1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <net/flow_keys.h> 38 39 /* A. Checksumming of received packets by device. 40 * 41 * CHECKSUM_NONE: 42 * 43 * Device failed to checksum this packet e.g. due to lack of capabilities. 44 * The packet contains full (though not verified) checksum in packet but 45 * not in skb->csum. Thus, skb->csum is undefined in this case. 46 * 47 * CHECKSUM_UNNECESSARY: 48 * 49 * The hardware you're dealing with doesn't calculate the full checksum 50 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 51 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 52 * if their checksums are okay. skb->csum is still undefined in this case 53 * though. It is a bad option, but, unfortunately, nowadays most vendors do 54 * this. Apparently with the secret goal to sell you new devices, when you 55 * will add new protocol to your host, f.e. IPv6 8) 56 * 57 * CHECKSUM_UNNECESSARY is applicable to following protocols: 58 * TCP: IPv6 and IPv4. 59 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 60 * zero UDP checksum for either IPv4 or IPv6, the networking stack 61 * may perform further validation in this case. 62 * GRE: only if the checksum is present in the header. 63 * SCTP: indicates the CRC in SCTP header has been validated. 64 * 65 * skb->csum_level indicates the number of consecutive checksums found in 66 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 67 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 68 * and a device is able to verify the checksums for UDP (possibly zero), 69 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 70 * two. If the device were only able to verify the UDP checksum and not 71 * GRE, either because it doesn't support GRE checksum of because GRE 72 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 73 * not considered in this case). 74 * 75 * CHECKSUM_COMPLETE: 76 * 77 * This is the most generic way. The device supplied checksum of the _whole_ 78 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 79 * hardware doesn't need to parse L3/L4 headers to implement this. 80 * 81 * Note: Even if device supports only some protocols, but is able to produce 82 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 83 * 84 * CHECKSUM_PARTIAL: 85 * 86 * This is identical to the case for output below. This may occur on a packet 87 * received directly from another Linux OS, e.g., a virtualized Linux kernel 88 * on the same host. The packet can be treated in the same way as 89 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the 90 * checksum must be filled in by the OS or the hardware. 91 * 92 * B. Checksumming on output. 93 * 94 * CHECKSUM_NONE: 95 * 96 * The skb was already checksummed by the protocol, or a checksum is not 97 * required. 98 * 99 * CHECKSUM_PARTIAL: 100 * 101 * The device is required to checksum the packet as seen by hard_start_xmit() 102 * from skb->csum_start up to the end, and to record/write the checksum at 103 * offset skb->csum_start + skb->csum_offset. 104 * 105 * The device must show its capabilities in dev->features, set up at device 106 * setup time, e.g. netdev_features.h: 107 * 108 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 109 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 110 * IPv4. Sigh. Vendors like this way for an unknown reason. 111 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 112 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 113 * NETIF_F_... - Well, you get the picture. 114 * 115 * CHECKSUM_UNNECESSARY: 116 * 117 * Normally, the device will do per protocol specific checksumming. Protocol 118 * implementations that do not want the NIC to perform the checksum 119 * calculation should use this flag in their outgoing skbs. 120 * 121 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 122 * offload. Correspondingly, the FCoE protocol driver 123 * stack should use CHECKSUM_UNNECESSARY. 124 * 125 * Any questions? No questions, good. --ANK 126 */ 127 128 /* Don't change this without changing skb_csum_unnecessary! */ 129 #define CHECKSUM_NONE 0 130 #define CHECKSUM_UNNECESSARY 1 131 #define CHECKSUM_COMPLETE 2 132 #define CHECKSUM_PARTIAL 3 133 134 /* Maximum value in skb->csum_level */ 135 #define SKB_MAX_CSUM_LEVEL 3 136 137 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 138 #define SKB_WITH_OVERHEAD(X) \ 139 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 140 #define SKB_MAX_ORDER(X, ORDER) \ 141 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 142 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 143 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 144 145 /* return minimum truesize of one skb containing X bytes of data */ 146 #define SKB_TRUESIZE(X) ((X) + \ 147 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 148 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 149 150 struct net_device; 151 struct scatterlist; 152 struct pipe_inode_info; 153 struct iov_iter; 154 struct napi_struct; 155 156 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 157 struct nf_conntrack { 158 atomic_t use; 159 }; 160 #endif 161 162 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 163 struct nf_bridge_info { 164 atomic_t use; 165 unsigned int mask; 166 struct net_device *physindev; 167 struct net_device *physoutdev; 168 unsigned long data[32 / sizeof(unsigned long)]; 169 }; 170 #endif 171 172 struct sk_buff_head { 173 /* These two members must be first. */ 174 struct sk_buff *next; 175 struct sk_buff *prev; 176 177 __u32 qlen; 178 spinlock_t lock; 179 }; 180 181 struct sk_buff; 182 183 /* To allow 64K frame to be packed as single skb without frag_list we 184 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 185 * buffers which do not start on a page boundary. 186 * 187 * Since GRO uses frags we allocate at least 16 regardless of page 188 * size. 189 */ 190 #if (65536/PAGE_SIZE + 1) < 16 191 #define MAX_SKB_FRAGS 16UL 192 #else 193 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 194 #endif 195 196 typedef struct skb_frag_struct skb_frag_t; 197 198 struct skb_frag_struct { 199 struct { 200 struct page *p; 201 } page; 202 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 203 __u32 page_offset; 204 __u32 size; 205 #else 206 __u16 page_offset; 207 __u16 size; 208 #endif 209 }; 210 211 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 212 { 213 return frag->size; 214 } 215 216 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 217 { 218 frag->size = size; 219 } 220 221 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 222 { 223 frag->size += delta; 224 } 225 226 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 227 { 228 frag->size -= delta; 229 } 230 231 #define HAVE_HW_TIME_STAMP 232 233 /** 234 * struct skb_shared_hwtstamps - hardware time stamps 235 * @hwtstamp: hardware time stamp transformed into duration 236 * since arbitrary point in time 237 * 238 * Software time stamps generated by ktime_get_real() are stored in 239 * skb->tstamp. 240 * 241 * hwtstamps can only be compared against other hwtstamps from 242 * the same device. 243 * 244 * This structure is attached to packets as part of the 245 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 246 */ 247 struct skb_shared_hwtstamps { 248 ktime_t hwtstamp; 249 }; 250 251 /* Definitions for tx_flags in struct skb_shared_info */ 252 enum { 253 /* generate hardware time stamp */ 254 SKBTX_HW_TSTAMP = 1 << 0, 255 256 /* generate software time stamp when queueing packet to NIC */ 257 SKBTX_SW_TSTAMP = 1 << 1, 258 259 /* device driver is going to provide hardware time stamp */ 260 SKBTX_IN_PROGRESS = 1 << 2, 261 262 /* device driver supports TX zero-copy buffers */ 263 SKBTX_DEV_ZEROCOPY = 1 << 3, 264 265 /* generate wifi status information (where possible) */ 266 SKBTX_WIFI_STATUS = 1 << 4, 267 268 /* This indicates at least one fragment might be overwritten 269 * (as in vmsplice(), sendfile() ...) 270 * If we need to compute a TX checksum, we'll need to copy 271 * all frags to avoid possible bad checksum 272 */ 273 SKBTX_SHARED_FRAG = 1 << 5, 274 275 /* generate software time stamp when entering packet scheduling */ 276 SKBTX_SCHED_TSTAMP = 1 << 6, 277 278 /* generate software timestamp on peer data acknowledgment */ 279 SKBTX_ACK_TSTAMP = 1 << 7, 280 }; 281 282 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 283 SKBTX_SCHED_TSTAMP | \ 284 SKBTX_ACK_TSTAMP) 285 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 286 287 /* 288 * The callback notifies userspace to release buffers when skb DMA is done in 289 * lower device, the skb last reference should be 0 when calling this. 290 * The zerocopy_success argument is true if zero copy transmit occurred, 291 * false on data copy or out of memory error caused by data copy attempt. 292 * The ctx field is used to track device context. 293 * The desc field is used to track userspace buffer index. 294 */ 295 struct ubuf_info { 296 void (*callback)(struct ubuf_info *, bool zerocopy_success); 297 void *ctx; 298 unsigned long desc; 299 }; 300 301 /* This data is invariant across clones and lives at 302 * the end of the header data, ie. at skb->end. 303 */ 304 struct skb_shared_info { 305 unsigned char nr_frags; 306 __u8 tx_flags; 307 unsigned short gso_size; 308 /* Warning: this field is not always filled in (UFO)! */ 309 unsigned short gso_segs; 310 unsigned short gso_type; 311 struct sk_buff *frag_list; 312 struct skb_shared_hwtstamps hwtstamps; 313 u32 tskey; 314 __be32 ip6_frag_id; 315 316 /* 317 * Warning : all fields before dataref are cleared in __alloc_skb() 318 */ 319 atomic_t dataref; 320 321 /* Intermediate layers must ensure that destructor_arg 322 * remains valid until skb destructor */ 323 void * destructor_arg; 324 325 /* must be last field, see pskb_expand_head() */ 326 skb_frag_t frags[MAX_SKB_FRAGS]; 327 }; 328 329 /* We divide dataref into two halves. The higher 16 bits hold references 330 * to the payload part of skb->data. The lower 16 bits hold references to 331 * the entire skb->data. A clone of a headerless skb holds the length of 332 * the header in skb->hdr_len. 333 * 334 * All users must obey the rule that the skb->data reference count must be 335 * greater than or equal to the payload reference count. 336 * 337 * Holding a reference to the payload part means that the user does not 338 * care about modifications to the header part of skb->data. 339 */ 340 #define SKB_DATAREF_SHIFT 16 341 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 342 343 344 enum { 345 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 346 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 347 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 348 }; 349 350 enum { 351 SKB_GSO_TCPV4 = 1 << 0, 352 SKB_GSO_UDP = 1 << 1, 353 354 /* This indicates the skb is from an untrusted source. */ 355 SKB_GSO_DODGY = 1 << 2, 356 357 /* This indicates the tcp segment has CWR set. */ 358 SKB_GSO_TCP_ECN = 1 << 3, 359 360 SKB_GSO_TCPV6 = 1 << 4, 361 362 SKB_GSO_FCOE = 1 << 5, 363 364 SKB_GSO_GRE = 1 << 6, 365 366 SKB_GSO_GRE_CSUM = 1 << 7, 367 368 SKB_GSO_IPIP = 1 << 8, 369 370 SKB_GSO_SIT = 1 << 9, 371 372 SKB_GSO_UDP_TUNNEL = 1 << 10, 373 374 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 375 376 SKB_GSO_TUNNEL_REMCSUM = 1 << 12, 377 }; 378 379 #if BITS_PER_LONG > 32 380 #define NET_SKBUFF_DATA_USES_OFFSET 1 381 #endif 382 383 #ifdef NET_SKBUFF_DATA_USES_OFFSET 384 typedef unsigned int sk_buff_data_t; 385 #else 386 typedef unsigned char *sk_buff_data_t; 387 #endif 388 389 /** 390 * struct skb_mstamp - multi resolution time stamps 391 * @stamp_us: timestamp in us resolution 392 * @stamp_jiffies: timestamp in jiffies 393 */ 394 struct skb_mstamp { 395 union { 396 u64 v64; 397 struct { 398 u32 stamp_us; 399 u32 stamp_jiffies; 400 }; 401 }; 402 }; 403 404 /** 405 * skb_mstamp_get - get current timestamp 406 * @cl: place to store timestamps 407 */ 408 static inline void skb_mstamp_get(struct skb_mstamp *cl) 409 { 410 u64 val = local_clock(); 411 412 do_div(val, NSEC_PER_USEC); 413 cl->stamp_us = (u32)val; 414 cl->stamp_jiffies = (u32)jiffies; 415 } 416 417 /** 418 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 419 * @t1: pointer to newest sample 420 * @t0: pointer to oldest sample 421 */ 422 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 423 const struct skb_mstamp *t0) 424 { 425 s32 delta_us = t1->stamp_us - t0->stamp_us; 426 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 427 428 /* If delta_us is negative, this might be because interval is too big, 429 * or local_clock() drift is too big : fallback using jiffies. 430 */ 431 if (delta_us <= 0 || 432 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 433 434 delta_us = jiffies_to_usecs(delta_jiffies); 435 436 return delta_us; 437 } 438 439 440 /** 441 * struct sk_buff - socket buffer 442 * @next: Next buffer in list 443 * @prev: Previous buffer in list 444 * @tstamp: Time we arrived/left 445 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 446 * @sk: Socket we are owned by 447 * @dev: Device we arrived on/are leaving by 448 * @cb: Control buffer. Free for use by every layer. Put private vars here 449 * @_skb_refdst: destination entry (with norefcount bit) 450 * @sp: the security path, used for xfrm 451 * @len: Length of actual data 452 * @data_len: Data length 453 * @mac_len: Length of link layer header 454 * @hdr_len: writable header length of cloned skb 455 * @csum: Checksum (must include start/offset pair) 456 * @csum_start: Offset from skb->head where checksumming should start 457 * @csum_offset: Offset from csum_start where checksum should be stored 458 * @priority: Packet queueing priority 459 * @ignore_df: allow local fragmentation 460 * @cloned: Head may be cloned (check refcnt to be sure) 461 * @ip_summed: Driver fed us an IP checksum 462 * @nohdr: Payload reference only, must not modify header 463 * @nfctinfo: Relationship of this skb to the connection 464 * @pkt_type: Packet class 465 * @fclone: skbuff clone status 466 * @ipvs_property: skbuff is owned by ipvs 467 * @peeked: this packet has been seen already, so stats have been 468 * done for it, don't do them again 469 * @nf_trace: netfilter packet trace flag 470 * @protocol: Packet protocol from driver 471 * @destructor: Destruct function 472 * @nfct: Associated connection, if any 473 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 474 * @skb_iif: ifindex of device we arrived on 475 * @tc_index: Traffic control index 476 * @tc_verd: traffic control verdict 477 * @hash: the packet hash 478 * @queue_mapping: Queue mapping for multiqueue devices 479 * @xmit_more: More SKBs are pending for this queue 480 * @ndisc_nodetype: router type (from link layer) 481 * @ooo_okay: allow the mapping of a socket to a queue to be changed 482 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 483 * ports. 484 * @sw_hash: indicates hash was computed in software stack 485 * @wifi_acked_valid: wifi_acked was set 486 * @wifi_acked: whether frame was acked on wifi or not 487 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 488 * @napi_id: id of the NAPI struct this skb came from 489 * @secmark: security marking 490 * @mark: Generic packet mark 491 * @dropcount: total number of sk_receive_queue overflows 492 * @vlan_proto: vlan encapsulation protocol 493 * @vlan_tci: vlan tag control information 494 * @inner_protocol: Protocol (encapsulation) 495 * @inner_transport_header: Inner transport layer header (encapsulation) 496 * @inner_network_header: Network layer header (encapsulation) 497 * @inner_mac_header: Link layer header (encapsulation) 498 * @transport_header: Transport layer header 499 * @network_header: Network layer header 500 * @mac_header: Link layer header 501 * @tail: Tail pointer 502 * @end: End pointer 503 * @head: Head of buffer 504 * @data: Data head pointer 505 * @truesize: Buffer size 506 * @users: User count - see {datagram,tcp}.c 507 */ 508 509 struct sk_buff { 510 union { 511 struct { 512 /* These two members must be first. */ 513 struct sk_buff *next; 514 struct sk_buff *prev; 515 516 union { 517 ktime_t tstamp; 518 struct skb_mstamp skb_mstamp; 519 }; 520 }; 521 struct rb_node rbnode; /* used in netem & tcp stack */ 522 }; 523 struct sock *sk; 524 struct net_device *dev; 525 526 /* 527 * This is the control buffer. It is free to use for every 528 * layer. Please put your private variables there. If you 529 * want to keep them across layers you have to do a skb_clone() 530 * first. This is owned by whoever has the skb queued ATM. 531 */ 532 char cb[48] __aligned(8); 533 534 unsigned long _skb_refdst; 535 void (*destructor)(struct sk_buff *skb); 536 #ifdef CONFIG_XFRM 537 struct sec_path *sp; 538 #endif 539 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 540 struct nf_conntrack *nfct; 541 #endif 542 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 543 struct nf_bridge_info *nf_bridge; 544 #endif 545 unsigned int len, 546 data_len; 547 __u16 mac_len, 548 hdr_len; 549 550 /* Following fields are _not_ copied in __copy_skb_header() 551 * Note that queue_mapping is here mostly to fill a hole. 552 */ 553 kmemcheck_bitfield_begin(flags1); 554 __u16 queue_mapping; 555 __u8 cloned:1, 556 nohdr:1, 557 fclone:2, 558 peeked:1, 559 head_frag:1, 560 xmit_more:1; 561 /* one bit hole */ 562 kmemcheck_bitfield_end(flags1); 563 564 /* fields enclosed in headers_start/headers_end are copied 565 * using a single memcpy() in __copy_skb_header() 566 */ 567 /* private: */ 568 __u32 headers_start[0]; 569 /* public: */ 570 571 /* if you move pkt_type around you also must adapt those constants */ 572 #ifdef __BIG_ENDIAN_BITFIELD 573 #define PKT_TYPE_MAX (7 << 5) 574 #else 575 #define PKT_TYPE_MAX 7 576 #endif 577 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 578 579 __u8 __pkt_type_offset[0]; 580 __u8 pkt_type:3; 581 __u8 pfmemalloc:1; 582 __u8 ignore_df:1; 583 __u8 nfctinfo:3; 584 585 __u8 nf_trace:1; 586 __u8 ip_summed:2; 587 __u8 ooo_okay:1; 588 __u8 l4_hash:1; 589 __u8 sw_hash:1; 590 __u8 wifi_acked_valid:1; 591 __u8 wifi_acked:1; 592 593 __u8 no_fcs:1; 594 /* Indicates the inner headers are valid in the skbuff. */ 595 __u8 encapsulation:1; 596 __u8 encap_hdr_csum:1; 597 __u8 csum_valid:1; 598 __u8 csum_complete_sw:1; 599 __u8 csum_level:2; 600 __u8 csum_bad:1; 601 602 #ifdef CONFIG_IPV6_NDISC_NODETYPE 603 __u8 ndisc_nodetype:2; 604 #endif 605 __u8 ipvs_property:1; 606 __u8 inner_protocol_type:1; 607 __u8 remcsum_offload:1; 608 /* 3 or 5 bit hole */ 609 610 #ifdef CONFIG_NET_SCHED 611 __u16 tc_index; /* traffic control index */ 612 #ifdef CONFIG_NET_CLS_ACT 613 __u16 tc_verd; /* traffic control verdict */ 614 #endif 615 #endif 616 617 union { 618 __wsum csum; 619 struct { 620 __u16 csum_start; 621 __u16 csum_offset; 622 }; 623 }; 624 __u32 priority; 625 int skb_iif; 626 __u32 hash; 627 __be16 vlan_proto; 628 __u16 vlan_tci; 629 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 630 union { 631 unsigned int napi_id; 632 unsigned int sender_cpu; 633 }; 634 #endif 635 #ifdef CONFIG_NETWORK_SECMARK 636 __u32 secmark; 637 #endif 638 union { 639 __u32 mark; 640 __u32 dropcount; 641 __u32 reserved_tailroom; 642 }; 643 644 union { 645 __be16 inner_protocol; 646 __u8 inner_ipproto; 647 }; 648 649 __u16 inner_transport_header; 650 __u16 inner_network_header; 651 __u16 inner_mac_header; 652 653 __be16 protocol; 654 __u16 transport_header; 655 __u16 network_header; 656 __u16 mac_header; 657 658 /* private: */ 659 __u32 headers_end[0]; 660 /* public: */ 661 662 /* These elements must be at the end, see alloc_skb() for details. */ 663 sk_buff_data_t tail; 664 sk_buff_data_t end; 665 unsigned char *head, 666 *data; 667 unsigned int truesize; 668 atomic_t users; 669 }; 670 671 #ifdef __KERNEL__ 672 /* 673 * Handling routines are only of interest to the kernel 674 */ 675 #include <linux/slab.h> 676 677 678 #define SKB_ALLOC_FCLONE 0x01 679 #define SKB_ALLOC_RX 0x02 680 #define SKB_ALLOC_NAPI 0x04 681 682 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 683 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 684 { 685 return unlikely(skb->pfmemalloc); 686 } 687 688 /* 689 * skb might have a dst pointer attached, refcounted or not. 690 * _skb_refdst low order bit is set if refcount was _not_ taken 691 */ 692 #define SKB_DST_NOREF 1UL 693 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 694 695 /** 696 * skb_dst - returns skb dst_entry 697 * @skb: buffer 698 * 699 * Returns skb dst_entry, regardless of reference taken or not. 700 */ 701 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 702 { 703 /* If refdst was not refcounted, check we still are in a 704 * rcu_read_lock section 705 */ 706 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 707 !rcu_read_lock_held() && 708 !rcu_read_lock_bh_held()); 709 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 710 } 711 712 /** 713 * skb_dst_set - sets skb dst 714 * @skb: buffer 715 * @dst: dst entry 716 * 717 * Sets skb dst, assuming a reference was taken on dst and should 718 * be released by skb_dst_drop() 719 */ 720 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 721 { 722 skb->_skb_refdst = (unsigned long)dst; 723 } 724 725 /** 726 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 727 * @skb: buffer 728 * @dst: dst entry 729 * 730 * Sets skb dst, assuming a reference was not taken on dst. 731 * If dst entry is cached, we do not take reference and dst_release 732 * will be avoided by refdst_drop. If dst entry is not cached, we take 733 * reference, so that last dst_release can destroy the dst immediately. 734 */ 735 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 736 { 737 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 738 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 739 } 740 741 /** 742 * skb_dst_is_noref - Test if skb dst isn't refcounted 743 * @skb: buffer 744 */ 745 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 746 { 747 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 748 } 749 750 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 751 { 752 return (struct rtable *)skb_dst(skb); 753 } 754 755 void kfree_skb(struct sk_buff *skb); 756 void kfree_skb_list(struct sk_buff *segs); 757 void skb_tx_error(struct sk_buff *skb); 758 void consume_skb(struct sk_buff *skb); 759 void __kfree_skb(struct sk_buff *skb); 760 extern struct kmem_cache *skbuff_head_cache; 761 762 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 763 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 764 bool *fragstolen, int *delta_truesize); 765 766 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 767 int node); 768 struct sk_buff *build_skb(void *data, unsigned int frag_size); 769 static inline struct sk_buff *alloc_skb(unsigned int size, 770 gfp_t priority) 771 { 772 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 773 } 774 775 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 776 unsigned long data_len, 777 int max_page_order, 778 int *errcode, 779 gfp_t gfp_mask); 780 781 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 782 struct sk_buff_fclones { 783 struct sk_buff skb1; 784 785 struct sk_buff skb2; 786 787 atomic_t fclone_ref; 788 }; 789 790 /** 791 * skb_fclone_busy - check if fclone is busy 792 * @skb: buffer 793 * 794 * Returns true is skb is a fast clone, and its clone is not freed. 795 * Some drivers call skb_orphan() in their ndo_start_xmit(), 796 * so we also check that this didnt happen. 797 */ 798 static inline bool skb_fclone_busy(const struct sock *sk, 799 const struct sk_buff *skb) 800 { 801 const struct sk_buff_fclones *fclones; 802 803 fclones = container_of(skb, struct sk_buff_fclones, skb1); 804 805 return skb->fclone == SKB_FCLONE_ORIG && 806 atomic_read(&fclones->fclone_ref) > 1 && 807 fclones->skb2.sk == sk; 808 } 809 810 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 811 gfp_t priority) 812 { 813 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 814 } 815 816 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 817 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 818 { 819 return __alloc_skb_head(priority, -1); 820 } 821 822 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 823 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 824 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 825 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 826 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 827 gfp_t gfp_mask, bool fclone); 828 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 829 gfp_t gfp_mask) 830 { 831 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 832 } 833 834 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 835 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 836 unsigned int headroom); 837 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 838 int newtailroom, gfp_t priority); 839 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 840 int offset, int len); 841 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 842 int len); 843 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 844 int skb_pad(struct sk_buff *skb, int pad); 845 #define dev_kfree_skb(a) consume_skb(a) 846 847 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 848 int getfrag(void *from, char *to, int offset, 849 int len, int odd, struct sk_buff *skb), 850 void *from, int length); 851 852 struct skb_seq_state { 853 __u32 lower_offset; 854 __u32 upper_offset; 855 __u32 frag_idx; 856 __u32 stepped_offset; 857 struct sk_buff *root_skb; 858 struct sk_buff *cur_skb; 859 __u8 *frag_data; 860 }; 861 862 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 863 unsigned int to, struct skb_seq_state *st); 864 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 865 struct skb_seq_state *st); 866 void skb_abort_seq_read(struct skb_seq_state *st); 867 868 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 869 unsigned int to, struct ts_config *config, 870 struct ts_state *state); 871 872 /* 873 * Packet hash types specify the type of hash in skb_set_hash. 874 * 875 * Hash types refer to the protocol layer addresses which are used to 876 * construct a packet's hash. The hashes are used to differentiate or identify 877 * flows of the protocol layer for the hash type. Hash types are either 878 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 879 * 880 * Properties of hashes: 881 * 882 * 1) Two packets in different flows have different hash values 883 * 2) Two packets in the same flow should have the same hash value 884 * 885 * A hash at a higher layer is considered to be more specific. A driver should 886 * set the most specific hash possible. 887 * 888 * A driver cannot indicate a more specific hash than the layer at which a hash 889 * was computed. For instance an L3 hash cannot be set as an L4 hash. 890 * 891 * A driver may indicate a hash level which is less specific than the 892 * actual layer the hash was computed on. For instance, a hash computed 893 * at L4 may be considered an L3 hash. This should only be done if the 894 * driver can't unambiguously determine that the HW computed the hash at 895 * the higher layer. Note that the "should" in the second property above 896 * permits this. 897 */ 898 enum pkt_hash_types { 899 PKT_HASH_TYPE_NONE, /* Undefined type */ 900 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 901 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 902 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 903 }; 904 905 static inline void 906 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 907 { 908 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 909 skb->sw_hash = 0; 910 skb->hash = hash; 911 } 912 913 void __skb_get_hash(struct sk_buff *skb); 914 static inline __u32 skb_get_hash(struct sk_buff *skb) 915 { 916 if (!skb->l4_hash && !skb->sw_hash) 917 __skb_get_hash(skb); 918 919 return skb->hash; 920 } 921 922 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 923 { 924 return skb->hash; 925 } 926 927 static inline void skb_clear_hash(struct sk_buff *skb) 928 { 929 skb->hash = 0; 930 skb->sw_hash = 0; 931 skb->l4_hash = 0; 932 } 933 934 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 935 { 936 if (!skb->l4_hash) 937 skb_clear_hash(skb); 938 } 939 940 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 941 { 942 to->hash = from->hash; 943 to->sw_hash = from->sw_hash; 944 to->l4_hash = from->l4_hash; 945 }; 946 947 #ifdef NET_SKBUFF_DATA_USES_OFFSET 948 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 949 { 950 return skb->head + skb->end; 951 } 952 953 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 954 { 955 return skb->end; 956 } 957 #else 958 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 959 { 960 return skb->end; 961 } 962 963 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 964 { 965 return skb->end - skb->head; 966 } 967 #endif 968 969 /* Internal */ 970 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 971 972 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 973 { 974 return &skb_shinfo(skb)->hwtstamps; 975 } 976 977 /** 978 * skb_queue_empty - check if a queue is empty 979 * @list: queue head 980 * 981 * Returns true if the queue is empty, false otherwise. 982 */ 983 static inline int skb_queue_empty(const struct sk_buff_head *list) 984 { 985 return list->next == (const struct sk_buff *) list; 986 } 987 988 /** 989 * skb_queue_is_last - check if skb is the last entry in the queue 990 * @list: queue head 991 * @skb: buffer 992 * 993 * Returns true if @skb is the last buffer on the list. 994 */ 995 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 996 const struct sk_buff *skb) 997 { 998 return skb->next == (const struct sk_buff *) list; 999 } 1000 1001 /** 1002 * skb_queue_is_first - check if skb is the first entry in the queue 1003 * @list: queue head 1004 * @skb: buffer 1005 * 1006 * Returns true if @skb is the first buffer on the list. 1007 */ 1008 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1009 const struct sk_buff *skb) 1010 { 1011 return skb->prev == (const struct sk_buff *) list; 1012 } 1013 1014 /** 1015 * skb_queue_next - return the next packet in the queue 1016 * @list: queue head 1017 * @skb: current buffer 1018 * 1019 * Return the next packet in @list after @skb. It is only valid to 1020 * call this if skb_queue_is_last() evaluates to false. 1021 */ 1022 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1023 const struct sk_buff *skb) 1024 { 1025 /* This BUG_ON may seem severe, but if we just return then we 1026 * are going to dereference garbage. 1027 */ 1028 BUG_ON(skb_queue_is_last(list, skb)); 1029 return skb->next; 1030 } 1031 1032 /** 1033 * skb_queue_prev - return the prev packet in the queue 1034 * @list: queue head 1035 * @skb: current buffer 1036 * 1037 * Return the prev packet in @list before @skb. It is only valid to 1038 * call this if skb_queue_is_first() evaluates to false. 1039 */ 1040 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1041 const struct sk_buff *skb) 1042 { 1043 /* This BUG_ON may seem severe, but if we just return then we 1044 * are going to dereference garbage. 1045 */ 1046 BUG_ON(skb_queue_is_first(list, skb)); 1047 return skb->prev; 1048 } 1049 1050 /** 1051 * skb_get - reference buffer 1052 * @skb: buffer to reference 1053 * 1054 * Makes another reference to a socket buffer and returns a pointer 1055 * to the buffer. 1056 */ 1057 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1058 { 1059 atomic_inc(&skb->users); 1060 return skb; 1061 } 1062 1063 /* 1064 * If users == 1, we are the only owner and are can avoid redundant 1065 * atomic change. 1066 */ 1067 1068 /** 1069 * skb_cloned - is the buffer a clone 1070 * @skb: buffer to check 1071 * 1072 * Returns true if the buffer was generated with skb_clone() and is 1073 * one of multiple shared copies of the buffer. Cloned buffers are 1074 * shared data so must not be written to under normal circumstances. 1075 */ 1076 static inline int skb_cloned(const struct sk_buff *skb) 1077 { 1078 return skb->cloned && 1079 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1080 } 1081 1082 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1083 { 1084 might_sleep_if(pri & __GFP_WAIT); 1085 1086 if (skb_cloned(skb)) 1087 return pskb_expand_head(skb, 0, 0, pri); 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * skb_header_cloned - is the header a clone 1094 * @skb: buffer to check 1095 * 1096 * Returns true if modifying the header part of the buffer requires 1097 * the data to be copied. 1098 */ 1099 static inline int skb_header_cloned(const struct sk_buff *skb) 1100 { 1101 int dataref; 1102 1103 if (!skb->cloned) 1104 return 0; 1105 1106 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1107 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1108 return dataref != 1; 1109 } 1110 1111 /** 1112 * skb_header_release - release reference to header 1113 * @skb: buffer to operate on 1114 * 1115 * Drop a reference to the header part of the buffer. This is done 1116 * by acquiring a payload reference. You must not read from the header 1117 * part of skb->data after this. 1118 * Note : Check if you can use __skb_header_release() instead. 1119 */ 1120 static inline void skb_header_release(struct sk_buff *skb) 1121 { 1122 BUG_ON(skb->nohdr); 1123 skb->nohdr = 1; 1124 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1125 } 1126 1127 /** 1128 * __skb_header_release - release reference to header 1129 * @skb: buffer to operate on 1130 * 1131 * Variant of skb_header_release() assuming skb is private to caller. 1132 * We can avoid one atomic operation. 1133 */ 1134 static inline void __skb_header_release(struct sk_buff *skb) 1135 { 1136 skb->nohdr = 1; 1137 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1138 } 1139 1140 1141 /** 1142 * skb_shared - is the buffer shared 1143 * @skb: buffer to check 1144 * 1145 * Returns true if more than one person has a reference to this 1146 * buffer. 1147 */ 1148 static inline int skb_shared(const struct sk_buff *skb) 1149 { 1150 return atomic_read(&skb->users) != 1; 1151 } 1152 1153 /** 1154 * skb_share_check - check if buffer is shared and if so clone it 1155 * @skb: buffer to check 1156 * @pri: priority for memory allocation 1157 * 1158 * If the buffer is shared the buffer is cloned and the old copy 1159 * drops a reference. A new clone with a single reference is returned. 1160 * If the buffer is not shared the original buffer is returned. When 1161 * being called from interrupt status or with spinlocks held pri must 1162 * be GFP_ATOMIC. 1163 * 1164 * NULL is returned on a memory allocation failure. 1165 */ 1166 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1167 { 1168 might_sleep_if(pri & __GFP_WAIT); 1169 if (skb_shared(skb)) { 1170 struct sk_buff *nskb = skb_clone(skb, pri); 1171 1172 if (likely(nskb)) 1173 consume_skb(skb); 1174 else 1175 kfree_skb(skb); 1176 skb = nskb; 1177 } 1178 return skb; 1179 } 1180 1181 /* 1182 * Copy shared buffers into a new sk_buff. We effectively do COW on 1183 * packets to handle cases where we have a local reader and forward 1184 * and a couple of other messy ones. The normal one is tcpdumping 1185 * a packet thats being forwarded. 1186 */ 1187 1188 /** 1189 * skb_unshare - make a copy of a shared buffer 1190 * @skb: buffer to check 1191 * @pri: priority for memory allocation 1192 * 1193 * If the socket buffer is a clone then this function creates a new 1194 * copy of the data, drops a reference count on the old copy and returns 1195 * the new copy with the reference count at 1. If the buffer is not a clone 1196 * the original buffer is returned. When called with a spinlock held or 1197 * from interrupt state @pri must be %GFP_ATOMIC 1198 * 1199 * %NULL is returned on a memory allocation failure. 1200 */ 1201 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1202 gfp_t pri) 1203 { 1204 might_sleep_if(pri & __GFP_WAIT); 1205 if (skb_cloned(skb)) { 1206 struct sk_buff *nskb = skb_copy(skb, pri); 1207 1208 /* Free our shared copy */ 1209 if (likely(nskb)) 1210 consume_skb(skb); 1211 else 1212 kfree_skb(skb); 1213 skb = nskb; 1214 } 1215 return skb; 1216 } 1217 1218 /** 1219 * skb_peek - peek at the head of an &sk_buff_head 1220 * @list_: list to peek at 1221 * 1222 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1223 * be careful with this one. A peek leaves the buffer on the 1224 * list and someone else may run off with it. You must hold 1225 * the appropriate locks or have a private queue to do this. 1226 * 1227 * Returns %NULL for an empty list or a pointer to the head element. 1228 * The reference count is not incremented and the reference is therefore 1229 * volatile. Use with caution. 1230 */ 1231 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1232 { 1233 struct sk_buff *skb = list_->next; 1234 1235 if (skb == (struct sk_buff *)list_) 1236 skb = NULL; 1237 return skb; 1238 } 1239 1240 /** 1241 * skb_peek_next - peek skb following the given one from a queue 1242 * @skb: skb to start from 1243 * @list_: list to peek at 1244 * 1245 * Returns %NULL when the end of the list is met or a pointer to the 1246 * next element. The reference count is not incremented and the 1247 * reference is therefore volatile. Use with caution. 1248 */ 1249 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1250 const struct sk_buff_head *list_) 1251 { 1252 struct sk_buff *next = skb->next; 1253 1254 if (next == (struct sk_buff *)list_) 1255 next = NULL; 1256 return next; 1257 } 1258 1259 /** 1260 * skb_peek_tail - peek at the tail of an &sk_buff_head 1261 * @list_: list to peek at 1262 * 1263 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1264 * be careful with this one. A peek leaves the buffer on the 1265 * list and someone else may run off with it. You must hold 1266 * the appropriate locks or have a private queue to do this. 1267 * 1268 * Returns %NULL for an empty list or a pointer to the tail element. 1269 * The reference count is not incremented and the reference is therefore 1270 * volatile. Use with caution. 1271 */ 1272 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1273 { 1274 struct sk_buff *skb = list_->prev; 1275 1276 if (skb == (struct sk_buff *)list_) 1277 skb = NULL; 1278 return skb; 1279 1280 } 1281 1282 /** 1283 * skb_queue_len - get queue length 1284 * @list_: list to measure 1285 * 1286 * Return the length of an &sk_buff queue. 1287 */ 1288 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1289 { 1290 return list_->qlen; 1291 } 1292 1293 /** 1294 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1295 * @list: queue to initialize 1296 * 1297 * This initializes only the list and queue length aspects of 1298 * an sk_buff_head object. This allows to initialize the list 1299 * aspects of an sk_buff_head without reinitializing things like 1300 * the spinlock. It can also be used for on-stack sk_buff_head 1301 * objects where the spinlock is known to not be used. 1302 */ 1303 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1304 { 1305 list->prev = list->next = (struct sk_buff *)list; 1306 list->qlen = 0; 1307 } 1308 1309 /* 1310 * This function creates a split out lock class for each invocation; 1311 * this is needed for now since a whole lot of users of the skb-queue 1312 * infrastructure in drivers have different locking usage (in hardirq) 1313 * than the networking core (in softirq only). In the long run either the 1314 * network layer or drivers should need annotation to consolidate the 1315 * main types of usage into 3 classes. 1316 */ 1317 static inline void skb_queue_head_init(struct sk_buff_head *list) 1318 { 1319 spin_lock_init(&list->lock); 1320 __skb_queue_head_init(list); 1321 } 1322 1323 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1324 struct lock_class_key *class) 1325 { 1326 skb_queue_head_init(list); 1327 lockdep_set_class(&list->lock, class); 1328 } 1329 1330 /* 1331 * Insert an sk_buff on a list. 1332 * 1333 * The "__skb_xxxx()" functions are the non-atomic ones that 1334 * can only be called with interrupts disabled. 1335 */ 1336 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1337 struct sk_buff_head *list); 1338 static inline void __skb_insert(struct sk_buff *newsk, 1339 struct sk_buff *prev, struct sk_buff *next, 1340 struct sk_buff_head *list) 1341 { 1342 newsk->next = next; 1343 newsk->prev = prev; 1344 next->prev = prev->next = newsk; 1345 list->qlen++; 1346 } 1347 1348 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1349 struct sk_buff *prev, 1350 struct sk_buff *next) 1351 { 1352 struct sk_buff *first = list->next; 1353 struct sk_buff *last = list->prev; 1354 1355 first->prev = prev; 1356 prev->next = first; 1357 1358 last->next = next; 1359 next->prev = last; 1360 } 1361 1362 /** 1363 * skb_queue_splice - join two skb lists, this is designed for stacks 1364 * @list: the new list to add 1365 * @head: the place to add it in the first list 1366 */ 1367 static inline void skb_queue_splice(const struct sk_buff_head *list, 1368 struct sk_buff_head *head) 1369 { 1370 if (!skb_queue_empty(list)) { 1371 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1372 head->qlen += list->qlen; 1373 } 1374 } 1375 1376 /** 1377 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1378 * @list: the new list to add 1379 * @head: the place to add it in the first list 1380 * 1381 * The list at @list is reinitialised 1382 */ 1383 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1384 struct sk_buff_head *head) 1385 { 1386 if (!skb_queue_empty(list)) { 1387 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1388 head->qlen += list->qlen; 1389 __skb_queue_head_init(list); 1390 } 1391 } 1392 1393 /** 1394 * skb_queue_splice_tail - join two skb lists, each list being a queue 1395 * @list: the new list to add 1396 * @head: the place to add it in the first list 1397 */ 1398 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1399 struct sk_buff_head *head) 1400 { 1401 if (!skb_queue_empty(list)) { 1402 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1403 head->qlen += list->qlen; 1404 } 1405 } 1406 1407 /** 1408 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1409 * @list: the new list to add 1410 * @head: the place to add it in the first list 1411 * 1412 * Each of the lists is a queue. 1413 * The list at @list is reinitialised 1414 */ 1415 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1416 struct sk_buff_head *head) 1417 { 1418 if (!skb_queue_empty(list)) { 1419 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1420 head->qlen += list->qlen; 1421 __skb_queue_head_init(list); 1422 } 1423 } 1424 1425 /** 1426 * __skb_queue_after - queue a buffer at the list head 1427 * @list: list to use 1428 * @prev: place after this buffer 1429 * @newsk: buffer to queue 1430 * 1431 * Queue a buffer int the middle of a list. This function takes no locks 1432 * and you must therefore hold required locks before calling it. 1433 * 1434 * A buffer cannot be placed on two lists at the same time. 1435 */ 1436 static inline void __skb_queue_after(struct sk_buff_head *list, 1437 struct sk_buff *prev, 1438 struct sk_buff *newsk) 1439 { 1440 __skb_insert(newsk, prev, prev->next, list); 1441 } 1442 1443 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1444 struct sk_buff_head *list); 1445 1446 static inline void __skb_queue_before(struct sk_buff_head *list, 1447 struct sk_buff *next, 1448 struct sk_buff *newsk) 1449 { 1450 __skb_insert(newsk, next->prev, next, list); 1451 } 1452 1453 /** 1454 * __skb_queue_head - queue a buffer at the list head 1455 * @list: list to use 1456 * @newsk: buffer to queue 1457 * 1458 * Queue a buffer at the start of a list. This function takes no locks 1459 * and you must therefore hold required locks before calling it. 1460 * 1461 * A buffer cannot be placed on two lists at the same time. 1462 */ 1463 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1464 static inline void __skb_queue_head(struct sk_buff_head *list, 1465 struct sk_buff *newsk) 1466 { 1467 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1468 } 1469 1470 /** 1471 * __skb_queue_tail - queue a buffer at the list tail 1472 * @list: list to use 1473 * @newsk: buffer to queue 1474 * 1475 * Queue a buffer at the end of a list. This function takes no locks 1476 * and you must therefore hold required locks before calling it. 1477 * 1478 * A buffer cannot be placed on two lists at the same time. 1479 */ 1480 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1481 static inline void __skb_queue_tail(struct sk_buff_head *list, 1482 struct sk_buff *newsk) 1483 { 1484 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1485 } 1486 1487 /* 1488 * remove sk_buff from list. _Must_ be called atomically, and with 1489 * the list known.. 1490 */ 1491 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1492 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1493 { 1494 struct sk_buff *next, *prev; 1495 1496 list->qlen--; 1497 next = skb->next; 1498 prev = skb->prev; 1499 skb->next = skb->prev = NULL; 1500 next->prev = prev; 1501 prev->next = next; 1502 } 1503 1504 /** 1505 * __skb_dequeue - remove from the head of the queue 1506 * @list: list to dequeue from 1507 * 1508 * Remove the head of the list. This function does not take any locks 1509 * so must be used with appropriate locks held only. The head item is 1510 * returned or %NULL if the list is empty. 1511 */ 1512 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1513 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1514 { 1515 struct sk_buff *skb = skb_peek(list); 1516 if (skb) 1517 __skb_unlink(skb, list); 1518 return skb; 1519 } 1520 1521 /** 1522 * __skb_dequeue_tail - remove from the tail of the queue 1523 * @list: list to dequeue from 1524 * 1525 * Remove the tail of the list. This function does not take any locks 1526 * so must be used with appropriate locks held only. The tail item is 1527 * returned or %NULL if the list is empty. 1528 */ 1529 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1530 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1531 { 1532 struct sk_buff *skb = skb_peek_tail(list); 1533 if (skb) 1534 __skb_unlink(skb, list); 1535 return skb; 1536 } 1537 1538 1539 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1540 { 1541 return skb->data_len; 1542 } 1543 1544 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1545 { 1546 return skb->len - skb->data_len; 1547 } 1548 1549 static inline int skb_pagelen(const struct sk_buff *skb) 1550 { 1551 int i, len = 0; 1552 1553 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1554 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1555 return len + skb_headlen(skb); 1556 } 1557 1558 /** 1559 * __skb_fill_page_desc - initialise a paged fragment in an skb 1560 * @skb: buffer containing fragment to be initialised 1561 * @i: paged fragment index to initialise 1562 * @page: the page to use for this fragment 1563 * @off: the offset to the data with @page 1564 * @size: the length of the data 1565 * 1566 * Initialises the @i'th fragment of @skb to point to &size bytes at 1567 * offset @off within @page. 1568 * 1569 * Does not take any additional reference on the fragment. 1570 */ 1571 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1572 struct page *page, int off, int size) 1573 { 1574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1575 1576 /* 1577 * Propagate page->pfmemalloc to the skb if we can. The problem is 1578 * that not all callers have unique ownership of the page. If 1579 * pfmemalloc is set, we check the mapping as a mapping implies 1580 * page->index is set (index and pfmemalloc share space). 1581 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1582 * do not lose pfmemalloc information as the pages would not be 1583 * allocated using __GFP_MEMALLOC. 1584 */ 1585 frag->page.p = page; 1586 frag->page_offset = off; 1587 skb_frag_size_set(frag, size); 1588 1589 page = compound_head(page); 1590 if (page->pfmemalloc && !page->mapping) 1591 skb->pfmemalloc = true; 1592 } 1593 1594 /** 1595 * skb_fill_page_desc - initialise a paged fragment in an skb 1596 * @skb: buffer containing fragment to be initialised 1597 * @i: paged fragment index to initialise 1598 * @page: the page to use for this fragment 1599 * @off: the offset to the data with @page 1600 * @size: the length of the data 1601 * 1602 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1603 * @skb to point to @size bytes at offset @off within @page. In 1604 * addition updates @skb such that @i is the last fragment. 1605 * 1606 * Does not take any additional reference on the fragment. 1607 */ 1608 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1609 struct page *page, int off, int size) 1610 { 1611 __skb_fill_page_desc(skb, i, page, off, size); 1612 skb_shinfo(skb)->nr_frags = i + 1; 1613 } 1614 1615 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1616 int size, unsigned int truesize); 1617 1618 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1619 unsigned int truesize); 1620 1621 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1622 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1623 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1624 1625 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1626 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1627 { 1628 return skb->head + skb->tail; 1629 } 1630 1631 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1632 { 1633 skb->tail = skb->data - skb->head; 1634 } 1635 1636 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1637 { 1638 skb_reset_tail_pointer(skb); 1639 skb->tail += offset; 1640 } 1641 1642 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1643 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1644 { 1645 return skb->tail; 1646 } 1647 1648 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1649 { 1650 skb->tail = skb->data; 1651 } 1652 1653 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1654 { 1655 skb->tail = skb->data + offset; 1656 } 1657 1658 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1659 1660 /* 1661 * Add data to an sk_buff 1662 */ 1663 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1664 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1665 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1666 { 1667 unsigned char *tmp = skb_tail_pointer(skb); 1668 SKB_LINEAR_ASSERT(skb); 1669 skb->tail += len; 1670 skb->len += len; 1671 return tmp; 1672 } 1673 1674 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1675 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1676 { 1677 skb->data -= len; 1678 skb->len += len; 1679 return skb->data; 1680 } 1681 1682 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1683 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1684 { 1685 skb->len -= len; 1686 BUG_ON(skb->len < skb->data_len); 1687 return skb->data += len; 1688 } 1689 1690 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1691 { 1692 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1693 } 1694 1695 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1696 1697 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1698 { 1699 if (len > skb_headlen(skb) && 1700 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1701 return NULL; 1702 skb->len -= len; 1703 return skb->data += len; 1704 } 1705 1706 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1707 { 1708 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1709 } 1710 1711 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1712 { 1713 if (likely(len <= skb_headlen(skb))) 1714 return 1; 1715 if (unlikely(len > skb->len)) 1716 return 0; 1717 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1718 } 1719 1720 /** 1721 * skb_headroom - bytes at buffer head 1722 * @skb: buffer to check 1723 * 1724 * Return the number of bytes of free space at the head of an &sk_buff. 1725 */ 1726 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1727 { 1728 return skb->data - skb->head; 1729 } 1730 1731 /** 1732 * skb_tailroom - bytes at buffer end 1733 * @skb: buffer to check 1734 * 1735 * Return the number of bytes of free space at the tail of an sk_buff 1736 */ 1737 static inline int skb_tailroom(const struct sk_buff *skb) 1738 { 1739 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1740 } 1741 1742 /** 1743 * skb_availroom - bytes at buffer end 1744 * @skb: buffer to check 1745 * 1746 * Return the number of bytes of free space at the tail of an sk_buff 1747 * allocated by sk_stream_alloc() 1748 */ 1749 static inline int skb_availroom(const struct sk_buff *skb) 1750 { 1751 if (skb_is_nonlinear(skb)) 1752 return 0; 1753 1754 return skb->end - skb->tail - skb->reserved_tailroom; 1755 } 1756 1757 /** 1758 * skb_reserve - adjust headroom 1759 * @skb: buffer to alter 1760 * @len: bytes to move 1761 * 1762 * Increase the headroom of an empty &sk_buff by reducing the tail 1763 * room. This is only allowed for an empty buffer. 1764 */ 1765 static inline void skb_reserve(struct sk_buff *skb, int len) 1766 { 1767 skb->data += len; 1768 skb->tail += len; 1769 } 1770 1771 #define ENCAP_TYPE_ETHER 0 1772 #define ENCAP_TYPE_IPPROTO 1 1773 1774 static inline void skb_set_inner_protocol(struct sk_buff *skb, 1775 __be16 protocol) 1776 { 1777 skb->inner_protocol = protocol; 1778 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1779 } 1780 1781 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1782 __u8 ipproto) 1783 { 1784 skb->inner_ipproto = ipproto; 1785 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1786 } 1787 1788 static inline void skb_reset_inner_headers(struct sk_buff *skb) 1789 { 1790 skb->inner_mac_header = skb->mac_header; 1791 skb->inner_network_header = skb->network_header; 1792 skb->inner_transport_header = skb->transport_header; 1793 } 1794 1795 static inline void skb_reset_mac_len(struct sk_buff *skb) 1796 { 1797 skb->mac_len = skb->network_header - skb->mac_header; 1798 } 1799 1800 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1801 *skb) 1802 { 1803 return skb->head + skb->inner_transport_header; 1804 } 1805 1806 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1807 { 1808 skb->inner_transport_header = skb->data - skb->head; 1809 } 1810 1811 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1812 const int offset) 1813 { 1814 skb_reset_inner_transport_header(skb); 1815 skb->inner_transport_header += offset; 1816 } 1817 1818 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1819 { 1820 return skb->head + skb->inner_network_header; 1821 } 1822 1823 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1824 { 1825 skb->inner_network_header = skb->data - skb->head; 1826 } 1827 1828 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1829 const int offset) 1830 { 1831 skb_reset_inner_network_header(skb); 1832 skb->inner_network_header += offset; 1833 } 1834 1835 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1836 { 1837 return skb->head + skb->inner_mac_header; 1838 } 1839 1840 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1841 { 1842 skb->inner_mac_header = skb->data - skb->head; 1843 } 1844 1845 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1846 const int offset) 1847 { 1848 skb_reset_inner_mac_header(skb); 1849 skb->inner_mac_header += offset; 1850 } 1851 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1852 { 1853 return skb->transport_header != (typeof(skb->transport_header))~0U; 1854 } 1855 1856 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1857 { 1858 return skb->head + skb->transport_header; 1859 } 1860 1861 static inline void skb_reset_transport_header(struct sk_buff *skb) 1862 { 1863 skb->transport_header = skb->data - skb->head; 1864 } 1865 1866 static inline void skb_set_transport_header(struct sk_buff *skb, 1867 const int offset) 1868 { 1869 skb_reset_transport_header(skb); 1870 skb->transport_header += offset; 1871 } 1872 1873 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1874 { 1875 return skb->head + skb->network_header; 1876 } 1877 1878 static inline void skb_reset_network_header(struct sk_buff *skb) 1879 { 1880 skb->network_header = skb->data - skb->head; 1881 } 1882 1883 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1884 { 1885 skb_reset_network_header(skb); 1886 skb->network_header += offset; 1887 } 1888 1889 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1890 { 1891 return skb->head + skb->mac_header; 1892 } 1893 1894 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1895 { 1896 return skb->mac_header != (typeof(skb->mac_header))~0U; 1897 } 1898 1899 static inline void skb_reset_mac_header(struct sk_buff *skb) 1900 { 1901 skb->mac_header = skb->data - skb->head; 1902 } 1903 1904 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1905 { 1906 skb_reset_mac_header(skb); 1907 skb->mac_header += offset; 1908 } 1909 1910 static inline void skb_pop_mac_header(struct sk_buff *skb) 1911 { 1912 skb->mac_header = skb->network_header; 1913 } 1914 1915 static inline void skb_probe_transport_header(struct sk_buff *skb, 1916 const int offset_hint) 1917 { 1918 struct flow_keys keys; 1919 1920 if (skb_transport_header_was_set(skb)) 1921 return; 1922 else if (skb_flow_dissect(skb, &keys)) 1923 skb_set_transport_header(skb, keys.thoff); 1924 else 1925 skb_set_transport_header(skb, offset_hint); 1926 } 1927 1928 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1929 { 1930 if (skb_mac_header_was_set(skb)) { 1931 const unsigned char *old_mac = skb_mac_header(skb); 1932 1933 skb_set_mac_header(skb, -skb->mac_len); 1934 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1935 } 1936 } 1937 1938 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1939 { 1940 return skb->csum_start - skb_headroom(skb); 1941 } 1942 1943 static inline int skb_transport_offset(const struct sk_buff *skb) 1944 { 1945 return skb_transport_header(skb) - skb->data; 1946 } 1947 1948 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1949 { 1950 return skb->transport_header - skb->network_header; 1951 } 1952 1953 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1954 { 1955 return skb->inner_transport_header - skb->inner_network_header; 1956 } 1957 1958 static inline int skb_network_offset(const struct sk_buff *skb) 1959 { 1960 return skb_network_header(skb) - skb->data; 1961 } 1962 1963 static inline int skb_inner_network_offset(const struct sk_buff *skb) 1964 { 1965 return skb_inner_network_header(skb) - skb->data; 1966 } 1967 1968 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1969 { 1970 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1971 } 1972 1973 /* 1974 * CPUs often take a performance hit when accessing unaligned memory 1975 * locations. The actual performance hit varies, it can be small if the 1976 * hardware handles it or large if we have to take an exception and fix it 1977 * in software. 1978 * 1979 * Since an ethernet header is 14 bytes network drivers often end up with 1980 * the IP header at an unaligned offset. The IP header can be aligned by 1981 * shifting the start of the packet by 2 bytes. Drivers should do this 1982 * with: 1983 * 1984 * skb_reserve(skb, NET_IP_ALIGN); 1985 * 1986 * The downside to this alignment of the IP header is that the DMA is now 1987 * unaligned. On some architectures the cost of an unaligned DMA is high 1988 * and this cost outweighs the gains made by aligning the IP header. 1989 * 1990 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1991 * to be overridden. 1992 */ 1993 #ifndef NET_IP_ALIGN 1994 #define NET_IP_ALIGN 2 1995 #endif 1996 1997 /* 1998 * The networking layer reserves some headroom in skb data (via 1999 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2000 * the header has to grow. In the default case, if the header has to grow 2001 * 32 bytes or less we avoid the reallocation. 2002 * 2003 * Unfortunately this headroom changes the DMA alignment of the resulting 2004 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2005 * on some architectures. An architecture can override this value, 2006 * perhaps setting it to a cacheline in size (since that will maintain 2007 * cacheline alignment of the DMA). It must be a power of 2. 2008 * 2009 * Various parts of the networking layer expect at least 32 bytes of 2010 * headroom, you should not reduce this. 2011 * 2012 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2013 * to reduce average number of cache lines per packet. 2014 * get_rps_cpus() for example only access one 64 bytes aligned block : 2015 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2016 */ 2017 #ifndef NET_SKB_PAD 2018 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2019 #endif 2020 2021 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2022 2023 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2024 { 2025 if (unlikely(skb_is_nonlinear(skb))) { 2026 WARN_ON(1); 2027 return; 2028 } 2029 skb->len = len; 2030 skb_set_tail_pointer(skb, len); 2031 } 2032 2033 void skb_trim(struct sk_buff *skb, unsigned int len); 2034 2035 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2036 { 2037 if (skb->data_len) 2038 return ___pskb_trim(skb, len); 2039 __skb_trim(skb, len); 2040 return 0; 2041 } 2042 2043 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2044 { 2045 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2046 } 2047 2048 /** 2049 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2050 * @skb: buffer to alter 2051 * @len: new length 2052 * 2053 * This is identical to pskb_trim except that the caller knows that 2054 * the skb is not cloned so we should never get an error due to out- 2055 * of-memory. 2056 */ 2057 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2058 { 2059 int err = pskb_trim(skb, len); 2060 BUG_ON(err); 2061 } 2062 2063 /** 2064 * skb_orphan - orphan a buffer 2065 * @skb: buffer to orphan 2066 * 2067 * If a buffer currently has an owner then we call the owner's 2068 * destructor function and make the @skb unowned. The buffer continues 2069 * to exist but is no longer charged to its former owner. 2070 */ 2071 static inline void skb_orphan(struct sk_buff *skb) 2072 { 2073 if (skb->destructor) { 2074 skb->destructor(skb); 2075 skb->destructor = NULL; 2076 skb->sk = NULL; 2077 } else { 2078 BUG_ON(skb->sk); 2079 } 2080 } 2081 2082 /** 2083 * skb_orphan_frags - orphan the frags contained in a buffer 2084 * @skb: buffer to orphan frags from 2085 * @gfp_mask: allocation mask for replacement pages 2086 * 2087 * For each frag in the SKB which needs a destructor (i.e. has an 2088 * owner) create a copy of that frag and release the original 2089 * page by calling the destructor. 2090 */ 2091 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2092 { 2093 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2094 return 0; 2095 return skb_copy_ubufs(skb, gfp_mask); 2096 } 2097 2098 /** 2099 * __skb_queue_purge - empty a list 2100 * @list: list to empty 2101 * 2102 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2103 * the list and one reference dropped. This function does not take the 2104 * list lock and the caller must hold the relevant locks to use it. 2105 */ 2106 void skb_queue_purge(struct sk_buff_head *list); 2107 static inline void __skb_queue_purge(struct sk_buff_head *list) 2108 { 2109 struct sk_buff *skb; 2110 while ((skb = __skb_dequeue(list)) != NULL) 2111 kfree_skb(skb); 2112 } 2113 2114 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 2115 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 2116 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 2117 2118 void *netdev_alloc_frag(unsigned int fragsz); 2119 2120 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2121 gfp_t gfp_mask); 2122 2123 /** 2124 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2125 * @dev: network device to receive on 2126 * @length: length to allocate 2127 * 2128 * Allocate a new &sk_buff and assign it a usage count of one. The 2129 * buffer has unspecified headroom built in. Users should allocate 2130 * the headroom they think they need without accounting for the 2131 * built in space. The built in space is used for optimisations. 2132 * 2133 * %NULL is returned if there is no free memory. Although this function 2134 * allocates memory it can be called from an interrupt. 2135 */ 2136 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2137 unsigned int length) 2138 { 2139 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2140 } 2141 2142 /* legacy helper around __netdev_alloc_skb() */ 2143 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2144 gfp_t gfp_mask) 2145 { 2146 return __netdev_alloc_skb(NULL, length, gfp_mask); 2147 } 2148 2149 /* legacy helper around netdev_alloc_skb() */ 2150 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2151 { 2152 return netdev_alloc_skb(NULL, length); 2153 } 2154 2155 2156 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2157 unsigned int length, gfp_t gfp) 2158 { 2159 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2160 2161 if (NET_IP_ALIGN && skb) 2162 skb_reserve(skb, NET_IP_ALIGN); 2163 return skb; 2164 } 2165 2166 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2167 unsigned int length) 2168 { 2169 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2170 } 2171 2172 void *napi_alloc_frag(unsigned int fragsz); 2173 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2174 unsigned int length, gfp_t gfp_mask); 2175 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2176 unsigned int length) 2177 { 2178 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2179 } 2180 2181 /** 2182 * __dev_alloc_pages - allocate page for network Rx 2183 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2184 * @order: size of the allocation 2185 * 2186 * Allocate a new page. 2187 * 2188 * %NULL is returned if there is no free memory. 2189 */ 2190 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2191 unsigned int order) 2192 { 2193 /* This piece of code contains several assumptions. 2194 * 1. This is for device Rx, therefor a cold page is preferred. 2195 * 2. The expectation is the user wants a compound page. 2196 * 3. If requesting a order 0 page it will not be compound 2197 * due to the check to see if order has a value in prep_new_page 2198 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2199 * code in gfp_to_alloc_flags that should be enforcing this. 2200 */ 2201 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2202 2203 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2204 } 2205 2206 static inline struct page *dev_alloc_pages(unsigned int order) 2207 { 2208 return __dev_alloc_pages(GFP_ATOMIC, order); 2209 } 2210 2211 /** 2212 * __dev_alloc_page - allocate a page for network Rx 2213 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2214 * 2215 * Allocate a new page. 2216 * 2217 * %NULL is returned if there is no free memory. 2218 */ 2219 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2220 { 2221 return __dev_alloc_pages(gfp_mask, 0); 2222 } 2223 2224 static inline struct page *dev_alloc_page(void) 2225 { 2226 return __dev_alloc_page(GFP_ATOMIC); 2227 } 2228 2229 /** 2230 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2231 * @page: The page that was allocated from skb_alloc_page 2232 * @skb: The skb that may need pfmemalloc set 2233 */ 2234 static inline void skb_propagate_pfmemalloc(struct page *page, 2235 struct sk_buff *skb) 2236 { 2237 if (page && page->pfmemalloc) 2238 skb->pfmemalloc = true; 2239 } 2240 2241 /** 2242 * skb_frag_page - retrieve the page referred to by a paged fragment 2243 * @frag: the paged fragment 2244 * 2245 * Returns the &struct page associated with @frag. 2246 */ 2247 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2248 { 2249 return frag->page.p; 2250 } 2251 2252 /** 2253 * __skb_frag_ref - take an addition reference on a paged fragment. 2254 * @frag: the paged fragment 2255 * 2256 * Takes an additional reference on the paged fragment @frag. 2257 */ 2258 static inline void __skb_frag_ref(skb_frag_t *frag) 2259 { 2260 get_page(skb_frag_page(frag)); 2261 } 2262 2263 /** 2264 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2265 * @skb: the buffer 2266 * @f: the fragment offset. 2267 * 2268 * Takes an additional reference on the @f'th paged fragment of @skb. 2269 */ 2270 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2271 { 2272 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2273 } 2274 2275 /** 2276 * __skb_frag_unref - release a reference on a paged fragment. 2277 * @frag: the paged fragment 2278 * 2279 * Releases a reference on the paged fragment @frag. 2280 */ 2281 static inline void __skb_frag_unref(skb_frag_t *frag) 2282 { 2283 put_page(skb_frag_page(frag)); 2284 } 2285 2286 /** 2287 * skb_frag_unref - release a reference on a paged fragment of an skb. 2288 * @skb: the buffer 2289 * @f: the fragment offset 2290 * 2291 * Releases a reference on the @f'th paged fragment of @skb. 2292 */ 2293 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2294 { 2295 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2296 } 2297 2298 /** 2299 * skb_frag_address - gets the address of the data contained in a paged fragment 2300 * @frag: the paged fragment buffer 2301 * 2302 * Returns the address of the data within @frag. The page must already 2303 * be mapped. 2304 */ 2305 static inline void *skb_frag_address(const skb_frag_t *frag) 2306 { 2307 return page_address(skb_frag_page(frag)) + frag->page_offset; 2308 } 2309 2310 /** 2311 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2312 * @frag: the paged fragment buffer 2313 * 2314 * Returns the address of the data within @frag. Checks that the page 2315 * is mapped and returns %NULL otherwise. 2316 */ 2317 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2318 { 2319 void *ptr = page_address(skb_frag_page(frag)); 2320 if (unlikely(!ptr)) 2321 return NULL; 2322 2323 return ptr + frag->page_offset; 2324 } 2325 2326 /** 2327 * __skb_frag_set_page - sets the page contained in a paged fragment 2328 * @frag: the paged fragment 2329 * @page: the page to set 2330 * 2331 * Sets the fragment @frag to contain @page. 2332 */ 2333 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2334 { 2335 frag->page.p = page; 2336 } 2337 2338 /** 2339 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2340 * @skb: the buffer 2341 * @f: the fragment offset 2342 * @page: the page to set 2343 * 2344 * Sets the @f'th fragment of @skb to contain @page. 2345 */ 2346 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2347 struct page *page) 2348 { 2349 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2350 } 2351 2352 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2353 2354 /** 2355 * skb_frag_dma_map - maps a paged fragment via the DMA API 2356 * @dev: the device to map the fragment to 2357 * @frag: the paged fragment to map 2358 * @offset: the offset within the fragment (starting at the 2359 * fragment's own offset) 2360 * @size: the number of bytes to map 2361 * @dir: the direction of the mapping (%PCI_DMA_*) 2362 * 2363 * Maps the page associated with @frag to @device. 2364 */ 2365 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2366 const skb_frag_t *frag, 2367 size_t offset, size_t size, 2368 enum dma_data_direction dir) 2369 { 2370 return dma_map_page(dev, skb_frag_page(frag), 2371 frag->page_offset + offset, size, dir); 2372 } 2373 2374 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2375 gfp_t gfp_mask) 2376 { 2377 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2378 } 2379 2380 2381 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2382 gfp_t gfp_mask) 2383 { 2384 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2385 } 2386 2387 2388 /** 2389 * skb_clone_writable - is the header of a clone writable 2390 * @skb: buffer to check 2391 * @len: length up to which to write 2392 * 2393 * Returns true if modifying the header part of the cloned buffer 2394 * does not requires the data to be copied. 2395 */ 2396 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2397 { 2398 return !skb_header_cloned(skb) && 2399 skb_headroom(skb) + len <= skb->hdr_len; 2400 } 2401 2402 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2403 int cloned) 2404 { 2405 int delta = 0; 2406 2407 if (headroom > skb_headroom(skb)) 2408 delta = headroom - skb_headroom(skb); 2409 2410 if (delta || cloned) 2411 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2412 GFP_ATOMIC); 2413 return 0; 2414 } 2415 2416 /** 2417 * skb_cow - copy header of skb when it is required 2418 * @skb: buffer to cow 2419 * @headroom: needed headroom 2420 * 2421 * If the skb passed lacks sufficient headroom or its data part 2422 * is shared, data is reallocated. If reallocation fails, an error 2423 * is returned and original skb is not changed. 2424 * 2425 * The result is skb with writable area skb->head...skb->tail 2426 * and at least @headroom of space at head. 2427 */ 2428 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2429 { 2430 return __skb_cow(skb, headroom, skb_cloned(skb)); 2431 } 2432 2433 /** 2434 * skb_cow_head - skb_cow but only making the head writable 2435 * @skb: buffer to cow 2436 * @headroom: needed headroom 2437 * 2438 * This function is identical to skb_cow except that we replace the 2439 * skb_cloned check by skb_header_cloned. It should be used when 2440 * you only need to push on some header and do not need to modify 2441 * the data. 2442 */ 2443 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2444 { 2445 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2446 } 2447 2448 /** 2449 * skb_padto - pad an skbuff up to a minimal size 2450 * @skb: buffer to pad 2451 * @len: minimal length 2452 * 2453 * Pads up a buffer to ensure the trailing bytes exist and are 2454 * blanked. If the buffer already contains sufficient data it 2455 * is untouched. Otherwise it is extended. Returns zero on 2456 * success. The skb is freed on error. 2457 */ 2458 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2459 { 2460 unsigned int size = skb->len; 2461 if (likely(size >= len)) 2462 return 0; 2463 return skb_pad(skb, len - size); 2464 } 2465 2466 /** 2467 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2468 * @skb: buffer to pad 2469 * @len: minimal length 2470 * 2471 * Pads up a buffer to ensure the trailing bytes exist and are 2472 * blanked. If the buffer already contains sufficient data it 2473 * is untouched. Otherwise it is extended. Returns zero on 2474 * success. The skb is freed on error. 2475 */ 2476 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2477 { 2478 unsigned int size = skb->len; 2479 2480 if (unlikely(size < len)) { 2481 len -= size; 2482 if (skb_pad(skb, len)) 2483 return -ENOMEM; 2484 __skb_put(skb, len); 2485 } 2486 return 0; 2487 } 2488 2489 static inline int skb_add_data(struct sk_buff *skb, 2490 struct iov_iter *from, int copy) 2491 { 2492 const int off = skb->len; 2493 2494 if (skb->ip_summed == CHECKSUM_NONE) { 2495 __wsum csum = 0; 2496 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2497 &csum, from) == copy) { 2498 skb->csum = csum_block_add(skb->csum, csum, off); 2499 return 0; 2500 } 2501 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2502 return 0; 2503 2504 __skb_trim(skb, off); 2505 return -EFAULT; 2506 } 2507 2508 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2509 const struct page *page, int off) 2510 { 2511 if (i) { 2512 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2513 2514 return page == skb_frag_page(frag) && 2515 off == frag->page_offset + skb_frag_size(frag); 2516 } 2517 return false; 2518 } 2519 2520 static inline int __skb_linearize(struct sk_buff *skb) 2521 { 2522 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2523 } 2524 2525 /** 2526 * skb_linearize - convert paged skb to linear one 2527 * @skb: buffer to linarize 2528 * 2529 * If there is no free memory -ENOMEM is returned, otherwise zero 2530 * is returned and the old skb data released. 2531 */ 2532 static inline int skb_linearize(struct sk_buff *skb) 2533 { 2534 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2535 } 2536 2537 /** 2538 * skb_has_shared_frag - can any frag be overwritten 2539 * @skb: buffer to test 2540 * 2541 * Return true if the skb has at least one frag that might be modified 2542 * by an external entity (as in vmsplice()/sendfile()) 2543 */ 2544 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2545 { 2546 return skb_is_nonlinear(skb) && 2547 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2548 } 2549 2550 /** 2551 * skb_linearize_cow - make sure skb is linear and writable 2552 * @skb: buffer to process 2553 * 2554 * If there is no free memory -ENOMEM is returned, otherwise zero 2555 * is returned and the old skb data released. 2556 */ 2557 static inline int skb_linearize_cow(struct sk_buff *skb) 2558 { 2559 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2560 __skb_linearize(skb) : 0; 2561 } 2562 2563 /** 2564 * skb_postpull_rcsum - update checksum for received skb after pull 2565 * @skb: buffer to update 2566 * @start: start of data before pull 2567 * @len: length of data pulled 2568 * 2569 * After doing a pull on a received packet, you need to call this to 2570 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2571 * CHECKSUM_NONE so that it can be recomputed from scratch. 2572 */ 2573 2574 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2575 const void *start, unsigned int len) 2576 { 2577 if (skb->ip_summed == CHECKSUM_COMPLETE) 2578 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2579 } 2580 2581 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2582 2583 /** 2584 * pskb_trim_rcsum - trim received skb and update checksum 2585 * @skb: buffer to trim 2586 * @len: new length 2587 * 2588 * This is exactly the same as pskb_trim except that it ensures the 2589 * checksum of received packets are still valid after the operation. 2590 */ 2591 2592 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2593 { 2594 if (likely(len >= skb->len)) 2595 return 0; 2596 if (skb->ip_summed == CHECKSUM_COMPLETE) 2597 skb->ip_summed = CHECKSUM_NONE; 2598 return __pskb_trim(skb, len); 2599 } 2600 2601 #define skb_queue_walk(queue, skb) \ 2602 for (skb = (queue)->next; \ 2603 skb != (struct sk_buff *)(queue); \ 2604 skb = skb->next) 2605 2606 #define skb_queue_walk_safe(queue, skb, tmp) \ 2607 for (skb = (queue)->next, tmp = skb->next; \ 2608 skb != (struct sk_buff *)(queue); \ 2609 skb = tmp, tmp = skb->next) 2610 2611 #define skb_queue_walk_from(queue, skb) \ 2612 for (; skb != (struct sk_buff *)(queue); \ 2613 skb = skb->next) 2614 2615 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2616 for (tmp = skb->next; \ 2617 skb != (struct sk_buff *)(queue); \ 2618 skb = tmp, tmp = skb->next) 2619 2620 #define skb_queue_reverse_walk(queue, skb) \ 2621 for (skb = (queue)->prev; \ 2622 skb != (struct sk_buff *)(queue); \ 2623 skb = skb->prev) 2624 2625 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2626 for (skb = (queue)->prev, tmp = skb->prev; \ 2627 skb != (struct sk_buff *)(queue); \ 2628 skb = tmp, tmp = skb->prev) 2629 2630 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2631 for (tmp = skb->prev; \ 2632 skb != (struct sk_buff *)(queue); \ 2633 skb = tmp, tmp = skb->prev) 2634 2635 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2636 { 2637 return skb_shinfo(skb)->frag_list != NULL; 2638 } 2639 2640 static inline void skb_frag_list_init(struct sk_buff *skb) 2641 { 2642 skb_shinfo(skb)->frag_list = NULL; 2643 } 2644 2645 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2646 { 2647 frag->next = skb_shinfo(skb)->frag_list; 2648 skb_shinfo(skb)->frag_list = frag; 2649 } 2650 2651 #define skb_walk_frags(skb, iter) \ 2652 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2653 2654 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2655 int *peeked, int *off, int *err); 2656 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2657 int *err); 2658 unsigned int datagram_poll(struct file *file, struct socket *sock, 2659 struct poll_table_struct *wait); 2660 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 2661 struct iov_iter *to, int size); 2662 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 2663 struct msghdr *msg, int size) 2664 { 2665 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 2666 } 2667 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 2668 struct msghdr *msg); 2669 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 2670 struct iov_iter *from, int len); 2671 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 2672 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2673 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2674 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2675 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2676 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2677 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2678 int len, __wsum csum); 2679 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2680 struct pipe_inode_info *pipe, unsigned int len, 2681 unsigned int flags); 2682 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2683 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2684 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2685 int len, int hlen); 2686 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2687 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2688 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2689 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2690 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2691 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2692 int skb_ensure_writable(struct sk_buff *skb, int write_len); 2693 int skb_vlan_pop(struct sk_buff *skb); 2694 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 2695 2696 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 2697 { 2698 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2699 } 2700 2701 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 2702 { 2703 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2704 } 2705 2706 struct skb_checksum_ops { 2707 __wsum (*update)(const void *mem, int len, __wsum wsum); 2708 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2709 }; 2710 2711 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2712 __wsum csum, const struct skb_checksum_ops *ops); 2713 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2714 __wsum csum); 2715 2716 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset, 2717 int len, void *data, int hlen, void *buffer) 2718 { 2719 if (hlen - offset >= len) 2720 return data + offset; 2721 2722 if (!skb || 2723 skb_copy_bits(skb, offset, buffer, len) < 0) 2724 return NULL; 2725 2726 return buffer; 2727 } 2728 2729 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2730 int len, void *buffer) 2731 { 2732 return __skb_header_pointer(skb, offset, len, skb->data, 2733 skb_headlen(skb), buffer); 2734 } 2735 2736 /** 2737 * skb_needs_linearize - check if we need to linearize a given skb 2738 * depending on the given device features. 2739 * @skb: socket buffer to check 2740 * @features: net device features 2741 * 2742 * Returns true if either: 2743 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2744 * 2. skb is fragmented and the device does not support SG. 2745 */ 2746 static inline bool skb_needs_linearize(struct sk_buff *skb, 2747 netdev_features_t features) 2748 { 2749 return skb_is_nonlinear(skb) && 2750 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2751 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2752 } 2753 2754 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2755 void *to, 2756 const unsigned int len) 2757 { 2758 memcpy(to, skb->data, len); 2759 } 2760 2761 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2762 const int offset, void *to, 2763 const unsigned int len) 2764 { 2765 memcpy(to, skb->data + offset, len); 2766 } 2767 2768 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2769 const void *from, 2770 const unsigned int len) 2771 { 2772 memcpy(skb->data, from, len); 2773 } 2774 2775 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2776 const int offset, 2777 const void *from, 2778 const unsigned int len) 2779 { 2780 memcpy(skb->data + offset, from, len); 2781 } 2782 2783 void skb_init(void); 2784 2785 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2786 { 2787 return skb->tstamp; 2788 } 2789 2790 /** 2791 * skb_get_timestamp - get timestamp from a skb 2792 * @skb: skb to get stamp from 2793 * @stamp: pointer to struct timeval to store stamp in 2794 * 2795 * Timestamps are stored in the skb as offsets to a base timestamp. 2796 * This function converts the offset back to a struct timeval and stores 2797 * it in stamp. 2798 */ 2799 static inline void skb_get_timestamp(const struct sk_buff *skb, 2800 struct timeval *stamp) 2801 { 2802 *stamp = ktime_to_timeval(skb->tstamp); 2803 } 2804 2805 static inline void skb_get_timestampns(const struct sk_buff *skb, 2806 struct timespec *stamp) 2807 { 2808 *stamp = ktime_to_timespec(skb->tstamp); 2809 } 2810 2811 static inline void __net_timestamp(struct sk_buff *skb) 2812 { 2813 skb->tstamp = ktime_get_real(); 2814 } 2815 2816 static inline ktime_t net_timedelta(ktime_t t) 2817 { 2818 return ktime_sub(ktime_get_real(), t); 2819 } 2820 2821 static inline ktime_t net_invalid_timestamp(void) 2822 { 2823 return ktime_set(0, 0); 2824 } 2825 2826 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2827 2828 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2829 2830 void skb_clone_tx_timestamp(struct sk_buff *skb); 2831 bool skb_defer_rx_timestamp(struct sk_buff *skb); 2832 2833 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2834 2835 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2836 { 2837 } 2838 2839 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2840 { 2841 return false; 2842 } 2843 2844 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2845 2846 /** 2847 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2848 * 2849 * PHY drivers may accept clones of transmitted packets for 2850 * timestamping via their phy_driver.txtstamp method. These drivers 2851 * must call this function to return the skb back to the stack, with 2852 * or without a timestamp. 2853 * 2854 * @skb: clone of the the original outgoing packet 2855 * @hwtstamps: hardware time stamps, may be NULL if not available 2856 * 2857 */ 2858 void skb_complete_tx_timestamp(struct sk_buff *skb, 2859 struct skb_shared_hwtstamps *hwtstamps); 2860 2861 void __skb_tstamp_tx(struct sk_buff *orig_skb, 2862 struct skb_shared_hwtstamps *hwtstamps, 2863 struct sock *sk, int tstype); 2864 2865 /** 2866 * skb_tstamp_tx - queue clone of skb with send time stamps 2867 * @orig_skb: the original outgoing packet 2868 * @hwtstamps: hardware time stamps, may be NULL if not available 2869 * 2870 * If the skb has a socket associated, then this function clones the 2871 * skb (thus sharing the actual data and optional structures), stores 2872 * the optional hardware time stamping information (if non NULL) or 2873 * generates a software time stamp (otherwise), then queues the clone 2874 * to the error queue of the socket. Errors are silently ignored. 2875 */ 2876 void skb_tstamp_tx(struct sk_buff *orig_skb, 2877 struct skb_shared_hwtstamps *hwtstamps); 2878 2879 static inline void sw_tx_timestamp(struct sk_buff *skb) 2880 { 2881 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2882 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2883 skb_tstamp_tx(skb, NULL); 2884 } 2885 2886 /** 2887 * skb_tx_timestamp() - Driver hook for transmit timestamping 2888 * 2889 * Ethernet MAC Drivers should call this function in their hard_xmit() 2890 * function immediately before giving the sk_buff to the MAC hardware. 2891 * 2892 * Specifically, one should make absolutely sure that this function is 2893 * called before TX completion of this packet can trigger. Otherwise 2894 * the packet could potentially already be freed. 2895 * 2896 * @skb: A socket buffer. 2897 */ 2898 static inline void skb_tx_timestamp(struct sk_buff *skb) 2899 { 2900 skb_clone_tx_timestamp(skb); 2901 sw_tx_timestamp(skb); 2902 } 2903 2904 /** 2905 * skb_complete_wifi_ack - deliver skb with wifi status 2906 * 2907 * @skb: the original outgoing packet 2908 * @acked: ack status 2909 * 2910 */ 2911 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2912 2913 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2914 __sum16 __skb_checksum_complete(struct sk_buff *skb); 2915 2916 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2917 { 2918 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid); 2919 } 2920 2921 /** 2922 * skb_checksum_complete - Calculate checksum of an entire packet 2923 * @skb: packet to process 2924 * 2925 * This function calculates the checksum over the entire packet plus 2926 * the value of skb->csum. The latter can be used to supply the 2927 * checksum of a pseudo header as used by TCP/UDP. It returns the 2928 * checksum. 2929 * 2930 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2931 * this function can be used to verify that checksum on received 2932 * packets. In that case the function should return zero if the 2933 * checksum is correct. In particular, this function will return zero 2934 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2935 * hardware has already verified the correctness of the checksum. 2936 */ 2937 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2938 { 2939 return skb_csum_unnecessary(skb) ? 2940 0 : __skb_checksum_complete(skb); 2941 } 2942 2943 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 2944 { 2945 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2946 if (skb->csum_level == 0) 2947 skb->ip_summed = CHECKSUM_NONE; 2948 else 2949 skb->csum_level--; 2950 } 2951 } 2952 2953 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 2954 { 2955 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2956 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 2957 skb->csum_level++; 2958 } else if (skb->ip_summed == CHECKSUM_NONE) { 2959 skb->ip_summed = CHECKSUM_UNNECESSARY; 2960 skb->csum_level = 0; 2961 } 2962 } 2963 2964 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 2965 { 2966 /* Mark current checksum as bad (typically called from GRO 2967 * path). In the case that ip_summed is CHECKSUM_NONE 2968 * this must be the first checksum encountered in the packet. 2969 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 2970 * checksum after the last one validated. For UDP, a zero 2971 * checksum can not be marked as bad. 2972 */ 2973 2974 if (skb->ip_summed == CHECKSUM_NONE || 2975 skb->ip_summed == CHECKSUM_UNNECESSARY) 2976 skb->csum_bad = 1; 2977 } 2978 2979 /* Check if we need to perform checksum complete validation. 2980 * 2981 * Returns true if checksum complete is needed, false otherwise 2982 * (either checksum is unnecessary or zero checksum is allowed). 2983 */ 2984 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 2985 bool zero_okay, 2986 __sum16 check) 2987 { 2988 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 2989 skb->csum_valid = 1; 2990 __skb_decr_checksum_unnecessary(skb); 2991 return false; 2992 } 2993 2994 return true; 2995 } 2996 2997 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 2998 * in checksum_init. 2999 */ 3000 #define CHECKSUM_BREAK 76 3001 3002 /* Validate (init) checksum based on checksum complete. 3003 * 3004 * Return values: 3005 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3006 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3007 * checksum is stored in skb->csum for use in __skb_checksum_complete 3008 * non-zero: value of invalid checksum 3009 * 3010 */ 3011 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3012 bool complete, 3013 __wsum psum) 3014 { 3015 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3016 if (!csum_fold(csum_add(psum, skb->csum))) { 3017 skb->csum_valid = 1; 3018 return 0; 3019 } 3020 } else if (skb->csum_bad) { 3021 /* ip_summed == CHECKSUM_NONE in this case */ 3022 return 1; 3023 } 3024 3025 skb->csum = psum; 3026 3027 if (complete || skb->len <= CHECKSUM_BREAK) { 3028 __sum16 csum; 3029 3030 csum = __skb_checksum_complete(skb); 3031 skb->csum_valid = !csum; 3032 return csum; 3033 } 3034 3035 return 0; 3036 } 3037 3038 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3039 { 3040 return 0; 3041 } 3042 3043 /* Perform checksum validate (init). Note that this is a macro since we only 3044 * want to calculate the pseudo header which is an input function if necessary. 3045 * First we try to validate without any computation (checksum unnecessary) and 3046 * then calculate based on checksum complete calling the function to compute 3047 * pseudo header. 3048 * 3049 * Return values: 3050 * 0: checksum is validated or try to in skb_checksum_complete 3051 * non-zero: value of invalid checksum 3052 */ 3053 #define __skb_checksum_validate(skb, proto, complete, \ 3054 zero_okay, check, compute_pseudo) \ 3055 ({ \ 3056 __sum16 __ret = 0; \ 3057 skb->csum_valid = 0; \ 3058 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3059 __ret = __skb_checksum_validate_complete(skb, \ 3060 complete, compute_pseudo(skb, proto)); \ 3061 __ret; \ 3062 }) 3063 3064 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3065 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3066 3067 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3068 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3069 3070 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3071 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3072 3073 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3074 compute_pseudo) \ 3075 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3076 3077 #define skb_checksum_simple_validate(skb) \ 3078 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3079 3080 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3081 { 3082 return (skb->ip_summed == CHECKSUM_NONE && 3083 skb->csum_valid && !skb->csum_bad); 3084 } 3085 3086 static inline void __skb_checksum_convert(struct sk_buff *skb, 3087 __sum16 check, __wsum pseudo) 3088 { 3089 skb->csum = ~pseudo; 3090 skb->ip_summed = CHECKSUM_COMPLETE; 3091 } 3092 3093 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3094 do { \ 3095 if (__skb_checksum_convert_check(skb)) \ 3096 __skb_checksum_convert(skb, check, \ 3097 compute_pseudo(skb, proto)); \ 3098 } while (0) 3099 3100 /* Update skbuf and packet to reflect the remote checksum offload operation. 3101 * When called, ptr indicates the starting point for skb->csum when 3102 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3103 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3104 */ 3105 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3106 int start, int offset) 3107 { 3108 __wsum delta; 3109 3110 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3111 __skb_checksum_complete(skb); 3112 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3113 } 3114 3115 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3116 3117 /* Adjust skb->csum since we changed the packet */ 3118 skb->csum = csum_add(skb->csum, delta); 3119 } 3120 3121 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3122 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3123 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3124 { 3125 if (nfct && atomic_dec_and_test(&nfct->use)) 3126 nf_conntrack_destroy(nfct); 3127 } 3128 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3129 { 3130 if (nfct) 3131 atomic_inc(&nfct->use); 3132 } 3133 #endif 3134 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3135 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3136 { 3137 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3138 kfree(nf_bridge); 3139 } 3140 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3141 { 3142 if (nf_bridge) 3143 atomic_inc(&nf_bridge->use); 3144 } 3145 #endif /* CONFIG_BRIDGE_NETFILTER */ 3146 static inline void nf_reset(struct sk_buff *skb) 3147 { 3148 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3149 nf_conntrack_put(skb->nfct); 3150 skb->nfct = NULL; 3151 #endif 3152 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3153 nf_bridge_put(skb->nf_bridge); 3154 skb->nf_bridge = NULL; 3155 #endif 3156 } 3157 3158 static inline void nf_reset_trace(struct sk_buff *skb) 3159 { 3160 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3161 skb->nf_trace = 0; 3162 #endif 3163 } 3164 3165 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3166 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3167 bool copy) 3168 { 3169 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3170 dst->nfct = src->nfct; 3171 nf_conntrack_get(src->nfct); 3172 if (copy) 3173 dst->nfctinfo = src->nfctinfo; 3174 #endif 3175 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3176 dst->nf_bridge = src->nf_bridge; 3177 nf_bridge_get(src->nf_bridge); 3178 #endif 3179 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3180 if (copy) 3181 dst->nf_trace = src->nf_trace; 3182 #endif 3183 } 3184 3185 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3186 { 3187 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3188 nf_conntrack_put(dst->nfct); 3189 #endif 3190 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3191 nf_bridge_put(dst->nf_bridge); 3192 #endif 3193 __nf_copy(dst, src, true); 3194 } 3195 3196 #ifdef CONFIG_NETWORK_SECMARK 3197 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3198 { 3199 to->secmark = from->secmark; 3200 } 3201 3202 static inline void skb_init_secmark(struct sk_buff *skb) 3203 { 3204 skb->secmark = 0; 3205 } 3206 #else 3207 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3208 { } 3209 3210 static inline void skb_init_secmark(struct sk_buff *skb) 3211 { } 3212 #endif 3213 3214 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3215 { 3216 return !skb->destructor && 3217 #if IS_ENABLED(CONFIG_XFRM) 3218 !skb->sp && 3219 #endif 3220 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3221 !skb->nfct && 3222 #endif 3223 !skb->_skb_refdst && 3224 !skb_has_frag_list(skb); 3225 } 3226 3227 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3228 { 3229 skb->queue_mapping = queue_mapping; 3230 } 3231 3232 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3233 { 3234 return skb->queue_mapping; 3235 } 3236 3237 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3238 { 3239 to->queue_mapping = from->queue_mapping; 3240 } 3241 3242 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3243 { 3244 skb->queue_mapping = rx_queue + 1; 3245 } 3246 3247 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3248 { 3249 return skb->queue_mapping - 1; 3250 } 3251 3252 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3253 { 3254 return skb->queue_mapping != 0; 3255 } 3256 3257 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3258 unsigned int num_tx_queues); 3259 3260 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3261 { 3262 #ifdef CONFIG_XFRM 3263 return skb->sp; 3264 #else 3265 return NULL; 3266 #endif 3267 } 3268 3269 /* Keeps track of mac header offset relative to skb->head. 3270 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3271 * For non-tunnel skb it points to skb_mac_header() and for 3272 * tunnel skb it points to outer mac header. 3273 * Keeps track of level of encapsulation of network headers. 3274 */ 3275 struct skb_gso_cb { 3276 int mac_offset; 3277 int encap_level; 3278 __u16 csum_start; 3279 }; 3280 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3281 3282 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3283 { 3284 return (skb_mac_header(inner_skb) - inner_skb->head) - 3285 SKB_GSO_CB(inner_skb)->mac_offset; 3286 } 3287 3288 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3289 { 3290 int new_headroom, headroom; 3291 int ret; 3292 3293 headroom = skb_headroom(skb); 3294 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3295 if (ret) 3296 return ret; 3297 3298 new_headroom = skb_headroom(skb); 3299 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3300 return 0; 3301 } 3302 3303 /* Compute the checksum for a gso segment. First compute the checksum value 3304 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3305 * then add in skb->csum (checksum from csum_start to end of packet). 3306 * skb->csum and csum_start are then updated to reflect the checksum of the 3307 * resultant packet starting from the transport header-- the resultant checksum 3308 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3309 * header. 3310 */ 3311 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3312 { 3313 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3314 skb_transport_offset(skb); 3315 __u16 csum; 3316 3317 csum = csum_fold(csum_partial(skb_transport_header(skb), 3318 plen, skb->csum)); 3319 skb->csum = res; 3320 SKB_GSO_CB(skb)->csum_start -= plen; 3321 3322 return csum; 3323 } 3324 3325 static inline bool skb_is_gso(const struct sk_buff *skb) 3326 { 3327 return skb_shinfo(skb)->gso_size; 3328 } 3329 3330 /* Note: Should be called only if skb_is_gso(skb) is true */ 3331 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3332 { 3333 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3334 } 3335 3336 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3337 3338 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3339 { 3340 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3341 * wanted then gso_type will be set. */ 3342 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3343 3344 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3345 unlikely(shinfo->gso_type == 0)) { 3346 __skb_warn_lro_forwarding(skb); 3347 return true; 3348 } 3349 return false; 3350 } 3351 3352 static inline void skb_forward_csum(struct sk_buff *skb) 3353 { 3354 /* Unfortunately we don't support this one. Any brave souls? */ 3355 if (skb->ip_summed == CHECKSUM_COMPLETE) 3356 skb->ip_summed = CHECKSUM_NONE; 3357 } 3358 3359 /** 3360 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3361 * @skb: skb to check 3362 * 3363 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3364 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3365 * use this helper, to document places where we make this assertion. 3366 */ 3367 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3368 { 3369 #ifdef DEBUG 3370 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3371 #endif 3372 } 3373 3374 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3375 3376 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3377 3378 u32 skb_get_poff(const struct sk_buff *skb); 3379 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 3380 const struct flow_keys *keys, int hlen); 3381 3382 /** 3383 * skb_head_is_locked - Determine if the skb->head is locked down 3384 * @skb: skb to check 3385 * 3386 * The head on skbs build around a head frag can be removed if they are 3387 * not cloned. This function returns true if the skb head is locked down 3388 * due to either being allocated via kmalloc, or by being a clone with 3389 * multiple references to the head. 3390 */ 3391 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3392 { 3393 return !skb->head_frag || skb_cloned(skb); 3394 } 3395 3396 /** 3397 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3398 * 3399 * @skb: GSO skb 3400 * 3401 * skb_gso_network_seglen is used to determine the real size of the 3402 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3403 * 3404 * The MAC/L2 header is not accounted for. 3405 */ 3406 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3407 { 3408 unsigned int hdr_len = skb_transport_header(skb) - 3409 skb_network_header(skb); 3410 return hdr_len + skb_gso_transport_seglen(skb); 3411 } 3412 #endif /* __KERNEL__ */ 3413 #endif /* _LINUX_SKBUFF_H */ 3414