1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/cache.h> 21 22 #include <asm/atomic.h> 23 #include <asm/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/net.h> 26 #include <linux/textsearch.h> 27 #include <net/checksum.h> 28 #include <linux/rcupdate.h> 29 #include <linux/dmaengine.h> 30 #include <linux/hrtimer.h> 31 32 #define HAVE_ALLOC_SKB /* For the drivers to know */ 33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35 /* Don't change this without changing skb_csum_unnecessary! */ 36 #define CHECKSUM_NONE 0 37 #define CHECKSUM_UNNECESSARY 1 38 #define CHECKSUM_COMPLETE 2 39 #define CHECKSUM_PARTIAL 3 40 41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43 #define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45 #define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50 /* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96 struct net_device; 97 struct scatterlist; 98 struct pipe_inode_info; 99 100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101 struct nf_conntrack { 102 atomic_t use; 103 }; 104 #endif 105 106 #ifdef CONFIG_BRIDGE_NETFILTER 107 struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 unsigned int mask; 112 unsigned long data[32 / sizeof(unsigned long)]; 113 }; 114 #endif 115 116 struct sk_buff_head { 117 /* These two members must be first. */ 118 struct sk_buff *next; 119 struct sk_buff *prev; 120 121 __u32 qlen; 122 spinlock_t lock; 123 }; 124 125 struct sk_buff; 126 127 /* To allow 64K frame to be packed as single skb without frag_list */ 128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 129 130 typedef struct skb_frag_struct skb_frag_t; 131 132 struct skb_frag_struct { 133 struct page *page; 134 __u32 page_offset; 135 __u32 size; 136 }; 137 138 /* This data is invariant across clones and lives at 139 * the end of the header data, ie. at skb->end. 140 */ 141 struct skb_shared_info { 142 atomic_t dataref; 143 unsigned short nr_frags; 144 unsigned short gso_size; 145 /* Warning: this field is not always filled in (UFO)! */ 146 unsigned short gso_segs; 147 unsigned short gso_type; 148 __be32 ip6_frag_id; 149 struct sk_buff *frag_list; 150 skb_frag_t frags[MAX_SKB_FRAGS]; 151 }; 152 153 /* We divide dataref into two halves. The higher 16 bits hold references 154 * to the payload part of skb->data. The lower 16 bits hold references to 155 * the entire skb->data. A clone of a headerless skb holds the length of 156 * the header in skb->hdr_len. 157 * 158 * All users must obey the rule that the skb->data reference count must be 159 * greater than or equal to the payload reference count. 160 * 161 * Holding a reference to the payload part means that the user does not 162 * care about modifications to the header part of skb->data. 163 */ 164 #define SKB_DATAREF_SHIFT 16 165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 166 167 168 enum { 169 SKB_FCLONE_UNAVAILABLE, 170 SKB_FCLONE_ORIG, 171 SKB_FCLONE_CLONE, 172 }; 173 174 enum { 175 SKB_GSO_TCPV4 = 1 << 0, 176 SKB_GSO_UDP = 1 << 1, 177 178 /* This indicates the skb is from an untrusted source. */ 179 SKB_GSO_DODGY = 1 << 2, 180 181 /* This indicates the tcp segment has CWR set. */ 182 SKB_GSO_TCP_ECN = 1 << 3, 183 184 SKB_GSO_TCPV6 = 1 << 4, 185 }; 186 187 #if BITS_PER_LONG > 32 188 #define NET_SKBUFF_DATA_USES_OFFSET 1 189 #endif 190 191 #ifdef NET_SKBUFF_DATA_USES_OFFSET 192 typedef unsigned int sk_buff_data_t; 193 #else 194 typedef unsigned char *sk_buff_data_t; 195 #endif 196 197 /** 198 * struct sk_buff - socket buffer 199 * @next: Next buffer in list 200 * @prev: Previous buffer in list 201 * @sk: Socket we are owned by 202 * @tstamp: Time we arrived 203 * @dev: Device we arrived on/are leaving by 204 * @transport_header: Transport layer header 205 * @network_header: Network layer header 206 * @mac_header: Link layer header 207 * @dst: destination entry 208 * @sp: the security path, used for xfrm 209 * @cb: Control buffer. Free for use by every layer. Put private vars here 210 * @len: Length of actual data 211 * @data_len: Data length 212 * @mac_len: Length of link layer header 213 * @hdr_len: writable header length of cloned skb 214 * @csum: Checksum (must include start/offset pair) 215 * @csum_start: Offset from skb->head where checksumming should start 216 * @csum_offset: Offset from csum_start where checksum should be stored 217 * @local_df: allow local fragmentation 218 * @cloned: Head may be cloned (check refcnt to be sure) 219 * @nohdr: Payload reference only, must not modify header 220 * @pkt_type: Packet class 221 * @fclone: skbuff clone status 222 * @ip_summed: Driver fed us an IP checksum 223 * @priority: Packet queueing priority 224 * @users: User count - see {datagram,tcp}.c 225 * @protocol: Packet protocol from driver 226 * @truesize: Buffer size 227 * @head: Head of buffer 228 * @data: Data head pointer 229 * @tail: Tail pointer 230 * @end: End pointer 231 * @destructor: Destruct function 232 * @mark: Generic packet mark 233 * @nfct: Associated connection, if any 234 * @ipvs_property: skbuff is owned by ipvs 235 * @peeked: this packet has been seen already, so stats have been 236 * done for it, don't do them again 237 * @nf_trace: netfilter packet trace flag 238 * @nfctinfo: Relationship of this skb to the connection 239 * @nfct_reasm: netfilter conntrack re-assembly pointer 240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 241 * @iif: ifindex of device we arrived on 242 * @queue_mapping: Queue mapping for multiqueue devices 243 * @tc_index: Traffic control index 244 * @tc_verd: traffic control verdict 245 * @ndisc_nodetype: router type (from link layer) 246 * @dma_cookie: a cookie to one of several possible DMA operations 247 * done by skb DMA functions 248 * @secmark: security marking 249 */ 250 251 struct sk_buff { 252 /* These two members must be first. */ 253 struct sk_buff *next; 254 struct sk_buff *prev; 255 256 struct sock *sk; 257 ktime_t tstamp; 258 struct net_device *dev; 259 260 union { 261 struct dst_entry *dst; 262 struct rtable *rtable; 263 }; 264 struct sec_path *sp; 265 266 /* 267 * This is the control buffer. It is free to use for every 268 * layer. Please put your private variables there. If you 269 * want to keep them across layers you have to do a skb_clone() 270 * first. This is owned by whoever has the skb queued ATM. 271 */ 272 char cb[48]; 273 274 unsigned int len, 275 data_len; 276 __u16 mac_len, 277 hdr_len; 278 union { 279 __wsum csum; 280 struct { 281 __u16 csum_start; 282 __u16 csum_offset; 283 }; 284 }; 285 __u32 priority; 286 __u8 local_df:1, 287 cloned:1, 288 ip_summed:2, 289 nohdr:1, 290 nfctinfo:3; 291 __u8 pkt_type:3, 292 fclone:2, 293 ipvs_property:1, 294 peeked:1, 295 nf_trace:1; 296 __be16 protocol; 297 298 void (*destructor)(struct sk_buff *skb); 299 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 300 struct nf_conntrack *nfct; 301 struct sk_buff *nfct_reasm; 302 #endif 303 #ifdef CONFIG_BRIDGE_NETFILTER 304 struct nf_bridge_info *nf_bridge; 305 #endif 306 307 int iif; 308 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 309 __u16 queue_mapping; 310 #endif 311 #ifdef CONFIG_NET_SCHED 312 __u16 tc_index; /* traffic control index */ 313 #ifdef CONFIG_NET_CLS_ACT 314 __u16 tc_verd; /* traffic control verdict */ 315 #endif 316 #endif 317 #ifdef CONFIG_IPV6_NDISC_NODETYPE 318 __u8 ndisc_nodetype:2; 319 #endif 320 /* 14 bit hole */ 321 322 #ifdef CONFIG_NET_DMA 323 dma_cookie_t dma_cookie; 324 #endif 325 #ifdef CONFIG_NETWORK_SECMARK 326 __u32 secmark; 327 #endif 328 329 __u32 mark; 330 331 sk_buff_data_t transport_header; 332 sk_buff_data_t network_header; 333 sk_buff_data_t mac_header; 334 /* These elements must be at the end, see alloc_skb() for details. */ 335 sk_buff_data_t tail; 336 sk_buff_data_t end; 337 unsigned char *head, 338 *data; 339 unsigned int truesize; 340 atomic_t users; 341 }; 342 343 #ifdef __KERNEL__ 344 /* 345 * Handling routines are only of interest to the kernel 346 */ 347 #include <linux/slab.h> 348 349 #include <asm/system.h> 350 351 extern void kfree_skb(struct sk_buff *skb); 352 extern void __kfree_skb(struct sk_buff *skb); 353 extern struct sk_buff *__alloc_skb(unsigned int size, 354 gfp_t priority, int fclone, int node); 355 static inline struct sk_buff *alloc_skb(unsigned int size, 356 gfp_t priority) 357 { 358 return __alloc_skb(size, priority, 0, -1); 359 } 360 361 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 362 gfp_t priority) 363 { 364 return __alloc_skb(size, priority, 1, -1); 365 } 366 367 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 368 extern struct sk_buff *skb_clone(struct sk_buff *skb, 369 gfp_t priority); 370 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 371 gfp_t priority); 372 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 373 gfp_t gfp_mask); 374 extern int pskb_expand_head(struct sk_buff *skb, 375 int nhead, int ntail, 376 gfp_t gfp_mask); 377 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 378 unsigned int headroom); 379 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 380 int newheadroom, int newtailroom, 381 gfp_t priority); 382 extern int skb_to_sgvec(struct sk_buff *skb, 383 struct scatterlist *sg, int offset, 384 int len); 385 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 386 struct sk_buff **trailer); 387 extern int skb_pad(struct sk_buff *skb, int pad); 388 #define dev_kfree_skb(a) kfree_skb(a) 389 extern void skb_over_panic(struct sk_buff *skb, int len, 390 void *here); 391 extern void skb_under_panic(struct sk_buff *skb, int len, 392 void *here); 393 extern void skb_truesize_bug(struct sk_buff *skb); 394 395 static inline void skb_truesize_check(struct sk_buff *skb) 396 { 397 int len = sizeof(struct sk_buff) + skb->len; 398 399 if (unlikely((int)skb->truesize < len)) 400 skb_truesize_bug(skb); 401 } 402 403 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 404 int getfrag(void *from, char *to, int offset, 405 int len,int odd, struct sk_buff *skb), 406 void *from, int length); 407 408 struct skb_seq_state 409 { 410 __u32 lower_offset; 411 __u32 upper_offset; 412 __u32 frag_idx; 413 __u32 stepped_offset; 414 struct sk_buff *root_skb; 415 struct sk_buff *cur_skb; 416 __u8 *frag_data; 417 }; 418 419 extern void skb_prepare_seq_read(struct sk_buff *skb, 420 unsigned int from, unsigned int to, 421 struct skb_seq_state *st); 422 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 423 struct skb_seq_state *st); 424 extern void skb_abort_seq_read(struct skb_seq_state *st); 425 426 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 427 unsigned int to, struct ts_config *config, 428 struct ts_state *state); 429 430 #ifdef NET_SKBUFF_DATA_USES_OFFSET 431 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 432 { 433 return skb->head + skb->end; 434 } 435 #else 436 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 437 { 438 return skb->end; 439 } 440 #endif 441 442 /* Internal */ 443 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 444 445 /** 446 * skb_queue_empty - check if a queue is empty 447 * @list: queue head 448 * 449 * Returns true if the queue is empty, false otherwise. 450 */ 451 static inline int skb_queue_empty(const struct sk_buff_head *list) 452 { 453 return list->next == (struct sk_buff *)list; 454 } 455 456 /** 457 * skb_get - reference buffer 458 * @skb: buffer to reference 459 * 460 * Makes another reference to a socket buffer and returns a pointer 461 * to the buffer. 462 */ 463 static inline struct sk_buff *skb_get(struct sk_buff *skb) 464 { 465 atomic_inc(&skb->users); 466 return skb; 467 } 468 469 /* 470 * If users == 1, we are the only owner and are can avoid redundant 471 * atomic change. 472 */ 473 474 /** 475 * skb_cloned - is the buffer a clone 476 * @skb: buffer to check 477 * 478 * Returns true if the buffer was generated with skb_clone() and is 479 * one of multiple shared copies of the buffer. Cloned buffers are 480 * shared data so must not be written to under normal circumstances. 481 */ 482 static inline int skb_cloned(const struct sk_buff *skb) 483 { 484 return skb->cloned && 485 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 486 } 487 488 /** 489 * skb_header_cloned - is the header a clone 490 * @skb: buffer to check 491 * 492 * Returns true if modifying the header part of the buffer requires 493 * the data to be copied. 494 */ 495 static inline int skb_header_cloned(const struct sk_buff *skb) 496 { 497 int dataref; 498 499 if (!skb->cloned) 500 return 0; 501 502 dataref = atomic_read(&skb_shinfo(skb)->dataref); 503 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 504 return dataref != 1; 505 } 506 507 /** 508 * skb_header_release - release reference to header 509 * @skb: buffer to operate on 510 * 511 * Drop a reference to the header part of the buffer. This is done 512 * by acquiring a payload reference. You must not read from the header 513 * part of skb->data after this. 514 */ 515 static inline void skb_header_release(struct sk_buff *skb) 516 { 517 BUG_ON(skb->nohdr); 518 skb->nohdr = 1; 519 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 520 } 521 522 /** 523 * skb_shared - is the buffer shared 524 * @skb: buffer to check 525 * 526 * Returns true if more than one person has a reference to this 527 * buffer. 528 */ 529 static inline int skb_shared(const struct sk_buff *skb) 530 { 531 return atomic_read(&skb->users) != 1; 532 } 533 534 /** 535 * skb_share_check - check if buffer is shared and if so clone it 536 * @skb: buffer to check 537 * @pri: priority for memory allocation 538 * 539 * If the buffer is shared the buffer is cloned and the old copy 540 * drops a reference. A new clone with a single reference is returned. 541 * If the buffer is not shared the original buffer is returned. When 542 * being called from interrupt status or with spinlocks held pri must 543 * be GFP_ATOMIC. 544 * 545 * NULL is returned on a memory allocation failure. 546 */ 547 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 548 gfp_t pri) 549 { 550 might_sleep_if(pri & __GFP_WAIT); 551 if (skb_shared(skb)) { 552 struct sk_buff *nskb = skb_clone(skb, pri); 553 kfree_skb(skb); 554 skb = nskb; 555 } 556 return skb; 557 } 558 559 /* 560 * Copy shared buffers into a new sk_buff. We effectively do COW on 561 * packets to handle cases where we have a local reader and forward 562 * and a couple of other messy ones. The normal one is tcpdumping 563 * a packet thats being forwarded. 564 */ 565 566 /** 567 * skb_unshare - make a copy of a shared buffer 568 * @skb: buffer to check 569 * @pri: priority for memory allocation 570 * 571 * If the socket buffer is a clone then this function creates a new 572 * copy of the data, drops a reference count on the old copy and returns 573 * the new copy with the reference count at 1. If the buffer is not a clone 574 * the original buffer is returned. When called with a spinlock held or 575 * from interrupt state @pri must be %GFP_ATOMIC 576 * 577 * %NULL is returned on a memory allocation failure. 578 */ 579 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 580 gfp_t pri) 581 { 582 might_sleep_if(pri & __GFP_WAIT); 583 if (skb_cloned(skb)) { 584 struct sk_buff *nskb = skb_copy(skb, pri); 585 kfree_skb(skb); /* Free our shared copy */ 586 skb = nskb; 587 } 588 return skb; 589 } 590 591 /** 592 * skb_peek 593 * @list_: list to peek at 594 * 595 * Peek an &sk_buff. Unlike most other operations you _MUST_ 596 * be careful with this one. A peek leaves the buffer on the 597 * list and someone else may run off with it. You must hold 598 * the appropriate locks or have a private queue to do this. 599 * 600 * Returns %NULL for an empty list or a pointer to the head element. 601 * The reference count is not incremented and the reference is therefore 602 * volatile. Use with caution. 603 */ 604 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 605 { 606 struct sk_buff *list = ((struct sk_buff *)list_)->next; 607 if (list == (struct sk_buff *)list_) 608 list = NULL; 609 return list; 610 } 611 612 /** 613 * skb_peek_tail 614 * @list_: list to peek at 615 * 616 * Peek an &sk_buff. Unlike most other operations you _MUST_ 617 * be careful with this one. A peek leaves the buffer on the 618 * list and someone else may run off with it. You must hold 619 * the appropriate locks or have a private queue to do this. 620 * 621 * Returns %NULL for an empty list or a pointer to the tail element. 622 * The reference count is not incremented and the reference is therefore 623 * volatile. Use with caution. 624 */ 625 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 626 { 627 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 628 if (list == (struct sk_buff *)list_) 629 list = NULL; 630 return list; 631 } 632 633 /** 634 * skb_queue_len - get queue length 635 * @list_: list to measure 636 * 637 * Return the length of an &sk_buff queue. 638 */ 639 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 640 { 641 return list_->qlen; 642 } 643 644 /* 645 * This function creates a split out lock class for each invocation; 646 * this is needed for now since a whole lot of users of the skb-queue 647 * infrastructure in drivers have different locking usage (in hardirq) 648 * than the networking core (in softirq only). In the long run either the 649 * network layer or drivers should need annotation to consolidate the 650 * main types of usage into 3 classes. 651 */ 652 static inline void skb_queue_head_init(struct sk_buff_head *list) 653 { 654 spin_lock_init(&list->lock); 655 list->prev = list->next = (struct sk_buff *)list; 656 list->qlen = 0; 657 } 658 659 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 660 struct lock_class_key *class) 661 { 662 skb_queue_head_init(list); 663 lockdep_set_class(&list->lock, class); 664 } 665 666 /* 667 * Insert an sk_buff on a list. 668 * 669 * The "__skb_xxxx()" functions are the non-atomic ones that 670 * can only be called with interrupts disabled. 671 */ 672 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 673 static inline void __skb_insert(struct sk_buff *newsk, 674 struct sk_buff *prev, struct sk_buff *next, 675 struct sk_buff_head *list) 676 { 677 newsk->next = next; 678 newsk->prev = prev; 679 next->prev = prev->next = newsk; 680 list->qlen++; 681 } 682 683 /** 684 * __skb_queue_after - queue a buffer at the list head 685 * @list: list to use 686 * @prev: place after this buffer 687 * @newsk: buffer to queue 688 * 689 * Queue a buffer int the middle of a list. This function takes no locks 690 * and you must therefore hold required locks before calling it. 691 * 692 * A buffer cannot be placed on two lists at the same time. 693 */ 694 static inline void __skb_queue_after(struct sk_buff_head *list, 695 struct sk_buff *prev, 696 struct sk_buff *newsk) 697 { 698 __skb_insert(newsk, prev, prev->next, list); 699 } 700 701 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 702 struct sk_buff_head *list); 703 704 static inline void __skb_queue_before(struct sk_buff_head *list, 705 struct sk_buff *next, 706 struct sk_buff *newsk) 707 { 708 __skb_insert(newsk, next->prev, next, list); 709 } 710 711 /** 712 * __skb_queue_head - queue a buffer at the list head 713 * @list: list to use 714 * @newsk: buffer to queue 715 * 716 * Queue a buffer at the start of a list. This function takes no locks 717 * and you must therefore hold required locks before calling it. 718 * 719 * A buffer cannot be placed on two lists at the same time. 720 */ 721 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 722 static inline void __skb_queue_head(struct sk_buff_head *list, 723 struct sk_buff *newsk) 724 { 725 __skb_queue_after(list, (struct sk_buff *)list, newsk); 726 } 727 728 /** 729 * __skb_queue_tail - queue a buffer at the list tail 730 * @list: list to use 731 * @newsk: buffer to queue 732 * 733 * Queue a buffer at the end of a list. This function takes no locks 734 * and you must therefore hold required locks before calling it. 735 * 736 * A buffer cannot be placed on two lists at the same time. 737 */ 738 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 739 static inline void __skb_queue_tail(struct sk_buff_head *list, 740 struct sk_buff *newsk) 741 { 742 __skb_queue_before(list, (struct sk_buff *)list, newsk); 743 } 744 745 /* 746 * remove sk_buff from list. _Must_ be called atomically, and with 747 * the list known.. 748 */ 749 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 750 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 751 { 752 struct sk_buff *next, *prev; 753 754 list->qlen--; 755 next = skb->next; 756 prev = skb->prev; 757 skb->next = skb->prev = NULL; 758 next->prev = prev; 759 prev->next = next; 760 } 761 762 /** 763 * __skb_dequeue - remove from the head of the queue 764 * @list: list to dequeue from 765 * 766 * Remove the head of the list. This function does not take any locks 767 * so must be used with appropriate locks held only. The head item is 768 * returned or %NULL if the list is empty. 769 */ 770 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 771 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 772 { 773 struct sk_buff *skb = skb_peek(list); 774 if (skb) 775 __skb_unlink(skb, list); 776 return skb; 777 } 778 779 /** 780 * __skb_dequeue_tail - remove from the tail of the queue 781 * @list: list to dequeue from 782 * 783 * Remove the tail of the list. This function does not take any locks 784 * so must be used with appropriate locks held only. The tail item is 785 * returned or %NULL if the list is empty. 786 */ 787 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 788 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 789 { 790 struct sk_buff *skb = skb_peek_tail(list); 791 if (skb) 792 __skb_unlink(skb, list); 793 return skb; 794 } 795 796 797 static inline int skb_is_nonlinear(const struct sk_buff *skb) 798 { 799 return skb->data_len; 800 } 801 802 static inline unsigned int skb_headlen(const struct sk_buff *skb) 803 { 804 return skb->len - skb->data_len; 805 } 806 807 static inline int skb_pagelen(const struct sk_buff *skb) 808 { 809 int i, len = 0; 810 811 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 812 len += skb_shinfo(skb)->frags[i].size; 813 return len + skb_headlen(skb); 814 } 815 816 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 817 struct page *page, int off, int size) 818 { 819 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 820 821 frag->page = page; 822 frag->page_offset = off; 823 frag->size = size; 824 skb_shinfo(skb)->nr_frags = i + 1; 825 } 826 827 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 828 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 829 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 830 831 #ifdef NET_SKBUFF_DATA_USES_OFFSET 832 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 833 { 834 return skb->head + skb->tail; 835 } 836 837 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 838 { 839 skb->tail = skb->data - skb->head; 840 } 841 842 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 843 { 844 skb_reset_tail_pointer(skb); 845 skb->tail += offset; 846 } 847 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 848 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 849 { 850 return skb->tail; 851 } 852 853 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 854 { 855 skb->tail = skb->data; 856 } 857 858 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 859 { 860 skb->tail = skb->data + offset; 861 } 862 863 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 864 865 /* 866 * Add data to an sk_buff 867 */ 868 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 869 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 870 { 871 unsigned char *tmp = skb_tail_pointer(skb); 872 SKB_LINEAR_ASSERT(skb); 873 skb->tail += len; 874 skb->len += len; 875 return tmp; 876 } 877 878 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 879 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 880 { 881 skb->data -= len; 882 skb->len += len; 883 return skb->data; 884 } 885 886 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 887 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 888 { 889 skb->len -= len; 890 BUG_ON(skb->len < skb->data_len); 891 return skb->data += len; 892 } 893 894 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 895 896 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 897 { 898 if (len > skb_headlen(skb) && 899 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 900 return NULL; 901 skb->len -= len; 902 return skb->data += len; 903 } 904 905 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 906 { 907 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 908 } 909 910 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 911 { 912 if (likely(len <= skb_headlen(skb))) 913 return 1; 914 if (unlikely(len > skb->len)) 915 return 0; 916 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 917 } 918 919 /** 920 * skb_headroom - bytes at buffer head 921 * @skb: buffer to check 922 * 923 * Return the number of bytes of free space at the head of an &sk_buff. 924 */ 925 static inline unsigned int skb_headroom(const struct sk_buff *skb) 926 { 927 return skb->data - skb->head; 928 } 929 930 /** 931 * skb_tailroom - bytes at buffer end 932 * @skb: buffer to check 933 * 934 * Return the number of bytes of free space at the tail of an sk_buff 935 */ 936 static inline int skb_tailroom(const struct sk_buff *skb) 937 { 938 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 939 } 940 941 /** 942 * skb_reserve - adjust headroom 943 * @skb: buffer to alter 944 * @len: bytes to move 945 * 946 * Increase the headroom of an empty &sk_buff by reducing the tail 947 * room. This is only allowed for an empty buffer. 948 */ 949 static inline void skb_reserve(struct sk_buff *skb, int len) 950 { 951 skb->data += len; 952 skb->tail += len; 953 } 954 955 #ifdef NET_SKBUFF_DATA_USES_OFFSET 956 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 957 { 958 return skb->head + skb->transport_header; 959 } 960 961 static inline void skb_reset_transport_header(struct sk_buff *skb) 962 { 963 skb->transport_header = skb->data - skb->head; 964 } 965 966 static inline void skb_set_transport_header(struct sk_buff *skb, 967 const int offset) 968 { 969 skb_reset_transport_header(skb); 970 skb->transport_header += offset; 971 } 972 973 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 974 { 975 return skb->head + skb->network_header; 976 } 977 978 static inline void skb_reset_network_header(struct sk_buff *skb) 979 { 980 skb->network_header = skb->data - skb->head; 981 } 982 983 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 984 { 985 skb_reset_network_header(skb); 986 skb->network_header += offset; 987 } 988 989 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 990 { 991 return skb->head + skb->mac_header; 992 } 993 994 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 995 { 996 return skb->mac_header != ~0U; 997 } 998 999 static inline void skb_reset_mac_header(struct sk_buff *skb) 1000 { 1001 skb->mac_header = skb->data - skb->head; 1002 } 1003 1004 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1005 { 1006 skb_reset_mac_header(skb); 1007 skb->mac_header += offset; 1008 } 1009 1010 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1011 1012 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1013 { 1014 return skb->transport_header; 1015 } 1016 1017 static inline void skb_reset_transport_header(struct sk_buff *skb) 1018 { 1019 skb->transport_header = skb->data; 1020 } 1021 1022 static inline void skb_set_transport_header(struct sk_buff *skb, 1023 const int offset) 1024 { 1025 skb->transport_header = skb->data + offset; 1026 } 1027 1028 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1029 { 1030 return skb->network_header; 1031 } 1032 1033 static inline void skb_reset_network_header(struct sk_buff *skb) 1034 { 1035 skb->network_header = skb->data; 1036 } 1037 1038 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1039 { 1040 skb->network_header = skb->data + offset; 1041 } 1042 1043 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1044 { 1045 return skb->mac_header; 1046 } 1047 1048 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1049 { 1050 return skb->mac_header != NULL; 1051 } 1052 1053 static inline void skb_reset_mac_header(struct sk_buff *skb) 1054 { 1055 skb->mac_header = skb->data; 1056 } 1057 1058 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1059 { 1060 skb->mac_header = skb->data + offset; 1061 } 1062 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1063 1064 static inline int skb_transport_offset(const struct sk_buff *skb) 1065 { 1066 return skb_transport_header(skb) - skb->data; 1067 } 1068 1069 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1070 { 1071 return skb->transport_header - skb->network_header; 1072 } 1073 1074 static inline int skb_network_offset(const struct sk_buff *skb) 1075 { 1076 return skb_network_header(skb) - skb->data; 1077 } 1078 1079 /* 1080 * CPUs often take a performance hit when accessing unaligned memory 1081 * locations. The actual performance hit varies, it can be small if the 1082 * hardware handles it or large if we have to take an exception and fix it 1083 * in software. 1084 * 1085 * Since an ethernet header is 14 bytes network drivers often end up with 1086 * the IP header at an unaligned offset. The IP header can be aligned by 1087 * shifting the start of the packet by 2 bytes. Drivers should do this 1088 * with: 1089 * 1090 * skb_reserve(NET_IP_ALIGN); 1091 * 1092 * The downside to this alignment of the IP header is that the DMA is now 1093 * unaligned. On some architectures the cost of an unaligned DMA is high 1094 * and this cost outweighs the gains made by aligning the IP header. 1095 * 1096 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1097 * to be overridden. 1098 */ 1099 #ifndef NET_IP_ALIGN 1100 #define NET_IP_ALIGN 2 1101 #endif 1102 1103 /* 1104 * The networking layer reserves some headroom in skb data (via 1105 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1106 * the header has to grow. In the default case, if the header has to grow 1107 * 16 bytes or less we avoid the reallocation. 1108 * 1109 * Unfortunately this headroom changes the DMA alignment of the resulting 1110 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1111 * on some architectures. An architecture can override this value, 1112 * perhaps setting it to a cacheline in size (since that will maintain 1113 * cacheline alignment of the DMA). It must be a power of 2. 1114 * 1115 * Various parts of the networking layer expect at least 16 bytes of 1116 * headroom, you should not reduce this. 1117 */ 1118 #ifndef NET_SKB_PAD 1119 #define NET_SKB_PAD 16 1120 #endif 1121 1122 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1123 1124 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1125 { 1126 if (unlikely(skb->data_len)) { 1127 WARN_ON(1); 1128 return; 1129 } 1130 skb->len = len; 1131 skb_set_tail_pointer(skb, len); 1132 } 1133 1134 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1135 1136 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1137 { 1138 if (skb->data_len) 1139 return ___pskb_trim(skb, len); 1140 __skb_trim(skb, len); 1141 return 0; 1142 } 1143 1144 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1145 { 1146 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1147 } 1148 1149 /** 1150 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1151 * @skb: buffer to alter 1152 * @len: new length 1153 * 1154 * This is identical to pskb_trim except that the caller knows that 1155 * the skb is not cloned so we should never get an error due to out- 1156 * of-memory. 1157 */ 1158 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1159 { 1160 int err = pskb_trim(skb, len); 1161 BUG_ON(err); 1162 } 1163 1164 /** 1165 * skb_orphan - orphan a buffer 1166 * @skb: buffer to orphan 1167 * 1168 * If a buffer currently has an owner then we call the owner's 1169 * destructor function and make the @skb unowned. The buffer continues 1170 * to exist but is no longer charged to its former owner. 1171 */ 1172 static inline void skb_orphan(struct sk_buff *skb) 1173 { 1174 if (skb->destructor) 1175 skb->destructor(skb); 1176 skb->destructor = NULL; 1177 skb->sk = NULL; 1178 } 1179 1180 /** 1181 * __skb_queue_purge - empty a list 1182 * @list: list to empty 1183 * 1184 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1185 * the list and one reference dropped. This function does not take the 1186 * list lock and the caller must hold the relevant locks to use it. 1187 */ 1188 extern void skb_queue_purge(struct sk_buff_head *list); 1189 static inline void __skb_queue_purge(struct sk_buff_head *list) 1190 { 1191 struct sk_buff *skb; 1192 while ((skb = __skb_dequeue(list)) != NULL) 1193 kfree_skb(skb); 1194 } 1195 1196 /** 1197 * __dev_alloc_skb - allocate an skbuff for receiving 1198 * @length: length to allocate 1199 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1200 * 1201 * Allocate a new &sk_buff and assign it a usage count of one. The 1202 * buffer has unspecified headroom built in. Users should allocate 1203 * the headroom they think they need without accounting for the 1204 * built in space. The built in space is used for optimisations. 1205 * 1206 * %NULL is returned if there is no free memory. 1207 */ 1208 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1209 gfp_t gfp_mask) 1210 { 1211 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1212 if (likely(skb)) 1213 skb_reserve(skb, NET_SKB_PAD); 1214 return skb; 1215 } 1216 1217 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1218 1219 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1220 unsigned int length, gfp_t gfp_mask); 1221 1222 /** 1223 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1224 * @dev: network device to receive on 1225 * @length: length to allocate 1226 * 1227 * Allocate a new &sk_buff and assign it a usage count of one. The 1228 * buffer has unspecified headroom built in. Users should allocate 1229 * the headroom they think they need without accounting for the 1230 * built in space. The built in space is used for optimisations. 1231 * 1232 * %NULL is returned if there is no free memory. Although this function 1233 * allocates memory it can be called from an interrupt. 1234 */ 1235 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1236 unsigned int length) 1237 { 1238 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1239 } 1240 1241 /** 1242 * skb_clone_writable - is the header of a clone writable 1243 * @skb: buffer to check 1244 * @len: length up to which to write 1245 * 1246 * Returns true if modifying the header part of the cloned buffer 1247 * does not requires the data to be copied. 1248 */ 1249 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1250 { 1251 return !skb_header_cloned(skb) && 1252 skb_headroom(skb) + len <= skb->hdr_len; 1253 } 1254 1255 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1256 int cloned) 1257 { 1258 int delta = 0; 1259 1260 if (headroom < NET_SKB_PAD) 1261 headroom = NET_SKB_PAD; 1262 if (headroom > skb_headroom(skb)) 1263 delta = headroom - skb_headroom(skb); 1264 1265 if (delta || cloned) 1266 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1267 GFP_ATOMIC); 1268 return 0; 1269 } 1270 1271 /** 1272 * skb_cow - copy header of skb when it is required 1273 * @skb: buffer to cow 1274 * @headroom: needed headroom 1275 * 1276 * If the skb passed lacks sufficient headroom or its data part 1277 * is shared, data is reallocated. If reallocation fails, an error 1278 * is returned and original skb is not changed. 1279 * 1280 * The result is skb with writable area skb->head...skb->tail 1281 * and at least @headroom of space at head. 1282 */ 1283 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1284 { 1285 return __skb_cow(skb, headroom, skb_cloned(skb)); 1286 } 1287 1288 /** 1289 * skb_cow_head - skb_cow but only making the head writable 1290 * @skb: buffer to cow 1291 * @headroom: needed headroom 1292 * 1293 * This function is identical to skb_cow except that we replace the 1294 * skb_cloned check by skb_header_cloned. It should be used when 1295 * you only need to push on some header and do not need to modify 1296 * the data. 1297 */ 1298 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1299 { 1300 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1301 } 1302 1303 /** 1304 * skb_padto - pad an skbuff up to a minimal size 1305 * @skb: buffer to pad 1306 * @len: minimal length 1307 * 1308 * Pads up a buffer to ensure the trailing bytes exist and are 1309 * blanked. If the buffer already contains sufficient data it 1310 * is untouched. Otherwise it is extended. Returns zero on 1311 * success. The skb is freed on error. 1312 */ 1313 1314 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1315 { 1316 unsigned int size = skb->len; 1317 if (likely(size >= len)) 1318 return 0; 1319 return skb_pad(skb, len-size); 1320 } 1321 1322 static inline int skb_add_data(struct sk_buff *skb, 1323 char __user *from, int copy) 1324 { 1325 const int off = skb->len; 1326 1327 if (skb->ip_summed == CHECKSUM_NONE) { 1328 int err = 0; 1329 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1330 copy, 0, &err); 1331 if (!err) { 1332 skb->csum = csum_block_add(skb->csum, csum, off); 1333 return 0; 1334 } 1335 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1336 return 0; 1337 1338 __skb_trim(skb, off); 1339 return -EFAULT; 1340 } 1341 1342 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1343 struct page *page, int off) 1344 { 1345 if (i) { 1346 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1347 1348 return page == frag->page && 1349 off == frag->page_offset + frag->size; 1350 } 1351 return 0; 1352 } 1353 1354 static inline int __skb_linearize(struct sk_buff *skb) 1355 { 1356 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1357 } 1358 1359 /** 1360 * skb_linearize - convert paged skb to linear one 1361 * @skb: buffer to linarize 1362 * 1363 * If there is no free memory -ENOMEM is returned, otherwise zero 1364 * is returned and the old skb data released. 1365 */ 1366 static inline int skb_linearize(struct sk_buff *skb) 1367 { 1368 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1369 } 1370 1371 /** 1372 * skb_linearize_cow - make sure skb is linear and writable 1373 * @skb: buffer to process 1374 * 1375 * If there is no free memory -ENOMEM is returned, otherwise zero 1376 * is returned and the old skb data released. 1377 */ 1378 static inline int skb_linearize_cow(struct sk_buff *skb) 1379 { 1380 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1381 __skb_linearize(skb) : 0; 1382 } 1383 1384 /** 1385 * skb_postpull_rcsum - update checksum for received skb after pull 1386 * @skb: buffer to update 1387 * @start: start of data before pull 1388 * @len: length of data pulled 1389 * 1390 * After doing a pull on a received packet, you need to call this to 1391 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1392 * CHECKSUM_NONE so that it can be recomputed from scratch. 1393 */ 1394 1395 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1396 const void *start, unsigned int len) 1397 { 1398 if (skb->ip_summed == CHECKSUM_COMPLETE) 1399 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1400 } 1401 1402 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1403 1404 /** 1405 * pskb_trim_rcsum - trim received skb and update checksum 1406 * @skb: buffer to trim 1407 * @len: new length 1408 * 1409 * This is exactly the same as pskb_trim except that it ensures the 1410 * checksum of received packets are still valid after the operation. 1411 */ 1412 1413 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1414 { 1415 if (likely(len >= skb->len)) 1416 return 0; 1417 if (skb->ip_summed == CHECKSUM_COMPLETE) 1418 skb->ip_summed = CHECKSUM_NONE; 1419 return __pskb_trim(skb, len); 1420 } 1421 1422 #define skb_queue_walk(queue, skb) \ 1423 for (skb = (queue)->next; \ 1424 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1425 skb = skb->next) 1426 1427 #define skb_queue_walk_safe(queue, skb, tmp) \ 1428 for (skb = (queue)->next, tmp = skb->next; \ 1429 skb != (struct sk_buff *)(queue); \ 1430 skb = tmp, tmp = skb->next) 1431 1432 #define skb_queue_reverse_walk(queue, skb) \ 1433 for (skb = (queue)->prev; \ 1434 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1435 skb = skb->prev) 1436 1437 1438 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1439 int *peeked, int *err); 1440 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1441 int noblock, int *err); 1442 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1443 struct poll_table_struct *wait); 1444 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1445 int offset, struct iovec *to, 1446 int size); 1447 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1448 int hlen, 1449 struct iovec *iov); 1450 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1451 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1452 unsigned int flags); 1453 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1454 int len, __wsum csum); 1455 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1456 void *to, int len); 1457 extern int skb_store_bits(struct sk_buff *skb, int offset, 1458 const void *from, int len); 1459 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1460 int offset, u8 *to, int len, 1461 __wsum csum); 1462 extern int skb_splice_bits(struct sk_buff *skb, 1463 unsigned int offset, 1464 struct pipe_inode_info *pipe, 1465 unsigned int len, 1466 unsigned int flags); 1467 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1468 extern void skb_split(struct sk_buff *skb, 1469 struct sk_buff *skb1, const u32 len); 1470 1471 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1472 1473 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1474 int len, void *buffer) 1475 { 1476 int hlen = skb_headlen(skb); 1477 1478 if (hlen - offset >= len) 1479 return skb->data + offset; 1480 1481 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1482 return NULL; 1483 1484 return buffer; 1485 } 1486 1487 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1488 void *to, 1489 const unsigned int len) 1490 { 1491 memcpy(to, skb->data, len); 1492 } 1493 1494 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1495 const int offset, void *to, 1496 const unsigned int len) 1497 { 1498 memcpy(to, skb->data + offset, len); 1499 } 1500 1501 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1502 const void *from, 1503 const unsigned int len) 1504 { 1505 memcpy(skb->data, from, len); 1506 } 1507 1508 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1509 const int offset, 1510 const void *from, 1511 const unsigned int len) 1512 { 1513 memcpy(skb->data + offset, from, len); 1514 } 1515 1516 extern void skb_init(void); 1517 1518 /** 1519 * skb_get_timestamp - get timestamp from a skb 1520 * @skb: skb to get stamp from 1521 * @stamp: pointer to struct timeval to store stamp in 1522 * 1523 * Timestamps are stored in the skb as offsets to a base timestamp. 1524 * This function converts the offset back to a struct timeval and stores 1525 * it in stamp. 1526 */ 1527 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1528 { 1529 *stamp = ktime_to_timeval(skb->tstamp); 1530 } 1531 1532 static inline void __net_timestamp(struct sk_buff *skb) 1533 { 1534 skb->tstamp = ktime_get_real(); 1535 } 1536 1537 static inline ktime_t net_timedelta(ktime_t t) 1538 { 1539 return ktime_sub(ktime_get_real(), t); 1540 } 1541 1542 static inline ktime_t net_invalid_timestamp(void) 1543 { 1544 return ktime_set(0, 0); 1545 } 1546 1547 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1548 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1549 1550 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1551 { 1552 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1553 } 1554 1555 /** 1556 * skb_checksum_complete - Calculate checksum of an entire packet 1557 * @skb: packet to process 1558 * 1559 * This function calculates the checksum over the entire packet plus 1560 * the value of skb->csum. The latter can be used to supply the 1561 * checksum of a pseudo header as used by TCP/UDP. It returns the 1562 * checksum. 1563 * 1564 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1565 * this function can be used to verify that checksum on received 1566 * packets. In that case the function should return zero if the 1567 * checksum is correct. In particular, this function will return zero 1568 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1569 * hardware has already verified the correctness of the checksum. 1570 */ 1571 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1572 { 1573 return skb_csum_unnecessary(skb) ? 1574 0 : __skb_checksum_complete(skb); 1575 } 1576 1577 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1578 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1579 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1580 { 1581 if (nfct && atomic_dec_and_test(&nfct->use)) 1582 nf_conntrack_destroy(nfct); 1583 } 1584 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1585 { 1586 if (nfct) 1587 atomic_inc(&nfct->use); 1588 } 1589 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1590 { 1591 if (skb) 1592 atomic_inc(&skb->users); 1593 } 1594 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1595 { 1596 if (skb) 1597 kfree_skb(skb); 1598 } 1599 #endif 1600 #ifdef CONFIG_BRIDGE_NETFILTER 1601 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1602 { 1603 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1604 kfree(nf_bridge); 1605 } 1606 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1607 { 1608 if (nf_bridge) 1609 atomic_inc(&nf_bridge->use); 1610 } 1611 #endif /* CONFIG_BRIDGE_NETFILTER */ 1612 static inline void nf_reset(struct sk_buff *skb) 1613 { 1614 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1615 nf_conntrack_put(skb->nfct); 1616 skb->nfct = NULL; 1617 nf_conntrack_put_reasm(skb->nfct_reasm); 1618 skb->nfct_reasm = NULL; 1619 #endif 1620 #ifdef CONFIG_BRIDGE_NETFILTER 1621 nf_bridge_put(skb->nf_bridge); 1622 skb->nf_bridge = NULL; 1623 #endif 1624 } 1625 1626 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1627 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1628 { 1629 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1630 dst->nfct = src->nfct; 1631 nf_conntrack_get(src->nfct); 1632 dst->nfctinfo = src->nfctinfo; 1633 dst->nfct_reasm = src->nfct_reasm; 1634 nf_conntrack_get_reasm(src->nfct_reasm); 1635 #endif 1636 #ifdef CONFIG_BRIDGE_NETFILTER 1637 dst->nf_bridge = src->nf_bridge; 1638 nf_bridge_get(src->nf_bridge); 1639 #endif 1640 } 1641 1642 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1643 { 1644 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1645 nf_conntrack_put(dst->nfct); 1646 nf_conntrack_put_reasm(dst->nfct_reasm); 1647 #endif 1648 #ifdef CONFIG_BRIDGE_NETFILTER 1649 nf_bridge_put(dst->nf_bridge); 1650 #endif 1651 __nf_copy(dst, src); 1652 } 1653 1654 #ifdef CONFIG_NETWORK_SECMARK 1655 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1656 { 1657 to->secmark = from->secmark; 1658 } 1659 1660 static inline void skb_init_secmark(struct sk_buff *skb) 1661 { 1662 skb->secmark = 0; 1663 } 1664 #else 1665 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1666 { } 1667 1668 static inline void skb_init_secmark(struct sk_buff *skb) 1669 { } 1670 #endif 1671 1672 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1673 { 1674 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1675 skb->queue_mapping = queue_mapping; 1676 #endif 1677 } 1678 1679 static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1680 { 1681 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1682 return skb->queue_mapping; 1683 #else 1684 return 0; 1685 #endif 1686 } 1687 1688 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1689 { 1690 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1691 to->queue_mapping = from->queue_mapping; 1692 #endif 1693 } 1694 1695 static inline int skb_is_gso(const struct sk_buff *skb) 1696 { 1697 return skb_shinfo(skb)->gso_size; 1698 } 1699 1700 static inline int skb_is_gso_v6(const struct sk_buff *skb) 1701 { 1702 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1703 } 1704 1705 static inline void skb_forward_csum(struct sk_buff *skb) 1706 { 1707 /* Unfortunately we don't support this one. Any brave souls? */ 1708 if (skb->ip_summed == CHECKSUM_COMPLETE) 1709 skb->ip_summed = CHECKSUM_NONE; 1710 } 1711 1712 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 1713 #endif /* __KERNEL__ */ 1714 #endif /* _LINUX_SKBUFF_H */ 1715