xref: /linux-6.15/include/linux/skbuff.h (revision 359efcc2)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281  * ovs recirc_id. It will be set to the current chain by tc
282  * and read by ovs to recirc_id.
283  */
284 struct tc_skb_ext {
285 	__u32 chain;
286 };
287 #endif
288 
289 struct sk_buff_head {
290 	/* These two members must be first. */
291 	struct sk_buff	*next;
292 	struct sk_buff	*prev;
293 
294 	__u32		qlen;
295 	spinlock_t	lock;
296 };
297 
298 struct sk_buff;
299 
300 /* To allow 64K frame to be packed as single skb without frag_list we
301  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
302  * buffers which do not start on a page boundary.
303  *
304  * Since GRO uses frags we allocate at least 16 regardless of page
305  * size.
306  */
307 #if (65536/PAGE_SIZE + 1) < 16
308 #define MAX_SKB_FRAGS 16UL
309 #else
310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
311 #endif
312 extern int sysctl_max_skb_frags;
313 
314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
315  * segment using its current segmentation instead.
316  */
317 #define GSO_BY_FRAGS	0xFFFF
318 
319 typedef struct bio_vec skb_frag_t;
320 
321 /**
322  * skb_frag_size() - Returns the size of a skb fragment
323  * @frag: skb fragment
324  */
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->bv_len;
328 }
329 
330 /**
331  * skb_frag_size_set() - Sets the size of a skb fragment
332  * @frag: skb fragment
333  * @size: size of fragment
334  */
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->bv_len = size;
338 }
339 
340 /**
341  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
342  * @frag: skb fragment
343  * @delta: value to add
344  */
345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
346 {
347 	frag->bv_len += delta;
348 }
349 
350 /**
351  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
352  * @frag: skb fragment
353  * @delta: value to subtract
354  */
355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
356 {
357 	frag->bv_len -= delta;
358 }
359 
360 /**
361  * skb_frag_must_loop - Test if %p is a high memory page
362  * @p: fragment's page
363  */
364 static inline bool skb_frag_must_loop(struct page *p)
365 {
366 #if defined(CONFIG_HIGHMEM)
367 	if (PageHighMem(p))
368 		return true;
369 #endif
370 	return false;
371 }
372 
373 /**
374  *	skb_frag_foreach_page - loop over pages in a fragment
375  *
376  *	@f:		skb frag to operate on
377  *	@f_off:		offset from start of f->bv_page
378  *	@f_len:		length from f_off to loop over
379  *	@p:		(temp var) current page
380  *	@p_off:		(temp var) offset from start of current page,
381  *	                           non-zero only on first page.
382  *	@p_len:		(temp var) length in current page,
383  *				   < PAGE_SIZE only on first and last page.
384  *	@copied:	(temp var) length so far, excluding current p_len.
385  *
386  *	A fragment can hold a compound page, in which case per-page
387  *	operations, notably kmap_atomic, must be called for each
388  *	regular page.
389  */
390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
391 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
392 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
393 	     p_len = skb_frag_must_loop(p) ?				\
394 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
395 	     copied = 0;						\
396 	     copied < f_len;						\
397 	     copied += p_len, p++, p_off = 0,				\
398 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
399 
400 #define HAVE_HW_TIME_STAMP
401 
402 /**
403  * struct skb_shared_hwtstamps - hardware time stamps
404  * @hwtstamp:	hardware time stamp transformed into duration
405  *		since arbitrary point in time
406  *
407  * Software time stamps generated by ktime_get_real() are stored in
408  * skb->tstamp.
409  *
410  * hwtstamps can only be compared against other hwtstamps from
411  * the same device.
412  *
413  * This structure is attached to packets as part of the
414  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
415  */
416 struct skb_shared_hwtstamps {
417 	ktime_t	hwtstamp;
418 };
419 
420 /* Definitions for tx_flags in struct skb_shared_info */
421 enum {
422 	/* generate hardware time stamp */
423 	SKBTX_HW_TSTAMP = 1 << 0,
424 
425 	/* generate software time stamp when queueing packet to NIC */
426 	SKBTX_SW_TSTAMP = 1 << 1,
427 
428 	/* device driver is going to provide hardware time stamp */
429 	SKBTX_IN_PROGRESS = 1 << 2,
430 
431 	/* device driver supports TX zero-copy buffers */
432 	SKBTX_DEV_ZEROCOPY = 1 << 3,
433 
434 	/* generate wifi status information (where possible) */
435 	SKBTX_WIFI_STATUS = 1 << 4,
436 
437 	/* This indicates at least one fragment might be overwritten
438 	 * (as in vmsplice(), sendfile() ...)
439 	 * If we need to compute a TX checksum, we'll need to copy
440 	 * all frags to avoid possible bad checksum
441 	 */
442 	SKBTX_SHARED_FRAG = 1 << 5,
443 
444 	/* generate software time stamp when entering packet scheduling */
445 	SKBTX_SCHED_TSTAMP = 1 << 6,
446 };
447 
448 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
449 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
450 				 SKBTX_SCHED_TSTAMP)
451 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
452 
453 /*
454  * The callback notifies userspace to release buffers when skb DMA is done in
455  * lower device, the skb last reference should be 0 when calling this.
456  * The zerocopy_success argument is true if zero copy transmit occurred,
457  * false on data copy or out of memory error caused by data copy attempt.
458  * The ctx field is used to track device context.
459  * The desc field is used to track userspace buffer index.
460  */
461 struct ubuf_info {
462 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
463 	union {
464 		struct {
465 			unsigned long desc;
466 			void *ctx;
467 		};
468 		struct {
469 			u32 id;
470 			u16 len;
471 			u16 zerocopy:1;
472 			u32 bytelen;
473 		};
474 	};
475 	refcount_t refcnt;
476 
477 	struct mmpin {
478 		struct user_struct *user;
479 		unsigned int num_pg;
480 	} mmp;
481 };
482 
483 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
484 
485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
486 void mm_unaccount_pinned_pages(struct mmpin *mmp);
487 
488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
490 					struct ubuf_info *uarg);
491 
492 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
493 {
494 	refcount_inc(&uarg->refcnt);
495 }
496 
497 void sock_zerocopy_put(struct ubuf_info *uarg);
498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
499 
500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
501 
502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
504 			     struct msghdr *msg, int len,
505 			     struct ubuf_info *uarg);
506 
507 /* This data is invariant across clones and lives at
508  * the end of the header data, ie. at skb->end.
509  */
510 struct skb_shared_info {
511 	__u8		__unused;
512 	__u8		meta_len;
513 	__u8		nr_frags;
514 	__u8		tx_flags;
515 	unsigned short	gso_size;
516 	/* Warning: this field is not always filled in (UFO)! */
517 	unsigned short	gso_segs;
518 	struct sk_buff	*frag_list;
519 	struct skb_shared_hwtstamps hwtstamps;
520 	unsigned int	gso_type;
521 	u32		tskey;
522 
523 	/*
524 	 * Warning : all fields before dataref are cleared in __alloc_skb()
525 	 */
526 	atomic_t	dataref;
527 
528 	/* Intermediate layers must ensure that destructor_arg
529 	 * remains valid until skb destructor */
530 	void *		destructor_arg;
531 
532 	/* must be last field, see pskb_expand_head() */
533 	skb_frag_t	frags[MAX_SKB_FRAGS];
534 };
535 
536 /* We divide dataref into two halves.  The higher 16 bits hold references
537  * to the payload part of skb->data.  The lower 16 bits hold references to
538  * the entire skb->data.  A clone of a headerless skb holds the length of
539  * the header in skb->hdr_len.
540  *
541  * All users must obey the rule that the skb->data reference count must be
542  * greater than or equal to the payload reference count.
543  *
544  * Holding a reference to the payload part means that the user does not
545  * care about modifications to the header part of skb->data.
546  */
547 #define SKB_DATAREF_SHIFT 16
548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
549 
550 
551 enum {
552 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
553 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
554 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
555 };
556 
557 enum {
558 	SKB_GSO_TCPV4 = 1 << 0,
559 
560 	/* This indicates the skb is from an untrusted source. */
561 	SKB_GSO_DODGY = 1 << 1,
562 
563 	/* This indicates the tcp segment has CWR set. */
564 	SKB_GSO_TCP_ECN = 1 << 2,
565 
566 	SKB_GSO_TCP_FIXEDID = 1 << 3,
567 
568 	SKB_GSO_TCPV6 = 1 << 4,
569 
570 	SKB_GSO_FCOE = 1 << 5,
571 
572 	SKB_GSO_GRE = 1 << 6,
573 
574 	SKB_GSO_GRE_CSUM = 1 << 7,
575 
576 	SKB_GSO_IPXIP4 = 1 << 8,
577 
578 	SKB_GSO_IPXIP6 = 1 << 9,
579 
580 	SKB_GSO_UDP_TUNNEL = 1 << 10,
581 
582 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
583 
584 	SKB_GSO_PARTIAL = 1 << 12,
585 
586 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
587 
588 	SKB_GSO_SCTP = 1 << 14,
589 
590 	SKB_GSO_ESP = 1 << 15,
591 
592 	SKB_GSO_UDP = 1 << 16,
593 
594 	SKB_GSO_UDP_L4 = 1 << 17,
595 };
596 
597 #if BITS_PER_LONG > 32
598 #define NET_SKBUFF_DATA_USES_OFFSET 1
599 #endif
600 
601 #ifdef NET_SKBUFF_DATA_USES_OFFSET
602 typedef unsigned int sk_buff_data_t;
603 #else
604 typedef unsigned char *sk_buff_data_t;
605 #endif
606 
607 /**
608  *	struct sk_buff - socket buffer
609  *	@next: Next buffer in list
610  *	@prev: Previous buffer in list
611  *	@tstamp: Time we arrived/left
612  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
613  *	@sk: Socket we are owned by
614  *	@dev: Device we arrived on/are leaving by
615  *	@cb: Control buffer. Free for use by every layer. Put private vars here
616  *	@_skb_refdst: destination entry (with norefcount bit)
617  *	@sp: the security path, used for xfrm
618  *	@len: Length of actual data
619  *	@data_len: Data length
620  *	@mac_len: Length of link layer header
621  *	@hdr_len: writable header length of cloned skb
622  *	@csum: Checksum (must include start/offset pair)
623  *	@csum_start: Offset from skb->head where checksumming should start
624  *	@csum_offset: Offset from csum_start where checksum should be stored
625  *	@priority: Packet queueing priority
626  *	@ignore_df: allow local fragmentation
627  *	@cloned: Head may be cloned (check refcnt to be sure)
628  *	@ip_summed: Driver fed us an IP checksum
629  *	@nohdr: Payload reference only, must not modify header
630  *	@pkt_type: Packet class
631  *	@fclone: skbuff clone status
632  *	@ipvs_property: skbuff is owned by ipvs
633  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
634  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
635  *	@tc_skip_classify: do not classify packet. set by IFB device
636  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
637  *	@tc_redirected: packet was redirected by a tc action
638  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
639  *	@peeked: this packet has been seen already, so stats have been
640  *		done for it, don't do them again
641  *	@nf_trace: netfilter packet trace flag
642  *	@protocol: Packet protocol from driver
643  *	@destructor: Destruct function
644  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
645  *	@_nfct: Associated connection, if any (with nfctinfo bits)
646  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
647  *	@skb_iif: ifindex of device we arrived on
648  *	@tc_index: Traffic control index
649  *	@hash: the packet hash
650  *	@queue_mapping: Queue mapping for multiqueue devices
651  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
652  *	@active_extensions: active extensions (skb_ext_id types)
653  *	@ndisc_nodetype: router type (from link layer)
654  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
655  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
656  *		ports.
657  *	@sw_hash: indicates hash was computed in software stack
658  *	@wifi_acked_valid: wifi_acked was set
659  *	@wifi_acked: whether frame was acked on wifi or not
660  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
661  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
662  *	@dst_pending_confirm: need to confirm neighbour
663  *	@decrypted: Decrypted SKB
664  *	@napi_id: id of the NAPI struct this skb came from
665  *	@secmark: security marking
666  *	@mark: Generic packet mark
667  *	@vlan_proto: vlan encapsulation protocol
668  *	@vlan_tci: vlan tag control information
669  *	@inner_protocol: Protocol (encapsulation)
670  *	@inner_transport_header: Inner transport layer header (encapsulation)
671  *	@inner_network_header: Network layer header (encapsulation)
672  *	@inner_mac_header: Link layer header (encapsulation)
673  *	@transport_header: Transport layer header
674  *	@network_header: Network layer header
675  *	@mac_header: Link layer header
676  *	@tail: Tail pointer
677  *	@end: End pointer
678  *	@head: Head of buffer
679  *	@data: Data head pointer
680  *	@truesize: Buffer size
681  *	@users: User count - see {datagram,tcp}.c
682  *	@extensions: allocated extensions, valid if active_extensions is nonzero
683  */
684 
685 struct sk_buff {
686 	union {
687 		struct {
688 			/* These two members must be first. */
689 			struct sk_buff		*next;
690 			struct sk_buff		*prev;
691 
692 			union {
693 				struct net_device	*dev;
694 				/* Some protocols might use this space to store information,
695 				 * while device pointer would be NULL.
696 				 * UDP receive path is one user.
697 				 */
698 				unsigned long		dev_scratch;
699 			};
700 		};
701 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
702 		struct list_head	list;
703 	};
704 
705 	union {
706 		struct sock		*sk;
707 		int			ip_defrag_offset;
708 	};
709 
710 	union {
711 		ktime_t		tstamp;
712 		u64		skb_mstamp_ns; /* earliest departure time */
713 	};
714 	/*
715 	 * This is the control buffer. It is free to use for every
716 	 * layer. Please put your private variables there. If you
717 	 * want to keep them across layers you have to do a skb_clone()
718 	 * first. This is owned by whoever has the skb queued ATM.
719 	 */
720 	char			cb[48] __aligned(8);
721 
722 	union {
723 		struct {
724 			unsigned long	_skb_refdst;
725 			void		(*destructor)(struct sk_buff *skb);
726 		};
727 		struct list_head	tcp_tsorted_anchor;
728 	};
729 
730 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
731 	unsigned long		 _nfct;
732 #endif
733 	unsigned int		len,
734 				data_len;
735 	__u16			mac_len,
736 				hdr_len;
737 
738 	/* Following fields are _not_ copied in __copy_skb_header()
739 	 * Note that queue_mapping is here mostly to fill a hole.
740 	 */
741 	__u16			queue_mapping;
742 
743 /* if you move cloned around you also must adapt those constants */
744 #ifdef __BIG_ENDIAN_BITFIELD
745 #define CLONED_MASK	(1 << 7)
746 #else
747 #define CLONED_MASK	1
748 #endif
749 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
750 
751 	__u8			__cloned_offset[0];
752 	__u8			cloned:1,
753 				nohdr:1,
754 				fclone:2,
755 				peeked:1,
756 				head_frag:1,
757 				pfmemalloc:1;
758 #ifdef CONFIG_SKB_EXTENSIONS
759 	__u8			active_extensions;
760 #endif
761 	/* fields enclosed in headers_start/headers_end are copied
762 	 * using a single memcpy() in __copy_skb_header()
763 	 */
764 	/* private: */
765 	__u32			headers_start[0];
766 	/* public: */
767 
768 /* if you move pkt_type around you also must adapt those constants */
769 #ifdef __BIG_ENDIAN_BITFIELD
770 #define PKT_TYPE_MAX	(7 << 5)
771 #else
772 #define PKT_TYPE_MAX	7
773 #endif
774 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
775 
776 	__u8			__pkt_type_offset[0];
777 	__u8			pkt_type:3;
778 	__u8			ignore_df:1;
779 	__u8			nf_trace:1;
780 	__u8			ip_summed:2;
781 	__u8			ooo_okay:1;
782 
783 	__u8			l4_hash:1;
784 	__u8			sw_hash:1;
785 	__u8			wifi_acked_valid:1;
786 	__u8			wifi_acked:1;
787 	__u8			no_fcs:1;
788 	/* Indicates the inner headers are valid in the skbuff. */
789 	__u8			encapsulation:1;
790 	__u8			encap_hdr_csum:1;
791 	__u8			csum_valid:1;
792 
793 #ifdef __BIG_ENDIAN_BITFIELD
794 #define PKT_VLAN_PRESENT_BIT	7
795 #else
796 #define PKT_VLAN_PRESENT_BIT	0
797 #endif
798 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
799 	__u8			__pkt_vlan_present_offset[0];
800 	__u8			vlan_present:1;
801 	__u8			csum_complete_sw:1;
802 	__u8			csum_level:2;
803 	__u8			csum_not_inet:1;
804 	__u8			dst_pending_confirm:1;
805 #ifdef CONFIG_IPV6_NDISC_NODETYPE
806 	__u8			ndisc_nodetype:2;
807 #endif
808 
809 	__u8			ipvs_property:1;
810 	__u8			inner_protocol_type:1;
811 	__u8			remcsum_offload:1;
812 #ifdef CONFIG_NET_SWITCHDEV
813 	__u8			offload_fwd_mark:1;
814 	__u8			offload_l3_fwd_mark:1;
815 #endif
816 #ifdef CONFIG_NET_CLS_ACT
817 	__u8			tc_skip_classify:1;
818 	__u8			tc_at_ingress:1;
819 	__u8			tc_redirected:1;
820 	__u8			tc_from_ingress:1;
821 #endif
822 #ifdef CONFIG_TLS_DEVICE
823 	__u8			decrypted:1;
824 #endif
825 
826 #ifdef CONFIG_NET_SCHED
827 	__u16			tc_index;	/* traffic control index */
828 #endif
829 
830 	union {
831 		__wsum		csum;
832 		struct {
833 			__u16	csum_start;
834 			__u16	csum_offset;
835 		};
836 	};
837 	__u32			priority;
838 	int			skb_iif;
839 	__u32			hash;
840 	__be16			vlan_proto;
841 	__u16			vlan_tci;
842 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
843 	union {
844 		unsigned int	napi_id;
845 		unsigned int	sender_cpu;
846 	};
847 #endif
848 #ifdef CONFIG_NETWORK_SECMARK
849 	__u32		secmark;
850 #endif
851 
852 	union {
853 		__u32		mark;
854 		__u32		reserved_tailroom;
855 	};
856 
857 	union {
858 		__be16		inner_protocol;
859 		__u8		inner_ipproto;
860 	};
861 
862 	__u16			inner_transport_header;
863 	__u16			inner_network_header;
864 	__u16			inner_mac_header;
865 
866 	__be16			protocol;
867 	__u16			transport_header;
868 	__u16			network_header;
869 	__u16			mac_header;
870 
871 	/* private: */
872 	__u32			headers_end[0];
873 	/* public: */
874 
875 	/* These elements must be at the end, see alloc_skb() for details.  */
876 	sk_buff_data_t		tail;
877 	sk_buff_data_t		end;
878 	unsigned char		*head,
879 				*data;
880 	unsigned int		truesize;
881 	refcount_t		users;
882 
883 #ifdef CONFIG_SKB_EXTENSIONS
884 	/* only useable after checking ->active_extensions != 0 */
885 	struct skb_ext		*extensions;
886 #endif
887 };
888 
889 #ifdef __KERNEL__
890 /*
891  *	Handling routines are only of interest to the kernel
892  */
893 
894 #define SKB_ALLOC_FCLONE	0x01
895 #define SKB_ALLOC_RX		0x02
896 #define SKB_ALLOC_NAPI		0x04
897 
898 /**
899  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
900  * @skb: buffer
901  */
902 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
903 {
904 	return unlikely(skb->pfmemalloc);
905 }
906 
907 /*
908  * skb might have a dst pointer attached, refcounted or not.
909  * _skb_refdst low order bit is set if refcount was _not_ taken
910  */
911 #define SKB_DST_NOREF	1UL
912 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
913 
914 /**
915  * skb_dst - returns skb dst_entry
916  * @skb: buffer
917  *
918  * Returns skb dst_entry, regardless of reference taken or not.
919  */
920 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
921 {
922 	/* If refdst was not refcounted, check we still are in a
923 	 * rcu_read_lock section
924 	 */
925 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
926 		!rcu_read_lock_held() &&
927 		!rcu_read_lock_bh_held());
928 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
929 }
930 
931 /**
932  * skb_dst_set - sets skb dst
933  * @skb: buffer
934  * @dst: dst entry
935  *
936  * Sets skb dst, assuming a reference was taken on dst and should
937  * be released by skb_dst_drop()
938  */
939 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
940 {
941 	skb->_skb_refdst = (unsigned long)dst;
942 }
943 
944 /**
945  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
946  * @skb: buffer
947  * @dst: dst entry
948  *
949  * Sets skb dst, assuming a reference was not taken on dst.
950  * If dst entry is cached, we do not take reference and dst_release
951  * will be avoided by refdst_drop. If dst entry is not cached, we take
952  * reference, so that last dst_release can destroy the dst immediately.
953  */
954 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
955 {
956 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
957 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
958 }
959 
960 /**
961  * skb_dst_is_noref - Test if skb dst isn't refcounted
962  * @skb: buffer
963  */
964 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
965 {
966 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
967 }
968 
969 /**
970  * skb_rtable - Returns the skb &rtable
971  * @skb: buffer
972  */
973 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
974 {
975 	return (struct rtable *)skb_dst(skb);
976 }
977 
978 /* For mangling skb->pkt_type from user space side from applications
979  * such as nft, tc, etc, we only allow a conservative subset of
980  * possible pkt_types to be set.
981 */
982 static inline bool skb_pkt_type_ok(u32 ptype)
983 {
984 	return ptype <= PACKET_OTHERHOST;
985 }
986 
987 /**
988  * skb_napi_id - Returns the skb's NAPI id
989  * @skb: buffer
990  */
991 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
992 {
993 #ifdef CONFIG_NET_RX_BUSY_POLL
994 	return skb->napi_id;
995 #else
996 	return 0;
997 #endif
998 }
999 
1000 /**
1001  * skb_unref - decrement the skb's reference count
1002  * @skb: buffer
1003  *
1004  * Returns true if we can free the skb.
1005  */
1006 static inline bool skb_unref(struct sk_buff *skb)
1007 {
1008 	if (unlikely(!skb))
1009 		return false;
1010 	if (likely(refcount_read(&skb->users) == 1))
1011 		smp_rmb();
1012 	else if (likely(!refcount_dec_and_test(&skb->users)))
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 void skb_release_head_state(struct sk_buff *skb);
1019 void kfree_skb(struct sk_buff *skb);
1020 void kfree_skb_list(struct sk_buff *segs);
1021 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1022 void skb_tx_error(struct sk_buff *skb);
1023 void consume_skb(struct sk_buff *skb);
1024 void __consume_stateless_skb(struct sk_buff *skb);
1025 void  __kfree_skb(struct sk_buff *skb);
1026 extern struct kmem_cache *skbuff_head_cache;
1027 
1028 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1029 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1030 		      bool *fragstolen, int *delta_truesize);
1031 
1032 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1033 			    int node);
1034 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1035 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1036 struct sk_buff *build_skb_around(struct sk_buff *skb,
1037 				 void *data, unsigned int frag_size);
1038 
1039 /**
1040  * alloc_skb - allocate a network buffer
1041  * @size: size to allocate
1042  * @priority: allocation mask
1043  *
1044  * This function is a convenient wrapper around __alloc_skb().
1045  */
1046 static inline struct sk_buff *alloc_skb(unsigned int size,
1047 					gfp_t priority)
1048 {
1049 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1050 }
1051 
1052 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1053 				     unsigned long data_len,
1054 				     int max_page_order,
1055 				     int *errcode,
1056 				     gfp_t gfp_mask);
1057 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1058 
1059 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1060 struct sk_buff_fclones {
1061 	struct sk_buff	skb1;
1062 
1063 	struct sk_buff	skb2;
1064 
1065 	refcount_t	fclone_ref;
1066 };
1067 
1068 /**
1069  *	skb_fclone_busy - check if fclone is busy
1070  *	@sk: socket
1071  *	@skb: buffer
1072  *
1073  * Returns true if skb is a fast clone, and its clone is not freed.
1074  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1075  * so we also check that this didnt happen.
1076  */
1077 static inline bool skb_fclone_busy(const struct sock *sk,
1078 				   const struct sk_buff *skb)
1079 {
1080 	const struct sk_buff_fclones *fclones;
1081 
1082 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1083 
1084 	return skb->fclone == SKB_FCLONE_ORIG &&
1085 	       refcount_read(&fclones->fclone_ref) > 1 &&
1086 	       fclones->skb2.sk == sk;
1087 }
1088 
1089 /**
1090  * alloc_skb_fclone - allocate a network buffer from fclone cache
1091  * @size: size to allocate
1092  * @priority: allocation mask
1093  *
1094  * This function is a convenient wrapper around __alloc_skb().
1095  */
1096 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1097 					       gfp_t priority)
1098 {
1099 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1100 }
1101 
1102 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1103 void skb_headers_offset_update(struct sk_buff *skb, int off);
1104 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1105 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1106 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1107 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1108 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1109 				   gfp_t gfp_mask, bool fclone);
1110 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1111 					  gfp_t gfp_mask)
1112 {
1113 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1114 }
1115 
1116 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1117 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1118 				     unsigned int headroom);
1119 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1120 				int newtailroom, gfp_t priority);
1121 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1122 				     int offset, int len);
1123 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1124 			      int offset, int len);
1125 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1126 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1127 
1128 /**
1129  *	skb_pad			-	zero pad the tail of an skb
1130  *	@skb: buffer to pad
1131  *	@pad: space to pad
1132  *
1133  *	Ensure that a buffer is followed by a padding area that is zero
1134  *	filled. Used by network drivers which may DMA or transfer data
1135  *	beyond the buffer end onto the wire.
1136  *
1137  *	May return error in out of memory cases. The skb is freed on error.
1138  */
1139 static inline int skb_pad(struct sk_buff *skb, int pad)
1140 {
1141 	return __skb_pad(skb, pad, true);
1142 }
1143 #define dev_kfree_skb(a)	consume_skb(a)
1144 
1145 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1146 			 int offset, size_t size);
1147 
1148 struct skb_seq_state {
1149 	__u32		lower_offset;
1150 	__u32		upper_offset;
1151 	__u32		frag_idx;
1152 	__u32		stepped_offset;
1153 	struct sk_buff	*root_skb;
1154 	struct sk_buff	*cur_skb;
1155 	__u8		*frag_data;
1156 };
1157 
1158 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1159 			  unsigned int to, struct skb_seq_state *st);
1160 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1161 			  struct skb_seq_state *st);
1162 void skb_abort_seq_read(struct skb_seq_state *st);
1163 
1164 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1165 			   unsigned int to, struct ts_config *config);
1166 
1167 /*
1168  * Packet hash types specify the type of hash in skb_set_hash.
1169  *
1170  * Hash types refer to the protocol layer addresses which are used to
1171  * construct a packet's hash. The hashes are used to differentiate or identify
1172  * flows of the protocol layer for the hash type. Hash types are either
1173  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1174  *
1175  * Properties of hashes:
1176  *
1177  * 1) Two packets in different flows have different hash values
1178  * 2) Two packets in the same flow should have the same hash value
1179  *
1180  * A hash at a higher layer is considered to be more specific. A driver should
1181  * set the most specific hash possible.
1182  *
1183  * A driver cannot indicate a more specific hash than the layer at which a hash
1184  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1185  *
1186  * A driver may indicate a hash level which is less specific than the
1187  * actual layer the hash was computed on. For instance, a hash computed
1188  * at L4 may be considered an L3 hash. This should only be done if the
1189  * driver can't unambiguously determine that the HW computed the hash at
1190  * the higher layer. Note that the "should" in the second property above
1191  * permits this.
1192  */
1193 enum pkt_hash_types {
1194 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1195 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1196 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1197 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1198 };
1199 
1200 static inline void skb_clear_hash(struct sk_buff *skb)
1201 {
1202 	skb->hash = 0;
1203 	skb->sw_hash = 0;
1204 	skb->l4_hash = 0;
1205 }
1206 
1207 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1208 {
1209 	if (!skb->l4_hash)
1210 		skb_clear_hash(skb);
1211 }
1212 
1213 static inline void
1214 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1215 {
1216 	skb->l4_hash = is_l4;
1217 	skb->sw_hash = is_sw;
1218 	skb->hash = hash;
1219 }
1220 
1221 static inline void
1222 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1223 {
1224 	/* Used by drivers to set hash from HW */
1225 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1226 }
1227 
1228 static inline void
1229 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1230 {
1231 	__skb_set_hash(skb, hash, true, is_l4);
1232 }
1233 
1234 void __skb_get_hash(struct sk_buff *skb);
1235 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1236 u32 skb_get_poff(const struct sk_buff *skb);
1237 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1238 		   const struct flow_keys_basic *keys, int hlen);
1239 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1240 			    void *data, int hlen_proto);
1241 
1242 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1243 					int thoff, u8 ip_proto)
1244 {
1245 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1246 }
1247 
1248 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1249 			     const struct flow_dissector_key *key,
1250 			     unsigned int key_count);
1251 
1252 #ifdef CONFIG_NET
1253 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1254 				  union bpf_attr __user *uattr);
1255 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1256 				       struct bpf_prog *prog);
1257 
1258 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1259 #else
1260 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1261 						union bpf_attr __user *uattr)
1262 {
1263 	return -EOPNOTSUPP;
1264 }
1265 
1266 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1267 						     struct bpf_prog *prog)
1268 {
1269 	return -EOPNOTSUPP;
1270 }
1271 
1272 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1273 {
1274 	return -EOPNOTSUPP;
1275 }
1276 #endif
1277 
1278 struct bpf_flow_dissector;
1279 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1280 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1281 
1282 bool __skb_flow_dissect(const struct net *net,
1283 			const struct sk_buff *skb,
1284 			struct flow_dissector *flow_dissector,
1285 			void *target_container,
1286 			void *data, __be16 proto, int nhoff, int hlen,
1287 			unsigned int flags);
1288 
1289 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1290 				    struct flow_dissector *flow_dissector,
1291 				    void *target_container, unsigned int flags)
1292 {
1293 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1294 				  target_container, NULL, 0, 0, 0, flags);
1295 }
1296 
1297 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1298 					      struct flow_keys *flow,
1299 					      unsigned int flags)
1300 {
1301 	memset(flow, 0, sizeof(*flow));
1302 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1303 				  flow, NULL, 0, 0, 0, flags);
1304 }
1305 
1306 static inline bool
1307 skb_flow_dissect_flow_keys_basic(const struct net *net,
1308 				 const struct sk_buff *skb,
1309 				 struct flow_keys_basic *flow, void *data,
1310 				 __be16 proto, int nhoff, int hlen,
1311 				 unsigned int flags)
1312 {
1313 	memset(flow, 0, sizeof(*flow));
1314 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1315 				  data, proto, nhoff, hlen, flags);
1316 }
1317 
1318 void skb_flow_dissect_meta(const struct sk_buff *skb,
1319 			   struct flow_dissector *flow_dissector,
1320 			   void *target_container);
1321 
1322 /* Gets a skb connection tracking info, ctinfo map should be a
1323  * a map of mapsize to translate enum ip_conntrack_info states
1324  * to user states.
1325  */
1326 void
1327 skb_flow_dissect_ct(const struct sk_buff *skb,
1328 		    struct flow_dissector *flow_dissector,
1329 		    void *target_container,
1330 		    u16 *ctinfo_map,
1331 		    size_t mapsize);
1332 void
1333 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1334 			     struct flow_dissector *flow_dissector,
1335 			     void *target_container);
1336 
1337 static inline __u32 skb_get_hash(struct sk_buff *skb)
1338 {
1339 	if (!skb->l4_hash && !skb->sw_hash)
1340 		__skb_get_hash(skb);
1341 
1342 	return skb->hash;
1343 }
1344 
1345 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1346 {
1347 	if (!skb->l4_hash && !skb->sw_hash) {
1348 		struct flow_keys keys;
1349 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1350 
1351 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1352 	}
1353 
1354 	return skb->hash;
1355 }
1356 
1357 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1358 
1359 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1360 {
1361 	return skb->hash;
1362 }
1363 
1364 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1365 {
1366 	to->hash = from->hash;
1367 	to->sw_hash = from->sw_hash;
1368 	to->l4_hash = from->l4_hash;
1369 };
1370 
1371 static inline void skb_copy_decrypted(struct sk_buff *to,
1372 				      const struct sk_buff *from)
1373 {
1374 #ifdef CONFIG_TLS_DEVICE
1375 	to->decrypted = from->decrypted;
1376 #endif
1377 }
1378 
1379 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1380 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1381 {
1382 	return skb->head + skb->end;
1383 }
1384 
1385 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1386 {
1387 	return skb->end;
1388 }
1389 #else
1390 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1391 {
1392 	return skb->end;
1393 }
1394 
1395 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1396 {
1397 	return skb->end - skb->head;
1398 }
1399 #endif
1400 
1401 /* Internal */
1402 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1403 
1404 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1405 {
1406 	return &skb_shinfo(skb)->hwtstamps;
1407 }
1408 
1409 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1410 {
1411 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1412 
1413 	return is_zcopy ? skb_uarg(skb) : NULL;
1414 }
1415 
1416 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1417 				 bool *have_ref)
1418 {
1419 	if (skb && uarg && !skb_zcopy(skb)) {
1420 		if (unlikely(have_ref && *have_ref))
1421 			*have_ref = false;
1422 		else
1423 			sock_zerocopy_get(uarg);
1424 		skb_shinfo(skb)->destructor_arg = uarg;
1425 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1426 	}
1427 }
1428 
1429 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1430 {
1431 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1432 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1433 }
1434 
1435 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1436 {
1437 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1438 }
1439 
1440 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1441 {
1442 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1443 }
1444 
1445 /* Release a reference on a zerocopy structure */
1446 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1447 {
1448 	struct ubuf_info *uarg = skb_zcopy(skb);
1449 
1450 	if (uarg) {
1451 		if (skb_zcopy_is_nouarg(skb)) {
1452 			/* no notification callback */
1453 		} else if (uarg->callback == sock_zerocopy_callback) {
1454 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1455 			sock_zerocopy_put(uarg);
1456 		} else {
1457 			uarg->callback(uarg, zerocopy);
1458 		}
1459 
1460 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1461 	}
1462 }
1463 
1464 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1465 static inline void skb_zcopy_abort(struct sk_buff *skb)
1466 {
1467 	struct ubuf_info *uarg = skb_zcopy(skb);
1468 
1469 	if (uarg) {
1470 		sock_zerocopy_put_abort(uarg, false);
1471 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1472 	}
1473 }
1474 
1475 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1476 {
1477 	skb->next = NULL;
1478 }
1479 
1480 static inline void skb_list_del_init(struct sk_buff *skb)
1481 {
1482 	__list_del_entry(&skb->list);
1483 	skb_mark_not_on_list(skb);
1484 }
1485 
1486 /**
1487  *	skb_queue_empty - check if a queue is empty
1488  *	@list: queue head
1489  *
1490  *	Returns true if the queue is empty, false otherwise.
1491  */
1492 static inline int skb_queue_empty(const struct sk_buff_head *list)
1493 {
1494 	return list->next == (const struct sk_buff *) list;
1495 }
1496 
1497 /**
1498  *	skb_queue_is_last - check if skb is the last entry in the queue
1499  *	@list: queue head
1500  *	@skb: buffer
1501  *
1502  *	Returns true if @skb is the last buffer on the list.
1503  */
1504 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1505 				     const struct sk_buff *skb)
1506 {
1507 	return skb->next == (const struct sk_buff *) list;
1508 }
1509 
1510 /**
1511  *	skb_queue_is_first - check if skb is the first entry in the queue
1512  *	@list: queue head
1513  *	@skb: buffer
1514  *
1515  *	Returns true if @skb is the first buffer on the list.
1516  */
1517 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1518 				      const struct sk_buff *skb)
1519 {
1520 	return skb->prev == (const struct sk_buff *) list;
1521 }
1522 
1523 /**
1524  *	skb_queue_next - return the next packet in the queue
1525  *	@list: queue head
1526  *	@skb: current buffer
1527  *
1528  *	Return the next packet in @list after @skb.  It is only valid to
1529  *	call this if skb_queue_is_last() evaluates to false.
1530  */
1531 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1532 					     const struct sk_buff *skb)
1533 {
1534 	/* This BUG_ON may seem severe, but if we just return then we
1535 	 * are going to dereference garbage.
1536 	 */
1537 	BUG_ON(skb_queue_is_last(list, skb));
1538 	return skb->next;
1539 }
1540 
1541 /**
1542  *	skb_queue_prev - return the prev packet in the queue
1543  *	@list: queue head
1544  *	@skb: current buffer
1545  *
1546  *	Return the prev packet in @list before @skb.  It is only valid to
1547  *	call this if skb_queue_is_first() evaluates to false.
1548  */
1549 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1550 					     const struct sk_buff *skb)
1551 {
1552 	/* This BUG_ON may seem severe, but if we just return then we
1553 	 * are going to dereference garbage.
1554 	 */
1555 	BUG_ON(skb_queue_is_first(list, skb));
1556 	return skb->prev;
1557 }
1558 
1559 /**
1560  *	skb_get - reference buffer
1561  *	@skb: buffer to reference
1562  *
1563  *	Makes another reference to a socket buffer and returns a pointer
1564  *	to the buffer.
1565  */
1566 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1567 {
1568 	refcount_inc(&skb->users);
1569 	return skb;
1570 }
1571 
1572 /*
1573  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1574  */
1575 
1576 /**
1577  *	skb_cloned - is the buffer a clone
1578  *	@skb: buffer to check
1579  *
1580  *	Returns true if the buffer was generated with skb_clone() and is
1581  *	one of multiple shared copies of the buffer. Cloned buffers are
1582  *	shared data so must not be written to under normal circumstances.
1583  */
1584 static inline int skb_cloned(const struct sk_buff *skb)
1585 {
1586 	return skb->cloned &&
1587 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1588 }
1589 
1590 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1591 {
1592 	might_sleep_if(gfpflags_allow_blocking(pri));
1593 
1594 	if (skb_cloned(skb))
1595 		return pskb_expand_head(skb, 0, 0, pri);
1596 
1597 	return 0;
1598 }
1599 
1600 /**
1601  *	skb_header_cloned - is the header a clone
1602  *	@skb: buffer to check
1603  *
1604  *	Returns true if modifying the header part of the buffer requires
1605  *	the data to be copied.
1606  */
1607 static inline int skb_header_cloned(const struct sk_buff *skb)
1608 {
1609 	int dataref;
1610 
1611 	if (!skb->cloned)
1612 		return 0;
1613 
1614 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1615 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1616 	return dataref != 1;
1617 }
1618 
1619 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1620 {
1621 	might_sleep_if(gfpflags_allow_blocking(pri));
1622 
1623 	if (skb_header_cloned(skb))
1624 		return pskb_expand_head(skb, 0, 0, pri);
1625 
1626 	return 0;
1627 }
1628 
1629 /**
1630  *	__skb_header_release - release reference to header
1631  *	@skb: buffer to operate on
1632  */
1633 static inline void __skb_header_release(struct sk_buff *skb)
1634 {
1635 	skb->nohdr = 1;
1636 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1637 }
1638 
1639 
1640 /**
1641  *	skb_shared - is the buffer shared
1642  *	@skb: buffer to check
1643  *
1644  *	Returns true if more than one person has a reference to this
1645  *	buffer.
1646  */
1647 static inline int skb_shared(const struct sk_buff *skb)
1648 {
1649 	return refcount_read(&skb->users) != 1;
1650 }
1651 
1652 /**
1653  *	skb_share_check - check if buffer is shared and if so clone it
1654  *	@skb: buffer to check
1655  *	@pri: priority for memory allocation
1656  *
1657  *	If the buffer is shared the buffer is cloned and the old copy
1658  *	drops a reference. A new clone with a single reference is returned.
1659  *	If the buffer is not shared the original buffer is returned. When
1660  *	being called from interrupt status or with spinlocks held pri must
1661  *	be GFP_ATOMIC.
1662  *
1663  *	NULL is returned on a memory allocation failure.
1664  */
1665 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1666 {
1667 	might_sleep_if(gfpflags_allow_blocking(pri));
1668 	if (skb_shared(skb)) {
1669 		struct sk_buff *nskb = skb_clone(skb, pri);
1670 
1671 		if (likely(nskb))
1672 			consume_skb(skb);
1673 		else
1674 			kfree_skb(skb);
1675 		skb = nskb;
1676 	}
1677 	return skb;
1678 }
1679 
1680 /*
1681  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1682  *	packets to handle cases where we have a local reader and forward
1683  *	and a couple of other messy ones. The normal one is tcpdumping
1684  *	a packet thats being forwarded.
1685  */
1686 
1687 /**
1688  *	skb_unshare - make a copy of a shared buffer
1689  *	@skb: buffer to check
1690  *	@pri: priority for memory allocation
1691  *
1692  *	If the socket buffer is a clone then this function creates a new
1693  *	copy of the data, drops a reference count on the old copy and returns
1694  *	the new copy with the reference count at 1. If the buffer is not a clone
1695  *	the original buffer is returned. When called with a spinlock held or
1696  *	from interrupt state @pri must be %GFP_ATOMIC
1697  *
1698  *	%NULL is returned on a memory allocation failure.
1699  */
1700 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1701 					  gfp_t pri)
1702 {
1703 	might_sleep_if(gfpflags_allow_blocking(pri));
1704 	if (skb_cloned(skb)) {
1705 		struct sk_buff *nskb = skb_copy(skb, pri);
1706 
1707 		/* Free our shared copy */
1708 		if (likely(nskb))
1709 			consume_skb(skb);
1710 		else
1711 			kfree_skb(skb);
1712 		skb = nskb;
1713 	}
1714 	return skb;
1715 }
1716 
1717 /**
1718  *	skb_peek - peek at the head of an &sk_buff_head
1719  *	@list_: list to peek at
1720  *
1721  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1722  *	be careful with this one. A peek leaves the buffer on the
1723  *	list and someone else may run off with it. You must hold
1724  *	the appropriate locks or have a private queue to do this.
1725  *
1726  *	Returns %NULL for an empty list or a pointer to the head element.
1727  *	The reference count is not incremented and the reference is therefore
1728  *	volatile. Use with caution.
1729  */
1730 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1731 {
1732 	struct sk_buff *skb = list_->next;
1733 
1734 	if (skb == (struct sk_buff *)list_)
1735 		skb = NULL;
1736 	return skb;
1737 }
1738 
1739 /**
1740  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1741  *	@list_: list to peek at
1742  *
1743  *	Like skb_peek(), but the caller knows that the list is not empty.
1744  */
1745 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1746 {
1747 	return list_->next;
1748 }
1749 
1750 /**
1751  *	skb_peek_next - peek skb following the given one from a queue
1752  *	@skb: skb to start from
1753  *	@list_: list to peek at
1754  *
1755  *	Returns %NULL when the end of the list is met or a pointer to the
1756  *	next element. The reference count is not incremented and the
1757  *	reference is therefore volatile. Use with caution.
1758  */
1759 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1760 		const struct sk_buff_head *list_)
1761 {
1762 	struct sk_buff *next = skb->next;
1763 
1764 	if (next == (struct sk_buff *)list_)
1765 		next = NULL;
1766 	return next;
1767 }
1768 
1769 /**
1770  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1771  *	@list_: list to peek at
1772  *
1773  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1774  *	be careful with this one. A peek leaves the buffer on the
1775  *	list and someone else may run off with it. You must hold
1776  *	the appropriate locks or have a private queue to do this.
1777  *
1778  *	Returns %NULL for an empty list or a pointer to the tail element.
1779  *	The reference count is not incremented and the reference is therefore
1780  *	volatile. Use with caution.
1781  */
1782 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1783 {
1784 	struct sk_buff *skb = list_->prev;
1785 
1786 	if (skb == (struct sk_buff *)list_)
1787 		skb = NULL;
1788 	return skb;
1789 
1790 }
1791 
1792 /**
1793  *	skb_queue_len	- get queue length
1794  *	@list_: list to measure
1795  *
1796  *	Return the length of an &sk_buff queue.
1797  */
1798 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1799 {
1800 	return list_->qlen;
1801 }
1802 
1803 /**
1804  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1805  *	@list: queue to initialize
1806  *
1807  *	This initializes only the list and queue length aspects of
1808  *	an sk_buff_head object.  This allows to initialize the list
1809  *	aspects of an sk_buff_head without reinitializing things like
1810  *	the spinlock.  It can also be used for on-stack sk_buff_head
1811  *	objects where the spinlock is known to not be used.
1812  */
1813 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1814 {
1815 	list->prev = list->next = (struct sk_buff *)list;
1816 	list->qlen = 0;
1817 }
1818 
1819 /*
1820  * This function creates a split out lock class for each invocation;
1821  * this is needed for now since a whole lot of users of the skb-queue
1822  * infrastructure in drivers have different locking usage (in hardirq)
1823  * than the networking core (in softirq only). In the long run either the
1824  * network layer or drivers should need annotation to consolidate the
1825  * main types of usage into 3 classes.
1826  */
1827 static inline void skb_queue_head_init(struct sk_buff_head *list)
1828 {
1829 	spin_lock_init(&list->lock);
1830 	__skb_queue_head_init(list);
1831 }
1832 
1833 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1834 		struct lock_class_key *class)
1835 {
1836 	skb_queue_head_init(list);
1837 	lockdep_set_class(&list->lock, class);
1838 }
1839 
1840 /*
1841  *	Insert an sk_buff on a list.
1842  *
1843  *	The "__skb_xxxx()" functions are the non-atomic ones that
1844  *	can only be called with interrupts disabled.
1845  */
1846 static inline void __skb_insert(struct sk_buff *newsk,
1847 				struct sk_buff *prev, struct sk_buff *next,
1848 				struct sk_buff_head *list)
1849 {
1850 	newsk->next = next;
1851 	newsk->prev = prev;
1852 	next->prev  = prev->next = newsk;
1853 	list->qlen++;
1854 }
1855 
1856 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1857 				      struct sk_buff *prev,
1858 				      struct sk_buff *next)
1859 {
1860 	struct sk_buff *first = list->next;
1861 	struct sk_buff *last = list->prev;
1862 
1863 	first->prev = prev;
1864 	prev->next = first;
1865 
1866 	last->next = next;
1867 	next->prev = last;
1868 }
1869 
1870 /**
1871  *	skb_queue_splice - join two skb lists, this is designed for stacks
1872  *	@list: the new list to add
1873  *	@head: the place to add it in the first list
1874  */
1875 static inline void skb_queue_splice(const struct sk_buff_head *list,
1876 				    struct sk_buff_head *head)
1877 {
1878 	if (!skb_queue_empty(list)) {
1879 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1880 		head->qlen += list->qlen;
1881 	}
1882 }
1883 
1884 /**
1885  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1886  *	@list: the new list to add
1887  *	@head: the place to add it in the first list
1888  *
1889  *	The list at @list is reinitialised
1890  */
1891 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1892 					 struct sk_buff_head *head)
1893 {
1894 	if (!skb_queue_empty(list)) {
1895 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1896 		head->qlen += list->qlen;
1897 		__skb_queue_head_init(list);
1898 	}
1899 }
1900 
1901 /**
1902  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1903  *	@list: the new list to add
1904  *	@head: the place to add it in the first list
1905  */
1906 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1907 					 struct sk_buff_head *head)
1908 {
1909 	if (!skb_queue_empty(list)) {
1910 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1911 		head->qlen += list->qlen;
1912 	}
1913 }
1914 
1915 /**
1916  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1917  *	@list: the new list to add
1918  *	@head: the place to add it in the first list
1919  *
1920  *	Each of the lists is a queue.
1921  *	The list at @list is reinitialised
1922  */
1923 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1924 					      struct sk_buff_head *head)
1925 {
1926 	if (!skb_queue_empty(list)) {
1927 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1928 		head->qlen += list->qlen;
1929 		__skb_queue_head_init(list);
1930 	}
1931 }
1932 
1933 /**
1934  *	__skb_queue_after - queue a buffer at the list head
1935  *	@list: list to use
1936  *	@prev: place after this buffer
1937  *	@newsk: buffer to queue
1938  *
1939  *	Queue a buffer int the middle of a list. This function takes no locks
1940  *	and you must therefore hold required locks before calling it.
1941  *
1942  *	A buffer cannot be placed on two lists at the same time.
1943  */
1944 static inline void __skb_queue_after(struct sk_buff_head *list,
1945 				     struct sk_buff *prev,
1946 				     struct sk_buff *newsk)
1947 {
1948 	__skb_insert(newsk, prev, prev->next, list);
1949 }
1950 
1951 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1952 		struct sk_buff_head *list);
1953 
1954 static inline void __skb_queue_before(struct sk_buff_head *list,
1955 				      struct sk_buff *next,
1956 				      struct sk_buff *newsk)
1957 {
1958 	__skb_insert(newsk, next->prev, next, list);
1959 }
1960 
1961 /**
1962  *	__skb_queue_head - queue a buffer at the list head
1963  *	@list: list to use
1964  *	@newsk: buffer to queue
1965  *
1966  *	Queue a buffer at the start of a list. This function takes no locks
1967  *	and you must therefore hold required locks before calling it.
1968  *
1969  *	A buffer cannot be placed on two lists at the same time.
1970  */
1971 static inline void __skb_queue_head(struct sk_buff_head *list,
1972 				    struct sk_buff *newsk)
1973 {
1974 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1975 }
1976 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1977 
1978 /**
1979  *	__skb_queue_tail - queue a buffer at the list tail
1980  *	@list: list to use
1981  *	@newsk: buffer to queue
1982  *
1983  *	Queue a buffer at the end of a list. This function takes no locks
1984  *	and you must therefore hold required locks before calling it.
1985  *
1986  *	A buffer cannot be placed on two lists at the same time.
1987  */
1988 static inline void __skb_queue_tail(struct sk_buff_head *list,
1989 				   struct sk_buff *newsk)
1990 {
1991 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1992 }
1993 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1994 
1995 /*
1996  * remove sk_buff from list. _Must_ be called atomically, and with
1997  * the list known..
1998  */
1999 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2000 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2001 {
2002 	struct sk_buff *next, *prev;
2003 
2004 	list->qlen--;
2005 	next	   = skb->next;
2006 	prev	   = skb->prev;
2007 	skb->next  = skb->prev = NULL;
2008 	next->prev = prev;
2009 	prev->next = next;
2010 }
2011 
2012 /**
2013  *	__skb_dequeue - remove from the head of the queue
2014  *	@list: list to dequeue from
2015  *
2016  *	Remove the head of the list. This function does not take any locks
2017  *	so must be used with appropriate locks held only. The head item is
2018  *	returned or %NULL if the list is empty.
2019  */
2020 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2021 {
2022 	struct sk_buff *skb = skb_peek(list);
2023 	if (skb)
2024 		__skb_unlink(skb, list);
2025 	return skb;
2026 }
2027 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2028 
2029 /**
2030  *	__skb_dequeue_tail - remove from the tail of the queue
2031  *	@list: list to dequeue from
2032  *
2033  *	Remove the tail of the list. This function does not take any locks
2034  *	so must be used with appropriate locks held only. The tail item is
2035  *	returned or %NULL if the list is empty.
2036  */
2037 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2038 {
2039 	struct sk_buff *skb = skb_peek_tail(list);
2040 	if (skb)
2041 		__skb_unlink(skb, list);
2042 	return skb;
2043 }
2044 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2045 
2046 
2047 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2048 {
2049 	return skb->data_len;
2050 }
2051 
2052 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2053 {
2054 	return skb->len - skb->data_len;
2055 }
2056 
2057 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2058 {
2059 	unsigned int i, len = 0;
2060 
2061 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2062 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2063 	return len;
2064 }
2065 
2066 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2067 {
2068 	return skb_headlen(skb) + __skb_pagelen(skb);
2069 }
2070 
2071 /**
2072  * __skb_fill_page_desc - initialise a paged fragment in an skb
2073  * @skb: buffer containing fragment to be initialised
2074  * @i: paged fragment index to initialise
2075  * @page: the page to use for this fragment
2076  * @off: the offset to the data with @page
2077  * @size: the length of the data
2078  *
2079  * Initialises the @i'th fragment of @skb to point to &size bytes at
2080  * offset @off within @page.
2081  *
2082  * Does not take any additional reference on the fragment.
2083  */
2084 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2085 					struct page *page, int off, int size)
2086 {
2087 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2088 
2089 	/*
2090 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2091 	 * that not all callers have unique ownership of the page but rely
2092 	 * on page_is_pfmemalloc doing the right thing(tm).
2093 	 */
2094 	frag->bv_page		  = page;
2095 	frag->bv_offset		  = off;
2096 	skb_frag_size_set(frag, size);
2097 
2098 	page = compound_head(page);
2099 	if (page_is_pfmemalloc(page))
2100 		skb->pfmemalloc	= true;
2101 }
2102 
2103 /**
2104  * skb_fill_page_desc - initialise a paged fragment in an skb
2105  * @skb: buffer containing fragment to be initialised
2106  * @i: paged fragment index to initialise
2107  * @page: the page to use for this fragment
2108  * @off: the offset to the data with @page
2109  * @size: the length of the data
2110  *
2111  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2112  * @skb to point to @size bytes at offset @off within @page. In
2113  * addition updates @skb such that @i is the last fragment.
2114  *
2115  * Does not take any additional reference on the fragment.
2116  */
2117 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2118 				      struct page *page, int off, int size)
2119 {
2120 	__skb_fill_page_desc(skb, i, page, off, size);
2121 	skb_shinfo(skb)->nr_frags = i + 1;
2122 }
2123 
2124 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2125 		     int size, unsigned int truesize);
2126 
2127 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2128 			  unsigned int truesize);
2129 
2130 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2131 
2132 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2133 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2134 {
2135 	return skb->head + skb->tail;
2136 }
2137 
2138 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2139 {
2140 	skb->tail = skb->data - skb->head;
2141 }
2142 
2143 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2144 {
2145 	skb_reset_tail_pointer(skb);
2146 	skb->tail += offset;
2147 }
2148 
2149 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2150 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2151 {
2152 	return skb->tail;
2153 }
2154 
2155 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2156 {
2157 	skb->tail = skb->data;
2158 }
2159 
2160 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2161 {
2162 	skb->tail = skb->data + offset;
2163 }
2164 
2165 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2166 
2167 /*
2168  *	Add data to an sk_buff
2169  */
2170 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2171 void *skb_put(struct sk_buff *skb, unsigned int len);
2172 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2173 {
2174 	void *tmp = skb_tail_pointer(skb);
2175 	SKB_LINEAR_ASSERT(skb);
2176 	skb->tail += len;
2177 	skb->len  += len;
2178 	return tmp;
2179 }
2180 
2181 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2182 {
2183 	void *tmp = __skb_put(skb, len);
2184 
2185 	memset(tmp, 0, len);
2186 	return tmp;
2187 }
2188 
2189 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2190 				   unsigned int len)
2191 {
2192 	void *tmp = __skb_put(skb, len);
2193 
2194 	memcpy(tmp, data, len);
2195 	return tmp;
2196 }
2197 
2198 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2199 {
2200 	*(u8 *)__skb_put(skb, 1) = val;
2201 }
2202 
2203 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2204 {
2205 	void *tmp = skb_put(skb, len);
2206 
2207 	memset(tmp, 0, len);
2208 
2209 	return tmp;
2210 }
2211 
2212 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2213 				 unsigned int len)
2214 {
2215 	void *tmp = skb_put(skb, len);
2216 
2217 	memcpy(tmp, data, len);
2218 
2219 	return tmp;
2220 }
2221 
2222 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2223 {
2224 	*(u8 *)skb_put(skb, 1) = val;
2225 }
2226 
2227 void *skb_push(struct sk_buff *skb, unsigned int len);
2228 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2229 {
2230 	skb->data -= len;
2231 	skb->len  += len;
2232 	return skb->data;
2233 }
2234 
2235 void *skb_pull(struct sk_buff *skb, unsigned int len);
2236 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2237 {
2238 	skb->len -= len;
2239 	BUG_ON(skb->len < skb->data_len);
2240 	return skb->data += len;
2241 }
2242 
2243 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2244 {
2245 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2246 }
2247 
2248 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2249 
2250 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2251 {
2252 	if (len > skb_headlen(skb) &&
2253 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2254 		return NULL;
2255 	skb->len -= len;
2256 	return skb->data += len;
2257 }
2258 
2259 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2260 {
2261 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2262 }
2263 
2264 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2265 {
2266 	if (likely(len <= skb_headlen(skb)))
2267 		return 1;
2268 	if (unlikely(len > skb->len))
2269 		return 0;
2270 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2271 }
2272 
2273 void skb_condense(struct sk_buff *skb);
2274 
2275 /**
2276  *	skb_headroom - bytes at buffer head
2277  *	@skb: buffer to check
2278  *
2279  *	Return the number of bytes of free space at the head of an &sk_buff.
2280  */
2281 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2282 {
2283 	return skb->data - skb->head;
2284 }
2285 
2286 /**
2287  *	skb_tailroom - bytes at buffer end
2288  *	@skb: buffer to check
2289  *
2290  *	Return the number of bytes of free space at the tail of an sk_buff
2291  */
2292 static inline int skb_tailroom(const struct sk_buff *skb)
2293 {
2294 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2295 }
2296 
2297 /**
2298  *	skb_availroom - bytes at buffer end
2299  *	@skb: buffer to check
2300  *
2301  *	Return the number of bytes of free space at the tail of an sk_buff
2302  *	allocated by sk_stream_alloc()
2303  */
2304 static inline int skb_availroom(const struct sk_buff *skb)
2305 {
2306 	if (skb_is_nonlinear(skb))
2307 		return 0;
2308 
2309 	return skb->end - skb->tail - skb->reserved_tailroom;
2310 }
2311 
2312 /**
2313  *	skb_reserve - adjust headroom
2314  *	@skb: buffer to alter
2315  *	@len: bytes to move
2316  *
2317  *	Increase the headroom of an empty &sk_buff by reducing the tail
2318  *	room. This is only allowed for an empty buffer.
2319  */
2320 static inline void skb_reserve(struct sk_buff *skb, int len)
2321 {
2322 	skb->data += len;
2323 	skb->tail += len;
2324 }
2325 
2326 /**
2327  *	skb_tailroom_reserve - adjust reserved_tailroom
2328  *	@skb: buffer to alter
2329  *	@mtu: maximum amount of headlen permitted
2330  *	@needed_tailroom: minimum amount of reserved_tailroom
2331  *
2332  *	Set reserved_tailroom so that headlen can be as large as possible but
2333  *	not larger than mtu and tailroom cannot be smaller than
2334  *	needed_tailroom.
2335  *	The required headroom should already have been reserved before using
2336  *	this function.
2337  */
2338 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2339 					unsigned int needed_tailroom)
2340 {
2341 	SKB_LINEAR_ASSERT(skb);
2342 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2343 		/* use at most mtu */
2344 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2345 	else
2346 		/* use up to all available space */
2347 		skb->reserved_tailroom = needed_tailroom;
2348 }
2349 
2350 #define ENCAP_TYPE_ETHER	0
2351 #define ENCAP_TYPE_IPPROTO	1
2352 
2353 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2354 					  __be16 protocol)
2355 {
2356 	skb->inner_protocol = protocol;
2357 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2358 }
2359 
2360 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2361 					 __u8 ipproto)
2362 {
2363 	skb->inner_ipproto = ipproto;
2364 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2365 }
2366 
2367 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2368 {
2369 	skb->inner_mac_header = skb->mac_header;
2370 	skb->inner_network_header = skb->network_header;
2371 	skb->inner_transport_header = skb->transport_header;
2372 }
2373 
2374 static inline void skb_reset_mac_len(struct sk_buff *skb)
2375 {
2376 	skb->mac_len = skb->network_header - skb->mac_header;
2377 }
2378 
2379 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2380 							*skb)
2381 {
2382 	return skb->head + skb->inner_transport_header;
2383 }
2384 
2385 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2386 {
2387 	return skb_inner_transport_header(skb) - skb->data;
2388 }
2389 
2390 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2391 {
2392 	skb->inner_transport_header = skb->data - skb->head;
2393 }
2394 
2395 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2396 						   const int offset)
2397 {
2398 	skb_reset_inner_transport_header(skb);
2399 	skb->inner_transport_header += offset;
2400 }
2401 
2402 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2403 {
2404 	return skb->head + skb->inner_network_header;
2405 }
2406 
2407 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2408 {
2409 	skb->inner_network_header = skb->data - skb->head;
2410 }
2411 
2412 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2413 						const int offset)
2414 {
2415 	skb_reset_inner_network_header(skb);
2416 	skb->inner_network_header += offset;
2417 }
2418 
2419 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2420 {
2421 	return skb->head + skb->inner_mac_header;
2422 }
2423 
2424 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2425 {
2426 	skb->inner_mac_header = skb->data - skb->head;
2427 }
2428 
2429 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2430 					    const int offset)
2431 {
2432 	skb_reset_inner_mac_header(skb);
2433 	skb->inner_mac_header += offset;
2434 }
2435 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2436 {
2437 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2438 }
2439 
2440 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2441 {
2442 	return skb->head + skb->transport_header;
2443 }
2444 
2445 static inline void skb_reset_transport_header(struct sk_buff *skb)
2446 {
2447 	skb->transport_header = skb->data - skb->head;
2448 }
2449 
2450 static inline void skb_set_transport_header(struct sk_buff *skb,
2451 					    const int offset)
2452 {
2453 	skb_reset_transport_header(skb);
2454 	skb->transport_header += offset;
2455 }
2456 
2457 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2458 {
2459 	return skb->head + skb->network_header;
2460 }
2461 
2462 static inline void skb_reset_network_header(struct sk_buff *skb)
2463 {
2464 	skb->network_header = skb->data - skb->head;
2465 }
2466 
2467 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2468 {
2469 	skb_reset_network_header(skb);
2470 	skb->network_header += offset;
2471 }
2472 
2473 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2474 {
2475 	return skb->head + skb->mac_header;
2476 }
2477 
2478 static inline int skb_mac_offset(const struct sk_buff *skb)
2479 {
2480 	return skb_mac_header(skb) - skb->data;
2481 }
2482 
2483 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2484 {
2485 	return skb->network_header - skb->mac_header;
2486 }
2487 
2488 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2489 {
2490 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2491 }
2492 
2493 static inline void skb_reset_mac_header(struct sk_buff *skb)
2494 {
2495 	skb->mac_header = skb->data - skb->head;
2496 }
2497 
2498 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2499 {
2500 	skb_reset_mac_header(skb);
2501 	skb->mac_header += offset;
2502 }
2503 
2504 static inline void skb_pop_mac_header(struct sk_buff *skb)
2505 {
2506 	skb->mac_header = skb->network_header;
2507 }
2508 
2509 static inline void skb_probe_transport_header(struct sk_buff *skb)
2510 {
2511 	struct flow_keys_basic keys;
2512 
2513 	if (skb_transport_header_was_set(skb))
2514 		return;
2515 
2516 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2517 					     NULL, 0, 0, 0, 0))
2518 		skb_set_transport_header(skb, keys.control.thoff);
2519 }
2520 
2521 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2522 {
2523 	if (skb_mac_header_was_set(skb)) {
2524 		const unsigned char *old_mac = skb_mac_header(skb);
2525 
2526 		skb_set_mac_header(skb, -skb->mac_len);
2527 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2528 	}
2529 }
2530 
2531 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2532 {
2533 	return skb->csum_start - skb_headroom(skb);
2534 }
2535 
2536 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2537 {
2538 	return skb->head + skb->csum_start;
2539 }
2540 
2541 static inline int skb_transport_offset(const struct sk_buff *skb)
2542 {
2543 	return skb_transport_header(skb) - skb->data;
2544 }
2545 
2546 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2547 {
2548 	return skb->transport_header - skb->network_header;
2549 }
2550 
2551 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2552 {
2553 	return skb->inner_transport_header - skb->inner_network_header;
2554 }
2555 
2556 static inline int skb_network_offset(const struct sk_buff *skb)
2557 {
2558 	return skb_network_header(skb) - skb->data;
2559 }
2560 
2561 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2562 {
2563 	return skb_inner_network_header(skb) - skb->data;
2564 }
2565 
2566 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2567 {
2568 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2569 }
2570 
2571 /*
2572  * CPUs often take a performance hit when accessing unaligned memory
2573  * locations. The actual performance hit varies, it can be small if the
2574  * hardware handles it or large if we have to take an exception and fix it
2575  * in software.
2576  *
2577  * Since an ethernet header is 14 bytes network drivers often end up with
2578  * the IP header at an unaligned offset. The IP header can be aligned by
2579  * shifting the start of the packet by 2 bytes. Drivers should do this
2580  * with:
2581  *
2582  * skb_reserve(skb, NET_IP_ALIGN);
2583  *
2584  * The downside to this alignment of the IP header is that the DMA is now
2585  * unaligned. On some architectures the cost of an unaligned DMA is high
2586  * and this cost outweighs the gains made by aligning the IP header.
2587  *
2588  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2589  * to be overridden.
2590  */
2591 #ifndef NET_IP_ALIGN
2592 #define NET_IP_ALIGN	2
2593 #endif
2594 
2595 /*
2596  * The networking layer reserves some headroom in skb data (via
2597  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2598  * the header has to grow. In the default case, if the header has to grow
2599  * 32 bytes or less we avoid the reallocation.
2600  *
2601  * Unfortunately this headroom changes the DMA alignment of the resulting
2602  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2603  * on some architectures. An architecture can override this value,
2604  * perhaps setting it to a cacheline in size (since that will maintain
2605  * cacheline alignment of the DMA). It must be a power of 2.
2606  *
2607  * Various parts of the networking layer expect at least 32 bytes of
2608  * headroom, you should not reduce this.
2609  *
2610  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2611  * to reduce average number of cache lines per packet.
2612  * get_rps_cpus() for example only access one 64 bytes aligned block :
2613  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2614  */
2615 #ifndef NET_SKB_PAD
2616 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2617 #endif
2618 
2619 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2620 
2621 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2622 {
2623 	if (WARN_ON(skb_is_nonlinear(skb)))
2624 		return;
2625 	skb->len = len;
2626 	skb_set_tail_pointer(skb, len);
2627 }
2628 
2629 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2630 {
2631 	__skb_set_length(skb, len);
2632 }
2633 
2634 void skb_trim(struct sk_buff *skb, unsigned int len);
2635 
2636 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2637 {
2638 	if (skb->data_len)
2639 		return ___pskb_trim(skb, len);
2640 	__skb_trim(skb, len);
2641 	return 0;
2642 }
2643 
2644 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2645 {
2646 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2647 }
2648 
2649 /**
2650  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2651  *	@skb: buffer to alter
2652  *	@len: new length
2653  *
2654  *	This is identical to pskb_trim except that the caller knows that
2655  *	the skb is not cloned so we should never get an error due to out-
2656  *	of-memory.
2657  */
2658 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2659 {
2660 	int err = pskb_trim(skb, len);
2661 	BUG_ON(err);
2662 }
2663 
2664 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2665 {
2666 	unsigned int diff = len - skb->len;
2667 
2668 	if (skb_tailroom(skb) < diff) {
2669 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2670 					   GFP_ATOMIC);
2671 		if (ret)
2672 			return ret;
2673 	}
2674 	__skb_set_length(skb, len);
2675 	return 0;
2676 }
2677 
2678 /**
2679  *	skb_orphan - orphan a buffer
2680  *	@skb: buffer to orphan
2681  *
2682  *	If a buffer currently has an owner then we call the owner's
2683  *	destructor function and make the @skb unowned. The buffer continues
2684  *	to exist but is no longer charged to its former owner.
2685  */
2686 static inline void skb_orphan(struct sk_buff *skb)
2687 {
2688 	if (skb->destructor) {
2689 		skb->destructor(skb);
2690 		skb->destructor = NULL;
2691 		skb->sk		= NULL;
2692 	} else {
2693 		BUG_ON(skb->sk);
2694 	}
2695 }
2696 
2697 /**
2698  *	skb_orphan_frags - orphan the frags contained in a buffer
2699  *	@skb: buffer to orphan frags from
2700  *	@gfp_mask: allocation mask for replacement pages
2701  *
2702  *	For each frag in the SKB which needs a destructor (i.e. has an
2703  *	owner) create a copy of that frag and release the original
2704  *	page by calling the destructor.
2705  */
2706 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2707 {
2708 	if (likely(!skb_zcopy(skb)))
2709 		return 0;
2710 	if (!skb_zcopy_is_nouarg(skb) &&
2711 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2712 		return 0;
2713 	return skb_copy_ubufs(skb, gfp_mask);
2714 }
2715 
2716 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2717 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2718 {
2719 	if (likely(!skb_zcopy(skb)))
2720 		return 0;
2721 	return skb_copy_ubufs(skb, gfp_mask);
2722 }
2723 
2724 /**
2725  *	__skb_queue_purge - empty a list
2726  *	@list: list to empty
2727  *
2728  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2729  *	the list and one reference dropped. This function does not take the
2730  *	list lock and the caller must hold the relevant locks to use it.
2731  */
2732 static inline void __skb_queue_purge(struct sk_buff_head *list)
2733 {
2734 	struct sk_buff *skb;
2735 	while ((skb = __skb_dequeue(list)) != NULL)
2736 		kfree_skb(skb);
2737 }
2738 void skb_queue_purge(struct sk_buff_head *list);
2739 
2740 unsigned int skb_rbtree_purge(struct rb_root *root);
2741 
2742 void *netdev_alloc_frag(unsigned int fragsz);
2743 
2744 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2745 				   gfp_t gfp_mask);
2746 
2747 /**
2748  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2749  *	@dev: network device to receive on
2750  *	@length: length to allocate
2751  *
2752  *	Allocate a new &sk_buff and assign it a usage count of one. The
2753  *	buffer has unspecified headroom built in. Users should allocate
2754  *	the headroom they think they need without accounting for the
2755  *	built in space. The built in space is used for optimisations.
2756  *
2757  *	%NULL is returned if there is no free memory. Although this function
2758  *	allocates memory it can be called from an interrupt.
2759  */
2760 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2761 					       unsigned int length)
2762 {
2763 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2764 }
2765 
2766 /* legacy helper around __netdev_alloc_skb() */
2767 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2768 					      gfp_t gfp_mask)
2769 {
2770 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2771 }
2772 
2773 /* legacy helper around netdev_alloc_skb() */
2774 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2775 {
2776 	return netdev_alloc_skb(NULL, length);
2777 }
2778 
2779 
2780 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2781 		unsigned int length, gfp_t gfp)
2782 {
2783 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2784 
2785 	if (NET_IP_ALIGN && skb)
2786 		skb_reserve(skb, NET_IP_ALIGN);
2787 	return skb;
2788 }
2789 
2790 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2791 		unsigned int length)
2792 {
2793 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2794 }
2795 
2796 static inline void skb_free_frag(void *addr)
2797 {
2798 	page_frag_free(addr);
2799 }
2800 
2801 void *napi_alloc_frag(unsigned int fragsz);
2802 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2803 				 unsigned int length, gfp_t gfp_mask);
2804 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2805 					     unsigned int length)
2806 {
2807 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2808 }
2809 void napi_consume_skb(struct sk_buff *skb, int budget);
2810 
2811 void __kfree_skb_flush(void);
2812 void __kfree_skb_defer(struct sk_buff *skb);
2813 
2814 /**
2815  * __dev_alloc_pages - allocate page for network Rx
2816  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2817  * @order: size of the allocation
2818  *
2819  * Allocate a new page.
2820  *
2821  * %NULL is returned if there is no free memory.
2822 */
2823 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2824 					     unsigned int order)
2825 {
2826 	/* This piece of code contains several assumptions.
2827 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2828 	 * 2.  The expectation is the user wants a compound page.
2829 	 * 3.  If requesting a order 0 page it will not be compound
2830 	 *     due to the check to see if order has a value in prep_new_page
2831 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2832 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2833 	 */
2834 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2835 
2836 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2837 }
2838 
2839 static inline struct page *dev_alloc_pages(unsigned int order)
2840 {
2841 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2842 }
2843 
2844 /**
2845  * __dev_alloc_page - allocate a page for network Rx
2846  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2847  *
2848  * Allocate a new page.
2849  *
2850  * %NULL is returned if there is no free memory.
2851  */
2852 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2853 {
2854 	return __dev_alloc_pages(gfp_mask, 0);
2855 }
2856 
2857 static inline struct page *dev_alloc_page(void)
2858 {
2859 	return dev_alloc_pages(0);
2860 }
2861 
2862 /**
2863  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2864  *	@page: The page that was allocated from skb_alloc_page
2865  *	@skb: The skb that may need pfmemalloc set
2866  */
2867 static inline void skb_propagate_pfmemalloc(struct page *page,
2868 					     struct sk_buff *skb)
2869 {
2870 	if (page_is_pfmemalloc(page))
2871 		skb->pfmemalloc = true;
2872 }
2873 
2874 /**
2875  * skb_frag_off() - Returns the offset of a skb fragment
2876  * @frag: the paged fragment
2877  */
2878 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2879 {
2880 	return frag->bv_offset;
2881 }
2882 
2883 /**
2884  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2885  * @frag: skb fragment
2886  * @delta: value to add
2887  */
2888 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2889 {
2890 	frag->bv_offset += delta;
2891 }
2892 
2893 /**
2894  * skb_frag_off_set() - Sets the offset of a skb fragment
2895  * @frag: skb fragment
2896  * @offset: offset of fragment
2897  */
2898 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2899 {
2900 	frag->bv_offset = offset;
2901 }
2902 
2903 /**
2904  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2905  * @fragto: skb fragment where offset is set
2906  * @fragfrom: skb fragment offset is copied from
2907  */
2908 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2909 				     const skb_frag_t *fragfrom)
2910 {
2911 	fragto->bv_offset = fragfrom->bv_offset;
2912 }
2913 
2914 /**
2915  * skb_frag_page - retrieve the page referred to by a paged fragment
2916  * @frag: the paged fragment
2917  *
2918  * Returns the &struct page associated with @frag.
2919  */
2920 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2921 {
2922 	return frag->bv_page;
2923 }
2924 
2925 /**
2926  * __skb_frag_ref - take an addition reference on a paged fragment.
2927  * @frag: the paged fragment
2928  *
2929  * Takes an additional reference on the paged fragment @frag.
2930  */
2931 static inline void __skb_frag_ref(skb_frag_t *frag)
2932 {
2933 	get_page(skb_frag_page(frag));
2934 }
2935 
2936 /**
2937  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2938  * @skb: the buffer
2939  * @f: the fragment offset.
2940  *
2941  * Takes an additional reference on the @f'th paged fragment of @skb.
2942  */
2943 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2944 {
2945 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2946 }
2947 
2948 /**
2949  * __skb_frag_unref - release a reference on a paged fragment.
2950  * @frag: the paged fragment
2951  *
2952  * Releases a reference on the paged fragment @frag.
2953  */
2954 static inline void __skb_frag_unref(skb_frag_t *frag)
2955 {
2956 	put_page(skb_frag_page(frag));
2957 }
2958 
2959 /**
2960  * skb_frag_unref - release a reference on a paged fragment of an skb.
2961  * @skb: the buffer
2962  * @f: the fragment offset
2963  *
2964  * Releases a reference on the @f'th paged fragment of @skb.
2965  */
2966 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2967 {
2968 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2969 }
2970 
2971 /**
2972  * skb_frag_address - gets the address of the data contained in a paged fragment
2973  * @frag: the paged fragment buffer
2974  *
2975  * Returns the address of the data within @frag. The page must already
2976  * be mapped.
2977  */
2978 static inline void *skb_frag_address(const skb_frag_t *frag)
2979 {
2980 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
2981 }
2982 
2983 /**
2984  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2985  * @frag: the paged fragment buffer
2986  *
2987  * Returns the address of the data within @frag. Checks that the page
2988  * is mapped and returns %NULL otherwise.
2989  */
2990 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2991 {
2992 	void *ptr = page_address(skb_frag_page(frag));
2993 	if (unlikely(!ptr))
2994 		return NULL;
2995 
2996 	return ptr + skb_frag_off(frag);
2997 }
2998 
2999 /**
3000  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3001  * @fragto: skb fragment where page is set
3002  * @fragfrom: skb fragment page is copied from
3003  */
3004 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3005 				      const skb_frag_t *fragfrom)
3006 {
3007 	fragto->bv_page = fragfrom->bv_page;
3008 }
3009 
3010 /**
3011  * __skb_frag_set_page - sets the page contained in a paged fragment
3012  * @frag: the paged fragment
3013  * @page: the page to set
3014  *
3015  * Sets the fragment @frag to contain @page.
3016  */
3017 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3018 {
3019 	frag->bv_page = page;
3020 }
3021 
3022 /**
3023  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3024  * @skb: the buffer
3025  * @f: the fragment offset
3026  * @page: the page to set
3027  *
3028  * Sets the @f'th fragment of @skb to contain @page.
3029  */
3030 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3031 				     struct page *page)
3032 {
3033 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3034 }
3035 
3036 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3037 
3038 /**
3039  * skb_frag_dma_map - maps a paged fragment via the DMA API
3040  * @dev: the device to map the fragment to
3041  * @frag: the paged fragment to map
3042  * @offset: the offset within the fragment (starting at the
3043  *          fragment's own offset)
3044  * @size: the number of bytes to map
3045  * @dir: the direction of the mapping (``PCI_DMA_*``)
3046  *
3047  * Maps the page associated with @frag to @device.
3048  */
3049 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3050 					  const skb_frag_t *frag,
3051 					  size_t offset, size_t size,
3052 					  enum dma_data_direction dir)
3053 {
3054 	return dma_map_page(dev, skb_frag_page(frag),
3055 			    skb_frag_off(frag) + offset, size, dir);
3056 }
3057 
3058 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3059 					gfp_t gfp_mask)
3060 {
3061 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3062 }
3063 
3064 
3065 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3066 						  gfp_t gfp_mask)
3067 {
3068 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3069 }
3070 
3071 
3072 /**
3073  *	skb_clone_writable - is the header of a clone writable
3074  *	@skb: buffer to check
3075  *	@len: length up to which to write
3076  *
3077  *	Returns true if modifying the header part of the cloned buffer
3078  *	does not requires the data to be copied.
3079  */
3080 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3081 {
3082 	return !skb_header_cloned(skb) &&
3083 	       skb_headroom(skb) + len <= skb->hdr_len;
3084 }
3085 
3086 static inline int skb_try_make_writable(struct sk_buff *skb,
3087 					unsigned int write_len)
3088 {
3089 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3090 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3091 }
3092 
3093 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3094 			    int cloned)
3095 {
3096 	int delta = 0;
3097 
3098 	if (headroom > skb_headroom(skb))
3099 		delta = headroom - skb_headroom(skb);
3100 
3101 	if (delta || cloned)
3102 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3103 					GFP_ATOMIC);
3104 	return 0;
3105 }
3106 
3107 /**
3108  *	skb_cow - copy header of skb when it is required
3109  *	@skb: buffer to cow
3110  *	@headroom: needed headroom
3111  *
3112  *	If the skb passed lacks sufficient headroom or its data part
3113  *	is shared, data is reallocated. If reallocation fails, an error
3114  *	is returned and original skb is not changed.
3115  *
3116  *	The result is skb with writable area skb->head...skb->tail
3117  *	and at least @headroom of space at head.
3118  */
3119 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3120 {
3121 	return __skb_cow(skb, headroom, skb_cloned(skb));
3122 }
3123 
3124 /**
3125  *	skb_cow_head - skb_cow but only making the head writable
3126  *	@skb: buffer to cow
3127  *	@headroom: needed headroom
3128  *
3129  *	This function is identical to skb_cow except that we replace the
3130  *	skb_cloned check by skb_header_cloned.  It should be used when
3131  *	you only need to push on some header and do not need to modify
3132  *	the data.
3133  */
3134 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3135 {
3136 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3137 }
3138 
3139 /**
3140  *	skb_padto	- pad an skbuff up to a minimal size
3141  *	@skb: buffer to pad
3142  *	@len: minimal length
3143  *
3144  *	Pads up a buffer to ensure the trailing bytes exist and are
3145  *	blanked. If the buffer already contains sufficient data it
3146  *	is untouched. Otherwise it is extended. Returns zero on
3147  *	success. The skb is freed on error.
3148  */
3149 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3150 {
3151 	unsigned int size = skb->len;
3152 	if (likely(size >= len))
3153 		return 0;
3154 	return skb_pad(skb, len - size);
3155 }
3156 
3157 /**
3158  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3159  *	@skb: buffer to pad
3160  *	@len: minimal length
3161  *	@free_on_error: free buffer on error
3162  *
3163  *	Pads up a buffer to ensure the trailing bytes exist and are
3164  *	blanked. If the buffer already contains sufficient data it
3165  *	is untouched. Otherwise it is extended. Returns zero on
3166  *	success. The skb is freed on error if @free_on_error is true.
3167  */
3168 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3169 				  bool free_on_error)
3170 {
3171 	unsigned int size = skb->len;
3172 
3173 	if (unlikely(size < len)) {
3174 		len -= size;
3175 		if (__skb_pad(skb, len, free_on_error))
3176 			return -ENOMEM;
3177 		__skb_put(skb, len);
3178 	}
3179 	return 0;
3180 }
3181 
3182 /**
3183  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3184  *	@skb: buffer to pad
3185  *	@len: minimal length
3186  *
3187  *	Pads up a buffer to ensure the trailing bytes exist and are
3188  *	blanked. If the buffer already contains sufficient data it
3189  *	is untouched. Otherwise it is extended. Returns zero on
3190  *	success. The skb is freed on error.
3191  */
3192 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3193 {
3194 	return __skb_put_padto(skb, len, true);
3195 }
3196 
3197 static inline int skb_add_data(struct sk_buff *skb,
3198 			       struct iov_iter *from, int copy)
3199 {
3200 	const int off = skb->len;
3201 
3202 	if (skb->ip_summed == CHECKSUM_NONE) {
3203 		__wsum csum = 0;
3204 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3205 					         &csum, from)) {
3206 			skb->csum = csum_block_add(skb->csum, csum, off);
3207 			return 0;
3208 		}
3209 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3210 		return 0;
3211 
3212 	__skb_trim(skb, off);
3213 	return -EFAULT;
3214 }
3215 
3216 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3217 				    const struct page *page, int off)
3218 {
3219 	if (skb_zcopy(skb))
3220 		return false;
3221 	if (i) {
3222 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3223 
3224 		return page == skb_frag_page(frag) &&
3225 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3226 	}
3227 	return false;
3228 }
3229 
3230 static inline int __skb_linearize(struct sk_buff *skb)
3231 {
3232 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3233 }
3234 
3235 /**
3236  *	skb_linearize - convert paged skb to linear one
3237  *	@skb: buffer to linarize
3238  *
3239  *	If there is no free memory -ENOMEM is returned, otherwise zero
3240  *	is returned and the old skb data released.
3241  */
3242 static inline int skb_linearize(struct sk_buff *skb)
3243 {
3244 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3245 }
3246 
3247 /**
3248  * skb_has_shared_frag - can any frag be overwritten
3249  * @skb: buffer to test
3250  *
3251  * Return true if the skb has at least one frag that might be modified
3252  * by an external entity (as in vmsplice()/sendfile())
3253  */
3254 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3255 {
3256 	return skb_is_nonlinear(skb) &&
3257 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3258 }
3259 
3260 /**
3261  *	skb_linearize_cow - make sure skb is linear and writable
3262  *	@skb: buffer to process
3263  *
3264  *	If there is no free memory -ENOMEM is returned, otherwise zero
3265  *	is returned and the old skb data released.
3266  */
3267 static inline int skb_linearize_cow(struct sk_buff *skb)
3268 {
3269 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3270 	       __skb_linearize(skb) : 0;
3271 }
3272 
3273 static __always_inline void
3274 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3275 		     unsigned int off)
3276 {
3277 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3278 		skb->csum = csum_block_sub(skb->csum,
3279 					   csum_partial(start, len, 0), off);
3280 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3281 		 skb_checksum_start_offset(skb) < 0)
3282 		skb->ip_summed = CHECKSUM_NONE;
3283 }
3284 
3285 /**
3286  *	skb_postpull_rcsum - update checksum for received skb after pull
3287  *	@skb: buffer to update
3288  *	@start: start of data before pull
3289  *	@len: length of data pulled
3290  *
3291  *	After doing a pull on a received packet, you need to call this to
3292  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3293  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3294  */
3295 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3296 				      const void *start, unsigned int len)
3297 {
3298 	__skb_postpull_rcsum(skb, start, len, 0);
3299 }
3300 
3301 static __always_inline void
3302 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3303 		     unsigned int off)
3304 {
3305 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3306 		skb->csum = csum_block_add(skb->csum,
3307 					   csum_partial(start, len, 0), off);
3308 }
3309 
3310 /**
3311  *	skb_postpush_rcsum - update checksum for received skb after push
3312  *	@skb: buffer to update
3313  *	@start: start of data after push
3314  *	@len: length of data pushed
3315  *
3316  *	After doing a push on a received packet, you need to call this to
3317  *	update the CHECKSUM_COMPLETE checksum.
3318  */
3319 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3320 				      const void *start, unsigned int len)
3321 {
3322 	__skb_postpush_rcsum(skb, start, len, 0);
3323 }
3324 
3325 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3326 
3327 /**
3328  *	skb_push_rcsum - push skb and update receive checksum
3329  *	@skb: buffer to update
3330  *	@len: length of data pulled
3331  *
3332  *	This function performs an skb_push on the packet and updates
3333  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3334  *	receive path processing instead of skb_push unless you know
3335  *	that the checksum difference is zero (e.g., a valid IP header)
3336  *	or you are setting ip_summed to CHECKSUM_NONE.
3337  */
3338 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3339 {
3340 	skb_push(skb, len);
3341 	skb_postpush_rcsum(skb, skb->data, len);
3342 	return skb->data;
3343 }
3344 
3345 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3346 /**
3347  *	pskb_trim_rcsum - trim received skb and update checksum
3348  *	@skb: buffer to trim
3349  *	@len: new length
3350  *
3351  *	This is exactly the same as pskb_trim except that it ensures the
3352  *	checksum of received packets are still valid after the operation.
3353  *	It can change skb pointers.
3354  */
3355 
3356 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3357 {
3358 	if (likely(len >= skb->len))
3359 		return 0;
3360 	return pskb_trim_rcsum_slow(skb, len);
3361 }
3362 
3363 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3364 {
3365 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3366 		skb->ip_summed = CHECKSUM_NONE;
3367 	__skb_trim(skb, len);
3368 	return 0;
3369 }
3370 
3371 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3372 {
3373 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3374 		skb->ip_summed = CHECKSUM_NONE;
3375 	return __skb_grow(skb, len);
3376 }
3377 
3378 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3379 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3380 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3381 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3382 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3383 
3384 #define skb_queue_walk(queue, skb) \
3385 		for (skb = (queue)->next;					\
3386 		     skb != (struct sk_buff *)(queue);				\
3387 		     skb = skb->next)
3388 
3389 #define skb_queue_walk_safe(queue, skb, tmp)					\
3390 		for (skb = (queue)->next, tmp = skb->next;			\
3391 		     skb != (struct sk_buff *)(queue);				\
3392 		     skb = tmp, tmp = skb->next)
3393 
3394 #define skb_queue_walk_from(queue, skb)						\
3395 		for (; skb != (struct sk_buff *)(queue);			\
3396 		     skb = skb->next)
3397 
3398 #define skb_rbtree_walk(skb, root)						\
3399 		for (skb = skb_rb_first(root); skb != NULL;			\
3400 		     skb = skb_rb_next(skb))
3401 
3402 #define skb_rbtree_walk_from(skb)						\
3403 		for (; skb != NULL;						\
3404 		     skb = skb_rb_next(skb))
3405 
3406 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3407 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3408 		     skb = tmp)
3409 
3410 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3411 		for (tmp = skb->next;						\
3412 		     skb != (struct sk_buff *)(queue);				\
3413 		     skb = tmp, tmp = skb->next)
3414 
3415 #define skb_queue_reverse_walk(queue, skb) \
3416 		for (skb = (queue)->prev;					\
3417 		     skb != (struct sk_buff *)(queue);				\
3418 		     skb = skb->prev)
3419 
3420 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3421 		for (skb = (queue)->prev, tmp = skb->prev;			\
3422 		     skb != (struct sk_buff *)(queue);				\
3423 		     skb = tmp, tmp = skb->prev)
3424 
3425 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3426 		for (tmp = skb->prev;						\
3427 		     skb != (struct sk_buff *)(queue);				\
3428 		     skb = tmp, tmp = skb->prev)
3429 
3430 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3431 {
3432 	return skb_shinfo(skb)->frag_list != NULL;
3433 }
3434 
3435 static inline void skb_frag_list_init(struct sk_buff *skb)
3436 {
3437 	skb_shinfo(skb)->frag_list = NULL;
3438 }
3439 
3440 #define skb_walk_frags(skb, iter)	\
3441 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3442 
3443 
3444 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3445 				const struct sk_buff *skb);
3446 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3447 					  struct sk_buff_head *queue,
3448 					  unsigned int flags,
3449 					  void (*destructor)(struct sock *sk,
3450 							   struct sk_buff *skb),
3451 					  int *off, int *err,
3452 					  struct sk_buff **last);
3453 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3454 					void (*destructor)(struct sock *sk,
3455 							   struct sk_buff *skb),
3456 					int *off, int *err,
3457 					struct sk_buff **last);
3458 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3459 				    void (*destructor)(struct sock *sk,
3460 						       struct sk_buff *skb),
3461 				    int *off, int *err);
3462 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3463 				  int *err);
3464 __poll_t datagram_poll(struct file *file, struct socket *sock,
3465 			   struct poll_table_struct *wait);
3466 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3467 			   struct iov_iter *to, int size);
3468 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3469 					struct msghdr *msg, int size)
3470 {
3471 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3472 }
3473 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3474 				   struct msghdr *msg);
3475 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3476 			   struct iov_iter *to, int len,
3477 			   struct ahash_request *hash);
3478 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3479 				 struct iov_iter *from, int len);
3480 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3481 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3482 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3483 static inline void skb_free_datagram_locked(struct sock *sk,
3484 					    struct sk_buff *skb)
3485 {
3486 	__skb_free_datagram_locked(sk, skb, 0);
3487 }
3488 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3489 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3490 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3491 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3492 			      int len, __wsum csum);
3493 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3494 		    struct pipe_inode_info *pipe, unsigned int len,
3495 		    unsigned int flags);
3496 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3497 			 int len);
3498 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3499 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3500 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3501 		 int len, int hlen);
3502 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3503 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3504 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3505 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3506 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3507 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3508 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3509 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3510 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3511 int skb_vlan_pop(struct sk_buff *skb);
3512 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3513 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3514 		  int mac_len);
3515 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len);
3516 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3517 int skb_mpls_dec_ttl(struct sk_buff *skb);
3518 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3519 			     gfp_t gfp);
3520 
3521 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3522 {
3523 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3524 }
3525 
3526 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3527 {
3528 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3529 }
3530 
3531 struct skb_checksum_ops {
3532 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3533 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3534 };
3535 
3536 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3537 
3538 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3539 		      __wsum csum, const struct skb_checksum_ops *ops);
3540 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3541 		    __wsum csum);
3542 
3543 static inline void * __must_check
3544 __skb_header_pointer(const struct sk_buff *skb, int offset,
3545 		     int len, void *data, int hlen, void *buffer)
3546 {
3547 	if (hlen - offset >= len)
3548 		return data + offset;
3549 
3550 	if (!skb ||
3551 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3552 		return NULL;
3553 
3554 	return buffer;
3555 }
3556 
3557 static inline void * __must_check
3558 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3559 {
3560 	return __skb_header_pointer(skb, offset, len, skb->data,
3561 				    skb_headlen(skb), buffer);
3562 }
3563 
3564 /**
3565  *	skb_needs_linearize - check if we need to linearize a given skb
3566  *			      depending on the given device features.
3567  *	@skb: socket buffer to check
3568  *	@features: net device features
3569  *
3570  *	Returns true if either:
3571  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3572  *	2. skb is fragmented and the device does not support SG.
3573  */
3574 static inline bool skb_needs_linearize(struct sk_buff *skb,
3575 				       netdev_features_t features)
3576 {
3577 	return skb_is_nonlinear(skb) &&
3578 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3579 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3580 }
3581 
3582 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3583 					     void *to,
3584 					     const unsigned int len)
3585 {
3586 	memcpy(to, skb->data, len);
3587 }
3588 
3589 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3590 						    const int offset, void *to,
3591 						    const unsigned int len)
3592 {
3593 	memcpy(to, skb->data + offset, len);
3594 }
3595 
3596 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3597 					   const void *from,
3598 					   const unsigned int len)
3599 {
3600 	memcpy(skb->data, from, len);
3601 }
3602 
3603 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3604 						  const int offset,
3605 						  const void *from,
3606 						  const unsigned int len)
3607 {
3608 	memcpy(skb->data + offset, from, len);
3609 }
3610 
3611 void skb_init(void);
3612 
3613 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3614 {
3615 	return skb->tstamp;
3616 }
3617 
3618 /**
3619  *	skb_get_timestamp - get timestamp from a skb
3620  *	@skb: skb to get stamp from
3621  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3622  *
3623  *	Timestamps are stored in the skb as offsets to a base timestamp.
3624  *	This function converts the offset back to a struct timeval and stores
3625  *	it in stamp.
3626  */
3627 static inline void skb_get_timestamp(const struct sk_buff *skb,
3628 				     struct __kernel_old_timeval *stamp)
3629 {
3630 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3631 }
3632 
3633 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3634 					 struct __kernel_sock_timeval *stamp)
3635 {
3636 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3637 
3638 	stamp->tv_sec = ts.tv_sec;
3639 	stamp->tv_usec = ts.tv_nsec / 1000;
3640 }
3641 
3642 static inline void skb_get_timestampns(const struct sk_buff *skb,
3643 				       struct timespec *stamp)
3644 {
3645 	*stamp = ktime_to_timespec(skb->tstamp);
3646 }
3647 
3648 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3649 					   struct __kernel_timespec *stamp)
3650 {
3651 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3652 
3653 	stamp->tv_sec = ts.tv_sec;
3654 	stamp->tv_nsec = ts.tv_nsec;
3655 }
3656 
3657 static inline void __net_timestamp(struct sk_buff *skb)
3658 {
3659 	skb->tstamp = ktime_get_real();
3660 }
3661 
3662 static inline ktime_t net_timedelta(ktime_t t)
3663 {
3664 	return ktime_sub(ktime_get_real(), t);
3665 }
3666 
3667 static inline ktime_t net_invalid_timestamp(void)
3668 {
3669 	return 0;
3670 }
3671 
3672 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3673 {
3674 	return skb_shinfo(skb)->meta_len;
3675 }
3676 
3677 static inline void *skb_metadata_end(const struct sk_buff *skb)
3678 {
3679 	return skb_mac_header(skb);
3680 }
3681 
3682 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3683 					  const struct sk_buff *skb_b,
3684 					  u8 meta_len)
3685 {
3686 	const void *a = skb_metadata_end(skb_a);
3687 	const void *b = skb_metadata_end(skb_b);
3688 	/* Using more efficient varaiant than plain call to memcmp(). */
3689 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3690 	u64 diffs = 0;
3691 
3692 	switch (meta_len) {
3693 #define __it(x, op) (x -= sizeof(u##op))
3694 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3695 	case 32: diffs |= __it_diff(a, b, 64);
3696 		 /* fall through */
3697 	case 24: diffs |= __it_diff(a, b, 64);
3698 		 /* fall through */
3699 	case 16: diffs |= __it_diff(a, b, 64);
3700 		 /* fall through */
3701 	case  8: diffs |= __it_diff(a, b, 64);
3702 		break;
3703 	case 28: diffs |= __it_diff(a, b, 64);
3704 		 /* fall through */
3705 	case 20: diffs |= __it_diff(a, b, 64);
3706 		 /* fall through */
3707 	case 12: diffs |= __it_diff(a, b, 64);
3708 		 /* fall through */
3709 	case  4: diffs |= __it_diff(a, b, 32);
3710 		break;
3711 	}
3712 	return diffs;
3713 #else
3714 	return memcmp(a - meta_len, b - meta_len, meta_len);
3715 #endif
3716 }
3717 
3718 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3719 					const struct sk_buff *skb_b)
3720 {
3721 	u8 len_a = skb_metadata_len(skb_a);
3722 	u8 len_b = skb_metadata_len(skb_b);
3723 
3724 	if (!(len_a | len_b))
3725 		return false;
3726 
3727 	return len_a != len_b ?
3728 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3729 }
3730 
3731 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3732 {
3733 	skb_shinfo(skb)->meta_len = meta_len;
3734 }
3735 
3736 static inline void skb_metadata_clear(struct sk_buff *skb)
3737 {
3738 	skb_metadata_set(skb, 0);
3739 }
3740 
3741 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3742 
3743 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3744 
3745 void skb_clone_tx_timestamp(struct sk_buff *skb);
3746 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3747 
3748 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3749 
3750 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3751 {
3752 }
3753 
3754 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3755 {
3756 	return false;
3757 }
3758 
3759 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3760 
3761 /**
3762  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3763  *
3764  * PHY drivers may accept clones of transmitted packets for
3765  * timestamping via their phy_driver.txtstamp method. These drivers
3766  * must call this function to return the skb back to the stack with a
3767  * timestamp.
3768  *
3769  * @skb: clone of the the original outgoing packet
3770  * @hwtstamps: hardware time stamps
3771  *
3772  */
3773 void skb_complete_tx_timestamp(struct sk_buff *skb,
3774 			       struct skb_shared_hwtstamps *hwtstamps);
3775 
3776 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3777 		     struct skb_shared_hwtstamps *hwtstamps,
3778 		     struct sock *sk, int tstype);
3779 
3780 /**
3781  * skb_tstamp_tx - queue clone of skb with send time stamps
3782  * @orig_skb:	the original outgoing packet
3783  * @hwtstamps:	hardware time stamps, may be NULL if not available
3784  *
3785  * If the skb has a socket associated, then this function clones the
3786  * skb (thus sharing the actual data and optional structures), stores
3787  * the optional hardware time stamping information (if non NULL) or
3788  * generates a software time stamp (otherwise), then queues the clone
3789  * to the error queue of the socket.  Errors are silently ignored.
3790  */
3791 void skb_tstamp_tx(struct sk_buff *orig_skb,
3792 		   struct skb_shared_hwtstamps *hwtstamps);
3793 
3794 /**
3795  * skb_tx_timestamp() - Driver hook for transmit timestamping
3796  *
3797  * Ethernet MAC Drivers should call this function in their hard_xmit()
3798  * function immediately before giving the sk_buff to the MAC hardware.
3799  *
3800  * Specifically, one should make absolutely sure that this function is
3801  * called before TX completion of this packet can trigger.  Otherwise
3802  * the packet could potentially already be freed.
3803  *
3804  * @skb: A socket buffer.
3805  */
3806 static inline void skb_tx_timestamp(struct sk_buff *skb)
3807 {
3808 	skb_clone_tx_timestamp(skb);
3809 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3810 		skb_tstamp_tx(skb, NULL);
3811 }
3812 
3813 /**
3814  * skb_complete_wifi_ack - deliver skb with wifi status
3815  *
3816  * @skb: the original outgoing packet
3817  * @acked: ack status
3818  *
3819  */
3820 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3821 
3822 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3823 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3824 
3825 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3826 {
3827 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3828 		skb->csum_valid ||
3829 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3830 		 skb_checksum_start_offset(skb) >= 0));
3831 }
3832 
3833 /**
3834  *	skb_checksum_complete - Calculate checksum of an entire packet
3835  *	@skb: packet to process
3836  *
3837  *	This function calculates the checksum over the entire packet plus
3838  *	the value of skb->csum.  The latter can be used to supply the
3839  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3840  *	checksum.
3841  *
3842  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3843  *	this function can be used to verify that checksum on received
3844  *	packets.  In that case the function should return zero if the
3845  *	checksum is correct.  In particular, this function will return zero
3846  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3847  *	hardware has already verified the correctness of the checksum.
3848  */
3849 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3850 {
3851 	return skb_csum_unnecessary(skb) ?
3852 	       0 : __skb_checksum_complete(skb);
3853 }
3854 
3855 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3856 {
3857 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3858 		if (skb->csum_level == 0)
3859 			skb->ip_summed = CHECKSUM_NONE;
3860 		else
3861 			skb->csum_level--;
3862 	}
3863 }
3864 
3865 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3866 {
3867 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3868 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3869 			skb->csum_level++;
3870 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3871 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3872 		skb->csum_level = 0;
3873 	}
3874 }
3875 
3876 /* Check if we need to perform checksum complete validation.
3877  *
3878  * Returns true if checksum complete is needed, false otherwise
3879  * (either checksum is unnecessary or zero checksum is allowed).
3880  */
3881 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3882 						  bool zero_okay,
3883 						  __sum16 check)
3884 {
3885 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3886 		skb->csum_valid = 1;
3887 		__skb_decr_checksum_unnecessary(skb);
3888 		return false;
3889 	}
3890 
3891 	return true;
3892 }
3893 
3894 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3895  * in checksum_init.
3896  */
3897 #define CHECKSUM_BREAK 76
3898 
3899 /* Unset checksum-complete
3900  *
3901  * Unset checksum complete can be done when packet is being modified
3902  * (uncompressed for instance) and checksum-complete value is
3903  * invalidated.
3904  */
3905 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3906 {
3907 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3908 		skb->ip_summed = CHECKSUM_NONE;
3909 }
3910 
3911 /* Validate (init) checksum based on checksum complete.
3912  *
3913  * Return values:
3914  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3915  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3916  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3917  *   non-zero: value of invalid checksum
3918  *
3919  */
3920 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3921 						       bool complete,
3922 						       __wsum psum)
3923 {
3924 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3925 		if (!csum_fold(csum_add(psum, skb->csum))) {
3926 			skb->csum_valid = 1;
3927 			return 0;
3928 		}
3929 	}
3930 
3931 	skb->csum = psum;
3932 
3933 	if (complete || skb->len <= CHECKSUM_BREAK) {
3934 		__sum16 csum;
3935 
3936 		csum = __skb_checksum_complete(skb);
3937 		skb->csum_valid = !csum;
3938 		return csum;
3939 	}
3940 
3941 	return 0;
3942 }
3943 
3944 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3945 {
3946 	return 0;
3947 }
3948 
3949 /* Perform checksum validate (init). Note that this is a macro since we only
3950  * want to calculate the pseudo header which is an input function if necessary.
3951  * First we try to validate without any computation (checksum unnecessary) and
3952  * then calculate based on checksum complete calling the function to compute
3953  * pseudo header.
3954  *
3955  * Return values:
3956  *   0: checksum is validated or try to in skb_checksum_complete
3957  *   non-zero: value of invalid checksum
3958  */
3959 #define __skb_checksum_validate(skb, proto, complete,			\
3960 				zero_okay, check, compute_pseudo)	\
3961 ({									\
3962 	__sum16 __ret = 0;						\
3963 	skb->csum_valid = 0;						\
3964 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3965 		__ret = __skb_checksum_validate_complete(skb,		\
3966 				complete, compute_pseudo(skb, proto));	\
3967 	__ret;								\
3968 })
3969 
3970 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3971 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3972 
3973 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3974 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3975 
3976 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3977 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3978 
3979 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3980 					 compute_pseudo)		\
3981 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3982 
3983 #define skb_checksum_simple_validate(skb)				\
3984 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3985 
3986 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3987 {
3988 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3989 }
3990 
3991 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
3992 {
3993 	skb->csum = ~pseudo;
3994 	skb->ip_summed = CHECKSUM_COMPLETE;
3995 }
3996 
3997 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
3998 do {									\
3999 	if (__skb_checksum_convert_check(skb))				\
4000 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4001 } while (0)
4002 
4003 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4004 					      u16 start, u16 offset)
4005 {
4006 	skb->ip_summed = CHECKSUM_PARTIAL;
4007 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4008 	skb->csum_offset = offset - start;
4009 }
4010 
4011 /* Update skbuf and packet to reflect the remote checksum offload operation.
4012  * When called, ptr indicates the starting point for skb->csum when
4013  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4014  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4015  */
4016 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4017 				       int start, int offset, bool nopartial)
4018 {
4019 	__wsum delta;
4020 
4021 	if (!nopartial) {
4022 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4023 		return;
4024 	}
4025 
4026 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4027 		__skb_checksum_complete(skb);
4028 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4029 	}
4030 
4031 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4032 
4033 	/* Adjust skb->csum since we changed the packet */
4034 	skb->csum = csum_add(skb->csum, delta);
4035 }
4036 
4037 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4038 {
4039 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4040 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4041 #else
4042 	return NULL;
4043 #endif
4044 }
4045 
4046 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4047 {
4048 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4049 	return skb->_nfct;
4050 #else
4051 	return 0UL;
4052 #endif
4053 }
4054 
4055 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4056 {
4057 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4058 	skb->_nfct = nfct;
4059 #endif
4060 }
4061 
4062 #ifdef CONFIG_SKB_EXTENSIONS
4063 enum skb_ext_id {
4064 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4065 	SKB_EXT_BRIDGE_NF,
4066 #endif
4067 #ifdef CONFIG_XFRM
4068 	SKB_EXT_SEC_PATH,
4069 #endif
4070 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4071 	TC_SKB_EXT,
4072 #endif
4073 	SKB_EXT_NUM, /* must be last */
4074 };
4075 
4076 /**
4077  *	struct skb_ext - sk_buff extensions
4078  *	@refcnt: 1 on allocation, deallocated on 0
4079  *	@offset: offset to add to @data to obtain extension address
4080  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4081  *	@data: start of extension data, variable sized
4082  *
4083  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4084  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4085  */
4086 struct skb_ext {
4087 	refcount_t refcnt;
4088 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4089 	u8 chunks;		/* same */
4090 	char data[0] __aligned(8);
4091 };
4092 
4093 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4094 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4095 void __skb_ext_put(struct skb_ext *ext);
4096 
4097 static inline void skb_ext_put(struct sk_buff *skb)
4098 {
4099 	if (skb->active_extensions)
4100 		__skb_ext_put(skb->extensions);
4101 }
4102 
4103 static inline void __skb_ext_copy(struct sk_buff *dst,
4104 				  const struct sk_buff *src)
4105 {
4106 	dst->active_extensions = src->active_extensions;
4107 
4108 	if (src->active_extensions) {
4109 		struct skb_ext *ext = src->extensions;
4110 
4111 		refcount_inc(&ext->refcnt);
4112 		dst->extensions = ext;
4113 	}
4114 }
4115 
4116 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4117 {
4118 	skb_ext_put(dst);
4119 	__skb_ext_copy(dst, src);
4120 }
4121 
4122 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4123 {
4124 	return !!ext->offset[i];
4125 }
4126 
4127 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4128 {
4129 	return skb->active_extensions & (1 << id);
4130 }
4131 
4132 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4133 {
4134 	if (skb_ext_exist(skb, id))
4135 		__skb_ext_del(skb, id);
4136 }
4137 
4138 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4139 {
4140 	if (skb_ext_exist(skb, id)) {
4141 		struct skb_ext *ext = skb->extensions;
4142 
4143 		return (void *)ext + (ext->offset[id] << 3);
4144 	}
4145 
4146 	return NULL;
4147 }
4148 
4149 static inline void skb_ext_reset(struct sk_buff *skb)
4150 {
4151 	if (unlikely(skb->active_extensions)) {
4152 		__skb_ext_put(skb->extensions);
4153 		skb->active_extensions = 0;
4154 	}
4155 }
4156 #else
4157 static inline void skb_ext_put(struct sk_buff *skb) {}
4158 static inline void skb_ext_reset(struct sk_buff *skb) {}
4159 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4160 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4161 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4162 #endif /* CONFIG_SKB_EXTENSIONS */
4163 
4164 static inline void nf_reset_ct(struct sk_buff *skb)
4165 {
4166 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4167 	nf_conntrack_put(skb_nfct(skb));
4168 	skb->_nfct = 0;
4169 #endif
4170 }
4171 
4172 static inline void nf_reset_trace(struct sk_buff *skb)
4173 {
4174 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4175 	skb->nf_trace = 0;
4176 #endif
4177 }
4178 
4179 static inline void ipvs_reset(struct sk_buff *skb)
4180 {
4181 #if IS_ENABLED(CONFIG_IP_VS)
4182 	skb->ipvs_property = 0;
4183 #endif
4184 }
4185 
4186 /* Note: This doesn't put any conntrack info in dst. */
4187 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4188 			     bool copy)
4189 {
4190 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4191 	dst->_nfct = src->_nfct;
4192 	nf_conntrack_get(skb_nfct(src));
4193 #endif
4194 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4195 	if (copy)
4196 		dst->nf_trace = src->nf_trace;
4197 #endif
4198 }
4199 
4200 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4201 {
4202 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4203 	nf_conntrack_put(skb_nfct(dst));
4204 #endif
4205 	__nf_copy(dst, src, true);
4206 }
4207 
4208 #ifdef CONFIG_NETWORK_SECMARK
4209 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4210 {
4211 	to->secmark = from->secmark;
4212 }
4213 
4214 static inline void skb_init_secmark(struct sk_buff *skb)
4215 {
4216 	skb->secmark = 0;
4217 }
4218 #else
4219 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4220 { }
4221 
4222 static inline void skb_init_secmark(struct sk_buff *skb)
4223 { }
4224 #endif
4225 
4226 static inline int secpath_exists(const struct sk_buff *skb)
4227 {
4228 #ifdef CONFIG_XFRM
4229 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4230 #else
4231 	return 0;
4232 #endif
4233 }
4234 
4235 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4236 {
4237 	return !skb->destructor &&
4238 		!secpath_exists(skb) &&
4239 		!skb_nfct(skb) &&
4240 		!skb->_skb_refdst &&
4241 		!skb_has_frag_list(skb);
4242 }
4243 
4244 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4245 {
4246 	skb->queue_mapping = queue_mapping;
4247 }
4248 
4249 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4250 {
4251 	return skb->queue_mapping;
4252 }
4253 
4254 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4255 {
4256 	to->queue_mapping = from->queue_mapping;
4257 }
4258 
4259 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4260 {
4261 	skb->queue_mapping = rx_queue + 1;
4262 }
4263 
4264 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4265 {
4266 	return skb->queue_mapping - 1;
4267 }
4268 
4269 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4270 {
4271 	return skb->queue_mapping != 0;
4272 }
4273 
4274 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4275 {
4276 	skb->dst_pending_confirm = val;
4277 }
4278 
4279 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4280 {
4281 	return skb->dst_pending_confirm != 0;
4282 }
4283 
4284 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4285 {
4286 #ifdef CONFIG_XFRM
4287 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4288 #else
4289 	return NULL;
4290 #endif
4291 }
4292 
4293 /* Keeps track of mac header offset relative to skb->head.
4294  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4295  * For non-tunnel skb it points to skb_mac_header() and for
4296  * tunnel skb it points to outer mac header.
4297  * Keeps track of level of encapsulation of network headers.
4298  */
4299 struct skb_gso_cb {
4300 	union {
4301 		int	mac_offset;
4302 		int	data_offset;
4303 	};
4304 	int	encap_level;
4305 	__wsum	csum;
4306 	__u16	csum_start;
4307 };
4308 #define SKB_SGO_CB_OFFSET	32
4309 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4310 
4311 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4312 {
4313 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4314 		SKB_GSO_CB(inner_skb)->mac_offset;
4315 }
4316 
4317 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4318 {
4319 	int new_headroom, headroom;
4320 	int ret;
4321 
4322 	headroom = skb_headroom(skb);
4323 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4324 	if (ret)
4325 		return ret;
4326 
4327 	new_headroom = skb_headroom(skb);
4328 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4329 	return 0;
4330 }
4331 
4332 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4333 {
4334 	/* Do not update partial checksums if remote checksum is enabled. */
4335 	if (skb->remcsum_offload)
4336 		return;
4337 
4338 	SKB_GSO_CB(skb)->csum = res;
4339 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4340 }
4341 
4342 /* Compute the checksum for a gso segment. First compute the checksum value
4343  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4344  * then add in skb->csum (checksum from csum_start to end of packet).
4345  * skb->csum and csum_start are then updated to reflect the checksum of the
4346  * resultant packet starting from the transport header-- the resultant checksum
4347  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4348  * header.
4349  */
4350 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4351 {
4352 	unsigned char *csum_start = skb_transport_header(skb);
4353 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4354 	__wsum partial = SKB_GSO_CB(skb)->csum;
4355 
4356 	SKB_GSO_CB(skb)->csum = res;
4357 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4358 
4359 	return csum_fold(csum_partial(csum_start, plen, partial));
4360 }
4361 
4362 static inline bool skb_is_gso(const struct sk_buff *skb)
4363 {
4364 	return skb_shinfo(skb)->gso_size;
4365 }
4366 
4367 /* Note: Should be called only if skb_is_gso(skb) is true */
4368 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4369 {
4370 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4371 }
4372 
4373 /* Note: Should be called only if skb_is_gso(skb) is true */
4374 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4375 {
4376 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4377 }
4378 
4379 /* Note: Should be called only if skb_is_gso(skb) is true */
4380 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4381 {
4382 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4383 }
4384 
4385 static inline void skb_gso_reset(struct sk_buff *skb)
4386 {
4387 	skb_shinfo(skb)->gso_size = 0;
4388 	skb_shinfo(skb)->gso_segs = 0;
4389 	skb_shinfo(skb)->gso_type = 0;
4390 }
4391 
4392 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4393 					 u16 increment)
4394 {
4395 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4396 		return;
4397 	shinfo->gso_size += increment;
4398 }
4399 
4400 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4401 					 u16 decrement)
4402 {
4403 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4404 		return;
4405 	shinfo->gso_size -= decrement;
4406 }
4407 
4408 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4409 
4410 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4411 {
4412 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4413 	 * wanted then gso_type will be set. */
4414 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4415 
4416 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4417 	    unlikely(shinfo->gso_type == 0)) {
4418 		__skb_warn_lro_forwarding(skb);
4419 		return true;
4420 	}
4421 	return false;
4422 }
4423 
4424 static inline void skb_forward_csum(struct sk_buff *skb)
4425 {
4426 	/* Unfortunately we don't support this one.  Any brave souls? */
4427 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4428 		skb->ip_summed = CHECKSUM_NONE;
4429 }
4430 
4431 /**
4432  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4433  * @skb: skb to check
4434  *
4435  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4436  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4437  * use this helper, to document places where we make this assertion.
4438  */
4439 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4440 {
4441 #ifdef DEBUG
4442 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4443 #endif
4444 }
4445 
4446 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4447 
4448 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4449 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4450 				     unsigned int transport_len,
4451 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4452 
4453 /**
4454  * skb_head_is_locked - Determine if the skb->head is locked down
4455  * @skb: skb to check
4456  *
4457  * The head on skbs build around a head frag can be removed if they are
4458  * not cloned.  This function returns true if the skb head is locked down
4459  * due to either being allocated via kmalloc, or by being a clone with
4460  * multiple references to the head.
4461  */
4462 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4463 {
4464 	return !skb->head_frag || skb_cloned(skb);
4465 }
4466 
4467 /* Local Checksum Offload.
4468  * Compute outer checksum based on the assumption that the
4469  * inner checksum will be offloaded later.
4470  * See Documentation/networking/checksum-offloads.rst for
4471  * explanation of how this works.
4472  * Fill in outer checksum adjustment (e.g. with sum of outer
4473  * pseudo-header) before calling.
4474  * Also ensure that inner checksum is in linear data area.
4475  */
4476 static inline __wsum lco_csum(struct sk_buff *skb)
4477 {
4478 	unsigned char *csum_start = skb_checksum_start(skb);
4479 	unsigned char *l4_hdr = skb_transport_header(skb);
4480 	__wsum partial;
4481 
4482 	/* Start with complement of inner checksum adjustment */
4483 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4484 						    skb->csum_offset));
4485 
4486 	/* Add in checksum of our headers (incl. outer checksum
4487 	 * adjustment filled in by caller) and return result.
4488 	 */
4489 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4490 }
4491 
4492 #endif	/* __KERNEL__ */
4493 #endif	/* _LINUX_SKBUFF_H */
4494