
2712 {
2713 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2714 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2715 }
2716 
2717 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2718 			    int cloned)
2719 {
2720 	int delta = 0;
2721 
2722 	if (headroom > skb_headroom(skb))
2723 		delta = headroom - skb_headroom(skb);
2724 
2725 	if (delta || cloned)
2726 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2727 					GFP_ATOMIC);
2728 	return 0;
2729 }
2730 
2731 /**
2732  *	skb_cow - copy header of skb when it is required
2733  *	@skb: buffer to cow
2734  *	@headroom: needed headroom
2735  *
2736  *	If the skb passed lacks sufficient headroom or its data part
2737  *	is shared, data is reallocated. If reallocation fails, an error
2738  *	is returned and original skb is not changed.
2739  *
2740  *	The result is skb with writable area skb->head...skb->tail
2741  *	and at least @headroom of space at head.
2742  */
2743 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2744 {
2745 	return __skb_cow(skb, headroom, skb_cloned(skb));
2746 }
2747 
2748 /**
2749  *	skb_cow_head - skb_cow but only making the head writable
2750  *	@skb: buffer to cow
2751  *	@headroom: needed headroom
2752  *
2753  *	This function is identical to skb_cow except that we replace the
2754  *	skb_cloned check by skb_header_cloned.  It should be used when
2755  *	you only need to push on some header and do not need to modify
2756  *	the data.
2757  */
2758 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2759 {
2760 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2761 }
2762 
2763 /**
2764  *	skb_padto	- pad an skbuff up to a minimal size
2765  *	@skb: buffer to pad
2766  *	@len: minimal length
2767  *
2768  *	Pads up a buffer to ensure the trailing bytes exist and are
2769  *	blanked. If the buffer already contains sufficient data it
2770  *	is untouched. Otherwise it is extended. Returns zero on
2771  *	success. The skb is freed on error.
2772  */
2773 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2774 {
2775 	unsigned int size = skb->len;
2776 	if (likely(size >= len))
2777 		return 0;
2778 	return skb_pad(skb, len - size);
2779 }
2780 
2781 /**
2782  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2783  *	@skb: buffer to pad
2784  *	@len: minimal length
2785  *
2786  *	Pads up a buffer to ensure the trailing bytes exist and are
2787  *	blanked. If the buffer already contains sufficient data it
2788  *	is untouched. Otherwise it is extended. Returns zero on
2789  *	success. The skb is freed on error.
2790  */
2791 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2792 {
2793 	unsigned int size = skb->len;
2794 
2795 	if (unlikely(size < len)) {
2796 		len -= size;
2797 		if (skb_pad(skb, len))
2798 			return -ENOMEM;
2799 		__skb_put(skb, len);
2800 	}
2801 	return 0;
2802 }
2803 
2804 static inline int skb_add_data(struct sk_buff *skb,
2805 			       struct iov_iter *from, int copy)
2806 {
2807 	const int off = skb->len;
2808 
2809 	if (skb->ip_summed == CHECKSUM_NONE) {
2810 		__wsum csum = 0;
2811 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2812 					    &csum, from) == copy) {
2813 			skb->csum = csum_block_add(skb->csum, csum, off);
2814 			return 0;
2815 		}
2816 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2817 		return 0;
2818 
2819 	__skb_trim(skb, off);
2820 	return -EFAULT;
2821 }
2822 
2823 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2824 				    const struct page *page, int off)
2825 {
2826 	if (i) {
2827 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2828 
2829 		return page == skb_frag_page(frag) &&
2830 		       off == frag->page_offset + skb_frag_size(frag);
2831 	}
2832 	return false;
2833 }
2834 
2835 static inline int __skb_linearize(struct sk_buff *skb)
2836 {
2837 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2838 }
2839 
2840 /**
2841  *	skb_linearize - convert paged skb to linear one
2842  *	@skb: buffer to linarize
2843  *
2844  *	If there is no free memory -ENOMEM is returned, otherwise zero
2845  *	is returned and the old skb data released.
2846  */
2847 static inline int skb_linearize(struct sk_buff *skb)
2848 {
2849 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2850 }
2851 
2852 /**
2853  * skb_has_shared_frag - can any frag be overwritten
2854  * @skb: buffer to test
2855  *
2856  * Return true if the skb has at least one frag that might be modified
2857  * by an external entity (as in vmsplice()/sendfile())
2858  */
2859 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2860 {
2861 	return skb_is_nonlinear(skb) &&
2862 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2863 }
2864 
2865 /**
2866  *	skb_linearize_cow - make sure skb is linear and writable
2867  *	@skb: buffer to process
2868  *
2869  *	If there is no free memory -ENOMEM is returned, otherwise zero
2870  *	is returned and the old skb data released.
2871  */
2872 static inline int skb_linearize_cow(struct sk_buff *skb)
2873 {
2874 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2875 	       __skb_linearize(skb) : 0;
2876 }
2877 
2878 static __always_inline void
2879 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2880 		     unsigned int off)
2881 {
2882 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2883 		skb->csum = csum_block_sub(skb->csum,
2884 					   csum_partial(start, len, 0), off);
2885 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2886 		 skb_checksum_start_offset(skb) < 0)
2887 		skb->ip_summed = CHECKSUM_NONE;
2888 }
2889 
2890 /**
2891  *	skb_postpull_rcsum - update checksum for received skb after pull
2892  *	@skb: buffer to update
2893  *	@start: start of data before pull
2894  *	@len: length of data pulled
2895  *
2896  *	After doing a pull on a received packet, you need to call this to
2897  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2898  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2899  */
2900 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2901 				      const void *start, unsigned int len)
2902 {
2903 	__skb_postpull_rcsum(skb, start, len, 0);
2904 }
2905 
2906 static __always_inline void
2907 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2908 		     unsigned int off)
2909 {
2910 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2911 		skb->csum = csum_block_add(skb->csum,
2912 					   csum_partial(start, len, 0), off);
2913 }
2914 
2915 /**
2916  *	skb_postpush_rcsum - update checksum for received skb after push
2917  *	@skb: buffer to update
2918  *	@start: start of data after push
2919  *	@len: length of data pushed
2920  *
2921  *	After doing a push on a received packet, you need to call this to
2922  *	update the CHECKSUM_COMPLETE checksum.
2923  */
2924 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2925 				      const void *start, unsigned int len)
2926 {
2927 	__skb_postpush_rcsum(skb, start, len, 0);
2928 }
2929 
2930 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2931 
2932 /**
2933  *	skb_push_rcsum - push skb and update receive checksum
2934  *	@skb: buffer to update
2935  *	@len: length of data pulled
2936  *
2937  *	This function performs an skb_push on the packet and updates
2938  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2939  *	receive path processing instead of skb_push unless you know
2940  *	that the checksum difference is zero (e.g., a valid IP header)
2941  *	or you are setting ip_summed to CHECKSUM_NONE.
2942  */
2943 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2944 					    unsigned int len)
2945 {
2946 	skb_push(skb, len);
2947 	skb_postpush_rcsum(skb, skb->data, len);
2948 	return skb->data;
2949 }
2950 
2951 /**
2952  *	pskb_trim_rcsum - trim received skb and update checksum
2953  *	@skb: buffer to trim
2954  *	@len: new length
2955  *
2956  *	This is exactly the same as pskb_trim except that it ensures the
2957  *	checksum of received packets are still valid after the operation.
2958  */
2959 
2960 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2961 {
2962 	if (likely(len >= skb->len))
2963 		return 0;
2964 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2965 		skb->ip_summed = CHECKSUM_NONE;
2966 	return __pskb_trim(skb, len);
2967 }
2968 
2969 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2970 {
2971 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2972 		skb->ip_summed = CHECKSUM_NONE;
2973 	__skb_trim(skb, len);
2974 	return 0;
2975 }
2976 
2977 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
2978 {
2979 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2980 		skb->ip_summed = CHECKSUM_NONE;
2981 	return __skb_grow(skb, len);
2982 }
2983 
2984 #define skb_queue_walk(queue, skb) \
2985 		for (skb = (queue)->next;					\
2986 		     skb != (struct sk_buff *)(queue);				\
2987 		     skb = skb->next)
2988 
2989 #define skb_queue_walk_safe(queue, skb, tmp)					\
2990 		for (skb = (queue)->next, tmp = skb->next;			\
2991 		     skb != (struct sk_buff *)(queue);				\
2992 		     skb = tmp, tmp = skb->next)
2993 
2994 #define skb_queue_walk_from(queue, skb)						\
2995 		for (; skb != (struct sk_buff *)(queue);			\
2996 		     skb = skb->next)
2997 
2998 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2999 		for (tmp = skb->next;						\
3000 		     skb != (struct sk_buff *)(queue);				\
3001 		     skb = tmp, tmp = skb->next)
3002 
3003 #define skb_queue_reverse_walk(queue, skb) \
3004 		for (skb = (queue)->prev;					\
3005 		     skb != (struct sk_buff *)(queue);				\
3006 		     skb = skb->prev)
3007 
3008 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3009 		for (skb = (queue)->prev, tmp = skb->prev;			\
3010 		     skb != (struct sk_buff *)(queue);				\
3011 		     skb = tmp, tmp = skb->prev)
3012 
3013 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3014 		for (tmp = skb->prev;						\
3015 		     skb != (struct sk_buff *)(queue);				\
3016 		     skb = tmp, tmp = skb->prev)
3017 
3018 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3019 {
3020 	return skb_shinfo(skb)->frag_list != NULL;
3021 }
3022 
3023 static inline void skb_frag_list_init(struct sk_buff *skb)
3024 {
3025 	skb_shinfo(skb)->frag_list = NULL;
3026 }
3027 
3028 #define skb_walk_frags(skb, iter)	\
3029 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3030 
3031 
3032 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3033 				const struct sk_buff *skb);
3034 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3035 					int *peeked, int *off, int *err,
3036 					struct sk_buff **last);
3037 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3038 				    int *peeked, int *off, int *err);
3039 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3040 				  int *err);
3041 unsigned int datagram_poll(struct file *file, struct socket *sock,
3042 			   struct poll_table_struct *wait);
3043 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3044 			   struct iov_iter *to, int size);
3045 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3046 					struct msghdr *msg, int size)
3047 {
3048 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3049 }
3050 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3051 				   struct msghdr *msg);
3052 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3053 				 struct iov_iter *from, int len);
3054 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3055 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3056 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3057 static inline void skb_free_datagram_locked(struct sock *sk,
3058 					    struct sk_buff *skb)
3059 {
3060 	__skb_free_datagram_locked(sk, skb, 0);
3061 }
3062 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3063 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3064 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3065 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3066 			      int len, __wsum csum);
3067 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3068 		    struct pipe_inode_info *pipe, unsigned int len,
3069 		    unsigned int flags);
3070 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3071 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3072 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3073 		 int len, int hlen);
3074 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3075 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3076 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3077 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3078 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3079 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3080 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3081 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3082 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3083 int skb_vlan_pop(struct sk_buff *skb);
3084 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3085 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3086 			     gfp_t gfp);
3087 
3088 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3089 {
3090 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3091 }
3092 
3093 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3094 {
3095 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3096 }
3097 
3098 struct skb_checksum_ops {
3099 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3100 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3101 };
3102 
3103 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3104 		      __wsum csum, const struct skb_checksum_ops *ops);
3105 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3106 		    __wsum csum);
3107 
3108 static inline void * __must_check
3109 __skb_header_pointer(const struct sk_buff *skb, int offset,
3110 		     int len, void *data, int hlen, void *buffer)
3111 {
3112 	if (hlen - offset >= len)
3113 		return data + offset;
3114 
3115 	if (!skb ||
3116 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3117 		return NULL;
3118 
3119 	return buffer;
3120 }
3121 
3122 static inline void * __must_check
3123 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3124 {
3125 	return __skb_header_pointer(skb, offset, len, skb->data,
3126 				    skb_headlen(skb), buffer);
3127 }
3128 
3129 /**
3130  *	skb_needs_linearize - check if we need to linearize a given skb
3131  *			      depending on the given device features.
3132  *	@skb: socket buffer to check
3133  *	@features: net device features
3134  *
3135  *	Returns true if either:
3136  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3137  *	2. skb is fragmented and the device does not support SG.
3138  */
3139 static inline bool skb_needs_linearize(struct sk_buff *skb,
3140 				       netdev_features_t features)
3141 {
3142 	return skb_is_nonlinear(skb) &&
3143 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3144 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3145 }
3146 
3147 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3148 					     void *to,
3149 					     const unsigned int len)
3150 {
3151 	memcpy(to, skb->data, len);
3152 }
3153 
3154 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3155 						    const int offset, void *to,
3156 						    const unsigned int len)
3157 {
3158 	memcpy(to, skb->data + offset, len);
3159 }
3160 
3161 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3162 					   const void *from,
3163 					   const unsigned int len)
3164 {
3165 	memcpy(skb->data, from, len);
3166 }
3167 
3168 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3169 						  const int offset,
3170 						  const void *from,
3171 						  const unsigned int len)
3172 {
3173 	memcpy(skb->data + offset, from, len);
3174 }
3175 
3176 void skb_init(void);
3177 
3178 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3179 {
3180 	return skb->tstamp;
3181 }
3182 
3183 /**
3184  *	skb_get_timestamp - get timestamp from a skb
3185  *	@skb: skb to get stamp from
3186  *	@stamp: pointer to struct timeval to store stamp in
3187  *
3188  *	Timestamps are stored in the skb as offsets to a base timestamp.
3189  *	This function converts the offset back to a struct timeval and stores
3190  *	it in stamp.
3191  */
3192 static inline void skb_get_timestamp(const struct sk_buff *skb,
3193 				     struct timeval *stamp)
3194 {
3195 	*stamp = ktime_to_timeval(skb->tstamp);
3196 }
3197 
3198 static inline void skb_get_timestampns(const struct sk_buff *skb,
3199 				       struct timespec *stamp)
3200 {
3201 	*stamp = ktime_to_timespec(skb->tstamp);
3202 }
3203 
3204 static inline void __net_timestamp(struct sk_buff *skb)
3205 {
3206 	skb->tstamp = ktime_get_real();
3207 }
3208 
3209 static inline ktime_t net_timedelta(ktime_t t)
3210 {
3211 	return ktime_sub(ktime_get_real(), t);
3212 }
3213 
3214 static inline ktime_t net_invalid_timestamp(void)
3215 {
3216 	return ktime_set(0, 0);
3217 }
3218 
3219 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3220 
3221 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3222 
3223 void skb_clone_tx_timestamp(struct sk_buff *skb);
3224 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3225 
3226 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3227 
3228 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3229 {
3230 }
3231 
3232 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3233 {
3234 	return false;
3235 }
3236 
3237 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3238 
3239 /**
3240  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3241  *
3242  * PHY drivers may accept clones of transmitted packets for
3243  * timestamping via their phy_driver.txtstamp method. These drivers
3244  * must call this function to return the skb back to the stack with a
3245  * timestamp.
3246  *
3247  * @skb: clone of the the original outgoing packet
3248  * @hwtstamps: hardware time stamps
3249  *
3250  */
3251 void skb_complete_tx_timestamp(struct sk_buff *skb,
3252 			       struct skb_shared_hwtstamps *hwtstamps);
3253 
3254 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3255 		     struct skb_shared_hwtstamps *hwtstamps,
3256 		     struct sock *sk, int tstype);
3257 
3258 /**
3259  * skb_tstamp_tx - queue clone of skb with send time stamps
3260  * @orig_skb:	the original outgoing packet
3261  * @hwtstamps:	hardware time stamps, may be NULL if not available
3262  *
3263  * If the skb has a socket associated, then this function clones the
3264  * skb (thus sharing the actual data and optional structures), stores
3265  * the optional hardware time stamping information (if non NULL) or
3266  * generates a software time stamp (otherwise), then queues the clone
3267  * to the error queue of the socket.  Errors are silently ignored.
3268  */
3269 void skb_tstamp_tx(struct sk_buff *orig_skb,
3270 		   struct skb_shared_hwtstamps *hwtstamps);
3271 
3272 static inline void sw_tx_timestamp(struct sk_buff *skb)
3273 {
3274 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3275 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3276 		skb_tstamp_tx(skb, NULL);
3277 }
3278 
3279 /**
3280  * skb_tx_timestamp() - Driver hook for transmit timestamping
3281  *
3282  * Ethernet MAC Drivers should call this function in their hard_xmit()
3283  * function immediately before giving the sk_buff to the MAC hardware.
3284  *
3285  * Specifically, one should make absolutely sure that this function is
3286  * called before TX completion of this packet can trigger.  Otherwise
3287  * the packet could potentially already be freed.
3288  *
3289  * @skb: A socket buffer.
3290  */
3291 static inline void skb_tx_timestamp(struct sk_buff *skb)
3292 {
3293 	skb_clone_tx_timestamp(skb);
3294 	sw_tx_timestamp(skb);
3295 }
3296 
3297 /**
3298  * skb_complete_wifi_ack - deliver skb with wifi status
3299  *
3300  * @skb: the original outgoing packet
3301  * @acked: ack status
3302  *
3303  */
3304 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3305 
3306 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3307 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3308 
3309 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3310 {
3311 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3312 		skb->csum_valid ||
3313 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3314 		 skb_checksum_start_offset(skb) >= 0));
3315 }
3316 
3317 /**
3318  *	skb_checksum_complete - Calculate checksum of an entire packet
3319  *	@skb: packet to process
3320  *
3321  *	This function calculates the checksum over the entire packet plus
3322  *	the value of skb->csum.  The latter can be used to supply the
3323  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3324  *	checksum.
3325  *
3326  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3327  *	this function can be used to verify that checksum on received
3328  *	packets.  In that case the function should return zero if the
3329  *	checksum is correct.  In particular, this function will return zero
3330  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3331  *	hardware has already verified the correctness of the checksum.
3332  */
3333 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3334 {
3335 	return skb_csum_unnecessary(skb) ?
3336 	       0 : __skb_checksum_complete(skb);
3337 }
3338 
3339 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3340 {
3341 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3342 		if (skb->csum_level == 0)
3343 			skb->ip_summed = CHECKSUM_NONE;
3344 		else
3345 			skb->csum_level--;
3346 	}
3347 }
3348 
3349 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3350 {
3351 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3352 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3353 			skb->csum_level++;
3354 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3355 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3356 		skb->csum_level = 0;
3357 	}
3358 }
3359 
3360 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3361 {
3362 	/* Mark current checksum as bad (typically called from GRO
3363 	 * path). In the case that ip_summed is CHECKSUM_NONE
3364 	 * this must be the first checksum encountered in the packet.
3365 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3366 	 * checksum after the last one validated. For UDP, a zero
3367 	 * checksum can not be marked as bad.
3368 	 */
3369 
3370 	if (skb->ip_summed == CHECKSUM_NONE ||
3371 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3372 		skb->csum_bad = 1;
3373 }
3374 
3375 /* Check if we need to perform checksum complete validation.
3376  *
3377  * Returns true if checksum complete is needed, false otherwise
3378  * (either checksum is unnecessary or zero checksum is allowed).
3379  */
3380 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3381 						  bool zero_okay,
3382 						  __sum16 check)
3383 {
3384 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3385 		skb->csum_valid = 1;
3386 		__skb_decr_checksum_unnecessary(skb);
3387 		return false;
3388 	}
3389 
3390 	return true;
3391 }
3392 
3393 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3394  * in checksum_init.
3395  */
3396 #define CHECKSUM_BREAK 76
3397 
3398 /* Unset checksum-complete
3399  *
3400  * Unset checksum complete can be done when packet is being modified
3401  * (uncompressed for instance) and checksum-complete value is
3402  * invalidated.
3403  */
3404 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3405 {
3406 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3407 		skb->ip_summed = CHECKSUM_NONE;
3408 }
3409 
3410 /* Validate (init) checksum based on checksum complete.
3411  *
3412  * Return values:
3413  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3414  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3415  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3416  *   non-zero: value of invalid checksum
3417  *
3418  */
3419 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3420 						       bool complete,
3421 						       __wsum psum)
3422 {
3423 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3424 		if (!csum_fold(csum_add(psum, skb->csum))) {
3425 			skb->csum_valid = 1;
3426 			return 0;
3427 		}
3428 	} else if (skb->csum_bad) {
3429 		/* ip_summed == CHECKSUM_NONE in this case */
3430 		return (__force __sum16)1;
3431 	}
3432 
3433 	skb->csum = psum;
3434 
3435 	if (complete || skb->len <= CHECKSUM_BREAK) {
3436 		__sum16 csum;
3437 
3438 		csum = __skb_checksum_complete(skb);
3439 		skb->csum_valid = !csum;
3440 		return csum;
3441 	}
3442 
3443 	return 0;
3444 }
3445 
3446 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3447 {
3448 	return 0;
3449 }
3450 
3451 /* Perform checksum validate (init). Note that this is a macro since we only
3452  * want to calculate the pseudo header which is an input function if necessary.
3453  * First we try to validate without any computation (checksum unnecessary) and
3454  * then calculate based on checksum complete calling the function to compute
3455  * pseudo header.
3456  *
3457  * Return values:
3458  *   0: checksum is validated or try to in skb_checksum_complete
3459  *   non-zero: value of invalid checksum
3460  */
3461 #define __skb_checksum_validate(skb, proto, complete,			\
3462 				zero_okay, check, compute_pseudo)	\
3463 ({									\
3464 	__sum16 __ret = 0;						\
3465 	skb->csum_valid = 0;						\
3466 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3467 		__ret = __skb_checksum_validate_complete(skb,		\
3468 				complete, compute_pseudo(skb, proto));	\
3469 	__ret;								\
3470 })
3471 
3472 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3473 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3474 
3475 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3476 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3477 
3478 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3479 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3480 
3481 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3482 					 compute_pseudo)		\
3483 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3484 
3485 #define skb_checksum_simple_validate(skb)				\
3486 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3487 
3488 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3489 {
3490 	return (skb->ip_summed == CHECKSUM_NONE &&
3491 		skb->csum_valid && !skb->csum_bad);
3492 }
3493 
3494 static inline void __skb_checksum_convert(struct sk_buff *skb,
3495 					  __sum16 check, __wsum pseudo)
3496 {
3497 	skb->csum = ~pseudo;
3498 	skb->ip_summed = CHECKSUM_COMPLETE;
3499 }
3500 
3501 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3502 do {									\
3503 	if (__skb_checksum_convert_check(skb))				\
3504 		__skb_checksum_convert(skb, check,			\
3505 				       compute_pseudo(skb, proto));	\
3506 } while (0)
3507 
3508 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3509 					      u16 start, u16 offset)
3510 {
3511 	skb->ip_summed = CHECKSUM_PARTIAL;
3512 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3513 	skb->csum_offset = offset - start;
3514 }
3515 
3516 /* Update skbuf and packet to reflect the remote checksum offload operation.
3517  * When called, ptr indicates the starting point for skb->csum when
3518  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3519  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3520  */
3521 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3522 				       int start, int offset, bool nopartial)
3523 {
3524 	__wsum delta;
3525 
3526 	if (!nopartial) {
3527 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3528 		return;
3529 	}
3530 
3531 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3532 		__skb_checksum_complete(skb);
3533 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3534 	}
3535 
3536 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3537 
3538 	/* Adjust skb->csum since we changed the packet */
3539 	skb->csum = csum_add(skb->csum, delta);
3540 }
3541 
3542 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3543 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3544 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3545 {
3546 	if (nfct && atomic_dec_and_test(&nfct->use))
3547 		nf_conntrack_destroy(nfct);
3548 }
3549 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3550 {
3551 	if (nfct)
3552 		atomic_inc(&nfct->use);
3553 }
3554 #endif
3555 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3556 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3557 {
3558 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3559 		kfree(nf_bridge);
3560 }
3561 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3562 {
3563 	if (nf_bridge)
3564 		atomic_inc(&nf_bridge->use);
3565 }
3566 #endif /* CONFIG_BRIDGE_NETFILTER */
3567 static inline void nf_reset(struct sk_buff *skb)
3568 {
3569 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3570 	nf_conntrack_put(skb->nfct);
3571 	skb->nfct = NULL;
3572 #endif
3573 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3574 	nf_bridge_put(skb->nf_bridge);
3575 	skb->nf_bridge = NULL;
3576 #endif
3577 }
3578 
3579 static inline void nf_reset_trace(struct sk_buff *skb)
3580 {
3581 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3582 	skb->nf_trace = 0;
3583 #endif
3584 }
3585 
3586 /* Note: This doesn't put any conntrack and bridge info in dst. */
3587 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3588 			     bool copy)
3589 {
3590 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3591 	dst->nfct = src->nfct;
3592 	nf_conntrack_get(src->nfct);
3593 	if (copy)
3594 		dst->nfctinfo = src->nfctinfo;
3595 #endif
3596 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3597 	dst->nf_bridge  = src->nf_bridge;
3598 	nf_bridge_get(src->nf_bridge);
3599 #endif
3600 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3601 	if (copy)
3602 		dst->nf_trace = src->nf_trace;
3603 #endif
3604 }
3605 
3606 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3607 {
3608 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3609 	nf_conntrack_put(dst->nfct);
3610 #endif
3611 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3612 	nf_bridge_put(dst->nf_bridge);
3613 #endif
3614 	__nf_copy(dst, src, true);
3615 }
3616 
3617 #ifdef CONFIG_NETWORK_SECMARK
3618 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3619 {
3620 	to->secmark = from->secmark;
3621 }
3622 
3623 static inline void skb_init_secmark(struct sk_buff *skb)
3624 {
3625 	skb->secmark = 0;
3626 }
3627 #else
3628 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3629 { }
3630 
3631 static inline void skb_init_secmark(struct sk_buff *skb)
3632 { }
3633 #endif
3634 
3635 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3636 {
3637 	return !skb->destructor &&
3638 #if IS_ENABLED(CONFIG_XFRM)
3639 		!skb->sp &&
3640 #endif
3641 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3642 		!skb->nfct &&
3643 #endif
3644 		!skb->_skb_refdst &&
3645 		!skb_has_frag_list(skb);
3646 }
3647 
3648 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3649 {
3650 	skb->queue_mapping = queue_mapping;
3651 }
3652 
3653 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3654 {
3655 	return skb->queue_mapping;
3656 }
3657 
3658 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3659 {
3660 	to->queue_mapping = from->queue_mapping;
3661 }
3662 
3663 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3664 {
3665 	skb->queue_mapping = rx_queue + 1;
3666 }
3667 
3668 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3669 {
3670 	return skb->queue_mapping - 1;
3671 }
3672 
3673 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3674 {
3675 	return skb->queue_mapping != 0;
3676 }
3677 
3678 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3679 {
3680 #ifdef CONFIG_XFRM
3681 	return skb->sp;
3682 #else
3683 	return NULL;
3684 #endif
3685 }
3686 
3687 /* Keeps track of mac header offset relative to skb->head.
3688  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3689  * For non-tunnel skb it points to skb_mac_header() and for
3690  * tunnel skb it points to outer mac header.
3691  * Keeps track of level of encapsulation of network headers.
3692  */
3693 struct skb_gso_cb {
3694 	union {
3695 		int	mac_offset;
3696 		int	data_offset;
3697 	};
3698 	int	encap_level;
3699 	__wsum	csum;
3700 	__u16	csum_start;
3701 };
3702 #define SKB_SGO_CB_OFFSET	32
3703 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3704 
3705 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3706 {
3707 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3708 		SKB_GSO_CB(inner_skb)->mac_offset;
3709 }
3710 
3711 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3712 {
3713 	int new_headroom, headroom;
3714 	int ret;
3715 
3716 	headroom = skb_headroom(skb);
3717 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3718 	if (ret)
3719 		return ret;
3720 
3721 	new_headroom = skb_headroom(skb);
3722 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3723 	return 0;
3724 }
3725 
3726 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3727 {
3728 	/* Do not update partial checksums if remote checksum is enabled. */
3729 	if (skb->remcsum_offload)
3730 		return;
3731 
3732 	SKB_GSO_CB(skb)->csum = res;
3733 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3734 }
3735 
3736 /* Compute the checksum for a gso segment. First compute the checksum value
3737  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3738  * then add in skb->csum (checksum from csum_start to end of packet).
3739  * skb->csum and csum_start are then updated to reflect the checksum of the
3740  * resultant packet starting from the transport header-- the resultant checksum
3741  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3742  * header.
3743  */
3744 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3745 {
3746 	unsigned char *csum_start = skb_transport_header(skb);
3747 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3748 	__wsum partial = SKB_GSO_CB(skb)->csum;
3749 
3750 	SKB_GSO_CB(skb)->csum = res;
3751 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3752 
3753 	return csum_fold(csum_partial(csum_start, plen, partial));
3754 }
3755 
3756 static inline bool skb_is_gso(const struct sk_buff *skb)
3757 {
3758 	return skb_shinfo(skb)->gso_size;
3759 }
3760 
3761 /* Note: Should be called only if skb_is_gso(skb) is true */
3762 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3763 {
3764 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3765 }
3766 
3767 static inline void skb_gso_reset(struct sk_buff *skb)
3768 {
3769 	skb_shinfo(skb)->gso_size = 0;
3770 	skb_shinfo(skb)->gso_segs = 0;
3771 	skb_shinfo(skb)->gso_type = 0;
3772 }
3773 
3774 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3775 
3776 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3777 {
3778 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3779 	 * wanted then gso_type will be set. */
3780 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3781 
3782 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3783 	    unlikely(shinfo->gso_type == 0)) {
3784 		__skb_warn_lro_forwarding(skb);
3785 		return true;
3786 	}
3787 	return false;
3788 }
3789 
3790 static inline void skb_forward_csum(struct sk_buff *skb)
3791 {
3792 	/* Unfortunately we don't support this one.  Any brave souls? */
3793 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3794 		skb->ip_summed = CHECKSUM_NONE;
3795 }
3796 
3797 /**
3798  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3799  * @skb: skb to check
3800  *
3801  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3802  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3803  * use this helper, to document places where we make this assertion.
3804  */
3805 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3806 {
3807 #ifdef DEBUG
3808 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3809 #endif
3810 }
3811 
3812 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3813 
3814 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3815 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3816 				     unsigned int transport_len,
3817 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3818 
3819 /**
3820  * skb_head_is_locked - Determine if the skb->head is locked down
3821  * @skb: skb to check
3822  *
3823  * The head on skbs build around a head frag can be removed if they are
3824  * not cloned.  This function returns true if the skb head is locked down
3825  * due to either being allocated via kmalloc, or by being a clone with
3826  * multiple references to the head.
3827  */
3828 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3829 {
3830 	return !skb->head_frag || skb_cloned(skb);
3831 }
3832 
3833 /**
3834  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3835  *
3836  * @skb: GSO skb
3837  *
3838  * skb_gso_network_seglen is used to determine the real size of the
3839  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3840  *
3841  * The MAC/L2 header is not accounted for.
3842  */
3843 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3844 {
3845 	unsigned int hdr_len = skb_transport_header(skb) -
3846 			       skb_network_header(skb);
3847 	return hdr_len + skb_gso_transport_seglen(skb);
3848 }
3849 
3850 /* Local Checksum Offload.
3851  * Compute outer checksum based on the assumption that the
3852  * inner checksum will be offloaded later.
3853  * See Documentation/networking/checksum-offloads.txt for
3854  * explanation of how this works.
3855  * Fill in outer checksum adjustment (e.g. with sum of outer
3856  * pseudo-header) before calling.
3857  * Also ensure that inner checksum is in linear data area.
3858  */
3859 static inline __wsum lco_csum(struct sk_buff *skb)
3860 {
3861 	unsigned char *csum_start = skb_checksum_start(skb);
3862 	unsigned char *l4_hdr = skb_transport_header(skb);
3863 	__wsum partial;
3864 
3865 	/* Start with complement of inner checksum adjustment */
3866 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3867 						    skb->csum_offset));
3868 
3869 	/* Add in checksum of our headers (incl. outer checksum
3870 	 * adjustment filled in by caller) and return result.
3871 	 */
3872 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3873 }
3874 
3875 #endif	/* __KERNEL__ */
3876 #endif	/* _LINUX_SKBUFF_H */
3877