1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/cache.h> 21 22 #include <asm/atomic.h> 23 #include <asm/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/net.h> 26 #include <linux/textsearch.h> 27 #include <net/checksum.h> 28 #include <linux/rcupdate.h> 29 #include <linux/dmaengine.h> 30 #include <linux/hrtimer.h> 31 32 #define HAVE_ALLOC_SKB /* For the drivers to know */ 33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35 /* Don't change this without changing skb_csum_unnecessary! */ 36 #define CHECKSUM_NONE 0 37 #define CHECKSUM_UNNECESSARY 1 38 #define CHECKSUM_COMPLETE 2 39 #define CHECKSUM_PARTIAL 3 40 41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43 #define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45 #define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50 /* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96 struct net_device; 97 struct scatterlist; 98 99 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 100 struct nf_conntrack { 101 atomic_t use; 102 }; 103 #endif 104 105 #ifdef CONFIG_BRIDGE_NETFILTER 106 struct nf_bridge_info { 107 atomic_t use; 108 struct net_device *physindev; 109 struct net_device *physoutdev; 110 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 111 struct net_device *netoutdev; 112 #endif 113 unsigned int mask; 114 unsigned long data[32 / sizeof(unsigned long)]; 115 }; 116 #endif 117 118 struct sk_buff_head { 119 /* These two members must be first. */ 120 struct sk_buff *next; 121 struct sk_buff *prev; 122 123 __u32 qlen; 124 spinlock_t lock; 125 }; 126 127 struct sk_buff; 128 129 /* To allow 64K frame to be packed as single skb without frag_list */ 130 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 131 132 typedef struct skb_frag_struct skb_frag_t; 133 134 struct skb_frag_struct { 135 struct page *page; 136 __u32 page_offset; 137 __u32 size; 138 }; 139 140 /* This data is invariant across clones and lives at 141 * the end of the header data, ie. at skb->end. 142 */ 143 struct skb_shared_info { 144 atomic_t dataref; 145 unsigned short nr_frags; 146 unsigned short gso_size; 147 /* Warning: this field is not always filled in (UFO)! */ 148 unsigned short gso_segs; 149 unsigned short gso_type; 150 __be32 ip6_frag_id; 151 struct sk_buff *frag_list; 152 skb_frag_t frags[MAX_SKB_FRAGS]; 153 }; 154 155 /* We divide dataref into two halves. The higher 16 bits hold references 156 * to the payload part of skb->data. The lower 16 bits hold references to 157 * the entire skb->data. A clone of a headerless skb holds the length of 158 * the header in skb->hdr_len. 159 * 160 * All users must obey the rule that the skb->data reference count must be 161 * greater than or equal to the payload reference count. 162 * 163 * Holding a reference to the payload part means that the user does not 164 * care about modifications to the header part of skb->data. 165 */ 166 #define SKB_DATAREF_SHIFT 16 167 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 168 169 170 enum { 171 SKB_FCLONE_UNAVAILABLE, 172 SKB_FCLONE_ORIG, 173 SKB_FCLONE_CLONE, 174 }; 175 176 enum { 177 SKB_GSO_TCPV4 = 1 << 0, 178 SKB_GSO_UDP = 1 << 1, 179 180 /* This indicates the skb is from an untrusted source. */ 181 SKB_GSO_DODGY = 1 << 2, 182 183 /* This indicates the tcp segment has CWR set. */ 184 SKB_GSO_TCP_ECN = 1 << 3, 185 186 SKB_GSO_TCPV6 = 1 << 4, 187 }; 188 189 #if BITS_PER_LONG > 32 190 #define NET_SKBUFF_DATA_USES_OFFSET 1 191 #endif 192 193 #ifdef NET_SKBUFF_DATA_USES_OFFSET 194 typedef unsigned int sk_buff_data_t; 195 #else 196 typedef unsigned char *sk_buff_data_t; 197 #endif 198 199 /** 200 * struct sk_buff - socket buffer 201 * @next: Next buffer in list 202 * @prev: Previous buffer in list 203 * @sk: Socket we are owned by 204 * @tstamp: Time we arrived 205 * @dev: Device we arrived on/are leaving by 206 * @transport_header: Transport layer header 207 * @network_header: Network layer header 208 * @mac_header: Link layer header 209 * @dst: destination entry 210 * @sp: the security path, used for xfrm 211 * @cb: Control buffer. Free for use by every layer. Put private vars here 212 * @len: Length of actual data 213 * @data_len: Data length 214 * @mac_len: Length of link layer header 215 * @hdr_len: writable header length of cloned skb 216 * @csum: Checksum (must include start/offset pair) 217 * @csum_start: Offset from skb->head where checksumming should start 218 * @csum_offset: Offset from csum_start where checksum should be stored 219 * @local_df: allow local fragmentation 220 * @cloned: Head may be cloned (check refcnt to be sure) 221 * @nohdr: Payload reference only, must not modify header 222 * @pkt_type: Packet class 223 * @fclone: skbuff clone status 224 * @ip_summed: Driver fed us an IP checksum 225 * @priority: Packet queueing priority 226 * @users: User count - see {datagram,tcp}.c 227 * @protocol: Packet protocol from driver 228 * @truesize: Buffer size 229 * @head: Head of buffer 230 * @data: Data head pointer 231 * @tail: Tail pointer 232 * @end: End pointer 233 * @destructor: Destruct function 234 * @mark: Generic packet mark 235 * @nfct: Associated connection, if any 236 * @ipvs_property: skbuff is owned by ipvs 237 * @nf_trace: netfilter packet trace flag 238 * @nfctinfo: Relationship of this skb to the connection 239 * @nfct_reasm: netfilter conntrack re-assembly pointer 240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 241 * @iif: ifindex of device we arrived on 242 * @queue_mapping: Queue mapping for multiqueue devices 243 * @tc_index: Traffic control index 244 * @tc_verd: traffic control verdict 245 * @dma_cookie: a cookie to one of several possible DMA operations 246 * done by skb DMA functions 247 * @secmark: security marking 248 */ 249 250 struct sk_buff { 251 /* These two members must be first. */ 252 struct sk_buff *next; 253 struct sk_buff *prev; 254 255 struct sock *sk; 256 ktime_t tstamp; 257 struct net_device *dev; 258 259 struct dst_entry *dst; 260 struct sec_path *sp; 261 262 /* 263 * This is the control buffer. It is free to use for every 264 * layer. Please put your private variables there. If you 265 * want to keep them across layers you have to do a skb_clone() 266 * first. This is owned by whoever has the skb queued ATM. 267 */ 268 char cb[48]; 269 270 unsigned int len, 271 data_len; 272 __u16 mac_len, 273 hdr_len; 274 union { 275 __wsum csum; 276 struct { 277 __u16 csum_start; 278 __u16 csum_offset; 279 }; 280 }; 281 __u32 priority; 282 __u8 local_df:1, 283 cloned:1, 284 ip_summed:2, 285 nohdr:1, 286 nfctinfo:3; 287 __u8 pkt_type:3, 288 fclone:2, 289 ipvs_property:1, 290 nf_trace:1; 291 __be16 protocol; 292 293 void (*destructor)(struct sk_buff *skb); 294 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 295 struct nf_conntrack *nfct; 296 struct sk_buff *nfct_reasm; 297 #endif 298 #ifdef CONFIG_BRIDGE_NETFILTER 299 struct nf_bridge_info *nf_bridge; 300 #endif 301 302 int iif; 303 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 304 __u16 queue_mapping; 305 #endif 306 #ifdef CONFIG_NET_SCHED 307 __u16 tc_index; /* traffic control index */ 308 #ifdef CONFIG_NET_CLS_ACT 309 __u16 tc_verd; /* traffic control verdict */ 310 #endif 311 #endif 312 /* 2 byte hole */ 313 314 #ifdef CONFIG_NET_DMA 315 dma_cookie_t dma_cookie; 316 #endif 317 #ifdef CONFIG_NETWORK_SECMARK 318 __u32 secmark; 319 #endif 320 321 __u32 mark; 322 323 sk_buff_data_t transport_header; 324 sk_buff_data_t network_header; 325 sk_buff_data_t mac_header; 326 /* These elements must be at the end, see alloc_skb() for details. */ 327 sk_buff_data_t tail; 328 sk_buff_data_t end; 329 unsigned char *head, 330 *data; 331 unsigned int truesize; 332 atomic_t users; 333 }; 334 335 #ifdef __KERNEL__ 336 /* 337 * Handling routines are only of interest to the kernel 338 */ 339 #include <linux/slab.h> 340 341 #include <asm/system.h> 342 343 extern void kfree_skb(struct sk_buff *skb); 344 extern void __kfree_skb(struct sk_buff *skb); 345 extern struct sk_buff *__alloc_skb(unsigned int size, 346 gfp_t priority, int fclone, int node); 347 static inline struct sk_buff *alloc_skb(unsigned int size, 348 gfp_t priority) 349 { 350 return __alloc_skb(size, priority, 0, -1); 351 } 352 353 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 354 gfp_t priority) 355 { 356 return __alloc_skb(size, priority, 1, -1); 357 } 358 359 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 360 extern struct sk_buff *skb_clone(struct sk_buff *skb, 361 gfp_t priority); 362 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 363 gfp_t priority); 364 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 365 gfp_t gfp_mask); 366 extern int pskb_expand_head(struct sk_buff *skb, 367 int nhead, int ntail, 368 gfp_t gfp_mask); 369 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 370 unsigned int headroom); 371 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 372 int newheadroom, int newtailroom, 373 gfp_t priority); 374 extern int skb_to_sgvec(struct sk_buff *skb, 375 struct scatterlist *sg, int offset, 376 int len); 377 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 378 struct sk_buff **trailer); 379 extern int skb_pad(struct sk_buff *skb, int pad); 380 #define dev_kfree_skb(a) kfree_skb(a) 381 extern void skb_over_panic(struct sk_buff *skb, int len, 382 void *here); 383 extern void skb_under_panic(struct sk_buff *skb, int len, 384 void *here); 385 extern void skb_truesize_bug(struct sk_buff *skb); 386 387 static inline void skb_truesize_check(struct sk_buff *skb) 388 { 389 int len = sizeof(struct sk_buff) + skb->len; 390 391 if (unlikely((int)skb->truesize < len)) 392 skb_truesize_bug(skb); 393 } 394 395 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 396 int getfrag(void *from, char *to, int offset, 397 int len,int odd, struct sk_buff *skb), 398 void *from, int length); 399 400 struct skb_seq_state 401 { 402 __u32 lower_offset; 403 __u32 upper_offset; 404 __u32 frag_idx; 405 __u32 stepped_offset; 406 struct sk_buff *root_skb; 407 struct sk_buff *cur_skb; 408 __u8 *frag_data; 409 }; 410 411 extern void skb_prepare_seq_read(struct sk_buff *skb, 412 unsigned int from, unsigned int to, 413 struct skb_seq_state *st); 414 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 415 struct skb_seq_state *st); 416 extern void skb_abort_seq_read(struct skb_seq_state *st); 417 418 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 419 unsigned int to, struct ts_config *config, 420 struct ts_state *state); 421 422 #ifdef NET_SKBUFF_DATA_USES_OFFSET 423 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 424 { 425 return skb->head + skb->end; 426 } 427 #else 428 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 429 { 430 return skb->end; 431 } 432 #endif 433 434 /* Internal */ 435 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 436 437 /** 438 * skb_queue_empty - check if a queue is empty 439 * @list: queue head 440 * 441 * Returns true if the queue is empty, false otherwise. 442 */ 443 static inline int skb_queue_empty(const struct sk_buff_head *list) 444 { 445 return list->next == (struct sk_buff *)list; 446 } 447 448 /** 449 * skb_get - reference buffer 450 * @skb: buffer to reference 451 * 452 * Makes another reference to a socket buffer and returns a pointer 453 * to the buffer. 454 */ 455 static inline struct sk_buff *skb_get(struct sk_buff *skb) 456 { 457 atomic_inc(&skb->users); 458 return skb; 459 } 460 461 /* 462 * If users == 1, we are the only owner and are can avoid redundant 463 * atomic change. 464 */ 465 466 /** 467 * skb_cloned - is the buffer a clone 468 * @skb: buffer to check 469 * 470 * Returns true if the buffer was generated with skb_clone() and is 471 * one of multiple shared copies of the buffer. Cloned buffers are 472 * shared data so must not be written to under normal circumstances. 473 */ 474 static inline int skb_cloned(const struct sk_buff *skb) 475 { 476 return skb->cloned && 477 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 478 } 479 480 /** 481 * skb_header_cloned - is the header a clone 482 * @skb: buffer to check 483 * 484 * Returns true if modifying the header part of the buffer requires 485 * the data to be copied. 486 */ 487 static inline int skb_header_cloned(const struct sk_buff *skb) 488 { 489 int dataref; 490 491 if (!skb->cloned) 492 return 0; 493 494 dataref = atomic_read(&skb_shinfo(skb)->dataref); 495 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 496 return dataref != 1; 497 } 498 499 /** 500 * skb_header_release - release reference to header 501 * @skb: buffer to operate on 502 * 503 * Drop a reference to the header part of the buffer. This is done 504 * by acquiring a payload reference. You must not read from the header 505 * part of skb->data after this. 506 */ 507 static inline void skb_header_release(struct sk_buff *skb) 508 { 509 BUG_ON(skb->nohdr); 510 skb->nohdr = 1; 511 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 512 } 513 514 /** 515 * skb_shared - is the buffer shared 516 * @skb: buffer to check 517 * 518 * Returns true if more than one person has a reference to this 519 * buffer. 520 */ 521 static inline int skb_shared(const struct sk_buff *skb) 522 { 523 return atomic_read(&skb->users) != 1; 524 } 525 526 /** 527 * skb_share_check - check if buffer is shared and if so clone it 528 * @skb: buffer to check 529 * @pri: priority for memory allocation 530 * 531 * If the buffer is shared the buffer is cloned and the old copy 532 * drops a reference. A new clone with a single reference is returned. 533 * If the buffer is not shared the original buffer is returned. When 534 * being called from interrupt status or with spinlocks held pri must 535 * be GFP_ATOMIC. 536 * 537 * NULL is returned on a memory allocation failure. 538 */ 539 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 540 gfp_t pri) 541 { 542 might_sleep_if(pri & __GFP_WAIT); 543 if (skb_shared(skb)) { 544 struct sk_buff *nskb = skb_clone(skb, pri); 545 kfree_skb(skb); 546 skb = nskb; 547 } 548 return skb; 549 } 550 551 /* 552 * Copy shared buffers into a new sk_buff. We effectively do COW on 553 * packets to handle cases where we have a local reader and forward 554 * and a couple of other messy ones. The normal one is tcpdumping 555 * a packet thats being forwarded. 556 */ 557 558 /** 559 * skb_unshare - make a copy of a shared buffer 560 * @skb: buffer to check 561 * @pri: priority for memory allocation 562 * 563 * If the socket buffer is a clone then this function creates a new 564 * copy of the data, drops a reference count on the old copy and returns 565 * the new copy with the reference count at 1. If the buffer is not a clone 566 * the original buffer is returned. When called with a spinlock held or 567 * from interrupt state @pri must be %GFP_ATOMIC 568 * 569 * %NULL is returned on a memory allocation failure. 570 */ 571 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 572 gfp_t pri) 573 { 574 might_sleep_if(pri & __GFP_WAIT); 575 if (skb_cloned(skb)) { 576 struct sk_buff *nskb = skb_copy(skb, pri); 577 kfree_skb(skb); /* Free our shared copy */ 578 skb = nskb; 579 } 580 return skb; 581 } 582 583 /** 584 * skb_peek 585 * @list_: list to peek at 586 * 587 * Peek an &sk_buff. Unlike most other operations you _MUST_ 588 * be careful with this one. A peek leaves the buffer on the 589 * list and someone else may run off with it. You must hold 590 * the appropriate locks or have a private queue to do this. 591 * 592 * Returns %NULL for an empty list or a pointer to the head element. 593 * The reference count is not incremented and the reference is therefore 594 * volatile. Use with caution. 595 */ 596 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 597 { 598 struct sk_buff *list = ((struct sk_buff *)list_)->next; 599 if (list == (struct sk_buff *)list_) 600 list = NULL; 601 return list; 602 } 603 604 /** 605 * skb_peek_tail 606 * @list_: list to peek at 607 * 608 * Peek an &sk_buff. Unlike most other operations you _MUST_ 609 * be careful with this one. A peek leaves the buffer on the 610 * list and someone else may run off with it. You must hold 611 * the appropriate locks or have a private queue to do this. 612 * 613 * Returns %NULL for an empty list or a pointer to the tail element. 614 * The reference count is not incremented and the reference is therefore 615 * volatile. Use with caution. 616 */ 617 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 618 { 619 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 620 if (list == (struct sk_buff *)list_) 621 list = NULL; 622 return list; 623 } 624 625 /** 626 * skb_queue_len - get queue length 627 * @list_: list to measure 628 * 629 * Return the length of an &sk_buff queue. 630 */ 631 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 632 { 633 return list_->qlen; 634 } 635 636 /* 637 * This function creates a split out lock class for each invocation; 638 * this is needed for now since a whole lot of users of the skb-queue 639 * infrastructure in drivers have different locking usage (in hardirq) 640 * than the networking core (in softirq only). In the long run either the 641 * network layer or drivers should need annotation to consolidate the 642 * main types of usage into 3 classes. 643 */ 644 static inline void skb_queue_head_init(struct sk_buff_head *list) 645 { 646 spin_lock_init(&list->lock); 647 list->prev = list->next = (struct sk_buff *)list; 648 list->qlen = 0; 649 } 650 651 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 652 struct lock_class_key *class) 653 { 654 skb_queue_head_init(list); 655 lockdep_set_class(&list->lock, class); 656 } 657 658 /* 659 * Insert an sk_buff at the start of a list. 660 * 661 * The "__skb_xxxx()" functions are the non-atomic ones that 662 * can only be called with interrupts disabled. 663 */ 664 665 /** 666 * __skb_queue_after - queue a buffer at the list head 667 * @list: list to use 668 * @prev: place after this buffer 669 * @newsk: buffer to queue 670 * 671 * Queue a buffer int the middle of a list. This function takes no locks 672 * and you must therefore hold required locks before calling it. 673 * 674 * A buffer cannot be placed on two lists at the same time. 675 */ 676 static inline void __skb_queue_after(struct sk_buff_head *list, 677 struct sk_buff *prev, 678 struct sk_buff *newsk) 679 { 680 struct sk_buff *next; 681 list->qlen++; 682 683 next = prev->next; 684 newsk->next = next; 685 newsk->prev = prev; 686 next->prev = prev->next = newsk; 687 } 688 689 /** 690 * __skb_queue_head - queue a buffer at the list head 691 * @list: list to use 692 * @newsk: buffer to queue 693 * 694 * Queue a buffer at the start of a list. This function takes no locks 695 * and you must therefore hold required locks before calling it. 696 * 697 * A buffer cannot be placed on two lists at the same time. 698 */ 699 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 700 static inline void __skb_queue_head(struct sk_buff_head *list, 701 struct sk_buff *newsk) 702 { 703 __skb_queue_after(list, (struct sk_buff *)list, newsk); 704 } 705 706 /** 707 * __skb_queue_tail - queue a buffer at the list tail 708 * @list: list to use 709 * @newsk: buffer to queue 710 * 711 * Queue a buffer at the end of a list. This function takes no locks 712 * and you must therefore hold required locks before calling it. 713 * 714 * A buffer cannot be placed on two lists at the same time. 715 */ 716 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 717 static inline void __skb_queue_tail(struct sk_buff_head *list, 718 struct sk_buff *newsk) 719 { 720 struct sk_buff *prev, *next; 721 722 list->qlen++; 723 next = (struct sk_buff *)list; 724 prev = next->prev; 725 newsk->next = next; 726 newsk->prev = prev; 727 next->prev = prev->next = newsk; 728 } 729 730 731 /** 732 * __skb_dequeue - remove from the head of the queue 733 * @list: list to dequeue from 734 * 735 * Remove the head of the list. This function does not take any locks 736 * so must be used with appropriate locks held only. The head item is 737 * returned or %NULL if the list is empty. 738 */ 739 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 740 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 741 { 742 struct sk_buff *next, *prev, *result; 743 744 prev = (struct sk_buff *) list; 745 next = prev->next; 746 result = NULL; 747 if (next != prev) { 748 result = next; 749 next = next->next; 750 list->qlen--; 751 next->prev = prev; 752 prev->next = next; 753 result->next = result->prev = NULL; 754 } 755 return result; 756 } 757 758 759 /* 760 * Insert a packet on a list. 761 */ 762 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 763 static inline void __skb_insert(struct sk_buff *newsk, 764 struct sk_buff *prev, struct sk_buff *next, 765 struct sk_buff_head *list) 766 { 767 newsk->next = next; 768 newsk->prev = prev; 769 next->prev = prev->next = newsk; 770 list->qlen++; 771 } 772 773 /* 774 * Place a packet after a given packet in a list. 775 */ 776 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 777 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 778 { 779 __skb_insert(newsk, old, old->next, list); 780 } 781 782 /* 783 * remove sk_buff from list. _Must_ be called atomically, and with 784 * the list known.. 785 */ 786 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 787 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 788 { 789 struct sk_buff *next, *prev; 790 791 list->qlen--; 792 next = skb->next; 793 prev = skb->prev; 794 skb->next = skb->prev = NULL; 795 next->prev = prev; 796 prev->next = next; 797 } 798 799 800 /* XXX: more streamlined implementation */ 801 802 /** 803 * __skb_dequeue_tail - remove from the tail of the queue 804 * @list: list to dequeue from 805 * 806 * Remove the tail of the list. This function does not take any locks 807 * so must be used with appropriate locks held only. The tail item is 808 * returned or %NULL if the list is empty. 809 */ 810 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 811 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 812 { 813 struct sk_buff *skb = skb_peek_tail(list); 814 if (skb) 815 __skb_unlink(skb, list); 816 return skb; 817 } 818 819 820 static inline int skb_is_nonlinear(const struct sk_buff *skb) 821 { 822 return skb->data_len; 823 } 824 825 static inline unsigned int skb_headlen(const struct sk_buff *skb) 826 { 827 return skb->len - skb->data_len; 828 } 829 830 static inline int skb_pagelen(const struct sk_buff *skb) 831 { 832 int i, len = 0; 833 834 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 835 len += skb_shinfo(skb)->frags[i].size; 836 return len + skb_headlen(skb); 837 } 838 839 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 840 struct page *page, int off, int size) 841 { 842 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 843 844 frag->page = page; 845 frag->page_offset = off; 846 frag->size = size; 847 skb_shinfo(skb)->nr_frags = i + 1; 848 } 849 850 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 851 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 852 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 853 854 #ifdef NET_SKBUFF_DATA_USES_OFFSET 855 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 856 { 857 return skb->head + skb->tail; 858 } 859 860 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 861 { 862 skb->tail = skb->data - skb->head; 863 } 864 865 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 866 { 867 skb_reset_tail_pointer(skb); 868 skb->tail += offset; 869 } 870 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 871 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 872 { 873 return skb->tail; 874 } 875 876 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 877 { 878 skb->tail = skb->data; 879 } 880 881 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 882 { 883 skb->tail = skb->data + offset; 884 } 885 886 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 887 888 /* 889 * Add data to an sk_buff 890 */ 891 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 892 { 893 unsigned char *tmp = skb_tail_pointer(skb); 894 SKB_LINEAR_ASSERT(skb); 895 skb->tail += len; 896 skb->len += len; 897 return tmp; 898 } 899 900 /** 901 * skb_put - add data to a buffer 902 * @skb: buffer to use 903 * @len: amount of data to add 904 * 905 * This function extends the used data area of the buffer. If this would 906 * exceed the total buffer size the kernel will panic. A pointer to the 907 * first byte of the extra data is returned. 908 */ 909 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 910 { 911 unsigned char *tmp = skb_tail_pointer(skb); 912 SKB_LINEAR_ASSERT(skb); 913 skb->tail += len; 914 skb->len += len; 915 if (unlikely(skb->tail > skb->end)) 916 skb_over_panic(skb, len, current_text_addr()); 917 return tmp; 918 } 919 920 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 921 { 922 skb->data -= len; 923 skb->len += len; 924 return skb->data; 925 } 926 927 /** 928 * skb_push - add data to the start of a buffer 929 * @skb: buffer to use 930 * @len: amount of data to add 931 * 932 * This function extends the used data area of the buffer at the buffer 933 * start. If this would exceed the total buffer headroom the kernel will 934 * panic. A pointer to the first byte of the extra data is returned. 935 */ 936 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 937 { 938 skb->data -= len; 939 skb->len += len; 940 if (unlikely(skb->data<skb->head)) 941 skb_under_panic(skb, len, current_text_addr()); 942 return skb->data; 943 } 944 945 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 946 { 947 skb->len -= len; 948 BUG_ON(skb->len < skb->data_len); 949 return skb->data += len; 950 } 951 952 /** 953 * skb_pull - remove data from the start of a buffer 954 * @skb: buffer to use 955 * @len: amount of data to remove 956 * 957 * This function removes data from the start of a buffer, returning 958 * the memory to the headroom. A pointer to the next data in the buffer 959 * is returned. Once the data has been pulled future pushes will overwrite 960 * the old data. 961 */ 962 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 963 { 964 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 965 } 966 967 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 968 969 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 970 { 971 if (len > skb_headlen(skb) && 972 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 973 return NULL; 974 skb->len -= len; 975 return skb->data += len; 976 } 977 978 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 979 { 980 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 981 } 982 983 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 984 { 985 if (likely(len <= skb_headlen(skb))) 986 return 1; 987 if (unlikely(len > skb->len)) 988 return 0; 989 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 990 } 991 992 /** 993 * skb_headroom - bytes at buffer head 994 * @skb: buffer to check 995 * 996 * Return the number of bytes of free space at the head of an &sk_buff. 997 */ 998 static inline unsigned int skb_headroom(const struct sk_buff *skb) 999 { 1000 return skb->data - skb->head; 1001 } 1002 1003 /** 1004 * skb_tailroom - bytes at buffer end 1005 * @skb: buffer to check 1006 * 1007 * Return the number of bytes of free space at the tail of an sk_buff 1008 */ 1009 static inline int skb_tailroom(const struct sk_buff *skb) 1010 { 1011 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1012 } 1013 1014 /** 1015 * skb_reserve - adjust headroom 1016 * @skb: buffer to alter 1017 * @len: bytes to move 1018 * 1019 * Increase the headroom of an empty &sk_buff by reducing the tail 1020 * room. This is only allowed for an empty buffer. 1021 */ 1022 static inline void skb_reserve(struct sk_buff *skb, int len) 1023 { 1024 skb->data += len; 1025 skb->tail += len; 1026 } 1027 1028 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1029 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1030 { 1031 return skb->head + skb->transport_header; 1032 } 1033 1034 static inline void skb_reset_transport_header(struct sk_buff *skb) 1035 { 1036 skb->transport_header = skb->data - skb->head; 1037 } 1038 1039 static inline void skb_set_transport_header(struct sk_buff *skb, 1040 const int offset) 1041 { 1042 skb_reset_transport_header(skb); 1043 skb->transport_header += offset; 1044 } 1045 1046 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1047 { 1048 return skb->head + skb->network_header; 1049 } 1050 1051 static inline void skb_reset_network_header(struct sk_buff *skb) 1052 { 1053 skb->network_header = skb->data - skb->head; 1054 } 1055 1056 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1057 { 1058 skb_reset_network_header(skb); 1059 skb->network_header += offset; 1060 } 1061 1062 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1063 { 1064 return skb->head + skb->mac_header; 1065 } 1066 1067 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1068 { 1069 return skb->mac_header != ~0U; 1070 } 1071 1072 static inline void skb_reset_mac_header(struct sk_buff *skb) 1073 { 1074 skb->mac_header = skb->data - skb->head; 1075 } 1076 1077 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1078 { 1079 skb_reset_mac_header(skb); 1080 skb->mac_header += offset; 1081 } 1082 1083 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1084 1085 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1086 { 1087 return skb->transport_header; 1088 } 1089 1090 static inline void skb_reset_transport_header(struct sk_buff *skb) 1091 { 1092 skb->transport_header = skb->data; 1093 } 1094 1095 static inline void skb_set_transport_header(struct sk_buff *skb, 1096 const int offset) 1097 { 1098 skb->transport_header = skb->data + offset; 1099 } 1100 1101 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1102 { 1103 return skb->network_header; 1104 } 1105 1106 static inline void skb_reset_network_header(struct sk_buff *skb) 1107 { 1108 skb->network_header = skb->data; 1109 } 1110 1111 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1112 { 1113 skb->network_header = skb->data + offset; 1114 } 1115 1116 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1117 { 1118 return skb->mac_header; 1119 } 1120 1121 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1122 { 1123 return skb->mac_header != NULL; 1124 } 1125 1126 static inline void skb_reset_mac_header(struct sk_buff *skb) 1127 { 1128 skb->mac_header = skb->data; 1129 } 1130 1131 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1132 { 1133 skb->mac_header = skb->data + offset; 1134 } 1135 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1136 1137 static inline int skb_transport_offset(const struct sk_buff *skb) 1138 { 1139 return skb_transport_header(skb) - skb->data; 1140 } 1141 1142 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1143 { 1144 return skb->transport_header - skb->network_header; 1145 } 1146 1147 static inline int skb_network_offset(const struct sk_buff *skb) 1148 { 1149 return skb_network_header(skb) - skb->data; 1150 } 1151 1152 /* 1153 * CPUs often take a performance hit when accessing unaligned memory 1154 * locations. The actual performance hit varies, it can be small if the 1155 * hardware handles it or large if we have to take an exception and fix it 1156 * in software. 1157 * 1158 * Since an ethernet header is 14 bytes network drivers often end up with 1159 * the IP header at an unaligned offset. The IP header can be aligned by 1160 * shifting the start of the packet by 2 bytes. Drivers should do this 1161 * with: 1162 * 1163 * skb_reserve(NET_IP_ALIGN); 1164 * 1165 * The downside to this alignment of the IP header is that the DMA is now 1166 * unaligned. On some architectures the cost of an unaligned DMA is high 1167 * and this cost outweighs the gains made by aligning the IP header. 1168 * 1169 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1170 * to be overridden. 1171 */ 1172 #ifndef NET_IP_ALIGN 1173 #define NET_IP_ALIGN 2 1174 #endif 1175 1176 /* 1177 * The networking layer reserves some headroom in skb data (via 1178 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1179 * the header has to grow. In the default case, if the header has to grow 1180 * 16 bytes or less we avoid the reallocation. 1181 * 1182 * Unfortunately this headroom changes the DMA alignment of the resulting 1183 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1184 * on some architectures. An architecture can override this value, 1185 * perhaps setting it to a cacheline in size (since that will maintain 1186 * cacheline alignment of the DMA). It must be a power of 2. 1187 * 1188 * Various parts of the networking layer expect at least 16 bytes of 1189 * headroom, you should not reduce this. 1190 */ 1191 #ifndef NET_SKB_PAD 1192 #define NET_SKB_PAD 16 1193 #endif 1194 1195 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1196 1197 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1198 { 1199 if (unlikely(skb->data_len)) { 1200 WARN_ON(1); 1201 return; 1202 } 1203 skb->len = len; 1204 skb_set_tail_pointer(skb, len); 1205 } 1206 1207 /** 1208 * skb_trim - remove end from a buffer 1209 * @skb: buffer to alter 1210 * @len: new length 1211 * 1212 * Cut the length of a buffer down by removing data from the tail. If 1213 * the buffer is already under the length specified it is not modified. 1214 * The skb must be linear. 1215 */ 1216 static inline void skb_trim(struct sk_buff *skb, unsigned int len) 1217 { 1218 if (skb->len > len) 1219 __skb_trim(skb, len); 1220 } 1221 1222 1223 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1224 { 1225 if (skb->data_len) 1226 return ___pskb_trim(skb, len); 1227 __skb_trim(skb, len); 1228 return 0; 1229 } 1230 1231 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1232 { 1233 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1234 } 1235 1236 /** 1237 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1238 * @skb: buffer to alter 1239 * @len: new length 1240 * 1241 * This is identical to pskb_trim except that the caller knows that 1242 * the skb is not cloned so we should never get an error due to out- 1243 * of-memory. 1244 */ 1245 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1246 { 1247 int err = pskb_trim(skb, len); 1248 BUG_ON(err); 1249 } 1250 1251 /** 1252 * skb_orphan - orphan a buffer 1253 * @skb: buffer to orphan 1254 * 1255 * If a buffer currently has an owner then we call the owner's 1256 * destructor function and make the @skb unowned. The buffer continues 1257 * to exist but is no longer charged to its former owner. 1258 */ 1259 static inline void skb_orphan(struct sk_buff *skb) 1260 { 1261 if (skb->destructor) 1262 skb->destructor(skb); 1263 skb->destructor = NULL; 1264 skb->sk = NULL; 1265 } 1266 1267 /** 1268 * __skb_queue_purge - empty a list 1269 * @list: list to empty 1270 * 1271 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1272 * the list and one reference dropped. This function does not take the 1273 * list lock and the caller must hold the relevant locks to use it. 1274 */ 1275 extern void skb_queue_purge(struct sk_buff_head *list); 1276 static inline void __skb_queue_purge(struct sk_buff_head *list) 1277 { 1278 struct sk_buff *skb; 1279 while ((skb = __skb_dequeue(list)) != NULL) 1280 kfree_skb(skb); 1281 } 1282 1283 /** 1284 * __dev_alloc_skb - allocate an skbuff for receiving 1285 * @length: length to allocate 1286 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1287 * 1288 * Allocate a new &sk_buff and assign it a usage count of one. The 1289 * buffer has unspecified headroom built in. Users should allocate 1290 * the headroom they think they need without accounting for the 1291 * built in space. The built in space is used for optimisations. 1292 * 1293 * %NULL is returned if there is no free memory. 1294 */ 1295 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1296 gfp_t gfp_mask) 1297 { 1298 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1299 if (likely(skb)) 1300 skb_reserve(skb, NET_SKB_PAD); 1301 return skb; 1302 } 1303 1304 /** 1305 * dev_alloc_skb - allocate an skbuff for receiving 1306 * @length: length to allocate 1307 * 1308 * Allocate a new &sk_buff and assign it a usage count of one. The 1309 * buffer has unspecified headroom built in. Users should allocate 1310 * the headroom they think they need without accounting for the 1311 * built in space. The built in space is used for optimisations. 1312 * 1313 * %NULL is returned if there is no free memory. Although this function 1314 * allocates memory it can be called from an interrupt. 1315 */ 1316 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1317 { 1318 return __dev_alloc_skb(length, GFP_ATOMIC); 1319 } 1320 1321 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1322 unsigned int length, gfp_t gfp_mask); 1323 1324 /** 1325 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1326 * @dev: network device to receive on 1327 * @length: length to allocate 1328 * 1329 * Allocate a new &sk_buff and assign it a usage count of one. The 1330 * buffer has unspecified headroom built in. Users should allocate 1331 * the headroom they think they need without accounting for the 1332 * built in space. The built in space is used for optimisations. 1333 * 1334 * %NULL is returned if there is no free memory. Although this function 1335 * allocates memory it can be called from an interrupt. 1336 */ 1337 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1338 unsigned int length) 1339 { 1340 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1341 } 1342 1343 /** 1344 * skb_clone_writable - is the header of a clone writable 1345 * @skb: buffer to check 1346 * @len: length up to which to write 1347 * 1348 * Returns true if modifying the header part of the cloned buffer 1349 * does not requires the data to be copied. 1350 */ 1351 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1352 { 1353 return !skb_header_cloned(skb) && 1354 skb_headroom(skb) + len <= skb->hdr_len; 1355 } 1356 1357 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1358 int cloned) 1359 { 1360 int delta = 0; 1361 1362 if (headroom < NET_SKB_PAD) 1363 headroom = NET_SKB_PAD; 1364 if (headroom > skb_headroom(skb)) 1365 delta = headroom - skb_headroom(skb); 1366 1367 if (delta || cloned) 1368 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1369 GFP_ATOMIC); 1370 return 0; 1371 } 1372 1373 /** 1374 * skb_cow - copy header of skb when it is required 1375 * @skb: buffer to cow 1376 * @headroom: needed headroom 1377 * 1378 * If the skb passed lacks sufficient headroom or its data part 1379 * is shared, data is reallocated. If reallocation fails, an error 1380 * is returned and original skb is not changed. 1381 * 1382 * The result is skb with writable area skb->head...skb->tail 1383 * and at least @headroom of space at head. 1384 */ 1385 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1386 { 1387 return __skb_cow(skb, headroom, skb_cloned(skb)); 1388 } 1389 1390 /** 1391 * skb_cow_head - skb_cow but only making the head writable 1392 * @skb: buffer to cow 1393 * @headroom: needed headroom 1394 * 1395 * This function is identical to skb_cow except that we replace the 1396 * skb_cloned check by skb_header_cloned. It should be used when 1397 * you only need to push on some header and do not need to modify 1398 * the data. 1399 */ 1400 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1401 { 1402 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1403 } 1404 1405 /** 1406 * skb_padto - pad an skbuff up to a minimal size 1407 * @skb: buffer to pad 1408 * @len: minimal length 1409 * 1410 * Pads up a buffer to ensure the trailing bytes exist and are 1411 * blanked. If the buffer already contains sufficient data it 1412 * is untouched. Otherwise it is extended. Returns zero on 1413 * success. The skb is freed on error. 1414 */ 1415 1416 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1417 { 1418 unsigned int size = skb->len; 1419 if (likely(size >= len)) 1420 return 0; 1421 return skb_pad(skb, len-size); 1422 } 1423 1424 static inline int skb_add_data(struct sk_buff *skb, 1425 char __user *from, int copy) 1426 { 1427 const int off = skb->len; 1428 1429 if (skb->ip_summed == CHECKSUM_NONE) { 1430 int err = 0; 1431 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1432 copy, 0, &err); 1433 if (!err) { 1434 skb->csum = csum_block_add(skb->csum, csum, off); 1435 return 0; 1436 } 1437 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1438 return 0; 1439 1440 __skb_trim(skb, off); 1441 return -EFAULT; 1442 } 1443 1444 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1445 struct page *page, int off) 1446 { 1447 if (i) { 1448 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1449 1450 return page == frag->page && 1451 off == frag->page_offset + frag->size; 1452 } 1453 return 0; 1454 } 1455 1456 static inline int __skb_linearize(struct sk_buff *skb) 1457 { 1458 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1459 } 1460 1461 /** 1462 * skb_linearize - convert paged skb to linear one 1463 * @skb: buffer to linarize 1464 * 1465 * If there is no free memory -ENOMEM is returned, otherwise zero 1466 * is returned and the old skb data released. 1467 */ 1468 static inline int skb_linearize(struct sk_buff *skb) 1469 { 1470 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1471 } 1472 1473 /** 1474 * skb_linearize_cow - make sure skb is linear and writable 1475 * @skb: buffer to process 1476 * 1477 * If there is no free memory -ENOMEM is returned, otherwise zero 1478 * is returned and the old skb data released. 1479 */ 1480 static inline int skb_linearize_cow(struct sk_buff *skb) 1481 { 1482 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1483 __skb_linearize(skb) : 0; 1484 } 1485 1486 /** 1487 * skb_postpull_rcsum - update checksum for received skb after pull 1488 * @skb: buffer to update 1489 * @start: start of data before pull 1490 * @len: length of data pulled 1491 * 1492 * After doing a pull on a received packet, you need to call this to 1493 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1494 * CHECKSUM_NONE so that it can be recomputed from scratch. 1495 */ 1496 1497 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1498 const void *start, unsigned int len) 1499 { 1500 if (skb->ip_summed == CHECKSUM_COMPLETE) 1501 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1502 } 1503 1504 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1505 1506 /** 1507 * pskb_trim_rcsum - trim received skb and update checksum 1508 * @skb: buffer to trim 1509 * @len: new length 1510 * 1511 * This is exactly the same as pskb_trim except that it ensures the 1512 * checksum of received packets are still valid after the operation. 1513 */ 1514 1515 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1516 { 1517 if (likely(len >= skb->len)) 1518 return 0; 1519 if (skb->ip_summed == CHECKSUM_COMPLETE) 1520 skb->ip_summed = CHECKSUM_NONE; 1521 return __pskb_trim(skb, len); 1522 } 1523 1524 #define skb_queue_walk(queue, skb) \ 1525 for (skb = (queue)->next; \ 1526 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1527 skb = skb->next) 1528 1529 #define skb_queue_walk_safe(queue, skb, tmp) \ 1530 for (skb = (queue)->next, tmp = skb->next; \ 1531 skb != (struct sk_buff *)(queue); \ 1532 skb = tmp, tmp = skb->next) 1533 1534 #define skb_queue_reverse_walk(queue, skb) \ 1535 for (skb = (queue)->prev; \ 1536 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1537 skb = skb->prev) 1538 1539 1540 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1541 int noblock, int *err); 1542 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1543 struct poll_table_struct *wait); 1544 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1545 int offset, struct iovec *to, 1546 int size); 1547 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1548 int hlen, 1549 struct iovec *iov); 1550 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1551 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1552 unsigned int flags); 1553 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1554 int len, __wsum csum); 1555 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1556 void *to, int len); 1557 extern int skb_store_bits(struct sk_buff *skb, int offset, 1558 const void *from, int len); 1559 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1560 int offset, u8 *to, int len, 1561 __wsum csum); 1562 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1563 extern void skb_split(struct sk_buff *skb, 1564 struct sk_buff *skb1, const u32 len); 1565 1566 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1567 1568 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1569 int len, void *buffer) 1570 { 1571 int hlen = skb_headlen(skb); 1572 1573 if (hlen - offset >= len) 1574 return skb->data + offset; 1575 1576 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1577 return NULL; 1578 1579 return buffer; 1580 } 1581 1582 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1583 void *to, 1584 const unsigned int len) 1585 { 1586 memcpy(to, skb->data, len); 1587 } 1588 1589 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1590 const int offset, void *to, 1591 const unsigned int len) 1592 { 1593 memcpy(to, skb->data + offset, len); 1594 } 1595 1596 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1597 const void *from, 1598 const unsigned int len) 1599 { 1600 memcpy(skb->data, from, len); 1601 } 1602 1603 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1604 const int offset, 1605 const void *from, 1606 const unsigned int len) 1607 { 1608 memcpy(skb->data + offset, from, len); 1609 } 1610 1611 extern void skb_init(void); 1612 1613 /** 1614 * skb_get_timestamp - get timestamp from a skb 1615 * @skb: skb to get stamp from 1616 * @stamp: pointer to struct timeval to store stamp in 1617 * 1618 * Timestamps are stored in the skb as offsets to a base timestamp. 1619 * This function converts the offset back to a struct timeval and stores 1620 * it in stamp. 1621 */ 1622 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1623 { 1624 *stamp = ktime_to_timeval(skb->tstamp); 1625 } 1626 1627 static inline void __net_timestamp(struct sk_buff *skb) 1628 { 1629 skb->tstamp = ktime_get_real(); 1630 } 1631 1632 static inline ktime_t net_timedelta(ktime_t t) 1633 { 1634 return ktime_sub(ktime_get_real(), t); 1635 } 1636 1637 static inline ktime_t net_invalid_timestamp(void) 1638 { 1639 return ktime_set(0, 0); 1640 } 1641 1642 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1643 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1644 1645 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1646 { 1647 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1648 } 1649 1650 /** 1651 * skb_checksum_complete - Calculate checksum of an entire packet 1652 * @skb: packet to process 1653 * 1654 * This function calculates the checksum over the entire packet plus 1655 * the value of skb->csum. The latter can be used to supply the 1656 * checksum of a pseudo header as used by TCP/UDP. It returns the 1657 * checksum. 1658 * 1659 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1660 * this function can be used to verify that checksum on received 1661 * packets. In that case the function should return zero if the 1662 * checksum is correct. In particular, this function will return zero 1663 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1664 * hardware has already verified the correctness of the checksum. 1665 */ 1666 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1667 { 1668 return skb_csum_unnecessary(skb) ? 1669 0 : __skb_checksum_complete(skb); 1670 } 1671 1672 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1673 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1674 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1675 { 1676 if (nfct && atomic_dec_and_test(&nfct->use)) 1677 nf_conntrack_destroy(nfct); 1678 } 1679 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1680 { 1681 if (nfct) 1682 atomic_inc(&nfct->use); 1683 } 1684 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1685 { 1686 if (skb) 1687 atomic_inc(&skb->users); 1688 } 1689 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1690 { 1691 if (skb) 1692 kfree_skb(skb); 1693 } 1694 #endif 1695 #ifdef CONFIG_BRIDGE_NETFILTER 1696 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1697 { 1698 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1699 kfree(nf_bridge); 1700 } 1701 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1702 { 1703 if (nf_bridge) 1704 atomic_inc(&nf_bridge->use); 1705 } 1706 #endif /* CONFIG_BRIDGE_NETFILTER */ 1707 static inline void nf_reset(struct sk_buff *skb) 1708 { 1709 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1710 nf_conntrack_put(skb->nfct); 1711 skb->nfct = NULL; 1712 nf_conntrack_put_reasm(skb->nfct_reasm); 1713 skb->nfct_reasm = NULL; 1714 #endif 1715 #ifdef CONFIG_BRIDGE_NETFILTER 1716 nf_bridge_put(skb->nf_bridge); 1717 skb->nf_bridge = NULL; 1718 #endif 1719 } 1720 1721 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1722 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1723 { 1724 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1725 dst->nfct = src->nfct; 1726 nf_conntrack_get(src->nfct); 1727 dst->nfctinfo = src->nfctinfo; 1728 dst->nfct_reasm = src->nfct_reasm; 1729 nf_conntrack_get_reasm(src->nfct_reasm); 1730 #endif 1731 #ifdef CONFIG_BRIDGE_NETFILTER 1732 dst->nf_bridge = src->nf_bridge; 1733 nf_bridge_get(src->nf_bridge); 1734 #endif 1735 } 1736 1737 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1738 { 1739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1740 nf_conntrack_put(dst->nfct); 1741 nf_conntrack_put_reasm(dst->nfct_reasm); 1742 #endif 1743 #ifdef CONFIG_BRIDGE_NETFILTER 1744 nf_bridge_put(dst->nf_bridge); 1745 #endif 1746 __nf_copy(dst, src); 1747 } 1748 1749 #ifdef CONFIG_NETWORK_SECMARK 1750 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1751 { 1752 to->secmark = from->secmark; 1753 } 1754 1755 static inline void skb_init_secmark(struct sk_buff *skb) 1756 { 1757 skb->secmark = 0; 1758 } 1759 #else 1760 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1761 { } 1762 1763 static inline void skb_init_secmark(struct sk_buff *skb) 1764 { } 1765 #endif 1766 1767 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1768 { 1769 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1770 skb->queue_mapping = queue_mapping; 1771 #endif 1772 } 1773 1774 static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1775 { 1776 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1777 return skb->queue_mapping; 1778 #else 1779 return 0; 1780 #endif 1781 } 1782 1783 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1784 { 1785 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1786 to->queue_mapping = from->queue_mapping; 1787 #endif 1788 } 1789 1790 static inline int skb_is_gso(const struct sk_buff *skb) 1791 { 1792 return skb_shinfo(skb)->gso_size; 1793 } 1794 1795 static inline int skb_is_gso_v6(const struct sk_buff *skb) 1796 { 1797 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1798 } 1799 1800 static inline void skb_forward_csum(struct sk_buff *skb) 1801 { 1802 /* Unfortunately we don't support this one. Any brave souls? */ 1803 if (skb->ip_summed == CHECKSUM_COMPLETE) 1804 skb->ip_summed = CHECKSUM_NONE; 1805 } 1806 1807 #endif /* __KERNEL__ */ 1808 #endif /* _LINUX_SKBUFF_H */ 1809