xref: /linux-6.15/include/linux/skbuff.h (revision 3c8a23c2)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 #include <linux/refcount.h>
26 
27 #include <linux/atomic.h>
28 #include <asm/types.h>
29 #include <linux/spinlock.h>
30 #include <linux/net.h>
31 #include <linux/textsearch.h>
32 #include <net/checksum.h>
33 #include <linux/rcupdate.h>
34 #include <linux/hrtimer.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/netdev_features.h>
37 #include <linux/sched.h>
38 #include <linux/sched/clock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/splice.h>
41 #include <linux/in6.h>
42 #include <linux/if_packet.h>
43 #include <net/flow.h>
44 
45 /* The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * A. IP checksum related features
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver,
52  * a driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * The checksum related features are:
56  *
57  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
58  *			  IP (one's complement) checksum for any combination
59  *			  of protocols or protocol layering. The checksum is
60  *			  computed and set in a packet per the CHECKSUM_PARTIAL
61  *			  interface (see below).
62  *
63  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64  *			  TCP or UDP packets over IPv4. These are specifically
65  *			  unencapsulated packets of the form IPv4|TCP or
66  *			  IPv4|UDP where the Protocol field in the IPv4 header
67  *			  is TCP or UDP. The IPv4 header may contain IP options
68  *			  This feature cannot be set in features for a device
69  *			  with NETIF_F_HW_CSUM also set. This feature is being
70  *			  DEPRECATED (see below).
71  *
72  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73  *			  TCP or UDP packets over IPv6. These are specifically
74  *			  unencapsulated packets of the form IPv6|TCP or
75  *			  IPv4|UDP where the Next Header field in the IPv6
76  *			  header is either TCP or UDP. IPv6 extension headers
77  *			  are not supported with this feature. This feature
78  *			  cannot be set in features for a device with
79  *			  NETIF_F_HW_CSUM also set. This feature is being
80  *			  DEPRECATED (see below).
81  *
82  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83  *			 This flag is used only used to disable the RX checksum
84  *			 feature for a device. The stack will accept receive
85  *			 checksum indication in packets received on a device
86  *			 regardless of whether NETIF_F_RXCSUM is set.
87  *
88  * B. Checksumming of received packets by device. Indication of checksum
89  *    verification is in set skb->ip_summed. Possible values are:
90  *
91  * CHECKSUM_NONE:
92  *
93  *   Device did not checksum this packet e.g. due to lack of capabilities.
94  *   The packet contains full (though not verified) checksum in packet but
95  *   not in skb->csum. Thus, skb->csum is undefined in this case.
96  *
97  * CHECKSUM_UNNECESSARY:
98  *
99  *   The hardware you're dealing with doesn't calculate the full checksum
100  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102  *   if their checksums are okay. skb->csum is still undefined in this case
103  *   though. A driver or device must never modify the checksum field in the
104  *   packet even if checksum is verified.
105  *
106  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
107  *     TCP: IPv6 and IPv4.
108  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
110  *       may perform further validation in this case.
111  *     GRE: only if the checksum is present in the header.
112  *     SCTP: indicates the CRC in SCTP header has been validated.
113  *     FCOE: indicates the CRC in FC frame has been validated.
114  *
115  *   skb->csum_level indicates the number of consecutive checksums found in
116  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118  *   and a device is able to verify the checksums for UDP (possibly zero),
119  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
120  *   two. If the device were only able to verify the UDP checksum and not
121  *   GRE, either because it doesn't support GRE checksum of because GRE
122  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123  *   not considered in this case).
124  *
125  * CHECKSUM_COMPLETE:
126  *
127  *   This is the most generic way. The device supplied checksum of the _whole_
128  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
129  *   hardware doesn't need to parse L3/L4 headers to implement this.
130  *
131  *   Notes:
132  *   - Even if device supports only some protocols, but is able to produce
133  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135  *
136  * CHECKSUM_PARTIAL:
137  *
138  *   A checksum is set up to be offloaded to a device as described in the
139  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
140  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
141  *   on the same host, or it may be set in the input path in GRO or remote
142  *   checksum offload. For the purposes of checksum verification, the checksum
143  *   referred to by skb->csum_start + skb->csum_offset and any preceding
144  *   checksums in the packet are considered verified. Any checksums in the
145  *   packet that are after the checksum being offloaded are not considered to
146  *   be verified.
147  *
148  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149  *    in the skb->ip_summed for a packet. Values are:
150  *
151  * CHECKSUM_PARTIAL:
152  *
153  *   The driver is required to checksum the packet as seen by hard_start_xmit()
154  *   from skb->csum_start up to the end, and to record/write the checksum at
155  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
156  *   csum_start and csum_offset values are valid values given the length and
157  *   offset of the packet, however they should not attempt to validate that the
158  *   checksum refers to a legitimate transport layer checksum-- it is the
159  *   purview of the stack to validate that csum_start and csum_offset are set
160  *   correctly.
161  *
162  *   When the stack requests checksum offload for a packet, the driver MUST
163  *   ensure that the checksum is set correctly. A driver can either offload the
164  *   checksum calculation to the device, or call skb_checksum_help (in the case
165  *   that the device does not support offload for a particular checksum).
166  *
167  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169  *   checksum offload capability.
170  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171  *   on network device checksumming capabilities: if a packet does not match
172  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
173  *   csum_not_inet, see item D.) is called to resolve the checksum.
174  *
175  * CHECKSUM_NONE:
176  *
177  *   The skb was already checksummed by the protocol, or a checksum is not
178  *   required.
179  *
180  * CHECKSUM_UNNECESSARY:
181  *
182  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
183  *   output.
184  *
185  * CHECKSUM_COMPLETE:
186  *   Not used in checksum output. If a driver observes a packet with this value
187  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
188  *
189  * D. Non-IP checksum (CRC) offloads
190  *
191  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192  *     offloading the SCTP CRC in a packet. To perform this offload the stack
193  *     will set set csum_start and csum_offset accordingly, set ip_summed to
194  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
197  *     must verify which offload is configured for a packet by testing the
198  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200  *
201  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202  *     offloading the FCOE CRC in a packet. To perform this offload the stack
203  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204  *     accordingly. Note the there is no indication in the skbuff that the
205  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
206  *     both IP checksum offload and FCOE CRC offload must verify which offload
207  *     is configured for a packet presumably by inspecting packet headers.
208  *
209  * E. Checksumming on output with GSO.
210  *
211  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214  * part of the GSO operation is implied. If a checksum is being offloaded
215  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
216  * are set to refer to the outermost checksum being offload (two offloaded
217  * checksums are possible with UDP encapsulation).
218  */
219 
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE		0
222 #define CHECKSUM_UNNECESSARY	1
223 #define CHECKSUM_COMPLETE	2
224 #define CHECKSUM_PARTIAL	3
225 
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL	3
228 
229 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X)	\
231 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
236 
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) +						\
239 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
240 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241 
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 
248 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
249 struct nf_conntrack {
250 	atomic_t use;
251 };
252 #endif
253 
254 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
255 struct nf_bridge_info {
256 	refcount_t		use;
257 	enum {
258 		BRNF_PROTO_UNCHANGED,
259 		BRNF_PROTO_8021Q,
260 		BRNF_PROTO_PPPOE
261 	} orig_proto:8;
262 	u8			pkt_otherhost:1;
263 	u8			in_prerouting:1;
264 	u8			bridged_dnat:1;
265 	__u16			frag_max_size;
266 	struct net_device	*physindev;
267 
268 	/* always valid & non-NULL from FORWARD on, for physdev match */
269 	struct net_device	*physoutdev;
270 	union {
271 		/* prerouting: detect dnat in orig/reply direction */
272 		__be32          ipv4_daddr;
273 		struct in6_addr ipv6_daddr;
274 
275 		/* after prerouting + nat detected: store original source
276 		 * mac since neigh resolution overwrites it, only used while
277 		 * skb is out in neigh layer.
278 		 */
279 		char neigh_header[8];
280 	};
281 };
282 #endif
283 
284 struct sk_buff_head {
285 	/* These two members must be first. */
286 	struct sk_buff	*next;
287 	struct sk_buff	*prev;
288 
289 	__u32		qlen;
290 	spinlock_t	lock;
291 };
292 
293 struct sk_buff;
294 
295 /* To allow 64K frame to be packed as single skb without frag_list we
296  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
297  * buffers which do not start on a page boundary.
298  *
299  * Since GRO uses frags we allocate at least 16 regardless of page
300  * size.
301  */
302 #if (65536/PAGE_SIZE + 1) < 16
303 #define MAX_SKB_FRAGS 16UL
304 #else
305 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
306 #endif
307 extern int sysctl_max_skb_frags;
308 
309 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
310  * segment using its current segmentation instead.
311  */
312 #define GSO_BY_FRAGS	0xFFFF
313 
314 typedef struct skb_frag_struct skb_frag_t;
315 
316 struct skb_frag_struct {
317 	struct {
318 		struct page *p;
319 	} page;
320 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
321 	__u32 page_offset;
322 	__u32 size;
323 #else
324 	__u16 page_offset;
325 	__u16 size;
326 #endif
327 };
328 
329 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330 {
331 	return frag->size;
332 }
333 
334 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
335 {
336 	frag->size = size;
337 }
338 
339 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
340 {
341 	frag->size += delta;
342 }
343 
344 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
345 {
346 	frag->size -= delta;
347 }
348 
349 static inline bool skb_frag_must_loop(struct page *p)
350 {
351 #if defined(CONFIG_HIGHMEM)
352 	if (PageHighMem(p))
353 		return true;
354 #endif
355 	return false;
356 }
357 
358 /**
359  *	skb_frag_foreach_page - loop over pages in a fragment
360  *
361  *	@f:		skb frag to operate on
362  *	@f_off:		offset from start of f->page.p
363  *	@f_len:		length from f_off to loop over
364  *	@p:		(temp var) current page
365  *	@p_off:		(temp var) offset from start of current page,
366  *	                           non-zero only on first page.
367  *	@p_len:		(temp var) length in current page,
368  *				   < PAGE_SIZE only on first and last page.
369  *	@copied:	(temp var) length so far, excluding current p_len.
370  *
371  *	A fragment can hold a compound page, in which case per-page
372  *	operations, notably kmap_atomic, must be called for each
373  *	regular page.
374  */
375 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
376 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
377 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
378 	     p_len = skb_frag_must_loop(p) ?				\
379 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
380 	     copied = 0;						\
381 	     copied < f_len;						\
382 	     copied += p_len, p++, p_off = 0,				\
383 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
384 
385 #define HAVE_HW_TIME_STAMP
386 
387 /**
388  * struct skb_shared_hwtstamps - hardware time stamps
389  * @hwtstamp:	hardware time stamp transformed into duration
390  *		since arbitrary point in time
391  *
392  * Software time stamps generated by ktime_get_real() are stored in
393  * skb->tstamp.
394  *
395  * hwtstamps can only be compared against other hwtstamps from
396  * the same device.
397  *
398  * This structure is attached to packets as part of the
399  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
400  */
401 struct skb_shared_hwtstamps {
402 	ktime_t	hwtstamp;
403 };
404 
405 /* Definitions for tx_flags in struct skb_shared_info */
406 enum {
407 	/* generate hardware time stamp */
408 	SKBTX_HW_TSTAMP = 1 << 0,
409 
410 	/* generate software time stamp when queueing packet to NIC */
411 	SKBTX_SW_TSTAMP = 1 << 1,
412 
413 	/* device driver is going to provide hardware time stamp */
414 	SKBTX_IN_PROGRESS = 1 << 2,
415 
416 	/* device driver supports TX zero-copy buffers */
417 	SKBTX_DEV_ZEROCOPY = 1 << 3,
418 
419 	/* generate wifi status information (where possible) */
420 	SKBTX_WIFI_STATUS = 1 << 4,
421 
422 	/* This indicates at least one fragment might be overwritten
423 	 * (as in vmsplice(), sendfile() ...)
424 	 * If we need to compute a TX checksum, we'll need to copy
425 	 * all frags to avoid possible bad checksum
426 	 */
427 	SKBTX_SHARED_FRAG = 1 << 5,
428 
429 	/* generate software time stamp when entering packet scheduling */
430 	SKBTX_SCHED_TSTAMP = 1 << 6,
431 };
432 
433 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
434 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
435 				 SKBTX_SCHED_TSTAMP)
436 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
437 
438 /*
439  * The callback notifies userspace to release buffers when skb DMA is done in
440  * lower device, the skb last reference should be 0 when calling this.
441  * The zerocopy_success argument is true if zero copy transmit occurred,
442  * false on data copy or out of memory error caused by data copy attempt.
443  * The ctx field is used to track device context.
444  * The desc field is used to track userspace buffer index.
445  */
446 struct ubuf_info {
447 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
448 	union {
449 		struct {
450 			unsigned long desc;
451 			void *ctx;
452 		};
453 		struct {
454 			u32 id;
455 			u16 len;
456 			u16 zerocopy:1;
457 			u32 bytelen;
458 		};
459 	};
460 	refcount_t refcnt;
461 
462 	struct mmpin {
463 		struct user_struct *user;
464 		unsigned int num_pg;
465 	} mmp;
466 };
467 
468 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
469 
470 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
471 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
472 					struct ubuf_info *uarg);
473 
474 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
475 {
476 	refcount_inc(&uarg->refcnt);
477 }
478 
479 void sock_zerocopy_put(struct ubuf_info *uarg);
480 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
481 
482 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
483 
484 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
485 			     struct msghdr *msg, int len,
486 			     struct ubuf_info *uarg);
487 
488 /* This data is invariant across clones and lives at
489  * the end of the header data, ie. at skb->end.
490  */
491 struct skb_shared_info {
492 	unsigned short	_unused;
493 	unsigned char	nr_frags;
494 	__u8		tx_flags;
495 	unsigned short	gso_size;
496 	/* Warning: this field is not always filled in (UFO)! */
497 	unsigned short	gso_segs;
498 	struct sk_buff	*frag_list;
499 	struct skb_shared_hwtstamps hwtstamps;
500 	unsigned int	gso_type;
501 	u32		tskey;
502 	__be32          ip6_frag_id;
503 
504 	/*
505 	 * Warning : all fields before dataref are cleared in __alloc_skb()
506 	 */
507 	atomic_t	dataref;
508 
509 	/* Intermediate layers must ensure that destructor_arg
510 	 * remains valid until skb destructor */
511 	void *		destructor_arg;
512 
513 	/* must be last field, see pskb_expand_head() */
514 	skb_frag_t	frags[MAX_SKB_FRAGS];
515 };
516 
517 /* We divide dataref into two halves.  The higher 16 bits hold references
518  * to the payload part of skb->data.  The lower 16 bits hold references to
519  * the entire skb->data.  A clone of a headerless skb holds the length of
520  * the header in skb->hdr_len.
521  *
522  * All users must obey the rule that the skb->data reference count must be
523  * greater than or equal to the payload reference count.
524  *
525  * Holding a reference to the payload part means that the user does not
526  * care about modifications to the header part of skb->data.
527  */
528 #define SKB_DATAREF_SHIFT 16
529 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
530 
531 
532 enum {
533 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
534 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
535 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
536 };
537 
538 enum {
539 	SKB_GSO_TCPV4 = 1 << 0,
540 
541 	/* This indicates the skb is from an untrusted source. */
542 	SKB_GSO_DODGY = 1 << 1,
543 
544 	/* This indicates the tcp segment has CWR set. */
545 	SKB_GSO_TCP_ECN = 1 << 2,
546 
547 	SKB_GSO_TCP_FIXEDID = 1 << 3,
548 
549 	SKB_GSO_TCPV6 = 1 << 4,
550 
551 	SKB_GSO_FCOE = 1 << 5,
552 
553 	SKB_GSO_GRE = 1 << 6,
554 
555 	SKB_GSO_GRE_CSUM = 1 << 7,
556 
557 	SKB_GSO_IPXIP4 = 1 << 8,
558 
559 	SKB_GSO_IPXIP6 = 1 << 9,
560 
561 	SKB_GSO_UDP_TUNNEL = 1 << 10,
562 
563 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
564 
565 	SKB_GSO_PARTIAL = 1 << 12,
566 
567 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
568 
569 	SKB_GSO_SCTP = 1 << 14,
570 
571 	SKB_GSO_ESP = 1 << 15,
572 };
573 
574 #if BITS_PER_LONG > 32
575 #define NET_SKBUFF_DATA_USES_OFFSET 1
576 #endif
577 
578 #ifdef NET_SKBUFF_DATA_USES_OFFSET
579 typedef unsigned int sk_buff_data_t;
580 #else
581 typedef unsigned char *sk_buff_data_t;
582 #endif
583 
584 /**
585  *	struct sk_buff - socket buffer
586  *	@next: Next buffer in list
587  *	@prev: Previous buffer in list
588  *	@tstamp: Time we arrived/left
589  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
590  *	@sk: Socket we are owned by
591  *	@dev: Device we arrived on/are leaving by
592  *	@cb: Control buffer. Free for use by every layer. Put private vars here
593  *	@_skb_refdst: destination entry (with norefcount bit)
594  *	@sp: the security path, used for xfrm
595  *	@len: Length of actual data
596  *	@data_len: Data length
597  *	@mac_len: Length of link layer header
598  *	@hdr_len: writable header length of cloned skb
599  *	@csum: Checksum (must include start/offset pair)
600  *	@csum_start: Offset from skb->head where checksumming should start
601  *	@csum_offset: Offset from csum_start where checksum should be stored
602  *	@priority: Packet queueing priority
603  *	@ignore_df: allow local fragmentation
604  *	@cloned: Head may be cloned (check refcnt to be sure)
605  *	@ip_summed: Driver fed us an IP checksum
606  *	@nohdr: Payload reference only, must not modify header
607  *	@pkt_type: Packet class
608  *	@fclone: skbuff clone status
609  *	@ipvs_property: skbuff is owned by ipvs
610  *	@tc_skip_classify: do not classify packet. set by IFB device
611  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
612  *	@tc_redirected: packet was redirected by a tc action
613  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
614  *	@peeked: this packet has been seen already, so stats have been
615  *		done for it, don't do them again
616  *	@nf_trace: netfilter packet trace flag
617  *	@protocol: Packet protocol from driver
618  *	@destructor: Destruct function
619  *	@_nfct: Associated connection, if any (with nfctinfo bits)
620  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
621  *	@skb_iif: ifindex of device we arrived on
622  *	@tc_index: Traffic control index
623  *	@hash: the packet hash
624  *	@queue_mapping: Queue mapping for multiqueue devices
625  *	@xmit_more: More SKBs are pending for this queue
626  *	@ndisc_nodetype: router type (from link layer)
627  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
628  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
629  *		ports.
630  *	@sw_hash: indicates hash was computed in software stack
631  *	@wifi_acked_valid: wifi_acked was set
632  *	@wifi_acked: whether frame was acked on wifi or not
633  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
634  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
635  *	@dst_pending_confirm: need to confirm neighbour
636   *	@napi_id: id of the NAPI struct this skb came from
637  *	@secmark: security marking
638  *	@mark: Generic packet mark
639  *	@vlan_proto: vlan encapsulation protocol
640  *	@vlan_tci: vlan tag control information
641  *	@inner_protocol: Protocol (encapsulation)
642  *	@inner_transport_header: Inner transport layer header (encapsulation)
643  *	@inner_network_header: Network layer header (encapsulation)
644  *	@inner_mac_header: Link layer header (encapsulation)
645  *	@transport_header: Transport layer header
646  *	@network_header: Network layer header
647  *	@mac_header: Link layer header
648  *	@tail: Tail pointer
649  *	@end: End pointer
650  *	@head: Head of buffer
651  *	@data: Data head pointer
652  *	@truesize: Buffer size
653  *	@users: User count - see {datagram,tcp}.c
654  */
655 
656 struct sk_buff {
657 	union {
658 		struct {
659 			/* These two members must be first. */
660 			struct sk_buff		*next;
661 			struct sk_buff		*prev;
662 
663 			union {
664 				ktime_t		tstamp;
665 				u64		skb_mstamp;
666 			};
667 		};
668 		struct rb_node	rbnode; /* used in netem & tcp stack */
669 	};
670 	struct sock		*sk;
671 
672 	union {
673 		struct net_device	*dev;
674 		/* Some protocols might use this space to store information,
675 		 * while device pointer would be NULL.
676 		 * UDP receive path is one user.
677 		 */
678 		unsigned long		dev_scratch;
679 	};
680 	/*
681 	 * This is the control buffer. It is free to use for every
682 	 * layer. Please put your private variables there. If you
683 	 * want to keep them across layers you have to do a skb_clone()
684 	 * first. This is owned by whoever has the skb queued ATM.
685 	 */
686 	char			cb[48] __aligned(8);
687 
688 	unsigned long		_skb_refdst;
689 	void			(*destructor)(struct sk_buff *skb);
690 #ifdef CONFIG_XFRM
691 	struct	sec_path	*sp;
692 #endif
693 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
694 	unsigned long		 _nfct;
695 #endif
696 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
697 	struct nf_bridge_info	*nf_bridge;
698 #endif
699 	unsigned int		len,
700 				data_len;
701 	__u16			mac_len,
702 				hdr_len;
703 
704 	/* Following fields are _not_ copied in __copy_skb_header()
705 	 * Note that queue_mapping is here mostly to fill a hole.
706 	 */
707 	kmemcheck_bitfield_begin(flags1);
708 	__u16			queue_mapping;
709 
710 /* if you move cloned around you also must adapt those constants */
711 #ifdef __BIG_ENDIAN_BITFIELD
712 #define CLONED_MASK	(1 << 7)
713 #else
714 #define CLONED_MASK	1
715 #endif
716 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
717 
718 	__u8			__cloned_offset[0];
719 	__u8			cloned:1,
720 				nohdr:1,
721 				fclone:2,
722 				peeked:1,
723 				head_frag:1,
724 				xmit_more:1,
725 				__unused:1; /* one bit hole */
726 	kmemcheck_bitfield_end(flags1);
727 
728 	/* fields enclosed in headers_start/headers_end are copied
729 	 * using a single memcpy() in __copy_skb_header()
730 	 */
731 	/* private: */
732 	__u32			headers_start[0];
733 	/* public: */
734 
735 /* if you move pkt_type around you also must adapt those constants */
736 #ifdef __BIG_ENDIAN_BITFIELD
737 #define PKT_TYPE_MAX	(7 << 5)
738 #else
739 #define PKT_TYPE_MAX	7
740 #endif
741 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
742 
743 	__u8			__pkt_type_offset[0];
744 	__u8			pkt_type:3;
745 	__u8			pfmemalloc:1;
746 	__u8			ignore_df:1;
747 
748 	__u8			nf_trace:1;
749 	__u8			ip_summed:2;
750 	__u8			ooo_okay:1;
751 	__u8			l4_hash:1;
752 	__u8			sw_hash:1;
753 	__u8			wifi_acked_valid:1;
754 	__u8			wifi_acked:1;
755 
756 	__u8			no_fcs:1;
757 	/* Indicates the inner headers are valid in the skbuff. */
758 	__u8			encapsulation:1;
759 	__u8			encap_hdr_csum:1;
760 	__u8			csum_valid:1;
761 	__u8			csum_complete_sw:1;
762 	__u8			csum_level:2;
763 	__u8			csum_not_inet:1;
764 
765 	__u8			dst_pending_confirm:1;
766 #ifdef CONFIG_IPV6_NDISC_NODETYPE
767 	__u8			ndisc_nodetype:2;
768 #endif
769 	__u8			ipvs_property:1;
770 	__u8			inner_protocol_type:1;
771 	__u8			remcsum_offload:1;
772 #ifdef CONFIG_NET_SWITCHDEV
773 	__u8			offload_fwd_mark:1;
774 #endif
775 #ifdef CONFIG_NET_CLS_ACT
776 	__u8			tc_skip_classify:1;
777 	__u8			tc_at_ingress:1;
778 	__u8			tc_redirected:1;
779 	__u8			tc_from_ingress:1;
780 #endif
781 
782 #ifdef CONFIG_NET_SCHED
783 	__u16			tc_index;	/* traffic control index */
784 #endif
785 
786 	union {
787 		__wsum		csum;
788 		struct {
789 			__u16	csum_start;
790 			__u16	csum_offset;
791 		};
792 	};
793 	__u32			priority;
794 	int			skb_iif;
795 	__u32			hash;
796 	__be16			vlan_proto;
797 	__u16			vlan_tci;
798 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
799 	union {
800 		unsigned int	napi_id;
801 		unsigned int	sender_cpu;
802 	};
803 #endif
804 #ifdef CONFIG_NETWORK_SECMARK
805 	__u32		secmark;
806 #endif
807 
808 	union {
809 		__u32		mark;
810 		__u32		reserved_tailroom;
811 	};
812 
813 	union {
814 		__be16		inner_protocol;
815 		__u8		inner_ipproto;
816 	};
817 
818 	__u16			inner_transport_header;
819 	__u16			inner_network_header;
820 	__u16			inner_mac_header;
821 
822 	__be16			protocol;
823 	__u16			transport_header;
824 	__u16			network_header;
825 	__u16			mac_header;
826 
827 	/* private: */
828 	__u32			headers_end[0];
829 	/* public: */
830 
831 	/* These elements must be at the end, see alloc_skb() for details.  */
832 	sk_buff_data_t		tail;
833 	sk_buff_data_t		end;
834 	unsigned char		*head,
835 				*data;
836 	unsigned int		truesize;
837 	refcount_t		users;
838 };
839 
840 #ifdef __KERNEL__
841 /*
842  *	Handling routines are only of interest to the kernel
843  */
844 #include <linux/slab.h>
845 
846 
847 #define SKB_ALLOC_FCLONE	0x01
848 #define SKB_ALLOC_RX		0x02
849 #define SKB_ALLOC_NAPI		0x04
850 
851 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
852 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
853 {
854 	return unlikely(skb->pfmemalloc);
855 }
856 
857 /*
858  * skb might have a dst pointer attached, refcounted or not.
859  * _skb_refdst low order bit is set if refcount was _not_ taken
860  */
861 #define SKB_DST_NOREF	1UL
862 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
863 
864 #define SKB_NFCT_PTRMASK	~(7UL)
865 /**
866  * skb_dst - returns skb dst_entry
867  * @skb: buffer
868  *
869  * Returns skb dst_entry, regardless of reference taken or not.
870  */
871 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
872 {
873 	/* If refdst was not refcounted, check we still are in a
874 	 * rcu_read_lock section
875 	 */
876 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
877 		!rcu_read_lock_held() &&
878 		!rcu_read_lock_bh_held());
879 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
880 }
881 
882 /**
883  * skb_dst_set - sets skb dst
884  * @skb: buffer
885  * @dst: dst entry
886  *
887  * Sets skb dst, assuming a reference was taken on dst and should
888  * be released by skb_dst_drop()
889  */
890 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
891 {
892 	skb->_skb_refdst = (unsigned long)dst;
893 }
894 
895 /**
896  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
897  * @skb: buffer
898  * @dst: dst entry
899  *
900  * Sets skb dst, assuming a reference was not taken on dst.
901  * If dst entry is cached, we do not take reference and dst_release
902  * will be avoided by refdst_drop. If dst entry is not cached, we take
903  * reference, so that last dst_release can destroy the dst immediately.
904  */
905 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
906 {
907 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
908 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
909 }
910 
911 /**
912  * skb_dst_is_noref - Test if skb dst isn't refcounted
913  * @skb: buffer
914  */
915 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
916 {
917 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
918 }
919 
920 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
921 {
922 	return (struct rtable *)skb_dst(skb);
923 }
924 
925 /* For mangling skb->pkt_type from user space side from applications
926  * such as nft, tc, etc, we only allow a conservative subset of
927  * possible pkt_types to be set.
928 */
929 static inline bool skb_pkt_type_ok(u32 ptype)
930 {
931 	return ptype <= PACKET_OTHERHOST;
932 }
933 
934 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
935 {
936 #ifdef CONFIG_NET_RX_BUSY_POLL
937 	return skb->napi_id;
938 #else
939 	return 0;
940 #endif
941 }
942 
943 /* decrement the reference count and return true if we can free the skb */
944 static inline bool skb_unref(struct sk_buff *skb)
945 {
946 	if (unlikely(!skb))
947 		return false;
948 	if (likely(refcount_read(&skb->users) == 1))
949 		smp_rmb();
950 	else if (likely(!refcount_dec_and_test(&skb->users)))
951 		return false;
952 
953 	return true;
954 }
955 
956 void skb_release_head_state(struct sk_buff *skb);
957 void kfree_skb(struct sk_buff *skb);
958 void kfree_skb_list(struct sk_buff *segs);
959 void skb_tx_error(struct sk_buff *skb);
960 void consume_skb(struct sk_buff *skb);
961 void __consume_stateless_skb(struct sk_buff *skb);
962 void  __kfree_skb(struct sk_buff *skb);
963 extern struct kmem_cache *skbuff_head_cache;
964 
965 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
966 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
967 		      bool *fragstolen, int *delta_truesize);
968 
969 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
970 			    int node);
971 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
972 struct sk_buff *build_skb(void *data, unsigned int frag_size);
973 static inline struct sk_buff *alloc_skb(unsigned int size,
974 					gfp_t priority)
975 {
976 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
977 }
978 
979 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
980 				     unsigned long data_len,
981 				     int max_page_order,
982 				     int *errcode,
983 				     gfp_t gfp_mask);
984 
985 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
986 struct sk_buff_fclones {
987 	struct sk_buff	skb1;
988 
989 	struct sk_buff	skb2;
990 
991 	refcount_t	fclone_ref;
992 };
993 
994 /**
995  *	skb_fclone_busy - check if fclone is busy
996  *	@sk: socket
997  *	@skb: buffer
998  *
999  * Returns true if skb is a fast clone, and its clone is not freed.
1000  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1001  * so we also check that this didnt happen.
1002  */
1003 static inline bool skb_fclone_busy(const struct sock *sk,
1004 				   const struct sk_buff *skb)
1005 {
1006 	const struct sk_buff_fclones *fclones;
1007 
1008 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1009 
1010 	return skb->fclone == SKB_FCLONE_ORIG &&
1011 	       refcount_read(&fclones->fclone_ref) > 1 &&
1012 	       fclones->skb2.sk == sk;
1013 }
1014 
1015 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1016 					       gfp_t priority)
1017 {
1018 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1019 }
1020 
1021 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1022 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1023 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1024 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1025 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1026 				   gfp_t gfp_mask, bool fclone);
1027 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1028 					  gfp_t gfp_mask)
1029 {
1030 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1031 }
1032 
1033 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1034 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1035 				     unsigned int headroom);
1036 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1037 				int newtailroom, gfp_t priority);
1038 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1039 				     int offset, int len);
1040 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1041 			      int offset, int len);
1042 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1043 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1044 
1045 /**
1046  *	skb_pad			-	zero pad the tail of an skb
1047  *	@skb: buffer to pad
1048  *	@pad: space to pad
1049  *
1050  *	Ensure that a buffer is followed by a padding area that is zero
1051  *	filled. Used by network drivers which may DMA or transfer data
1052  *	beyond the buffer end onto the wire.
1053  *
1054  *	May return error in out of memory cases. The skb is freed on error.
1055  */
1056 static inline int skb_pad(struct sk_buff *skb, int pad)
1057 {
1058 	return __skb_pad(skb, pad, true);
1059 }
1060 #define dev_kfree_skb(a)	consume_skb(a)
1061 
1062 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1063 			    int getfrag(void *from, char *to, int offset,
1064 					int len, int odd, struct sk_buff *skb),
1065 			    void *from, int length);
1066 
1067 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1068 			 int offset, size_t size);
1069 
1070 struct skb_seq_state {
1071 	__u32		lower_offset;
1072 	__u32		upper_offset;
1073 	__u32		frag_idx;
1074 	__u32		stepped_offset;
1075 	struct sk_buff	*root_skb;
1076 	struct sk_buff	*cur_skb;
1077 	__u8		*frag_data;
1078 };
1079 
1080 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1081 			  unsigned int to, struct skb_seq_state *st);
1082 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1083 			  struct skb_seq_state *st);
1084 void skb_abort_seq_read(struct skb_seq_state *st);
1085 
1086 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1087 			   unsigned int to, struct ts_config *config);
1088 
1089 /*
1090  * Packet hash types specify the type of hash in skb_set_hash.
1091  *
1092  * Hash types refer to the protocol layer addresses which are used to
1093  * construct a packet's hash. The hashes are used to differentiate or identify
1094  * flows of the protocol layer for the hash type. Hash types are either
1095  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1096  *
1097  * Properties of hashes:
1098  *
1099  * 1) Two packets in different flows have different hash values
1100  * 2) Two packets in the same flow should have the same hash value
1101  *
1102  * A hash at a higher layer is considered to be more specific. A driver should
1103  * set the most specific hash possible.
1104  *
1105  * A driver cannot indicate a more specific hash than the layer at which a hash
1106  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1107  *
1108  * A driver may indicate a hash level which is less specific than the
1109  * actual layer the hash was computed on. For instance, a hash computed
1110  * at L4 may be considered an L3 hash. This should only be done if the
1111  * driver can't unambiguously determine that the HW computed the hash at
1112  * the higher layer. Note that the "should" in the second property above
1113  * permits this.
1114  */
1115 enum pkt_hash_types {
1116 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1117 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1118 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1119 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1120 };
1121 
1122 static inline void skb_clear_hash(struct sk_buff *skb)
1123 {
1124 	skb->hash = 0;
1125 	skb->sw_hash = 0;
1126 	skb->l4_hash = 0;
1127 }
1128 
1129 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1130 {
1131 	if (!skb->l4_hash)
1132 		skb_clear_hash(skb);
1133 }
1134 
1135 static inline void
1136 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1137 {
1138 	skb->l4_hash = is_l4;
1139 	skb->sw_hash = is_sw;
1140 	skb->hash = hash;
1141 }
1142 
1143 static inline void
1144 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1145 {
1146 	/* Used by drivers to set hash from HW */
1147 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1148 }
1149 
1150 static inline void
1151 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1152 {
1153 	__skb_set_hash(skb, hash, true, is_l4);
1154 }
1155 
1156 void __skb_get_hash(struct sk_buff *skb);
1157 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1158 u32 skb_get_poff(const struct sk_buff *skb);
1159 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1160 		   const struct flow_keys *keys, int hlen);
1161 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1162 			    void *data, int hlen_proto);
1163 
1164 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1165 					int thoff, u8 ip_proto)
1166 {
1167 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1168 }
1169 
1170 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1171 			     const struct flow_dissector_key *key,
1172 			     unsigned int key_count);
1173 
1174 bool __skb_flow_dissect(const struct sk_buff *skb,
1175 			struct flow_dissector *flow_dissector,
1176 			void *target_container,
1177 			void *data, __be16 proto, int nhoff, int hlen,
1178 			unsigned int flags);
1179 
1180 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1181 				    struct flow_dissector *flow_dissector,
1182 				    void *target_container, unsigned int flags)
1183 {
1184 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1185 				  NULL, 0, 0, 0, flags);
1186 }
1187 
1188 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1189 					      struct flow_keys *flow,
1190 					      unsigned int flags)
1191 {
1192 	memset(flow, 0, sizeof(*flow));
1193 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1194 				  NULL, 0, 0, 0, flags);
1195 }
1196 
1197 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1198 						  void *data, __be16 proto,
1199 						  int nhoff, int hlen,
1200 						  unsigned int flags)
1201 {
1202 	memset(flow, 0, sizeof(*flow));
1203 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1204 				  data, proto, nhoff, hlen, flags);
1205 }
1206 
1207 static inline __u32 skb_get_hash(struct sk_buff *skb)
1208 {
1209 	if (!skb->l4_hash && !skb->sw_hash)
1210 		__skb_get_hash(skb);
1211 
1212 	return skb->hash;
1213 }
1214 
1215 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1216 {
1217 	if (!skb->l4_hash && !skb->sw_hash) {
1218 		struct flow_keys keys;
1219 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1220 
1221 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1222 	}
1223 
1224 	return skb->hash;
1225 }
1226 
1227 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1228 
1229 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1230 {
1231 	return skb->hash;
1232 }
1233 
1234 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1235 {
1236 	to->hash = from->hash;
1237 	to->sw_hash = from->sw_hash;
1238 	to->l4_hash = from->l4_hash;
1239 };
1240 
1241 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1242 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1243 {
1244 	return skb->head + skb->end;
1245 }
1246 
1247 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1248 {
1249 	return skb->end;
1250 }
1251 #else
1252 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1253 {
1254 	return skb->end;
1255 }
1256 
1257 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1258 {
1259 	return skb->end - skb->head;
1260 }
1261 #endif
1262 
1263 /* Internal */
1264 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1265 
1266 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1267 {
1268 	return &skb_shinfo(skb)->hwtstamps;
1269 }
1270 
1271 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1272 {
1273 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1274 
1275 	return is_zcopy ? skb_uarg(skb) : NULL;
1276 }
1277 
1278 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1279 {
1280 	if (skb && uarg && !skb_zcopy(skb)) {
1281 		sock_zerocopy_get(uarg);
1282 		skb_shinfo(skb)->destructor_arg = uarg;
1283 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1284 	}
1285 }
1286 
1287 /* Release a reference on a zerocopy structure */
1288 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1289 {
1290 	struct ubuf_info *uarg = skb_zcopy(skb);
1291 
1292 	if (uarg) {
1293 		if (uarg->callback == sock_zerocopy_callback) {
1294 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1295 			sock_zerocopy_put(uarg);
1296 		} else {
1297 			uarg->callback(uarg, zerocopy);
1298 		}
1299 
1300 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1301 	}
1302 }
1303 
1304 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1305 static inline void skb_zcopy_abort(struct sk_buff *skb)
1306 {
1307 	struct ubuf_info *uarg = skb_zcopy(skb);
1308 
1309 	if (uarg) {
1310 		sock_zerocopy_put_abort(uarg);
1311 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1312 	}
1313 }
1314 
1315 /**
1316  *	skb_queue_empty - check if a queue is empty
1317  *	@list: queue head
1318  *
1319  *	Returns true if the queue is empty, false otherwise.
1320  */
1321 static inline int skb_queue_empty(const struct sk_buff_head *list)
1322 {
1323 	return list->next == (const struct sk_buff *) list;
1324 }
1325 
1326 /**
1327  *	skb_queue_is_last - check if skb is the last entry in the queue
1328  *	@list: queue head
1329  *	@skb: buffer
1330  *
1331  *	Returns true if @skb is the last buffer on the list.
1332  */
1333 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1334 				     const struct sk_buff *skb)
1335 {
1336 	return skb->next == (const struct sk_buff *) list;
1337 }
1338 
1339 /**
1340  *	skb_queue_is_first - check if skb is the first entry in the queue
1341  *	@list: queue head
1342  *	@skb: buffer
1343  *
1344  *	Returns true if @skb is the first buffer on the list.
1345  */
1346 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1347 				      const struct sk_buff *skb)
1348 {
1349 	return skb->prev == (const struct sk_buff *) list;
1350 }
1351 
1352 /**
1353  *	skb_queue_next - return the next packet in the queue
1354  *	@list: queue head
1355  *	@skb: current buffer
1356  *
1357  *	Return the next packet in @list after @skb.  It is only valid to
1358  *	call this if skb_queue_is_last() evaluates to false.
1359  */
1360 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1361 					     const struct sk_buff *skb)
1362 {
1363 	/* This BUG_ON may seem severe, but if we just return then we
1364 	 * are going to dereference garbage.
1365 	 */
1366 	BUG_ON(skb_queue_is_last(list, skb));
1367 	return skb->next;
1368 }
1369 
1370 /**
1371  *	skb_queue_prev - return the prev packet in the queue
1372  *	@list: queue head
1373  *	@skb: current buffer
1374  *
1375  *	Return the prev packet in @list before @skb.  It is only valid to
1376  *	call this if skb_queue_is_first() evaluates to false.
1377  */
1378 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1379 					     const struct sk_buff *skb)
1380 {
1381 	/* This BUG_ON may seem severe, but if we just return then we
1382 	 * are going to dereference garbage.
1383 	 */
1384 	BUG_ON(skb_queue_is_first(list, skb));
1385 	return skb->prev;
1386 }
1387 
1388 /**
1389  *	skb_get - reference buffer
1390  *	@skb: buffer to reference
1391  *
1392  *	Makes another reference to a socket buffer and returns a pointer
1393  *	to the buffer.
1394  */
1395 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1396 {
1397 	refcount_inc(&skb->users);
1398 	return skb;
1399 }
1400 
1401 /*
1402  * If users == 1, we are the only owner and are can avoid redundant
1403  * atomic change.
1404  */
1405 
1406 /**
1407  *	skb_cloned - is the buffer a clone
1408  *	@skb: buffer to check
1409  *
1410  *	Returns true if the buffer was generated with skb_clone() and is
1411  *	one of multiple shared copies of the buffer. Cloned buffers are
1412  *	shared data so must not be written to under normal circumstances.
1413  */
1414 static inline int skb_cloned(const struct sk_buff *skb)
1415 {
1416 	return skb->cloned &&
1417 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1418 }
1419 
1420 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1421 {
1422 	might_sleep_if(gfpflags_allow_blocking(pri));
1423 
1424 	if (skb_cloned(skb))
1425 		return pskb_expand_head(skb, 0, 0, pri);
1426 
1427 	return 0;
1428 }
1429 
1430 /**
1431  *	skb_header_cloned - is the header a clone
1432  *	@skb: buffer to check
1433  *
1434  *	Returns true if modifying the header part of the buffer requires
1435  *	the data to be copied.
1436  */
1437 static inline int skb_header_cloned(const struct sk_buff *skb)
1438 {
1439 	int dataref;
1440 
1441 	if (!skb->cloned)
1442 		return 0;
1443 
1444 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1445 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1446 	return dataref != 1;
1447 }
1448 
1449 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1450 {
1451 	might_sleep_if(gfpflags_allow_blocking(pri));
1452 
1453 	if (skb_header_cloned(skb))
1454 		return pskb_expand_head(skb, 0, 0, pri);
1455 
1456 	return 0;
1457 }
1458 
1459 /**
1460  *	skb_header_release - release reference to header
1461  *	@skb: buffer to operate on
1462  *
1463  *	Drop a reference to the header part of the buffer.  This is done
1464  *	by acquiring a payload reference.  You must not read from the header
1465  *	part of skb->data after this.
1466  *	Note : Check if you can use __skb_header_release() instead.
1467  */
1468 static inline void skb_header_release(struct sk_buff *skb)
1469 {
1470 	BUG_ON(skb->nohdr);
1471 	skb->nohdr = 1;
1472 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1473 }
1474 
1475 /**
1476  *	__skb_header_release - release reference to header
1477  *	@skb: buffer to operate on
1478  *
1479  *	Variant of skb_header_release() assuming skb is private to caller.
1480  *	We can avoid one atomic operation.
1481  */
1482 static inline void __skb_header_release(struct sk_buff *skb)
1483 {
1484 	skb->nohdr = 1;
1485 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1486 }
1487 
1488 
1489 /**
1490  *	skb_shared - is the buffer shared
1491  *	@skb: buffer to check
1492  *
1493  *	Returns true if more than one person has a reference to this
1494  *	buffer.
1495  */
1496 static inline int skb_shared(const struct sk_buff *skb)
1497 {
1498 	return refcount_read(&skb->users) != 1;
1499 }
1500 
1501 /**
1502  *	skb_share_check - check if buffer is shared and if so clone it
1503  *	@skb: buffer to check
1504  *	@pri: priority for memory allocation
1505  *
1506  *	If the buffer is shared the buffer is cloned and the old copy
1507  *	drops a reference. A new clone with a single reference is returned.
1508  *	If the buffer is not shared the original buffer is returned. When
1509  *	being called from interrupt status or with spinlocks held pri must
1510  *	be GFP_ATOMIC.
1511  *
1512  *	NULL is returned on a memory allocation failure.
1513  */
1514 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1515 {
1516 	might_sleep_if(gfpflags_allow_blocking(pri));
1517 	if (skb_shared(skb)) {
1518 		struct sk_buff *nskb = skb_clone(skb, pri);
1519 
1520 		if (likely(nskb))
1521 			consume_skb(skb);
1522 		else
1523 			kfree_skb(skb);
1524 		skb = nskb;
1525 	}
1526 	return skb;
1527 }
1528 
1529 /*
1530  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1531  *	packets to handle cases where we have a local reader and forward
1532  *	and a couple of other messy ones. The normal one is tcpdumping
1533  *	a packet thats being forwarded.
1534  */
1535 
1536 /**
1537  *	skb_unshare - make a copy of a shared buffer
1538  *	@skb: buffer to check
1539  *	@pri: priority for memory allocation
1540  *
1541  *	If the socket buffer is a clone then this function creates a new
1542  *	copy of the data, drops a reference count on the old copy and returns
1543  *	the new copy with the reference count at 1. If the buffer is not a clone
1544  *	the original buffer is returned. When called with a spinlock held or
1545  *	from interrupt state @pri must be %GFP_ATOMIC
1546  *
1547  *	%NULL is returned on a memory allocation failure.
1548  */
1549 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1550 					  gfp_t pri)
1551 {
1552 	might_sleep_if(gfpflags_allow_blocking(pri));
1553 	if (skb_cloned(skb)) {
1554 		struct sk_buff *nskb = skb_copy(skb, pri);
1555 
1556 		/* Free our shared copy */
1557 		if (likely(nskb))
1558 			consume_skb(skb);
1559 		else
1560 			kfree_skb(skb);
1561 		skb = nskb;
1562 	}
1563 	return skb;
1564 }
1565 
1566 /**
1567  *	skb_peek - peek at the head of an &sk_buff_head
1568  *	@list_: list to peek at
1569  *
1570  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1571  *	be careful with this one. A peek leaves the buffer on the
1572  *	list and someone else may run off with it. You must hold
1573  *	the appropriate locks or have a private queue to do this.
1574  *
1575  *	Returns %NULL for an empty list or a pointer to the head element.
1576  *	The reference count is not incremented and the reference is therefore
1577  *	volatile. Use with caution.
1578  */
1579 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1580 {
1581 	struct sk_buff *skb = list_->next;
1582 
1583 	if (skb == (struct sk_buff *)list_)
1584 		skb = NULL;
1585 	return skb;
1586 }
1587 
1588 /**
1589  *	skb_peek_next - peek skb following the given one from a queue
1590  *	@skb: skb to start from
1591  *	@list_: list to peek at
1592  *
1593  *	Returns %NULL when the end of the list is met or a pointer to the
1594  *	next element. The reference count is not incremented and the
1595  *	reference is therefore volatile. Use with caution.
1596  */
1597 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1598 		const struct sk_buff_head *list_)
1599 {
1600 	struct sk_buff *next = skb->next;
1601 
1602 	if (next == (struct sk_buff *)list_)
1603 		next = NULL;
1604 	return next;
1605 }
1606 
1607 /**
1608  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1609  *	@list_: list to peek at
1610  *
1611  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1612  *	be careful with this one. A peek leaves the buffer on the
1613  *	list and someone else may run off with it. You must hold
1614  *	the appropriate locks or have a private queue to do this.
1615  *
1616  *	Returns %NULL for an empty list or a pointer to the tail element.
1617  *	The reference count is not incremented and the reference is therefore
1618  *	volatile. Use with caution.
1619  */
1620 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1621 {
1622 	struct sk_buff *skb = list_->prev;
1623 
1624 	if (skb == (struct sk_buff *)list_)
1625 		skb = NULL;
1626 	return skb;
1627 
1628 }
1629 
1630 /**
1631  *	skb_queue_len	- get queue length
1632  *	@list_: list to measure
1633  *
1634  *	Return the length of an &sk_buff queue.
1635  */
1636 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1637 {
1638 	return list_->qlen;
1639 }
1640 
1641 /**
1642  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1643  *	@list: queue to initialize
1644  *
1645  *	This initializes only the list and queue length aspects of
1646  *	an sk_buff_head object.  This allows to initialize the list
1647  *	aspects of an sk_buff_head without reinitializing things like
1648  *	the spinlock.  It can also be used for on-stack sk_buff_head
1649  *	objects where the spinlock is known to not be used.
1650  */
1651 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1652 {
1653 	list->prev = list->next = (struct sk_buff *)list;
1654 	list->qlen = 0;
1655 }
1656 
1657 /*
1658  * This function creates a split out lock class for each invocation;
1659  * this is needed for now since a whole lot of users of the skb-queue
1660  * infrastructure in drivers have different locking usage (in hardirq)
1661  * than the networking core (in softirq only). In the long run either the
1662  * network layer or drivers should need annotation to consolidate the
1663  * main types of usage into 3 classes.
1664  */
1665 static inline void skb_queue_head_init(struct sk_buff_head *list)
1666 {
1667 	spin_lock_init(&list->lock);
1668 	__skb_queue_head_init(list);
1669 }
1670 
1671 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1672 		struct lock_class_key *class)
1673 {
1674 	skb_queue_head_init(list);
1675 	lockdep_set_class(&list->lock, class);
1676 }
1677 
1678 /*
1679  *	Insert an sk_buff on a list.
1680  *
1681  *	The "__skb_xxxx()" functions are the non-atomic ones that
1682  *	can only be called with interrupts disabled.
1683  */
1684 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1685 		struct sk_buff_head *list);
1686 static inline void __skb_insert(struct sk_buff *newsk,
1687 				struct sk_buff *prev, struct sk_buff *next,
1688 				struct sk_buff_head *list)
1689 {
1690 	newsk->next = next;
1691 	newsk->prev = prev;
1692 	next->prev  = prev->next = newsk;
1693 	list->qlen++;
1694 }
1695 
1696 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1697 				      struct sk_buff *prev,
1698 				      struct sk_buff *next)
1699 {
1700 	struct sk_buff *first = list->next;
1701 	struct sk_buff *last = list->prev;
1702 
1703 	first->prev = prev;
1704 	prev->next = first;
1705 
1706 	last->next = next;
1707 	next->prev = last;
1708 }
1709 
1710 /**
1711  *	skb_queue_splice - join two skb lists, this is designed for stacks
1712  *	@list: the new list to add
1713  *	@head: the place to add it in the first list
1714  */
1715 static inline void skb_queue_splice(const struct sk_buff_head *list,
1716 				    struct sk_buff_head *head)
1717 {
1718 	if (!skb_queue_empty(list)) {
1719 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1720 		head->qlen += list->qlen;
1721 	}
1722 }
1723 
1724 /**
1725  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1726  *	@list: the new list to add
1727  *	@head: the place to add it in the first list
1728  *
1729  *	The list at @list is reinitialised
1730  */
1731 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1732 					 struct sk_buff_head *head)
1733 {
1734 	if (!skb_queue_empty(list)) {
1735 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1736 		head->qlen += list->qlen;
1737 		__skb_queue_head_init(list);
1738 	}
1739 }
1740 
1741 /**
1742  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1743  *	@list: the new list to add
1744  *	@head: the place to add it in the first list
1745  */
1746 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1747 					 struct sk_buff_head *head)
1748 {
1749 	if (!skb_queue_empty(list)) {
1750 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1751 		head->qlen += list->qlen;
1752 	}
1753 }
1754 
1755 /**
1756  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1757  *	@list: the new list to add
1758  *	@head: the place to add it in the first list
1759  *
1760  *	Each of the lists is a queue.
1761  *	The list at @list is reinitialised
1762  */
1763 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1764 					      struct sk_buff_head *head)
1765 {
1766 	if (!skb_queue_empty(list)) {
1767 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1768 		head->qlen += list->qlen;
1769 		__skb_queue_head_init(list);
1770 	}
1771 }
1772 
1773 /**
1774  *	__skb_queue_after - queue a buffer at the list head
1775  *	@list: list to use
1776  *	@prev: place after this buffer
1777  *	@newsk: buffer to queue
1778  *
1779  *	Queue a buffer int the middle of a list. This function takes no locks
1780  *	and you must therefore hold required locks before calling it.
1781  *
1782  *	A buffer cannot be placed on two lists at the same time.
1783  */
1784 static inline void __skb_queue_after(struct sk_buff_head *list,
1785 				     struct sk_buff *prev,
1786 				     struct sk_buff *newsk)
1787 {
1788 	__skb_insert(newsk, prev, prev->next, list);
1789 }
1790 
1791 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1792 		struct sk_buff_head *list);
1793 
1794 static inline void __skb_queue_before(struct sk_buff_head *list,
1795 				      struct sk_buff *next,
1796 				      struct sk_buff *newsk)
1797 {
1798 	__skb_insert(newsk, next->prev, next, list);
1799 }
1800 
1801 /**
1802  *	__skb_queue_head - queue a buffer at the list head
1803  *	@list: list to use
1804  *	@newsk: buffer to queue
1805  *
1806  *	Queue a buffer at the start of a list. This function takes no locks
1807  *	and you must therefore hold required locks before calling it.
1808  *
1809  *	A buffer cannot be placed on two lists at the same time.
1810  */
1811 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1812 static inline void __skb_queue_head(struct sk_buff_head *list,
1813 				    struct sk_buff *newsk)
1814 {
1815 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1816 }
1817 
1818 /**
1819  *	__skb_queue_tail - queue a buffer at the list tail
1820  *	@list: list to use
1821  *	@newsk: buffer to queue
1822  *
1823  *	Queue a buffer at the end of a list. This function takes no locks
1824  *	and you must therefore hold required locks before calling it.
1825  *
1826  *	A buffer cannot be placed on two lists at the same time.
1827  */
1828 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1829 static inline void __skb_queue_tail(struct sk_buff_head *list,
1830 				   struct sk_buff *newsk)
1831 {
1832 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1833 }
1834 
1835 /*
1836  * remove sk_buff from list. _Must_ be called atomically, and with
1837  * the list known..
1838  */
1839 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1840 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1841 {
1842 	struct sk_buff *next, *prev;
1843 
1844 	list->qlen--;
1845 	next	   = skb->next;
1846 	prev	   = skb->prev;
1847 	skb->next  = skb->prev = NULL;
1848 	next->prev = prev;
1849 	prev->next = next;
1850 }
1851 
1852 /**
1853  *	__skb_dequeue - remove from the head of the queue
1854  *	@list: list to dequeue from
1855  *
1856  *	Remove the head of the list. This function does not take any locks
1857  *	so must be used with appropriate locks held only. The head item is
1858  *	returned or %NULL if the list is empty.
1859  */
1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1861 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1862 {
1863 	struct sk_buff *skb = skb_peek(list);
1864 	if (skb)
1865 		__skb_unlink(skb, list);
1866 	return skb;
1867 }
1868 
1869 /**
1870  *	__skb_dequeue_tail - remove from the tail of the queue
1871  *	@list: list to dequeue from
1872  *
1873  *	Remove the tail of the list. This function does not take any locks
1874  *	so must be used with appropriate locks held only. The tail item is
1875  *	returned or %NULL if the list is empty.
1876  */
1877 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1878 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1879 {
1880 	struct sk_buff *skb = skb_peek_tail(list);
1881 	if (skb)
1882 		__skb_unlink(skb, list);
1883 	return skb;
1884 }
1885 
1886 
1887 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1888 {
1889 	return skb->data_len;
1890 }
1891 
1892 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1893 {
1894 	return skb->len - skb->data_len;
1895 }
1896 
1897 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1898 {
1899 	unsigned int i, len = 0;
1900 
1901 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1902 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1903 	return len;
1904 }
1905 
1906 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1907 {
1908 	return skb_headlen(skb) + __skb_pagelen(skb);
1909 }
1910 
1911 /**
1912  * __skb_fill_page_desc - initialise a paged fragment in an skb
1913  * @skb: buffer containing fragment to be initialised
1914  * @i: paged fragment index to initialise
1915  * @page: the page to use for this fragment
1916  * @off: the offset to the data with @page
1917  * @size: the length of the data
1918  *
1919  * Initialises the @i'th fragment of @skb to point to &size bytes at
1920  * offset @off within @page.
1921  *
1922  * Does not take any additional reference on the fragment.
1923  */
1924 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1925 					struct page *page, int off, int size)
1926 {
1927 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1928 
1929 	/*
1930 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1931 	 * that not all callers have unique ownership of the page but rely
1932 	 * on page_is_pfmemalloc doing the right thing(tm).
1933 	 */
1934 	frag->page.p		  = page;
1935 	frag->page_offset	  = off;
1936 	skb_frag_size_set(frag, size);
1937 
1938 	page = compound_head(page);
1939 	if (page_is_pfmemalloc(page))
1940 		skb->pfmemalloc	= true;
1941 }
1942 
1943 /**
1944  * skb_fill_page_desc - initialise a paged fragment in an skb
1945  * @skb: buffer containing fragment to be initialised
1946  * @i: paged fragment index to initialise
1947  * @page: the page to use for this fragment
1948  * @off: the offset to the data with @page
1949  * @size: the length of the data
1950  *
1951  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1952  * @skb to point to @size bytes at offset @off within @page. In
1953  * addition updates @skb such that @i is the last fragment.
1954  *
1955  * Does not take any additional reference on the fragment.
1956  */
1957 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1958 				      struct page *page, int off, int size)
1959 {
1960 	__skb_fill_page_desc(skb, i, page, off, size);
1961 	skb_shinfo(skb)->nr_frags = i + 1;
1962 }
1963 
1964 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1965 		     int size, unsigned int truesize);
1966 
1967 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1968 			  unsigned int truesize);
1969 
1970 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1971 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1972 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1973 
1974 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1975 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1976 {
1977 	return skb->head + skb->tail;
1978 }
1979 
1980 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1981 {
1982 	skb->tail = skb->data - skb->head;
1983 }
1984 
1985 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1986 {
1987 	skb_reset_tail_pointer(skb);
1988 	skb->tail += offset;
1989 }
1990 
1991 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1992 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1993 {
1994 	return skb->tail;
1995 }
1996 
1997 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1998 {
1999 	skb->tail = skb->data;
2000 }
2001 
2002 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2003 {
2004 	skb->tail = skb->data + offset;
2005 }
2006 
2007 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2008 
2009 /*
2010  *	Add data to an sk_buff
2011  */
2012 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2013 void *skb_put(struct sk_buff *skb, unsigned int len);
2014 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2015 {
2016 	void *tmp = skb_tail_pointer(skb);
2017 	SKB_LINEAR_ASSERT(skb);
2018 	skb->tail += len;
2019 	skb->len  += len;
2020 	return tmp;
2021 }
2022 
2023 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2024 {
2025 	void *tmp = __skb_put(skb, len);
2026 
2027 	memset(tmp, 0, len);
2028 	return tmp;
2029 }
2030 
2031 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2032 				   unsigned int len)
2033 {
2034 	void *tmp = __skb_put(skb, len);
2035 
2036 	memcpy(tmp, data, len);
2037 	return tmp;
2038 }
2039 
2040 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2041 {
2042 	*(u8 *)__skb_put(skb, 1) = val;
2043 }
2044 
2045 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2046 {
2047 	void *tmp = skb_put(skb, len);
2048 
2049 	memset(tmp, 0, len);
2050 
2051 	return tmp;
2052 }
2053 
2054 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2055 				 unsigned int len)
2056 {
2057 	void *tmp = skb_put(skb, len);
2058 
2059 	memcpy(tmp, data, len);
2060 
2061 	return tmp;
2062 }
2063 
2064 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2065 {
2066 	*(u8 *)skb_put(skb, 1) = val;
2067 }
2068 
2069 void *skb_push(struct sk_buff *skb, unsigned int len);
2070 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2071 {
2072 	skb->data -= len;
2073 	skb->len  += len;
2074 	return skb->data;
2075 }
2076 
2077 void *skb_pull(struct sk_buff *skb, unsigned int len);
2078 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2079 {
2080 	skb->len -= len;
2081 	BUG_ON(skb->len < skb->data_len);
2082 	return skb->data += len;
2083 }
2084 
2085 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2086 {
2087 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2088 }
2089 
2090 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2091 
2092 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2093 {
2094 	if (len > skb_headlen(skb) &&
2095 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2096 		return NULL;
2097 	skb->len -= len;
2098 	return skb->data += len;
2099 }
2100 
2101 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2102 {
2103 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2104 }
2105 
2106 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2107 {
2108 	if (likely(len <= skb_headlen(skb)))
2109 		return 1;
2110 	if (unlikely(len > skb->len))
2111 		return 0;
2112 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2113 }
2114 
2115 void skb_condense(struct sk_buff *skb);
2116 
2117 /**
2118  *	skb_headroom - bytes at buffer head
2119  *	@skb: buffer to check
2120  *
2121  *	Return the number of bytes of free space at the head of an &sk_buff.
2122  */
2123 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2124 {
2125 	return skb->data - skb->head;
2126 }
2127 
2128 /**
2129  *	skb_tailroom - bytes at buffer end
2130  *	@skb: buffer to check
2131  *
2132  *	Return the number of bytes of free space at the tail of an sk_buff
2133  */
2134 static inline int skb_tailroom(const struct sk_buff *skb)
2135 {
2136 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2137 }
2138 
2139 /**
2140  *	skb_availroom - bytes at buffer end
2141  *	@skb: buffer to check
2142  *
2143  *	Return the number of bytes of free space at the tail of an sk_buff
2144  *	allocated by sk_stream_alloc()
2145  */
2146 static inline int skb_availroom(const struct sk_buff *skb)
2147 {
2148 	if (skb_is_nonlinear(skb))
2149 		return 0;
2150 
2151 	return skb->end - skb->tail - skb->reserved_tailroom;
2152 }
2153 
2154 /**
2155  *	skb_reserve - adjust headroom
2156  *	@skb: buffer to alter
2157  *	@len: bytes to move
2158  *
2159  *	Increase the headroom of an empty &sk_buff by reducing the tail
2160  *	room. This is only allowed for an empty buffer.
2161  */
2162 static inline void skb_reserve(struct sk_buff *skb, int len)
2163 {
2164 	skb->data += len;
2165 	skb->tail += len;
2166 }
2167 
2168 /**
2169  *	skb_tailroom_reserve - adjust reserved_tailroom
2170  *	@skb: buffer to alter
2171  *	@mtu: maximum amount of headlen permitted
2172  *	@needed_tailroom: minimum amount of reserved_tailroom
2173  *
2174  *	Set reserved_tailroom so that headlen can be as large as possible but
2175  *	not larger than mtu and tailroom cannot be smaller than
2176  *	needed_tailroom.
2177  *	The required headroom should already have been reserved before using
2178  *	this function.
2179  */
2180 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2181 					unsigned int needed_tailroom)
2182 {
2183 	SKB_LINEAR_ASSERT(skb);
2184 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2185 		/* use at most mtu */
2186 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2187 	else
2188 		/* use up to all available space */
2189 		skb->reserved_tailroom = needed_tailroom;
2190 }
2191 
2192 #define ENCAP_TYPE_ETHER	0
2193 #define ENCAP_TYPE_IPPROTO	1
2194 
2195 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2196 					  __be16 protocol)
2197 {
2198 	skb->inner_protocol = protocol;
2199 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2200 }
2201 
2202 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2203 					 __u8 ipproto)
2204 {
2205 	skb->inner_ipproto = ipproto;
2206 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2207 }
2208 
2209 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2210 {
2211 	skb->inner_mac_header = skb->mac_header;
2212 	skb->inner_network_header = skb->network_header;
2213 	skb->inner_transport_header = skb->transport_header;
2214 }
2215 
2216 static inline void skb_reset_mac_len(struct sk_buff *skb)
2217 {
2218 	skb->mac_len = skb->network_header - skb->mac_header;
2219 }
2220 
2221 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2222 							*skb)
2223 {
2224 	return skb->head + skb->inner_transport_header;
2225 }
2226 
2227 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2228 {
2229 	return skb_inner_transport_header(skb) - skb->data;
2230 }
2231 
2232 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2233 {
2234 	skb->inner_transport_header = skb->data - skb->head;
2235 }
2236 
2237 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2238 						   const int offset)
2239 {
2240 	skb_reset_inner_transport_header(skb);
2241 	skb->inner_transport_header += offset;
2242 }
2243 
2244 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2245 {
2246 	return skb->head + skb->inner_network_header;
2247 }
2248 
2249 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2250 {
2251 	skb->inner_network_header = skb->data - skb->head;
2252 }
2253 
2254 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2255 						const int offset)
2256 {
2257 	skb_reset_inner_network_header(skb);
2258 	skb->inner_network_header += offset;
2259 }
2260 
2261 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2262 {
2263 	return skb->head + skb->inner_mac_header;
2264 }
2265 
2266 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2267 {
2268 	skb->inner_mac_header = skb->data - skb->head;
2269 }
2270 
2271 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2272 					    const int offset)
2273 {
2274 	skb_reset_inner_mac_header(skb);
2275 	skb->inner_mac_header += offset;
2276 }
2277 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2278 {
2279 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2280 }
2281 
2282 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2283 {
2284 	return skb->head + skb->transport_header;
2285 }
2286 
2287 static inline void skb_reset_transport_header(struct sk_buff *skb)
2288 {
2289 	skb->transport_header = skb->data - skb->head;
2290 }
2291 
2292 static inline void skb_set_transport_header(struct sk_buff *skb,
2293 					    const int offset)
2294 {
2295 	skb_reset_transport_header(skb);
2296 	skb->transport_header += offset;
2297 }
2298 
2299 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2300 {
2301 	return skb->head + skb->network_header;
2302 }
2303 
2304 static inline void skb_reset_network_header(struct sk_buff *skb)
2305 {
2306 	skb->network_header = skb->data - skb->head;
2307 }
2308 
2309 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2310 {
2311 	skb_reset_network_header(skb);
2312 	skb->network_header += offset;
2313 }
2314 
2315 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2316 {
2317 	return skb->head + skb->mac_header;
2318 }
2319 
2320 static inline int skb_mac_offset(const struct sk_buff *skb)
2321 {
2322 	return skb_mac_header(skb) - skb->data;
2323 }
2324 
2325 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2326 {
2327 	return skb->network_header - skb->mac_header;
2328 }
2329 
2330 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2331 {
2332 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2333 }
2334 
2335 static inline void skb_reset_mac_header(struct sk_buff *skb)
2336 {
2337 	skb->mac_header = skb->data - skb->head;
2338 }
2339 
2340 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2341 {
2342 	skb_reset_mac_header(skb);
2343 	skb->mac_header += offset;
2344 }
2345 
2346 static inline void skb_pop_mac_header(struct sk_buff *skb)
2347 {
2348 	skb->mac_header = skb->network_header;
2349 }
2350 
2351 static inline void skb_probe_transport_header(struct sk_buff *skb,
2352 					      const int offset_hint)
2353 {
2354 	struct flow_keys keys;
2355 
2356 	if (skb_transport_header_was_set(skb))
2357 		return;
2358 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2359 		skb_set_transport_header(skb, keys.control.thoff);
2360 	else
2361 		skb_set_transport_header(skb, offset_hint);
2362 }
2363 
2364 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2365 {
2366 	if (skb_mac_header_was_set(skb)) {
2367 		const unsigned char *old_mac = skb_mac_header(skb);
2368 
2369 		skb_set_mac_header(skb, -skb->mac_len);
2370 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2371 	}
2372 }
2373 
2374 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2375 {
2376 	return skb->csum_start - skb_headroom(skb);
2377 }
2378 
2379 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2380 {
2381 	return skb->head + skb->csum_start;
2382 }
2383 
2384 static inline int skb_transport_offset(const struct sk_buff *skb)
2385 {
2386 	return skb_transport_header(skb) - skb->data;
2387 }
2388 
2389 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2390 {
2391 	return skb->transport_header - skb->network_header;
2392 }
2393 
2394 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2395 {
2396 	return skb->inner_transport_header - skb->inner_network_header;
2397 }
2398 
2399 static inline int skb_network_offset(const struct sk_buff *skb)
2400 {
2401 	return skb_network_header(skb) - skb->data;
2402 }
2403 
2404 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2405 {
2406 	return skb_inner_network_header(skb) - skb->data;
2407 }
2408 
2409 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2410 {
2411 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2412 }
2413 
2414 /*
2415  * CPUs often take a performance hit when accessing unaligned memory
2416  * locations. The actual performance hit varies, it can be small if the
2417  * hardware handles it or large if we have to take an exception and fix it
2418  * in software.
2419  *
2420  * Since an ethernet header is 14 bytes network drivers often end up with
2421  * the IP header at an unaligned offset. The IP header can be aligned by
2422  * shifting the start of the packet by 2 bytes. Drivers should do this
2423  * with:
2424  *
2425  * skb_reserve(skb, NET_IP_ALIGN);
2426  *
2427  * The downside to this alignment of the IP header is that the DMA is now
2428  * unaligned. On some architectures the cost of an unaligned DMA is high
2429  * and this cost outweighs the gains made by aligning the IP header.
2430  *
2431  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2432  * to be overridden.
2433  */
2434 #ifndef NET_IP_ALIGN
2435 #define NET_IP_ALIGN	2
2436 #endif
2437 
2438 /*
2439  * The networking layer reserves some headroom in skb data (via
2440  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2441  * the header has to grow. In the default case, if the header has to grow
2442  * 32 bytes or less we avoid the reallocation.
2443  *
2444  * Unfortunately this headroom changes the DMA alignment of the resulting
2445  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2446  * on some architectures. An architecture can override this value,
2447  * perhaps setting it to a cacheline in size (since that will maintain
2448  * cacheline alignment of the DMA). It must be a power of 2.
2449  *
2450  * Various parts of the networking layer expect at least 32 bytes of
2451  * headroom, you should not reduce this.
2452  *
2453  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2454  * to reduce average number of cache lines per packet.
2455  * get_rps_cpus() for example only access one 64 bytes aligned block :
2456  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2457  */
2458 #ifndef NET_SKB_PAD
2459 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2460 #endif
2461 
2462 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2463 
2464 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2465 {
2466 	if (unlikely(skb_is_nonlinear(skb))) {
2467 		WARN_ON(1);
2468 		return;
2469 	}
2470 	skb->len = len;
2471 	skb_set_tail_pointer(skb, len);
2472 }
2473 
2474 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2475 {
2476 	__skb_set_length(skb, len);
2477 }
2478 
2479 void skb_trim(struct sk_buff *skb, unsigned int len);
2480 
2481 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2482 {
2483 	if (skb->data_len)
2484 		return ___pskb_trim(skb, len);
2485 	__skb_trim(skb, len);
2486 	return 0;
2487 }
2488 
2489 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2490 {
2491 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2492 }
2493 
2494 /**
2495  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2496  *	@skb: buffer to alter
2497  *	@len: new length
2498  *
2499  *	This is identical to pskb_trim except that the caller knows that
2500  *	the skb is not cloned so we should never get an error due to out-
2501  *	of-memory.
2502  */
2503 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2504 {
2505 	int err = pskb_trim(skb, len);
2506 	BUG_ON(err);
2507 }
2508 
2509 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2510 {
2511 	unsigned int diff = len - skb->len;
2512 
2513 	if (skb_tailroom(skb) < diff) {
2514 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2515 					   GFP_ATOMIC);
2516 		if (ret)
2517 			return ret;
2518 	}
2519 	__skb_set_length(skb, len);
2520 	return 0;
2521 }
2522 
2523 /**
2524  *	skb_orphan - orphan a buffer
2525  *	@skb: buffer to orphan
2526  *
2527  *	If a buffer currently has an owner then we call the owner's
2528  *	destructor function and make the @skb unowned. The buffer continues
2529  *	to exist but is no longer charged to its former owner.
2530  */
2531 static inline void skb_orphan(struct sk_buff *skb)
2532 {
2533 	if (skb->destructor) {
2534 		skb->destructor(skb);
2535 		skb->destructor = NULL;
2536 		skb->sk		= NULL;
2537 	} else {
2538 		BUG_ON(skb->sk);
2539 	}
2540 }
2541 
2542 /**
2543  *	skb_orphan_frags - orphan the frags contained in a buffer
2544  *	@skb: buffer to orphan frags from
2545  *	@gfp_mask: allocation mask for replacement pages
2546  *
2547  *	For each frag in the SKB which needs a destructor (i.e. has an
2548  *	owner) create a copy of that frag and release the original
2549  *	page by calling the destructor.
2550  */
2551 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2552 {
2553 	if (likely(!skb_zcopy(skb)))
2554 		return 0;
2555 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2556 		return 0;
2557 	return skb_copy_ubufs(skb, gfp_mask);
2558 }
2559 
2560 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2561 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2562 {
2563 	if (likely(!skb_zcopy(skb)))
2564 		return 0;
2565 	return skb_copy_ubufs(skb, gfp_mask);
2566 }
2567 
2568 /**
2569  *	__skb_queue_purge - empty a list
2570  *	@list: list to empty
2571  *
2572  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2573  *	the list and one reference dropped. This function does not take the
2574  *	list lock and the caller must hold the relevant locks to use it.
2575  */
2576 void skb_queue_purge(struct sk_buff_head *list);
2577 static inline void __skb_queue_purge(struct sk_buff_head *list)
2578 {
2579 	struct sk_buff *skb;
2580 	while ((skb = __skb_dequeue(list)) != NULL)
2581 		kfree_skb(skb);
2582 }
2583 
2584 void skb_rbtree_purge(struct rb_root *root);
2585 
2586 void *netdev_alloc_frag(unsigned int fragsz);
2587 
2588 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2589 				   gfp_t gfp_mask);
2590 
2591 /**
2592  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2593  *	@dev: network device to receive on
2594  *	@length: length to allocate
2595  *
2596  *	Allocate a new &sk_buff and assign it a usage count of one. The
2597  *	buffer has unspecified headroom built in. Users should allocate
2598  *	the headroom they think they need without accounting for the
2599  *	built in space. The built in space is used for optimisations.
2600  *
2601  *	%NULL is returned if there is no free memory. Although this function
2602  *	allocates memory it can be called from an interrupt.
2603  */
2604 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2605 					       unsigned int length)
2606 {
2607 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2608 }
2609 
2610 /* legacy helper around __netdev_alloc_skb() */
2611 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2612 					      gfp_t gfp_mask)
2613 {
2614 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2615 }
2616 
2617 /* legacy helper around netdev_alloc_skb() */
2618 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2619 {
2620 	return netdev_alloc_skb(NULL, length);
2621 }
2622 
2623 
2624 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2625 		unsigned int length, gfp_t gfp)
2626 {
2627 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2628 
2629 	if (NET_IP_ALIGN && skb)
2630 		skb_reserve(skb, NET_IP_ALIGN);
2631 	return skb;
2632 }
2633 
2634 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2635 		unsigned int length)
2636 {
2637 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2638 }
2639 
2640 static inline void skb_free_frag(void *addr)
2641 {
2642 	page_frag_free(addr);
2643 }
2644 
2645 void *napi_alloc_frag(unsigned int fragsz);
2646 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2647 				 unsigned int length, gfp_t gfp_mask);
2648 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2649 					     unsigned int length)
2650 {
2651 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2652 }
2653 void napi_consume_skb(struct sk_buff *skb, int budget);
2654 
2655 void __kfree_skb_flush(void);
2656 void __kfree_skb_defer(struct sk_buff *skb);
2657 
2658 /**
2659  * __dev_alloc_pages - allocate page for network Rx
2660  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2661  * @order: size of the allocation
2662  *
2663  * Allocate a new page.
2664  *
2665  * %NULL is returned if there is no free memory.
2666 */
2667 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2668 					     unsigned int order)
2669 {
2670 	/* This piece of code contains several assumptions.
2671 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2672 	 * 2.  The expectation is the user wants a compound page.
2673 	 * 3.  If requesting a order 0 page it will not be compound
2674 	 *     due to the check to see if order has a value in prep_new_page
2675 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2676 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2677 	 */
2678 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2679 
2680 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2681 }
2682 
2683 static inline struct page *dev_alloc_pages(unsigned int order)
2684 {
2685 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2686 }
2687 
2688 /**
2689  * __dev_alloc_page - allocate a page for network Rx
2690  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2691  *
2692  * Allocate a new page.
2693  *
2694  * %NULL is returned if there is no free memory.
2695  */
2696 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2697 {
2698 	return __dev_alloc_pages(gfp_mask, 0);
2699 }
2700 
2701 static inline struct page *dev_alloc_page(void)
2702 {
2703 	return dev_alloc_pages(0);
2704 }
2705 
2706 /**
2707  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2708  *	@page: The page that was allocated from skb_alloc_page
2709  *	@skb: The skb that may need pfmemalloc set
2710  */
2711 static inline void skb_propagate_pfmemalloc(struct page *page,
2712 					     struct sk_buff *skb)
2713 {
2714 	if (page_is_pfmemalloc(page))
2715 		skb->pfmemalloc = true;
2716 }
2717 
2718 /**
2719  * skb_frag_page - retrieve the page referred to by a paged fragment
2720  * @frag: the paged fragment
2721  *
2722  * Returns the &struct page associated with @frag.
2723  */
2724 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2725 {
2726 	return frag->page.p;
2727 }
2728 
2729 /**
2730  * __skb_frag_ref - take an addition reference on a paged fragment.
2731  * @frag: the paged fragment
2732  *
2733  * Takes an additional reference on the paged fragment @frag.
2734  */
2735 static inline void __skb_frag_ref(skb_frag_t *frag)
2736 {
2737 	get_page(skb_frag_page(frag));
2738 }
2739 
2740 /**
2741  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2742  * @skb: the buffer
2743  * @f: the fragment offset.
2744  *
2745  * Takes an additional reference on the @f'th paged fragment of @skb.
2746  */
2747 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2748 {
2749 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2750 }
2751 
2752 /**
2753  * __skb_frag_unref - release a reference on a paged fragment.
2754  * @frag: the paged fragment
2755  *
2756  * Releases a reference on the paged fragment @frag.
2757  */
2758 static inline void __skb_frag_unref(skb_frag_t *frag)
2759 {
2760 	put_page(skb_frag_page(frag));
2761 }
2762 
2763 /**
2764  * skb_frag_unref - release a reference on a paged fragment of an skb.
2765  * @skb: the buffer
2766  * @f: the fragment offset
2767  *
2768  * Releases a reference on the @f'th paged fragment of @skb.
2769  */
2770 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2771 {
2772 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2773 }
2774 
2775 /**
2776  * skb_frag_address - gets the address of the data contained in a paged fragment
2777  * @frag: the paged fragment buffer
2778  *
2779  * Returns the address of the data within @frag. The page must already
2780  * be mapped.
2781  */
2782 static inline void *skb_frag_address(const skb_frag_t *frag)
2783 {
2784 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2785 }
2786 
2787 /**
2788  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2789  * @frag: the paged fragment buffer
2790  *
2791  * Returns the address of the data within @frag. Checks that the page
2792  * is mapped and returns %NULL otherwise.
2793  */
2794 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2795 {
2796 	void *ptr = page_address(skb_frag_page(frag));
2797 	if (unlikely(!ptr))
2798 		return NULL;
2799 
2800 	return ptr + frag->page_offset;
2801 }
2802 
2803 /**
2804  * __skb_frag_set_page - sets the page contained in a paged fragment
2805  * @frag: the paged fragment
2806  * @page: the page to set
2807  *
2808  * Sets the fragment @frag to contain @page.
2809  */
2810 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2811 {
2812 	frag->page.p = page;
2813 }
2814 
2815 /**
2816  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2817  * @skb: the buffer
2818  * @f: the fragment offset
2819  * @page: the page to set
2820  *
2821  * Sets the @f'th fragment of @skb to contain @page.
2822  */
2823 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2824 				     struct page *page)
2825 {
2826 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2827 }
2828 
2829 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2830 
2831 /**
2832  * skb_frag_dma_map - maps a paged fragment via the DMA API
2833  * @dev: the device to map the fragment to
2834  * @frag: the paged fragment to map
2835  * @offset: the offset within the fragment (starting at the
2836  *          fragment's own offset)
2837  * @size: the number of bytes to map
2838  * @dir: the direction of the mapping (``PCI_DMA_*``)
2839  *
2840  * Maps the page associated with @frag to @device.
2841  */
2842 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2843 					  const skb_frag_t *frag,
2844 					  size_t offset, size_t size,
2845 					  enum dma_data_direction dir)
2846 {
2847 	return dma_map_page(dev, skb_frag_page(frag),
2848 			    frag->page_offset + offset, size, dir);
2849 }
2850 
2851 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2852 					gfp_t gfp_mask)
2853 {
2854 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2855 }
2856 
2857 
2858 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2859 						  gfp_t gfp_mask)
2860 {
2861 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2862 }
2863 
2864 
2865 /**
2866  *	skb_clone_writable - is the header of a clone writable
2867  *	@skb: buffer to check
2868  *	@len: length up to which to write
2869  *
2870  *	Returns true if modifying the header part of the cloned buffer
2871  *	does not requires the data to be copied.
2872  */
2873 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2874 {
2875 	return !skb_header_cloned(skb) &&
2876 	       skb_headroom(skb) + len <= skb->hdr_len;
2877 }
2878 
2879 static inline int skb_try_make_writable(struct sk_buff *skb,
2880 					unsigned int write_len)
2881 {
2882 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2883 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2884 }
2885 
2886 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2887 			    int cloned)
2888 {
2889 	int delta = 0;
2890 
2891 	if (headroom > skb_headroom(skb))
2892 		delta = headroom - skb_headroom(skb);
2893 
2894 	if (delta || cloned)
2895 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2896 					GFP_ATOMIC);
2897 	return 0;
2898 }
2899 
2900 /**
2901  *	skb_cow - copy header of skb when it is required
2902  *	@skb: buffer to cow
2903  *	@headroom: needed headroom
2904  *
2905  *	If the skb passed lacks sufficient headroom or its data part
2906  *	is shared, data is reallocated. If reallocation fails, an error
2907  *	is returned and original skb is not changed.
2908  *
2909  *	The result is skb with writable area skb->head...skb->tail
2910  *	and at least @headroom of space at head.
2911  */
2912 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2913 {
2914 	return __skb_cow(skb, headroom, skb_cloned(skb));
2915 }
2916 
2917 /**
2918  *	skb_cow_head - skb_cow but only making the head writable
2919  *	@skb: buffer to cow
2920  *	@headroom: needed headroom
2921  *
2922  *	This function is identical to skb_cow except that we replace the
2923  *	skb_cloned check by skb_header_cloned.  It should be used when
2924  *	you only need to push on some header and do not need to modify
2925  *	the data.
2926  */
2927 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2928 {
2929 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2930 }
2931 
2932 /**
2933  *	skb_padto	- pad an skbuff up to a minimal size
2934  *	@skb: buffer to pad
2935  *	@len: minimal length
2936  *
2937  *	Pads up a buffer to ensure the trailing bytes exist and are
2938  *	blanked. If the buffer already contains sufficient data it
2939  *	is untouched. Otherwise it is extended. Returns zero on
2940  *	success. The skb is freed on error.
2941  */
2942 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2943 {
2944 	unsigned int size = skb->len;
2945 	if (likely(size >= len))
2946 		return 0;
2947 	return skb_pad(skb, len - size);
2948 }
2949 
2950 /**
2951  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2952  *	@skb: buffer to pad
2953  *	@len: minimal length
2954  *	@free_on_error: free buffer on error
2955  *
2956  *	Pads up a buffer to ensure the trailing bytes exist and are
2957  *	blanked. If the buffer already contains sufficient data it
2958  *	is untouched. Otherwise it is extended. Returns zero on
2959  *	success. The skb is freed on error if @free_on_error is true.
2960  */
2961 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2962 				  bool free_on_error)
2963 {
2964 	unsigned int size = skb->len;
2965 
2966 	if (unlikely(size < len)) {
2967 		len -= size;
2968 		if (__skb_pad(skb, len, free_on_error))
2969 			return -ENOMEM;
2970 		__skb_put(skb, len);
2971 	}
2972 	return 0;
2973 }
2974 
2975 /**
2976  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2977  *	@skb: buffer to pad
2978  *	@len: minimal length
2979  *
2980  *	Pads up a buffer to ensure the trailing bytes exist and are
2981  *	blanked. If the buffer already contains sufficient data it
2982  *	is untouched. Otherwise it is extended. Returns zero on
2983  *	success. The skb is freed on error.
2984  */
2985 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2986 {
2987 	return __skb_put_padto(skb, len, true);
2988 }
2989 
2990 static inline int skb_add_data(struct sk_buff *skb,
2991 			       struct iov_iter *from, int copy)
2992 {
2993 	const int off = skb->len;
2994 
2995 	if (skb->ip_summed == CHECKSUM_NONE) {
2996 		__wsum csum = 0;
2997 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2998 					         &csum, from)) {
2999 			skb->csum = csum_block_add(skb->csum, csum, off);
3000 			return 0;
3001 		}
3002 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3003 		return 0;
3004 
3005 	__skb_trim(skb, off);
3006 	return -EFAULT;
3007 }
3008 
3009 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3010 				    const struct page *page, int off)
3011 {
3012 	if (skb_zcopy(skb))
3013 		return false;
3014 	if (i) {
3015 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3016 
3017 		return page == skb_frag_page(frag) &&
3018 		       off == frag->page_offset + skb_frag_size(frag);
3019 	}
3020 	return false;
3021 }
3022 
3023 static inline int __skb_linearize(struct sk_buff *skb)
3024 {
3025 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3026 }
3027 
3028 /**
3029  *	skb_linearize - convert paged skb to linear one
3030  *	@skb: buffer to linarize
3031  *
3032  *	If there is no free memory -ENOMEM is returned, otherwise zero
3033  *	is returned and the old skb data released.
3034  */
3035 static inline int skb_linearize(struct sk_buff *skb)
3036 {
3037 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3038 }
3039 
3040 /**
3041  * skb_has_shared_frag - can any frag be overwritten
3042  * @skb: buffer to test
3043  *
3044  * Return true if the skb has at least one frag that might be modified
3045  * by an external entity (as in vmsplice()/sendfile())
3046  */
3047 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3048 {
3049 	return skb_is_nonlinear(skb) &&
3050 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3051 }
3052 
3053 /**
3054  *	skb_linearize_cow - make sure skb is linear and writable
3055  *	@skb: buffer to process
3056  *
3057  *	If there is no free memory -ENOMEM is returned, otherwise zero
3058  *	is returned and the old skb data released.
3059  */
3060 static inline int skb_linearize_cow(struct sk_buff *skb)
3061 {
3062 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3063 	       __skb_linearize(skb) : 0;
3064 }
3065 
3066 static __always_inline void
3067 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3068 		     unsigned int off)
3069 {
3070 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3071 		skb->csum = csum_block_sub(skb->csum,
3072 					   csum_partial(start, len, 0), off);
3073 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3074 		 skb_checksum_start_offset(skb) < 0)
3075 		skb->ip_summed = CHECKSUM_NONE;
3076 }
3077 
3078 /**
3079  *	skb_postpull_rcsum - update checksum for received skb after pull
3080  *	@skb: buffer to update
3081  *	@start: start of data before pull
3082  *	@len: length of data pulled
3083  *
3084  *	After doing a pull on a received packet, you need to call this to
3085  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3086  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3087  */
3088 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3089 				      const void *start, unsigned int len)
3090 {
3091 	__skb_postpull_rcsum(skb, start, len, 0);
3092 }
3093 
3094 static __always_inline void
3095 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3096 		     unsigned int off)
3097 {
3098 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3099 		skb->csum = csum_block_add(skb->csum,
3100 					   csum_partial(start, len, 0), off);
3101 }
3102 
3103 /**
3104  *	skb_postpush_rcsum - update checksum for received skb after push
3105  *	@skb: buffer to update
3106  *	@start: start of data after push
3107  *	@len: length of data pushed
3108  *
3109  *	After doing a push on a received packet, you need to call this to
3110  *	update the CHECKSUM_COMPLETE checksum.
3111  */
3112 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3113 				      const void *start, unsigned int len)
3114 {
3115 	__skb_postpush_rcsum(skb, start, len, 0);
3116 }
3117 
3118 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3119 
3120 /**
3121  *	skb_push_rcsum - push skb and update receive checksum
3122  *	@skb: buffer to update
3123  *	@len: length of data pulled
3124  *
3125  *	This function performs an skb_push on the packet and updates
3126  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3127  *	receive path processing instead of skb_push unless you know
3128  *	that the checksum difference is zero (e.g., a valid IP header)
3129  *	or you are setting ip_summed to CHECKSUM_NONE.
3130  */
3131 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3132 {
3133 	skb_push(skb, len);
3134 	skb_postpush_rcsum(skb, skb->data, len);
3135 	return skb->data;
3136 }
3137 
3138 /**
3139  *	pskb_trim_rcsum - trim received skb and update checksum
3140  *	@skb: buffer to trim
3141  *	@len: new length
3142  *
3143  *	This is exactly the same as pskb_trim except that it ensures the
3144  *	checksum of received packets are still valid after the operation.
3145  */
3146 
3147 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3148 {
3149 	if (likely(len >= skb->len))
3150 		return 0;
3151 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3152 		skb->ip_summed = CHECKSUM_NONE;
3153 	return __pskb_trim(skb, len);
3154 }
3155 
3156 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3157 {
3158 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3159 		skb->ip_summed = CHECKSUM_NONE;
3160 	__skb_trim(skb, len);
3161 	return 0;
3162 }
3163 
3164 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3165 {
3166 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3167 		skb->ip_summed = CHECKSUM_NONE;
3168 	return __skb_grow(skb, len);
3169 }
3170 
3171 #define skb_queue_walk(queue, skb) \
3172 		for (skb = (queue)->next;					\
3173 		     skb != (struct sk_buff *)(queue);				\
3174 		     skb = skb->next)
3175 
3176 #define skb_queue_walk_safe(queue, skb, tmp)					\
3177 		for (skb = (queue)->next, tmp = skb->next;			\
3178 		     skb != (struct sk_buff *)(queue);				\
3179 		     skb = tmp, tmp = skb->next)
3180 
3181 #define skb_queue_walk_from(queue, skb)						\
3182 		for (; skb != (struct sk_buff *)(queue);			\
3183 		     skb = skb->next)
3184 
3185 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3186 		for (tmp = skb->next;						\
3187 		     skb != (struct sk_buff *)(queue);				\
3188 		     skb = tmp, tmp = skb->next)
3189 
3190 #define skb_queue_reverse_walk(queue, skb) \
3191 		for (skb = (queue)->prev;					\
3192 		     skb != (struct sk_buff *)(queue);				\
3193 		     skb = skb->prev)
3194 
3195 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3196 		for (skb = (queue)->prev, tmp = skb->prev;			\
3197 		     skb != (struct sk_buff *)(queue);				\
3198 		     skb = tmp, tmp = skb->prev)
3199 
3200 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3201 		for (tmp = skb->prev;						\
3202 		     skb != (struct sk_buff *)(queue);				\
3203 		     skb = tmp, tmp = skb->prev)
3204 
3205 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3206 {
3207 	return skb_shinfo(skb)->frag_list != NULL;
3208 }
3209 
3210 static inline void skb_frag_list_init(struct sk_buff *skb)
3211 {
3212 	skb_shinfo(skb)->frag_list = NULL;
3213 }
3214 
3215 #define skb_walk_frags(skb, iter)	\
3216 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3217 
3218 
3219 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3220 				const struct sk_buff *skb);
3221 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3222 					  struct sk_buff_head *queue,
3223 					  unsigned int flags,
3224 					  void (*destructor)(struct sock *sk,
3225 							   struct sk_buff *skb),
3226 					  int *peeked, int *off, int *err,
3227 					  struct sk_buff **last);
3228 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3229 					void (*destructor)(struct sock *sk,
3230 							   struct sk_buff *skb),
3231 					int *peeked, int *off, int *err,
3232 					struct sk_buff **last);
3233 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3234 				    void (*destructor)(struct sock *sk,
3235 						       struct sk_buff *skb),
3236 				    int *peeked, int *off, int *err);
3237 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3238 				  int *err);
3239 unsigned int datagram_poll(struct file *file, struct socket *sock,
3240 			   struct poll_table_struct *wait);
3241 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3242 			   struct iov_iter *to, int size);
3243 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3244 					struct msghdr *msg, int size)
3245 {
3246 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3247 }
3248 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3249 				   struct msghdr *msg);
3250 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3251 				 struct iov_iter *from, int len);
3252 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3253 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3254 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3255 static inline void skb_free_datagram_locked(struct sock *sk,
3256 					    struct sk_buff *skb)
3257 {
3258 	__skb_free_datagram_locked(sk, skb, 0);
3259 }
3260 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3261 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3262 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3263 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3264 			      int len, __wsum csum);
3265 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3266 		    struct pipe_inode_info *pipe, unsigned int len,
3267 		    unsigned int flags);
3268 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3269 			 int len);
3270 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3271 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3272 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3273 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3274 		 int len, int hlen);
3275 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3276 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3277 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3278 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3279 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3280 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3281 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3282 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3283 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3284 int skb_vlan_pop(struct sk_buff *skb);
3285 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3286 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3287 			     gfp_t gfp);
3288 
3289 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3290 {
3291 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3292 }
3293 
3294 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3295 {
3296 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3297 }
3298 
3299 struct skb_checksum_ops {
3300 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3301 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3302 };
3303 
3304 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3305 
3306 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3307 		      __wsum csum, const struct skb_checksum_ops *ops);
3308 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3309 		    __wsum csum);
3310 
3311 static inline void * __must_check
3312 __skb_header_pointer(const struct sk_buff *skb, int offset,
3313 		     int len, void *data, int hlen, void *buffer)
3314 {
3315 	if (hlen - offset >= len)
3316 		return data + offset;
3317 
3318 	if (!skb ||
3319 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3320 		return NULL;
3321 
3322 	return buffer;
3323 }
3324 
3325 static inline void * __must_check
3326 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3327 {
3328 	return __skb_header_pointer(skb, offset, len, skb->data,
3329 				    skb_headlen(skb), buffer);
3330 }
3331 
3332 /**
3333  *	skb_needs_linearize - check if we need to linearize a given skb
3334  *			      depending on the given device features.
3335  *	@skb: socket buffer to check
3336  *	@features: net device features
3337  *
3338  *	Returns true if either:
3339  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3340  *	2. skb is fragmented and the device does not support SG.
3341  */
3342 static inline bool skb_needs_linearize(struct sk_buff *skb,
3343 				       netdev_features_t features)
3344 {
3345 	return skb_is_nonlinear(skb) &&
3346 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3347 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3348 }
3349 
3350 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3351 					     void *to,
3352 					     const unsigned int len)
3353 {
3354 	memcpy(to, skb->data, len);
3355 }
3356 
3357 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3358 						    const int offset, void *to,
3359 						    const unsigned int len)
3360 {
3361 	memcpy(to, skb->data + offset, len);
3362 }
3363 
3364 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3365 					   const void *from,
3366 					   const unsigned int len)
3367 {
3368 	memcpy(skb->data, from, len);
3369 }
3370 
3371 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3372 						  const int offset,
3373 						  const void *from,
3374 						  const unsigned int len)
3375 {
3376 	memcpy(skb->data + offset, from, len);
3377 }
3378 
3379 void skb_init(void);
3380 
3381 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3382 {
3383 	return skb->tstamp;
3384 }
3385 
3386 /**
3387  *	skb_get_timestamp - get timestamp from a skb
3388  *	@skb: skb to get stamp from
3389  *	@stamp: pointer to struct timeval to store stamp in
3390  *
3391  *	Timestamps are stored in the skb as offsets to a base timestamp.
3392  *	This function converts the offset back to a struct timeval and stores
3393  *	it in stamp.
3394  */
3395 static inline void skb_get_timestamp(const struct sk_buff *skb,
3396 				     struct timeval *stamp)
3397 {
3398 	*stamp = ktime_to_timeval(skb->tstamp);
3399 }
3400 
3401 static inline void skb_get_timestampns(const struct sk_buff *skb,
3402 				       struct timespec *stamp)
3403 {
3404 	*stamp = ktime_to_timespec(skb->tstamp);
3405 }
3406 
3407 static inline void __net_timestamp(struct sk_buff *skb)
3408 {
3409 	skb->tstamp = ktime_get_real();
3410 }
3411 
3412 static inline ktime_t net_timedelta(ktime_t t)
3413 {
3414 	return ktime_sub(ktime_get_real(), t);
3415 }
3416 
3417 static inline ktime_t net_invalid_timestamp(void)
3418 {
3419 	return 0;
3420 }
3421 
3422 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3423 
3424 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3425 
3426 void skb_clone_tx_timestamp(struct sk_buff *skb);
3427 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3428 
3429 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3430 
3431 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3432 {
3433 }
3434 
3435 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3436 {
3437 	return false;
3438 }
3439 
3440 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3441 
3442 /**
3443  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3444  *
3445  * PHY drivers may accept clones of transmitted packets for
3446  * timestamping via their phy_driver.txtstamp method. These drivers
3447  * must call this function to return the skb back to the stack with a
3448  * timestamp.
3449  *
3450  * @skb: clone of the the original outgoing packet
3451  * @hwtstamps: hardware time stamps
3452  *
3453  */
3454 void skb_complete_tx_timestamp(struct sk_buff *skb,
3455 			       struct skb_shared_hwtstamps *hwtstamps);
3456 
3457 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3458 		     struct skb_shared_hwtstamps *hwtstamps,
3459 		     struct sock *sk, int tstype);
3460 
3461 /**
3462  * skb_tstamp_tx - queue clone of skb with send time stamps
3463  * @orig_skb:	the original outgoing packet
3464  * @hwtstamps:	hardware time stamps, may be NULL if not available
3465  *
3466  * If the skb has a socket associated, then this function clones the
3467  * skb (thus sharing the actual data and optional structures), stores
3468  * the optional hardware time stamping information (if non NULL) or
3469  * generates a software time stamp (otherwise), then queues the clone
3470  * to the error queue of the socket.  Errors are silently ignored.
3471  */
3472 void skb_tstamp_tx(struct sk_buff *orig_skb,
3473 		   struct skb_shared_hwtstamps *hwtstamps);
3474 
3475 /**
3476  * skb_tx_timestamp() - Driver hook for transmit timestamping
3477  *
3478  * Ethernet MAC Drivers should call this function in their hard_xmit()
3479  * function immediately before giving the sk_buff to the MAC hardware.
3480  *
3481  * Specifically, one should make absolutely sure that this function is
3482  * called before TX completion of this packet can trigger.  Otherwise
3483  * the packet could potentially already be freed.
3484  *
3485  * @skb: A socket buffer.
3486  */
3487 static inline void skb_tx_timestamp(struct sk_buff *skb)
3488 {
3489 	skb_clone_tx_timestamp(skb);
3490 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3491 		skb_tstamp_tx(skb, NULL);
3492 }
3493 
3494 /**
3495  * skb_complete_wifi_ack - deliver skb with wifi status
3496  *
3497  * @skb: the original outgoing packet
3498  * @acked: ack status
3499  *
3500  */
3501 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3502 
3503 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3504 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3505 
3506 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3507 {
3508 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3509 		skb->csum_valid ||
3510 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3511 		 skb_checksum_start_offset(skb) >= 0));
3512 }
3513 
3514 /**
3515  *	skb_checksum_complete - Calculate checksum of an entire packet
3516  *	@skb: packet to process
3517  *
3518  *	This function calculates the checksum over the entire packet plus
3519  *	the value of skb->csum.  The latter can be used to supply the
3520  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3521  *	checksum.
3522  *
3523  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3524  *	this function can be used to verify that checksum on received
3525  *	packets.  In that case the function should return zero if the
3526  *	checksum is correct.  In particular, this function will return zero
3527  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3528  *	hardware has already verified the correctness of the checksum.
3529  */
3530 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3531 {
3532 	return skb_csum_unnecessary(skb) ?
3533 	       0 : __skb_checksum_complete(skb);
3534 }
3535 
3536 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3537 {
3538 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3539 		if (skb->csum_level == 0)
3540 			skb->ip_summed = CHECKSUM_NONE;
3541 		else
3542 			skb->csum_level--;
3543 	}
3544 }
3545 
3546 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3547 {
3548 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3549 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3550 			skb->csum_level++;
3551 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3552 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3553 		skb->csum_level = 0;
3554 	}
3555 }
3556 
3557 /* Check if we need to perform checksum complete validation.
3558  *
3559  * Returns true if checksum complete is needed, false otherwise
3560  * (either checksum is unnecessary or zero checksum is allowed).
3561  */
3562 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3563 						  bool zero_okay,
3564 						  __sum16 check)
3565 {
3566 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3567 		skb->csum_valid = 1;
3568 		__skb_decr_checksum_unnecessary(skb);
3569 		return false;
3570 	}
3571 
3572 	return true;
3573 }
3574 
3575 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3576  * in checksum_init.
3577  */
3578 #define CHECKSUM_BREAK 76
3579 
3580 /* Unset checksum-complete
3581  *
3582  * Unset checksum complete can be done when packet is being modified
3583  * (uncompressed for instance) and checksum-complete value is
3584  * invalidated.
3585  */
3586 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3587 {
3588 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3589 		skb->ip_summed = CHECKSUM_NONE;
3590 }
3591 
3592 /* Validate (init) checksum based on checksum complete.
3593  *
3594  * Return values:
3595  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3596  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3597  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3598  *   non-zero: value of invalid checksum
3599  *
3600  */
3601 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3602 						       bool complete,
3603 						       __wsum psum)
3604 {
3605 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3606 		if (!csum_fold(csum_add(psum, skb->csum))) {
3607 			skb->csum_valid = 1;
3608 			return 0;
3609 		}
3610 	}
3611 
3612 	skb->csum = psum;
3613 
3614 	if (complete || skb->len <= CHECKSUM_BREAK) {
3615 		__sum16 csum;
3616 
3617 		csum = __skb_checksum_complete(skb);
3618 		skb->csum_valid = !csum;
3619 		return csum;
3620 	}
3621 
3622 	return 0;
3623 }
3624 
3625 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3626 {
3627 	return 0;
3628 }
3629 
3630 /* Perform checksum validate (init). Note that this is a macro since we only
3631  * want to calculate the pseudo header which is an input function if necessary.
3632  * First we try to validate without any computation (checksum unnecessary) and
3633  * then calculate based on checksum complete calling the function to compute
3634  * pseudo header.
3635  *
3636  * Return values:
3637  *   0: checksum is validated or try to in skb_checksum_complete
3638  *   non-zero: value of invalid checksum
3639  */
3640 #define __skb_checksum_validate(skb, proto, complete,			\
3641 				zero_okay, check, compute_pseudo)	\
3642 ({									\
3643 	__sum16 __ret = 0;						\
3644 	skb->csum_valid = 0;						\
3645 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3646 		__ret = __skb_checksum_validate_complete(skb,		\
3647 				complete, compute_pseudo(skb, proto));	\
3648 	__ret;								\
3649 })
3650 
3651 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3652 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3653 
3654 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3655 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3656 
3657 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3658 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3659 
3660 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3661 					 compute_pseudo)		\
3662 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3663 
3664 #define skb_checksum_simple_validate(skb)				\
3665 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3666 
3667 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3668 {
3669 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3670 }
3671 
3672 static inline void __skb_checksum_convert(struct sk_buff *skb,
3673 					  __sum16 check, __wsum pseudo)
3674 {
3675 	skb->csum = ~pseudo;
3676 	skb->ip_summed = CHECKSUM_COMPLETE;
3677 }
3678 
3679 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3680 do {									\
3681 	if (__skb_checksum_convert_check(skb))				\
3682 		__skb_checksum_convert(skb, check,			\
3683 				       compute_pseudo(skb, proto));	\
3684 } while (0)
3685 
3686 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3687 					      u16 start, u16 offset)
3688 {
3689 	skb->ip_summed = CHECKSUM_PARTIAL;
3690 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3691 	skb->csum_offset = offset - start;
3692 }
3693 
3694 /* Update skbuf and packet to reflect the remote checksum offload operation.
3695  * When called, ptr indicates the starting point for skb->csum when
3696  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3697  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3698  */
3699 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3700 				       int start, int offset, bool nopartial)
3701 {
3702 	__wsum delta;
3703 
3704 	if (!nopartial) {
3705 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3706 		return;
3707 	}
3708 
3709 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3710 		__skb_checksum_complete(skb);
3711 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3712 	}
3713 
3714 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3715 
3716 	/* Adjust skb->csum since we changed the packet */
3717 	skb->csum = csum_add(skb->csum, delta);
3718 }
3719 
3720 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3721 {
3722 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3723 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3724 #else
3725 	return NULL;
3726 #endif
3727 }
3728 
3729 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3730 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3731 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3732 {
3733 	if (nfct && atomic_dec_and_test(&nfct->use))
3734 		nf_conntrack_destroy(nfct);
3735 }
3736 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3737 {
3738 	if (nfct)
3739 		atomic_inc(&nfct->use);
3740 }
3741 #endif
3742 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3743 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3744 {
3745 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3746 		kfree(nf_bridge);
3747 }
3748 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3749 {
3750 	if (nf_bridge)
3751 		refcount_inc(&nf_bridge->use);
3752 }
3753 #endif /* CONFIG_BRIDGE_NETFILTER */
3754 static inline void nf_reset(struct sk_buff *skb)
3755 {
3756 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3757 	nf_conntrack_put(skb_nfct(skb));
3758 	skb->_nfct = 0;
3759 #endif
3760 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3761 	nf_bridge_put(skb->nf_bridge);
3762 	skb->nf_bridge = NULL;
3763 #endif
3764 }
3765 
3766 static inline void nf_reset_trace(struct sk_buff *skb)
3767 {
3768 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3769 	skb->nf_trace = 0;
3770 #endif
3771 }
3772 
3773 /* Note: This doesn't put any conntrack and bridge info in dst. */
3774 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3775 			     bool copy)
3776 {
3777 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3778 	dst->_nfct = src->_nfct;
3779 	nf_conntrack_get(skb_nfct(src));
3780 #endif
3781 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3782 	dst->nf_bridge  = src->nf_bridge;
3783 	nf_bridge_get(src->nf_bridge);
3784 #endif
3785 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3786 	if (copy)
3787 		dst->nf_trace = src->nf_trace;
3788 #endif
3789 }
3790 
3791 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3792 {
3793 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3794 	nf_conntrack_put(skb_nfct(dst));
3795 #endif
3796 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3797 	nf_bridge_put(dst->nf_bridge);
3798 #endif
3799 	__nf_copy(dst, src, true);
3800 }
3801 
3802 #ifdef CONFIG_NETWORK_SECMARK
3803 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3804 {
3805 	to->secmark = from->secmark;
3806 }
3807 
3808 static inline void skb_init_secmark(struct sk_buff *skb)
3809 {
3810 	skb->secmark = 0;
3811 }
3812 #else
3813 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3814 { }
3815 
3816 static inline void skb_init_secmark(struct sk_buff *skb)
3817 { }
3818 #endif
3819 
3820 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3821 {
3822 	return !skb->destructor &&
3823 #if IS_ENABLED(CONFIG_XFRM)
3824 		!skb->sp &&
3825 #endif
3826 		!skb_nfct(skb) &&
3827 		!skb->_skb_refdst &&
3828 		!skb_has_frag_list(skb);
3829 }
3830 
3831 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3832 {
3833 	skb->queue_mapping = queue_mapping;
3834 }
3835 
3836 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3837 {
3838 	return skb->queue_mapping;
3839 }
3840 
3841 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3842 {
3843 	to->queue_mapping = from->queue_mapping;
3844 }
3845 
3846 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3847 {
3848 	skb->queue_mapping = rx_queue + 1;
3849 }
3850 
3851 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3852 {
3853 	return skb->queue_mapping - 1;
3854 }
3855 
3856 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3857 {
3858 	return skb->queue_mapping != 0;
3859 }
3860 
3861 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3862 {
3863 	skb->dst_pending_confirm = val;
3864 }
3865 
3866 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3867 {
3868 	return skb->dst_pending_confirm != 0;
3869 }
3870 
3871 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3872 {
3873 #ifdef CONFIG_XFRM
3874 	return skb->sp;
3875 #else
3876 	return NULL;
3877 #endif
3878 }
3879 
3880 /* Keeps track of mac header offset relative to skb->head.
3881  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3882  * For non-tunnel skb it points to skb_mac_header() and for
3883  * tunnel skb it points to outer mac header.
3884  * Keeps track of level of encapsulation of network headers.
3885  */
3886 struct skb_gso_cb {
3887 	union {
3888 		int	mac_offset;
3889 		int	data_offset;
3890 	};
3891 	int	encap_level;
3892 	__wsum	csum;
3893 	__u16	csum_start;
3894 };
3895 #define SKB_SGO_CB_OFFSET	32
3896 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3897 
3898 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3899 {
3900 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3901 		SKB_GSO_CB(inner_skb)->mac_offset;
3902 }
3903 
3904 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3905 {
3906 	int new_headroom, headroom;
3907 	int ret;
3908 
3909 	headroom = skb_headroom(skb);
3910 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3911 	if (ret)
3912 		return ret;
3913 
3914 	new_headroom = skb_headroom(skb);
3915 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3916 	return 0;
3917 }
3918 
3919 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3920 {
3921 	/* Do not update partial checksums if remote checksum is enabled. */
3922 	if (skb->remcsum_offload)
3923 		return;
3924 
3925 	SKB_GSO_CB(skb)->csum = res;
3926 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3927 }
3928 
3929 /* Compute the checksum for a gso segment. First compute the checksum value
3930  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3931  * then add in skb->csum (checksum from csum_start to end of packet).
3932  * skb->csum and csum_start are then updated to reflect the checksum of the
3933  * resultant packet starting from the transport header-- the resultant checksum
3934  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3935  * header.
3936  */
3937 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3938 {
3939 	unsigned char *csum_start = skb_transport_header(skb);
3940 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3941 	__wsum partial = SKB_GSO_CB(skb)->csum;
3942 
3943 	SKB_GSO_CB(skb)->csum = res;
3944 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3945 
3946 	return csum_fold(csum_partial(csum_start, plen, partial));
3947 }
3948 
3949 static inline bool skb_is_gso(const struct sk_buff *skb)
3950 {
3951 	return skb_shinfo(skb)->gso_size;
3952 }
3953 
3954 /* Note: Should be called only if skb_is_gso(skb) is true */
3955 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3956 {
3957 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3958 }
3959 
3960 static inline void skb_gso_reset(struct sk_buff *skb)
3961 {
3962 	skb_shinfo(skb)->gso_size = 0;
3963 	skb_shinfo(skb)->gso_segs = 0;
3964 	skb_shinfo(skb)->gso_type = 0;
3965 }
3966 
3967 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3968 
3969 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3970 {
3971 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3972 	 * wanted then gso_type will be set. */
3973 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3974 
3975 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3976 	    unlikely(shinfo->gso_type == 0)) {
3977 		__skb_warn_lro_forwarding(skb);
3978 		return true;
3979 	}
3980 	return false;
3981 }
3982 
3983 static inline void skb_forward_csum(struct sk_buff *skb)
3984 {
3985 	/* Unfortunately we don't support this one.  Any brave souls? */
3986 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3987 		skb->ip_summed = CHECKSUM_NONE;
3988 }
3989 
3990 /**
3991  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3992  * @skb: skb to check
3993  *
3994  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3995  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3996  * use this helper, to document places where we make this assertion.
3997  */
3998 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3999 {
4000 #ifdef DEBUG
4001 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4002 #endif
4003 }
4004 
4005 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4006 
4007 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4008 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4009 				     unsigned int transport_len,
4010 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4011 
4012 /**
4013  * skb_head_is_locked - Determine if the skb->head is locked down
4014  * @skb: skb to check
4015  *
4016  * The head on skbs build around a head frag can be removed if they are
4017  * not cloned.  This function returns true if the skb head is locked down
4018  * due to either being allocated via kmalloc, or by being a clone with
4019  * multiple references to the head.
4020  */
4021 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4022 {
4023 	return !skb->head_frag || skb_cloned(skb);
4024 }
4025 
4026 /**
4027  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4028  *
4029  * @skb: GSO skb
4030  *
4031  * skb_gso_network_seglen is used to determine the real size of the
4032  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4033  *
4034  * The MAC/L2 header is not accounted for.
4035  */
4036 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4037 {
4038 	unsigned int hdr_len = skb_transport_header(skb) -
4039 			       skb_network_header(skb);
4040 	return hdr_len + skb_gso_transport_seglen(skb);
4041 }
4042 
4043 /* Local Checksum Offload.
4044  * Compute outer checksum based on the assumption that the
4045  * inner checksum will be offloaded later.
4046  * See Documentation/networking/checksum-offloads.txt for
4047  * explanation of how this works.
4048  * Fill in outer checksum adjustment (e.g. with sum of outer
4049  * pseudo-header) before calling.
4050  * Also ensure that inner checksum is in linear data area.
4051  */
4052 static inline __wsum lco_csum(struct sk_buff *skb)
4053 {
4054 	unsigned char *csum_start = skb_checksum_start(skb);
4055 	unsigned char *l4_hdr = skb_transport_header(skb);
4056 	__wsum partial;
4057 
4058 	/* Start with complement of inner checksum adjustment */
4059 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4060 						    skb->csum_offset));
4061 
4062 	/* Add in checksum of our headers (incl. outer checksum
4063 	 * adjustment filled in by caller) and return result.
4064 	 */
4065 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4066 }
4067 
4068 #endif	/* __KERNEL__ */
4069 #endif	/* _LINUX_SKBUFF_H */
4070