xref: /linux-6.15/include/linux/skbuff.h (revision 3be0d950)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 
41 /**
42  * DOC: skb checksums
43  *
44  * The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * IP checksum related features
48  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * .. flat-table:: Checksum related device features
56  *   :widths: 1 10
57  *
58  *   * - %NETIF_F_HW_CSUM
59  *     - The driver (or its device) is able to compute one
60  *	 IP (one's complement) checksum for any combination
61  *	 of protocols or protocol layering. The checksum is
62  *	 computed and set in a packet per the CHECKSUM_PARTIAL
63  *	 interface (see below).
64  *
65  *   * - %NETIF_F_IP_CSUM
66  *     - Driver (device) is only able to checksum plain
67  *	 TCP or UDP packets over IPv4. These are specifically
68  *	 unencapsulated packets of the form IPv4|TCP or
69  *	 IPv4|UDP where the Protocol field in the IPv4 header
70  *	 is TCP or UDP. The IPv4 header may contain IP options.
71  *	 This feature cannot be set in features for a device
72  *	 with NETIF_F_HW_CSUM also set. This feature is being
73  *	 DEPRECATED (see below).
74  *
75  *   * - %NETIF_F_IPV6_CSUM
76  *     - Driver (device) is only able to checksum plain
77  *	 TCP or UDP packets over IPv6. These are specifically
78  *	 unencapsulated packets of the form IPv6|TCP or
79  *	 IPv6|UDP where the Next Header field in the IPv6
80  *	 header is either TCP or UDP. IPv6 extension headers
81  *	 are not supported with this feature. This feature
82  *	 cannot be set in features for a device with
83  *	 NETIF_F_HW_CSUM also set. This feature is being
84  *	 DEPRECATED (see below).
85  *
86  *   * - %NETIF_F_RXCSUM
87  *     - Driver (device) performs receive checksum offload.
88  *	 This flag is only used to disable the RX checksum
89  *	 feature for a device. The stack will accept receive
90  *	 checksum indication in packets received on a device
91  *	 regardless of whether NETIF_F_RXCSUM is set.
92  *
93  * Checksumming of received packets by device
94  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95  *
96  * Indication of checksum verification is set in &sk_buff.ip_summed.
97  * Possible values are:
98  *
99  * - %CHECKSUM_NONE
100  *
101  *   Device did not checksum this packet e.g. due to lack of capabilities.
102  *   The packet contains full (though not verified) checksum in packet but
103  *   not in skb->csum. Thus, skb->csum is undefined in this case.
104  *
105  * - %CHECKSUM_UNNECESSARY
106  *
107  *   The hardware you're dealing with doesn't calculate the full checksum
108  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
109  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
110  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
111  *   though. A driver or device must never modify the checksum field in the
112  *   packet even if checksum is verified.
113  *
114  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
115  *
116  *     - TCP: IPv6 and IPv4.
117  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
118  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
119  *       may perform further validation in this case.
120  *     - GRE: only if the checksum is present in the header.
121  *     - SCTP: indicates the CRC in SCTP header has been validated.
122  *     - FCOE: indicates the CRC in FC frame has been validated.
123  *
124  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
125  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
126  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
127  *   and a device is able to verify the checksums for UDP (possibly zero),
128  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
129  *   two. If the device were only able to verify the UDP checksum and not
130  *   GRE, either because it doesn't support GRE checksum or because GRE
131  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
132  *   not considered in this case).
133  *
134  * - %CHECKSUM_COMPLETE
135  *
136  *   This is the most generic way. The device supplied checksum of the _whole_
137  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
138  *   hardware doesn't need to parse L3/L4 headers to implement this.
139  *
140  *   Notes:
141  *
142  *   - Even if device supports only some protocols, but is able to produce
143  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
144  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
145  *
146  * - %CHECKSUM_PARTIAL
147  *
148  *   A checksum is set up to be offloaded to a device as described in the
149  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
150  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
151  *   on the same host, or it may be set in the input path in GRO or remote
152  *   checksum offload. For the purposes of checksum verification, the checksum
153  *   referred to by skb->csum_start + skb->csum_offset and any preceding
154  *   checksums in the packet are considered verified. Any checksums in the
155  *   packet that are after the checksum being offloaded are not considered to
156  *   be verified.
157  *
158  * Checksumming on transmit for non-GSO
159  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160  *
161  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
162  * Values are:
163  *
164  * - %CHECKSUM_PARTIAL
165  *
166  *   The driver is required to checksum the packet as seen by hard_start_xmit()
167  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
168  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
169  *   A driver may verify that the
170  *   csum_start and csum_offset values are valid values given the length and
171  *   offset of the packet, but it should not attempt to validate that the
172  *   checksum refers to a legitimate transport layer checksum -- it is the
173  *   purview of the stack to validate that csum_start and csum_offset are set
174  *   correctly.
175  *
176  *   When the stack requests checksum offload for a packet, the driver MUST
177  *   ensure that the checksum is set correctly. A driver can either offload the
178  *   checksum calculation to the device, or call skb_checksum_help (in the case
179  *   that the device does not support offload for a particular checksum).
180  *
181  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
182  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
183  *   checksum offload capability.
184  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
185  *   on network device checksumming capabilities: if a packet does not match
186  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
187  *   &sk_buff.csum_not_inet, see :ref:`crc`)
188  *   is called to resolve the checksum.
189  *
190  * - %CHECKSUM_NONE
191  *
192  *   The skb was already checksummed by the protocol, or a checksum is not
193  *   required.
194  *
195  * - %CHECKSUM_UNNECESSARY
196  *
197  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
198  *   output.
199  *
200  * - %CHECKSUM_COMPLETE
201  *
202  *   Not used in checksum output. If a driver observes a packet with this value
203  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
204  *
205  * .. _crc:
206  *
207  * Non-IP checksum (CRC) offloads
208  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
209  *
210  * .. flat-table::
211  *   :widths: 1 10
212  *
213  *   * - %NETIF_F_SCTP_CRC
214  *     - This feature indicates that a device is capable of
215  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
216  *	 will set csum_start and csum_offset accordingly, set ip_summed to
217  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
218  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
219  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
220  *	 must verify which offload is configured for a packet by testing the
221  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
222  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
223  *
224  *   * - %NETIF_F_FCOE_CRC
225  *     - This feature indicates that a device is capable of offloading the FCOE
226  *	 CRC in a packet. To perform this offload the stack will set ip_summed
227  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
228  *	 accordingly. Note that there is no indication in the skbuff that the
229  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
230  *	 both IP checksum offload and FCOE CRC offload must verify which offload
231  *	 is configured for a packet, presumably by inspecting packet headers.
232  *
233  * Checksumming on output with GSO
234  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
235  *
236  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
237  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
238  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
239  * part of the GSO operation is implied. If a checksum is being offloaded
240  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
241  * csum_offset are set to refer to the outermost checksum being offloaded
242  * (two offloaded checksums are possible with UDP encapsulation).
243  */
244 
245 /* Don't change this without changing skb_csum_unnecessary! */
246 #define CHECKSUM_NONE		0
247 #define CHECKSUM_UNNECESSARY	1
248 #define CHECKSUM_COMPLETE	2
249 #define CHECKSUM_PARTIAL	3
250 
251 /* Maximum value in skb->csum_level */
252 #define SKB_MAX_CSUM_LEVEL	3
253 
254 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
255 #define SKB_WITH_OVERHEAD(X)	\
256 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
257 
258 /* For X bytes available in skb->head, what is the minimal
259  * allocation needed, knowing struct skb_shared_info needs
260  * to be aligned.
261  */
262 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
263 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 
265 #define SKB_MAX_ORDER(X, ORDER) \
266 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
267 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
268 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
269 
270 /* return minimum truesize of one skb containing X bytes of data */
271 #define SKB_TRUESIZE(X) ((X) +						\
272 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
273 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
274 
275 struct ahash_request;
276 struct net_device;
277 struct scatterlist;
278 struct pipe_inode_info;
279 struct iov_iter;
280 struct napi_struct;
281 struct bpf_prog;
282 union bpf_attr;
283 struct skb_ext;
284 struct ts_config;
285 
286 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
287 struct nf_bridge_info {
288 	enum {
289 		BRNF_PROTO_UNCHANGED,
290 		BRNF_PROTO_8021Q,
291 		BRNF_PROTO_PPPOE
292 	} orig_proto:8;
293 	u8			pkt_otherhost:1;
294 	u8			in_prerouting:1;
295 	u8			bridged_dnat:1;
296 	u8			sabotage_in_done:1;
297 	__u16			frag_max_size;
298 	int			physinif;
299 
300 	/* always valid & non-NULL from FORWARD on, for physdev match */
301 	struct net_device	*physoutdev;
302 	union {
303 		/* prerouting: detect dnat in orig/reply direction */
304 		__be32          ipv4_daddr;
305 		struct in6_addr ipv6_daddr;
306 
307 		/* after prerouting + nat detected: store original source
308 		 * mac since neigh resolution overwrites it, only used while
309 		 * skb is out in neigh layer.
310 		 */
311 		char neigh_header[8];
312 	};
313 };
314 #endif
315 
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318  * ovs recirc_id. It will be set to the current chain by tc
319  * and read by ovs to recirc_id.
320  */
321 struct tc_skb_ext {
322 	union {
323 		u64 act_miss_cookie;
324 		__u32 chain;
325 	};
326 	__u16 mru;
327 	__u16 zone;
328 	u8 post_ct:1;
329 	u8 post_ct_snat:1;
330 	u8 post_ct_dnat:1;
331 	u8 act_miss:1; /* Set if act_miss_cookie is used */
332 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
333 };
334 #endif
335 
336 struct sk_buff_head {
337 	/* These two members must be first to match sk_buff. */
338 	struct_group_tagged(sk_buff_list, list,
339 		struct sk_buff	*next;
340 		struct sk_buff	*prev;
341 	);
342 
343 	__u32		qlen;
344 	spinlock_t	lock;
345 };
346 
347 struct sk_buff;
348 
349 #ifndef CONFIG_MAX_SKB_FRAGS
350 # define CONFIG_MAX_SKB_FRAGS 17
351 #endif
352 
353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
354 
355 extern int sysctl_max_skb_frags;
356 
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS	0xFFFF
361 
362 typedef struct bio_vec skb_frag_t;
363 
364 /**
365  * skb_frag_size() - Returns the size of a skb fragment
366  * @frag: skb fragment
367  */
368 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
369 {
370 	return frag->bv_len;
371 }
372 
373 /**
374  * skb_frag_size_set() - Sets the size of a skb fragment
375  * @frag: skb fragment
376  * @size: size of fragment
377  */
378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
379 {
380 	frag->bv_len = size;
381 }
382 
383 /**
384  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385  * @frag: skb fragment
386  * @delta: value to add
387  */
388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
389 {
390 	frag->bv_len += delta;
391 }
392 
393 /**
394  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395  * @frag: skb fragment
396  * @delta: value to subtract
397  */
398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
399 {
400 	frag->bv_len -= delta;
401 }
402 
403 /**
404  * skb_frag_must_loop - Test if %p is a high memory page
405  * @p: fragment's page
406  */
407 static inline bool skb_frag_must_loop(struct page *p)
408 {
409 #if defined(CONFIG_HIGHMEM)
410 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
411 		return true;
412 #endif
413 	return false;
414 }
415 
416 /**
417  *	skb_frag_foreach_page - loop over pages in a fragment
418  *
419  *	@f:		skb frag to operate on
420  *	@f_off:		offset from start of f->bv_page
421  *	@f_len:		length from f_off to loop over
422  *	@p:		(temp var) current page
423  *	@p_off:		(temp var) offset from start of current page,
424  *	                           non-zero only on first page.
425  *	@p_len:		(temp var) length in current page,
426  *				   < PAGE_SIZE only on first and last page.
427  *	@copied:	(temp var) length so far, excluding current p_len.
428  *
429  *	A fragment can hold a compound page, in which case per-page
430  *	operations, notably kmap_atomic, must be called for each
431  *	regular page.
432  */
433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
434 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
435 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
436 	     p_len = skb_frag_must_loop(p) ?				\
437 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
438 	     copied = 0;						\
439 	     copied < f_len;						\
440 	     copied += p_len, p++, p_off = 0,				\
441 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 
513 	SKBFL_DONT_ORPHAN = BIT(3),
514 
515 	/* page references are managed by the ubuf_info, so it's safe to
516 	 * use frags only up until ubuf_info is released
517 	 */
518 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520 
521 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524 
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534 	void (*callback)(struct sk_buff *, struct ubuf_info *,
535 			 bool zerocopy_success);
536 	refcount_t refcnt;
537 	u8 flags;
538 };
539 
540 struct ubuf_info_msgzc {
541 	struct ubuf_info ubuf;
542 
543 	union {
544 		struct {
545 			unsigned long desc;
546 			void *ctx;
547 		};
548 		struct {
549 			u32 id;
550 			u16 len;
551 			u16 zerocopy:1;
552 			u32 bytelen;
553 		};
554 	};
555 
556 	struct mmpin {
557 		struct user_struct *user;
558 		unsigned int num_pg;
559 	} mmp;
560 };
561 
562 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 					     ubuf)
565 
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568 
569 /* Preserve some data across TX submission and completion.
570  *
571  * Note, this state is stored in the driver. Extending the layout
572  * might need some special care.
573  */
574 struct xsk_tx_metadata_compl {
575 	__u64 *tx_timestamp;
576 };
577 
578 /* This data is invariant across clones and lives at
579  * the end of the header data, ie. at skb->end.
580  */
581 struct skb_shared_info {
582 	__u8		flags;
583 	__u8		meta_len;
584 	__u8		nr_frags;
585 	__u8		tx_flags;
586 	unsigned short	gso_size;
587 	/* Warning: this field is not always filled in (UFO)! */
588 	unsigned short	gso_segs;
589 	struct sk_buff	*frag_list;
590 	union {
591 		struct skb_shared_hwtstamps hwtstamps;
592 		struct xsk_tx_metadata_compl xsk_meta;
593 	};
594 	unsigned int	gso_type;
595 	u32		tskey;
596 
597 	/*
598 	 * Warning : all fields before dataref are cleared in __alloc_skb()
599 	 */
600 	atomic_t	dataref;
601 	unsigned int	xdp_frags_size;
602 
603 	/* Intermediate layers must ensure that destructor_arg
604 	 * remains valid until skb destructor */
605 	void *		destructor_arg;
606 
607 	/* must be last field, see pskb_expand_head() */
608 	skb_frag_t	frags[MAX_SKB_FRAGS];
609 };
610 
611 /**
612  * DOC: dataref and headerless skbs
613  *
614  * Transport layers send out clones of payload skbs they hold for
615  * retransmissions. To allow lower layers of the stack to prepend their headers
616  * we split &skb_shared_info.dataref into two halves.
617  * The lower 16 bits count the overall number of references.
618  * The higher 16 bits indicate how many of the references are payload-only.
619  * skb_header_cloned() checks if skb is allowed to add / write the headers.
620  *
621  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
622  * (via __skb_header_release()). Any clone created from marked skb will get
623  * &sk_buff.hdr_len populated with the available headroom.
624  * If there's the only clone in existence it's able to modify the headroom
625  * at will. The sequence of calls inside the transport layer is::
626  *
627  *  <alloc skb>
628  *  skb_reserve()
629  *  __skb_header_release()
630  *  skb_clone()
631  *  // send the clone down the stack
632  *
633  * This is not a very generic construct and it depends on the transport layers
634  * doing the right thing. In practice there's usually only one payload-only skb.
635  * Having multiple payload-only skbs with different lengths of hdr_len is not
636  * possible. The payload-only skbs should never leave their owner.
637  */
638 #define SKB_DATAREF_SHIFT 16
639 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
640 
641 
642 enum {
643 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
644 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
645 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
646 };
647 
648 enum {
649 	SKB_GSO_TCPV4 = 1 << 0,
650 
651 	/* This indicates the skb is from an untrusted source. */
652 	SKB_GSO_DODGY = 1 << 1,
653 
654 	/* This indicates the tcp segment has CWR set. */
655 	SKB_GSO_TCP_ECN = 1 << 2,
656 
657 	SKB_GSO_TCP_FIXEDID = 1 << 3,
658 
659 	SKB_GSO_TCPV6 = 1 << 4,
660 
661 	SKB_GSO_FCOE = 1 << 5,
662 
663 	SKB_GSO_GRE = 1 << 6,
664 
665 	SKB_GSO_GRE_CSUM = 1 << 7,
666 
667 	SKB_GSO_IPXIP4 = 1 << 8,
668 
669 	SKB_GSO_IPXIP6 = 1 << 9,
670 
671 	SKB_GSO_UDP_TUNNEL = 1 << 10,
672 
673 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
674 
675 	SKB_GSO_PARTIAL = 1 << 12,
676 
677 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
678 
679 	SKB_GSO_SCTP = 1 << 14,
680 
681 	SKB_GSO_ESP = 1 << 15,
682 
683 	SKB_GSO_UDP = 1 << 16,
684 
685 	SKB_GSO_UDP_L4 = 1 << 17,
686 
687 	SKB_GSO_FRAGLIST = 1 << 18,
688 };
689 
690 #if BITS_PER_LONG > 32
691 #define NET_SKBUFF_DATA_USES_OFFSET 1
692 #endif
693 
694 #ifdef NET_SKBUFF_DATA_USES_OFFSET
695 typedef unsigned int sk_buff_data_t;
696 #else
697 typedef unsigned char *sk_buff_data_t;
698 #endif
699 
700 /**
701  * DOC: Basic sk_buff geometry
702  *
703  * struct sk_buff itself is a metadata structure and does not hold any packet
704  * data. All the data is held in associated buffers.
705  *
706  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
707  * into two parts:
708  *
709  *  - data buffer, containing headers and sometimes payload;
710  *    this is the part of the skb operated on by the common helpers
711  *    such as skb_put() or skb_pull();
712  *  - shared info (struct skb_shared_info) which holds an array of pointers
713  *    to read-only data in the (page, offset, length) format.
714  *
715  * Optionally &skb_shared_info.frag_list may point to another skb.
716  *
717  * Basic diagram may look like this::
718  *
719  *                                  ---------------
720  *                                 | sk_buff       |
721  *                                  ---------------
722  *     ,---------------------------  + head
723  *    /          ,-----------------  + data
724  *   /          /      ,-----------  + tail
725  *  |          |      |            , + end
726  *  |          |      |           |
727  *  v          v      v           v
728  *   -----------------------------------------------
729  *  | headroom | data |  tailroom | skb_shared_info |
730  *   -----------------------------------------------
731  *                                 + [page frag]
732  *                                 + [page frag]
733  *                                 + [page frag]
734  *                                 + [page frag]       ---------
735  *                                 + frag_list    --> | sk_buff |
736  *                                                     ---------
737  *
738  */
739 
740 /**
741  *	struct sk_buff - socket buffer
742  *	@next: Next buffer in list
743  *	@prev: Previous buffer in list
744  *	@tstamp: Time we arrived/left
745  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
746  *		for retransmit timer
747  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
748  *	@list: queue head
749  *	@ll_node: anchor in an llist (eg socket defer_list)
750  *	@sk: Socket we are owned by
751  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
752  *		fragmentation management
753  *	@dev: Device we arrived on/are leaving by
754  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
755  *	@cb: Control buffer. Free for use by every layer. Put private vars here
756  *	@_skb_refdst: destination entry (with norefcount bit)
757  *	@len: Length of actual data
758  *	@data_len: Data length
759  *	@mac_len: Length of link layer header
760  *	@hdr_len: writable header length of cloned skb
761  *	@csum: Checksum (must include start/offset pair)
762  *	@csum_start: Offset from skb->head where checksumming should start
763  *	@csum_offset: Offset from csum_start where checksum should be stored
764  *	@priority: Packet queueing priority
765  *	@ignore_df: allow local fragmentation
766  *	@cloned: Head may be cloned (check refcnt to be sure)
767  *	@ip_summed: Driver fed us an IP checksum
768  *	@nohdr: Payload reference only, must not modify header
769  *	@pkt_type: Packet class
770  *	@fclone: skbuff clone status
771  *	@ipvs_property: skbuff is owned by ipvs
772  *	@inner_protocol_type: whether the inner protocol is
773  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
774  *	@remcsum_offload: remote checksum offload is enabled
775  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
776  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
777  *	@tc_skip_classify: do not classify packet. set by IFB device
778  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
779  *	@redirected: packet was redirected by packet classifier
780  *	@from_ingress: packet was redirected from the ingress path
781  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
782  *	@peeked: this packet has been seen already, so stats have been
783  *		done for it, don't do them again
784  *	@nf_trace: netfilter packet trace flag
785  *	@protocol: Packet protocol from driver
786  *	@destructor: Destruct function
787  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
788  *	@_sk_redir: socket redirection information for skmsg
789  *	@_nfct: Associated connection, if any (with nfctinfo bits)
790  *	@skb_iif: ifindex of device we arrived on
791  *	@tc_index: Traffic control index
792  *	@hash: the packet hash
793  *	@queue_mapping: Queue mapping for multiqueue devices
794  *	@head_frag: skb was allocated from page fragments,
795  *		not allocated by kmalloc() or vmalloc().
796  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
797  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
798  *		page_pool support on driver)
799  *	@active_extensions: active extensions (skb_ext_id types)
800  *	@ndisc_nodetype: router type (from link layer)
801  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
802  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
803  *		ports.
804  *	@sw_hash: indicates hash was computed in software stack
805  *	@wifi_acked_valid: wifi_acked was set
806  *	@wifi_acked: whether frame was acked on wifi or not
807  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
808  *	@encapsulation: indicates the inner headers in the skbuff are valid
809  *	@encap_hdr_csum: software checksum is needed
810  *	@csum_valid: checksum is already valid
811  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
812  *	@csum_complete_sw: checksum was completed by software
813  *	@csum_level: indicates the number of consecutive checksums found in
814  *		the packet minus one that have been verified as
815  *		CHECKSUM_UNNECESSARY (max 3)
816  *	@dst_pending_confirm: need to confirm neighbour
817  *	@decrypted: Decrypted SKB
818  *	@slow_gro: state present at GRO time, slower prepare step required
819  *	@mono_delivery_time: When set, skb->tstamp has the
820  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
821  *		skb->tstamp has the (rcv) timestamp at ingress and
822  *		delivery_time at egress.
823  *	@napi_id: id of the NAPI struct this skb came from
824  *	@sender_cpu: (aka @napi_id) source CPU in XPS
825  *	@alloc_cpu: CPU which did the skb allocation.
826  *	@secmark: security marking
827  *	@mark: Generic packet mark
828  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
829  *		at the tail of an sk_buff
830  *	@vlan_all: vlan fields (proto & tci)
831  *	@vlan_proto: vlan encapsulation protocol
832  *	@vlan_tci: vlan tag control information
833  *	@inner_protocol: Protocol (encapsulation)
834  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
835  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
836  *	@inner_transport_header: Inner transport layer header (encapsulation)
837  *	@inner_network_header: Network layer header (encapsulation)
838  *	@inner_mac_header: Link layer header (encapsulation)
839  *	@transport_header: Transport layer header
840  *	@network_header: Network layer header
841  *	@mac_header: Link layer header
842  *	@kcov_handle: KCOV remote handle for remote coverage collection
843  *	@tail: Tail pointer
844  *	@end: End pointer
845  *	@head: Head of buffer
846  *	@data: Data head pointer
847  *	@truesize: Buffer size
848  *	@users: User count - see {datagram,tcp}.c
849  *	@extensions: allocated extensions, valid if active_extensions is nonzero
850  */
851 
852 struct sk_buff {
853 	union {
854 		struct {
855 			/* These two members must be first to match sk_buff_head. */
856 			struct sk_buff		*next;
857 			struct sk_buff		*prev;
858 
859 			union {
860 				struct net_device	*dev;
861 				/* Some protocols might use this space to store information,
862 				 * while device pointer would be NULL.
863 				 * UDP receive path is one user.
864 				 */
865 				unsigned long		dev_scratch;
866 			};
867 		};
868 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
869 		struct list_head	list;
870 		struct llist_node	ll_node;
871 	};
872 
873 	union {
874 		struct sock		*sk;
875 		int			ip_defrag_offset;
876 	};
877 
878 	union {
879 		ktime_t		tstamp;
880 		u64		skb_mstamp_ns; /* earliest departure time */
881 	};
882 	/*
883 	 * This is the control buffer. It is free to use for every
884 	 * layer. Please put your private variables there. If you
885 	 * want to keep them across layers you have to do a skb_clone()
886 	 * first. This is owned by whoever has the skb queued ATM.
887 	 */
888 	char			cb[48] __aligned(8);
889 
890 	union {
891 		struct {
892 			unsigned long	_skb_refdst;
893 			void		(*destructor)(struct sk_buff *skb);
894 		};
895 		struct list_head	tcp_tsorted_anchor;
896 #ifdef CONFIG_NET_SOCK_MSG
897 		unsigned long		_sk_redir;
898 #endif
899 	};
900 
901 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
902 	unsigned long		 _nfct;
903 #endif
904 	unsigned int		len,
905 				data_len;
906 	__u16			mac_len,
907 				hdr_len;
908 
909 	/* Following fields are _not_ copied in __copy_skb_header()
910 	 * Note that queue_mapping is here mostly to fill a hole.
911 	 */
912 	__u16			queue_mapping;
913 
914 /* if you move cloned around you also must adapt those constants */
915 #ifdef __BIG_ENDIAN_BITFIELD
916 #define CLONED_MASK	(1 << 7)
917 #else
918 #define CLONED_MASK	1
919 #endif
920 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
921 
922 	/* private: */
923 	__u8			__cloned_offset[0];
924 	/* public: */
925 	__u8			cloned:1,
926 				nohdr:1,
927 				fclone:2,
928 				peeked:1,
929 				head_frag:1,
930 				pfmemalloc:1,
931 				pp_recycle:1; /* page_pool recycle indicator */
932 #ifdef CONFIG_SKB_EXTENSIONS
933 	__u8			active_extensions;
934 #endif
935 
936 	/* Fields enclosed in headers group are copied
937 	 * using a single memcpy() in __copy_skb_header()
938 	 */
939 	struct_group(headers,
940 
941 	/* private: */
942 	__u8			__pkt_type_offset[0];
943 	/* public: */
944 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
945 	__u8			ignore_df:1;
946 	__u8			dst_pending_confirm:1;
947 	__u8			ip_summed:2;
948 	__u8			ooo_okay:1;
949 
950 	/* private: */
951 	__u8			__mono_tc_offset[0];
952 	/* public: */
953 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
954 #ifdef CONFIG_NET_XGRESS
955 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
956 	__u8			tc_skip_classify:1;
957 #endif
958 	__u8			remcsum_offload:1;
959 	__u8			csum_complete_sw:1;
960 	__u8			csum_level:2;
961 	__u8			inner_protocol_type:1;
962 
963 	__u8			l4_hash:1;
964 	__u8			sw_hash:1;
965 #ifdef CONFIG_WIRELESS
966 	__u8			wifi_acked_valid:1;
967 	__u8			wifi_acked:1;
968 #endif
969 	__u8			no_fcs:1;
970 	/* Indicates the inner headers are valid in the skbuff. */
971 	__u8			encapsulation:1;
972 	__u8			encap_hdr_csum:1;
973 	__u8			csum_valid:1;
974 #ifdef CONFIG_IPV6_NDISC_NODETYPE
975 	__u8			ndisc_nodetype:2;
976 #endif
977 
978 #if IS_ENABLED(CONFIG_IP_VS)
979 	__u8			ipvs_property:1;
980 #endif
981 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
982 	__u8			nf_trace:1;
983 #endif
984 #ifdef CONFIG_NET_SWITCHDEV
985 	__u8			offload_fwd_mark:1;
986 	__u8			offload_l3_fwd_mark:1;
987 #endif
988 	__u8			redirected:1;
989 #ifdef CONFIG_NET_REDIRECT
990 	__u8			from_ingress:1;
991 #endif
992 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
993 	__u8			nf_skip_egress:1;
994 #endif
995 #ifdef CONFIG_TLS_DEVICE
996 	__u8			decrypted:1;
997 #endif
998 	__u8			slow_gro:1;
999 #if IS_ENABLED(CONFIG_IP_SCTP)
1000 	__u8			csum_not_inet:1;
1001 #endif
1002 
1003 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1004 	__u16			tc_index;	/* traffic control index */
1005 #endif
1006 
1007 	u16			alloc_cpu;
1008 
1009 	union {
1010 		__wsum		csum;
1011 		struct {
1012 			__u16	csum_start;
1013 			__u16	csum_offset;
1014 		};
1015 	};
1016 	__u32			priority;
1017 	int			skb_iif;
1018 	__u32			hash;
1019 	union {
1020 		u32		vlan_all;
1021 		struct {
1022 			__be16	vlan_proto;
1023 			__u16	vlan_tci;
1024 		};
1025 	};
1026 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1027 	union {
1028 		unsigned int	napi_id;
1029 		unsigned int	sender_cpu;
1030 	};
1031 #endif
1032 #ifdef CONFIG_NETWORK_SECMARK
1033 	__u32		secmark;
1034 #endif
1035 
1036 	union {
1037 		__u32		mark;
1038 		__u32		reserved_tailroom;
1039 	};
1040 
1041 	union {
1042 		__be16		inner_protocol;
1043 		__u8		inner_ipproto;
1044 	};
1045 
1046 	__u16			inner_transport_header;
1047 	__u16			inner_network_header;
1048 	__u16			inner_mac_header;
1049 
1050 	__be16			protocol;
1051 	__u16			transport_header;
1052 	__u16			network_header;
1053 	__u16			mac_header;
1054 
1055 #ifdef CONFIG_KCOV
1056 	u64			kcov_handle;
1057 #endif
1058 
1059 	); /* end headers group */
1060 
1061 	/* These elements must be at the end, see alloc_skb() for details.  */
1062 	sk_buff_data_t		tail;
1063 	sk_buff_data_t		end;
1064 	unsigned char		*head,
1065 				*data;
1066 	unsigned int		truesize;
1067 	refcount_t		users;
1068 
1069 #ifdef CONFIG_SKB_EXTENSIONS
1070 	/* only usable after checking ->active_extensions != 0 */
1071 	struct skb_ext		*extensions;
1072 #endif
1073 };
1074 
1075 /* if you move pkt_type around you also must adapt those constants */
1076 #ifdef __BIG_ENDIAN_BITFIELD
1077 #define PKT_TYPE_MAX	(7 << 5)
1078 #else
1079 #define PKT_TYPE_MAX	7
1080 #endif
1081 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1082 
1083 /* if you move tc_at_ingress or mono_delivery_time
1084  * around, you also must adapt these constants.
1085  */
1086 #ifdef __BIG_ENDIAN_BITFIELD
1087 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1088 #define TC_AT_INGRESS_MASK		(1 << 6)
1089 #else
1090 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1091 #define TC_AT_INGRESS_MASK		(1 << 1)
1092 #endif
1093 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1094 
1095 #ifdef __KERNEL__
1096 /*
1097  *	Handling routines are only of interest to the kernel
1098  */
1099 
1100 #define SKB_ALLOC_FCLONE	0x01
1101 #define SKB_ALLOC_RX		0x02
1102 #define SKB_ALLOC_NAPI		0x04
1103 
1104 /**
1105  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1106  * @skb: buffer
1107  */
1108 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1109 {
1110 	return unlikely(skb->pfmemalloc);
1111 }
1112 
1113 /*
1114  * skb might have a dst pointer attached, refcounted or not.
1115  * _skb_refdst low order bit is set if refcount was _not_ taken
1116  */
1117 #define SKB_DST_NOREF	1UL
1118 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1119 
1120 /**
1121  * skb_dst - returns skb dst_entry
1122  * @skb: buffer
1123  *
1124  * Returns skb dst_entry, regardless of reference taken or not.
1125  */
1126 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1127 {
1128 	/* If refdst was not refcounted, check we still are in a
1129 	 * rcu_read_lock section
1130 	 */
1131 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1132 		!rcu_read_lock_held() &&
1133 		!rcu_read_lock_bh_held());
1134 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1135 }
1136 
1137 /**
1138  * skb_dst_set - sets skb dst
1139  * @skb: buffer
1140  * @dst: dst entry
1141  *
1142  * Sets skb dst, assuming a reference was taken on dst and should
1143  * be released by skb_dst_drop()
1144  */
1145 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1146 {
1147 	skb->slow_gro |= !!dst;
1148 	skb->_skb_refdst = (unsigned long)dst;
1149 }
1150 
1151 /**
1152  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1153  * @skb: buffer
1154  * @dst: dst entry
1155  *
1156  * Sets skb dst, assuming a reference was not taken on dst.
1157  * If dst entry is cached, we do not take reference and dst_release
1158  * will be avoided by refdst_drop. If dst entry is not cached, we take
1159  * reference, so that last dst_release can destroy the dst immediately.
1160  */
1161 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1162 {
1163 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1164 	skb->slow_gro |= !!dst;
1165 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1166 }
1167 
1168 /**
1169  * skb_dst_is_noref - Test if skb dst isn't refcounted
1170  * @skb: buffer
1171  */
1172 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1173 {
1174 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1175 }
1176 
1177 /**
1178  * skb_rtable - Returns the skb &rtable
1179  * @skb: buffer
1180  */
1181 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1182 {
1183 	return (struct rtable *)skb_dst(skb);
1184 }
1185 
1186 /* For mangling skb->pkt_type from user space side from applications
1187  * such as nft, tc, etc, we only allow a conservative subset of
1188  * possible pkt_types to be set.
1189 */
1190 static inline bool skb_pkt_type_ok(u32 ptype)
1191 {
1192 	return ptype <= PACKET_OTHERHOST;
1193 }
1194 
1195 /**
1196  * skb_napi_id - Returns the skb's NAPI id
1197  * @skb: buffer
1198  */
1199 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1200 {
1201 #ifdef CONFIG_NET_RX_BUSY_POLL
1202 	return skb->napi_id;
1203 #else
1204 	return 0;
1205 #endif
1206 }
1207 
1208 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1209 {
1210 #ifdef CONFIG_WIRELESS
1211 	return skb->wifi_acked_valid;
1212 #else
1213 	return 0;
1214 #endif
1215 }
1216 
1217 /**
1218  * skb_unref - decrement the skb's reference count
1219  * @skb: buffer
1220  *
1221  * Returns true if we can free the skb.
1222  */
1223 static inline bool skb_unref(struct sk_buff *skb)
1224 {
1225 	if (unlikely(!skb))
1226 		return false;
1227 	if (likely(refcount_read(&skb->users) == 1))
1228 		smp_rmb();
1229 	else if (likely(!refcount_dec_and_test(&skb->users)))
1230 		return false;
1231 
1232 	return true;
1233 }
1234 
1235 void __fix_address
1236 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1237 
1238 /**
1239  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1240  *	@skb: buffer to free
1241  */
1242 static inline void kfree_skb(struct sk_buff *skb)
1243 {
1244 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1245 }
1246 
1247 void skb_release_head_state(struct sk_buff *skb);
1248 void kfree_skb_list_reason(struct sk_buff *segs,
1249 			   enum skb_drop_reason reason);
1250 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1251 void skb_tx_error(struct sk_buff *skb);
1252 
1253 static inline void kfree_skb_list(struct sk_buff *segs)
1254 {
1255 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1256 }
1257 
1258 #ifdef CONFIG_TRACEPOINTS
1259 void consume_skb(struct sk_buff *skb);
1260 #else
1261 static inline void consume_skb(struct sk_buff *skb)
1262 {
1263 	return kfree_skb(skb);
1264 }
1265 #endif
1266 
1267 void __consume_stateless_skb(struct sk_buff *skb);
1268 void  __kfree_skb(struct sk_buff *skb);
1269 extern struct kmem_cache *skbuff_cache;
1270 
1271 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1272 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1273 		      bool *fragstolen, int *delta_truesize);
1274 
1275 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1276 			    int node);
1277 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1278 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1279 struct sk_buff *build_skb_around(struct sk_buff *skb,
1280 				 void *data, unsigned int frag_size);
1281 void skb_attempt_defer_free(struct sk_buff *skb);
1282 
1283 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1284 struct sk_buff *slab_build_skb(void *data);
1285 
1286 /**
1287  * alloc_skb - allocate a network buffer
1288  * @size: size to allocate
1289  * @priority: allocation mask
1290  *
1291  * This function is a convenient wrapper around __alloc_skb().
1292  */
1293 static inline struct sk_buff *alloc_skb(unsigned int size,
1294 					gfp_t priority)
1295 {
1296 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1297 }
1298 
1299 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1300 				     unsigned long data_len,
1301 				     int max_page_order,
1302 				     int *errcode,
1303 				     gfp_t gfp_mask);
1304 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1305 
1306 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1307 struct sk_buff_fclones {
1308 	struct sk_buff	skb1;
1309 
1310 	struct sk_buff	skb2;
1311 
1312 	refcount_t	fclone_ref;
1313 };
1314 
1315 /**
1316  *	skb_fclone_busy - check if fclone is busy
1317  *	@sk: socket
1318  *	@skb: buffer
1319  *
1320  * Returns true if skb is a fast clone, and its clone is not freed.
1321  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1322  * so we also check that didn't happen.
1323  */
1324 static inline bool skb_fclone_busy(const struct sock *sk,
1325 				   const struct sk_buff *skb)
1326 {
1327 	const struct sk_buff_fclones *fclones;
1328 
1329 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1330 
1331 	return skb->fclone == SKB_FCLONE_ORIG &&
1332 	       refcount_read(&fclones->fclone_ref) > 1 &&
1333 	       READ_ONCE(fclones->skb2.sk) == sk;
1334 }
1335 
1336 /**
1337  * alloc_skb_fclone - allocate a network buffer from fclone cache
1338  * @size: size to allocate
1339  * @priority: allocation mask
1340  *
1341  * This function is a convenient wrapper around __alloc_skb().
1342  */
1343 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1344 					       gfp_t priority)
1345 {
1346 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1347 }
1348 
1349 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1350 void skb_headers_offset_update(struct sk_buff *skb, int off);
1351 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1352 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1353 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1354 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1355 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1356 				   gfp_t gfp_mask, bool fclone);
1357 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1358 					  gfp_t gfp_mask)
1359 {
1360 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1361 }
1362 
1363 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1364 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1365 				     unsigned int headroom);
1366 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1367 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1368 				int newtailroom, gfp_t priority);
1369 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1370 				     int offset, int len);
1371 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1372 			      int offset, int len);
1373 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1374 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1375 
1376 /**
1377  *	skb_pad			-	zero pad the tail of an skb
1378  *	@skb: buffer to pad
1379  *	@pad: space to pad
1380  *
1381  *	Ensure that a buffer is followed by a padding area that is zero
1382  *	filled. Used by network drivers which may DMA or transfer data
1383  *	beyond the buffer end onto the wire.
1384  *
1385  *	May return error in out of memory cases. The skb is freed on error.
1386  */
1387 static inline int skb_pad(struct sk_buff *skb, int pad)
1388 {
1389 	return __skb_pad(skb, pad, true);
1390 }
1391 #define dev_kfree_skb(a)	consume_skb(a)
1392 
1393 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1394 			 int offset, size_t size, size_t max_frags);
1395 
1396 struct skb_seq_state {
1397 	__u32		lower_offset;
1398 	__u32		upper_offset;
1399 	__u32		frag_idx;
1400 	__u32		stepped_offset;
1401 	struct sk_buff	*root_skb;
1402 	struct sk_buff	*cur_skb;
1403 	__u8		*frag_data;
1404 	__u32		frag_off;
1405 };
1406 
1407 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1408 			  unsigned int to, struct skb_seq_state *st);
1409 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1410 			  struct skb_seq_state *st);
1411 void skb_abort_seq_read(struct skb_seq_state *st);
1412 
1413 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1414 			   unsigned int to, struct ts_config *config);
1415 
1416 /*
1417  * Packet hash types specify the type of hash in skb_set_hash.
1418  *
1419  * Hash types refer to the protocol layer addresses which are used to
1420  * construct a packet's hash. The hashes are used to differentiate or identify
1421  * flows of the protocol layer for the hash type. Hash types are either
1422  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1423  *
1424  * Properties of hashes:
1425  *
1426  * 1) Two packets in different flows have different hash values
1427  * 2) Two packets in the same flow should have the same hash value
1428  *
1429  * A hash at a higher layer is considered to be more specific. A driver should
1430  * set the most specific hash possible.
1431  *
1432  * A driver cannot indicate a more specific hash than the layer at which a hash
1433  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1434  *
1435  * A driver may indicate a hash level which is less specific than the
1436  * actual layer the hash was computed on. For instance, a hash computed
1437  * at L4 may be considered an L3 hash. This should only be done if the
1438  * driver can't unambiguously determine that the HW computed the hash at
1439  * the higher layer. Note that the "should" in the second property above
1440  * permits this.
1441  */
1442 enum pkt_hash_types {
1443 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1444 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1445 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1446 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1447 };
1448 
1449 static inline void skb_clear_hash(struct sk_buff *skb)
1450 {
1451 	skb->hash = 0;
1452 	skb->sw_hash = 0;
1453 	skb->l4_hash = 0;
1454 }
1455 
1456 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1457 {
1458 	if (!skb->l4_hash)
1459 		skb_clear_hash(skb);
1460 }
1461 
1462 static inline void
1463 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1464 {
1465 	skb->l4_hash = is_l4;
1466 	skb->sw_hash = is_sw;
1467 	skb->hash = hash;
1468 }
1469 
1470 static inline void
1471 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1472 {
1473 	/* Used by drivers to set hash from HW */
1474 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1475 }
1476 
1477 static inline void
1478 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1479 {
1480 	__skb_set_hash(skb, hash, true, is_l4);
1481 }
1482 
1483 void __skb_get_hash(struct sk_buff *skb);
1484 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1485 u32 skb_get_poff(const struct sk_buff *skb);
1486 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1487 		   const struct flow_keys_basic *keys, int hlen);
1488 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1489 			    const void *data, int hlen_proto);
1490 
1491 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1492 					int thoff, u8 ip_proto)
1493 {
1494 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1495 }
1496 
1497 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1498 			     const struct flow_dissector_key *key,
1499 			     unsigned int key_count);
1500 
1501 struct bpf_flow_dissector;
1502 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1503 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1504 
1505 bool __skb_flow_dissect(const struct net *net,
1506 			const struct sk_buff *skb,
1507 			struct flow_dissector *flow_dissector,
1508 			void *target_container, const void *data,
1509 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1510 
1511 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1512 				    struct flow_dissector *flow_dissector,
1513 				    void *target_container, unsigned int flags)
1514 {
1515 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1516 				  target_container, NULL, 0, 0, 0, flags);
1517 }
1518 
1519 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1520 					      struct flow_keys *flow,
1521 					      unsigned int flags)
1522 {
1523 	memset(flow, 0, sizeof(*flow));
1524 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1525 				  flow, NULL, 0, 0, 0, flags);
1526 }
1527 
1528 static inline bool
1529 skb_flow_dissect_flow_keys_basic(const struct net *net,
1530 				 const struct sk_buff *skb,
1531 				 struct flow_keys_basic *flow,
1532 				 const void *data, __be16 proto,
1533 				 int nhoff, int hlen, unsigned int flags)
1534 {
1535 	memset(flow, 0, sizeof(*flow));
1536 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1537 				  data, proto, nhoff, hlen, flags);
1538 }
1539 
1540 void skb_flow_dissect_meta(const struct sk_buff *skb,
1541 			   struct flow_dissector *flow_dissector,
1542 			   void *target_container);
1543 
1544 /* Gets a skb connection tracking info, ctinfo map should be a
1545  * map of mapsize to translate enum ip_conntrack_info states
1546  * to user states.
1547  */
1548 void
1549 skb_flow_dissect_ct(const struct sk_buff *skb,
1550 		    struct flow_dissector *flow_dissector,
1551 		    void *target_container,
1552 		    u16 *ctinfo_map, size_t mapsize,
1553 		    bool post_ct, u16 zone);
1554 void
1555 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1556 			     struct flow_dissector *flow_dissector,
1557 			     void *target_container);
1558 
1559 void skb_flow_dissect_hash(const struct sk_buff *skb,
1560 			   struct flow_dissector *flow_dissector,
1561 			   void *target_container);
1562 
1563 static inline __u32 skb_get_hash(struct sk_buff *skb)
1564 {
1565 	if (!skb->l4_hash && !skb->sw_hash)
1566 		__skb_get_hash(skb);
1567 
1568 	return skb->hash;
1569 }
1570 
1571 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1572 {
1573 	if (!skb->l4_hash && !skb->sw_hash) {
1574 		struct flow_keys keys;
1575 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1576 
1577 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1578 	}
1579 
1580 	return skb->hash;
1581 }
1582 
1583 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1584 			   const siphash_key_t *perturb);
1585 
1586 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1587 {
1588 	return skb->hash;
1589 }
1590 
1591 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1592 {
1593 	to->hash = from->hash;
1594 	to->sw_hash = from->sw_hash;
1595 	to->l4_hash = from->l4_hash;
1596 };
1597 
1598 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1599 				    const struct sk_buff *skb2)
1600 {
1601 #ifdef CONFIG_TLS_DEVICE
1602 	return skb2->decrypted - skb1->decrypted;
1603 #else
1604 	return 0;
1605 #endif
1606 }
1607 
1608 static inline void skb_copy_decrypted(struct sk_buff *to,
1609 				      const struct sk_buff *from)
1610 {
1611 #ifdef CONFIG_TLS_DEVICE
1612 	to->decrypted = from->decrypted;
1613 #endif
1614 }
1615 
1616 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1617 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1618 {
1619 	return skb->head + skb->end;
1620 }
1621 
1622 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1623 {
1624 	return skb->end;
1625 }
1626 
1627 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1628 {
1629 	skb->end = offset;
1630 }
1631 #else
1632 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1633 {
1634 	return skb->end;
1635 }
1636 
1637 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1638 {
1639 	return skb->end - skb->head;
1640 }
1641 
1642 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1643 {
1644 	skb->end = skb->head + offset;
1645 }
1646 #endif
1647 
1648 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1649 				       struct ubuf_info *uarg);
1650 
1651 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1652 
1653 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1654 			   bool success);
1655 
1656 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1657 			    struct sk_buff *skb, struct iov_iter *from,
1658 			    size_t length);
1659 
1660 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1661 					  struct msghdr *msg, int len)
1662 {
1663 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1664 }
1665 
1666 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1667 			     struct msghdr *msg, int len,
1668 			     struct ubuf_info *uarg);
1669 
1670 /* Internal */
1671 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1672 
1673 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1674 {
1675 	return &skb_shinfo(skb)->hwtstamps;
1676 }
1677 
1678 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1679 {
1680 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1681 
1682 	return is_zcopy ? skb_uarg(skb) : NULL;
1683 }
1684 
1685 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1686 {
1687 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1688 }
1689 
1690 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1691 {
1692 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1693 }
1694 
1695 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1696 				       const struct sk_buff *skb2)
1697 {
1698 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1699 }
1700 
1701 static inline void net_zcopy_get(struct ubuf_info *uarg)
1702 {
1703 	refcount_inc(&uarg->refcnt);
1704 }
1705 
1706 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1707 {
1708 	skb_shinfo(skb)->destructor_arg = uarg;
1709 	skb_shinfo(skb)->flags |= uarg->flags;
1710 }
1711 
1712 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1713 				 bool *have_ref)
1714 {
1715 	if (skb && uarg && !skb_zcopy(skb)) {
1716 		if (unlikely(have_ref && *have_ref))
1717 			*have_ref = false;
1718 		else
1719 			net_zcopy_get(uarg);
1720 		skb_zcopy_init(skb, uarg);
1721 	}
1722 }
1723 
1724 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1725 {
1726 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1727 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1728 }
1729 
1730 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1731 {
1732 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1733 }
1734 
1735 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1736 {
1737 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1738 }
1739 
1740 static inline void net_zcopy_put(struct ubuf_info *uarg)
1741 {
1742 	if (uarg)
1743 		uarg->callback(NULL, uarg, true);
1744 }
1745 
1746 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1747 {
1748 	if (uarg) {
1749 		if (uarg->callback == msg_zerocopy_callback)
1750 			msg_zerocopy_put_abort(uarg, have_uref);
1751 		else if (have_uref)
1752 			net_zcopy_put(uarg);
1753 	}
1754 }
1755 
1756 /* Release a reference on a zerocopy structure */
1757 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1758 {
1759 	struct ubuf_info *uarg = skb_zcopy(skb);
1760 
1761 	if (uarg) {
1762 		if (!skb_zcopy_is_nouarg(skb))
1763 			uarg->callback(skb, uarg, zerocopy_success);
1764 
1765 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1766 	}
1767 }
1768 
1769 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1770 
1771 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1772 {
1773 	if (unlikely(skb_zcopy_managed(skb)))
1774 		__skb_zcopy_downgrade_managed(skb);
1775 }
1776 
1777 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1778 {
1779 	skb->next = NULL;
1780 }
1781 
1782 static inline void skb_poison_list(struct sk_buff *skb)
1783 {
1784 #ifdef CONFIG_DEBUG_NET
1785 	skb->next = SKB_LIST_POISON_NEXT;
1786 #endif
1787 }
1788 
1789 /* Iterate through singly-linked GSO fragments of an skb. */
1790 #define skb_list_walk_safe(first, skb, next_skb)                               \
1791 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1792 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1793 
1794 static inline void skb_list_del_init(struct sk_buff *skb)
1795 {
1796 	__list_del_entry(&skb->list);
1797 	skb_mark_not_on_list(skb);
1798 }
1799 
1800 /**
1801  *	skb_queue_empty - check if a queue is empty
1802  *	@list: queue head
1803  *
1804  *	Returns true if the queue is empty, false otherwise.
1805  */
1806 static inline int skb_queue_empty(const struct sk_buff_head *list)
1807 {
1808 	return list->next == (const struct sk_buff *) list;
1809 }
1810 
1811 /**
1812  *	skb_queue_empty_lockless - check if a queue is empty
1813  *	@list: queue head
1814  *
1815  *	Returns true if the queue is empty, false otherwise.
1816  *	This variant can be used in lockless contexts.
1817  */
1818 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1819 {
1820 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1821 }
1822 
1823 
1824 /**
1825  *	skb_queue_is_last - check if skb is the last entry in the queue
1826  *	@list: queue head
1827  *	@skb: buffer
1828  *
1829  *	Returns true if @skb is the last buffer on the list.
1830  */
1831 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1832 				     const struct sk_buff *skb)
1833 {
1834 	return skb->next == (const struct sk_buff *) list;
1835 }
1836 
1837 /**
1838  *	skb_queue_is_first - check if skb is the first entry in the queue
1839  *	@list: queue head
1840  *	@skb: buffer
1841  *
1842  *	Returns true if @skb is the first buffer on the list.
1843  */
1844 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1845 				      const struct sk_buff *skb)
1846 {
1847 	return skb->prev == (const struct sk_buff *) list;
1848 }
1849 
1850 /**
1851  *	skb_queue_next - return the next packet in the queue
1852  *	@list: queue head
1853  *	@skb: current buffer
1854  *
1855  *	Return the next packet in @list after @skb.  It is only valid to
1856  *	call this if skb_queue_is_last() evaluates to false.
1857  */
1858 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1859 					     const struct sk_buff *skb)
1860 {
1861 	/* This BUG_ON may seem severe, but if we just return then we
1862 	 * are going to dereference garbage.
1863 	 */
1864 	BUG_ON(skb_queue_is_last(list, skb));
1865 	return skb->next;
1866 }
1867 
1868 /**
1869  *	skb_queue_prev - return the prev packet in the queue
1870  *	@list: queue head
1871  *	@skb: current buffer
1872  *
1873  *	Return the prev packet in @list before @skb.  It is only valid to
1874  *	call this if skb_queue_is_first() evaluates to false.
1875  */
1876 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1877 					     const struct sk_buff *skb)
1878 {
1879 	/* This BUG_ON may seem severe, but if we just return then we
1880 	 * are going to dereference garbage.
1881 	 */
1882 	BUG_ON(skb_queue_is_first(list, skb));
1883 	return skb->prev;
1884 }
1885 
1886 /**
1887  *	skb_get - reference buffer
1888  *	@skb: buffer to reference
1889  *
1890  *	Makes another reference to a socket buffer and returns a pointer
1891  *	to the buffer.
1892  */
1893 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1894 {
1895 	refcount_inc(&skb->users);
1896 	return skb;
1897 }
1898 
1899 /*
1900  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1901  */
1902 
1903 /**
1904  *	skb_cloned - is the buffer a clone
1905  *	@skb: buffer to check
1906  *
1907  *	Returns true if the buffer was generated with skb_clone() and is
1908  *	one of multiple shared copies of the buffer. Cloned buffers are
1909  *	shared data so must not be written to under normal circumstances.
1910  */
1911 static inline int skb_cloned(const struct sk_buff *skb)
1912 {
1913 	return skb->cloned &&
1914 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1915 }
1916 
1917 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1918 {
1919 	might_sleep_if(gfpflags_allow_blocking(pri));
1920 
1921 	if (skb_cloned(skb))
1922 		return pskb_expand_head(skb, 0, 0, pri);
1923 
1924 	return 0;
1925 }
1926 
1927 /* This variant of skb_unclone() makes sure skb->truesize
1928  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1929  *
1930  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1931  * when various debugging features are in place.
1932  */
1933 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1934 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1935 {
1936 	might_sleep_if(gfpflags_allow_blocking(pri));
1937 
1938 	if (skb_cloned(skb))
1939 		return __skb_unclone_keeptruesize(skb, pri);
1940 	return 0;
1941 }
1942 
1943 /**
1944  *	skb_header_cloned - is the header a clone
1945  *	@skb: buffer to check
1946  *
1947  *	Returns true if modifying the header part of the buffer requires
1948  *	the data to be copied.
1949  */
1950 static inline int skb_header_cloned(const struct sk_buff *skb)
1951 {
1952 	int dataref;
1953 
1954 	if (!skb->cloned)
1955 		return 0;
1956 
1957 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1958 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1959 	return dataref != 1;
1960 }
1961 
1962 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1963 {
1964 	might_sleep_if(gfpflags_allow_blocking(pri));
1965 
1966 	if (skb_header_cloned(skb))
1967 		return pskb_expand_head(skb, 0, 0, pri);
1968 
1969 	return 0;
1970 }
1971 
1972 /**
1973  * __skb_header_release() - allow clones to use the headroom
1974  * @skb: buffer to operate on
1975  *
1976  * See "DOC: dataref and headerless skbs".
1977  */
1978 static inline void __skb_header_release(struct sk_buff *skb)
1979 {
1980 	skb->nohdr = 1;
1981 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1982 }
1983 
1984 
1985 /**
1986  *	skb_shared - is the buffer shared
1987  *	@skb: buffer to check
1988  *
1989  *	Returns true if more than one person has a reference to this
1990  *	buffer.
1991  */
1992 static inline int skb_shared(const struct sk_buff *skb)
1993 {
1994 	return refcount_read(&skb->users) != 1;
1995 }
1996 
1997 /**
1998  *	skb_share_check - check if buffer is shared and if so clone it
1999  *	@skb: buffer to check
2000  *	@pri: priority for memory allocation
2001  *
2002  *	If the buffer is shared the buffer is cloned and the old copy
2003  *	drops a reference. A new clone with a single reference is returned.
2004  *	If the buffer is not shared the original buffer is returned. When
2005  *	being called from interrupt status or with spinlocks held pri must
2006  *	be GFP_ATOMIC.
2007  *
2008  *	NULL is returned on a memory allocation failure.
2009  */
2010 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2011 {
2012 	might_sleep_if(gfpflags_allow_blocking(pri));
2013 	if (skb_shared(skb)) {
2014 		struct sk_buff *nskb = skb_clone(skb, pri);
2015 
2016 		if (likely(nskb))
2017 			consume_skb(skb);
2018 		else
2019 			kfree_skb(skb);
2020 		skb = nskb;
2021 	}
2022 	return skb;
2023 }
2024 
2025 /*
2026  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2027  *	packets to handle cases where we have a local reader and forward
2028  *	and a couple of other messy ones. The normal one is tcpdumping
2029  *	a packet that's being forwarded.
2030  */
2031 
2032 /**
2033  *	skb_unshare - make a copy of a shared buffer
2034  *	@skb: buffer to check
2035  *	@pri: priority for memory allocation
2036  *
2037  *	If the socket buffer is a clone then this function creates a new
2038  *	copy of the data, drops a reference count on the old copy and returns
2039  *	the new copy with the reference count at 1. If the buffer is not a clone
2040  *	the original buffer is returned. When called with a spinlock held or
2041  *	from interrupt state @pri must be %GFP_ATOMIC
2042  *
2043  *	%NULL is returned on a memory allocation failure.
2044  */
2045 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2046 					  gfp_t pri)
2047 {
2048 	might_sleep_if(gfpflags_allow_blocking(pri));
2049 	if (skb_cloned(skb)) {
2050 		struct sk_buff *nskb = skb_copy(skb, pri);
2051 
2052 		/* Free our shared copy */
2053 		if (likely(nskb))
2054 			consume_skb(skb);
2055 		else
2056 			kfree_skb(skb);
2057 		skb = nskb;
2058 	}
2059 	return skb;
2060 }
2061 
2062 /**
2063  *	skb_peek - peek at the head of an &sk_buff_head
2064  *	@list_: list to peek at
2065  *
2066  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2067  *	be careful with this one. A peek leaves the buffer on the
2068  *	list and someone else may run off with it. You must hold
2069  *	the appropriate locks or have a private queue to do this.
2070  *
2071  *	Returns %NULL for an empty list or a pointer to the head element.
2072  *	The reference count is not incremented and the reference is therefore
2073  *	volatile. Use with caution.
2074  */
2075 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2076 {
2077 	struct sk_buff *skb = list_->next;
2078 
2079 	if (skb == (struct sk_buff *)list_)
2080 		skb = NULL;
2081 	return skb;
2082 }
2083 
2084 /**
2085  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2086  *	@list_: list to peek at
2087  *
2088  *	Like skb_peek(), but the caller knows that the list is not empty.
2089  */
2090 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2091 {
2092 	return list_->next;
2093 }
2094 
2095 /**
2096  *	skb_peek_next - peek skb following the given one from a queue
2097  *	@skb: skb to start from
2098  *	@list_: list to peek at
2099  *
2100  *	Returns %NULL when the end of the list is met or a pointer to the
2101  *	next element. The reference count is not incremented and the
2102  *	reference is therefore volatile. Use with caution.
2103  */
2104 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2105 		const struct sk_buff_head *list_)
2106 {
2107 	struct sk_buff *next = skb->next;
2108 
2109 	if (next == (struct sk_buff *)list_)
2110 		next = NULL;
2111 	return next;
2112 }
2113 
2114 /**
2115  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2116  *	@list_: list to peek at
2117  *
2118  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2119  *	be careful with this one. A peek leaves the buffer on the
2120  *	list and someone else may run off with it. You must hold
2121  *	the appropriate locks or have a private queue to do this.
2122  *
2123  *	Returns %NULL for an empty list or a pointer to the tail element.
2124  *	The reference count is not incremented and the reference is therefore
2125  *	volatile. Use with caution.
2126  */
2127 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2128 {
2129 	struct sk_buff *skb = READ_ONCE(list_->prev);
2130 
2131 	if (skb == (struct sk_buff *)list_)
2132 		skb = NULL;
2133 	return skb;
2134 
2135 }
2136 
2137 /**
2138  *	skb_queue_len	- get queue length
2139  *	@list_: list to measure
2140  *
2141  *	Return the length of an &sk_buff queue.
2142  */
2143 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2144 {
2145 	return list_->qlen;
2146 }
2147 
2148 /**
2149  *	skb_queue_len_lockless	- get queue length
2150  *	@list_: list to measure
2151  *
2152  *	Return the length of an &sk_buff queue.
2153  *	This variant can be used in lockless contexts.
2154  */
2155 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2156 {
2157 	return READ_ONCE(list_->qlen);
2158 }
2159 
2160 /**
2161  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2162  *	@list: queue to initialize
2163  *
2164  *	This initializes only the list and queue length aspects of
2165  *	an sk_buff_head object.  This allows to initialize the list
2166  *	aspects of an sk_buff_head without reinitializing things like
2167  *	the spinlock.  It can also be used for on-stack sk_buff_head
2168  *	objects where the spinlock is known to not be used.
2169  */
2170 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2171 {
2172 	list->prev = list->next = (struct sk_buff *)list;
2173 	list->qlen = 0;
2174 }
2175 
2176 /*
2177  * This function creates a split out lock class for each invocation;
2178  * this is needed for now since a whole lot of users of the skb-queue
2179  * infrastructure in drivers have different locking usage (in hardirq)
2180  * than the networking core (in softirq only). In the long run either the
2181  * network layer or drivers should need annotation to consolidate the
2182  * main types of usage into 3 classes.
2183  */
2184 static inline void skb_queue_head_init(struct sk_buff_head *list)
2185 {
2186 	spin_lock_init(&list->lock);
2187 	__skb_queue_head_init(list);
2188 }
2189 
2190 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2191 		struct lock_class_key *class)
2192 {
2193 	skb_queue_head_init(list);
2194 	lockdep_set_class(&list->lock, class);
2195 }
2196 
2197 /*
2198  *	Insert an sk_buff on a list.
2199  *
2200  *	The "__skb_xxxx()" functions are the non-atomic ones that
2201  *	can only be called with interrupts disabled.
2202  */
2203 static inline void __skb_insert(struct sk_buff *newsk,
2204 				struct sk_buff *prev, struct sk_buff *next,
2205 				struct sk_buff_head *list)
2206 {
2207 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2208 	 * for the opposite READ_ONCE()
2209 	 */
2210 	WRITE_ONCE(newsk->next, next);
2211 	WRITE_ONCE(newsk->prev, prev);
2212 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2213 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2214 	WRITE_ONCE(list->qlen, list->qlen + 1);
2215 }
2216 
2217 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2218 				      struct sk_buff *prev,
2219 				      struct sk_buff *next)
2220 {
2221 	struct sk_buff *first = list->next;
2222 	struct sk_buff *last = list->prev;
2223 
2224 	WRITE_ONCE(first->prev, prev);
2225 	WRITE_ONCE(prev->next, first);
2226 
2227 	WRITE_ONCE(last->next, next);
2228 	WRITE_ONCE(next->prev, last);
2229 }
2230 
2231 /**
2232  *	skb_queue_splice - join two skb lists, this is designed for stacks
2233  *	@list: the new list to add
2234  *	@head: the place to add it in the first list
2235  */
2236 static inline void skb_queue_splice(const struct sk_buff_head *list,
2237 				    struct sk_buff_head *head)
2238 {
2239 	if (!skb_queue_empty(list)) {
2240 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2241 		head->qlen += list->qlen;
2242 	}
2243 }
2244 
2245 /**
2246  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2247  *	@list: the new list to add
2248  *	@head: the place to add it in the first list
2249  *
2250  *	The list at @list is reinitialised
2251  */
2252 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2253 					 struct sk_buff_head *head)
2254 {
2255 	if (!skb_queue_empty(list)) {
2256 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2257 		head->qlen += list->qlen;
2258 		__skb_queue_head_init(list);
2259 	}
2260 }
2261 
2262 /**
2263  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2264  *	@list: the new list to add
2265  *	@head: the place to add it in the first list
2266  */
2267 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2268 					 struct sk_buff_head *head)
2269 {
2270 	if (!skb_queue_empty(list)) {
2271 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2272 		head->qlen += list->qlen;
2273 	}
2274 }
2275 
2276 /**
2277  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2278  *	@list: the new list to add
2279  *	@head: the place to add it in the first list
2280  *
2281  *	Each of the lists is a queue.
2282  *	The list at @list is reinitialised
2283  */
2284 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2285 					      struct sk_buff_head *head)
2286 {
2287 	if (!skb_queue_empty(list)) {
2288 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2289 		head->qlen += list->qlen;
2290 		__skb_queue_head_init(list);
2291 	}
2292 }
2293 
2294 /**
2295  *	__skb_queue_after - queue a buffer at the list head
2296  *	@list: list to use
2297  *	@prev: place after this buffer
2298  *	@newsk: buffer to queue
2299  *
2300  *	Queue a buffer int the middle of a list. This function takes no locks
2301  *	and you must therefore hold required locks before calling it.
2302  *
2303  *	A buffer cannot be placed on two lists at the same time.
2304  */
2305 static inline void __skb_queue_after(struct sk_buff_head *list,
2306 				     struct sk_buff *prev,
2307 				     struct sk_buff *newsk)
2308 {
2309 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2310 }
2311 
2312 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2313 		struct sk_buff_head *list);
2314 
2315 static inline void __skb_queue_before(struct sk_buff_head *list,
2316 				      struct sk_buff *next,
2317 				      struct sk_buff *newsk)
2318 {
2319 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2320 }
2321 
2322 /**
2323  *	__skb_queue_head - queue a buffer at the list head
2324  *	@list: list to use
2325  *	@newsk: buffer to queue
2326  *
2327  *	Queue a buffer at the start of a list. This function takes no locks
2328  *	and you must therefore hold required locks before calling it.
2329  *
2330  *	A buffer cannot be placed on two lists at the same time.
2331  */
2332 static inline void __skb_queue_head(struct sk_buff_head *list,
2333 				    struct sk_buff *newsk)
2334 {
2335 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2336 }
2337 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2338 
2339 /**
2340  *	__skb_queue_tail - queue a buffer at the list tail
2341  *	@list: list to use
2342  *	@newsk: buffer to queue
2343  *
2344  *	Queue a buffer at the end of a list. This function takes no locks
2345  *	and you must therefore hold required locks before calling it.
2346  *
2347  *	A buffer cannot be placed on two lists at the same time.
2348  */
2349 static inline void __skb_queue_tail(struct sk_buff_head *list,
2350 				   struct sk_buff *newsk)
2351 {
2352 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2353 }
2354 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2355 
2356 /*
2357  * remove sk_buff from list. _Must_ be called atomically, and with
2358  * the list known..
2359  */
2360 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2361 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2362 {
2363 	struct sk_buff *next, *prev;
2364 
2365 	WRITE_ONCE(list->qlen, list->qlen - 1);
2366 	next	   = skb->next;
2367 	prev	   = skb->prev;
2368 	skb->next  = skb->prev = NULL;
2369 	WRITE_ONCE(next->prev, prev);
2370 	WRITE_ONCE(prev->next, next);
2371 }
2372 
2373 /**
2374  *	__skb_dequeue - remove from the head of the queue
2375  *	@list: list to dequeue from
2376  *
2377  *	Remove the head of the list. This function does not take any locks
2378  *	so must be used with appropriate locks held only. The head item is
2379  *	returned or %NULL if the list is empty.
2380  */
2381 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2382 {
2383 	struct sk_buff *skb = skb_peek(list);
2384 	if (skb)
2385 		__skb_unlink(skb, list);
2386 	return skb;
2387 }
2388 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2389 
2390 /**
2391  *	__skb_dequeue_tail - remove from the tail of the queue
2392  *	@list: list to dequeue from
2393  *
2394  *	Remove the tail of the list. This function does not take any locks
2395  *	so must be used with appropriate locks held only. The tail item is
2396  *	returned or %NULL if the list is empty.
2397  */
2398 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2399 {
2400 	struct sk_buff *skb = skb_peek_tail(list);
2401 	if (skb)
2402 		__skb_unlink(skb, list);
2403 	return skb;
2404 }
2405 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2406 
2407 
2408 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2409 {
2410 	return skb->data_len;
2411 }
2412 
2413 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2414 {
2415 	return skb->len - skb->data_len;
2416 }
2417 
2418 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2419 {
2420 	unsigned int i, len = 0;
2421 
2422 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2423 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2424 	return len;
2425 }
2426 
2427 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2428 {
2429 	return skb_headlen(skb) + __skb_pagelen(skb);
2430 }
2431 
2432 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2433 					   struct page *page,
2434 					   int off, int size)
2435 {
2436 	frag->bv_page = page;
2437 	frag->bv_offset = off;
2438 	skb_frag_size_set(frag, size);
2439 }
2440 
2441 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2442 					      int i, struct page *page,
2443 					      int off, int size)
2444 {
2445 	skb_frag_t *frag = &shinfo->frags[i];
2446 
2447 	skb_frag_fill_page_desc(frag, page, off, size);
2448 }
2449 
2450 /**
2451  * skb_len_add - adds a number to len fields of skb
2452  * @skb: buffer to add len to
2453  * @delta: number of bytes to add
2454  */
2455 static inline void skb_len_add(struct sk_buff *skb, int delta)
2456 {
2457 	skb->len += delta;
2458 	skb->data_len += delta;
2459 	skb->truesize += delta;
2460 }
2461 
2462 /**
2463  * __skb_fill_page_desc - initialise a paged fragment in an skb
2464  * @skb: buffer containing fragment to be initialised
2465  * @i: paged fragment index to initialise
2466  * @page: the page to use for this fragment
2467  * @off: the offset to the data with @page
2468  * @size: the length of the data
2469  *
2470  * Initialises the @i'th fragment of @skb to point to &size bytes at
2471  * offset @off within @page.
2472  *
2473  * Does not take any additional reference on the fragment.
2474  */
2475 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2476 					struct page *page, int off, int size)
2477 {
2478 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2479 
2480 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2481 	 * that not all callers have unique ownership of the page but rely
2482 	 * on page_is_pfmemalloc doing the right thing(tm).
2483 	 */
2484 	page = compound_head(page);
2485 	if (page_is_pfmemalloc(page))
2486 		skb->pfmemalloc	= true;
2487 }
2488 
2489 /**
2490  * skb_fill_page_desc - initialise a paged fragment in an skb
2491  * @skb: buffer containing fragment to be initialised
2492  * @i: paged fragment index to initialise
2493  * @page: the page to use for this fragment
2494  * @off: the offset to the data with @page
2495  * @size: the length of the data
2496  *
2497  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2498  * @skb to point to @size bytes at offset @off within @page. In
2499  * addition updates @skb such that @i is the last fragment.
2500  *
2501  * Does not take any additional reference on the fragment.
2502  */
2503 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2504 				      struct page *page, int off, int size)
2505 {
2506 	__skb_fill_page_desc(skb, i, page, off, size);
2507 	skb_shinfo(skb)->nr_frags = i + 1;
2508 }
2509 
2510 /**
2511  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2512  * @skb: buffer containing fragment to be initialised
2513  * @i: paged fragment index to initialise
2514  * @page: the page to use for this fragment
2515  * @off: the offset to the data with @page
2516  * @size: the length of the data
2517  *
2518  * Variant of skb_fill_page_desc() which does not deal with
2519  * pfmemalloc, if page is not owned by us.
2520  */
2521 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2522 					    struct page *page, int off,
2523 					    int size)
2524 {
2525 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2526 
2527 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2528 	shinfo->nr_frags = i + 1;
2529 }
2530 
2531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2532 		     int size, unsigned int truesize);
2533 
2534 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2535 			  unsigned int truesize);
2536 
2537 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2538 
2539 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2540 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2541 {
2542 	return skb->head + skb->tail;
2543 }
2544 
2545 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2546 {
2547 	skb->tail = skb->data - skb->head;
2548 }
2549 
2550 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2551 {
2552 	skb_reset_tail_pointer(skb);
2553 	skb->tail += offset;
2554 }
2555 
2556 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2557 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2558 {
2559 	return skb->tail;
2560 }
2561 
2562 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2563 {
2564 	skb->tail = skb->data;
2565 }
2566 
2567 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2568 {
2569 	skb->tail = skb->data + offset;
2570 }
2571 
2572 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2573 
2574 static inline void skb_assert_len(struct sk_buff *skb)
2575 {
2576 #ifdef CONFIG_DEBUG_NET
2577 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2578 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2579 #endif /* CONFIG_DEBUG_NET */
2580 }
2581 
2582 /*
2583  *	Add data to an sk_buff
2584  */
2585 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2586 void *skb_put(struct sk_buff *skb, unsigned int len);
2587 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2588 {
2589 	void *tmp = skb_tail_pointer(skb);
2590 	SKB_LINEAR_ASSERT(skb);
2591 	skb->tail += len;
2592 	skb->len  += len;
2593 	return tmp;
2594 }
2595 
2596 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2597 {
2598 	void *tmp = __skb_put(skb, len);
2599 
2600 	memset(tmp, 0, len);
2601 	return tmp;
2602 }
2603 
2604 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2605 				   unsigned int len)
2606 {
2607 	void *tmp = __skb_put(skb, len);
2608 
2609 	memcpy(tmp, data, len);
2610 	return tmp;
2611 }
2612 
2613 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2614 {
2615 	*(u8 *)__skb_put(skb, 1) = val;
2616 }
2617 
2618 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2619 {
2620 	void *tmp = skb_put(skb, len);
2621 
2622 	memset(tmp, 0, len);
2623 
2624 	return tmp;
2625 }
2626 
2627 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2628 				 unsigned int len)
2629 {
2630 	void *tmp = skb_put(skb, len);
2631 
2632 	memcpy(tmp, data, len);
2633 
2634 	return tmp;
2635 }
2636 
2637 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2638 {
2639 	*(u8 *)skb_put(skb, 1) = val;
2640 }
2641 
2642 void *skb_push(struct sk_buff *skb, unsigned int len);
2643 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2644 {
2645 	skb->data -= len;
2646 	skb->len  += len;
2647 	return skb->data;
2648 }
2649 
2650 void *skb_pull(struct sk_buff *skb, unsigned int len);
2651 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2652 {
2653 	skb->len -= len;
2654 	if (unlikely(skb->len < skb->data_len)) {
2655 #if defined(CONFIG_DEBUG_NET)
2656 		skb->len += len;
2657 		pr_err("__skb_pull(len=%u)\n", len);
2658 		skb_dump(KERN_ERR, skb, false);
2659 #endif
2660 		BUG();
2661 	}
2662 	return skb->data += len;
2663 }
2664 
2665 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2666 {
2667 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2668 }
2669 
2670 void *skb_pull_data(struct sk_buff *skb, size_t len);
2671 
2672 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2673 
2674 static inline enum skb_drop_reason
2675 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2676 {
2677 	if (likely(len <= skb_headlen(skb)))
2678 		return SKB_NOT_DROPPED_YET;
2679 
2680 	if (unlikely(len > skb->len))
2681 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2682 
2683 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2684 		return SKB_DROP_REASON_NOMEM;
2685 
2686 	return SKB_NOT_DROPPED_YET;
2687 }
2688 
2689 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2690 {
2691 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2692 }
2693 
2694 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2695 {
2696 	if (!pskb_may_pull(skb, len))
2697 		return NULL;
2698 
2699 	skb->len -= len;
2700 	return skb->data += len;
2701 }
2702 
2703 void skb_condense(struct sk_buff *skb);
2704 
2705 /**
2706  *	skb_headroom - bytes at buffer head
2707  *	@skb: buffer to check
2708  *
2709  *	Return the number of bytes of free space at the head of an &sk_buff.
2710  */
2711 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2712 {
2713 	return skb->data - skb->head;
2714 }
2715 
2716 /**
2717  *	skb_tailroom - bytes at buffer end
2718  *	@skb: buffer to check
2719  *
2720  *	Return the number of bytes of free space at the tail of an sk_buff
2721  */
2722 static inline int skb_tailroom(const struct sk_buff *skb)
2723 {
2724 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2725 }
2726 
2727 /**
2728  *	skb_availroom - bytes at buffer end
2729  *	@skb: buffer to check
2730  *
2731  *	Return the number of bytes of free space at the tail of an sk_buff
2732  *	allocated by sk_stream_alloc()
2733  */
2734 static inline int skb_availroom(const struct sk_buff *skb)
2735 {
2736 	if (skb_is_nonlinear(skb))
2737 		return 0;
2738 
2739 	return skb->end - skb->tail - skb->reserved_tailroom;
2740 }
2741 
2742 /**
2743  *	skb_reserve - adjust headroom
2744  *	@skb: buffer to alter
2745  *	@len: bytes to move
2746  *
2747  *	Increase the headroom of an empty &sk_buff by reducing the tail
2748  *	room. This is only allowed for an empty buffer.
2749  */
2750 static inline void skb_reserve(struct sk_buff *skb, int len)
2751 {
2752 	skb->data += len;
2753 	skb->tail += len;
2754 }
2755 
2756 /**
2757  *	skb_tailroom_reserve - adjust reserved_tailroom
2758  *	@skb: buffer to alter
2759  *	@mtu: maximum amount of headlen permitted
2760  *	@needed_tailroom: minimum amount of reserved_tailroom
2761  *
2762  *	Set reserved_tailroom so that headlen can be as large as possible but
2763  *	not larger than mtu and tailroom cannot be smaller than
2764  *	needed_tailroom.
2765  *	The required headroom should already have been reserved before using
2766  *	this function.
2767  */
2768 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2769 					unsigned int needed_tailroom)
2770 {
2771 	SKB_LINEAR_ASSERT(skb);
2772 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2773 		/* use at most mtu */
2774 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2775 	else
2776 		/* use up to all available space */
2777 		skb->reserved_tailroom = needed_tailroom;
2778 }
2779 
2780 #define ENCAP_TYPE_ETHER	0
2781 #define ENCAP_TYPE_IPPROTO	1
2782 
2783 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2784 					  __be16 protocol)
2785 {
2786 	skb->inner_protocol = protocol;
2787 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2788 }
2789 
2790 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2791 					 __u8 ipproto)
2792 {
2793 	skb->inner_ipproto = ipproto;
2794 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2795 }
2796 
2797 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2798 {
2799 	skb->inner_mac_header = skb->mac_header;
2800 	skb->inner_network_header = skb->network_header;
2801 	skb->inner_transport_header = skb->transport_header;
2802 }
2803 
2804 static inline void skb_reset_mac_len(struct sk_buff *skb)
2805 {
2806 	skb->mac_len = skb->network_header - skb->mac_header;
2807 }
2808 
2809 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2810 							*skb)
2811 {
2812 	return skb->head + skb->inner_transport_header;
2813 }
2814 
2815 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2816 {
2817 	return skb_inner_transport_header(skb) - skb->data;
2818 }
2819 
2820 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2821 {
2822 	skb->inner_transport_header = skb->data - skb->head;
2823 }
2824 
2825 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2826 						   const int offset)
2827 {
2828 	skb_reset_inner_transport_header(skb);
2829 	skb->inner_transport_header += offset;
2830 }
2831 
2832 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2833 {
2834 	return skb->head + skb->inner_network_header;
2835 }
2836 
2837 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2838 {
2839 	skb->inner_network_header = skb->data - skb->head;
2840 }
2841 
2842 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2843 						const int offset)
2844 {
2845 	skb_reset_inner_network_header(skb);
2846 	skb->inner_network_header += offset;
2847 }
2848 
2849 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2850 {
2851 	return skb->head + skb->inner_mac_header;
2852 }
2853 
2854 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2855 {
2856 	skb->inner_mac_header = skb->data - skb->head;
2857 }
2858 
2859 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2860 					    const int offset)
2861 {
2862 	skb_reset_inner_mac_header(skb);
2863 	skb->inner_mac_header += offset;
2864 }
2865 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2866 {
2867 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2868 }
2869 
2870 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2871 {
2872 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2873 	return skb->head + skb->transport_header;
2874 }
2875 
2876 static inline void skb_reset_transport_header(struct sk_buff *skb)
2877 {
2878 	skb->transport_header = skb->data - skb->head;
2879 }
2880 
2881 static inline void skb_set_transport_header(struct sk_buff *skb,
2882 					    const int offset)
2883 {
2884 	skb_reset_transport_header(skb);
2885 	skb->transport_header += offset;
2886 }
2887 
2888 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2889 {
2890 	return skb->head + skb->network_header;
2891 }
2892 
2893 static inline void skb_reset_network_header(struct sk_buff *skb)
2894 {
2895 	skb->network_header = skb->data - skb->head;
2896 }
2897 
2898 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2899 {
2900 	skb_reset_network_header(skb);
2901 	skb->network_header += offset;
2902 }
2903 
2904 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2905 {
2906 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2907 }
2908 
2909 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2910 {
2911 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2912 	return skb->head + skb->mac_header;
2913 }
2914 
2915 static inline int skb_mac_offset(const struct sk_buff *skb)
2916 {
2917 	return skb_mac_header(skb) - skb->data;
2918 }
2919 
2920 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2921 {
2922 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2923 	return skb->network_header - skb->mac_header;
2924 }
2925 
2926 static inline void skb_unset_mac_header(struct sk_buff *skb)
2927 {
2928 	skb->mac_header = (typeof(skb->mac_header))~0U;
2929 }
2930 
2931 static inline void skb_reset_mac_header(struct sk_buff *skb)
2932 {
2933 	skb->mac_header = skb->data - skb->head;
2934 }
2935 
2936 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2937 {
2938 	skb_reset_mac_header(skb);
2939 	skb->mac_header += offset;
2940 }
2941 
2942 static inline void skb_pop_mac_header(struct sk_buff *skb)
2943 {
2944 	skb->mac_header = skb->network_header;
2945 }
2946 
2947 static inline void skb_probe_transport_header(struct sk_buff *skb)
2948 {
2949 	struct flow_keys_basic keys;
2950 
2951 	if (skb_transport_header_was_set(skb))
2952 		return;
2953 
2954 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2955 					     NULL, 0, 0, 0, 0))
2956 		skb_set_transport_header(skb, keys.control.thoff);
2957 }
2958 
2959 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2960 {
2961 	if (skb_mac_header_was_set(skb)) {
2962 		const unsigned char *old_mac = skb_mac_header(skb);
2963 
2964 		skb_set_mac_header(skb, -skb->mac_len);
2965 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2966 	}
2967 }
2968 
2969 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2970 {
2971 	return skb->csum_start - skb_headroom(skb);
2972 }
2973 
2974 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2975 {
2976 	return skb->head + skb->csum_start;
2977 }
2978 
2979 static inline int skb_transport_offset(const struct sk_buff *skb)
2980 {
2981 	return skb_transport_header(skb) - skb->data;
2982 }
2983 
2984 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2985 {
2986 	return skb->transport_header - skb->network_header;
2987 }
2988 
2989 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2990 {
2991 	return skb->inner_transport_header - skb->inner_network_header;
2992 }
2993 
2994 static inline int skb_network_offset(const struct sk_buff *skb)
2995 {
2996 	return skb_network_header(skb) - skb->data;
2997 }
2998 
2999 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3000 {
3001 	return skb_inner_network_header(skb) - skb->data;
3002 }
3003 
3004 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3005 {
3006 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3007 }
3008 
3009 /*
3010  * CPUs often take a performance hit when accessing unaligned memory
3011  * locations. The actual performance hit varies, it can be small if the
3012  * hardware handles it or large if we have to take an exception and fix it
3013  * in software.
3014  *
3015  * Since an ethernet header is 14 bytes network drivers often end up with
3016  * the IP header at an unaligned offset. The IP header can be aligned by
3017  * shifting the start of the packet by 2 bytes. Drivers should do this
3018  * with:
3019  *
3020  * skb_reserve(skb, NET_IP_ALIGN);
3021  *
3022  * The downside to this alignment of the IP header is that the DMA is now
3023  * unaligned. On some architectures the cost of an unaligned DMA is high
3024  * and this cost outweighs the gains made by aligning the IP header.
3025  *
3026  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3027  * to be overridden.
3028  */
3029 #ifndef NET_IP_ALIGN
3030 #define NET_IP_ALIGN	2
3031 #endif
3032 
3033 /*
3034  * The networking layer reserves some headroom in skb data (via
3035  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3036  * the header has to grow. In the default case, if the header has to grow
3037  * 32 bytes or less we avoid the reallocation.
3038  *
3039  * Unfortunately this headroom changes the DMA alignment of the resulting
3040  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3041  * on some architectures. An architecture can override this value,
3042  * perhaps setting it to a cacheline in size (since that will maintain
3043  * cacheline alignment of the DMA). It must be a power of 2.
3044  *
3045  * Various parts of the networking layer expect at least 32 bytes of
3046  * headroom, you should not reduce this.
3047  *
3048  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3049  * to reduce average number of cache lines per packet.
3050  * get_rps_cpu() for example only access one 64 bytes aligned block :
3051  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3052  */
3053 #ifndef NET_SKB_PAD
3054 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3055 #endif
3056 
3057 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3058 
3059 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3060 {
3061 	if (WARN_ON(skb_is_nonlinear(skb)))
3062 		return;
3063 	skb->len = len;
3064 	skb_set_tail_pointer(skb, len);
3065 }
3066 
3067 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3068 {
3069 	__skb_set_length(skb, len);
3070 }
3071 
3072 void skb_trim(struct sk_buff *skb, unsigned int len);
3073 
3074 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3075 {
3076 	if (skb->data_len)
3077 		return ___pskb_trim(skb, len);
3078 	__skb_trim(skb, len);
3079 	return 0;
3080 }
3081 
3082 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3083 {
3084 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3085 }
3086 
3087 /**
3088  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3089  *	@skb: buffer to alter
3090  *	@len: new length
3091  *
3092  *	This is identical to pskb_trim except that the caller knows that
3093  *	the skb is not cloned so we should never get an error due to out-
3094  *	of-memory.
3095  */
3096 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3097 {
3098 	int err = pskb_trim(skb, len);
3099 	BUG_ON(err);
3100 }
3101 
3102 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3103 {
3104 	unsigned int diff = len - skb->len;
3105 
3106 	if (skb_tailroom(skb) < diff) {
3107 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3108 					   GFP_ATOMIC);
3109 		if (ret)
3110 			return ret;
3111 	}
3112 	__skb_set_length(skb, len);
3113 	return 0;
3114 }
3115 
3116 /**
3117  *	skb_orphan - orphan a buffer
3118  *	@skb: buffer to orphan
3119  *
3120  *	If a buffer currently has an owner then we call the owner's
3121  *	destructor function and make the @skb unowned. The buffer continues
3122  *	to exist but is no longer charged to its former owner.
3123  */
3124 static inline void skb_orphan(struct sk_buff *skb)
3125 {
3126 	if (skb->destructor) {
3127 		skb->destructor(skb);
3128 		skb->destructor = NULL;
3129 		skb->sk		= NULL;
3130 	} else {
3131 		BUG_ON(skb->sk);
3132 	}
3133 }
3134 
3135 /**
3136  *	skb_orphan_frags - orphan the frags contained in a buffer
3137  *	@skb: buffer to orphan frags from
3138  *	@gfp_mask: allocation mask for replacement pages
3139  *
3140  *	For each frag in the SKB which needs a destructor (i.e. has an
3141  *	owner) create a copy of that frag and release the original
3142  *	page by calling the destructor.
3143  */
3144 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3145 {
3146 	if (likely(!skb_zcopy(skb)))
3147 		return 0;
3148 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3149 		return 0;
3150 	return skb_copy_ubufs(skb, gfp_mask);
3151 }
3152 
3153 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3154 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3155 {
3156 	if (likely(!skb_zcopy(skb)))
3157 		return 0;
3158 	return skb_copy_ubufs(skb, gfp_mask);
3159 }
3160 
3161 /**
3162  *	__skb_queue_purge_reason - empty a list
3163  *	@list: list to empty
3164  *	@reason: drop reason
3165  *
3166  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3167  *	the list and one reference dropped. This function does not take the
3168  *	list lock and the caller must hold the relevant locks to use it.
3169  */
3170 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3171 					    enum skb_drop_reason reason)
3172 {
3173 	struct sk_buff *skb;
3174 
3175 	while ((skb = __skb_dequeue(list)) != NULL)
3176 		kfree_skb_reason(skb, reason);
3177 }
3178 
3179 static inline void __skb_queue_purge(struct sk_buff_head *list)
3180 {
3181 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3182 }
3183 
3184 void skb_queue_purge_reason(struct sk_buff_head *list,
3185 			    enum skb_drop_reason reason);
3186 
3187 static inline void skb_queue_purge(struct sk_buff_head *list)
3188 {
3189 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3190 }
3191 
3192 unsigned int skb_rbtree_purge(struct rb_root *root);
3193 void skb_errqueue_purge(struct sk_buff_head *list);
3194 
3195 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3196 
3197 /**
3198  * netdev_alloc_frag - allocate a page fragment
3199  * @fragsz: fragment size
3200  *
3201  * Allocates a frag from a page for receive buffer.
3202  * Uses GFP_ATOMIC allocations.
3203  */
3204 static inline void *netdev_alloc_frag(unsigned int fragsz)
3205 {
3206 	return __netdev_alloc_frag_align(fragsz, ~0u);
3207 }
3208 
3209 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3210 					    unsigned int align)
3211 {
3212 	WARN_ON_ONCE(!is_power_of_2(align));
3213 	return __netdev_alloc_frag_align(fragsz, -align);
3214 }
3215 
3216 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3217 				   gfp_t gfp_mask);
3218 
3219 /**
3220  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3221  *	@dev: network device to receive on
3222  *	@length: length to allocate
3223  *
3224  *	Allocate a new &sk_buff and assign it a usage count of one. The
3225  *	buffer has unspecified headroom built in. Users should allocate
3226  *	the headroom they think they need without accounting for the
3227  *	built in space. The built in space is used for optimisations.
3228  *
3229  *	%NULL is returned if there is no free memory. Although this function
3230  *	allocates memory it can be called from an interrupt.
3231  */
3232 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3233 					       unsigned int length)
3234 {
3235 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3236 }
3237 
3238 /* legacy helper around __netdev_alloc_skb() */
3239 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3240 					      gfp_t gfp_mask)
3241 {
3242 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3243 }
3244 
3245 /* legacy helper around netdev_alloc_skb() */
3246 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3247 {
3248 	return netdev_alloc_skb(NULL, length);
3249 }
3250 
3251 
3252 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3253 		unsigned int length, gfp_t gfp)
3254 {
3255 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3256 
3257 	if (NET_IP_ALIGN && skb)
3258 		skb_reserve(skb, NET_IP_ALIGN);
3259 	return skb;
3260 }
3261 
3262 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3263 		unsigned int length)
3264 {
3265 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3266 }
3267 
3268 static inline void skb_free_frag(void *addr)
3269 {
3270 	page_frag_free(addr);
3271 }
3272 
3273 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3274 
3275 static inline void *napi_alloc_frag(unsigned int fragsz)
3276 {
3277 	return __napi_alloc_frag_align(fragsz, ~0u);
3278 }
3279 
3280 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3281 					  unsigned int align)
3282 {
3283 	WARN_ON_ONCE(!is_power_of_2(align));
3284 	return __napi_alloc_frag_align(fragsz, -align);
3285 }
3286 
3287 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3288 				 unsigned int length, gfp_t gfp_mask);
3289 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3290 					     unsigned int length)
3291 {
3292 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3293 }
3294 void napi_consume_skb(struct sk_buff *skb, int budget);
3295 
3296 void napi_skb_free_stolen_head(struct sk_buff *skb);
3297 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3298 
3299 /**
3300  * __dev_alloc_pages - allocate page for network Rx
3301  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3302  * @order: size of the allocation
3303  *
3304  * Allocate a new page.
3305  *
3306  * %NULL is returned if there is no free memory.
3307 */
3308 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3309 					     unsigned int order)
3310 {
3311 	/* This piece of code contains several assumptions.
3312 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3313 	 * 2.  The expectation is the user wants a compound page.
3314 	 * 3.  If requesting a order 0 page it will not be compound
3315 	 *     due to the check to see if order has a value in prep_new_page
3316 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3317 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3318 	 */
3319 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3320 
3321 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3322 }
3323 
3324 static inline struct page *dev_alloc_pages(unsigned int order)
3325 {
3326 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3327 }
3328 
3329 /**
3330  * __dev_alloc_page - allocate a page for network Rx
3331  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3332  *
3333  * Allocate a new page.
3334  *
3335  * %NULL is returned if there is no free memory.
3336  */
3337 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3338 {
3339 	return __dev_alloc_pages(gfp_mask, 0);
3340 }
3341 
3342 static inline struct page *dev_alloc_page(void)
3343 {
3344 	return dev_alloc_pages(0);
3345 }
3346 
3347 /**
3348  * dev_page_is_reusable - check whether a page can be reused for network Rx
3349  * @page: the page to test
3350  *
3351  * A page shouldn't be considered for reusing/recycling if it was allocated
3352  * under memory pressure or at a distant memory node.
3353  *
3354  * Returns false if this page should be returned to page allocator, true
3355  * otherwise.
3356  */
3357 static inline bool dev_page_is_reusable(const struct page *page)
3358 {
3359 	return likely(page_to_nid(page) == numa_mem_id() &&
3360 		      !page_is_pfmemalloc(page));
3361 }
3362 
3363 /**
3364  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3365  *	@page: The page that was allocated from skb_alloc_page
3366  *	@skb: The skb that may need pfmemalloc set
3367  */
3368 static inline void skb_propagate_pfmemalloc(const struct page *page,
3369 					    struct sk_buff *skb)
3370 {
3371 	if (page_is_pfmemalloc(page))
3372 		skb->pfmemalloc = true;
3373 }
3374 
3375 /**
3376  * skb_frag_off() - Returns the offset of a skb fragment
3377  * @frag: the paged fragment
3378  */
3379 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3380 {
3381 	return frag->bv_offset;
3382 }
3383 
3384 /**
3385  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3386  * @frag: skb fragment
3387  * @delta: value to add
3388  */
3389 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3390 {
3391 	frag->bv_offset += delta;
3392 }
3393 
3394 /**
3395  * skb_frag_off_set() - Sets the offset of a skb fragment
3396  * @frag: skb fragment
3397  * @offset: offset of fragment
3398  */
3399 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3400 {
3401 	frag->bv_offset = offset;
3402 }
3403 
3404 /**
3405  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3406  * @fragto: skb fragment where offset is set
3407  * @fragfrom: skb fragment offset is copied from
3408  */
3409 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3410 				     const skb_frag_t *fragfrom)
3411 {
3412 	fragto->bv_offset = fragfrom->bv_offset;
3413 }
3414 
3415 /**
3416  * skb_frag_page - retrieve the page referred to by a paged fragment
3417  * @frag: the paged fragment
3418  *
3419  * Returns the &struct page associated with @frag.
3420  */
3421 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3422 {
3423 	return frag->bv_page;
3424 }
3425 
3426 /**
3427  * __skb_frag_ref - take an addition reference on a paged fragment.
3428  * @frag: the paged fragment
3429  *
3430  * Takes an additional reference on the paged fragment @frag.
3431  */
3432 static inline void __skb_frag_ref(skb_frag_t *frag)
3433 {
3434 	get_page(skb_frag_page(frag));
3435 }
3436 
3437 /**
3438  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3439  * @skb: the buffer
3440  * @f: the fragment offset.
3441  *
3442  * Takes an additional reference on the @f'th paged fragment of @skb.
3443  */
3444 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3445 {
3446 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3447 }
3448 
3449 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3450 		    unsigned int headroom);
3451 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3452 			 struct bpf_prog *prog);
3453 bool napi_pp_put_page(struct page *page, bool napi_safe);
3454 
3455 static inline void
3456 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3457 {
3458 	struct page *page = skb_frag_page(frag);
3459 
3460 #ifdef CONFIG_PAGE_POOL
3461 	if (recycle && napi_pp_put_page(page, napi_safe))
3462 		return;
3463 #endif
3464 	put_page(page);
3465 }
3466 
3467 /**
3468  * __skb_frag_unref - release a reference on a paged fragment.
3469  * @frag: the paged fragment
3470  * @recycle: recycle the page if allocated via page_pool
3471  *
3472  * Releases a reference on the paged fragment @frag
3473  * or recycles the page via the page_pool API.
3474  */
3475 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3476 {
3477 	napi_frag_unref(frag, recycle, false);
3478 }
3479 
3480 /**
3481  * skb_frag_unref - release a reference on a paged fragment of an skb.
3482  * @skb: the buffer
3483  * @f: the fragment offset
3484  *
3485  * Releases a reference on the @f'th paged fragment of @skb.
3486  */
3487 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3488 {
3489 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3490 
3491 	if (!skb_zcopy_managed(skb))
3492 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3493 }
3494 
3495 /**
3496  * skb_frag_address - gets the address of the data contained in a paged fragment
3497  * @frag: the paged fragment buffer
3498  *
3499  * Returns the address of the data within @frag. The page must already
3500  * be mapped.
3501  */
3502 static inline void *skb_frag_address(const skb_frag_t *frag)
3503 {
3504 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3505 }
3506 
3507 /**
3508  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3509  * @frag: the paged fragment buffer
3510  *
3511  * Returns the address of the data within @frag. Checks that the page
3512  * is mapped and returns %NULL otherwise.
3513  */
3514 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3515 {
3516 	void *ptr = page_address(skb_frag_page(frag));
3517 	if (unlikely(!ptr))
3518 		return NULL;
3519 
3520 	return ptr + skb_frag_off(frag);
3521 }
3522 
3523 /**
3524  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3525  * @fragto: skb fragment where page is set
3526  * @fragfrom: skb fragment page is copied from
3527  */
3528 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3529 				      const skb_frag_t *fragfrom)
3530 {
3531 	fragto->bv_page = fragfrom->bv_page;
3532 }
3533 
3534 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3535 
3536 /**
3537  * skb_frag_dma_map - maps a paged fragment via the DMA API
3538  * @dev: the device to map the fragment to
3539  * @frag: the paged fragment to map
3540  * @offset: the offset within the fragment (starting at the
3541  *          fragment's own offset)
3542  * @size: the number of bytes to map
3543  * @dir: the direction of the mapping (``PCI_DMA_*``)
3544  *
3545  * Maps the page associated with @frag to @device.
3546  */
3547 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3548 					  const skb_frag_t *frag,
3549 					  size_t offset, size_t size,
3550 					  enum dma_data_direction dir)
3551 {
3552 	return dma_map_page(dev, skb_frag_page(frag),
3553 			    skb_frag_off(frag) + offset, size, dir);
3554 }
3555 
3556 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3557 					gfp_t gfp_mask)
3558 {
3559 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3560 }
3561 
3562 
3563 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3564 						  gfp_t gfp_mask)
3565 {
3566 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3567 }
3568 
3569 
3570 /**
3571  *	skb_clone_writable - is the header of a clone writable
3572  *	@skb: buffer to check
3573  *	@len: length up to which to write
3574  *
3575  *	Returns true if modifying the header part of the cloned buffer
3576  *	does not requires the data to be copied.
3577  */
3578 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3579 {
3580 	return !skb_header_cloned(skb) &&
3581 	       skb_headroom(skb) + len <= skb->hdr_len;
3582 }
3583 
3584 static inline int skb_try_make_writable(struct sk_buff *skb,
3585 					unsigned int write_len)
3586 {
3587 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3588 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3589 }
3590 
3591 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3592 			    int cloned)
3593 {
3594 	int delta = 0;
3595 
3596 	if (headroom > skb_headroom(skb))
3597 		delta = headroom - skb_headroom(skb);
3598 
3599 	if (delta || cloned)
3600 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3601 					GFP_ATOMIC);
3602 	return 0;
3603 }
3604 
3605 /**
3606  *	skb_cow - copy header of skb when it is required
3607  *	@skb: buffer to cow
3608  *	@headroom: needed headroom
3609  *
3610  *	If the skb passed lacks sufficient headroom or its data part
3611  *	is shared, data is reallocated. If reallocation fails, an error
3612  *	is returned and original skb is not changed.
3613  *
3614  *	The result is skb with writable area skb->head...skb->tail
3615  *	and at least @headroom of space at head.
3616  */
3617 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3618 {
3619 	return __skb_cow(skb, headroom, skb_cloned(skb));
3620 }
3621 
3622 /**
3623  *	skb_cow_head - skb_cow but only making the head writable
3624  *	@skb: buffer to cow
3625  *	@headroom: needed headroom
3626  *
3627  *	This function is identical to skb_cow except that we replace the
3628  *	skb_cloned check by skb_header_cloned.  It should be used when
3629  *	you only need to push on some header and do not need to modify
3630  *	the data.
3631  */
3632 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3633 {
3634 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3635 }
3636 
3637 /**
3638  *	skb_padto	- pad an skbuff up to a minimal size
3639  *	@skb: buffer to pad
3640  *	@len: minimal length
3641  *
3642  *	Pads up a buffer to ensure the trailing bytes exist and are
3643  *	blanked. If the buffer already contains sufficient data it
3644  *	is untouched. Otherwise it is extended. Returns zero on
3645  *	success. The skb is freed on error.
3646  */
3647 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3648 {
3649 	unsigned int size = skb->len;
3650 	if (likely(size >= len))
3651 		return 0;
3652 	return skb_pad(skb, len - size);
3653 }
3654 
3655 /**
3656  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3657  *	@skb: buffer to pad
3658  *	@len: minimal length
3659  *	@free_on_error: free buffer on error
3660  *
3661  *	Pads up a buffer to ensure the trailing bytes exist and are
3662  *	blanked. If the buffer already contains sufficient data it
3663  *	is untouched. Otherwise it is extended. Returns zero on
3664  *	success. The skb is freed on error if @free_on_error is true.
3665  */
3666 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3667 					       unsigned int len,
3668 					       bool free_on_error)
3669 {
3670 	unsigned int size = skb->len;
3671 
3672 	if (unlikely(size < len)) {
3673 		len -= size;
3674 		if (__skb_pad(skb, len, free_on_error))
3675 			return -ENOMEM;
3676 		__skb_put(skb, len);
3677 	}
3678 	return 0;
3679 }
3680 
3681 /**
3682  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3683  *	@skb: buffer to pad
3684  *	@len: minimal length
3685  *
3686  *	Pads up a buffer to ensure the trailing bytes exist and are
3687  *	blanked. If the buffer already contains sufficient data it
3688  *	is untouched. Otherwise it is extended. Returns zero on
3689  *	success. The skb is freed on error.
3690  */
3691 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3692 {
3693 	return __skb_put_padto(skb, len, true);
3694 }
3695 
3696 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3697 	__must_check;
3698 
3699 static inline int skb_add_data(struct sk_buff *skb,
3700 			       struct iov_iter *from, int copy)
3701 {
3702 	const int off = skb->len;
3703 
3704 	if (skb->ip_summed == CHECKSUM_NONE) {
3705 		__wsum csum = 0;
3706 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3707 					         &csum, from)) {
3708 			skb->csum = csum_block_add(skb->csum, csum, off);
3709 			return 0;
3710 		}
3711 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3712 		return 0;
3713 
3714 	__skb_trim(skb, off);
3715 	return -EFAULT;
3716 }
3717 
3718 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3719 				    const struct page *page, int off)
3720 {
3721 	if (skb_zcopy(skb))
3722 		return false;
3723 	if (i) {
3724 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3725 
3726 		return page == skb_frag_page(frag) &&
3727 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3728 	}
3729 	return false;
3730 }
3731 
3732 static inline int __skb_linearize(struct sk_buff *skb)
3733 {
3734 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3735 }
3736 
3737 /**
3738  *	skb_linearize - convert paged skb to linear one
3739  *	@skb: buffer to linarize
3740  *
3741  *	If there is no free memory -ENOMEM is returned, otherwise zero
3742  *	is returned and the old skb data released.
3743  */
3744 static inline int skb_linearize(struct sk_buff *skb)
3745 {
3746 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3747 }
3748 
3749 /**
3750  * skb_has_shared_frag - can any frag be overwritten
3751  * @skb: buffer to test
3752  *
3753  * Return true if the skb has at least one frag that might be modified
3754  * by an external entity (as in vmsplice()/sendfile())
3755  */
3756 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3757 {
3758 	return skb_is_nonlinear(skb) &&
3759 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3760 }
3761 
3762 /**
3763  *	skb_linearize_cow - make sure skb is linear and writable
3764  *	@skb: buffer to process
3765  *
3766  *	If there is no free memory -ENOMEM is returned, otherwise zero
3767  *	is returned and the old skb data released.
3768  */
3769 static inline int skb_linearize_cow(struct sk_buff *skb)
3770 {
3771 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3772 	       __skb_linearize(skb) : 0;
3773 }
3774 
3775 static __always_inline void
3776 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3777 		     unsigned int off)
3778 {
3779 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3780 		skb->csum = csum_block_sub(skb->csum,
3781 					   csum_partial(start, len, 0), off);
3782 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3783 		 skb_checksum_start_offset(skb) < 0)
3784 		skb->ip_summed = CHECKSUM_NONE;
3785 }
3786 
3787 /**
3788  *	skb_postpull_rcsum - update checksum for received skb after pull
3789  *	@skb: buffer to update
3790  *	@start: start of data before pull
3791  *	@len: length of data pulled
3792  *
3793  *	After doing a pull on a received packet, you need to call this to
3794  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3795  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3796  */
3797 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3798 				      const void *start, unsigned int len)
3799 {
3800 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3801 		skb->csum = wsum_negate(csum_partial(start, len,
3802 						     wsum_negate(skb->csum)));
3803 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3804 		 skb_checksum_start_offset(skb) < 0)
3805 		skb->ip_summed = CHECKSUM_NONE;
3806 }
3807 
3808 static __always_inline void
3809 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3810 		     unsigned int off)
3811 {
3812 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3813 		skb->csum = csum_block_add(skb->csum,
3814 					   csum_partial(start, len, 0), off);
3815 }
3816 
3817 /**
3818  *	skb_postpush_rcsum - update checksum for received skb after push
3819  *	@skb: buffer to update
3820  *	@start: start of data after push
3821  *	@len: length of data pushed
3822  *
3823  *	After doing a push on a received packet, you need to call this to
3824  *	update the CHECKSUM_COMPLETE checksum.
3825  */
3826 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3827 				      const void *start, unsigned int len)
3828 {
3829 	__skb_postpush_rcsum(skb, start, len, 0);
3830 }
3831 
3832 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3833 
3834 /**
3835  *	skb_push_rcsum - push skb and update receive checksum
3836  *	@skb: buffer to update
3837  *	@len: length of data pulled
3838  *
3839  *	This function performs an skb_push on the packet and updates
3840  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3841  *	receive path processing instead of skb_push unless you know
3842  *	that the checksum difference is zero (e.g., a valid IP header)
3843  *	or you are setting ip_summed to CHECKSUM_NONE.
3844  */
3845 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3846 {
3847 	skb_push(skb, len);
3848 	skb_postpush_rcsum(skb, skb->data, len);
3849 	return skb->data;
3850 }
3851 
3852 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3853 /**
3854  *	pskb_trim_rcsum - trim received skb and update checksum
3855  *	@skb: buffer to trim
3856  *	@len: new length
3857  *
3858  *	This is exactly the same as pskb_trim except that it ensures the
3859  *	checksum of received packets are still valid after the operation.
3860  *	It can change skb pointers.
3861  */
3862 
3863 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3864 {
3865 	if (likely(len >= skb->len))
3866 		return 0;
3867 	return pskb_trim_rcsum_slow(skb, len);
3868 }
3869 
3870 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3871 {
3872 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3873 		skb->ip_summed = CHECKSUM_NONE;
3874 	__skb_trim(skb, len);
3875 	return 0;
3876 }
3877 
3878 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3879 {
3880 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3881 		skb->ip_summed = CHECKSUM_NONE;
3882 	return __skb_grow(skb, len);
3883 }
3884 
3885 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3886 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3887 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3888 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3889 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3890 
3891 #define skb_queue_walk(queue, skb) \
3892 		for (skb = (queue)->next;					\
3893 		     skb != (struct sk_buff *)(queue);				\
3894 		     skb = skb->next)
3895 
3896 #define skb_queue_walk_safe(queue, skb, tmp)					\
3897 		for (skb = (queue)->next, tmp = skb->next;			\
3898 		     skb != (struct sk_buff *)(queue);				\
3899 		     skb = tmp, tmp = skb->next)
3900 
3901 #define skb_queue_walk_from(queue, skb)						\
3902 		for (; skb != (struct sk_buff *)(queue);			\
3903 		     skb = skb->next)
3904 
3905 #define skb_rbtree_walk(skb, root)						\
3906 		for (skb = skb_rb_first(root); skb != NULL;			\
3907 		     skb = skb_rb_next(skb))
3908 
3909 #define skb_rbtree_walk_from(skb)						\
3910 		for (; skb != NULL;						\
3911 		     skb = skb_rb_next(skb))
3912 
3913 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3914 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3915 		     skb = tmp)
3916 
3917 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3918 		for (tmp = skb->next;						\
3919 		     skb != (struct sk_buff *)(queue);				\
3920 		     skb = tmp, tmp = skb->next)
3921 
3922 #define skb_queue_reverse_walk(queue, skb) \
3923 		for (skb = (queue)->prev;					\
3924 		     skb != (struct sk_buff *)(queue);				\
3925 		     skb = skb->prev)
3926 
3927 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3928 		for (skb = (queue)->prev, tmp = skb->prev;			\
3929 		     skb != (struct sk_buff *)(queue);				\
3930 		     skb = tmp, tmp = skb->prev)
3931 
3932 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3933 		for (tmp = skb->prev;						\
3934 		     skb != (struct sk_buff *)(queue);				\
3935 		     skb = tmp, tmp = skb->prev)
3936 
3937 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3938 {
3939 	return skb_shinfo(skb)->frag_list != NULL;
3940 }
3941 
3942 static inline void skb_frag_list_init(struct sk_buff *skb)
3943 {
3944 	skb_shinfo(skb)->frag_list = NULL;
3945 }
3946 
3947 #define skb_walk_frags(skb, iter)	\
3948 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3949 
3950 
3951 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3952 				int *err, long *timeo_p,
3953 				const struct sk_buff *skb);
3954 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3955 					  struct sk_buff_head *queue,
3956 					  unsigned int flags,
3957 					  int *off, int *err,
3958 					  struct sk_buff **last);
3959 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3960 					struct sk_buff_head *queue,
3961 					unsigned int flags, int *off, int *err,
3962 					struct sk_buff **last);
3963 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3964 				    struct sk_buff_head *sk_queue,
3965 				    unsigned int flags, int *off, int *err);
3966 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3967 __poll_t datagram_poll(struct file *file, struct socket *sock,
3968 			   struct poll_table_struct *wait);
3969 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3970 			   struct iov_iter *to, int size);
3971 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3972 					struct msghdr *msg, int size)
3973 {
3974 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3975 }
3976 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3977 				   struct msghdr *msg);
3978 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3979 			   struct iov_iter *to, int len,
3980 			   struct ahash_request *hash);
3981 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3982 				 struct iov_iter *from, int len);
3983 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3984 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3985 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3986 static inline void skb_free_datagram_locked(struct sock *sk,
3987 					    struct sk_buff *skb)
3988 {
3989 	__skb_free_datagram_locked(sk, skb, 0);
3990 }
3991 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3992 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3993 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3994 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3995 			      int len);
3996 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3997 		    struct pipe_inode_info *pipe, unsigned int len,
3998 		    unsigned int flags);
3999 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4000 			 int len);
4001 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4002 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4003 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4004 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4005 		 int len, int hlen);
4006 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4007 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4008 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4009 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4010 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4011 				 unsigned int offset);
4012 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4013 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4014 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4015 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4016 int skb_vlan_pop(struct sk_buff *skb);
4017 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4018 int skb_eth_pop(struct sk_buff *skb);
4019 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4020 		 const unsigned char *src);
4021 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4022 		  int mac_len, bool ethernet);
4023 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4024 		 bool ethernet);
4025 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4026 int skb_mpls_dec_ttl(struct sk_buff *skb);
4027 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4028 			     gfp_t gfp);
4029 
4030 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4031 {
4032 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4033 }
4034 
4035 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4036 {
4037 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4038 }
4039 
4040 struct skb_checksum_ops {
4041 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4042 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4043 };
4044 
4045 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4046 
4047 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4048 		      __wsum csum, const struct skb_checksum_ops *ops);
4049 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4050 		    __wsum csum);
4051 
4052 static inline void * __must_check
4053 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4054 		     const void *data, int hlen, void *buffer)
4055 {
4056 	if (likely(hlen - offset >= len))
4057 		return (void *)data + offset;
4058 
4059 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4060 		return NULL;
4061 
4062 	return buffer;
4063 }
4064 
4065 static inline void * __must_check
4066 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4067 {
4068 	return __skb_header_pointer(skb, offset, len, skb->data,
4069 				    skb_headlen(skb), buffer);
4070 }
4071 
4072 static inline void * __must_check
4073 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4074 {
4075 	if (likely(skb_headlen(skb) - offset >= len))
4076 		return skb->data + offset;
4077 	return NULL;
4078 }
4079 
4080 /**
4081  *	skb_needs_linearize - check if we need to linearize a given skb
4082  *			      depending on the given device features.
4083  *	@skb: socket buffer to check
4084  *	@features: net device features
4085  *
4086  *	Returns true if either:
4087  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4088  *	2. skb is fragmented and the device does not support SG.
4089  */
4090 static inline bool skb_needs_linearize(struct sk_buff *skb,
4091 				       netdev_features_t features)
4092 {
4093 	return skb_is_nonlinear(skb) &&
4094 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4095 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4096 }
4097 
4098 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4099 					     void *to,
4100 					     const unsigned int len)
4101 {
4102 	memcpy(to, skb->data, len);
4103 }
4104 
4105 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4106 						    const int offset, void *to,
4107 						    const unsigned int len)
4108 {
4109 	memcpy(to, skb->data + offset, len);
4110 }
4111 
4112 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4113 					   const void *from,
4114 					   const unsigned int len)
4115 {
4116 	memcpy(skb->data, from, len);
4117 }
4118 
4119 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4120 						  const int offset,
4121 						  const void *from,
4122 						  const unsigned int len)
4123 {
4124 	memcpy(skb->data + offset, from, len);
4125 }
4126 
4127 void skb_init(void);
4128 
4129 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4130 {
4131 	return skb->tstamp;
4132 }
4133 
4134 /**
4135  *	skb_get_timestamp - get timestamp from a skb
4136  *	@skb: skb to get stamp from
4137  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4138  *
4139  *	Timestamps are stored in the skb as offsets to a base timestamp.
4140  *	This function converts the offset back to a struct timeval and stores
4141  *	it in stamp.
4142  */
4143 static inline void skb_get_timestamp(const struct sk_buff *skb,
4144 				     struct __kernel_old_timeval *stamp)
4145 {
4146 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4147 }
4148 
4149 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4150 					 struct __kernel_sock_timeval *stamp)
4151 {
4152 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4153 
4154 	stamp->tv_sec = ts.tv_sec;
4155 	stamp->tv_usec = ts.tv_nsec / 1000;
4156 }
4157 
4158 static inline void skb_get_timestampns(const struct sk_buff *skb,
4159 				       struct __kernel_old_timespec *stamp)
4160 {
4161 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4162 
4163 	stamp->tv_sec = ts.tv_sec;
4164 	stamp->tv_nsec = ts.tv_nsec;
4165 }
4166 
4167 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4168 					   struct __kernel_timespec *stamp)
4169 {
4170 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4171 
4172 	stamp->tv_sec = ts.tv_sec;
4173 	stamp->tv_nsec = ts.tv_nsec;
4174 }
4175 
4176 static inline void __net_timestamp(struct sk_buff *skb)
4177 {
4178 	skb->tstamp = ktime_get_real();
4179 	skb->mono_delivery_time = 0;
4180 }
4181 
4182 static inline ktime_t net_timedelta(ktime_t t)
4183 {
4184 	return ktime_sub(ktime_get_real(), t);
4185 }
4186 
4187 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4188 					 bool mono)
4189 {
4190 	skb->tstamp = kt;
4191 	skb->mono_delivery_time = kt && mono;
4192 }
4193 
4194 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4195 
4196 /* It is used in the ingress path to clear the delivery_time.
4197  * If needed, set the skb->tstamp to the (rcv) timestamp.
4198  */
4199 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4200 {
4201 	if (skb->mono_delivery_time) {
4202 		skb->mono_delivery_time = 0;
4203 		if (static_branch_unlikely(&netstamp_needed_key))
4204 			skb->tstamp = ktime_get_real();
4205 		else
4206 			skb->tstamp = 0;
4207 	}
4208 }
4209 
4210 static inline void skb_clear_tstamp(struct sk_buff *skb)
4211 {
4212 	if (skb->mono_delivery_time)
4213 		return;
4214 
4215 	skb->tstamp = 0;
4216 }
4217 
4218 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4219 {
4220 	if (skb->mono_delivery_time)
4221 		return 0;
4222 
4223 	return skb->tstamp;
4224 }
4225 
4226 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4227 {
4228 	if (!skb->mono_delivery_time && skb->tstamp)
4229 		return skb->tstamp;
4230 
4231 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4232 		return ktime_get_real();
4233 
4234 	return 0;
4235 }
4236 
4237 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4238 {
4239 	return skb_shinfo(skb)->meta_len;
4240 }
4241 
4242 static inline void *skb_metadata_end(const struct sk_buff *skb)
4243 {
4244 	return skb_mac_header(skb);
4245 }
4246 
4247 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4248 					  const struct sk_buff *skb_b,
4249 					  u8 meta_len)
4250 {
4251 	const void *a = skb_metadata_end(skb_a);
4252 	const void *b = skb_metadata_end(skb_b);
4253 	u64 diffs = 0;
4254 
4255 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4256 	    BITS_PER_LONG != 64)
4257 		goto slow;
4258 
4259 	/* Using more efficient variant than plain call to memcmp(). */
4260 	switch (meta_len) {
4261 #define __it(x, op) (x -= sizeof(u##op))
4262 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4263 	case 32: diffs |= __it_diff(a, b, 64);
4264 		fallthrough;
4265 	case 24: diffs |= __it_diff(a, b, 64);
4266 		fallthrough;
4267 	case 16: diffs |= __it_diff(a, b, 64);
4268 		fallthrough;
4269 	case  8: diffs |= __it_diff(a, b, 64);
4270 		break;
4271 	case 28: diffs |= __it_diff(a, b, 64);
4272 		fallthrough;
4273 	case 20: diffs |= __it_diff(a, b, 64);
4274 		fallthrough;
4275 	case 12: diffs |= __it_diff(a, b, 64);
4276 		fallthrough;
4277 	case  4: diffs |= __it_diff(a, b, 32);
4278 		break;
4279 	default:
4280 slow:
4281 		return memcmp(a - meta_len, b - meta_len, meta_len);
4282 	}
4283 	return diffs;
4284 }
4285 
4286 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4287 					const struct sk_buff *skb_b)
4288 {
4289 	u8 len_a = skb_metadata_len(skb_a);
4290 	u8 len_b = skb_metadata_len(skb_b);
4291 
4292 	if (!(len_a | len_b))
4293 		return false;
4294 
4295 	return len_a != len_b ?
4296 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4297 }
4298 
4299 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4300 {
4301 	skb_shinfo(skb)->meta_len = meta_len;
4302 }
4303 
4304 static inline void skb_metadata_clear(struct sk_buff *skb)
4305 {
4306 	skb_metadata_set(skb, 0);
4307 }
4308 
4309 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4310 
4311 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4312 
4313 void skb_clone_tx_timestamp(struct sk_buff *skb);
4314 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4315 
4316 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4317 
4318 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4319 {
4320 }
4321 
4322 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4323 {
4324 	return false;
4325 }
4326 
4327 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4328 
4329 /**
4330  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4331  *
4332  * PHY drivers may accept clones of transmitted packets for
4333  * timestamping via their phy_driver.txtstamp method. These drivers
4334  * must call this function to return the skb back to the stack with a
4335  * timestamp.
4336  *
4337  * @skb: clone of the original outgoing packet
4338  * @hwtstamps: hardware time stamps
4339  *
4340  */
4341 void skb_complete_tx_timestamp(struct sk_buff *skb,
4342 			       struct skb_shared_hwtstamps *hwtstamps);
4343 
4344 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4345 		     struct skb_shared_hwtstamps *hwtstamps,
4346 		     struct sock *sk, int tstype);
4347 
4348 /**
4349  * skb_tstamp_tx - queue clone of skb with send time stamps
4350  * @orig_skb:	the original outgoing packet
4351  * @hwtstamps:	hardware time stamps, may be NULL if not available
4352  *
4353  * If the skb has a socket associated, then this function clones the
4354  * skb (thus sharing the actual data and optional structures), stores
4355  * the optional hardware time stamping information (if non NULL) or
4356  * generates a software time stamp (otherwise), then queues the clone
4357  * to the error queue of the socket.  Errors are silently ignored.
4358  */
4359 void skb_tstamp_tx(struct sk_buff *orig_skb,
4360 		   struct skb_shared_hwtstamps *hwtstamps);
4361 
4362 /**
4363  * skb_tx_timestamp() - Driver hook for transmit timestamping
4364  *
4365  * Ethernet MAC Drivers should call this function in their hard_xmit()
4366  * function immediately before giving the sk_buff to the MAC hardware.
4367  *
4368  * Specifically, one should make absolutely sure that this function is
4369  * called before TX completion of this packet can trigger.  Otherwise
4370  * the packet could potentially already be freed.
4371  *
4372  * @skb: A socket buffer.
4373  */
4374 static inline void skb_tx_timestamp(struct sk_buff *skb)
4375 {
4376 	skb_clone_tx_timestamp(skb);
4377 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4378 		skb_tstamp_tx(skb, NULL);
4379 }
4380 
4381 /**
4382  * skb_complete_wifi_ack - deliver skb with wifi status
4383  *
4384  * @skb: the original outgoing packet
4385  * @acked: ack status
4386  *
4387  */
4388 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4389 
4390 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4391 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4392 
4393 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4394 {
4395 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4396 		skb->csum_valid ||
4397 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4398 		 skb_checksum_start_offset(skb) >= 0));
4399 }
4400 
4401 /**
4402  *	skb_checksum_complete - Calculate checksum of an entire packet
4403  *	@skb: packet to process
4404  *
4405  *	This function calculates the checksum over the entire packet plus
4406  *	the value of skb->csum.  The latter can be used to supply the
4407  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4408  *	checksum.
4409  *
4410  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4411  *	this function can be used to verify that checksum on received
4412  *	packets.  In that case the function should return zero if the
4413  *	checksum is correct.  In particular, this function will return zero
4414  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4415  *	hardware has already verified the correctness of the checksum.
4416  */
4417 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4418 {
4419 	return skb_csum_unnecessary(skb) ?
4420 	       0 : __skb_checksum_complete(skb);
4421 }
4422 
4423 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4424 {
4425 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4426 		if (skb->csum_level == 0)
4427 			skb->ip_summed = CHECKSUM_NONE;
4428 		else
4429 			skb->csum_level--;
4430 	}
4431 }
4432 
4433 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4434 {
4435 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4436 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4437 			skb->csum_level++;
4438 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4439 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4440 		skb->csum_level = 0;
4441 	}
4442 }
4443 
4444 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4445 {
4446 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4447 		skb->ip_summed = CHECKSUM_NONE;
4448 		skb->csum_level = 0;
4449 	}
4450 }
4451 
4452 /* Check if we need to perform checksum complete validation.
4453  *
4454  * Returns true if checksum complete is needed, false otherwise
4455  * (either checksum is unnecessary or zero checksum is allowed).
4456  */
4457 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4458 						  bool zero_okay,
4459 						  __sum16 check)
4460 {
4461 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4462 		skb->csum_valid = 1;
4463 		__skb_decr_checksum_unnecessary(skb);
4464 		return false;
4465 	}
4466 
4467 	return true;
4468 }
4469 
4470 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4471  * in checksum_init.
4472  */
4473 #define CHECKSUM_BREAK 76
4474 
4475 /* Unset checksum-complete
4476  *
4477  * Unset checksum complete can be done when packet is being modified
4478  * (uncompressed for instance) and checksum-complete value is
4479  * invalidated.
4480  */
4481 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4482 {
4483 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4484 		skb->ip_summed = CHECKSUM_NONE;
4485 }
4486 
4487 /* Validate (init) checksum based on checksum complete.
4488  *
4489  * Return values:
4490  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4491  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4492  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4493  *   non-zero: value of invalid checksum
4494  *
4495  */
4496 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4497 						       bool complete,
4498 						       __wsum psum)
4499 {
4500 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4501 		if (!csum_fold(csum_add(psum, skb->csum))) {
4502 			skb->csum_valid = 1;
4503 			return 0;
4504 		}
4505 	}
4506 
4507 	skb->csum = psum;
4508 
4509 	if (complete || skb->len <= CHECKSUM_BREAK) {
4510 		__sum16 csum;
4511 
4512 		csum = __skb_checksum_complete(skb);
4513 		skb->csum_valid = !csum;
4514 		return csum;
4515 	}
4516 
4517 	return 0;
4518 }
4519 
4520 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4521 {
4522 	return 0;
4523 }
4524 
4525 /* Perform checksum validate (init). Note that this is a macro since we only
4526  * want to calculate the pseudo header which is an input function if necessary.
4527  * First we try to validate without any computation (checksum unnecessary) and
4528  * then calculate based on checksum complete calling the function to compute
4529  * pseudo header.
4530  *
4531  * Return values:
4532  *   0: checksum is validated or try to in skb_checksum_complete
4533  *   non-zero: value of invalid checksum
4534  */
4535 #define __skb_checksum_validate(skb, proto, complete,			\
4536 				zero_okay, check, compute_pseudo)	\
4537 ({									\
4538 	__sum16 __ret = 0;						\
4539 	skb->csum_valid = 0;						\
4540 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4541 		__ret = __skb_checksum_validate_complete(skb,		\
4542 				complete, compute_pseudo(skb, proto));	\
4543 	__ret;								\
4544 })
4545 
4546 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4547 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4548 
4549 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4550 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4551 
4552 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4553 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4554 
4555 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4556 					 compute_pseudo)		\
4557 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4558 
4559 #define skb_checksum_simple_validate(skb)				\
4560 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4561 
4562 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4563 {
4564 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4565 }
4566 
4567 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4568 {
4569 	skb->csum = ~pseudo;
4570 	skb->ip_summed = CHECKSUM_COMPLETE;
4571 }
4572 
4573 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4574 do {									\
4575 	if (__skb_checksum_convert_check(skb))				\
4576 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4577 } while (0)
4578 
4579 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4580 					      u16 start, u16 offset)
4581 {
4582 	skb->ip_summed = CHECKSUM_PARTIAL;
4583 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4584 	skb->csum_offset = offset - start;
4585 }
4586 
4587 /* Update skbuf and packet to reflect the remote checksum offload operation.
4588  * When called, ptr indicates the starting point for skb->csum when
4589  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4590  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4591  */
4592 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4593 				       int start, int offset, bool nopartial)
4594 {
4595 	__wsum delta;
4596 
4597 	if (!nopartial) {
4598 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4599 		return;
4600 	}
4601 
4602 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4603 		__skb_checksum_complete(skb);
4604 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4605 	}
4606 
4607 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4608 
4609 	/* Adjust skb->csum since we changed the packet */
4610 	skb->csum = csum_add(skb->csum, delta);
4611 }
4612 
4613 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4614 {
4615 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4616 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4617 #else
4618 	return NULL;
4619 #endif
4620 }
4621 
4622 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4623 {
4624 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4625 	return skb->_nfct;
4626 #else
4627 	return 0UL;
4628 #endif
4629 }
4630 
4631 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4632 {
4633 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4634 	skb->slow_gro |= !!nfct;
4635 	skb->_nfct = nfct;
4636 #endif
4637 }
4638 
4639 #ifdef CONFIG_SKB_EXTENSIONS
4640 enum skb_ext_id {
4641 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4642 	SKB_EXT_BRIDGE_NF,
4643 #endif
4644 #ifdef CONFIG_XFRM
4645 	SKB_EXT_SEC_PATH,
4646 #endif
4647 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4648 	TC_SKB_EXT,
4649 #endif
4650 #if IS_ENABLED(CONFIG_MPTCP)
4651 	SKB_EXT_MPTCP,
4652 #endif
4653 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4654 	SKB_EXT_MCTP,
4655 #endif
4656 	SKB_EXT_NUM, /* must be last */
4657 };
4658 
4659 /**
4660  *	struct skb_ext - sk_buff extensions
4661  *	@refcnt: 1 on allocation, deallocated on 0
4662  *	@offset: offset to add to @data to obtain extension address
4663  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4664  *	@data: start of extension data, variable sized
4665  *
4666  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4667  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4668  */
4669 struct skb_ext {
4670 	refcount_t refcnt;
4671 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4672 	u8 chunks;		/* same */
4673 	char data[] __aligned(8);
4674 };
4675 
4676 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4677 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4678 		    struct skb_ext *ext);
4679 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4680 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4681 void __skb_ext_put(struct skb_ext *ext);
4682 
4683 static inline void skb_ext_put(struct sk_buff *skb)
4684 {
4685 	if (skb->active_extensions)
4686 		__skb_ext_put(skb->extensions);
4687 }
4688 
4689 static inline void __skb_ext_copy(struct sk_buff *dst,
4690 				  const struct sk_buff *src)
4691 {
4692 	dst->active_extensions = src->active_extensions;
4693 
4694 	if (src->active_extensions) {
4695 		struct skb_ext *ext = src->extensions;
4696 
4697 		refcount_inc(&ext->refcnt);
4698 		dst->extensions = ext;
4699 	}
4700 }
4701 
4702 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4703 {
4704 	skb_ext_put(dst);
4705 	__skb_ext_copy(dst, src);
4706 }
4707 
4708 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4709 {
4710 	return !!ext->offset[i];
4711 }
4712 
4713 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4714 {
4715 	return skb->active_extensions & (1 << id);
4716 }
4717 
4718 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4719 {
4720 	if (skb_ext_exist(skb, id))
4721 		__skb_ext_del(skb, id);
4722 }
4723 
4724 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4725 {
4726 	if (skb_ext_exist(skb, id)) {
4727 		struct skb_ext *ext = skb->extensions;
4728 
4729 		return (void *)ext + (ext->offset[id] << 3);
4730 	}
4731 
4732 	return NULL;
4733 }
4734 
4735 static inline void skb_ext_reset(struct sk_buff *skb)
4736 {
4737 	if (unlikely(skb->active_extensions)) {
4738 		__skb_ext_put(skb->extensions);
4739 		skb->active_extensions = 0;
4740 	}
4741 }
4742 
4743 static inline bool skb_has_extensions(struct sk_buff *skb)
4744 {
4745 	return unlikely(skb->active_extensions);
4746 }
4747 #else
4748 static inline void skb_ext_put(struct sk_buff *skb) {}
4749 static inline void skb_ext_reset(struct sk_buff *skb) {}
4750 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4751 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4752 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4753 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4754 #endif /* CONFIG_SKB_EXTENSIONS */
4755 
4756 static inline void nf_reset_ct(struct sk_buff *skb)
4757 {
4758 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4759 	nf_conntrack_put(skb_nfct(skb));
4760 	skb->_nfct = 0;
4761 #endif
4762 }
4763 
4764 static inline void nf_reset_trace(struct sk_buff *skb)
4765 {
4766 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4767 	skb->nf_trace = 0;
4768 #endif
4769 }
4770 
4771 static inline void ipvs_reset(struct sk_buff *skb)
4772 {
4773 #if IS_ENABLED(CONFIG_IP_VS)
4774 	skb->ipvs_property = 0;
4775 #endif
4776 }
4777 
4778 /* Note: This doesn't put any conntrack info in dst. */
4779 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4780 			     bool copy)
4781 {
4782 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4783 	dst->_nfct = src->_nfct;
4784 	nf_conntrack_get(skb_nfct(src));
4785 #endif
4786 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4787 	if (copy)
4788 		dst->nf_trace = src->nf_trace;
4789 #endif
4790 }
4791 
4792 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4793 {
4794 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4795 	nf_conntrack_put(skb_nfct(dst));
4796 #endif
4797 	dst->slow_gro = src->slow_gro;
4798 	__nf_copy(dst, src, true);
4799 }
4800 
4801 #ifdef CONFIG_NETWORK_SECMARK
4802 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4803 {
4804 	to->secmark = from->secmark;
4805 }
4806 
4807 static inline void skb_init_secmark(struct sk_buff *skb)
4808 {
4809 	skb->secmark = 0;
4810 }
4811 #else
4812 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4813 { }
4814 
4815 static inline void skb_init_secmark(struct sk_buff *skb)
4816 { }
4817 #endif
4818 
4819 static inline int secpath_exists(const struct sk_buff *skb)
4820 {
4821 #ifdef CONFIG_XFRM
4822 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4823 #else
4824 	return 0;
4825 #endif
4826 }
4827 
4828 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4829 {
4830 	return !skb->destructor &&
4831 		!secpath_exists(skb) &&
4832 		!skb_nfct(skb) &&
4833 		!skb->_skb_refdst &&
4834 		!skb_has_frag_list(skb);
4835 }
4836 
4837 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4838 {
4839 	skb->queue_mapping = queue_mapping;
4840 }
4841 
4842 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4843 {
4844 	return skb->queue_mapping;
4845 }
4846 
4847 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4848 {
4849 	to->queue_mapping = from->queue_mapping;
4850 }
4851 
4852 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4853 {
4854 	skb->queue_mapping = rx_queue + 1;
4855 }
4856 
4857 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4858 {
4859 	return skb->queue_mapping - 1;
4860 }
4861 
4862 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4863 {
4864 	return skb->queue_mapping != 0;
4865 }
4866 
4867 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4868 {
4869 	skb->dst_pending_confirm = val;
4870 }
4871 
4872 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4873 {
4874 	return skb->dst_pending_confirm != 0;
4875 }
4876 
4877 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4878 {
4879 #ifdef CONFIG_XFRM
4880 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4881 #else
4882 	return NULL;
4883 #endif
4884 }
4885 
4886 static inline bool skb_is_gso(const struct sk_buff *skb)
4887 {
4888 	return skb_shinfo(skb)->gso_size;
4889 }
4890 
4891 /* Note: Should be called only if skb_is_gso(skb) is true */
4892 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4893 {
4894 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4895 }
4896 
4897 /* Note: Should be called only if skb_is_gso(skb) is true */
4898 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4899 {
4900 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4901 }
4902 
4903 /* Note: Should be called only if skb_is_gso(skb) is true */
4904 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4905 {
4906 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4907 }
4908 
4909 static inline void skb_gso_reset(struct sk_buff *skb)
4910 {
4911 	skb_shinfo(skb)->gso_size = 0;
4912 	skb_shinfo(skb)->gso_segs = 0;
4913 	skb_shinfo(skb)->gso_type = 0;
4914 }
4915 
4916 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4917 					 u16 increment)
4918 {
4919 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4920 		return;
4921 	shinfo->gso_size += increment;
4922 }
4923 
4924 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4925 					 u16 decrement)
4926 {
4927 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4928 		return;
4929 	shinfo->gso_size -= decrement;
4930 }
4931 
4932 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4933 
4934 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4935 {
4936 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4937 	 * wanted then gso_type will be set. */
4938 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4939 
4940 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4941 	    unlikely(shinfo->gso_type == 0)) {
4942 		__skb_warn_lro_forwarding(skb);
4943 		return true;
4944 	}
4945 	return false;
4946 }
4947 
4948 static inline void skb_forward_csum(struct sk_buff *skb)
4949 {
4950 	/* Unfortunately we don't support this one.  Any brave souls? */
4951 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4952 		skb->ip_summed = CHECKSUM_NONE;
4953 }
4954 
4955 /**
4956  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4957  * @skb: skb to check
4958  *
4959  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4960  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4961  * use this helper, to document places where we make this assertion.
4962  */
4963 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4964 {
4965 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4966 }
4967 
4968 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4969 
4970 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4971 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4972 				     unsigned int transport_len,
4973 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4974 
4975 /**
4976  * skb_head_is_locked - Determine if the skb->head is locked down
4977  * @skb: skb to check
4978  *
4979  * The head on skbs build around a head frag can be removed if they are
4980  * not cloned.  This function returns true if the skb head is locked down
4981  * due to either being allocated via kmalloc, or by being a clone with
4982  * multiple references to the head.
4983  */
4984 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4985 {
4986 	return !skb->head_frag || skb_cloned(skb);
4987 }
4988 
4989 /* Local Checksum Offload.
4990  * Compute outer checksum based on the assumption that the
4991  * inner checksum will be offloaded later.
4992  * See Documentation/networking/checksum-offloads.rst for
4993  * explanation of how this works.
4994  * Fill in outer checksum adjustment (e.g. with sum of outer
4995  * pseudo-header) before calling.
4996  * Also ensure that inner checksum is in linear data area.
4997  */
4998 static inline __wsum lco_csum(struct sk_buff *skb)
4999 {
5000 	unsigned char *csum_start = skb_checksum_start(skb);
5001 	unsigned char *l4_hdr = skb_transport_header(skb);
5002 	__wsum partial;
5003 
5004 	/* Start with complement of inner checksum adjustment */
5005 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5006 						    skb->csum_offset));
5007 
5008 	/* Add in checksum of our headers (incl. outer checksum
5009 	 * adjustment filled in by caller) and return result.
5010 	 */
5011 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5012 }
5013 
5014 static inline bool skb_is_redirected(const struct sk_buff *skb)
5015 {
5016 	return skb->redirected;
5017 }
5018 
5019 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5020 {
5021 	skb->redirected = 1;
5022 #ifdef CONFIG_NET_REDIRECT
5023 	skb->from_ingress = from_ingress;
5024 	if (skb->from_ingress)
5025 		skb_clear_tstamp(skb);
5026 #endif
5027 }
5028 
5029 static inline void skb_reset_redirect(struct sk_buff *skb)
5030 {
5031 	skb->redirected = 0;
5032 }
5033 
5034 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5035 					      bool from_ingress)
5036 {
5037 	skb->redirected = 1;
5038 #ifdef CONFIG_NET_REDIRECT
5039 	skb->from_ingress = from_ingress;
5040 #endif
5041 }
5042 
5043 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5044 {
5045 #if IS_ENABLED(CONFIG_IP_SCTP)
5046 	return skb->csum_not_inet;
5047 #else
5048 	return 0;
5049 #endif
5050 }
5051 
5052 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5053 {
5054 	skb->ip_summed = CHECKSUM_NONE;
5055 #if IS_ENABLED(CONFIG_IP_SCTP)
5056 	skb->csum_not_inet = 0;
5057 #endif
5058 }
5059 
5060 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5061 				       const u64 kcov_handle)
5062 {
5063 #ifdef CONFIG_KCOV
5064 	skb->kcov_handle = kcov_handle;
5065 #endif
5066 }
5067 
5068 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5069 {
5070 #ifdef CONFIG_KCOV
5071 	return skb->kcov_handle;
5072 #else
5073 	return 0;
5074 #endif
5075 }
5076 
5077 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5078 {
5079 #ifdef CONFIG_PAGE_POOL
5080 	skb->pp_recycle = 1;
5081 #endif
5082 }
5083 
5084 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5085 			     ssize_t maxsize, gfp_t gfp);
5086 
5087 #endif	/* __KERNEL__ */
5088 #endif	/* _LINUX_SKBUFF_H */
5089