xref: /linux-6.15/include/linux/skbuff.h (revision 3a9af0bd)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_keys.h>
38 
39 /* A. Checksumming of received packets by device.
40  *
41  * CHECKSUM_NONE:
42  *
43  *   Device failed to checksum this packet e.g. due to lack of capabilities.
44  *   The packet contains full (though not verified) checksum in packet but
45  *   not in skb->csum. Thus, skb->csum is undefined in this case.
46  *
47  * CHECKSUM_UNNECESSARY:
48  *
49  *   The hardware you're dealing with doesn't calculate the full checksum
50  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52  *   if their checksums are okay. skb->csum is still undefined in this case
53  *   though. It is a bad option, but, unfortunately, nowadays most vendors do
54  *   this. Apparently with the secret goal to sell you new devices, when you
55  *   will add new protocol to your host, f.e. IPv6 8)
56  *
57  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
58  *     TCP: IPv6 and IPv4.
59  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
61  *       may perform further validation in this case.
62  *     GRE: only if the checksum is present in the header.
63  *     SCTP: indicates the CRC in SCTP header has been validated.
64  *
65  *   skb->csum_level indicates the number of consecutive checksums found in
66  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68  *   and a device is able to verify the checksums for UDP (possibly zero),
69  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70  *   two. If the device were only able to verify the UDP checksum and not
71  *   GRE, either because it doesn't support GRE checksum of because GRE
72  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73  *   not considered in this case).
74  *
75  * CHECKSUM_COMPLETE:
76  *
77  *   This is the most generic way. The device supplied checksum of the _whole_
78  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79  *   hardware doesn't need to parse L3/L4 headers to implement this.
80  *
81  *   Note: Even if device supports only some protocols, but is able to produce
82  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83  *
84  * CHECKSUM_PARTIAL:
85  *
86  *   This is identical to the case for output below. This may occur on a packet
87  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
88  *   on the same host. The packet can be treated in the same way as
89  *   CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
90  *   checksum must be filled in by the OS or the hardware.
91  *
92  * B. Checksumming on output.
93  *
94  * CHECKSUM_NONE:
95  *
96  *   The skb was already checksummed by the protocol, or a checksum is not
97  *   required.
98  *
99  * CHECKSUM_PARTIAL:
100  *
101  *   The device is required to checksum the packet as seen by hard_start_xmit()
102  *   from skb->csum_start up to the end, and to record/write the checksum at
103  *   offset skb->csum_start + skb->csum_offset.
104  *
105  *   The device must show its capabilities in dev->features, set up at device
106  *   setup time, e.g. netdev_features.h:
107  *
108  *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
109  *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
110  *			  IPv4. Sigh. Vendors like this way for an unknown reason.
111  *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
112  *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
113  *	NETIF_F_...     - Well, you get the picture.
114  *
115  * CHECKSUM_UNNECESSARY:
116  *
117  *   Normally, the device will do per protocol specific checksumming. Protocol
118  *   implementations that do not want the NIC to perform the checksum
119  *   calculation should use this flag in their outgoing skbs.
120  *
121  *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
122  *			   offload. Correspondingly, the FCoE protocol driver
123  *			   stack should use CHECKSUM_UNNECESSARY.
124  *
125  * Any questions? No questions, good.		--ANK
126  */
127 
128 /* Don't change this without changing skb_csum_unnecessary! */
129 #define CHECKSUM_NONE		0
130 #define CHECKSUM_UNNECESSARY	1
131 #define CHECKSUM_COMPLETE	2
132 #define CHECKSUM_PARTIAL	3
133 
134 /* Maximum value in skb->csum_level */
135 #define SKB_MAX_CSUM_LEVEL	3
136 
137 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
138 #define SKB_WITH_OVERHEAD(X)	\
139 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
140 #define SKB_MAX_ORDER(X, ORDER) \
141 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
142 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
143 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
144 
145 /* return minimum truesize of one skb containing X bytes of data */
146 #define SKB_TRUESIZE(X) ((X) +						\
147 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
148 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
149 
150 struct net_device;
151 struct scatterlist;
152 struct pipe_inode_info;
153 struct iov_iter;
154 struct napi_struct;
155 
156 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
157 struct nf_conntrack {
158 	atomic_t use;
159 };
160 #endif
161 
162 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
163 struct nf_bridge_info {
164 	atomic_t		use;
165 	unsigned int		mask;
166 	struct net_device	*physindev;
167 	struct net_device	*physoutdev;
168 	unsigned long		data[32 / sizeof(unsigned long)];
169 };
170 #endif
171 
172 struct sk_buff_head {
173 	/* These two members must be first. */
174 	struct sk_buff	*next;
175 	struct sk_buff	*prev;
176 
177 	__u32		qlen;
178 	spinlock_t	lock;
179 };
180 
181 struct sk_buff;
182 
183 /* To allow 64K frame to be packed as single skb without frag_list we
184  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
185  * buffers which do not start on a page boundary.
186  *
187  * Since GRO uses frags we allocate at least 16 regardless of page
188  * size.
189  */
190 #if (65536/PAGE_SIZE + 1) < 16
191 #define MAX_SKB_FRAGS 16UL
192 #else
193 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
194 #endif
195 
196 typedef struct skb_frag_struct skb_frag_t;
197 
198 struct skb_frag_struct {
199 	struct {
200 		struct page *p;
201 	} page;
202 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
203 	__u32 page_offset;
204 	__u32 size;
205 #else
206 	__u16 page_offset;
207 	__u16 size;
208 #endif
209 };
210 
211 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
212 {
213 	return frag->size;
214 }
215 
216 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
217 {
218 	frag->size = size;
219 }
220 
221 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
222 {
223 	frag->size += delta;
224 }
225 
226 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
227 {
228 	frag->size -= delta;
229 }
230 
231 #define HAVE_HW_TIME_STAMP
232 
233 /**
234  * struct skb_shared_hwtstamps - hardware time stamps
235  * @hwtstamp:	hardware time stamp transformed into duration
236  *		since arbitrary point in time
237  *
238  * Software time stamps generated by ktime_get_real() are stored in
239  * skb->tstamp.
240  *
241  * hwtstamps can only be compared against other hwtstamps from
242  * the same device.
243  *
244  * This structure is attached to packets as part of the
245  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
246  */
247 struct skb_shared_hwtstamps {
248 	ktime_t	hwtstamp;
249 };
250 
251 /* Definitions for tx_flags in struct skb_shared_info */
252 enum {
253 	/* generate hardware time stamp */
254 	SKBTX_HW_TSTAMP = 1 << 0,
255 
256 	/* generate software time stamp when queueing packet to NIC */
257 	SKBTX_SW_TSTAMP = 1 << 1,
258 
259 	/* device driver is going to provide hardware time stamp */
260 	SKBTX_IN_PROGRESS = 1 << 2,
261 
262 	/* device driver supports TX zero-copy buffers */
263 	SKBTX_DEV_ZEROCOPY = 1 << 3,
264 
265 	/* generate wifi status information (where possible) */
266 	SKBTX_WIFI_STATUS = 1 << 4,
267 
268 	/* This indicates at least one fragment might be overwritten
269 	 * (as in vmsplice(), sendfile() ...)
270 	 * If we need to compute a TX checksum, we'll need to copy
271 	 * all frags to avoid possible bad checksum
272 	 */
273 	SKBTX_SHARED_FRAG = 1 << 5,
274 
275 	/* generate software time stamp when entering packet scheduling */
276 	SKBTX_SCHED_TSTAMP = 1 << 6,
277 
278 	/* generate software timestamp on peer data acknowledgment */
279 	SKBTX_ACK_TSTAMP = 1 << 7,
280 };
281 
282 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
283 				 SKBTX_SCHED_TSTAMP | \
284 				 SKBTX_ACK_TSTAMP)
285 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
286 
287 /*
288  * The callback notifies userspace to release buffers when skb DMA is done in
289  * lower device, the skb last reference should be 0 when calling this.
290  * The zerocopy_success argument is true if zero copy transmit occurred,
291  * false on data copy or out of memory error caused by data copy attempt.
292  * The ctx field is used to track device context.
293  * The desc field is used to track userspace buffer index.
294  */
295 struct ubuf_info {
296 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
297 	void *ctx;
298 	unsigned long desc;
299 };
300 
301 /* This data is invariant across clones and lives at
302  * the end of the header data, ie. at skb->end.
303  */
304 struct skb_shared_info {
305 	unsigned char	nr_frags;
306 	__u8		tx_flags;
307 	unsigned short	gso_size;
308 	/* Warning: this field is not always filled in (UFO)! */
309 	unsigned short	gso_segs;
310 	unsigned short  gso_type;
311 	struct sk_buff	*frag_list;
312 	struct skb_shared_hwtstamps hwtstamps;
313 	u32		tskey;
314 	__be32          ip6_frag_id;
315 
316 	/*
317 	 * Warning : all fields before dataref are cleared in __alloc_skb()
318 	 */
319 	atomic_t	dataref;
320 
321 	/* Intermediate layers must ensure that destructor_arg
322 	 * remains valid until skb destructor */
323 	void *		destructor_arg;
324 
325 	/* must be last field, see pskb_expand_head() */
326 	skb_frag_t	frags[MAX_SKB_FRAGS];
327 };
328 
329 /* We divide dataref into two halves.  The higher 16 bits hold references
330  * to the payload part of skb->data.  The lower 16 bits hold references to
331  * the entire skb->data.  A clone of a headerless skb holds the length of
332  * the header in skb->hdr_len.
333  *
334  * All users must obey the rule that the skb->data reference count must be
335  * greater than or equal to the payload reference count.
336  *
337  * Holding a reference to the payload part means that the user does not
338  * care about modifications to the header part of skb->data.
339  */
340 #define SKB_DATAREF_SHIFT 16
341 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
342 
343 
344 enum {
345 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
346 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
347 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
348 };
349 
350 enum {
351 	SKB_GSO_TCPV4 = 1 << 0,
352 	SKB_GSO_UDP = 1 << 1,
353 
354 	/* This indicates the skb is from an untrusted source. */
355 	SKB_GSO_DODGY = 1 << 2,
356 
357 	/* This indicates the tcp segment has CWR set. */
358 	SKB_GSO_TCP_ECN = 1 << 3,
359 
360 	SKB_GSO_TCPV6 = 1 << 4,
361 
362 	SKB_GSO_FCOE = 1 << 5,
363 
364 	SKB_GSO_GRE = 1 << 6,
365 
366 	SKB_GSO_GRE_CSUM = 1 << 7,
367 
368 	SKB_GSO_IPIP = 1 << 8,
369 
370 	SKB_GSO_SIT = 1 << 9,
371 
372 	SKB_GSO_UDP_TUNNEL = 1 << 10,
373 
374 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
375 
376 	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
377 };
378 
379 #if BITS_PER_LONG > 32
380 #define NET_SKBUFF_DATA_USES_OFFSET 1
381 #endif
382 
383 #ifdef NET_SKBUFF_DATA_USES_OFFSET
384 typedef unsigned int sk_buff_data_t;
385 #else
386 typedef unsigned char *sk_buff_data_t;
387 #endif
388 
389 /**
390  * struct skb_mstamp - multi resolution time stamps
391  * @stamp_us: timestamp in us resolution
392  * @stamp_jiffies: timestamp in jiffies
393  */
394 struct skb_mstamp {
395 	union {
396 		u64		v64;
397 		struct {
398 			u32	stamp_us;
399 			u32	stamp_jiffies;
400 		};
401 	};
402 };
403 
404 /**
405  * skb_mstamp_get - get current timestamp
406  * @cl: place to store timestamps
407  */
408 static inline void skb_mstamp_get(struct skb_mstamp *cl)
409 {
410 	u64 val = local_clock();
411 
412 	do_div(val, NSEC_PER_USEC);
413 	cl->stamp_us = (u32)val;
414 	cl->stamp_jiffies = (u32)jiffies;
415 }
416 
417 /**
418  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
419  * @t1: pointer to newest sample
420  * @t0: pointer to oldest sample
421  */
422 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
423 				      const struct skb_mstamp *t0)
424 {
425 	s32 delta_us = t1->stamp_us - t0->stamp_us;
426 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
427 
428 	/* If delta_us is negative, this might be because interval is too big,
429 	 * or local_clock() drift is too big : fallback using jiffies.
430 	 */
431 	if (delta_us <= 0 ||
432 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
433 
434 		delta_us = jiffies_to_usecs(delta_jiffies);
435 
436 	return delta_us;
437 }
438 
439 
440 /**
441  *	struct sk_buff - socket buffer
442  *	@next: Next buffer in list
443  *	@prev: Previous buffer in list
444  *	@tstamp: Time we arrived/left
445  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
446  *	@sk: Socket we are owned by
447  *	@dev: Device we arrived on/are leaving by
448  *	@cb: Control buffer. Free for use by every layer. Put private vars here
449  *	@_skb_refdst: destination entry (with norefcount bit)
450  *	@sp: the security path, used for xfrm
451  *	@len: Length of actual data
452  *	@data_len: Data length
453  *	@mac_len: Length of link layer header
454  *	@hdr_len: writable header length of cloned skb
455  *	@csum: Checksum (must include start/offset pair)
456  *	@csum_start: Offset from skb->head where checksumming should start
457  *	@csum_offset: Offset from csum_start where checksum should be stored
458  *	@priority: Packet queueing priority
459  *	@ignore_df: allow local fragmentation
460  *	@cloned: Head may be cloned (check refcnt to be sure)
461  *	@ip_summed: Driver fed us an IP checksum
462  *	@nohdr: Payload reference only, must not modify header
463  *	@nfctinfo: Relationship of this skb to the connection
464  *	@pkt_type: Packet class
465  *	@fclone: skbuff clone status
466  *	@ipvs_property: skbuff is owned by ipvs
467  *	@peeked: this packet has been seen already, so stats have been
468  *		done for it, don't do them again
469  *	@nf_trace: netfilter packet trace flag
470  *	@protocol: Packet protocol from driver
471  *	@destructor: Destruct function
472  *	@nfct: Associated connection, if any
473  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
474  *	@skb_iif: ifindex of device we arrived on
475  *	@tc_index: Traffic control index
476  *	@tc_verd: traffic control verdict
477  *	@hash: the packet hash
478  *	@queue_mapping: Queue mapping for multiqueue devices
479  *	@xmit_more: More SKBs are pending for this queue
480  *	@ndisc_nodetype: router type (from link layer)
481  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
482  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
483  *		ports.
484  *	@sw_hash: indicates hash was computed in software stack
485  *	@wifi_acked_valid: wifi_acked was set
486  *	@wifi_acked: whether frame was acked on wifi or not
487  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
488   *	@napi_id: id of the NAPI struct this skb came from
489  *	@secmark: security marking
490  *	@mark: Generic packet mark
491  *	@dropcount: total number of sk_receive_queue overflows
492  *	@vlan_proto: vlan encapsulation protocol
493  *	@vlan_tci: vlan tag control information
494  *	@inner_protocol: Protocol (encapsulation)
495  *	@inner_transport_header: Inner transport layer header (encapsulation)
496  *	@inner_network_header: Network layer header (encapsulation)
497  *	@inner_mac_header: Link layer header (encapsulation)
498  *	@transport_header: Transport layer header
499  *	@network_header: Network layer header
500  *	@mac_header: Link layer header
501  *	@tail: Tail pointer
502  *	@end: End pointer
503  *	@head: Head of buffer
504  *	@data: Data head pointer
505  *	@truesize: Buffer size
506  *	@users: User count - see {datagram,tcp}.c
507  */
508 
509 struct sk_buff {
510 	union {
511 		struct {
512 			/* These two members must be first. */
513 			struct sk_buff		*next;
514 			struct sk_buff		*prev;
515 
516 			union {
517 				ktime_t		tstamp;
518 				struct skb_mstamp skb_mstamp;
519 			};
520 		};
521 		struct rb_node	rbnode; /* used in netem & tcp stack */
522 	};
523 	struct sock		*sk;
524 	struct net_device	*dev;
525 
526 	/*
527 	 * This is the control buffer. It is free to use for every
528 	 * layer. Please put your private variables there. If you
529 	 * want to keep them across layers you have to do a skb_clone()
530 	 * first. This is owned by whoever has the skb queued ATM.
531 	 */
532 	char			cb[48] __aligned(8);
533 
534 	unsigned long		_skb_refdst;
535 	void			(*destructor)(struct sk_buff *skb);
536 #ifdef CONFIG_XFRM
537 	struct	sec_path	*sp;
538 #endif
539 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
540 	struct nf_conntrack	*nfct;
541 #endif
542 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
543 	struct nf_bridge_info	*nf_bridge;
544 #endif
545 	unsigned int		len,
546 				data_len;
547 	__u16			mac_len,
548 				hdr_len;
549 
550 	/* Following fields are _not_ copied in __copy_skb_header()
551 	 * Note that queue_mapping is here mostly to fill a hole.
552 	 */
553 	kmemcheck_bitfield_begin(flags1);
554 	__u16			queue_mapping;
555 	__u8			cloned:1,
556 				nohdr:1,
557 				fclone:2,
558 				peeked:1,
559 				head_frag:1,
560 				xmit_more:1;
561 	/* one bit hole */
562 	kmemcheck_bitfield_end(flags1);
563 
564 	/* fields enclosed in headers_start/headers_end are copied
565 	 * using a single memcpy() in __copy_skb_header()
566 	 */
567 	/* private: */
568 	__u32			headers_start[0];
569 	/* public: */
570 
571 /* if you move pkt_type around you also must adapt those constants */
572 #ifdef __BIG_ENDIAN_BITFIELD
573 #define PKT_TYPE_MAX	(7 << 5)
574 #else
575 #define PKT_TYPE_MAX	7
576 #endif
577 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
578 
579 	__u8			__pkt_type_offset[0];
580 	__u8			pkt_type:3;
581 	__u8			pfmemalloc:1;
582 	__u8			ignore_df:1;
583 	__u8			nfctinfo:3;
584 
585 	__u8			nf_trace:1;
586 	__u8			ip_summed:2;
587 	__u8			ooo_okay:1;
588 	__u8			l4_hash:1;
589 	__u8			sw_hash:1;
590 	__u8			wifi_acked_valid:1;
591 	__u8			wifi_acked:1;
592 
593 	__u8			no_fcs:1;
594 	/* Indicates the inner headers are valid in the skbuff. */
595 	__u8			encapsulation:1;
596 	__u8			encap_hdr_csum:1;
597 	__u8			csum_valid:1;
598 	__u8			csum_complete_sw:1;
599 	__u8			csum_level:2;
600 	__u8			csum_bad:1;
601 
602 #ifdef CONFIG_IPV6_NDISC_NODETYPE
603 	__u8			ndisc_nodetype:2;
604 #endif
605 	__u8			ipvs_property:1;
606 	__u8			inner_protocol_type:1;
607 	__u8			remcsum_offload:1;
608 	/* 3 or 5 bit hole */
609 
610 #ifdef CONFIG_NET_SCHED
611 	__u16			tc_index;	/* traffic control index */
612 #ifdef CONFIG_NET_CLS_ACT
613 	__u16			tc_verd;	/* traffic control verdict */
614 #endif
615 #endif
616 
617 	union {
618 		__wsum		csum;
619 		struct {
620 			__u16	csum_start;
621 			__u16	csum_offset;
622 		};
623 	};
624 	__u32			priority;
625 	int			skb_iif;
626 	__u32			hash;
627 	__be16			vlan_proto;
628 	__u16			vlan_tci;
629 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
630 	union {
631 		unsigned int	napi_id;
632 		unsigned int	sender_cpu;
633 	};
634 #endif
635 #ifdef CONFIG_NETWORK_SECMARK
636 	__u32			secmark;
637 #endif
638 	union {
639 		__u32		mark;
640 		__u32		dropcount;
641 		__u32		reserved_tailroom;
642 	};
643 
644 	union {
645 		__be16		inner_protocol;
646 		__u8		inner_ipproto;
647 	};
648 
649 	__u16			inner_transport_header;
650 	__u16			inner_network_header;
651 	__u16			inner_mac_header;
652 
653 	__be16			protocol;
654 	__u16			transport_header;
655 	__u16			network_header;
656 	__u16			mac_header;
657 
658 	/* private: */
659 	__u32			headers_end[0];
660 	/* public: */
661 
662 	/* These elements must be at the end, see alloc_skb() for details.  */
663 	sk_buff_data_t		tail;
664 	sk_buff_data_t		end;
665 	unsigned char		*head,
666 				*data;
667 	unsigned int		truesize;
668 	atomic_t		users;
669 };
670 
671 #ifdef __KERNEL__
672 /*
673  *	Handling routines are only of interest to the kernel
674  */
675 #include <linux/slab.h>
676 
677 
678 #define SKB_ALLOC_FCLONE	0x01
679 #define SKB_ALLOC_RX		0x02
680 #define SKB_ALLOC_NAPI		0x04
681 
682 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
683 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
684 {
685 	return unlikely(skb->pfmemalloc);
686 }
687 
688 /*
689  * skb might have a dst pointer attached, refcounted or not.
690  * _skb_refdst low order bit is set if refcount was _not_ taken
691  */
692 #define SKB_DST_NOREF	1UL
693 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
694 
695 /**
696  * skb_dst - returns skb dst_entry
697  * @skb: buffer
698  *
699  * Returns skb dst_entry, regardless of reference taken or not.
700  */
701 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
702 {
703 	/* If refdst was not refcounted, check we still are in a
704 	 * rcu_read_lock section
705 	 */
706 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
707 		!rcu_read_lock_held() &&
708 		!rcu_read_lock_bh_held());
709 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
710 }
711 
712 /**
713  * skb_dst_set - sets skb dst
714  * @skb: buffer
715  * @dst: dst entry
716  *
717  * Sets skb dst, assuming a reference was taken on dst and should
718  * be released by skb_dst_drop()
719  */
720 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
721 {
722 	skb->_skb_refdst = (unsigned long)dst;
723 }
724 
725 /**
726  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
727  * @skb: buffer
728  * @dst: dst entry
729  *
730  * Sets skb dst, assuming a reference was not taken on dst.
731  * If dst entry is cached, we do not take reference and dst_release
732  * will be avoided by refdst_drop. If dst entry is not cached, we take
733  * reference, so that last dst_release can destroy the dst immediately.
734  */
735 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
736 {
737 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
738 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
739 }
740 
741 /**
742  * skb_dst_is_noref - Test if skb dst isn't refcounted
743  * @skb: buffer
744  */
745 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
746 {
747 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
748 }
749 
750 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
751 {
752 	return (struct rtable *)skb_dst(skb);
753 }
754 
755 void kfree_skb(struct sk_buff *skb);
756 void kfree_skb_list(struct sk_buff *segs);
757 void skb_tx_error(struct sk_buff *skb);
758 void consume_skb(struct sk_buff *skb);
759 void  __kfree_skb(struct sk_buff *skb);
760 extern struct kmem_cache *skbuff_head_cache;
761 
762 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
763 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
764 		      bool *fragstolen, int *delta_truesize);
765 
766 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
767 			    int node);
768 struct sk_buff *build_skb(void *data, unsigned int frag_size);
769 static inline struct sk_buff *alloc_skb(unsigned int size,
770 					gfp_t priority)
771 {
772 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
773 }
774 
775 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
776 				     unsigned long data_len,
777 				     int max_page_order,
778 				     int *errcode,
779 				     gfp_t gfp_mask);
780 
781 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
782 struct sk_buff_fclones {
783 	struct sk_buff	skb1;
784 
785 	struct sk_buff	skb2;
786 
787 	atomic_t	fclone_ref;
788 };
789 
790 /**
791  *	skb_fclone_busy - check if fclone is busy
792  *	@skb: buffer
793  *
794  * Returns true is skb is a fast clone, and its clone is not freed.
795  * Some drivers call skb_orphan() in their ndo_start_xmit(),
796  * so we also check that this didnt happen.
797  */
798 static inline bool skb_fclone_busy(const struct sock *sk,
799 				   const struct sk_buff *skb)
800 {
801 	const struct sk_buff_fclones *fclones;
802 
803 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
804 
805 	return skb->fclone == SKB_FCLONE_ORIG &&
806 	       atomic_read(&fclones->fclone_ref) > 1 &&
807 	       fclones->skb2.sk == sk;
808 }
809 
810 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
811 					       gfp_t priority)
812 {
813 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
814 }
815 
816 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
817 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
818 {
819 	return __alloc_skb_head(priority, -1);
820 }
821 
822 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
823 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
824 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
825 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
826 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
827 				   gfp_t gfp_mask, bool fclone);
828 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
829 					  gfp_t gfp_mask)
830 {
831 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
832 }
833 
834 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
835 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
836 				     unsigned int headroom);
837 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
838 				int newtailroom, gfp_t priority);
839 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
840 			int offset, int len);
841 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
842 		 int len);
843 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
844 int skb_pad(struct sk_buff *skb, int pad);
845 #define dev_kfree_skb(a)	consume_skb(a)
846 
847 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
848 			    int getfrag(void *from, char *to, int offset,
849 					int len, int odd, struct sk_buff *skb),
850 			    void *from, int length);
851 
852 struct skb_seq_state {
853 	__u32		lower_offset;
854 	__u32		upper_offset;
855 	__u32		frag_idx;
856 	__u32		stepped_offset;
857 	struct sk_buff	*root_skb;
858 	struct sk_buff	*cur_skb;
859 	__u8		*frag_data;
860 };
861 
862 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
863 			  unsigned int to, struct skb_seq_state *st);
864 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
865 			  struct skb_seq_state *st);
866 void skb_abort_seq_read(struct skb_seq_state *st);
867 
868 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
869 			   unsigned int to, struct ts_config *config,
870 			   struct ts_state *state);
871 
872 /*
873  * Packet hash types specify the type of hash in skb_set_hash.
874  *
875  * Hash types refer to the protocol layer addresses which are used to
876  * construct a packet's hash. The hashes are used to differentiate or identify
877  * flows of the protocol layer for the hash type. Hash types are either
878  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
879  *
880  * Properties of hashes:
881  *
882  * 1) Two packets in different flows have different hash values
883  * 2) Two packets in the same flow should have the same hash value
884  *
885  * A hash at a higher layer is considered to be more specific. A driver should
886  * set the most specific hash possible.
887  *
888  * A driver cannot indicate a more specific hash than the layer at which a hash
889  * was computed. For instance an L3 hash cannot be set as an L4 hash.
890  *
891  * A driver may indicate a hash level which is less specific than the
892  * actual layer the hash was computed on. For instance, a hash computed
893  * at L4 may be considered an L3 hash. This should only be done if the
894  * driver can't unambiguously determine that the HW computed the hash at
895  * the higher layer. Note that the "should" in the second property above
896  * permits this.
897  */
898 enum pkt_hash_types {
899 	PKT_HASH_TYPE_NONE,	/* Undefined type */
900 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
901 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
902 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
903 };
904 
905 static inline void
906 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
907 {
908 	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
909 	skb->sw_hash = 0;
910 	skb->hash = hash;
911 }
912 
913 void __skb_get_hash(struct sk_buff *skb);
914 static inline __u32 skb_get_hash(struct sk_buff *skb)
915 {
916 	if (!skb->l4_hash && !skb->sw_hash)
917 		__skb_get_hash(skb);
918 
919 	return skb->hash;
920 }
921 
922 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
923 {
924 	return skb->hash;
925 }
926 
927 static inline void skb_clear_hash(struct sk_buff *skb)
928 {
929 	skb->hash = 0;
930 	skb->sw_hash = 0;
931 	skb->l4_hash = 0;
932 }
933 
934 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
935 {
936 	if (!skb->l4_hash)
937 		skb_clear_hash(skb);
938 }
939 
940 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
941 {
942 	to->hash = from->hash;
943 	to->sw_hash = from->sw_hash;
944 	to->l4_hash = from->l4_hash;
945 };
946 
947 #ifdef NET_SKBUFF_DATA_USES_OFFSET
948 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
949 {
950 	return skb->head + skb->end;
951 }
952 
953 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
954 {
955 	return skb->end;
956 }
957 #else
958 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
959 {
960 	return skb->end;
961 }
962 
963 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
964 {
965 	return skb->end - skb->head;
966 }
967 #endif
968 
969 /* Internal */
970 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
971 
972 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
973 {
974 	return &skb_shinfo(skb)->hwtstamps;
975 }
976 
977 /**
978  *	skb_queue_empty - check if a queue is empty
979  *	@list: queue head
980  *
981  *	Returns true if the queue is empty, false otherwise.
982  */
983 static inline int skb_queue_empty(const struct sk_buff_head *list)
984 {
985 	return list->next == (const struct sk_buff *) list;
986 }
987 
988 /**
989  *	skb_queue_is_last - check if skb is the last entry in the queue
990  *	@list: queue head
991  *	@skb: buffer
992  *
993  *	Returns true if @skb is the last buffer on the list.
994  */
995 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
996 				     const struct sk_buff *skb)
997 {
998 	return skb->next == (const struct sk_buff *) list;
999 }
1000 
1001 /**
1002  *	skb_queue_is_first - check if skb is the first entry in the queue
1003  *	@list: queue head
1004  *	@skb: buffer
1005  *
1006  *	Returns true if @skb is the first buffer on the list.
1007  */
1008 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1009 				      const struct sk_buff *skb)
1010 {
1011 	return skb->prev == (const struct sk_buff *) list;
1012 }
1013 
1014 /**
1015  *	skb_queue_next - return the next packet in the queue
1016  *	@list: queue head
1017  *	@skb: current buffer
1018  *
1019  *	Return the next packet in @list after @skb.  It is only valid to
1020  *	call this if skb_queue_is_last() evaluates to false.
1021  */
1022 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1023 					     const struct sk_buff *skb)
1024 {
1025 	/* This BUG_ON may seem severe, but if we just return then we
1026 	 * are going to dereference garbage.
1027 	 */
1028 	BUG_ON(skb_queue_is_last(list, skb));
1029 	return skb->next;
1030 }
1031 
1032 /**
1033  *	skb_queue_prev - return the prev packet in the queue
1034  *	@list: queue head
1035  *	@skb: current buffer
1036  *
1037  *	Return the prev packet in @list before @skb.  It is only valid to
1038  *	call this if skb_queue_is_first() evaluates to false.
1039  */
1040 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1041 					     const struct sk_buff *skb)
1042 {
1043 	/* This BUG_ON may seem severe, but if we just return then we
1044 	 * are going to dereference garbage.
1045 	 */
1046 	BUG_ON(skb_queue_is_first(list, skb));
1047 	return skb->prev;
1048 }
1049 
1050 /**
1051  *	skb_get - reference buffer
1052  *	@skb: buffer to reference
1053  *
1054  *	Makes another reference to a socket buffer and returns a pointer
1055  *	to the buffer.
1056  */
1057 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1058 {
1059 	atomic_inc(&skb->users);
1060 	return skb;
1061 }
1062 
1063 /*
1064  * If users == 1, we are the only owner and are can avoid redundant
1065  * atomic change.
1066  */
1067 
1068 /**
1069  *	skb_cloned - is the buffer a clone
1070  *	@skb: buffer to check
1071  *
1072  *	Returns true if the buffer was generated with skb_clone() and is
1073  *	one of multiple shared copies of the buffer. Cloned buffers are
1074  *	shared data so must not be written to under normal circumstances.
1075  */
1076 static inline int skb_cloned(const struct sk_buff *skb)
1077 {
1078 	return skb->cloned &&
1079 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1080 }
1081 
1082 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1083 {
1084 	might_sleep_if(pri & __GFP_WAIT);
1085 
1086 	if (skb_cloned(skb))
1087 		return pskb_expand_head(skb, 0, 0, pri);
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  *	skb_header_cloned - is the header a clone
1094  *	@skb: buffer to check
1095  *
1096  *	Returns true if modifying the header part of the buffer requires
1097  *	the data to be copied.
1098  */
1099 static inline int skb_header_cloned(const struct sk_buff *skb)
1100 {
1101 	int dataref;
1102 
1103 	if (!skb->cloned)
1104 		return 0;
1105 
1106 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1107 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1108 	return dataref != 1;
1109 }
1110 
1111 /**
1112  *	skb_header_release - release reference to header
1113  *	@skb: buffer to operate on
1114  *
1115  *	Drop a reference to the header part of the buffer.  This is done
1116  *	by acquiring a payload reference.  You must not read from the header
1117  *	part of skb->data after this.
1118  *	Note : Check if you can use __skb_header_release() instead.
1119  */
1120 static inline void skb_header_release(struct sk_buff *skb)
1121 {
1122 	BUG_ON(skb->nohdr);
1123 	skb->nohdr = 1;
1124 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1125 }
1126 
1127 /**
1128  *	__skb_header_release - release reference to header
1129  *	@skb: buffer to operate on
1130  *
1131  *	Variant of skb_header_release() assuming skb is private to caller.
1132  *	We can avoid one atomic operation.
1133  */
1134 static inline void __skb_header_release(struct sk_buff *skb)
1135 {
1136 	skb->nohdr = 1;
1137 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1138 }
1139 
1140 
1141 /**
1142  *	skb_shared - is the buffer shared
1143  *	@skb: buffer to check
1144  *
1145  *	Returns true if more than one person has a reference to this
1146  *	buffer.
1147  */
1148 static inline int skb_shared(const struct sk_buff *skb)
1149 {
1150 	return atomic_read(&skb->users) != 1;
1151 }
1152 
1153 /**
1154  *	skb_share_check - check if buffer is shared and if so clone it
1155  *	@skb: buffer to check
1156  *	@pri: priority for memory allocation
1157  *
1158  *	If the buffer is shared the buffer is cloned and the old copy
1159  *	drops a reference. A new clone with a single reference is returned.
1160  *	If the buffer is not shared the original buffer is returned. When
1161  *	being called from interrupt status or with spinlocks held pri must
1162  *	be GFP_ATOMIC.
1163  *
1164  *	NULL is returned on a memory allocation failure.
1165  */
1166 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1167 {
1168 	might_sleep_if(pri & __GFP_WAIT);
1169 	if (skb_shared(skb)) {
1170 		struct sk_buff *nskb = skb_clone(skb, pri);
1171 
1172 		if (likely(nskb))
1173 			consume_skb(skb);
1174 		else
1175 			kfree_skb(skb);
1176 		skb = nskb;
1177 	}
1178 	return skb;
1179 }
1180 
1181 /*
1182  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1183  *	packets to handle cases where we have a local reader and forward
1184  *	and a couple of other messy ones. The normal one is tcpdumping
1185  *	a packet thats being forwarded.
1186  */
1187 
1188 /**
1189  *	skb_unshare - make a copy of a shared buffer
1190  *	@skb: buffer to check
1191  *	@pri: priority for memory allocation
1192  *
1193  *	If the socket buffer is a clone then this function creates a new
1194  *	copy of the data, drops a reference count on the old copy and returns
1195  *	the new copy with the reference count at 1. If the buffer is not a clone
1196  *	the original buffer is returned. When called with a spinlock held or
1197  *	from interrupt state @pri must be %GFP_ATOMIC
1198  *
1199  *	%NULL is returned on a memory allocation failure.
1200  */
1201 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1202 					  gfp_t pri)
1203 {
1204 	might_sleep_if(pri & __GFP_WAIT);
1205 	if (skb_cloned(skb)) {
1206 		struct sk_buff *nskb = skb_copy(skb, pri);
1207 
1208 		/* Free our shared copy */
1209 		if (likely(nskb))
1210 			consume_skb(skb);
1211 		else
1212 			kfree_skb(skb);
1213 		skb = nskb;
1214 	}
1215 	return skb;
1216 }
1217 
1218 /**
1219  *	skb_peek - peek at the head of an &sk_buff_head
1220  *	@list_: list to peek at
1221  *
1222  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1223  *	be careful with this one. A peek leaves the buffer on the
1224  *	list and someone else may run off with it. You must hold
1225  *	the appropriate locks or have a private queue to do this.
1226  *
1227  *	Returns %NULL for an empty list or a pointer to the head element.
1228  *	The reference count is not incremented and the reference is therefore
1229  *	volatile. Use with caution.
1230  */
1231 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1232 {
1233 	struct sk_buff *skb = list_->next;
1234 
1235 	if (skb == (struct sk_buff *)list_)
1236 		skb = NULL;
1237 	return skb;
1238 }
1239 
1240 /**
1241  *	skb_peek_next - peek skb following the given one from a queue
1242  *	@skb: skb to start from
1243  *	@list_: list to peek at
1244  *
1245  *	Returns %NULL when the end of the list is met or a pointer to the
1246  *	next element. The reference count is not incremented and the
1247  *	reference is therefore volatile. Use with caution.
1248  */
1249 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1250 		const struct sk_buff_head *list_)
1251 {
1252 	struct sk_buff *next = skb->next;
1253 
1254 	if (next == (struct sk_buff *)list_)
1255 		next = NULL;
1256 	return next;
1257 }
1258 
1259 /**
1260  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1261  *	@list_: list to peek at
1262  *
1263  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1264  *	be careful with this one. A peek leaves the buffer on the
1265  *	list and someone else may run off with it. You must hold
1266  *	the appropriate locks or have a private queue to do this.
1267  *
1268  *	Returns %NULL for an empty list or a pointer to the tail element.
1269  *	The reference count is not incremented and the reference is therefore
1270  *	volatile. Use with caution.
1271  */
1272 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1273 {
1274 	struct sk_buff *skb = list_->prev;
1275 
1276 	if (skb == (struct sk_buff *)list_)
1277 		skb = NULL;
1278 	return skb;
1279 
1280 }
1281 
1282 /**
1283  *	skb_queue_len	- get queue length
1284  *	@list_: list to measure
1285  *
1286  *	Return the length of an &sk_buff queue.
1287  */
1288 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1289 {
1290 	return list_->qlen;
1291 }
1292 
1293 /**
1294  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1295  *	@list: queue to initialize
1296  *
1297  *	This initializes only the list and queue length aspects of
1298  *	an sk_buff_head object.  This allows to initialize the list
1299  *	aspects of an sk_buff_head without reinitializing things like
1300  *	the spinlock.  It can also be used for on-stack sk_buff_head
1301  *	objects where the spinlock is known to not be used.
1302  */
1303 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1304 {
1305 	list->prev = list->next = (struct sk_buff *)list;
1306 	list->qlen = 0;
1307 }
1308 
1309 /*
1310  * This function creates a split out lock class for each invocation;
1311  * this is needed for now since a whole lot of users of the skb-queue
1312  * infrastructure in drivers have different locking usage (in hardirq)
1313  * than the networking core (in softirq only). In the long run either the
1314  * network layer or drivers should need annotation to consolidate the
1315  * main types of usage into 3 classes.
1316  */
1317 static inline void skb_queue_head_init(struct sk_buff_head *list)
1318 {
1319 	spin_lock_init(&list->lock);
1320 	__skb_queue_head_init(list);
1321 }
1322 
1323 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1324 		struct lock_class_key *class)
1325 {
1326 	skb_queue_head_init(list);
1327 	lockdep_set_class(&list->lock, class);
1328 }
1329 
1330 /*
1331  *	Insert an sk_buff on a list.
1332  *
1333  *	The "__skb_xxxx()" functions are the non-atomic ones that
1334  *	can only be called with interrupts disabled.
1335  */
1336 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1337 		struct sk_buff_head *list);
1338 static inline void __skb_insert(struct sk_buff *newsk,
1339 				struct sk_buff *prev, struct sk_buff *next,
1340 				struct sk_buff_head *list)
1341 {
1342 	newsk->next = next;
1343 	newsk->prev = prev;
1344 	next->prev  = prev->next = newsk;
1345 	list->qlen++;
1346 }
1347 
1348 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1349 				      struct sk_buff *prev,
1350 				      struct sk_buff *next)
1351 {
1352 	struct sk_buff *first = list->next;
1353 	struct sk_buff *last = list->prev;
1354 
1355 	first->prev = prev;
1356 	prev->next = first;
1357 
1358 	last->next = next;
1359 	next->prev = last;
1360 }
1361 
1362 /**
1363  *	skb_queue_splice - join two skb lists, this is designed for stacks
1364  *	@list: the new list to add
1365  *	@head: the place to add it in the first list
1366  */
1367 static inline void skb_queue_splice(const struct sk_buff_head *list,
1368 				    struct sk_buff_head *head)
1369 {
1370 	if (!skb_queue_empty(list)) {
1371 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1372 		head->qlen += list->qlen;
1373 	}
1374 }
1375 
1376 /**
1377  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1378  *	@list: the new list to add
1379  *	@head: the place to add it in the first list
1380  *
1381  *	The list at @list is reinitialised
1382  */
1383 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1384 					 struct sk_buff_head *head)
1385 {
1386 	if (!skb_queue_empty(list)) {
1387 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1388 		head->qlen += list->qlen;
1389 		__skb_queue_head_init(list);
1390 	}
1391 }
1392 
1393 /**
1394  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1395  *	@list: the new list to add
1396  *	@head: the place to add it in the first list
1397  */
1398 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1399 					 struct sk_buff_head *head)
1400 {
1401 	if (!skb_queue_empty(list)) {
1402 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1403 		head->qlen += list->qlen;
1404 	}
1405 }
1406 
1407 /**
1408  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1409  *	@list: the new list to add
1410  *	@head: the place to add it in the first list
1411  *
1412  *	Each of the lists is a queue.
1413  *	The list at @list is reinitialised
1414  */
1415 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1416 					      struct sk_buff_head *head)
1417 {
1418 	if (!skb_queue_empty(list)) {
1419 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1420 		head->qlen += list->qlen;
1421 		__skb_queue_head_init(list);
1422 	}
1423 }
1424 
1425 /**
1426  *	__skb_queue_after - queue a buffer at the list head
1427  *	@list: list to use
1428  *	@prev: place after this buffer
1429  *	@newsk: buffer to queue
1430  *
1431  *	Queue a buffer int the middle of a list. This function takes no locks
1432  *	and you must therefore hold required locks before calling it.
1433  *
1434  *	A buffer cannot be placed on two lists at the same time.
1435  */
1436 static inline void __skb_queue_after(struct sk_buff_head *list,
1437 				     struct sk_buff *prev,
1438 				     struct sk_buff *newsk)
1439 {
1440 	__skb_insert(newsk, prev, prev->next, list);
1441 }
1442 
1443 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1444 		struct sk_buff_head *list);
1445 
1446 static inline void __skb_queue_before(struct sk_buff_head *list,
1447 				      struct sk_buff *next,
1448 				      struct sk_buff *newsk)
1449 {
1450 	__skb_insert(newsk, next->prev, next, list);
1451 }
1452 
1453 /**
1454  *	__skb_queue_head - queue a buffer at the list head
1455  *	@list: list to use
1456  *	@newsk: buffer to queue
1457  *
1458  *	Queue a buffer at the start of a list. This function takes no locks
1459  *	and you must therefore hold required locks before calling it.
1460  *
1461  *	A buffer cannot be placed on two lists at the same time.
1462  */
1463 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1464 static inline void __skb_queue_head(struct sk_buff_head *list,
1465 				    struct sk_buff *newsk)
1466 {
1467 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1468 }
1469 
1470 /**
1471  *	__skb_queue_tail - queue a buffer at the list tail
1472  *	@list: list to use
1473  *	@newsk: buffer to queue
1474  *
1475  *	Queue a buffer at the end of a list. This function takes no locks
1476  *	and you must therefore hold required locks before calling it.
1477  *
1478  *	A buffer cannot be placed on two lists at the same time.
1479  */
1480 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1481 static inline void __skb_queue_tail(struct sk_buff_head *list,
1482 				   struct sk_buff *newsk)
1483 {
1484 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1485 }
1486 
1487 /*
1488  * remove sk_buff from list. _Must_ be called atomically, and with
1489  * the list known..
1490  */
1491 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1492 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1493 {
1494 	struct sk_buff *next, *prev;
1495 
1496 	list->qlen--;
1497 	next	   = skb->next;
1498 	prev	   = skb->prev;
1499 	skb->next  = skb->prev = NULL;
1500 	next->prev = prev;
1501 	prev->next = next;
1502 }
1503 
1504 /**
1505  *	__skb_dequeue - remove from the head of the queue
1506  *	@list: list to dequeue from
1507  *
1508  *	Remove the head of the list. This function does not take any locks
1509  *	so must be used with appropriate locks held only. The head item is
1510  *	returned or %NULL if the list is empty.
1511  */
1512 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1513 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1514 {
1515 	struct sk_buff *skb = skb_peek(list);
1516 	if (skb)
1517 		__skb_unlink(skb, list);
1518 	return skb;
1519 }
1520 
1521 /**
1522  *	__skb_dequeue_tail - remove from the tail of the queue
1523  *	@list: list to dequeue from
1524  *
1525  *	Remove the tail of the list. This function does not take any locks
1526  *	so must be used with appropriate locks held only. The tail item is
1527  *	returned or %NULL if the list is empty.
1528  */
1529 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1530 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1531 {
1532 	struct sk_buff *skb = skb_peek_tail(list);
1533 	if (skb)
1534 		__skb_unlink(skb, list);
1535 	return skb;
1536 }
1537 
1538 
1539 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1540 {
1541 	return skb->data_len;
1542 }
1543 
1544 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1545 {
1546 	return skb->len - skb->data_len;
1547 }
1548 
1549 static inline int skb_pagelen(const struct sk_buff *skb)
1550 {
1551 	int i, len = 0;
1552 
1553 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1554 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1555 	return len + skb_headlen(skb);
1556 }
1557 
1558 /**
1559  * __skb_fill_page_desc - initialise a paged fragment in an skb
1560  * @skb: buffer containing fragment to be initialised
1561  * @i: paged fragment index to initialise
1562  * @page: the page to use for this fragment
1563  * @off: the offset to the data with @page
1564  * @size: the length of the data
1565  *
1566  * Initialises the @i'th fragment of @skb to point to &size bytes at
1567  * offset @off within @page.
1568  *
1569  * Does not take any additional reference on the fragment.
1570  */
1571 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1572 					struct page *page, int off, int size)
1573 {
1574 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1575 
1576 	/*
1577 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1578 	 * that not all callers have unique ownership of the page. If
1579 	 * pfmemalloc is set, we check the mapping as a mapping implies
1580 	 * page->index is set (index and pfmemalloc share space).
1581 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1582 	 * do not lose pfmemalloc information as the pages would not be
1583 	 * allocated using __GFP_MEMALLOC.
1584 	 */
1585 	frag->page.p		  = page;
1586 	frag->page_offset	  = off;
1587 	skb_frag_size_set(frag, size);
1588 
1589 	page = compound_head(page);
1590 	if (page->pfmemalloc && !page->mapping)
1591 		skb->pfmemalloc	= true;
1592 }
1593 
1594 /**
1595  * skb_fill_page_desc - initialise a paged fragment in an skb
1596  * @skb: buffer containing fragment to be initialised
1597  * @i: paged fragment index to initialise
1598  * @page: the page to use for this fragment
1599  * @off: the offset to the data with @page
1600  * @size: the length of the data
1601  *
1602  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1603  * @skb to point to @size bytes at offset @off within @page. In
1604  * addition updates @skb such that @i is the last fragment.
1605  *
1606  * Does not take any additional reference on the fragment.
1607  */
1608 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1609 				      struct page *page, int off, int size)
1610 {
1611 	__skb_fill_page_desc(skb, i, page, off, size);
1612 	skb_shinfo(skb)->nr_frags = i + 1;
1613 }
1614 
1615 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1616 		     int size, unsigned int truesize);
1617 
1618 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1619 			  unsigned int truesize);
1620 
1621 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1622 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1623 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1624 
1625 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1626 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1627 {
1628 	return skb->head + skb->tail;
1629 }
1630 
1631 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1632 {
1633 	skb->tail = skb->data - skb->head;
1634 }
1635 
1636 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1637 {
1638 	skb_reset_tail_pointer(skb);
1639 	skb->tail += offset;
1640 }
1641 
1642 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1643 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1644 {
1645 	return skb->tail;
1646 }
1647 
1648 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1649 {
1650 	skb->tail = skb->data;
1651 }
1652 
1653 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1654 {
1655 	skb->tail = skb->data + offset;
1656 }
1657 
1658 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1659 
1660 /*
1661  *	Add data to an sk_buff
1662  */
1663 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1664 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1665 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1666 {
1667 	unsigned char *tmp = skb_tail_pointer(skb);
1668 	SKB_LINEAR_ASSERT(skb);
1669 	skb->tail += len;
1670 	skb->len  += len;
1671 	return tmp;
1672 }
1673 
1674 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1675 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1676 {
1677 	skb->data -= len;
1678 	skb->len  += len;
1679 	return skb->data;
1680 }
1681 
1682 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1683 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1684 {
1685 	skb->len -= len;
1686 	BUG_ON(skb->len < skb->data_len);
1687 	return skb->data += len;
1688 }
1689 
1690 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1691 {
1692 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1693 }
1694 
1695 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1696 
1697 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1698 {
1699 	if (len > skb_headlen(skb) &&
1700 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1701 		return NULL;
1702 	skb->len -= len;
1703 	return skb->data += len;
1704 }
1705 
1706 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1707 {
1708 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1709 }
1710 
1711 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1712 {
1713 	if (likely(len <= skb_headlen(skb)))
1714 		return 1;
1715 	if (unlikely(len > skb->len))
1716 		return 0;
1717 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1718 }
1719 
1720 /**
1721  *	skb_headroom - bytes at buffer head
1722  *	@skb: buffer to check
1723  *
1724  *	Return the number of bytes of free space at the head of an &sk_buff.
1725  */
1726 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1727 {
1728 	return skb->data - skb->head;
1729 }
1730 
1731 /**
1732  *	skb_tailroom - bytes at buffer end
1733  *	@skb: buffer to check
1734  *
1735  *	Return the number of bytes of free space at the tail of an sk_buff
1736  */
1737 static inline int skb_tailroom(const struct sk_buff *skb)
1738 {
1739 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1740 }
1741 
1742 /**
1743  *	skb_availroom - bytes at buffer end
1744  *	@skb: buffer to check
1745  *
1746  *	Return the number of bytes of free space at the tail of an sk_buff
1747  *	allocated by sk_stream_alloc()
1748  */
1749 static inline int skb_availroom(const struct sk_buff *skb)
1750 {
1751 	if (skb_is_nonlinear(skb))
1752 		return 0;
1753 
1754 	return skb->end - skb->tail - skb->reserved_tailroom;
1755 }
1756 
1757 /**
1758  *	skb_reserve - adjust headroom
1759  *	@skb: buffer to alter
1760  *	@len: bytes to move
1761  *
1762  *	Increase the headroom of an empty &sk_buff by reducing the tail
1763  *	room. This is only allowed for an empty buffer.
1764  */
1765 static inline void skb_reserve(struct sk_buff *skb, int len)
1766 {
1767 	skb->data += len;
1768 	skb->tail += len;
1769 }
1770 
1771 #define ENCAP_TYPE_ETHER	0
1772 #define ENCAP_TYPE_IPPROTO	1
1773 
1774 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1775 					  __be16 protocol)
1776 {
1777 	skb->inner_protocol = protocol;
1778 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1779 }
1780 
1781 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1782 					 __u8 ipproto)
1783 {
1784 	skb->inner_ipproto = ipproto;
1785 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1786 }
1787 
1788 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1789 {
1790 	skb->inner_mac_header = skb->mac_header;
1791 	skb->inner_network_header = skb->network_header;
1792 	skb->inner_transport_header = skb->transport_header;
1793 }
1794 
1795 static inline void skb_reset_mac_len(struct sk_buff *skb)
1796 {
1797 	skb->mac_len = skb->network_header - skb->mac_header;
1798 }
1799 
1800 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1801 							*skb)
1802 {
1803 	return skb->head + skb->inner_transport_header;
1804 }
1805 
1806 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1807 {
1808 	skb->inner_transport_header = skb->data - skb->head;
1809 }
1810 
1811 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1812 						   const int offset)
1813 {
1814 	skb_reset_inner_transport_header(skb);
1815 	skb->inner_transport_header += offset;
1816 }
1817 
1818 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1819 {
1820 	return skb->head + skb->inner_network_header;
1821 }
1822 
1823 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1824 {
1825 	skb->inner_network_header = skb->data - skb->head;
1826 }
1827 
1828 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1829 						const int offset)
1830 {
1831 	skb_reset_inner_network_header(skb);
1832 	skb->inner_network_header += offset;
1833 }
1834 
1835 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1836 {
1837 	return skb->head + skb->inner_mac_header;
1838 }
1839 
1840 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1841 {
1842 	skb->inner_mac_header = skb->data - skb->head;
1843 }
1844 
1845 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1846 					    const int offset)
1847 {
1848 	skb_reset_inner_mac_header(skb);
1849 	skb->inner_mac_header += offset;
1850 }
1851 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1852 {
1853 	return skb->transport_header != (typeof(skb->transport_header))~0U;
1854 }
1855 
1856 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1857 {
1858 	return skb->head + skb->transport_header;
1859 }
1860 
1861 static inline void skb_reset_transport_header(struct sk_buff *skb)
1862 {
1863 	skb->transport_header = skb->data - skb->head;
1864 }
1865 
1866 static inline void skb_set_transport_header(struct sk_buff *skb,
1867 					    const int offset)
1868 {
1869 	skb_reset_transport_header(skb);
1870 	skb->transport_header += offset;
1871 }
1872 
1873 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1874 {
1875 	return skb->head + skb->network_header;
1876 }
1877 
1878 static inline void skb_reset_network_header(struct sk_buff *skb)
1879 {
1880 	skb->network_header = skb->data - skb->head;
1881 }
1882 
1883 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1884 {
1885 	skb_reset_network_header(skb);
1886 	skb->network_header += offset;
1887 }
1888 
1889 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1890 {
1891 	return skb->head + skb->mac_header;
1892 }
1893 
1894 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1895 {
1896 	return skb->mac_header != (typeof(skb->mac_header))~0U;
1897 }
1898 
1899 static inline void skb_reset_mac_header(struct sk_buff *skb)
1900 {
1901 	skb->mac_header = skb->data - skb->head;
1902 }
1903 
1904 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1905 {
1906 	skb_reset_mac_header(skb);
1907 	skb->mac_header += offset;
1908 }
1909 
1910 static inline void skb_pop_mac_header(struct sk_buff *skb)
1911 {
1912 	skb->mac_header = skb->network_header;
1913 }
1914 
1915 static inline void skb_probe_transport_header(struct sk_buff *skb,
1916 					      const int offset_hint)
1917 {
1918 	struct flow_keys keys;
1919 
1920 	if (skb_transport_header_was_set(skb))
1921 		return;
1922 	else if (skb_flow_dissect(skb, &keys))
1923 		skb_set_transport_header(skb, keys.thoff);
1924 	else
1925 		skb_set_transport_header(skb, offset_hint);
1926 }
1927 
1928 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1929 {
1930 	if (skb_mac_header_was_set(skb)) {
1931 		const unsigned char *old_mac = skb_mac_header(skb);
1932 
1933 		skb_set_mac_header(skb, -skb->mac_len);
1934 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1935 	}
1936 }
1937 
1938 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1939 {
1940 	return skb->csum_start - skb_headroom(skb);
1941 }
1942 
1943 static inline int skb_transport_offset(const struct sk_buff *skb)
1944 {
1945 	return skb_transport_header(skb) - skb->data;
1946 }
1947 
1948 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1949 {
1950 	return skb->transport_header - skb->network_header;
1951 }
1952 
1953 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1954 {
1955 	return skb->inner_transport_header - skb->inner_network_header;
1956 }
1957 
1958 static inline int skb_network_offset(const struct sk_buff *skb)
1959 {
1960 	return skb_network_header(skb) - skb->data;
1961 }
1962 
1963 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1964 {
1965 	return skb_inner_network_header(skb) - skb->data;
1966 }
1967 
1968 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1969 {
1970 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1971 }
1972 
1973 /*
1974  * CPUs often take a performance hit when accessing unaligned memory
1975  * locations. The actual performance hit varies, it can be small if the
1976  * hardware handles it or large if we have to take an exception and fix it
1977  * in software.
1978  *
1979  * Since an ethernet header is 14 bytes network drivers often end up with
1980  * the IP header at an unaligned offset. The IP header can be aligned by
1981  * shifting the start of the packet by 2 bytes. Drivers should do this
1982  * with:
1983  *
1984  * skb_reserve(skb, NET_IP_ALIGN);
1985  *
1986  * The downside to this alignment of the IP header is that the DMA is now
1987  * unaligned. On some architectures the cost of an unaligned DMA is high
1988  * and this cost outweighs the gains made by aligning the IP header.
1989  *
1990  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1991  * to be overridden.
1992  */
1993 #ifndef NET_IP_ALIGN
1994 #define NET_IP_ALIGN	2
1995 #endif
1996 
1997 /*
1998  * The networking layer reserves some headroom in skb data (via
1999  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2000  * the header has to grow. In the default case, if the header has to grow
2001  * 32 bytes or less we avoid the reallocation.
2002  *
2003  * Unfortunately this headroom changes the DMA alignment of the resulting
2004  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2005  * on some architectures. An architecture can override this value,
2006  * perhaps setting it to a cacheline in size (since that will maintain
2007  * cacheline alignment of the DMA). It must be a power of 2.
2008  *
2009  * Various parts of the networking layer expect at least 32 bytes of
2010  * headroom, you should not reduce this.
2011  *
2012  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2013  * to reduce average number of cache lines per packet.
2014  * get_rps_cpus() for example only access one 64 bytes aligned block :
2015  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2016  */
2017 #ifndef NET_SKB_PAD
2018 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2019 #endif
2020 
2021 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2022 
2023 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2024 {
2025 	if (unlikely(skb_is_nonlinear(skb))) {
2026 		WARN_ON(1);
2027 		return;
2028 	}
2029 	skb->len = len;
2030 	skb_set_tail_pointer(skb, len);
2031 }
2032 
2033 void skb_trim(struct sk_buff *skb, unsigned int len);
2034 
2035 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2036 {
2037 	if (skb->data_len)
2038 		return ___pskb_trim(skb, len);
2039 	__skb_trim(skb, len);
2040 	return 0;
2041 }
2042 
2043 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2044 {
2045 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2046 }
2047 
2048 /**
2049  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2050  *	@skb: buffer to alter
2051  *	@len: new length
2052  *
2053  *	This is identical to pskb_trim except that the caller knows that
2054  *	the skb is not cloned so we should never get an error due to out-
2055  *	of-memory.
2056  */
2057 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2058 {
2059 	int err = pskb_trim(skb, len);
2060 	BUG_ON(err);
2061 }
2062 
2063 /**
2064  *	skb_orphan - orphan a buffer
2065  *	@skb: buffer to orphan
2066  *
2067  *	If a buffer currently has an owner then we call the owner's
2068  *	destructor function and make the @skb unowned. The buffer continues
2069  *	to exist but is no longer charged to its former owner.
2070  */
2071 static inline void skb_orphan(struct sk_buff *skb)
2072 {
2073 	if (skb->destructor) {
2074 		skb->destructor(skb);
2075 		skb->destructor = NULL;
2076 		skb->sk		= NULL;
2077 	} else {
2078 		BUG_ON(skb->sk);
2079 	}
2080 }
2081 
2082 /**
2083  *	skb_orphan_frags - orphan the frags contained in a buffer
2084  *	@skb: buffer to orphan frags from
2085  *	@gfp_mask: allocation mask for replacement pages
2086  *
2087  *	For each frag in the SKB which needs a destructor (i.e. has an
2088  *	owner) create a copy of that frag and release the original
2089  *	page by calling the destructor.
2090  */
2091 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2092 {
2093 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2094 		return 0;
2095 	return skb_copy_ubufs(skb, gfp_mask);
2096 }
2097 
2098 /**
2099  *	__skb_queue_purge - empty a list
2100  *	@list: list to empty
2101  *
2102  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2103  *	the list and one reference dropped. This function does not take the
2104  *	list lock and the caller must hold the relevant locks to use it.
2105  */
2106 void skb_queue_purge(struct sk_buff_head *list);
2107 static inline void __skb_queue_purge(struct sk_buff_head *list)
2108 {
2109 	struct sk_buff *skb;
2110 	while ((skb = __skb_dequeue(list)) != NULL)
2111 		kfree_skb(skb);
2112 }
2113 
2114 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2115 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2116 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
2117 
2118 void *netdev_alloc_frag(unsigned int fragsz);
2119 
2120 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2121 				   gfp_t gfp_mask);
2122 
2123 /**
2124  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2125  *	@dev: network device to receive on
2126  *	@length: length to allocate
2127  *
2128  *	Allocate a new &sk_buff and assign it a usage count of one. The
2129  *	buffer has unspecified headroom built in. Users should allocate
2130  *	the headroom they think they need without accounting for the
2131  *	built in space. The built in space is used for optimisations.
2132  *
2133  *	%NULL is returned if there is no free memory. Although this function
2134  *	allocates memory it can be called from an interrupt.
2135  */
2136 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2137 					       unsigned int length)
2138 {
2139 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2140 }
2141 
2142 /* legacy helper around __netdev_alloc_skb() */
2143 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2144 					      gfp_t gfp_mask)
2145 {
2146 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2147 }
2148 
2149 /* legacy helper around netdev_alloc_skb() */
2150 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2151 {
2152 	return netdev_alloc_skb(NULL, length);
2153 }
2154 
2155 
2156 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2157 		unsigned int length, gfp_t gfp)
2158 {
2159 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2160 
2161 	if (NET_IP_ALIGN && skb)
2162 		skb_reserve(skb, NET_IP_ALIGN);
2163 	return skb;
2164 }
2165 
2166 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2167 		unsigned int length)
2168 {
2169 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2170 }
2171 
2172 void *napi_alloc_frag(unsigned int fragsz);
2173 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2174 				 unsigned int length, gfp_t gfp_mask);
2175 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2176 					     unsigned int length)
2177 {
2178 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2179 }
2180 
2181 /**
2182  * __dev_alloc_pages - allocate page for network Rx
2183  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2184  * @order: size of the allocation
2185  *
2186  * Allocate a new page.
2187  *
2188  * %NULL is returned if there is no free memory.
2189 */
2190 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2191 					     unsigned int order)
2192 {
2193 	/* This piece of code contains several assumptions.
2194 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2195 	 * 2.  The expectation is the user wants a compound page.
2196 	 * 3.  If requesting a order 0 page it will not be compound
2197 	 *     due to the check to see if order has a value in prep_new_page
2198 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2199 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2200 	 */
2201 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2202 
2203 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2204 }
2205 
2206 static inline struct page *dev_alloc_pages(unsigned int order)
2207 {
2208 	return __dev_alloc_pages(GFP_ATOMIC, order);
2209 }
2210 
2211 /**
2212  * __dev_alloc_page - allocate a page for network Rx
2213  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2214  *
2215  * Allocate a new page.
2216  *
2217  * %NULL is returned if there is no free memory.
2218  */
2219 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2220 {
2221 	return __dev_alloc_pages(gfp_mask, 0);
2222 }
2223 
2224 static inline struct page *dev_alloc_page(void)
2225 {
2226 	return __dev_alloc_page(GFP_ATOMIC);
2227 }
2228 
2229 /**
2230  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2231  *	@page: The page that was allocated from skb_alloc_page
2232  *	@skb: The skb that may need pfmemalloc set
2233  */
2234 static inline void skb_propagate_pfmemalloc(struct page *page,
2235 					     struct sk_buff *skb)
2236 {
2237 	if (page && page->pfmemalloc)
2238 		skb->pfmemalloc = true;
2239 }
2240 
2241 /**
2242  * skb_frag_page - retrieve the page referred to by a paged fragment
2243  * @frag: the paged fragment
2244  *
2245  * Returns the &struct page associated with @frag.
2246  */
2247 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2248 {
2249 	return frag->page.p;
2250 }
2251 
2252 /**
2253  * __skb_frag_ref - take an addition reference on a paged fragment.
2254  * @frag: the paged fragment
2255  *
2256  * Takes an additional reference on the paged fragment @frag.
2257  */
2258 static inline void __skb_frag_ref(skb_frag_t *frag)
2259 {
2260 	get_page(skb_frag_page(frag));
2261 }
2262 
2263 /**
2264  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2265  * @skb: the buffer
2266  * @f: the fragment offset.
2267  *
2268  * Takes an additional reference on the @f'th paged fragment of @skb.
2269  */
2270 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2271 {
2272 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2273 }
2274 
2275 /**
2276  * __skb_frag_unref - release a reference on a paged fragment.
2277  * @frag: the paged fragment
2278  *
2279  * Releases a reference on the paged fragment @frag.
2280  */
2281 static inline void __skb_frag_unref(skb_frag_t *frag)
2282 {
2283 	put_page(skb_frag_page(frag));
2284 }
2285 
2286 /**
2287  * skb_frag_unref - release a reference on a paged fragment of an skb.
2288  * @skb: the buffer
2289  * @f: the fragment offset
2290  *
2291  * Releases a reference on the @f'th paged fragment of @skb.
2292  */
2293 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2294 {
2295 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2296 }
2297 
2298 /**
2299  * skb_frag_address - gets the address of the data contained in a paged fragment
2300  * @frag: the paged fragment buffer
2301  *
2302  * Returns the address of the data within @frag. The page must already
2303  * be mapped.
2304  */
2305 static inline void *skb_frag_address(const skb_frag_t *frag)
2306 {
2307 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2308 }
2309 
2310 /**
2311  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2312  * @frag: the paged fragment buffer
2313  *
2314  * Returns the address of the data within @frag. Checks that the page
2315  * is mapped and returns %NULL otherwise.
2316  */
2317 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2318 {
2319 	void *ptr = page_address(skb_frag_page(frag));
2320 	if (unlikely(!ptr))
2321 		return NULL;
2322 
2323 	return ptr + frag->page_offset;
2324 }
2325 
2326 /**
2327  * __skb_frag_set_page - sets the page contained in a paged fragment
2328  * @frag: the paged fragment
2329  * @page: the page to set
2330  *
2331  * Sets the fragment @frag to contain @page.
2332  */
2333 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2334 {
2335 	frag->page.p = page;
2336 }
2337 
2338 /**
2339  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2340  * @skb: the buffer
2341  * @f: the fragment offset
2342  * @page: the page to set
2343  *
2344  * Sets the @f'th fragment of @skb to contain @page.
2345  */
2346 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2347 				     struct page *page)
2348 {
2349 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2350 }
2351 
2352 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2353 
2354 /**
2355  * skb_frag_dma_map - maps a paged fragment via the DMA API
2356  * @dev: the device to map the fragment to
2357  * @frag: the paged fragment to map
2358  * @offset: the offset within the fragment (starting at the
2359  *          fragment's own offset)
2360  * @size: the number of bytes to map
2361  * @dir: the direction of the mapping (%PCI_DMA_*)
2362  *
2363  * Maps the page associated with @frag to @device.
2364  */
2365 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2366 					  const skb_frag_t *frag,
2367 					  size_t offset, size_t size,
2368 					  enum dma_data_direction dir)
2369 {
2370 	return dma_map_page(dev, skb_frag_page(frag),
2371 			    frag->page_offset + offset, size, dir);
2372 }
2373 
2374 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2375 					gfp_t gfp_mask)
2376 {
2377 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2378 }
2379 
2380 
2381 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2382 						  gfp_t gfp_mask)
2383 {
2384 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2385 }
2386 
2387 
2388 /**
2389  *	skb_clone_writable - is the header of a clone writable
2390  *	@skb: buffer to check
2391  *	@len: length up to which to write
2392  *
2393  *	Returns true if modifying the header part of the cloned buffer
2394  *	does not requires the data to be copied.
2395  */
2396 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2397 {
2398 	return !skb_header_cloned(skb) &&
2399 	       skb_headroom(skb) + len <= skb->hdr_len;
2400 }
2401 
2402 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2403 			    int cloned)
2404 {
2405 	int delta = 0;
2406 
2407 	if (headroom > skb_headroom(skb))
2408 		delta = headroom - skb_headroom(skb);
2409 
2410 	if (delta || cloned)
2411 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2412 					GFP_ATOMIC);
2413 	return 0;
2414 }
2415 
2416 /**
2417  *	skb_cow - copy header of skb when it is required
2418  *	@skb: buffer to cow
2419  *	@headroom: needed headroom
2420  *
2421  *	If the skb passed lacks sufficient headroom or its data part
2422  *	is shared, data is reallocated. If reallocation fails, an error
2423  *	is returned and original skb is not changed.
2424  *
2425  *	The result is skb with writable area skb->head...skb->tail
2426  *	and at least @headroom of space at head.
2427  */
2428 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2429 {
2430 	return __skb_cow(skb, headroom, skb_cloned(skb));
2431 }
2432 
2433 /**
2434  *	skb_cow_head - skb_cow but only making the head writable
2435  *	@skb: buffer to cow
2436  *	@headroom: needed headroom
2437  *
2438  *	This function is identical to skb_cow except that we replace the
2439  *	skb_cloned check by skb_header_cloned.  It should be used when
2440  *	you only need to push on some header and do not need to modify
2441  *	the data.
2442  */
2443 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2444 {
2445 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2446 }
2447 
2448 /**
2449  *	skb_padto	- pad an skbuff up to a minimal size
2450  *	@skb: buffer to pad
2451  *	@len: minimal length
2452  *
2453  *	Pads up a buffer to ensure the trailing bytes exist and are
2454  *	blanked. If the buffer already contains sufficient data it
2455  *	is untouched. Otherwise it is extended. Returns zero on
2456  *	success. The skb is freed on error.
2457  */
2458 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2459 {
2460 	unsigned int size = skb->len;
2461 	if (likely(size >= len))
2462 		return 0;
2463 	return skb_pad(skb, len - size);
2464 }
2465 
2466 /**
2467  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2468  *	@skb: buffer to pad
2469  *	@len: minimal length
2470  *
2471  *	Pads up a buffer to ensure the trailing bytes exist and are
2472  *	blanked. If the buffer already contains sufficient data it
2473  *	is untouched. Otherwise it is extended. Returns zero on
2474  *	success. The skb is freed on error.
2475  */
2476 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2477 {
2478 	unsigned int size = skb->len;
2479 
2480 	if (unlikely(size < len)) {
2481 		len -= size;
2482 		if (skb_pad(skb, len))
2483 			return -ENOMEM;
2484 		__skb_put(skb, len);
2485 	}
2486 	return 0;
2487 }
2488 
2489 static inline int skb_add_data(struct sk_buff *skb,
2490 			       struct iov_iter *from, int copy)
2491 {
2492 	const int off = skb->len;
2493 
2494 	if (skb->ip_summed == CHECKSUM_NONE) {
2495 		__wsum csum = 0;
2496 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2497 					    &csum, from) == copy) {
2498 			skb->csum = csum_block_add(skb->csum, csum, off);
2499 			return 0;
2500 		}
2501 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2502 		return 0;
2503 
2504 	__skb_trim(skb, off);
2505 	return -EFAULT;
2506 }
2507 
2508 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2509 				    const struct page *page, int off)
2510 {
2511 	if (i) {
2512 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2513 
2514 		return page == skb_frag_page(frag) &&
2515 		       off == frag->page_offset + skb_frag_size(frag);
2516 	}
2517 	return false;
2518 }
2519 
2520 static inline int __skb_linearize(struct sk_buff *skb)
2521 {
2522 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2523 }
2524 
2525 /**
2526  *	skb_linearize - convert paged skb to linear one
2527  *	@skb: buffer to linarize
2528  *
2529  *	If there is no free memory -ENOMEM is returned, otherwise zero
2530  *	is returned and the old skb data released.
2531  */
2532 static inline int skb_linearize(struct sk_buff *skb)
2533 {
2534 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2535 }
2536 
2537 /**
2538  * skb_has_shared_frag - can any frag be overwritten
2539  * @skb: buffer to test
2540  *
2541  * Return true if the skb has at least one frag that might be modified
2542  * by an external entity (as in vmsplice()/sendfile())
2543  */
2544 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2545 {
2546 	return skb_is_nonlinear(skb) &&
2547 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2548 }
2549 
2550 /**
2551  *	skb_linearize_cow - make sure skb is linear and writable
2552  *	@skb: buffer to process
2553  *
2554  *	If there is no free memory -ENOMEM is returned, otherwise zero
2555  *	is returned and the old skb data released.
2556  */
2557 static inline int skb_linearize_cow(struct sk_buff *skb)
2558 {
2559 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2560 	       __skb_linearize(skb) : 0;
2561 }
2562 
2563 /**
2564  *	skb_postpull_rcsum - update checksum for received skb after pull
2565  *	@skb: buffer to update
2566  *	@start: start of data before pull
2567  *	@len: length of data pulled
2568  *
2569  *	After doing a pull on a received packet, you need to call this to
2570  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2571  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2572  */
2573 
2574 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2575 				      const void *start, unsigned int len)
2576 {
2577 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2578 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2579 }
2580 
2581 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2582 
2583 /**
2584  *	pskb_trim_rcsum - trim received skb and update checksum
2585  *	@skb: buffer to trim
2586  *	@len: new length
2587  *
2588  *	This is exactly the same as pskb_trim except that it ensures the
2589  *	checksum of received packets are still valid after the operation.
2590  */
2591 
2592 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2593 {
2594 	if (likely(len >= skb->len))
2595 		return 0;
2596 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2597 		skb->ip_summed = CHECKSUM_NONE;
2598 	return __pskb_trim(skb, len);
2599 }
2600 
2601 #define skb_queue_walk(queue, skb) \
2602 		for (skb = (queue)->next;					\
2603 		     skb != (struct sk_buff *)(queue);				\
2604 		     skb = skb->next)
2605 
2606 #define skb_queue_walk_safe(queue, skb, tmp)					\
2607 		for (skb = (queue)->next, tmp = skb->next;			\
2608 		     skb != (struct sk_buff *)(queue);				\
2609 		     skb = tmp, tmp = skb->next)
2610 
2611 #define skb_queue_walk_from(queue, skb)						\
2612 		for (; skb != (struct sk_buff *)(queue);			\
2613 		     skb = skb->next)
2614 
2615 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2616 		for (tmp = skb->next;						\
2617 		     skb != (struct sk_buff *)(queue);				\
2618 		     skb = tmp, tmp = skb->next)
2619 
2620 #define skb_queue_reverse_walk(queue, skb) \
2621 		for (skb = (queue)->prev;					\
2622 		     skb != (struct sk_buff *)(queue);				\
2623 		     skb = skb->prev)
2624 
2625 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2626 		for (skb = (queue)->prev, tmp = skb->prev;			\
2627 		     skb != (struct sk_buff *)(queue);				\
2628 		     skb = tmp, tmp = skb->prev)
2629 
2630 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2631 		for (tmp = skb->prev;						\
2632 		     skb != (struct sk_buff *)(queue);				\
2633 		     skb = tmp, tmp = skb->prev)
2634 
2635 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2636 {
2637 	return skb_shinfo(skb)->frag_list != NULL;
2638 }
2639 
2640 static inline void skb_frag_list_init(struct sk_buff *skb)
2641 {
2642 	skb_shinfo(skb)->frag_list = NULL;
2643 }
2644 
2645 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2646 {
2647 	frag->next = skb_shinfo(skb)->frag_list;
2648 	skb_shinfo(skb)->frag_list = frag;
2649 }
2650 
2651 #define skb_walk_frags(skb, iter)	\
2652 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2653 
2654 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2655 				    int *peeked, int *off, int *err);
2656 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2657 				  int *err);
2658 unsigned int datagram_poll(struct file *file, struct socket *sock,
2659 			   struct poll_table_struct *wait);
2660 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2661 			   struct iov_iter *to, int size);
2662 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2663 					struct msghdr *msg, int size)
2664 {
2665 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2666 }
2667 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2668 				   struct msghdr *msg);
2669 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2670 				 struct iov_iter *from, int len);
2671 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2672 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2673 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2674 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2675 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2676 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2677 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2678 			      int len, __wsum csum);
2679 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2680 		    struct pipe_inode_info *pipe, unsigned int len,
2681 		    unsigned int flags);
2682 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2683 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2684 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2685 		 int len, int hlen);
2686 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2687 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2688 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2689 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2690 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2691 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2692 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2693 int skb_vlan_pop(struct sk_buff *skb);
2694 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2695 
2696 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2697 {
2698 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2699 }
2700 
2701 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2702 {
2703 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2704 }
2705 
2706 struct skb_checksum_ops {
2707 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2708 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2709 };
2710 
2711 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2712 		      __wsum csum, const struct skb_checksum_ops *ops);
2713 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2714 		    __wsum csum);
2715 
2716 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2717 					 int len, void *data, int hlen, void *buffer)
2718 {
2719 	if (hlen - offset >= len)
2720 		return data + offset;
2721 
2722 	if (!skb ||
2723 	    skb_copy_bits(skb, offset, buffer, len) < 0)
2724 		return NULL;
2725 
2726 	return buffer;
2727 }
2728 
2729 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2730 				       int len, void *buffer)
2731 {
2732 	return __skb_header_pointer(skb, offset, len, skb->data,
2733 				    skb_headlen(skb), buffer);
2734 }
2735 
2736 /**
2737  *	skb_needs_linearize - check if we need to linearize a given skb
2738  *			      depending on the given device features.
2739  *	@skb: socket buffer to check
2740  *	@features: net device features
2741  *
2742  *	Returns true if either:
2743  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2744  *	2. skb is fragmented and the device does not support SG.
2745  */
2746 static inline bool skb_needs_linearize(struct sk_buff *skb,
2747 				       netdev_features_t features)
2748 {
2749 	return skb_is_nonlinear(skb) &&
2750 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2751 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2752 }
2753 
2754 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2755 					     void *to,
2756 					     const unsigned int len)
2757 {
2758 	memcpy(to, skb->data, len);
2759 }
2760 
2761 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2762 						    const int offset, void *to,
2763 						    const unsigned int len)
2764 {
2765 	memcpy(to, skb->data + offset, len);
2766 }
2767 
2768 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2769 					   const void *from,
2770 					   const unsigned int len)
2771 {
2772 	memcpy(skb->data, from, len);
2773 }
2774 
2775 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2776 						  const int offset,
2777 						  const void *from,
2778 						  const unsigned int len)
2779 {
2780 	memcpy(skb->data + offset, from, len);
2781 }
2782 
2783 void skb_init(void);
2784 
2785 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2786 {
2787 	return skb->tstamp;
2788 }
2789 
2790 /**
2791  *	skb_get_timestamp - get timestamp from a skb
2792  *	@skb: skb to get stamp from
2793  *	@stamp: pointer to struct timeval to store stamp in
2794  *
2795  *	Timestamps are stored in the skb as offsets to a base timestamp.
2796  *	This function converts the offset back to a struct timeval and stores
2797  *	it in stamp.
2798  */
2799 static inline void skb_get_timestamp(const struct sk_buff *skb,
2800 				     struct timeval *stamp)
2801 {
2802 	*stamp = ktime_to_timeval(skb->tstamp);
2803 }
2804 
2805 static inline void skb_get_timestampns(const struct sk_buff *skb,
2806 				       struct timespec *stamp)
2807 {
2808 	*stamp = ktime_to_timespec(skb->tstamp);
2809 }
2810 
2811 static inline void __net_timestamp(struct sk_buff *skb)
2812 {
2813 	skb->tstamp = ktime_get_real();
2814 }
2815 
2816 static inline ktime_t net_timedelta(ktime_t t)
2817 {
2818 	return ktime_sub(ktime_get_real(), t);
2819 }
2820 
2821 static inline ktime_t net_invalid_timestamp(void)
2822 {
2823 	return ktime_set(0, 0);
2824 }
2825 
2826 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2827 
2828 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2829 
2830 void skb_clone_tx_timestamp(struct sk_buff *skb);
2831 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2832 
2833 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2834 
2835 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2836 {
2837 }
2838 
2839 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2840 {
2841 	return false;
2842 }
2843 
2844 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2845 
2846 /**
2847  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2848  *
2849  * PHY drivers may accept clones of transmitted packets for
2850  * timestamping via their phy_driver.txtstamp method. These drivers
2851  * must call this function to return the skb back to the stack, with
2852  * or without a timestamp.
2853  *
2854  * @skb: clone of the the original outgoing packet
2855  * @hwtstamps: hardware time stamps, may be NULL if not available
2856  *
2857  */
2858 void skb_complete_tx_timestamp(struct sk_buff *skb,
2859 			       struct skb_shared_hwtstamps *hwtstamps);
2860 
2861 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2862 		     struct skb_shared_hwtstamps *hwtstamps,
2863 		     struct sock *sk, int tstype);
2864 
2865 /**
2866  * skb_tstamp_tx - queue clone of skb with send time stamps
2867  * @orig_skb:	the original outgoing packet
2868  * @hwtstamps:	hardware time stamps, may be NULL if not available
2869  *
2870  * If the skb has a socket associated, then this function clones the
2871  * skb (thus sharing the actual data and optional structures), stores
2872  * the optional hardware time stamping information (if non NULL) or
2873  * generates a software time stamp (otherwise), then queues the clone
2874  * to the error queue of the socket.  Errors are silently ignored.
2875  */
2876 void skb_tstamp_tx(struct sk_buff *orig_skb,
2877 		   struct skb_shared_hwtstamps *hwtstamps);
2878 
2879 static inline void sw_tx_timestamp(struct sk_buff *skb)
2880 {
2881 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2882 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2883 		skb_tstamp_tx(skb, NULL);
2884 }
2885 
2886 /**
2887  * skb_tx_timestamp() - Driver hook for transmit timestamping
2888  *
2889  * Ethernet MAC Drivers should call this function in their hard_xmit()
2890  * function immediately before giving the sk_buff to the MAC hardware.
2891  *
2892  * Specifically, one should make absolutely sure that this function is
2893  * called before TX completion of this packet can trigger.  Otherwise
2894  * the packet could potentially already be freed.
2895  *
2896  * @skb: A socket buffer.
2897  */
2898 static inline void skb_tx_timestamp(struct sk_buff *skb)
2899 {
2900 	skb_clone_tx_timestamp(skb);
2901 	sw_tx_timestamp(skb);
2902 }
2903 
2904 /**
2905  * skb_complete_wifi_ack - deliver skb with wifi status
2906  *
2907  * @skb: the original outgoing packet
2908  * @acked: ack status
2909  *
2910  */
2911 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2912 
2913 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2914 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2915 
2916 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2917 {
2918 	return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
2919 }
2920 
2921 /**
2922  *	skb_checksum_complete - Calculate checksum of an entire packet
2923  *	@skb: packet to process
2924  *
2925  *	This function calculates the checksum over the entire packet plus
2926  *	the value of skb->csum.  The latter can be used to supply the
2927  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2928  *	checksum.
2929  *
2930  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2931  *	this function can be used to verify that checksum on received
2932  *	packets.  In that case the function should return zero if the
2933  *	checksum is correct.  In particular, this function will return zero
2934  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2935  *	hardware has already verified the correctness of the checksum.
2936  */
2937 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2938 {
2939 	return skb_csum_unnecessary(skb) ?
2940 	       0 : __skb_checksum_complete(skb);
2941 }
2942 
2943 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2944 {
2945 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2946 		if (skb->csum_level == 0)
2947 			skb->ip_summed = CHECKSUM_NONE;
2948 		else
2949 			skb->csum_level--;
2950 	}
2951 }
2952 
2953 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2954 {
2955 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2956 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2957 			skb->csum_level++;
2958 	} else if (skb->ip_summed == CHECKSUM_NONE) {
2959 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2960 		skb->csum_level = 0;
2961 	}
2962 }
2963 
2964 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2965 {
2966 	/* Mark current checksum as bad (typically called from GRO
2967 	 * path). In the case that ip_summed is CHECKSUM_NONE
2968 	 * this must be the first checksum encountered in the packet.
2969 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2970 	 * checksum after the last one validated. For UDP, a zero
2971 	 * checksum can not be marked as bad.
2972 	 */
2973 
2974 	if (skb->ip_summed == CHECKSUM_NONE ||
2975 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
2976 		skb->csum_bad = 1;
2977 }
2978 
2979 /* Check if we need to perform checksum complete validation.
2980  *
2981  * Returns true if checksum complete is needed, false otherwise
2982  * (either checksum is unnecessary or zero checksum is allowed).
2983  */
2984 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2985 						  bool zero_okay,
2986 						  __sum16 check)
2987 {
2988 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2989 		skb->csum_valid = 1;
2990 		__skb_decr_checksum_unnecessary(skb);
2991 		return false;
2992 	}
2993 
2994 	return true;
2995 }
2996 
2997 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2998  * in checksum_init.
2999  */
3000 #define CHECKSUM_BREAK 76
3001 
3002 /* Validate (init) checksum based on checksum complete.
3003  *
3004  * Return values:
3005  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3006  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3007  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3008  *   non-zero: value of invalid checksum
3009  *
3010  */
3011 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3012 						       bool complete,
3013 						       __wsum psum)
3014 {
3015 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3016 		if (!csum_fold(csum_add(psum, skb->csum))) {
3017 			skb->csum_valid = 1;
3018 			return 0;
3019 		}
3020 	} else if (skb->csum_bad) {
3021 		/* ip_summed == CHECKSUM_NONE in this case */
3022 		return 1;
3023 	}
3024 
3025 	skb->csum = psum;
3026 
3027 	if (complete || skb->len <= CHECKSUM_BREAK) {
3028 		__sum16 csum;
3029 
3030 		csum = __skb_checksum_complete(skb);
3031 		skb->csum_valid = !csum;
3032 		return csum;
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3039 {
3040 	return 0;
3041 }
3042 
3043 /* Perform checksum validate (init). Note that this is a macro since we only
3044  * want to calculate the pseudo header which is an input function if necessary.
3045  * First we try to validate without any computation (checksum unnecessary) and
3046  * then calculate based on checksum complete calling the function to compute
3047  * pseudo header.
3048  *
3049  * Return values:
3050  *   0: checksum is validated or try to in skb_checksum_complete
3051  *   non-zero: value of invalid checksum
3052  */
3053 #define __skb_checksum_validate(skb, proto, complete,			\
3054 				zero_okay, check, compute_pseudo)	\
3055 ({									\
3056 	__sum16 __ret = 0;						\
3057 	skb->csum_valid = 0;						\
3058 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3059 		__ret = __skb_checksum_validate_complete(skb,		\
3060 				complete, compute_pseudo(skb, proto));	\
3061 	__ret;								\
3062 })
3063 
3064 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3065 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3066 
3067 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3068 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3069 
3070 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3071 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3072 
3073 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3074 					 compute_pseudo)		\
3075 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3076 
3077 #define skb_checksum_simple_validate(skb)				\
3078 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3079 
3080 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3081 {
3082 	return (skb->ip_summed == CHECKSUM_NONE &&
3083 		skb->csum_valid && !skb->csum_bad);
3084 }
3085 
3086 static inline void __skb_checksum_convert(struct sk_buff *skb,
3087 					  __sum16 check, __wsum pseudo)
3088 {
3089 	skb->csum = ~pseudo;
3090 	skb->ip_summed = CHECKSUM_COMPLETE;
3091 }
3092 
3093 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3094 do {									\
3095 	if (__skb_checksum_convert_check(skb))				\
3096 		__skb_checksum_convert(skb, check,			\
3097 				       compute_pseudo(skb, proto));	\
3098 } while (0)
3099 
3100 /* Update skbuf and packet to reflect the remote checksum offload operation.
3101  * When called, ptr indicates the starting point for skb->csum when
3102  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3103  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3104  */
3105 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3106 				       int start, int offset)
3107 {
3108 	__wsum delta;
3109 
3110 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3111 		__skb_checksum_complete(skb);
3112 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3113 	}
3114 
3115 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3116 
3117 	/* Adjust skb->csum since we changed the packet */
3118 	skb->csum = csum_add(skb->csum, delta);
3119 }
3120 
3121 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3122 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3123 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3124 {
3125 	if (nfct && atomic_dec_and_test(&nfct->use))
3126 		nf_conntrack_destroy(nfct);
3127 }
3128 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3129 {
3130 	if (nfct)
3131 		atomic_inc(&nfct->use);
3132 }
3133 #endif
3134 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3135 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3136 {
3137 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3138 		kfree(nf_bridge);
3139 }
3140 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3141 {
3142 	if (nf_bridge)
3143 		atomic_inc(&nf_bridge->use);
3144 }
3145 #endif /* CONFIG_BRIDGE_NETFILTER */
3146 static inline void nf_reset(struct sk_buff *skb)
3147 {
3148 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3149 	nf_conntrack_put(skb->nfct);
3150 	skb->nfct = NULL;
3151 #endif
3152 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3153 	nf_bridge_put(skb->nf_bridge);
3154 	skb->nf_bridge = NULL;
3155 #endif
3156 }
3157 
3158 static inline void nf_reset_trace(struct sk_buff *skb)
3159 {
3160 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3161 	skb->nf_trace = 0;
3162 #endif
3163 }
3164 
3165 /* Note: This doesn't put any conntrack and bridge info in dst. */
3166 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3167 			     bool copy)
3168 {
3169 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3170 	dst->nfct = src->nfct;
3171 	nf_conntrack_get(src->nfct);
3172 	if (copy)
3173 		dst->nfctinfo = src->nfctinfo;
3174 #endif
3175 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3176 	dst->nf_bridge  = src->nf_bridge;
3177 	nf_bridge_get(src->nf_bridge);
3178 #endif
3179 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3180 	if (copy)
3181 		dst->nf_trace = src->nf_trace;
3182 #endif
3183 }
3184 
3185 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3186 {
3187 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3188 	nf_conntrack_put(dst->nfct);
3189 #endif
3190 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3191 	nf_bridge_put(dst->nf_bridge);
3192 #endif
3193 	__nf_copy(dst, src, true);
3194 }
3195 
3196 #ifdef CONFIG_NETWORK_SECMARK
3197 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3198 {
3199 	to->secmark = from->secmark;
3200 }
3201 
3202 static inline void skb_init_secmark(struct sk_buff *skb)
3203 {
3204 	skb->secmark = 0;
3205 }
3206 #else
3207 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3208 { }
3209 
3210 static inline void skb_init_secmark(struct sk_buff *skb)
3211 { }
3212 #endif
3213 
3214 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3215 {
3216 	return !skb->destructor &&
3217 #if IS_ENABLED(CONFIG_XFRM)
3218 		!skb->sp &&
3219 #endif
3220 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3221 		!skb->nfct &&
3222 #endif
3223 		!skb->_skb_refdst &&
3224 		!skb_has_frag_list(skb);
3225 }
3226 
3227 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3228 {
3229 	skb->queue_mapping = queue_mapping;
3230 }
3231 
3232 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3233 {
3234 	return skb->queue_mapping;
3235 }
3236 
3237 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3238 {
3239 	to->queue_mapping = from->queue_mapping;
3240 }
3241 
3242 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3243 {
3244 	skb->queue_mapping = rx_queue + 1;
3245 }
3246 
3247 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3248 {
3249 	return skb->queue_mapping - 1;
3250 }
3251 
3252 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3253 {
3254 	return skb->queue_mapping != 0;
3255 }
3256 
3257 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3258 		  unsigned int num_tx_queues);
3259 
3260 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3261 {
3262 #ifdef CONFIG_XFRM
3263 	return skb->sp;
3264 #else
3265 	return NULL;
3266 #endif
3267 }
3268 
3269 /* Keeps track of mac header offset relative to skb->head.
3270  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3271  * For non-tunnel skb it points to skb_mac_header() and for
3272  * tunnel skb it points to outer mac header.
3273  * Keeps track of level of encapsulation of network headers.
3274  */
3275 struct skb_gso_cb {
3276 	int	mac_offset;
3277 	int	encap_level;
3278 	__u16	csum_start;
3279 };
3280 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3281 
3282 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3283 {
3284 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3285 		SKB_GSO_CB(inner_skb)->mac_offset;
3286 }
3287 
3288 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3289 {
3290 	int new_headroom, headroom;
3291 	int ret;
3292 
3293 	headroom = skb_headroom(skb);
3294 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3295 	if (ret)
3296 		return ret;
3297 
3298 	new_headroom = skb_headroom(skb);
3299 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3300 	return 0;
3301 }
3302 
3303 /* Compute the checksum for a gso segment. First compute the checksum value
3304  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3305  * then add in skb->csum (checksum from csum_start to end of packet).
3306  * skb->csum and csum_start are then updated to reflect the checksum of the
3307  * resultant packet starting from the transport header-- the resultant checksum
3308  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3309  * header.
3310  */
3311 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3312 {
3313 	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3314 	    skb_transport_offset(skb);
3315 	__u16 csum;
3316 
3317 	csum = csum_fold(csum_partial(skb_transport_header(skb),
3318 				      plen, skb->csum));
3319 	skb->csum = res;
3320 	SKB_GSO_CB(skb)->csum_start -= plen;
3321 
3322 	return csum;
3323 }
3324 
3325 static inline bool skb_is_gso(const struct sk_buff *skb)
3326 {
3327 	return skb_shinfo(skb)->gso_size;
3328 }
3329 
3330 /* Note: Should be called only if skb_is_gso(skb) is true */
3331 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3332 {
3333 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3334 }
3335 
3336 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3337 
3338 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3339 {
3340 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3341 	 * wanted then gso_type will be set. */
3342 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3343 
3344 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3345 	    unlikely(shinfo->gso_type == 0)) {
3346 		__skb_warn_lro_forwarding(skb);
3347 		return true;
3348 	}
3349 	return false;
3350 }
3351 
3352 static inline void skb_forward_csum(struct sk_buff *skb)
3353 {
3354 	/* Unfortunately we don't support this one.  Any brave souls? */
3355 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3356 		skb->ip_summed = CHECKSUM_NONE;
3357 }
3358 
3359 /**
3360  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3361  * @skb: skb to check
3362  *
3363  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3364  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3365  * use this helper, to document places where we make this assertion.
3366  */
3367 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3368 {
3369 #ifdef DEBUG
3370 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3371 #endif
3372 }
3373 
3374 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3375 
3376 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3377 
3378 u32 skb_get_poff(const struct sk_buff *skb);
3379 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3380 		   const struct flow_keys *keys, int hlen);
3381 
3382 /**
3383  * skb_head_is_locked - Determine if the skb->head is locked down
3384  * @skb: skb to check
3385  *
3386  * The head on skbs build around a head frag can be removed if they are
3387  * not cloned.  This function returns true if the skb head is locked down
3388  * due to either being allocated via kmalloc, or by being a clone with
3389  * multiple references to the head.
3390  */
3391 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3392 {
3393 	return !skb->head_frag || skb_cloned(skb);
3394 }
3395 
3396 /**
3397  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3398  *
3399  * @skb: GSO skb
3400  *
3401  * skb_gso_network_seglen is used to determine the real size of the
3402  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3403  *
3404  * The MAC/L2 header is not accounted for.
3405  */
3406 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3407 {
3408 	unsigned int hdr_len = skb_transport_header(skb) -
3409 			       skb_network_header(skb);
3410 	return hdr_len + skb_gso_transport_seglen(skb);
3411 }
3412 #endif	/* __KERNEL__ */
3413 #endif	/* _LINUX_SKBUFF_H */
3414