xref: /linux-6.15/include/linux/skbuff.h (revision 43f5b308)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
49 
50 /* A. Checksumming of received packets by device.
51  *
52  *	NONE: device failed to checksum this packet.
53  *		skb->csum is undefined.
54  *
55  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
56  *		skb->csum is undefined.
57  *	      It is bad option, but, unfortunately, many of vendors do this.
58  *	      Apparently with secret goal to sell you new device, when you
59  *	      will add new protocol to your host. F.e. IPv6. 8)
60  *
61  *	COMPLETE: the most generic way. Device supplied checksum of _all_
62  *	    the packet as seen by netif_rx in skb->csum.
63  *	    NOTE: Even if device supports only some protocols, but
64  *	    is able to produce some skb->csum, it MUST use COMPLETE,
65  *	    not UNNECESSARY.
66  *
67  *	PARTIAL: identical to the case for output below.  This may occur
68  *	    on a packet received directly from another Linux OS, e.g.,
69  *	    a virtualised Linux kernel on the same host.  The packet can
70  *	    be treated in the same way as UNNECESSARY except that on
71  *	    output (i.e., forwarding) the checksum must be filled in
72  *	    by the OS or the hardware.
73  *
74  * B. Checksumming on output.
75  *
76  *	NONE: skb is checksummed by protocol or csum is not required.
77  *
78  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
79  *	from skb->csum_start to the end and to record the checksum
80  *	at skb->csum_start + skb->csum_offset.
81  *
82  *	Device must show its capabilities in dev->features, set
83  *	at device setup time.
84  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
85  *			  everything.
86  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
87  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88  *			  TCP/UDP over IPv4. Sigh. Vendors like this
89  *			  way by an unknown reason. Though, see comment above
90  *			  about CHECKSUM_UNNECESSARY. 8)
91  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92  *
93  *	Any questions? No questions, good. 		--ANK
94  */
95 
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99 
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 	atomic_t use;
103 };
104 #endif
105 
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 	atomic_t use;
109 	struct net_device *physindev;
110 	struct net_device *physoutdev;
111 	unsigned int mask;
112 	unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115 
116 struct sk_buff_head {
117 	/* These two members must be first. */
118 	struct sk_buff	*next;
119 	struct sk_buff	*prev;
120 
121 	__u32		qlen;
122 	spinlock_t	lock;
123 };
124 
125 struct sk_buff;
126 
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129 
130 typedef struct skb_frag_struct skb_frag_t;
131 
132 struct skb_frag_struct {
133 	struct page *page;
134 	__u32 page_offset;
135 	__u32 size;
136 };
137 
138 /* This data is invariant across clones and lives at
139  * the end of the header data, ie. at skb->end.
140  */
141 struct skb_shared_info {
142 	atomic_t	dataref;
143 	unsigned short	nr_frags;
144 	unsigned short	gso_size;
145 	/* Warning: this field is not always filled in (UFO)! */
146 	unsigned short	gso_segs;
147 	unsigned short  gso_type;
148 	__be32          ip6_frag_id;
149 	struct sk_buff	*frag_list;
150 	skb_frag_t	frags[MAX_SKB_FRAGS];
151 };
152 
153 /* We divide dataref into two halves.  The higher 16 bits hold references
154  * to the payload part of skb->data.  The lower 16 bits hold references to
155  * the entire skb->data.  A clone of a headerless skb holds the length of
156  * the header in skb->hdr_len.
157  *
158  * All users must obey the rule that the skb->data reference count must be
159  * greater than or equal to the payload reference count.
160  *
161  * Holding a reference to the payload part means that the user does not
162  * care about modifications to the header part of skb->data.
163  */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166 
167 
168 enum {
169 	SKB_FCLONE_UNAVAILABLE,
170 	SKB_FCLONE_ORIG,
171 	SKB_FCLONE_CLONE,
172 };
173 
174 enum {
175 	SKB_GSO_TCPV4 = 1 << 0,
176 	SKB_GSO_UDP = 1 << 1,
177 
178 	/* This indicates the skb is from an untrusted source. */
179 	SKB_GSO_DODGY = 1 << 2,
180 
181 	/* This indicates the tcp segment has CWR set. */
182 	SKB_GSO_TCP_ECN = 1 << 3,
183 
184 	SKB_GSO_TCPV6 = 1 << 4,
185 };
186 
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190 
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196 
197 /**
198  *	struct sk_buff - socket buffer
199  *	@next: Next buffer in list
200  *	@prev: Previous buffer in list
201  *	@sk: Socket we are owned by
202  *	@tstamp: Time we arrived
203  *	@dev: Device we arrived on/are leaving by
204  *	@transport_header: Transport layer header
205  *	@network_header: Network layer header
206  *	@mac_header: Link layer header
207  *	@dst: destination entry
208  *	@sp: the security path, used for xfrm
209  *	@cb: Control buffer. Free for use by every layer. Put private vars here
210  *	@len: Length of actual data
211  *	@data_len: Data length
212  *	@mac_len: Length of link layer header
213  *	@hdr_len: writable header length of cloned skb
214  *	@csum: Checksum (must include start/offset pair)
215  *	@csum_start: Offset from skb->head where checksumming should start
216  *	@csum_offset: Offset from csum_start where checksum should be stored
217  *	@local_df: allow local fragmentation
218  *	@cloned: Head may be cloned (check refcnt to be sure)
219  *	@nohdr: Payload reference only, must not modify header
220  *	@pkt_type: Packet class
221  *	@fclone: skbuff clone status
222  *	@ip_summed: Driver fed us an IP checksum
223  *	@priority: Packet queueing priority
224  *	@users: User count - see {datagram,tcp}.c
225  *	@protocol: Packet protocol from driver
226  *	@truesize: Buffer size
227  *	@head: Head of buffer
228  *	@data: Data head pointer
229  *	@tail: Tail pointer
230  *	@end: End pointer
231  *	@destructor: Destruct function
232  *	@mark: Generic packet mark
233  *	@nfct: Associated connection, if any
234  *	@ipvs_property: skbuff is owned by ipvs
235  *	@peeked: this packet has been seen already, so stats have been
236  *		done for it, don't do them again
237  *	@nf_trace: netfilter packet trace flag
238  *	@nfctinfo: Relationship of this skb to the connection
239  *	@nfct_reasm: netfilter conntrack re-assembly pointer
240  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241  *	@iif: ifindex of device we arrived on
242  *	@queue_mapping: Queue mapping for multiqueue devices
243  *	@tc_index: Traffic control index
244  *	@tc_verd: traffic control verdict
245  *	@ndisc_nodetype: router type (from link layer)
246  *	@dma_cookie: a cookie to one of several possible DMA operations
247  *		done by skb DMA functions
248  *	@secmark: security marking
249  */
250 
251 struct sk_buff {
252 	/* These two members must be first. */
253 	struct sk_buff		*next;
254 	struct sk_buff		*prev;
255 
256 	struct sock		*sk;
257 	ktime_t			tstamp;
258 	struct net_device	*dev;
259 
260 	union {
261 		struct  dst_entry	*dst;
262 		struct  rtable		*rtable;
263 	};
264 	struct	sec_path	*sp;
265 
266 	/*
267 	 * This is the control buffer. It is free to use for every
268 	 * layer. Please put your private variables there. If you
269 	 * want to keep them across layers you have to do a skb_clone()
270 	 * first. This is owned by whoever has the skb queued ATM.
271 	 */
272 	char			cb[48];
273 
274 	unsigned int		len,
275 				data_len;
276 	__u16			mac_len,
277 				hdr_len;
278 	union {
279 		__wsum		csum;
280 		struct {
281 			__u16	csum_start;
282 			__u16	csum_offset;
283 		};
284 	};
285 	__u32			priority;
286 	__u8			local_df:1,
287 				cloned:1,
288 				ip_summed:2,
289 				nohdr:1,
290 				nfctinfo:3;
291 	__u8			pkt_type:3,
292 				fclone:2,
293 				ipvs_property:1,
294 				peeked:1,
295 				nf_trace:1;
296 	__be16			protocol;
297 
298 	void			(*destructor)(struct sk_buff *skb);
299 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
300 	struct nf_conntrack	*nfct;
301 	struct sk_buff		*nfct_reasm;
302 #endif
303 #ifdef CONFIG_BRIDGE_NETFILTER
304 	struct nf_bridge_info	*nf_bridge;
305 #endif
306 
307 	int			iif;
308 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
309 	__u16			queue_mapping;
310 #endif
311 #ifdef CONFIG_NET_SCHED
312 	__u16			tc_index;	/* traffic control index */
313 #ifdef CONFIG_NET_CLS_ACT
314 	__u16			tc_verd;	/* traffic control verdict */
315 #endif
316 #endif
317 #ifdef CONFIG_IPV6_NDISC_NODETYPE
318 	__u8			ndisc_nodetype:2;
319 #endif
320 	/* 14 bit hole */
321 
322 #ifdef CONFIG_NET_DMA
323 	dma_cookie_t		dma_cookie;
324 #endif
325 #ifdef CONFIG_NETWORK_SECMARK
326 	__u32			secmark;
327 #endif
328 
329 	__u32			mark;
330 
331 	sk_buff_data_t		transport_header;
332 	sk_buff_data_t		network_header;
333 	sk_buff_data_t		mac_header;
334 	/* These elements must be at the end, see alloc_skb() for details.  */
335 	sk_buff_data_t		tail;
336 	sk_buff_data_t		end;
337 	unsigned char		*head,
338 				*data;
339 	unsigned int		truesize;
340 	atomic_t		users;
341 };
342 
343 #ifdef __KERNEL__
344 /*
345  *	Handling routines are only of interest to the kernel
346  */
347 #include <linux/slab.h>
348 
349 #include <asm/system.h>
350 
351 extern void kfree_skb(struct sk_buff *skb);
352 extern void	       __kfree_skb(struct sk_buff *skb);
353 extern struct sk_buff *__alloc_skb(unsigned int size,
354 				   gfp_t priority, int fclone, int node);
355 static inline struct sk_buff *alloc_skb(unsigned int size,
356 					gfp_t priority)
357 {
358 	return __alloc_skb(size, priority, 0, -1);
359 }
360 
361 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
362 					       gfp_t priority)
363 {
364 	return __alloc_skb(size, priority, 1, -1);
365 }
366 
367 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
368 extern struct sk_buff *skb_clone(struct sk_buff *skb,
369 				 gfp_t priority);
370 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
371 				gfp_t priority);
372 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
373 				 gfp_t gfp_mask);
374 extern int	       pskb_expand_head(struct sk_buff *skb,
375 					int nhead, int ntail,
376 					gfp_t gfp_mask);
377 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
378 					    unsigned int headroom);
379 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
380 				       int newheadroom, int newtailroom,
381 				       gfp_t priority);
382 extern int	       skb_to_sgvec(struct sk_buff *skb,
383 				    struct scatterlist *sg, int offset,
384 				    int len);
385 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
386 				    struct sk_buff **trailer);
387 extern int	       skb_pad(struct sk_buff *skb, int pad);
388 #define dev_kfree_skb(a)	kfree_skb(a)
389 extern void	      skb_over_panic(struct sk_buff *skb, int len,
390 				     void *here);
391 extern void	      skb_under_panic(struct sk_buff *skb, int len,
392 				      void *here);
393 extern void	      skb_truesize_bug(struct sk_buff *skb);
394 
395 static inline void skb_truesize_check(struct sk_buff *skb)
396 {
397 	int len = sizeof(struct sk_buff) + skb->len;
398 
399 	if (unlikely((int)skb->truesize < len))
400 		skb_truesize_bug(skb);
401 }
402 
403 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
404 			int getfrag(void *from, char *to, int offset,
405 			int len,int odd, struct sk_buff *skb),
406 			void *from, int length);
407 
408 struct skb_seq_state
409 {
410 	__u32		lower_offset;
411 	__u32		upper_offset;
412 	__u32		frag_idx;
413 	__u32		stepped_offset;
414 	struct sk_buff	*root_skb;
415 	struct sk_buff	*cur_skb;
416 	__u8		*frag_data;
417 };
418 
419 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
420 					   unsigned int from, unsigned int to,
421 					   struct skb_seq_state *st);
422 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
423 				   struct skb_seq_state *st);
424 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
425 
426 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
427 				    unsigned int to, struct ts_config *config,
428 				    struct ts_state *state);
429 
430 #ifdef NET_SKBUFF_DATA_USES_OFFSET
431 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
432 {
433 	return skb->head + skb->end;
434 }
435 #else
436 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
437 {
438 	return skb->end;
439 }
440 #endif
441 
442 /* Internal */
443 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
444 
445 /**
446  *	skb_queue_empty - check if a queue is empty
447  *	@list: queue head
448  *
449  *	Returns true if the queue is empty, false otherwise.
450  */
451 static inline int skb_queue_empty(const struct sk_buff_head *list)
452 {
453 	return list->next == (struct sk_buff *)list;
454 }
455 
456 /**
457  *	skb_get - reference buffer
458  *	@skb: buffer to reference
459  *
460  *	Makes another reference to a socket buffer and returns a pointer
461  *	to the buffer.
462  */
463 static inline struct sk_buff *skb_get(struct sk_buff *skb)
464 {
465 	atomic_inc(&skb->users);
466 	return skb;
467 }
468 
469 /*
470  * If users == 1, we are the only owner and are can avoid redundant
471  * atomic change.
472  */
473 
474 /**
475  *	skb_cloned - is the buffer a clone
476  *	@skb: buffer to check
477  *
478  *	Returns true if the buffer was generated with skb_clone() and is
479  *	one of multiple shared copies of the buffer. Cloned buffers are
480  *	shared data so must not be written to under normal circumstances.
481  */
482 static inline int skb_cloned(const struct sk_buff *skb)
483 {
484 	return skb->cloned &&
485 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
486 }
487 
488 /**
489  *	skb_header_cloned - is the header a clone
490  *	@skb: buffer to check
491  *
492  *	Returns true if modifying the header part of the buffer requires
493  *	the data to be copied.
494  */
495 static inline int skb_header_cloned(const struct sk_buff *skb)
496 {
497 	int dataref;
498 
499 	if (!skb->cloned)
500 		return 0;
501 
502 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
503 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
504 	return dataref != 1;
505 }
506 
507 /**
508  *	skb_header_release - release reference to header
509  *	@skb: buffer to operate on
510  *
511  *	Drop a reference to the header part of the buffer.  This is done
512  *	by acquiring a payload reference.  You must not read from the header
513  *	part of skb->data after this.
514  */
515 static inline void skb_header_release(struct sk_buff *skb)
516 {
517 	BUG_ON(skb->nohdr);
518 	skb->nohdr = 1;
519 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
520 }
521 
522 /**
523  *	skb_shared - is the buffer shared
524  *	@skb: buffer to check
525  *
526  *	Returns true if more than one person has a reference to this
527  *	buffer.
528  */
529 static inline int skb_shared(const struct sk_buff *skb)
530 {
531 	return atomic_read(&skb->users) != 1;
532 }
533 
534 /**
535  *	skb_share_check - check if buffer is shared and if so clone it
536  *	@skb: buffer to check
537  *	@pri: priority for memory allocation
538  *
539  *	If the buffer is shared the buffer is cloned and the old copy
540  *	drops a reference. A new clone with a single reference is returned.
541  *	If the buffer is not shared the original buffer is returned. When
542  *	being called from interrupt status or with spinlocks held pri must
543  *	be GFP_ATOMIC.
544  *
545  *	NULL is returned on a memory allocation failure.
546  */
547 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
548 					      gfp_t pri)
549 {
550 	might_sleep_if(pri & __GFP_WAIT);
551 	if (skb_shared(skb)) {
552 		struct sk_buff *nskb = skb_clone(skb, pri);
553 		kfree_skb(skb);
554 		skb = nskb;
555 	}
556 	return skb;
557 }
558 
559 /*
560  *	Copy shared buffers into a new sk_buff. We effectively do COW on
561  *	packets to handle cases where we have a local reader and forward
562  *	and a couple of other messy ones. The normal one is tcpdumping
563  *	a packet thats being forwarded.
564  */
565 
566 /**
567  *	skb_unshare - make a copy of a shared buffer
568  *	@skb: buffer to check
569  *	@pri: priority for memory allocation
570  *
571  *	If the socket buffer is a clone then this function creates a new
572  *	copy of the data, drops a reference count on the old copy and returns
573  *	the new copy with the reference count at 1. If the buffer is not a clone
574  *	the original buffer is returned. When called with a spinlock held or
575  *	from interrupt state @pri must be %GFP_ATOMIC
576  *
577  *	%NULL is returned on a memory allocation failure.
578  */
579 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
580 					  gfp_t pri)
581 {
582 	might_sleep_if(pri & __GFP_WAIT);
583 	if (skb_cloned(skb)) {
584 		struct sk_buff *nskb = skb_copy(skb, pri);
585 		kfree_skb(skb);	/* Free our shared copy */
586 		skb = nskb;
587 	}
588 	return skb;
589 }
590 
591 /**
592  *	skb_peek
593  *	@list_: list to peek at
594  *
595  *	Peek an &sk_buff. Unlike most other operations you _MUST_
596  *	be careful with this one. A peek leaves the buffer on the
597  *	list and someone else may run off with it. You must hold
598  *	the appropriate locks or have a private queue to do this.
599  *
600  *	Returns %NULL for an empty list or a pointer to the head element.
601  *	The reference count is not incremented and the reference is therefore
602  *	volatile. Use with caution.
603  */
604 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
605 {
606 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
607 	if (list == (struct sk_buff *)list_)
608 		list = NULL;
609 	return list;
610 }
611 
612 /**
613  *	skb_peek_tail
614  *	@list_: list to peek at
615  *
616  *	Peek an &sk_buff. Unlike most other operations you _MUST_
617  *	be careful with this one. A peek leaves the buffer on the
618  *	list and someone else may run off with it. You must hold
619  *	the appropriate locks or have a private queue to do this.
620  *
621  *	Returns %NULL for an empty list or a pointer to the tail element.
622  *	The reference count is not incremented and the reference is therefore
623  *	volatile. Use with caution.
624  */
625 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
626 {
627 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
628 	if (list == (struct sk_buff *)list_)
629 		list = NULL;
630 	return list;
631 }
632 
633 /**
634  *	skb_queue_len	- get queue length
635  *	@list_: list to measure
636  *
637  *	Return the length of an &sk_buff queue.
638  */
639 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
640 {
641 	return list_->qlen;
642 }
643 
644 /*
645  * This function creates a split out lock class for each invocation;
646  * this is needed for now since a whole lot of users of the skb-queue
647  * infrastructure in drivers have different locking usage (in hardirq)
648  * than the networking core (in softirq only). In the long run either the
649  * network layer or drivers should need annotation to consolidate the
650  * main types of usage into 3 classes.
651  */
652 static inline void skb_queue_head_init(struct sk_buff_head *list)
653 {
654 	spin_lock_init(&list->lock);
655 	list->prev = list->next = (struct sk_buff *)list;
656 	list->qlen = 0;
657 }
658 
659 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
660 		struct lock_class_key *class)
661 {
662 	skb_queue_head_init(list);
663 	lockdep_set_class(&list->lock, class);
664 }
665 
666 /*
667  *	Insert an sk_buff on a list.
668  *
669  *	The "__skb_xxxx()" functions are the non-atomic ones that
670  *	can only be called with interrupts disabled.
671  */
672 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
673 static inline void __skb_insert(struct sk_buff *newsk,
674 				struct sk_buff *prev, struct sk_buff *next,
675 				struct sk_buff_head *list)
676 {
677 	newsk->next = next;
678 	newsk->prev = prev;
679 	next->prev  = prev->next = newsk;
680 	list->qlen++;
681 }
682 
683 /**
684  *	__skb_queue_after - queue a buffer at the list head
685  *	@list: list to use
686  *	@prev: place after this buffer
687  *	@newsk: buffer to queue
688  *
689  *	Queue a buffer int the middle of a list. This function takes no locks
690  *	and you must therefore hold required locks before calling it.
691  *
692  *	A buffer cannot be placed on two lists at the same time.
693  */
694 static inline void __skb_queue_after(struct sk_buff_head *list,
695 				     struct sk_buff *prev,
696 				     struct sk_buff *newsk)
697 {
698 	__skb_insert(newsk, prev, prev->next, list);
699 }
700 
701 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
702 		       struct sk_buff_head *list);
703 
704 static inline void __skb_queue_before(struct sk_buff_head *list,
705 				      struct sk_buff *next,
706 				      struct sk_buff *newsk)
707 {
708 	__skb_insert(newsk, next->prev, next, list);
709 }
710 
711 /**
712  *	__skb_queue_head - queue a buffer at the list head
713  *	@list: list to use
714  *	@newsk: buffer to queue
715  *
716  *	Queue a buffer at the start of a list. This function takes no locks
717  *	and you must therefore hold required locks before calling it.
718  *
719  *	A buffer cannot be placed on two lists at the same time.
720  */
721 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
722 static inline void __skb_queue_head(struct sk_buff_head *list,
723 				    struct sk_buff *newsk)
724 {
725 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
726 }
727 
728 /**
729  *	__skb_queue_tail - queue a buffer at the list tail
730  *	@list: list to use
731  *	@newsk: buffer to queue
732  *
733  *	Queue a buffer at the end of a list. This function takes no locks
734  *	and you must therefore hold required locks before calling it.
735  *
736  *	A buffer cannot be placed on two lists at the same time.
737  */
738 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
739 static inline void __skb_queue_tail(struct sk_buff_head *list,
740 				   struct sk_buff *newsk)
741 {
742 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
743 }
744 
745 /*
746  * remove sk_buff from list. _Must_ be called atomically, and with
747  * the list known..
748  */
749 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
750 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
751 {
752 	struct sk_buff *next, *prev;
753 
754 	list->qlen--;
755 	next	   = skb->next;
756 	prev	   = skb->prev;
757 	skb->next  = skb->prev = NULL;
758 	next->prev = prev;
759 	prev->next = next;
760 }
761 
762 /**
763  *	__skb_dequeue - remove from the head of the queue
764  *	@list: list to dequeue from
765  *
766  *	Remove the head of the list. This function does not take any locks
767  *	so must be used with appropriate locks held only. The head item is
768  *	returned or %NULL if the list is empty.
769  */
770 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
771 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
772 {
773 	struct sk_buff *skb = skb_peek(list);
774 	if (skb)
775 		__skb_unlink(skb, list);
776 	return skb;
777 }
778 
779 /**
780  *	__skb_dequeue_tail - remove from the tail of the queue
781  *	@list: list to dequeue from
782  *
783  *	Remove the tail of the list. This function does not take any locks
784  *	so must be used with appropriate locks held only. The tail item is
785  *	returned or %NULL if the list is empty.
786  */
787 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
788 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
789 {
790 	struct sk_buff *skb = skb_peek_tail(list);
791 	if (skb)
792 		__skb_unlink(skb, list);
793 	return skb;
794 }
795 
796 
797 static inline int skb_is_nonlinear(const struct sk_buff *skb)
798 {
799 	return skb->data_len;
800 }
801 
802 static inline unsigned int skb_headlen(const struct sk_buff *skb)
803 {
804 	return skb->len - skb->data_len;
805 }
806 
807 static inline int skb_pagelen(const struct sk_buff *skb)
808 {
809 	int i, len = 0;
810 
811 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
812 		len += skb_shinfo(skb)->frags[i].size;
813 	return len + skb_headlen(skb);
814 }
815 
816 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
817 				      struct page *page, int off, int size)
818 {
819 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
820 
821 	frag->page		  = page;
822 	frag->page_offset	  = off;
823 	frag->size		  = size;
824 	skb_shinfo(skb)->nr_frags = i + 1;
825 }
826 
827 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
828 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
829 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
830 
831 #ifdef NET_SKBUFF_DATA_USES_OFFSET
832 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
833 {
834 	return skb->head + skb->tail;
835 }
836 
837 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
838 {
839 	skb->tail = skb->data - skb->head;
840 }
841 
842 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
843 {
844 	skb_reset_tail_pointer(skb);
845 	skb->tail += offset;
846 }
847 #else /* NET_SKBUFF_DATA_USES_OFFSET */
848 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
849 {
850 	return skb->tail;
851 }
852 
853 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
854 {
855 	skb->tail = skb->data;
856 }
857 
858 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
859 {
860 	skb->tail = skb->data + offset;
861 }
862 
863 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
864 
865 /*
866  *	Add data to an sk_buff
867  */
868 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
869 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
870 {
871 	unsigned char *tmp = skb_tail_pointer(skb);
872 	SKB_LINEAR_ASSERT(skb);
873 	skb->tail += len;
874 	skb->len  += len;
875 	return tmp;
876 }
877 
878 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
879 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
880 {
881 	skb->data -= len;
882 	skb->len  += len;
883 	return skb->data;
884 }
885 
886 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
887 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
888 {
889 	skb->len -= len;
890 	BUG_ON(skb->len < skb->data_len);
891 	return skb->data += len;
892 }
893 
894 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
895 
896 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
897 {
898 	if (len > skb_headlen(skb) &&
899 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
900 		return NULL;
901 	skb->len -= len;
902 	return skb->data += len;
903 }
904 
905 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
906 {
907 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
908 }
909 
910 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
911 {
912 	if (likely(len <= skb_headlen(skb)))
913 		return 1;
914 	if (unlikely(len > skb->len))
915 		return 0;
916 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
917 }
918 
919 /**
920  *	skb_headroom - bytes at buffer head
921  *	@skb: buffer to check
922  *
923  *	Return the number of bytes of free space at the head of an &sk_buff.
924  */
925 static inline unsigned int skb_headroom(const struct sk_buff *skb)
926 {
927 	return skb->data - skb->head;
928 }
929 
930 /**
931  *	skb_tailroom - bytes at buffer end
932  *	@skb: buffer to check
933  *
934  *	Return the number of bytes of free space at the tail of an sk_buff
935  */
936 static inline int skb_tailroom(const struct sk_buff *skb)
937 {
938 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
939 }
940 
941 /**
942  *	skb_reserve - adjust headroom
943  *	@skb: buffer to alter
944  *	@len: bytes to move
945  *
946  *	Increase the headroom of an empty &sk_buff by reducing the tail
947  *	room. This is only allowed for an empty buffer.
948  */
949 static inline void skb_reserve(struct sk_buff *skb, int len)
950 {
951 	skb->data += len;
952 	skb->tail += len;
953 }
954 
955 #ifdef NET_SKBUFF_DATA_USES_OFFSET
956 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
957 {
958 	return skb->head + skb->transport_header;
959 }
960 
961 static inline void skb_reset_transport_header(struct sk_buff *skb)
962 {
963 	skb->transport_header = skb->data - skb->head;
964 }
965 
966 static inline void skb_set_transport_header(struct sk_buff *skb,
967 					    const int offset)
968 {
969 	skb_reset_transport_header(skb);
970 	skb->transport_header += offset;
971 }
972 
973 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
974 {
975 	return skb->head + skb->network_header;
976 }
977 
978 static inline void skb_reset_network_header(struct sk_buff *skb)
979 {
980 	skb->network_header = skb->data - skb->head;
981 }
982 
983 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
984 {
985 	skb_reset_network_header(skb);
986 	skb->network_header += offset;
987 }
988 
989 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
990 {
991 	return skb->head + skb->mac_header;
992 }
993 
994 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
995 {
996 	return skb->mac_header != ~0U;
997 }
998 
999 static inline void skb_reset_mac_header(struct sk_buff *skb)
1000 {
1001 	skb->mac_header = skb->data - skb->head;
1002 }
1003 
1004 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1005 {
1006 	skb_reset_mac_header(skb);
1007 	skb->mac_header += offset;
1008 }
1009 
1010 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1011 
1012 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1013 {
1014 	return skb->transport_header;
1015 }
1016 
1017 static inline void skb_reset_transport_header(struct sk_buff *skb)
1018 {
1019 	skb->transport_header = skb->data;
1020 }
1021 
1022 static inline void skb_set_transport_header(struct sk_buff *skb,
1023 					    const int offset)
1024 {
1025 	skb->transport_header = skb->data + offset;
1026 }
1027 
1028 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1029 {
1030 	return skb->network_header;
1031 }
1032 
1033 static inline void skb_reset_network_header(struct sk_buff *skb)
1034 {
1035 	skb->network_header = skb->data;
1036 }
1037 
1038 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1039 {
1040 	skb->network_header = skb->data + offset;
1041 }
1042 
1043 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1044 {
1045 	return skb->mac_header;
1046 }
1047 
1048 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1049 {
1050 	return skb->mac_header != NULL;
1051 }
1052 
1053 static inline void skb_reset_mac_header(struct sk_buff *skb)
1054 {
1055 	skb->mac_header = skb->data;
1056 }
1057 
1058 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1059 {
1060 	skb->mac_header = skb->data + offset;
1061 }
1062 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1063 
1064 static inline int skb_transport_offset(const struct sk_buff *skb)
1065 {
1066 	return skb_transport_header(skb) - skb->data;
1067 }
1068 
1069 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1070 {
1071 	return skb->transport_header - skb->network_header;
1072 }
1073 
1074 static inline int skb_network_offset(const struct sk_buff *skb)
1075 {
1076 	return skb_network_header(skb) - skb->data;
1077 }
1078 
1079 /*
1080  * CPUs often take a performance hit when accessing unaligned memory
1081  * locations. The actual performance hit varies, it can be small if the
1082  * hardware handles it or large if we have to take an exception and fix it
1083  * in software.
1084  *
1085  * Since an ethernet header is 14 bytes network drivers often end up with
1086  * the IP header at an unaligned offset. The IP header can be aligned by
1087  * shifting the start of the packet by 2 bytes. Drivers should do this
1088  * with:
1089  *
1090  * skb_reserve(NET_IP_ALIGN);
1091  *
1092  * The downside to this alignment of the IP header is that the DMA is now
1093  * unaligned. On some architectures the cost of an unaligned DMA is high
1094  * and this cost outweighs the gains made by aligning the IP header.
1095  *
1096  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1097  * to be overridden.
1098  */
1099 #ifndef NET_IP_ALIGN
1100 #define NET_IP_ALIGN	2
1101 #endif
1102 
1103 /*
1104  * The networking layer reserves some headroom in skb data (via
1105  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1106  * the header has to grow. In the default case, if the header has to grow
1107  * 16 bytes or less we avoid the reallocation.
1108  *
1109  * Unfortunately this headroom changes the DMA alignment of the resulting
1110  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1111  * on some architectures. An architecture can override this value,
1112  * perhaps setting it to a cacheline in size (since that will maintain
1113  * cacheline alignment of the DMA). It must be a power of 2.
1114  *
1115  * Various parts of the networking layer expect at least 16 bytes of
1116  * headroom, you should not reduce this.
1117  */
1118 #ifndef NET_SKB_PAD
1119 #define NET_SKB_PAD	16
1120 #endif
1121 
1122 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1123 
1124 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1125 {
1126 	if (unlikely(skb->data_len)) {
1127 		WARN_ON(1);
1128 		return;
1129 	}
1130 	skb->len = len;
1131 	skb_set_tail_pointer(skb, len);
1132 }
1133 
1134 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1135 
1136 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1137 {
1138 	if (skb->data_len)
1139 		return ___pskb_trim(skb, len);
1140 	__skb_trim(skb, len);
1141 	return 0;
1142 }
1143 
1144 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1145 {
1146 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1147 }
1148 
1149 /**
1150  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1151  *	@skb: buffer to alter
1152  *	@len: new length
1153  *
1154  *	This is identical to pskb_trim except that the caller knows that
1155  *	the skb is not cloned so we should never get an error due to out-
1156  *	of-memory.
1157  */
1158 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1159 {
1160 	int err = pskb_trim(skb, len);
1161 	BUG_ON(err);
1162 }
1163 
1164 /**
1165  *	skb_orphan - orphan a buffer
1166  *	@skb: buffer to orphan
1167  *
1168  *	If a buffer currently has an owner then we call the owner's
1169  *	destructor function and make the @skb unowned. The buffer continues
1170  *	to exist but is no longer charged to its former owner.
1171  */
1172 static inline void skb_orphan(struct sk_buff *skb)
1173 {
1174 	if (skb->destructor)
1175 		skb->destructor(skb);
1176 	skb->destructor = NULL;
1177 	skb->sk		= NULL;
1178 }
1179 
1180 /**
1181  *	__skb_queue_purge - empty a list
1182  *	@list: list to empty
1183  *
1184  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1185  *	the list and one reference dropped. This function does not take the
1186  *	list lock and the caller must hold the relevant locks to use it.
1187  */
1188 extern void skb_queue_purge(struct sk_buff_head *list);
1189 static inline void __skb_queue_purge(struct sk_buff_head *list)
1190 {
1191 	struct sk_buff *skb;
1192 	while ((skb = __skb_dequeue(list)) != NULL)
1193 		kfree_skb(skb);
1194 }
1195 
1196 /**
1197  *	__dev_alloc_skb - allocate an skbuff for receiving
1198  *	@length: length to allocate
1199  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1200  *
1201  *	Allocate a new &sk_buff and assign it a usage count of one. The
1202  *	buffer has unspecified headroom built in. Users should allocate
1203  *	the headroom they think they need without accounting for the
1204  *	built in space. The built in space is used for optimisations.
1205  *
1206  *	%NULL is returned if there is no free memory.
1207  */
1208 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1209 					      gfp_t gfp_mask)
1210 {
1211 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1212 	if (likely(skb))
1213 		skb_reserve(skb, NET_SKB_PAD);
1214 	return skb;
1215 }
1216 
1217 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1218 
1219 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1220 		unsigned int length, gfp_t gfp_mask);
1221 
1222 /**
1223  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1224  *	@dev: network device to receive on
1225  *	@length: length to allocate
1226  *
1227  *	Allocate a new &sk_buff and assign it a usage count of one. The
1228  *	buffer has unspecified headroom built in. Users should allocate
1229  *	the headroom they think they need without accounting for the
1230  *	built in space. The built in space is used for optimisations.
1231  *
1232  *	%NULL is returned if there is no free memory. Although this function
1233  *	allocates memory it can be called from an interrupt.
1234  */
1235 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1236 		unsigned int length)
1237 {
1238 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1239 }
1240 
1241 /**
1242  *	skb_clone_writable - is the header of a clone writable
1243  *	@skb: buffer to check
1244  *	@len: length up to which to write
1245  *
1246  *	Returns true if modifying the header part of the cloned buffer
1247  *	does not requires the data to be copied.
1248  */
1249 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1250 {
1251 	return !skb_header_cloned(skb) &&
1252 	       skb_headroom(skb) + len <= skb->hdr_len;
1253 }
1254 
1255 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1256 			    int cloned)
1257 {
1258 	int delta = 0;
1259 
1260 	if (headroom < NET_SKB_PAD)
1261 		headroom = NET_SKB_PAD;
1262 	if (headroom > skb_headroom(skb))
1263 		delta = headroom - skb_headroom(skb);
1264 
1265 	if (delta || cloned)
1266 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1267 					GFP_ATOMIC);
1268 	return 0;
1269 }
1270 
1271 /**
1272  *	skb_cow - copy header of skb when it is required
1273  *	@skb: buffer to cow
1274  *	@headroom: needed headroom
1275  *
1276  *	If the skb passed lacks sufficient headroom or its data part
1277  *	is shared, data is reallocated. If reallocation fails, an error
1278  *	is returned and original skb is not changed.
1279  *
1280  *	The result is skb with writable area skb->head...skb->tail
1281  *	and at least @headroom of space at head.
1282  */
1283 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1284 {
1285 	return __skb_cow(skb, headroom, skb_cloned(skb));
1286 }
1287 
1288 /**
1289  *	skb_cow_head - skb_cow but only making the head writable
1290  *	@skb: buffer to cow
1291  *	@headroom: needed headroom
1292  *
1293  *	This function is identical to skb_cow except that we replace the
1294  *	skb_cloned check by skb_header_cloned.  It should be used when
1295  *	you only need to push on some header and do not need to modify
1296  *	the data.
1297  */
1298 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1299 {
1300 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1301 }
1302 
1303 /**
1304  *	skb_padto	- pad an skbuff up to a minimal size
1305  *	@skb: buffer to pad
1306  *	@len: minimal length
1307  *
1308  *	Pads up a buffer to ensure the trailing bytes exist and are
1309  *	blanked. If the buffer already contains sufficient data it
1310  *	is untouched. Otherwise it is extended. Returns zero on
1311  *	success. The skb is freed on error.
1312  */
1313 
1314 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1315 {
1316 	unsigned int size = skb->len;
1317 	if (likely(size >= len))
1318 		return 0;
1319 	return skb_pad(skb, len-size);
1320 }
1321 
1322 static inline int skb_add_data(struct sk_buff *skb,
1323 			       char __user *from, int copy)
1324 {
1325 	const int off = skb->len;
1326 
1327 	if (skb->ip_summed == CHECKSUM_NONE) {
1328 		int err = 0;
1329 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1330 							    copy, 0, &err);
1331 		if (!err) {
1332 			skb->csum = csum_block_add(skb->csum, csum, off);
1333 			return 0;
1334 		}
1335 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1336 		return 0;
1337 
1338 	__skb_trim(skb, off);
1339 	return -EFAULT;
1340 }
1341 
1342 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1343 				   struct page *page, int off)
1344 {
1345 	if (i) {
1346 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1347 
1348 		return page == frag->page &&
1349 		       off == frag->page_offset + frag->size;
1350 	}
1351 	return 0;
1352 }
1353 
1354 static inline int __skb_linearize(struct sk_buff *skb)
1355 {
1356 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1357 }
1358 
1359 /**
1360  *	skb_linearize - convert paged skb to linear one
1361  *	@skb: buffer to linarize
1362  *
1363  *	If there is no free memory -ENOMEM is returned, otherwise zero
1364  *	is returned and the old skb data released.
1365  */
1366 static inline int skb_linearize(struct sk_buff *skb)
1367 {
1368 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1369 }
1370 
1371 /**
1372  *	skb_linearize_cow - make sure skb is linear and writable
1373  *	@skb: buffer to process
1374  *
1375  *	If there is no free memory -ENOMEM is returned, otherwise zero
1376  *	is returned and the old skb data released.
1377  */
1378 static inline int skb_linearize_cow(struct sk_buff *skb)
1379 {
1380 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1381 	       __skb_linearize(skb) : 0;
1382 }
1383 
1384 /**
1385  *	skb_postpull_rcsum - update checksum for received skb after pull
1386  *	@skb: buffer to update
1387  *	@start: start of data before pull
1388  *	@len: length of data pulled
1389  *
1390  *	After doing a pull on a received packet, you need to call this to
1391  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1392  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1393  */
1394 
1395 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1396 				      const void *start, unsigned int len)
1397 {
1398 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1399 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1400 }
1401 
1402 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1403 
1404 /**
1405  *	pskb_trim_rcsum - trim received skb and update checksum
1406  *	@skb: buffer to trim
1407  *	@len: new length
1408  *
1409  *	This is exactly the same as pskb_trim except that it ensures the
1410  *	checksum of received packets are still valid after the operation.
1411  */
1412 
1413 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1414 {
1415 	if (likely(len >= skb->len))
1416 		return 0;
1417 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1418 		skb->ip_summed = CHECKSUM_NONE;
1419 	return __pskb_trim(skb, len);
1420 }
1421 
1422 #define skb_queue_walk(queue, skb) \
1423 		for (skb = (queue)->next;					\
1424 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1425 		     skb = skb->next)
1426 
1427 #define skb_queue_walk_safe(queue, skb, tmp)					\
1428 		for (skb = (queue)->next, tmp = skb->next;			\
1429 		     skb != (struct sk_buff *)(queue);				\
1430 		     skb = tmp, tmp = skb->next)
1431 
1432 #define skb_queue_reverse_walk(queue, skb) \
1433 		for (skb = (queue)->prev;					\
1434 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1435 		     skb = skb->prev)
1436 
1437 
1438 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1439 					   int *peeked, int *err);
1440 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1441 					 int noblock, int *err);
1442 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1443 				     struct poll_table_struct *wait);
1444 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1445 					       int offset, struct iovec *to,
1446 					       int size);
1447 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1448 							int hlen,
1449 							struct iovec *iov);
1450 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1451 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1452 					 unsigned int flags);
1453 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1454 				    int len, __wsum csum);
1455 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1456 				     void *to, int len);
1457 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1458 				      const void *from, int len);
1459 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1460 					      int offset, u8 *to, int len,
1461 					      __wsum csum);
1462 extern int             skb_splice_bits(struct sk_buff *skb,
1463 						unsigned int offset,
1464 						struct pipe_inode_info *pipe,
1465 						unsigned int len,
1466 						unsigned int flags);
1467 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1468 extern void	       skb_split(struct sk_buff *skb,
1469 				 struct sk_buff *skb1, const u32 len);
1470 
1471 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1472 
1473 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1474 				       int len, void *buffer)
1475 {
1476 	int hlen = skb_headlen(skb);
1477 
1478 	if (hlen - offset >= len)
1479 		return skb->data + offset;
1480 
1481 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1482 		return NULL;
1483 
1484 	return buffer;
1485 }
1486 
1487 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1488 					     void *to,
1489 					     const unsigned int len)
1490 {
1491 	memcpy(to, skb->data, len);
1492 }
1493 
1494 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1495 						    const int offset, void *to,
1496 						    const unsigned int len)
1497 {
1498 	memcpy(to, skb->data + offset, len);
1499 }
1500 
1501 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1502 					   const void *from,
1503 					   const unsigned int len)
1504 {
1505 	memcpy(skb->data, from, len);
1506 }
1507 
1508 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1509 						  const int offset,
1510 						  const void *from,
1511 						  const unsigned int len)
1512 {
1513 	memcpy(skb->data + offset, from, len);
1514 }
1515 
1516 extern void skb_init(void);
1517 
1518 /**
1519  *	skb_get_timestamp - get timestamp from a skb
1520  *	@skb: skb to get stamp from
1521  *	@stamp: pointer to struct timeval to store stamp in
1522  *
1523  *	Timestamps are stored in the skb as offsets to a base timestamp.
1524  *	This function converts the offset back to a struct timeval and stores
1525  *	it in stamp.
1526  */
1527 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1528 {
1529 	*stamp = ktime_to_timeval(skb->tstamp);
1530 }
1531 
1532 static inline void __net_timestamp(struct sk_buff *skb)
1533 {
1534 	skb->tstamp = ktime_get_real();
1535 }
1536 
1537 static inline ktime_t net_timedelta(ktime_t t)
1538 {
1539 	return ktime_sub(ktime_get_real(), t);
1540 }
1541 
1542 static inline ktime_t net_invalid_timestamp(void)
1543 {
1544 	return ktime_set(0, 0);
1545 }
1546 
1547 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1548 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1549 
1550 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1551 {
1552 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1553 }
1554 
1555 /**
1556  *	skb_checksum_complete - Calculate checksum of an entire packet
1557  *	@skb: packet to process
1558  *
1559  *	This function calculates the checksum over the entire packet plus
1560  *	the value of skb->csum.  The latter can be used to supply the
1561  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1562  *	checksum.
1563  *
1564  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1565  *	this function can be used to verify that checksum on received
1566  *	packets.  In that case the function should return zero if the
1567  *	checksum is correct.  In particular, this function will return zero
1568  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1569  *	hardware has already verified the correctness of the checksum.
1570  */
1571 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1572 {
1573 	return skb_csum_unnecessary(skb) ?
1574 	       0 : __skb_checksum_complete(skb);
1575 }
1576 
1577 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1578 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1579 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1580 {
1581 	if (nfct && atomic_dec_and_test(&nfct->use))
1582 		nf_conntrack_destroy(nfct);
1583 }
1584 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1585 {
1586 	if (nfct)
1587 		atomic_inc(&nfct->use);
1588 }
1589 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1590 {
1591 	if (skb)
1592 		atomic_inc(&skb->users);
1593 }
1594 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1595 {
1596 	if (skb)
1597 		kfree_skb(skb);
1598 }
1599 #endif
1600 #ifdef CONFIG_BRIDGE_NETFILTER
1601 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1602 {
1603 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1604 		kfree(nf_bridge);
1605 }
1606 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1607 {
1608 	if (nf_bridge)
1609 		atomic_inc(&nf_bridge->use);
1610 }
1611 #endif /* CONFIG_BRIDGE_NETFILTER */
1612 static inline void nf_reset(struct sk_buff *skb)
1613 {
1614 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1615 	nf_conntrack_put(skb->nfct);
1616 	skb->nfct = NULL;
1617 	nf_conntrack_put_reasm(skb->nfct_reasm);
1618 	skb->nfct_reasm = NULL;
1619 #endif
1620 #ifdef CONFIG_BRIDGE_NETFILTER
1621 	nf_bridge_put(skb->nf_bridge);
1622 	skb->nf_bridge = NULL;
1623 #endif
1624 }
1625 
1626 /* Note: This doesn't put any conntrack and bridge info in dst. */
1627 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1628 {
1629 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1630 	dst->nfct = src->nfct;
1631 	nf_conntrack_get(src->nfct);
1632 	dst->nfctinfo = src->nfctinfo;
1633 	dst->nfct_reasm = src->nfct_reasm;
1634 	nf_conntrack_get_reasm(src->nfct_reasm);
1635 #endif
1636 #ifdef CONFIG_BRIDGE_NETFILTER
1637 	dst->nf_bridge  = src->nf_bridge;
1638 	nf_bridge_get(src->nf_bridge);
1639 #endif
1640 }
1641 
1642 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1643 {
1644 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1645 	nf_conntrack_put(dst->nfct);
1646 	nf_conntrack_put_reasm(dst->nfct_reasm);
1647 #endif
1648 #ifdef CONFIG_BRIDGE_NETFILTER
1649 	nf_bridge_put(dst->nf_bridge);
1650 #endif
1651 	__nf_copy(dst, src);
1652 }
1653 
1654 #ifdef CONFIG_NETWORK_SECMARK
1655 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1656 {
1657 	to->secmark = from->secmark;
1658 }
1659 
1660 static inline void skb_init_secmark(struct sk_buff *skb)
1661 {
1662 	skb->secmark = 0;
1663 }
1664 #else
1665 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1666 { }
1667 
1668 static inline void skb_init_secmark(struct sk_buff *skb)
1669 { }
1670 #endif
1671 
1672 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1673 {
1674 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1675 	skb->queue_mapping = queue_mapping;
1676 #endif
1677 }
1678 
1679 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1680 {
1681 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1682 	return skb->queue_mapping;
1683 #else
1684 	return 0;
1685 #endif
1686 }
1687 
1688 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1689 {
1690 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1691 	to->queue_mapping = from->queue_mapping;
1692 #endif
1693 }
1694 
1695 static inline int skb_is_gso(const struct sk_buff *skb)
1696 {
1697 	return skb_shinfo(skb)->gso_size;
1698 }
1699 
1700 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1701 {
1702 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1703 }
1704 
1705 static inline void skb_forward_csum(struct sk_buff *skb)
1706 {
1707 	/* Unfortunately we don't support this one.  Any brave souls? */
1708 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1709 		skb->ip_summed = CHECKSUM_NONE;
1710 }
1711 
1712 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1713 #endif	/* __KERNEL__ */
1714 #endif	/* _LINUX_SKBUFF_H */
1715