1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/cache.h> 21 22 #include <asm/atomic.h> 23 #include <asm/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/net.h> 26 #include <linux/textsearch.h> 27 #include <net/checksum.h> 28 #include <linux/rcupdate.h> 29 #include <linux/dmaengine.h> 30 #include <linux/hrtimer.h> 31 32 #define HAVE_ALLOC_SKB /* For the drivers to know */ 33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35 /* Don't change this without changing skb_csum_unnecessary! */ 36 #define CHECKSUM_NONE 0 37 #define CHECKSUM_UNNECESSARY 1 38 #define CHECKSUM_COMPLETE 2 39 #define CHECKSUM_PARTIAL 3 40 41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43 #define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45 #define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50 /* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96 struct net_device; 97 struct scatterlist; 98 struct pipe_inode_info; 99 100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101 struct nf_conntrack { 102 atomic_t use; 103 }; 104 #endif 105 106 #ifdef CONFIG_BRIDGE_NETFILTER 107 struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 unsigned int mask; 112 unsigned long data[32 / sizeof(unsigned long)]; 113 }; 114 #endif 115 116 struct sk_buff_head { 117 /* These two members must be first. */ 118 struct sk_buff *next; 119 struct sk_buff *prev; 120 121 __u32 qlen; 122 spinlock_t lock; 123 }; 124 125 struct sk_buff; 126 127 /* To allow 64K frame to be packed as single skb without frag_list */ 128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 129 130 typedef struct skb_frag_struct skb_frag_t; 131 132 struct skb_frag_struct { 133 struct page *page; 134 __u32 page_offset; 135 __u32 size; 136 }; 137 138 /* This data is invariant across clones and lives at 139 * the end of the header data, ie. at skb->end. 140 */ 141 struct skb_shared_info { 142 atomic_t dataref; 143 unsigned short nr_frags; 144 unsigned short gso_size; 145 /* Warning: this field is not always filled in (UFO)! */ 146 unsigned short gso_segs; 147 unsigned short gso_type; 148 __be32 ip6_frag_id; 149 struct sk_buff *frag_list; 150 skb_frag_t frags[MAX_SKB_FRAGS]; 151 }; 152 153 /* We divide dataref into two halves. The higher 16 bits hold references 154 * to the payload part of skb->data. The lower 16 bits hold references to 155 * the entire skb->data. A clone of a headerless skb holds the length of 156 * the header in skb->hdr_len. 157 * 158 * All users must obey the rule that the skb->data reference count must be 159 * greater than or equal to the payload reference count. 160 * 161 * Holding a reference to the payload part means that the user does not 162 * care about modifications to the header part of skb->data. 163 */ 164 #define SKB_DATAREF_SHIFT 16 165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 166 167 168 enum { 169 SKB_FCLONE_UNAVAILABLE, 170 SKB_FCLONE_ORIG, 171 SKB_FCLONE_CLONE, 172 }; 173 174 enum { 175 SKB_GSO_TCPV4 = 1 << 0, 176 SKB_GSO_UDP = 1 << 1, 177 178 /* This indicates the skb is from an untrusted source. */ 179 SKB_GSO_DODGY = 1 << 2, 180 181 /* This indicates the tcp segment has CWR set. */ 182 SKB_GSO_TCP_ECN = 1 << 3, 183 184 SKB_GSO_TCPV6 = 1 << 4, 185 }; 186 187 #if BITS_PER_LONG > 32 188 #define NET_SKBUFF_DATA_USES_OFFSET 1 189 #endif 190 191 #ifdef NET_SKBUFF_DATA_USES_OFFSET 192 typedef unsigned int sk_buff_data_t; 193 #else 194 typedef unsigned char *sk_buff_data_t; 195 #endif 196 197 /** 198 * struct sk_buff - socket buffer 199 * @next: Next buffer in list 200 * @prev: Previous buffer in list 201 * @sk: Socket we are owned by 202 * @tstamp: Time we arrived 203 * @dev: Device we arrived on/are leaving by 204 * @transport_header: Transport layer header 205 * @network_header: Network layer header 206 * @mac_header: Link layer header 207 * @dst: destination entry 208 * @sp: the security path, used for xfrm 209 * @cb: Control buffer. Free for use by every layer. Put private vars here 210 * @len: Length of actual data 211 * @data_len: Data length 212 * @mac_len: Length of link layer header 213 * @hdr_len: writable header length of cloned skb 214 * @csum: Checksum (must include start/offset pair) 215 * @csum_start: Offset from skb->head where checksumming should start 216 * @csum_offset: Offset from csum_start where checksum should be stored 217 * @local_df: allow local fragmentation 218 * @cloned: Head may be cloned (check refcnt to be sure) 219 * @nohdr: Payload reference only, must not modify header 220 * @pkt_type: Packet class 221 * @fclone: skbuff clone status 222 * @ip_summed: Driver fed us an IP checksum 223 * @priority: Packet queueing priority 224 * @users: User count - see {datagram,tcp}.c 225 * @protocol: Packet protocol from driver 226 * @truesize: Buffer size 227 * @head: Head of buffer 228 * @data: Data head pointer 229 * @tail: Tail pointer 230 * @end: End pointer 231 * @destructor: Destruct function 232 * @mark: Generic packet mark 233 * @nfct: Associated connection, if any 234 * @ipvs_property: skbuff is owned by ipvs 235 * @peeked: this packet has been seen already, so stats have been 236 * done for it, don't do them again 237 * @nf_trace: netfilter packet trace flag 238 * @nfctinfo: Relationship of this skb to the connection 239 * @nfct_reasm: netfilter conntrack re-assembly pointer 240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 241 * @iif: ifindex of device we arrived on 242 * @queue_mapping: Queue mapping for multiqueue devices 243 * @tc_index: Traffic control index 244 * @tc_verd: traffic control verdict 245 * @ndisc_nodetype: router type (from link layer) 246 * @do_not_encrypt: set to prevent encryption of this frame 247 * @dma_cookie: a cookie to one of several possible DMA operations 248 * done by skb DMA functions 249 * @secmark: security marking 250 * @vlan_tci: vlan tag control information 251 */ 252 253 struct sk_buff { 254 /* These two members must be first. */ 255 struct sk_buff *next; 256 struct sk_buff *prev; 257 258 struct sock *sk; 259 ktime_t tstamp; 260 struct net_device *dev; 261 262 union { 263 struct dst_entry *dst; 264 struct rtable *rtable; 265 }; 266 struct sec_path *sp; 267 268 /* 269 * This is the control buffer. It is free to use for every 270 * layer. Please put your private variables there. If you 271 * want to keep them across layers you have to do a skb_clone() 272 * first. This is owned by whoever has the skb queued ATM. 273 */ 274 char cb[48]; 275 276 unsigned int len, 277 data_len; 278 __u16 mac_len, 279 hdr_len; 280 union { 281 __wsum csum; 282 struct { 283 __u16 csum_start; 284 __u16 csum_offset; 285 }; 286 }; 287 __u32 priority; 288 __u8 local_df:1, 289 cloned:1, 290 ip_summed:2, 291 nohdr:1, 292 nfctinfo:3; 293 __u8 pkt_type:3, 294 fclone:2, 295 ipvs_property:1, 296 peeked:1, 297 nf_trace:1; 298 __be16 protocol; 299 300 void (*destructor)(struct sk_buff *skb); 301 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 302 struct nf_conntrack *nfct; 303 struct sk_buff *nfct_reasm; 304 #endif 305 #ifdef CONFIG_BRIDGE_NETFILTER 306 struct nf_bridge_info *nf_bridge; 307 #endif 308 309 int iif; 310 __u16 queue_mapping; 311 #ifdef CONFIG_NET_SCHED 312 __u16 tc_index; /* traffic control index */ 313 #ifdef CONFIG_NET_CLS_ACT 314 __u16 tc_verd; /* traffic control verdict */ 315 #endif 316 #endif 317 #ifdef CONFIG_IPV6_NDISC_NODETYPE 318 __u8 ndisc_nodetype:2; 319 #endif 320 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE) 321 __u8 do_not_encrypt:1; 322 #endif 323 /* 0/13/14 bit hole */ 324 325 #ifdef CONFIG_NET_DMA 326 dma_cookie_t dma_cookie; 327 #endif 328 #ifdef CONFIG_NETWORK_SECMARK 329 __u32 secmark; 330 #endif 331 332 __u32 mark; 333 334 __u16 vlan_tci; 335 336 sk_buff_data_t transport_header; 337 sk_buff_data_t network_header; 338 sk_buff_data_t mac_header; 339 /* These elements must be at the end, see alloc_skb() for details. */ 340 sk_buff_data_t tail; 341 sk_buff_data_t end; 342 unsigned char *head, 343 *data; 344 unsigned int truesize; 345 atomic_t users; 346 }; 347 348 #ifdef __KERNEL__ 349 /* 350 * Handling routines are only of interest to the kernel 351 */ 352 #include <linux/slab.h> 353 354 #include <asm/system.h> 355 356 extern void kfree_skb(struct sk_buff *skb); 357 extern void __kfree_skb(struct sk_buff *skb); 358 extern struct sk_buff *__alloc_skb(unsigned int size, 359 gfp_t priority, int fclone, int node); 360 static inline struct sk_buff *alloc_skb(unsigned int size, 361 gfp_t priority) 362 { 363 return __alloc_skb(size, priority, 0, -1); 364 } 365 366 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 367 gfp_t priority) 368 { 369 return __alloc_skb(size, priority, 1, -1); 370 } 371 372 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 373 extern struct sk_buff *skb_clone(struct sk_buff *skb, 374 gfp_t priority); 375 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 376 gfp_t priority); 377 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 378 gfp_t gfp_mask); 379 extern int pskb_expand_head(struct sk_buff *skb, 380 int nhead, int ntail, 381 gfp_t gfp_mask); 382 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 383 unsigned int headroom); 384 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 385 int newheadroom, int newtailroom, 386 gfp_t priority); 387 extern int skb_to_sgvec(struct sk_buff *skb, 388 struct scatterlist *sg, int offset, 389 int len); 390 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 391 struct sk_buff **trailer); 392 extern int skb_pad(struct sk_buff *skb, int pad); 393 #define dev_kfree_skb(a) kfree_skb(a) 394 extern void skb_over_panic(struct sk_buff *skb, int len, 395 void *here); 396 extern void skb_under_panic(struct sk_buff *skb, int len, 397 void *here); 398 extern void skb_truesize_bug(struct sk_buff *skb); 399 400 static inline void skb_truesize_check(struct sk_buff *skb) 401 { 402 int len = sizeof(struct sk_buff) + skb->len; 403 404 if (unlikely((int)skb->truesize < len)) 405 skb_truesize_bug(skb); 406 } 407 408 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 409 int getfrag(void *from, char *to, int offset, 410 int len,int odd, struct sk_buff *skb), 411 void *from, int length); 412 413 struct skb_seq_state 414 { 415 __u32 lower_offset; 416 __u32 upper_offset; 417 __u32 frag_idx; 418 __u32 stepped_offset; 419 struct sk_buff *root_skb; 420 struct sk_buff *cur_skb; 421 __u8 *frag_data; 422 }; 423 424 extern void skb_prepare_seq_read(struct sk_buff *skb, 425 unsigned int from, unsigned int to, 426 struct skb_seq_state *st); 427 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 428 struct skb_seq_state *st); 429 extern void skb_abort_seq_read(struct skb_seq_state *st); 430 431 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 432 unsigned int to, struct ts_config *config, 433 struct ts_state *state); 434 435 #ifdef NET_SKBUFF_DATA_USES_OFFSET 436 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 437 { 438 return skb->head + skb->end; 439 } 440 #else 441 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 442 { 443 return skb->end; 444 } 445 #endif 446 447 /* Internal */ 448 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 449 450 /** 451 * skb_queue_empty - check if a queue is empty 452 * @list: queue head 453 * 454 * Returns true if the queue is empty, false otherwise. 455 */ 456 static inline int skb_queue_empty(const struct sk_buff_head *list) 457 { 458 return list->next == (struct sk_buff *)list; 459 } 460 461 /** 462 * skb_get - reference buffer 463 * @skb: buffer to reference 464 * 465 * Makes another reference to a socket buffer and returns a pointer 466 * to the buffer. 467 */ 468 static inline struct sk_buff *skb_get(struct sk_buff *skb) 469 { 470 atomic_inc(&skb->users); 471 return skb; 472 } 473 474 /* 475 * If users == 1, we are the only owner and are can avoid redundant 476 * atomic change. 477 */ 478 479 /** 480 * skb_cloned - is the buffer a clone 481 * @skb: buffer to check 482 * 483 * Returns true if the buffer was generated with skb_clone() and is 484 * one of multiple shared copies of the buffer. Cloned buffers are 485 * shared data so must not be written to under normal circumstances. 486 */ 487 static inline int skb_cloned(const struct sk_buff *skb) 488 { 489 return skb->cloned && 490 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 491 } 492 493 /** 494 * skb_header_cloned - is the header a clone 495 * @skb: buffer to check 496 * 497 * Returns true if modifying the header part of the buffer requires 498 * the data to be copied. 499 */ 500 static inline int skb_header_cloned(const struct sk_buff *skb) 501 { 502 int dataref; 503 504 if (!skb->cloned) 505 return 0; 506 507 dataref = atomic_read(&skb_shinfo(skb)->dataref); 508 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 509 return dataref != 1; 510 } 511 512 /** 513 * skb_header_release - release reference to header 514 * @skb: buffer to operate on 515 * 516 * Drop a reference to the header part of the buffer. This is done 517 * by acquiring a payload reference. You must not read from the header 518 * part of skb->data after this. 519 */ 520 static inline void skb_header_release(struct sk_buff *skb) 521 { 522 BUG_ON(skb->nohdr); 523 skb->nohdr = 1; 524 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 525 } 526 527 /** 528 * skb_shared - is the buffer shared 529 * @skb: buffer to check 530 * 531 * Returns true if more than one person has a reference to this 532 * buffer. 533 */ 534 static inline int skb_shared(const struct sk_buff *skb) 535 { 536 return atomic_read(&skb->users) != 1; 537 } 538 539 /** 540 * skb_share_check - check if buffer is shared and if so clone it 541 * @skb: buffer to check 542 * @pri: priority for memory allocation 543 * 544 * If the buffer is shared the buffer is cloned and the old copy 545 * drops a reference. A new clone with a single reference is returned. 546 * If the buffer is not shared the original buffer is returned. When 547 * being called from interrupt status or with spinlocks held pri must 548 * be GFP_ATOMIC. 549 * 550 * NULL is returned on a memory allocation failure. 551 */ 552 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 553 gfp_t pri) 554 { 555 might_sleep_if(pri & __GFP_WAIT); 556 if (skb_shared(skb)) { 557 struct sk_buff *nskb = skb_clone(skb, pri); 558 kfree_skb(skb); 559 skb = nskb; 560 } 561 return skb; 562 } 563 564 /* 565 * Copy shared buffers into a new sk_buff. We effectively do COW on 566 * packets to handle cases where we have a local reader and forward 567 * and a couple of other messy ones. The normal one is tcpdumping 568 * a packet thats being forwarded. 569 */ 570 571 /** 572 * skb_unshare - make a copy of a shared buffer 573 * @skb: buffer to check 574 * @pri: priority for memory allocation 575 * 576 * If the socket buffer is a clone then this function creates a new 577 * copy of the data, drops a reference count on the old copy and returns 578 * the new copy with the reference count at 1. If the buffer is not a clone 579 * the original buffer is returned. When called with a spinlock held or 580 * from interrupt state @pri must be %GFP_ATOMIC 581 * 582 * %NULL is returned on a memory allocation failure. 583 */ 584 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 585 gfp_t pri) 586 { 587 might_sleep_if(pri & __GFP_WAIT); 588 if (skb_cloned(skb)) { 589 struct sk_buff *nskb = skb_copy(skb, pri); 590 kfree_skb(skb); /* Free our shared copy */ 591 skb = nskb; 592 } 593 return skb; 594 } 595 596 /** 597 * skb_peek 598 * @list_: list to peek at 599 * 600 * Peek an &sk_buff. Unlike most other operations you _MUST_ 601 * be careful with this one. A peek leaves the buffer on the 602 * list and someone else may run off with it. You must hold 603 * the appropriate locks or have a private queue to do this. 604 * 605 * Returns %NULL for an empty list or a pointer to the head element. 606 * The reference count is not incremented and the reference is therefore 607 * volatile. Use with caution. 608 */ 609 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 610 { 611 struct sk_buff *list = ((struct sk_buff *)list_)->next; 612 if (list == (struct sk_buff *)list_) 613 list = NULL; 614 return list; 615 } 616 617 /** 618 * skb_peek_tail 619 * @list_: list to peek at 620 * 621 * Peek an &sk_buff. Unlike most other operations you _MUST_ 622 * be careful with this one. A peek leaves the buffer on the 623 * list and someone else may run off with it. You must hold 624 * the appropriate locks or have a private queue to do this. 625 * 626 * Returns %NULL for an empty list or a pointer to the tail element. 627 * The reference count is not incremented and the reference is therefore 628 * volatile. Use with caution. 629 */ 630 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 631 { 632 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 633 if (list == (struct sk_buff *)list_) 634 list = NULL; 635 return list; 636 } 637 638 /** 639 * skb_queue_len - get queue length 640 * @list_: list to measure 641 * 642 * Return the length of an &sk_buff queue. 643 */ 644 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 645 { 646 return list_->qlen; 647 } 648 649 /* 650 * This function creates a split out lock class for each invocation; 651 * this is needed for now since a whole lot of users of the skb-queue 652 * infrastructure in drivers have different locking usage (in hardirq) 653 * than the networking core (in softirq only). In the long run either the 654 * network layer or drivers should need annotation to consolidate the 655 * main types of usage into 3 classes. 656 */ 657 static inline void skb_queue_head_init(struct sk_buff_head *list) 658 { 659 spin_lock_init(&list->lock); 660 list->prev = list->next = (struct sk_buff *)list; 661 list->qlen = 0; 662 } 663 664 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 665 struct lock_class_key *class) 666 { 667 skb_queue_head_init(list); 668 lockdep_set_class(&list->lock, class); 669 } 670 671 /* 672 * Insert an sk_buff on a list. 673 * 674 * The "__skb_xxxx()" functions are the non-atomic ones that 675 * can only be called with interrupts disabled. 676 */ 677 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 678 static inline void __skb_insert(struct sk_buff *newsk, 679 struct sk_buff *prev, struct sk_buff *next, 680 struct sk_buff_head *list) 681 { 682 newsk->next = next; 683 newsk->prev = prev; 684 next->prev = prev->next = newsk; 685 list->qlen++; 686 } 687 688 /** 689 * __skb_queue_after - queue a buffer at the list head 690 * @list: list to use 691 * @prev: place after this buffer 692 * @newsk: buffer to queue 693 * 694 * Queue a buffer int the middle of a list. This function takes no locks 695 * and you must therefore hold required locks before calling it. 696 * 697 * A buffer cannot be placed on two lists at the same time. 698 */ 699 static inline void __skb_queue_after(struct sk_buff_head *list, 700 struct sk_buff *prev, 701 struct sk_buff *newsk) 702 { 703 __skb_insert(newsk, prev, prev->next, list); 704 } 705 706 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 707 struct sk_buff_head *list); 708 709 static inline void __skb_queue_before(struct sk_buff_head *list, 710 struct sk_buff *next, 711 struct sk_buff *newsk) 712 { 713 __skb_insert(newsk, next->prev, next, list); 714 } 715 716 /** 717 * __skb_queue_head - queue a buffer at the list head 718 * @list: list to use 719 * @newsk: buffer to queue 720 * 721 * Queue a buffer at the start of a list. This function takes no locks 722 * and you must therefore hold required locks before calling it. 723 * 724 * A buffer cannot be placed on two lists at the same time. 725 */ 726 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 727 static inline void __skb_queue_head(struct sk_buff_head *list, 728 struct sk_buff *newsk) 729 { 730 __skb_queue_after(list, (struct sk_buff *)list, newsk); 731 } 732 733 /** 734 * __skb_queue_tail - queue a buffer at the list tail 735 * @list: list to use 736 * @newsk: buffer to queue 737 * 738 * Queue a buffer at the end of a list. This function takes no locks 739 * and you must therefore hold required locks before calling it. 740 * 741 * A buffer cannot be placed on two lists at the same time. 742 */ 743 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 744 static inline void __skb_queue_tail(struct sk_buff_head *list, 745 struct sk_buff *newsk) 746 { 747 __skb_queue_before(list, (struct sk_buff *)list, newsk); 748 } 749 750 /* 751 * remove sk_buff from list. _Must_ be called atomically, and with 752 * the list known.. 753 */ 754 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 755 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 756 { 757 struct sk_buff *next, *prev; 758 759 list->qlen--; 760 next = skb->next; 761 prev = skb->prev; 762 skb->next = skb->prev = NULL; 763 next->prev = prev; 764 prev->next = next; 765 } 766 767 /** 768 * __skb_dequeue - remove from the head of the queue 769 * @list: list to dequeue from 770 * 771 * Remove the head of the list. This function does not take any locks 772 * so must be used with appropriate locks held only. The head item is 773 * returned or %NULL if the list is empty. 774 */ 775 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 776 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 777 { 778 struct sk_buff *skb = skb_peek(list); 779 if (skb) 780 __skb_unlink(skb, list); 781 return skb; 782 } 783 784 /** 785 * __skb_dequeue_tail - remove from the tail of the queue 786 * @list: list to dequeue from 787 * 788 * Remove the tail of the list. This function does not take any locks 789 * so must be used with appropriate locks held only. The tail item is 790 * returned or %NULL if the list is empty. 791 */ 792 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 793 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 794 { 795 struct sk_buff *skb = skb_peek_tail(list); 796 if (skb) 797 __skb_unlink(skb, list); 798 return skb; 799 } 800 801 802 static inline int skb_is_nonlinear(const struct sk_buff *skb) 803 { 804 return skb->data_len; 805 } 806 807 static inline unsigned int skb_headlen(const struct sk_buff *skb) 808 { 809 return skb->len - skb->data_len; 810 } 811 812 static inline int skb_pagelen(const struct sk_buff *skb) 813 { 814 int i, len = 0; 815 816 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 817 len += skb_shinfo(skb)->frags[i].size; 818 return len + skb_headlen(skb); 819 } 820 821 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 822 struct page *page, int off, int size) 823 { 824 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 825 826 frag->page = page; 827 frag->page_offset = off; 828 frag->size = size; 829 skb_shinfo(skb)->nr_frags = i + 1; 830 } 831 832 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 833 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 834 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 835 836 #ifdef NET_SKBUFF_DATA_USES_OFFSET 837 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 838 { 839 return skb->head + skb->tail; 840 } 841 842 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 843 { 844 skb->tail = skb->data - skb->head; 845 } 846 847 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 848 { 849 skb_reset_tail_pointer(skb); 850 skb->tail += offset; 851 } 852 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 853 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 854 { 855 return skb->tail; 856 } 857 858 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 859 { 860 skb->tail = skb->data; 861 } 862 863 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 864 { 865 skb->tail = skb->data + offset; 866 } 867 868 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 869 870 /* 871 * Add data to an sk_buff 872 */ 873 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 874 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 875 { 876 unsigned char *tmp = skb_tail_pointer(skb); 877 SKB_LINEAR_ASSERT(skb); 878 skb->tail += len; 879 skb->len += len; 880 return tmp; 881 } 882 883 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 884 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 885 { 886 skb->data -= len; 887 skb->len += len; 888 return skb->data; 889 } 890 891 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 892 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 893 { 894 skb->len -= len; 895 BUG_ON(skb->len < skb->data_len); 896 return skb->data += len; 897 } 898 899 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 900 901 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 902 { 903 if (len > skb_headlen(skb) && 904 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 905 return NULL; 906 skb->len -= len; 907 return skb->data += len; 908 } 909 910 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 911 { 912 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 913 } 914 915 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 916 { 917 if (likely(len <= skb_headlen(skb))) 918 return 1; 919 if (unlikely(len > skb->len)) 920 return 0; 921 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 922 } 923 924 /** 925 * skb_headroom - bytes at buffer head 926 * @skb: buffer to check 927 * 928 * Return the number of bytes of free space at the head of an &sk_buff. 929 */ 930 static inline unsigned int skb_headroom(const struct sk_buff *skb) 931 { 932 return skb->data - skb->head; 933 } 934 935 /** 936 * skb_tailroom - bytes at buffer end 937 * @skb: buffer to check 938 * 939 * Return the number of bytes of free space at the tail of an sk_buff 940 */ 941 static inline int skb_tailroom(const struct sk_buff *skb) 942 { 943 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 944 } 945 946 /** 947 * skb_reserve - adjust headroom 948 * @skb: buffer to alter 949 * @len: bytes to move 950 * 951 * Increase the headroom of an empty &sk_buff by reducing the tail 952 * room. This is only allowed for an empty buffer. 953 */ 954 static inline void skb_reserve(struct sk_buff *skb, int len) 955 { 956 skb->data += len; 957 skb->tail += len; 958 } 959 960 #ifdef NET_SKBUFF_DATA_USES_OFFSET 961 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 962 { 963 return skb->head + skb->transport_header; 964 } 965 966 static inline void skb_reset_transport_header(struct sk_buff *skb) 967 { 968 skb->transport_header = skb->data - skb->head; 969 } 970 971 static inline void skb_set_transport_header(struct sk_buff *skb, 972 const int offset) 973 { 974 skb_reset_transport_header(skb); 975 skb->transport_header += offset; 976 } 977 978 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 979 { 980 return skb->head + skb->network_header; 981 } 982 983 static inline void skb_reset_network_header(struct sk_buff *skb) 984 { 985 skb->network_header = skb->data - skb->head; 986 } 987 988 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 989 { 990 skb_reset_network_header(skb); 991 skb->network_header += offset; 992 } 993 994 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 995 { 996 return skb->head + skb->mac_header; 997 } 998 999 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1000 { 1001 return skb->mac_header != ~0U; 1002 } 1003 1004 static inline void skb_reset_mac_header(struct sk_buff *skb) 1005 { 1006 skb->mac_header = skb->data - skb->head; 1007 } 1008 1009 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1010 { 1011 skb_reset_mac_header(skb); 1012 skb->mac_header += offset; 1013 } 1014 1015 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1016 1017 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1018 { 1019 return skb->transport_header; 1020 } 1021 1022 static inline void skb_reset_transport_header(struct sk_buff *skb) 1023 { 1024 skb->transport_header = skb->data; 1025 } 1026 1027 static inline void skb_set_transport_header(struct sk_buff *skb, 1028 const int offset) 1029 { 1030 skb->transport_header = skb->data + offset; 1031 } 1032 1033 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1034 { 1035 return skb->network_header; 1036 } 1037 1038 static inline void skb_reset_network_header(struct sk_buff *skb) 1039 { 1040 skb->network_header = skb->data; 1041 } 1042 1043 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1044 { 1045 skb->network_header = skb->data + offset; 1046 } 1047 1048 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1049 { 1050 return skb->mac_header; 1051 } 1052 1053 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1054 { 1055 return skb->mac_header != NULL; 1056 } 1057 1058 static inline void skb_reset_mac_header(struct sk_buff *skb) 1059 { 1060 skb->mac_header = skb->data; 1061 } 1062 1063 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1064 { 1065 skb->mac_header = skb->data + offset; 1066 } 1067 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1068 1069 static inline int skb_transport_offset(const struct sk_buff *skb) 1070 { 1071 return skb_transport_header(skb) - skb->data; 1072 } 1073 1074 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1075 { 1076 return skb->transport_header - skb->network_header; 1077 } 1078 1079 static inline int skb_network_offset(const struct sk_buff *skb) 1080 { 1081 return skb_network_header(skb) - skb->data; 1082 } 1083 1084 /* 1085 * CPUs often take a performance hit when accessing unaligned memory 1086 * locations. The actual performance hit varies, it can be small if the 1087 * hardware handles it or large if we have to take an exception and fix it 1088 * in software. 1089 * 1090 * Since an ethernet header is 14 bytes network drivers often end up with 1091 * the IP header at an unaligned offset. The IP header can be aligned by 1092 * shifting the start of the packet by 2 bytes. Drivers should do this 1093 * with: 1094 * 1095 * skb_reserve(NET_IP_ALIGN); 1096 * 1097 * The downside to this alignment of the IP header is that the DMA is now 1098 * unaligned. On some architectures the cost of an unaligned DMA is high 1099 * and this cost outweighs the gains made by aligning the IP header. 1100 * 1101 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1102 * to be overridden. 1103 */ 1104 #ifndef NET_IP_ALIGN 1105 #define NET_IP_ALIGN 2 1106 #endif 1107 1108 /* 1109 * The networking layer reserves some headroom in skb data (via 1110 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1111 * the header has to grow. In the default case, if the header has to grow 1112 * 16 bytes or less we avoid the reallocation. 1113 * 1114 * Unfortunately this headroom changes the DMA alignment of the resulting 1115 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1116 * on some architectures. An architecture can override this value, 1117 * perhaps setting it to a cacheline in size (since that will maintain 1118 * cacheline alignment of the DMA). It must be a power of 2. 1119 * 1120 * Various parts of the networking layer expect at least 16 bytes of 1121 * headroom, you should not reduce this. 1122 */ 1123 #ifndef NET_SKB_PAD 1124 #define NET_SKB_PAD 16 1125 #endif 1126 1127 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1128 1129 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1130 { 1131 if (unlikely(skb->data_len)) { 1132 WARN_ON(1); 1133 return; 1134 } 1135 skb->len = len; 1136 skb_set_tail_pointer(skb, len); 1137 } 1138 1139 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1140 1141 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1142 { 1143 if (skb->data_len) 1144 return ___pskb_trim(skb, len); 1145 __skb_trim(skb, len); 1146 return 0; 1147 } 1148 1149 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1150 { 1151 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1152 } 1153 1154 /** 1155 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1156 * @skb: buffer to alter 1157 * @len: new length 1158 * 1159 * This is identical to pskb_trim except that the caller knows that 1160 * the skb is not cloned so we should never get an error due to out- 1161 * of-memory. 1162 */ 1163 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1164 { 1165 int err = pskb_trim(skb, len); 1166 BUG_ON(err); 1167 } 1168 1169 /** 1170 * skb_orphan - orphan a buffer 1171 * @skb: buffer to orphan 1172 * 1173 * If a buffer currently has an owner then we call the owner's 1174 * destructor function and make the @skb unowned. The buffer continues 1175 * to exist but is no longer charged to its former owner. 1176 */ 1177 static inline void skb_orphan(struct sk_buff *skb) 1178 { 1179 if (skb->destructor) 1180 skb->destructor(skb); 1181 skb->destructor = NULL; 1182 skb->sk = NULL; 1183 } 1184 1185 /** 1186 * __skb_queue_purge - empty a list 1187 * @list: list to empty 1188 * 1189 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1190 * the list and one reference dropped. This function does not take the 1191 * list lock and the caller must hold the relevant locks to use it. 1192 */ 1193 extern void skb_queue_purge(struct sk_buff_head *list); 1194 static inline void __skb_queue_purge(struct sk_buff_head *list) 1195 { 1196 struct sk_buff *skb; 1197 while ((skb = __skb_dequeue(list)) != NULL) 1198 kfree_skb(skb); 1199 } 1200 1201 /** 1202 * __dev_alloc_skb - allocate an skbuff for receiving 1203 * @length: length to allocate 1204 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1205 * 1206 * Allocate a new &sk_buff and assign it a usage count of one. The 1207 * buffer has unspecified headroom built in. Users should allocate 1208 * the headroom they think they need without accounting for the 1209 * built in space. The built in space is used for optimisations. 1210 * 1211 * %NULL is returned if there is no free memory. 1212 */ 1213 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1214 gfp_t gfp_mask) 1215 { 1216 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1217 if (likely(skb)) 1218 skb_reserve(skb, NET_SKB_PAD); 1219 return skb; 1220 } 1221 1222 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1223 1224 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1225 unsigned int length, gfp_t gfp_mask); 1226 1227 /** 1228 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1229 * @dev: network device to receive on 1230 * @length: length to allocate 1231 * 1232 * Allocate a new &sk_buff and assign it a usage count of one. The 1233 * buffer has unspecified headroom built in. Users should allocate 1234 * the headroom they think they need without accounting for the 1235 * built in space. The built in space is used for optimisations. 1236 * 1237 * %NULL is returned if there is no free memory. Although this function 1238 * allocates memory it can be called from an interrupt. 1239 */ 1240 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1241 unsigned int length) 1242 { 1243 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1244 } 1245 1246 /** 1247 * skb_clone_writable - is the header of a clone writable 1248 * @skb: buffer to check 1249 * @len: length up to which to write 1250 * 1251 * Returns true if modifying the header part of the cloned buffer 1252 * does not requires the data to be copied. 1253 */ 1254 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1255 { 1256 return !skb_header_cloned(skb) && 1257 skb_headroom(skb) + len <= skb->hdr_len; 1258 } 1259 1260 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1261 int cloned) 1262 { 1263 int delta = 0; 1264 1265 if (headroom < NET_SKB_PAD) 1266 headroom = NET_SKB_PAD; 1267 if (headroom > skb_headroom(skb)) 1268 delta = headroom - skb_headroom(skb); 1269 1270 if (delta || cloned) 1271 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1272 GFP_ATOMIC); 1273 return 0; 1274 } 1275 1276 /** 1277 * skb_cow - copy header of skb when it is required 1278 * @skb: buffer to cow 1279 * @headroom: needed headroom 1280 * 1281 * If the skb passed lacks sufficient headroom or its data part 1282 * is shared, data is reallocated. If reallocation fails, an error 1283 * is returned and original skb is not changed. 1284 * 1285 * The result is skb with writable area skb->head...skb->tail 1286 * and at least @headroom of space at head. 1287 */ 1288 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1289 { 1290 return __skb_cow(skb, headroom, skb_cloned(skb)); 1291 } 1292 1293 /** 1294 * skb_cow_head - skb_cow but only making the head writable 1295 * @skb: buffer to cow 1296 * @headroom: needed headroom 1297 * 1298 * This function is identical to skb_cow except that we replace the 1299 * skb_cloned check by skb_header_cloned. It should be used when 1300 * you only need to push on some header and do not need to modify 1301 * the data. 1302 */ 1303 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1304 { 1305 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1306 } 1307 1308 /** 1309 * skb_padto - pad an skbuff up to a minimal size 1310 * @skb: buffer to pad 1311 * @len: minimal length 1312 * 1313 * Pads up a buffer to ensure the trailing bytes exist and are 1314 * blanked. If the buffer already contains sufficient data it 1315 * is untouched. Otherwise it is extended. Returns zero on 1316 * success. The skb is freed on error. 1317 */ 1318 1319 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1320 { 1321 unsigned int size = skb->len; 1322 if (likely(size >= len)) 1323 return 0; 1324 return skb_pad(skb, len - size); 1325 } 1326 1327 static inline int skb_add_data(struct sk_buff *skb, 1328 char __user *from, int copy) 1329 { 1330 const int off = skb->len; 1331 1332 if (skb->ip_summed == CHECKSUM_NONE) { 1333 int err = 0; 1334 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1335 copy, 0, &err); 1336 if (!err) { 1337 skb->csum = csum_block_add(skb->csum, csum, off); 1338 return 0; 1339 } 1340 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1341 return 0; 1342 1343 __skb_trim(skb, off); 1344 return -EFAULT; 1345 } 1346 1347 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1348 struct page *page, int off) 1349 { 1350 if (i) { 1351 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1352 1353 return page == frag->page && 1354 off == frag->page_offset + frag->size; 1355 } 1356 return 0; 1357 } 1358 1359 static inline int __skb_linearize(struct sk_buff *skb) 1360 { 1361 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1362 } 1363 1364 /** 1365 * skb_linearize - convert paged skb to linear one 1366 * @skb: buffer to linarize 1367 * 1368 * If there is no free memory -ENOMEM is returned, otherwise zero 1369 * is returned and the old skb data released. 1370 */ 1371 static inline int skb_linearize(struct sk_buff *skb) 1372 { 1373 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1374 } 1375 1376 /** 1377 * skb_linearize_cow - make sure skb is linear and writable 1378 * @skb: buffer to process 1379 * 1380 * If there is no free memory -ENOMEM is returned, otherwise zero 1381 * is returned and the old skb data released. 1382 */ 1383 static inline int skb_linearize_cow(struct sk_buff *skb) 1384 { 1385 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1386 __skb_linearize(skb) : 0; 1387 } 1388 1389 /** 1390 * skb_postpull_rcsum - update checksum for received skb after pull 1391 * @skb: buffer to update 1392 * @start: start of data before pull 1393 * @len: length of data pulled 1394 * 1395 * After doing a pull on a received packet, you need to call this to 1396 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1397 * CHECKSUM_NONE so that it can be recomputed from scratch. 1398 */ 1399 1400 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1401 const void *start, unsigned int len) 1402 { 1403 if (skb->ip_summed == CHECKSUM_COMPLETE) 1404 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1405 } 1406 1407 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1408 1409 /** 1410 * pskb_trim_rcsum - trim received skb and update checksum 1411 * @skb: buffer to trim 1412 * @len: new length 1413 * 1414 * This is exactly the same as pskb_trim except that it ensures the 1415 * checksum of received packets are still valid after the operation. 1416 */ 1417 1418 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1419 { 1420 if (likely(len >= skb->len)) 1421 return 0; 1422 if (skb->ip_summed == CHECKSUM_COMPLETE) 1423 skb->ip_summed = CHECKSUM_NONE; 1424 return __pskb_trim(skb, len); 1425 } 1426 1427 #define skb_queue_walk(queue, skb) \ 1428 for (skb = (queue)->next; \ 1429 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1430 skb = skb->next) 1431 1432 #define skb_queue_walk_safe(queue, skb, tmp) \ 1433 for (skb = (queue)->next, tmp = skb->next; \ 1434 skb != (struct sk_buff *)(queue); \ 1435 skb = tmp, tmp = skb->next) 1436 1437 #define skb_queue_reverse_walk(queue, skb) \ 1438 for (skb = (queue)->prev; \ 1439 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1440 skb = skb->prev) 1441 1442 1443 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1444 int *peeked, int *err); 1445 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1446 int noblock, int *err); 1447 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1448 struct poll_table_struct *wait); 1449 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1450 int offset, struct iovec *to, 1451 int size); 1452 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1453 int hlen, 1454 struct iovec *iov); 1455 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1456 int offset, 1457 struct iovec *from, 1458 int len); 1459 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1460 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1461 unsigned int flags); 1462 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1463 int len, __wsum csum); 1464 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1465 void *to, int len); 1466 extern int skb_store_bits(struct sk_buff *skb, int offset, 1467 const void *from, int len); 1468 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1469 int offset, u8 *to, int len, 1470 __wsum csum); 1471 extern int skb_splice_bits(struct sk_buff *skb, 1472 unsigned int offset, 1473 struct pipe_inode_info *pipe, 1474 unsigned int len, 1475 unsigned int flags); 1476 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1477 extern void skb_split(struct sk_buff *skb, 1478 struct sk_buff *skb1, const u32 len); 1479 1480 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1481 1482 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1483 int len, void *buffer) 1484 { 1485 int hlen = skb_headlen(skb); 1486 1487 if (hlen - offset >= len) 1488 return skb->data + offset; 1489 1490 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1491 return NULL; 1492 1493 return buffer; 1494 } 1495 1496 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1497 void *to, 1498 const unsigned int len) 1499 { 1500 memcpy(to, skb->data, len); 1501 } 1502 1503 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1504 const int offset, void *to, 1505 const unsigned int len) 1506 { 1507 memcpy(to, skb->data + offset, len); 1508 } 1509 1510 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1511 const void *from, 1512 const unsigned int len) 1513 { 1514 memcpy(skb->data, from, len); 1515 } 1516 1517 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1518 const int offset, 1519 const void *from, 1520 const unsigned int len) 1521 { 1522 memcpy(skb->data + offset, from, len); 1523 } 1524 1525 extern void skb_init(void); 1526 1527 /** 1528 * skb_get_timestamp - get timestamp from a skb 1529 * @skb: skb to get stamp from 1530 * @stamp: pointer to struct timeval to store stamp in 1531 * 1532 * Timestamps are stored in the skb as offsets to a base timestamp. 1533 * This function converts the offset back to a struct timeval and stores 1534 * it in stamp. 1535 */ 1536 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1537 { 1538 *stamp = ktime_to_timeval(skb->tstamp); 1539 } 1540 1541 static inline void __net_timestamp(struct sk_buff *skb) 1542 { 1543 skb->tstamp = ktime_get_real(); 1544 } 1545 1546 static inline ktime_t net_timedelta(ktime_t t) 1547 { 1548 return ktime_sub(ktime_get_real(), t); 1549 } 1550 1551 static inline ktime_t net_invalid_timestamp(void) 1552 { 1553 return ktime_set(0, 0); 1554 } 1555 1556 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1557 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1558 1559 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1560 { 1561 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1562 } 1563 1564 /** 1565 * skb_checksum_complete - Calculate checksum of an entire packet 1566 * @skb: packet to process 1567 * 1568 * This function calculates the checksum over the entire packet plus 1569 * the value of skb->csum. The latter can be used to supply the 1570 * checksum of a pseudo header as used by TCP/UDP. It returns the 1571 * checksum. 1572 * 1573 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1574 * this function can be used to verify that checksum on received 1575 * packets. In that case the function should return zero if the 1576 * checksum is correct. In particular, this function will return zero 1577 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1578 * hardware has already verified the correctness of the checksum. 1579 */ 1580 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1581 { 1582 return skb_csum_unnecessary(skb) ? 1583 0 : __skb_checksum_complete(skb); 1584 } 1585 1586 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1587 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1588 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1589 { 1590 if (nfct && atomic_dec_and_test(&nfct->use)) 1591 nf_conntrack_destroy(nfct); 1592 } 1593 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1594 { 1595 if (nfct) 1596 atomic_inc(&nfct->use); 1597 } 1598 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1599 { 1600 if (skb) 1601 atomic_inc(&skb->users); 1602 } 1603 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1604 { 1605 if (skb) 1606 kfree_skb(skb); 1607 } 1608 #endif 1609 #ifdef CONFIG_BRIDGE_NETFILTER 1610 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1611 { 1612 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1613 kfree(nf_bridge); 1614 } 1615 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1616 { 1617 if (nf_bridge) 1618 atomic_inc(&nf_bridge->use); 1619 } 1620 #endif /* CONFIG_BRIDGE_NETFILTER */ 1621 static inline void nf_reset(struct sk_buff *skb) 1622 { 1623 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1624 nf_conntrack_put(skb->nfct); 1625 skb->nfct = NULL; 1626 nf_conntrack_put_reasm(skb->nfct_reasm); 1627 skb->nfct_reasm = NULL; 1628 #endif 1629 #ifdef CONFIG_BRIDGE_NETFILTER 1630 nf_bridge_put(skb->nf_bridge); 1631 skb->nf_bridge = NULL; 1632 #endif 1633 } 1634 1635 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1636 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1637 { 1638 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1639 dst->nfct = src->nfct; 1640 nf_conntrack_get(src->nfct); 1641 dst->nfctinfo = src->nfctinfo; 1642 dst->nfct_reasm = src->nfct_reasm; 1643 nf_conntrack_get_reasm(src->nfct_reasm); 1644 #endif 1645 #ifdef CONFIG_BRIDGE_NETFILTER 1646 dst->nf_bridge = src->nf_bridge; 1647 nf_bridge_get(src->nf_bridge); 1648 #endif 1649 } 1650 1651 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1652 { 1653 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1654 nf_conntrack_put(dst->nfct); 1655 nf_conntrack_put_reasm(dst->nfct_reasm); 1656 #endif 1657 #ifdef CONFIG_BRIDGE_NETFILTER 1658 nf_bridge_put(dst->nf_bridge); 1659 #endif 1660 __nf_copy(dst, src); 1661 } 1662 1663 #ifdef CONFIG_NETWORK_SECMARK 1664 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1665 { 1666 to->secmark = from->secmark; 1667 } 1668 1669 static inline void skb_init_secmark(struct sk_buff *skb) 1670 { 1671 skb->secmark = 0; 1672 } 1673 #else 1674 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1675 { } 1676 1677 static inline void skb_init_secmark(struct sk_buff *skb) 1678 { } 1679 #endif 1680 1681 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1682 { 1683 skb->queue_mapping = queue_mapping; 1684 } 1685 1686 static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1687 { 1688 return skb->queue_mapping; 1689 } 1690 1691 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1692 { 1693 to->queue_mapping = from->queue_mapping; 1694 } 1695 1696 static inline int skb_is_gso(const struct sk_buff *skb) 1697 { 1698 return skb_shinfo(skb)->gso_size; 1699 } 1700 1701 static inline int skb_is_gso_v6(const struct sk_buff *skb) 1702 { 1703 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1704 } 1705 1706 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 1707 1708 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 1709 { 1710 /* LRO sets gso_size but not gso_type, whereas if GSO is really 1711 * wanted then gso_type will be set. */ 1712 struct skb_shared_info *shinfo = skb_shinfo(skb); 1713 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 1714 __skb_warn_lro_forwarding(skb); 1715 return true; 1716 } 1717 return false; 1718 } 1719 1720 static inline void skb_forward_csum(struct sk_buff *skb) 1721 { 1722 /* Unfortunately we don't support this one. Any brave souls? */ 1723 if (skb->ip_summed == CHECKSUM_COMPLETE) 1724 skb->ip_summed = CHECKSUM_NONE; 1725 } 1726 1727 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 1728 #endif /* __KERNEL__ */ 1729 #endif /* _LINUX_SKBUFF_H */ 1730