1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 248 struct nf_conntrack { 249 atomic_t use; 250 }; 251 #endif 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 refcount_t use; 256 enum { 257 BRNF_PROTO_UNCHANGED, 258 BRNF_PROTO_8021Q, 259 BRNF_PROTO_PPPOE 260 } orig_proto:8; 261 u8 pkt_otherhost:1; 262 u8 in_prerouting:1; 263 u8 bridged_dnat:1; 264 __u16 frag_max_size; 265 struct net_device *physindev; 266 267 /* always valid & non-NULL from FORWARD on, for physdev match */ 268 struct net_device *physoutdev; 269 union { 270 /* prerouting: detect dnat in orig/reply direction */ 271 __be32 ipv4_daddr; 272 struct in6_addr ipv6_daddr; 273 274 /* after prerouting + nat detected: store original source 275 * mac since neigh resolution overwrites it, only used while 276 * skb is out in neigh layer. 277 */ 278 char neigh_header[8]; 279 }; 280 }; 281 #endif 282 283 struct sk_buff_head { 284 /* These two members must be first. */ 285 struct sk_buff *next; 286 struct sk_buff *prev; 287 288 __u32 qlen; 289 spinlock_t lock; 290 }; 291 292 struct sk_buff; 293 294 /* To allow 64K frame to be packed as single skb without frag_list we 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 296 * buffers which do not start on a page boundary. 297 * 298 * Since GRO uses frags we allocate at least 16 regardless of page 299 * size. 300 */ 301 #if (65536/PAGE_SIZE + 1) < 16 302 #define MAX_SKB_FRAGS 16UL 303 #else 304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 305 #endif 306 extern int sysctl_max_skb_frags; 307 308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 309 * segment using its current segmentation instead. 310 */ 311 #define GSO_BY_FRAGS 0xFFFF 312 313 typedef struct skb_frag_struct skb_frag_t; 314 315 struct skb_frag_struct { 316 struct { 317 struct page *p; 318 } page; 319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 320 __u32 page_offset; 321 __u32 size; 322 #else 323 __u16 page_offset; 324 __u16 size; 325 #endif 326 }; 327 328 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 329 { 330 return frag->size; 331 } 332 333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 334 { 335 frag->size = size; 336 } 337 338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 339 { 340 frag->size += delta; 341 } 342 343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 344 { 345 frag->size -= delta; 346 } 347 348 static inline bool skb_frag_must_loop(struct page *p) 349 { 350 #if defined(CONFIG_HIGHMEM) 351 if (PageHighMem(p)) 352 return true; 353 #endif 354 return false; 355 } 356 357 /** 358 * skb_frag_foreach_page - loop over pages in a fragment 359 * 360 * @f: skb frag to operate on 361 * @f_off: offset from start of f->page.p 362 * @f_len: length from f_off to loop over 363 * @p: (temp var) current page 364 * @p_off: (temp var) offset from start of current page, 365 * non-zero only on first page. 366 * @p_len: (temp var) length in current page, 367 * < PAGE_SIZE only on first and last page. 368 * @copied: (temp var) length so far, excluding current p_len. 369 * 370 * A fragment can hold a compound page, in which case per-page 371 * operations, notably kmap_atomic, must be called for each 372 * regular page. 373 */ 374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 376 p_off = (f_off) & (PAGE_SIZE - 1), \ 377 p_len = skb_frag_must_loop(p) ? \ 378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 379 copied = 0; \ 380 copied < f_len; \ 381 copied += p_len, p++, p_off = 0, \ 382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 383 384 #define HAVE_HW_TIME_STAMP 385 386 /** 387 * struct skb_shared_hwtstamps - hardware time stamps 388 * @hwtstamp: hardware time stamp transformed into duration 389 * since arbitrary point in time 390 * 391 * Software time stamps generated by ktime_get_real() are stored in 392 * skb->tstamp. 393 * 394 * hwtstamps can only be compared against other hwtstamps from 395 * the same device. 396 * 397 * This structure is attached to packets as part of the 398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 399 */ 400 struct skb_shared_hwtstamps { 401 ktime_t hwtstamp; 402 }; 403 404 /* Definitions for tx_flags in struct skb_shared_info */ 405 enum { 406 /* generate hardware time stamp */ 407 SKBTX_HW_TSTAMP = 1 << 0, 408 409 /* generate software time stamp when queueing packet to NIC */ 410 SKBTX_SW_TSTAMP = 1 << 1, 411 412 /* device driver is going to provide hardware time stamp */ 413 SKBTX_IN_PROGRESS = 1 << 2, 414 415 /* device driver supports TX zero-copy buffers */ 416 SKBTX_DEV_ZEROCOPY = 1 << 3, 417 418 /* generate wifi status information (where possible) */ 419 SKBTX_WIFI_STATUS = 1 << 4, 420 421 /* This indicates at least one fragment might be overwritten 422 * (as in vmsplice(), sendfile() ...) 423 * If we need to compute a TX checksum, we'll need to copy 424 * all frags to avoid possible bad checksum 425 */ 426 SKBTX_SHARED_FRAG = 1 << 5, 427 428 /* generate software time stamp when entering packet scheduling */ 429 SKBTX_SCHED_TSTAMP = 1 << 6, 430 }; 431 432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 434 SKBTX_SCHED_TSTAMP) 435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 436 437 /* 438 * The callback notifies userspace to release buffers when skb DMA is done in 439 * lower device, the skb last reference should be 0 when calling this. 440 * The zerocopy_success argument is true if zero copy transmit occurred, 441 * false on data copy or out of memory error caused by data copy attempt. 442 * The ctx field is used to track device context. 443 * The desc field is used to track userspace buffer index. 444 */ 445 struct ubuf_info { 446 void (*callback)(struct ubuf_info *, bool zerocopy_success); 447 union { 448 struct { 449 unsigned long desc; 450 void *ctx; 451 }; 452 struct { 453 u32 id; 454 u16 len; 455 u16 zerocopy:1; 456 u32 bytelen; 457 }; 458 }; 459 refcount_t refcnt; 460 461 struct mmpin { 462 struct user_struct *user; 463 unsigned int num_pg; 464 } mmp; 465 }; 466 467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 468 469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 470 void mm_unaccount_pinned_pages(struct mmpin *mmp); 471 472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 474 struct ubuf_info *uarg); 475 476 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 477 { 478 refcount_inc(&uarg->refcnt); 479 } 480 481 void sock_zerocopy_put(struct ubuf_info *uarg); 482 void sock_zerocopy_put_abort(struct ubuf_info *uarg); 483 484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 485 486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 487 struct msghdr *msg, int len, 488 struct ubuf_info *uarg); 489 490 /* This data is invariant across clones and lives at 491 * the end of the header data, ie. at skb->end. 492 */ 493 struct skb_shared_info { 494 __u8 __unused; 495 __u8 meta_len; 496 __u8 nr_frags; 497 __u8 tx_flags; 498 unsigned short gso_size; 499 /* Warning: this field is not always filled in (UFO)! */ 500 unsigned short gso_segs; 501 struct sk_buff *frag_list; 502 struct skb_shared_hwtstamps hwtstamps; 503 unsigned int gso_type; 504 u32 tskey; 505 506 /* 507 * Warning : all fields before dataref are cleared in __alloc_skb() 508 */ 509 atomic_t dataref; 510 511 /* Intermediate layers must ensure that destructor_arg 512 * remains valid until skb destructor */ 513 void * destructor_arg; 514 515 /* must be last field, see pskb_expand_head() */ 516 skb_frag_t frags[MAX_SKB_FRAGS]; 517 }; 518 519 /* We divide dataref into two halves. The higher 16 bits hold references 520 * to the payload part of skb->data. The lower 16 bits hold references to 521 * the entire skb->data. A clone of a headerless skb holds the length of 522 * the header in skb->hdr_len. 523 * 524 * All users must obey the rule that the skb->data reference count must be 525 * greater than or equal to the payload reference count. 526 * 527 * Holding a reference to the payload part means that the user does not 528 * care about modifications to the header part of skb->data. 529 */ 530 #define SKB_DATAREF_SHIFT 16 531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 532 533 534 enum { 535 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 536 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 537 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 538 }; 539 540 enum { 541 SKB_GSO_TCPV4 = 1 << 0, 542 543 /* This indicates the skb is from an untrusted source. */ 544 SKB_GSO_DODGY = 1 << 1, 545 546 /* This indicates the tcp segment has CWR set. */ 547 SKB_GSO_TCP_ECN = 1 << 2, 548 549 SKB_GSO_TCP_FIXEDID = 1 << 3, 550 551 SKB_GSO_TCPV6 = 1 << 4, 552 553 SKB_GSO_FCOE = 1 << 5, 554 555 SKB_GSO_GRE = 1 << 6, 556 557 SKB_GSO_GRE_CSUM = 1 << 7, 558 559 SKB_GSO_IPXIP4 = 1 << 8, 560 561 SKB_GSO_IPXIP6 = 1 << 9, 562 563 SKB_GSO_UDP_TUNNEL = 1 << 10, 564 565 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 566 567 SKB_GSO_PARTIAL = 1 << 12, 568 569 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 570 571 SKB_GSO_SCTP = 1 << 14, 572 573 SKB_GSO_ESP = 1 << 15, 574 575 SKB_GSO_UDP = 1 << 16, 576 577 SKB_GSO_UDP_L4 = 1 << 17, 578 }; 579 580 #if BITS_PER_LONG > 32 581 #define NET_SKBUFF_DATA_USES_OFFSET 1 582 #endif 583 584 #ifdef NET_SKBUFF_DATA_USES_OFFSET 585 typedef unsigned int sk_buff_data_t; 586 #else 587 typedef unsigned char *sk_buff_data_t; 588 #endif 589 590 /** 591 * struct sk_buff - socket buffer 592 * @next: Next buffer in list 593 * @prev: Previous buffer in list 594 * @tstamp: Time we arrived/left 595 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 596 * @sk: Socket we are owned by 597 * @dev: Device we arrived on/are leaving by 598 * @cb: Control buffer. Free for use by every layer. Put private vars here 599 * @_skb_refdst: destination entry (with norefcount bit) 600 * @sp: the security path, used for xfrm 601 * @len: Length of actual data 602 * @data_len: Data length 603 * @mac_len: Length of link layer header 604 * @hdr_len: writable header length of cloned skb 605 * @csum: Checksum (must include start/offset pair) 606 * @csum_start: Offset from skb->head where checksumming should start 607 * @csum_offset: Offset from csum_start where checksum should be stored 608 * @priority: Packet queueing priority 609 * @ignore_df: allow local fragmentation 610 * @cloned: Head may be cloned (check refcnt to be sure) 611 * @ip_summed: Driver fed us an IP checksum 612 * @nohdr: Payload reference only, must not modify header 613 * @pkt_type: Packet class 614 * @fclone: skbuff clone status 615 * @ipvs_property: skbuff is owned by ipvs 616 * @tc_skip_classify: do not classify packet. set by IFB device 617 * @tc_at_ingress: used within tc_classify to distinguish in/egress 618 * @tc_redirected: packet was redirected by a tc action 619 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 620 * @peeked: this packet has been seen already, so stats have been 621 * done for it, don't do them again 622 * @nf_trace: netfilter packet trace flag 623 * @protocol: Packet protocol from driver 624 * @destructor: Destruct function 625 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 626 * @_nfct: Associated connection, if any (with nfctinfo bits) 627 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 628 * @skb_iif: ifindex of device we arrived on 629 * @tc_index: Traffic control index 630 * @hash: the packet hash 631 * @queue_mapping: Queue mapping for multiqueue devices 632 * @xmit_more: More SKBs are pending for this queue 633 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 634 * @ndisc_nodetype: router type (from link layer) 635 * @ooo_okay: allow the mapping of a socket to a queue to be changed 636 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 637 * ports. 638 * @sw_hash: indicates hash was computed in software stack 639 * @wifi_acked_valid: wifi_acked was set 640 * @wifi_acked: whether frame was acked on wifi or not 641 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 642 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 643 * @dst_pending_confirm: need to confirm neighbour 644 * @decrypted: Decrypted SKB 645 * @napi_id: id of the NAPI struct this skb came from 646 * @secmark: security marking 647 * @mark: Generic packet mark 648 * @vlan_proto: vlan encapsulation protocol 649 * @vlan_tci: vlan tag control information 650 * @inner_protocol: Protocol (encapsulation) 651 * @inner_transport_header: Inner transport layer header (encapsulation) 652 * @inner_network_header: Network layer header (encapsulation) 653 * @inner_mac_header: Link layer header (encapsulation) 654 * @transport_header: Transport layer header 655 * @network_header: Network layer header 656 * @mac_header: Link layer header 657 * @tail: Tail pointer 658 * @end: End pointer 659 * @head: Head of buffer 660 * @data: Data head pointer 661 * @truesize: Buffer size 662 * @users: User count - see {datagram,tcp}.c 663 */ 664 665 struct sk_buff { 666 union { 667 struct { 668 /* These two members must be first. */ 669 struct sk_buff *next; 670 struct sk_buff *prev; 671 672 union { 673 struct net_device *dev; 674 /* Some protocols might use this space to store information, 675 * while device pointer would be NULL. 676 * UDP receive path is one user. 677 */ 678 unsigned long dev_scratch; 679 }; 680 }; 681 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 682 struct list_head list; 683 }; 684 685 union { 686 struct sock *sk; 687 int ip_defrag_offset; 688 }; 689 690 union { 691 ktime_t tstamp; 692 u64 skb_mstamp; 693 }; 694 /* 695 * This is the control buffer. It is free to use for every 696 * layer. Please put your private variables there. If you 697 * want to keep them across layers you have to do a skb_clone() 698 * first. This is owned by whoever has the skb queued ATM. 699 */ 700 char cb[48] __aligned(8); 701 702 union { 703 struct { 704 unsigned long _skb_refdst; 705 void (*destructor)(struct sk_buff *skb); 706 }; 707 struct list_head tcp_tsorted_anchor; 708 }; 709 710 #ifdef CONFIG_XFRM 711 struct sec_path *sp; 712 #endif 713 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 714 unsigned long _nfct; 715 #endif 716 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 717 struct nf_bridge_info *nf_bridge; 718 #endif 719 unsigned int len, 720 data_len; 721 __u16 mac_len, 722 hdr_len; 723 724 /* Following fields are _not_ copied in __copy_skb_header() 725 * Note that queue_mapping is here mostly to fill a hole. 726 */ 727 __u16 queue_mapping; 728 729 /* if you move cloned around you also must adapt those constants */ 730 #ifdef __BIG_ENDIAN_BITFIELD 731 #define CLONED_MASK (1 << 7) 732 #else 733 #define CLONED_MASK 1 734 #endif 735 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 736 737 __u8 __cloned_offset[0]; 738 __u8 cloned:1, 739 nohdr:1, 740 fclone:2, 741 peeked:1, 742 head_frag:1, 743 xmit_more:1, 744 pfmemalloc:1; 745 746 /* fields enclosed in headers_start/headers_end are copied 747 * using a single memcpy() in __copy_skb_header() 748 */ 749 /* private: */ 750 __u32 headers_start[0]; 751 /* public: */ 752 753 /* if you move pkt_type around you also must adapt those constants */ 754 #ifdef __BIG_ENDIAN_BITFIELD 755 #define PKT_TYPE_MAX (7 << 5) 756 #else 757 #define PKT_TYPE_MAX 7 758 #endif 759 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 760 761 __u8 __pkt_type_offset[0]; 762 __u8 pkt_type:3; 763 __u8 ignore_df:1; 764 __u8 nf_trace:1; 765 __u8 ip_summed:2; 766 __u8 ooo_okay:1; 767 768 __u8 l4_hash:1; 769 __u8 sw_hash:1; 770 __u8 wifi_acked_valid:1; 771 __u8 wifi_acked:1; 772 __u8 no_fcs:1; 773 /* Indicates the inner headers are valid in the skbuff. */ 774 __u8 encapsulation:1; 775 __u8 encap_hdr_csum:1; 776 __u8 csum_valid:1; 777 778 __u8 csum_complete_sw:1; 779 __u8 csum_level:2; 780 __u8 csum_not_inet:1; 781 __u8 dst_pending_confirm:1; 782 #ifdef CONFIG_IPV6_NDISC_NODETYPE 783 __u8 ndisc_nodetype:2; 784 #endif 785 __u8 ipvs_property:1; 786 787 __u8 inner_protocol_type:1; 788 __u8 remcsum_offload:1; 789 #ifdef CONFIG_NET_SWITCHDEV 790 __u8 offload_fwd_mark:1; 791 __u8 offload_mr_fwd_mark:1; 792 #endif 793 #ifdef CONFIG_NET_CLS_ACT 794 __u8 tc_skip_classify:1; 795 __u8 tc_at_ingress:1; 796 __u8 tc_redirected:1; 797 __u8 tc_from_ingress:1; 798 #endif 799 #ifdef CONFIG_TLS_DEVICE 800 __u8 decrypted:1; 801 #endif 802 803 #ifdef CONFIG_NET_SCHED 804 __u16 tc_index; /* traffic control index */ 805 #endif 806 807 union { 808 __wsum csum; 809 struct { 810 __u16 csum_start; 811 __u16 csum_offset; 812 }; 813 }; 814 __u32 priority; 815 int skb_iif; 816 __u32 hash; 817 __be16 vlan_proto; 818 __u16 vlan_tci; 819 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 820 union { 821 unsigned int napi_id; 822 unsigned int sender_cpu; 823 }; 824 #endif 825 #ifdef CONFIG_NETWORK_SECMARK 826 __u32 secmark; 827 #endif 828 829 union { 830 __u32 mark; 831 __u32 reserved_tailroom; 832 }; 833 834 union { 835 __be16 inner_protocol; 836 __u8 inner_ipproto; 837 }; 838 839 __u16 inner_transport_header; 840 __u16 inner_network_header; 841 __u16 inner_mac_header; 842 843 __be16 protocol; 844 __u16 transport_header; 845 __u16 network_header; 846 __u16 mac_header; 847 848 /* private: */ 849 __u32 headers_end[0]; 850 /* public: */ 851 852 /* These elements must be at the end, see alloc_skb() for details. */ 853 sk_buff_data_t tail; 854 sk_buff_data_t end; 855 unsigned char *head, 856 *data; 857 unsigned int truesize; 858 refcount_t users; 859 }; 860 861 #ifdef __KERNEL__ 862 /* 863 * Handling routines are only of interest to the kernel 864 */ 865 866 #define SKB_ALLOC_FCLONE 0x01 867 #define SKB_ALLOC_RX 0x02 868 #define SKB_ALLOC_NAPI 0x04 869 870 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 871 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 872 { 873 return unlikely(skb->pfmemalloc); 874 } 875 876 /* 877 * skb might have a dst pointer attached, refcounted or not. 878 * _skb_refdst low order bit is set if refcount was _not_ taken 879 */ 880 #define SKB_DST_NOREF 1UL 881 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 882 883 #define SKB_NFCT_PTRMASK ~(7UL) 884 /** 885 * skb_dst - returns skb dst_entry 886 * @skb: buffer 887 * 888 * Returns skb dst_entry, regardless of reference taken or not. 889 */ 890 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 891 { 892 /* If refdst was not refcounted, check we still are in a 893 * rcu_read_lock section 894 */ 895 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 896 !rcu_read_lock_held() && 897 !rcu_read_lock_bh_held()); 898 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 899 } 900 901 /** 902 * skb_dst_set - sets skb dst 903 * @skb: buffer 904 * @dst: dst entry 905 * 906 * Sets skb dst, assuming a reference was taken on dst and should 907 * be released by skb_dst_drop() 908 */ 909 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 910 { 911 skb->_skb_refdst = (unsigned long)dst; 912 } 913 914 /** 915 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 916 * @skb: buffer 917 * @dst: dst entry 918 * 919 * Sets skb dst, assuming a reference was not taken on dst. 920 * If dst entry is cached, we do not take reference and dst_release 921 * will be avoided by refdst_drop. If dst entry is not cached, we take 922 * reference, so that last dst_release can destroy the dst immediately. 923 */ 924 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 925 { 926 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 927 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 928 } 929 930 /** 931 * skb_dst_is_noref - Test if skb dst isn't refcounted 932 * @skb: buffer 933 */ 934 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 935 { 936 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 937 } 938 939 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 940 { 941 return (struct rtable *)skb_dst(skb); 942 } 943 944 /* For mangling skb->pkt_type from user space side from applications 945 * such as nft, tc, etc, we only allow a conservative subset of 946 * possible pkt_types to be set. 947 */ 948 static inline bool skb_pkt_type_ok(u32 ptype) 949 { 950 return ptype <= PACKET_OTHERHOST; 951 } 952 953 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 954 { 955 #ifdef CONFIG_NET_RX_BUSY_POLL 956 return skb->napi_id; 957 #else 958 return 0; 959 #endif 960 } 961 962 /* decrement the reference count and return true if we can free the skb */ 963 static inline bool skb_unref(struct sk_buff *skb) 964 { 965 if (unlikely(!skb)) 966 return false; 967 if (likely(refcount_read(&skb->users) == 1)) 968 smp_rmb(); 969 else if (likely(!refcount_dec_and_test(&skb->users))) 970 return false; 971 972 return true; 973 } 974 975 void skb_release_head_state(struct sk_buff *skb); 976 void kfree_skb(struct sk_buff *skb); 977 void kfree_skb_list(struct sk_buff *segs); 978 void skb_tx_error(struct sk_buff *skb); 979 void consume_skb(struct sk_buff *skb); 980 void __consume_stateless_skb(struct sk_buff *skb); 981 void __kfree_skb(struct sk_buff *skb); 982 extern struct kmem_cache *skbuff_head_cache; 983 984 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 985 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 986 bool *fragstolen, int *delta_truesize); 987 988 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 989 int node); 990 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 991 struct sk_buff *build_skb(void *data, unsigned int frag_size); 992 static inline struct sk_buff *alloc_skb(unsigned int size, 993 gfp_t priority) 994 { 995 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 996 } 997 998 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 999 unsigned long data_len, 1000 int max_page_order, 1001 int *errcode, 1002 gfp_t gfp_mask); 1003 1004 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1005 struct sk_buff_fclones { 1006 struct sk_buff skb1; 1007 1008 struct sk_buff skb2; 1009 1010 refcount_t fclone_ref; 1011 }; 1012 1013 /** 1014 * skb_fclone_busy - check if fclone is busy 1015 * @sk: socket 1016 * @skb: buffer 1017 * 1018 * Returns true if skb is a fast clone, and its clone is not freed. 1019 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1020 * so we also check that this didnt happen. 1021 */ 1022 static inline bool skb_fclone_busy(const struct sock *sk, 1023 const struct sk_buff *skb) 1024 { 1025 const struct sk_buff_fclones *fclones; 1026 1027 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1028 1029 return skb->fclone == SKB_FCLONE_ORIG && 1030 refcount_read(&fclones->fclone_ref) > 1 && 1031 fclones->skb2.sk == sk; 1032 } 1033 1034 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1035 gfp_t priority) 1036 { 1037 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1038 } 1039 1040 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1041 void skb_headers_offset_update(struct sk_buff *skb, int off); 1042 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1043 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1044 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1045 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1046 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1047 gfp_t gfp_mask, bool fclone); 1048 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1049 gfp_t gfp_mask) 1050 { 1051 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1052 } 1053 1054 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1055 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1056 unsigned int headroom); 1057 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1058 int newtailroom, gfp_t priority); 1059 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1060 int offset, int len); 1061 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1062 int offset, int len); 1063 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1064 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1065 1066 /** 1067 * skb_pad - zero pad the tail of an skb 1068 * @skb: buffer to pad 1069 * @pad: space to pad 1070 * 1071 * Ensure that a buffer is followed by a padding area that is zero 1072 * filled. Used by network drivers which may DMA or transfer data 1073 * beyond the buffer end onto the wire. 1074 * 1075 * May return error in out of memory cases. The skb is freed on error. 1076 */ 1077 static inline int skb_pad(struct sk_buff *skb, int pad) 1078 { 1079 return __skb_pad(skb, pad, true); 1080 } 1081 #define dev_kfree_skb(a) consume_skb(a) 1082 1083 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1084 int getfrag(void *from, char *to, int offset, 1085 int len, int odd, struct sk_buff *skb), 1086 void *from, int length); 1087 1088 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1089 int offset, size_t size); 1090 1091 struct skb_seq_state { 1092 __u32 lower_offset; 1093 __u32 upper_offset; 1094 __u32 frag_idx; 1095 __u32 stepped_offset; 1096 struct sk_buff *root_skb; 1097 struct sk_buff *cur_skb; 1098 __u8 *frag_data; 1099 }; 1100 1101 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1102 unsigned int to, struct skb_seq_state *st); 1103 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1104 struct skb_seq_state *st); 1105 void skb_abort_seq_read(struct skb_seq_state *st); 1106 1107 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1108 unsigned int to, struct ts_config *config); 1109 1110 /* 1111 * Packet hash types specify the type of hash in skb_set_hash. 1112 * 1113 * Hash types refer to the protocol layer addresses which are used to 1114 * construct a packet's hash. The hashes are used to differentiate or identify 1115 * flows of the protocol layer for the hash type. Hash types are either 1116 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1117 * 1118 * Properties of hashes: 1119 * 1120 * 1) Two packets in different flows have different hash values 1121 * 2) Two packets in the same flow should have the same hash value 1122 * 1123 * A hash at a higher layer is considered to be more specific. A driver should 1124 * set the most specific hash possible. 1125 * 1126 * A driver cannot indicate a more specific hash than the layer at which a hash 1127 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1128 * 1129 * A driver may indicate a hash level which is less specific than the 1130 * actual layer the hash was computed on. For instance, a hash computed 1131 * at L4 may be considered an L3 hash. This should only be done if the 1132 * driver can't unambiguously determine that the HW computed the hash at 1133 * the higher layer. Note that the "should" in the second property above 1134 * permits this. 1135 */ 1136 enum pkt_hash_types { 1137 PKT_HASH_TYPE_NONE, /* Undefined type */ 1138 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1139 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1140 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1141 }; 1142 1143 static inline void skb_clear_hash(struct sk_buff *skb) 1144 { 1145 skb->hash = 0; 1146 skb->sw_hash = 0; 1147 skb->l4_hash = 0; 1148 } 1149 1150 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1151 { 1152 if (!skb->l4_hash) 1153 skb_clear_hash(skb); 1154 } 1155 1156 static inline void 1157 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1158 { 1159 skb->l4_hash = is_l4; 1160 skb->sw_hash = is_sw; 1161 skb->hash = hash; 1162 } 1163 1164 static inline void 1165 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1166 { 1167 /* Used by drivers to set hash from HW */ 1168 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1169 } 1170 1171 static inline void 1172 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1173 { 1174 __skb_set_hash(skb, hash, true, is_l4); 1175 } 1176 1177 void __skb_get_hash(struct sk_buff *skb); 1178 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1179 u32 skb_get_poff(const struct sk_buff *skb); 1180 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1181 const struct flow_keys_basic *keys, int hlen); 1182 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1183 void *data, int hlen_proto); 1184 1185 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1186 int thoff, u8 ip_proto) 1187 { 1188 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1189 } 1190 1191 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1192 const struct flow_dissector_key *key, 1193 unsigned int key_count); 1194 1195 bool __skb_flow_dissect(const struct sk_buff *skb, 1196 struct flow_dissector *flow_dissector, 1197 void *target_container, 1198 void *data, __be16 proto, int nhoff, int hlen, 1199 unsigned int flags); 1200 1201 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1202 struct flow_dissector *flow_dissector, 1203 void *target_container, unsigned int flags) 1204 { 1205 return __skb_flow_dissect(skb, flow_dissector, target_container, 1206 NULL, 0, 0, 0, flags); 1207 } 1208 1209 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1210 struct flow_keys *flow, 1211 unsigned int flags) 1212 { 1213 memset(flow, 0, sizeof(*flow)); 1214 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1215 NULL, 0, 0, 0, flags); 1216 } 1217 1218 static inline bool 1219 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb, 1220 struct flow_keys_basic *flow, void *data, 1221 __be16 proto, int nhoff, int hlen, 1222 unsigned int flags) 1223 { 1224 memset(flow, 0, sizeof(*flow)); 1225 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow, 1226 data, proto, nhoff, hlen, flags); 1227 } 1228 1229 void 1230 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1231 struct flow_dissector *flow_dissector, 1232 void *target_container); 1233 1234 static inline __u32 skb_get_hash(struct sk_buff *skb) 1235 { 1236 if (!skb->l4_hash && !skb->sw_hash) 1237 __skb_get_hash(skb); 1238 1239 return skb->hash; 1240 } 1241 1242 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1243 { 1244 if (!skb->l4_hash && !skb->sw_hash) { 1245 struct flow_keys keys; 1246 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1247 1248 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1249 } 1250 1251 return skb->hash; 1252 } 1253 1254 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1255 1256 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1257 { 1258 return skb->hash; 1259 } 1260 1261 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1262 { 1263 to->hash = from->hash; 1264 to->sw_hash = from->sw_hash; 1265 to->l4_hash = from->l4_hash; 1266 }; 1267 1268 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1269 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1270 { 1271 return skb->head + skb->end; 1272 } 1273 1274 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1275 { 1276 return skb->end; 1277 } 1278 #else 1279 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1280 { 1281 return skb->end; 1282 } 1283 1284 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1285 { 1286 return skb->end - skb->head; 1287 } 1288 #endif 1289 1290 /* Internal */ 1291 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1292 1293 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1294 { 1295 return &skb_shinfo(skb)->hwtstamps; 1296 } 1297 1298 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1299 { 1300 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1301 1302 return is_zcopy ? skb_uarg(skb) : NULL; 1303 } 1304 1305 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg) 1306 { 1307 if (skb && uarg && !skb_zcopy(skb)) { 1308 sock_zerocopy_get(uarg); 1309 skb_shinfo(skb)->destructor_arg = uarg; 1310 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1311 } 1312 } 1313 1314 /* Release a reference on a zerocopy structure */ 1315 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1316 { 1317 struct ubuf_info *uarg = skb_zcopy(skb); 1318 1319 if (uarg) { 1320 if (uarg->callback == sock_zerocopy_callback) { 1321 uarg->zerocopy = uarg->zerocopy && zerocopy; 1322 sock_zerocopy_put(uarg); 1323 } else { 1324 uarg->callback(uarg, zerocopy); 1325 } 1326 1327 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1328 } 1329 } 1330 1331 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1332 static inline void skb_zcopy_abort(struct sk_buff *skb) 1333 { 1334 struct ubuf_info *uarg = skb_zcopy(skb); 1335 1336 if (uarg) { 1337 sock_zerocopy_put_abort(uarg); 1338 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1339 } 1340 } 1341 1342 /** 1343 * skb_queue_empty - check if a queue is empty 1344 * @list: queue head 1345 * 1346 * Returns true if the queue is empty, false otherwise. 1347 */ 1348 static inline int skb_queue_empty(const struct sk_buff_head *list) 1349 { 1350 return list->next == (const struct sk_buff *) list; 1351 } 1352 1353 /** 1354 * skb_queue_is_last - check if skb is the last entry in the queue 1355 * @list: queue head 1356 * @skb: buffer 1357 * 1358 * Returns true if @skb is the last buffer on the list. 1359 */ 1360 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1361 const struct sk_buff *skb) 1362 { 1363 return skb->next == (const struct sk_buff *) list; 1364 } 1365 1366 /** 1367 * skb_queue_is_first - check if skb is the first entry in the queue 1368 * @list: queue head 1369 * @skb: buffer 1370 * 1371 * Returns true if @skb is the first buffer on the list. 1372 */ 1373 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1374 const struct sk_buff *skb) 1375 { 1376 return skb->prev == (const struct sk_buff *) list; 1377 } 1378 1379 /** 1380 * skb_queue_next - return the next packet in the queue 1381 * @list: queue head 1382 * @skb: current buffer 1383 * 1384 * Return the next packet in @list after @skb. It is only valid to 1385 * call this if skb_queue_is_last() evaluates to false. 1386 */ 1387 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1388 const struct sk_buff *skb) 1389 { 1390 /* This BUG_ON may seem severe, but if we just return then we 1391 * are going to dereference garbage. 1392 */ 1393 BUG_ON(skb_queue_is_last(list, skb)); 1394 return skb->next; 1395 } 1396 1397 /** 1398 * skb_queue_prev - return the prev packet in the queue 1399 * @list: queue head 1400 * @skb: current buffer 1401 * 1402 * Return the prev packet in @list before @skb. It is only valid to 1403 * call this if skb_queue_is_first() evaluates to false. 1404 */ 1405 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1406 const struct sk_buff *skb) 1407 { 1408 /* This BUG_ON may seem severe, but if we just return then we 1409 * are going to dereference garbage. 1410 */ 1411 BUG_ON(skb_queue_is_first(list, skb)); 1412 return skb->prev; 1413 } 1414 1415 /** 1416 * skb_get - reference buffer 1417 * @skb: buffer to reference 1418 * 1419 * Makes another reference to a socket buffer and returns a pointer 1420 * to the buffer. 1421 */ 1422 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1423 { 1424 refcount_inc(&skb->users); 1425 return skb; 1426 } 1427 1428 /* 1429 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1430 */ 1431 1432 /** 1433 * skb_cloned - is the buffer a clone 1434 * @skb: buffer to check 1435 * 1436 * Returns true if the buffer was generated with skb_clone() and is 1437 * one of multiple shared copies of the buffer. Cloned buffers are 1438 * shared data so must not be written to under normal circumstances. 1439 */ 1440 static inline int skb_cloned(const struct sk_buff *skb) 1441 { 1442 return skb->cloned && 1443 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1444 } 1445 1446 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1447 { 1448 might_sleep_if(gfpflags_allow_blocking(pri)); 1449 1450 if (skb_cloned(skb)) 1451 return pskb_expand_head(skb, 0, 0, pri); 1452 1453 return 0; 1454 } 1455 1456 /** 1457 * skb_header_cloned - is the header a clone 1458 * @skb: buffer to check 1459 * 1460 * Returns true if modifying the header part of the buffer requires 1461 * the data to be copied. 1462 */ 1463 static inline int skb_header_cloned(const struct sk_buff *skb) 1464 { 1465 int dataref; 1466 1467 if (!skb->cloned) 1468 return 0; 1469 1470 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1471 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1472 return dataref != 1; 1473 } 1474 1475 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1476 { 1477 might_sleep_if(gfpflags_allow_blocking(pri)); 1478 1479 if (skb_header_cloned(skb)) 1480 return pskb_expand_head(skb, 0, 0, pri); 1481 1482 return 0; 1483 } 1484 1485 /** 1486 * __skb_header_release - release reference to header 1487 * @skb: buffer to operate on 1488 */ 1489 static inline void __skb_header_release(struct sk_buff *skb) 1490 { 1491 skb->nohdr = 1; 1492 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1493 } 1494 1495 1496 /** 1497 * skb_shared - is the buffer shared 1498 * @skb: buffer to check 1499 * 1500 * Returns true if more than one person has a reference to this 1501 * buffer. 1502 */ 1503 static inline int skb_shared(const struct sk_buff *skb) 1504 { 1505 return refcount_read(&skb->users) != 1; 1506 } 1507 1508 /** 1509 * skb_share_check - check if buffer is shared and if so clone it 1510 * @skb: buffer to check 1511 * @pri: priority for memory allocation 1512 * 1513 * If the buffer is shared the buffer is cloned and the old copy 1514 * drops a reference. A new clone with a single reference is returned. 1515 * If the buffer is not shared the original buffer is returned. When 1516 * being called from interrupt status or with spinlocks held pri must 1517 * be GFP_ATOMIC. 1518 * 1519 * NULL is returned on a memory allocation failure. 1520 */ 1521 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1522 { 1523 might_sleep_if(gfpflags_allow_blocking(pri)); 1524 if (skb_shared(skb)) { 1525 struct sk_buff *nskb = skb_clone(skb, pri); 1526 1527 if (likely(nskb)) 1528 consume_skb(skb); 1529 else 1530 kfree_skb(skb); 1531 skb = nskb; 1532 } 1533 return skb; 1534 } 1535 1536 /* 1537 * Copy shared buffers into a new sk_buff. We effectively do COW on 1538 * packets to handle cases where we have a local reader and forward 1539 * and a couple of other messy ones. The normal one is tcpdumping 1540 * a packet thats being forwarded. 1541 */ 1542 1543 /** 1544 * skb_unshare - make a copy of a shared buffer 1545 * @skb: buffer to check 1546 * @pri: priority for memory allocation 1547 * 1548 * If the socket buffer is a clone then this function creates a new 1549 * copy of the data, drops a reference count on the old copy and returns 1550 * the new copy with the reference count at 1. If the buffer is not a clone 1551 * the original buffer is returned. When called with a spinlock held or 1552 * from interrupt state @pri must be %GFP_ATOMIC 1553 * 1554 * %NULL is returned on a memory allocation failure. 1555 */ 1556 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1557 gfp_t pri) 1558 { 1559 might_sleep_if(gfpflags_allow_blocking(pri)); 1560 if (skb_cloned(skb)) { 1561 struct sk_buff *nskb = skb_copy(skb, pri); 1562 1563 /* Free our shared copy */ 1564 if (likely(nskb)) 1565 consume_skb(skb); 1566 else 1567 kfree_skb(skb); 1568 skb = nskb; 1569 } 1570 return skb; 1571 } 1572 1573 /** 1574 * skb_peek - peek at the head of an &sk_buff_head 1575 * @list_: list to peek at 1576 * 1577 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1578 * be careful with this one. A peek leaves the buffer on the 1579 * list and someone else may run off with it. You must hold 1580 * the appropriate locks or have a private queue to do this. 1581 * 1582 * Returns %NULL for an empty list or a pointer to the head element. 1583 * The reference count is not incremented and the reference is therefore 1584 * volatile. Use with caution. 1585 */ 1586 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1587 { 1588 struct sk_buff *skb = list_->next; 1589 1590 if (skb == (struct sk_buff *)list_) 1591 skb = NULL; 1592 return skb; 1593 } 1594 1595 /** 1596 * skb_peek_next - peek skb following the given one from a queue 1597 * @skb: skb to start from 1598 * @list_: list to peek at 1599 * 1600 * Returns %NULL when the end of the list is met or a pointer to the 1601 * next element. The reference count is not incremented and the 1602 * reference is therefore volatile. Use with caution. 1603 */ 1604 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1605 const struct sk_buff_head *list_) 1606 { 1607 struct sk_buff *next = skb->next; 1608 1609 if (next == (struct sk_buff *)list_) 1610 next = NULL; 1611 return next; 1612 } 1613 1614 /** 1615 * skb_peek_tail - peek at the tail of an &sk_buff_head 1616 * @list_: list to peek at 1617 * 1618 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1619 * be careful with this one. A peek leaves the buffer on the 1620 * list and someone else may run off with it. You must hold 1621 * the appropriate locks or have a private queue to do this. 1622 * 1623 * Returns %NULL for an empty list or a pointer to the tail element. 1624 * The reference count is not incremented and the reference is therefore 1625 * volatile. Use with caution. 1626 */ 1627 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1628 { 1629 struct sk_buff *skb = list_->prev; 1630 1631 if (skb == (struct sk_buff *)list_) 1632 skb = NULL; 1633 return skb; 1634 1635 } 1636 1637 /** 1638 * skb_queue_len - get queue length 1639 * @list_: list to measure 1640 * 1641 * Return the length of an &sk_buff queue. 1642 */ 1643 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1644 { 1645 return list_->qlen; 1646 } 1647 1648 /** 1649 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1650 * @list: queue to initialize 1651 * 1652 * This initializes only the list and queue length aspects of 1653 * an sk_buff_head object. This allows to initialize the list 1654 * aspects of an sk_buff_head without reinitializing things like 1655 * the spinlock. It can also be used for on-stack sk_buff_head 1656 * objects where the spinlock is known to not be used. 1657 */ 1658 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1659 { 1660 list->prev = list->next = (struct sk_buff *)list; 1661 list->qlen = 0; 1662 } 1663 1664 /* 1665 * This function creates a split out lock class for each invocation; 1666 * this is needed for now since a whole lot of users of the skb-queue 1667 * infrastructure in drivers have different locking usage (in hardirq) 1668 * than the networking core (in softirq only). In the long run either the 1669 * network layer or drivers should need annotation to consolidate the 1670 * main types of usage into 3 classes. 1671 */ 1672 static inline void skb_queue_head_init(struct sk_buff_head *list) 1673 { 1674 spin_lock_init(&list->lock); 1675 __skb_queue_head_init(list); 1676 } 1677 1678 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1679 struct lock_class_key *class) 1680 { 1681 skb_queue_head_init(list); 1682 lockdep_set_class(&list->lock, class); 1683 } 1684 1685 /* 1686 * Insert an sk_buff on a list. 1687 * 1688 * The "__skb_xxxx()" functions are the non-atomic ones that 1689 * can only be called with interrupts disabled. 1690 */ 1691 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1692 struct sk_buff_head *list); 1693 static inline void __skb_insert(struct sk_buff *newsk, 1694 struct sk_buff *prev, struct sk_buff *next, 1695 struct sk_buff_head *list) 1696 { 1697 newsk->next = next; 1698 newsk->prev = prev; 1699 next->prev = prev->next = newsk; 1700 list->qlen++; 1701 } 1702 1703 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1704 struct sk_buff *prev, 1705 struct sk_buff *next) 1706 { 1707 struct sk_buff *first = list->next; 1708 struct sk_buff *last = list->prev; 1709 1710 first->prev = prev; 1711 prev->next = first; 1712 1713 last->next = next; 1714 next->prev = last; 1715 } 1716 1717 /** 1718 * skb_queue_splice - join two skb lists, this is designed for stacks 1719 * @list: the new list to add 1720 * @head: the place to add it in the first list 1721 */ 1722 static inline void skb_queue_splice(const struct sk_buff_head *list, 1723 struct sk_buff_head *head) 1724 { 1725 if (!skb_queue_empty(list)) { 1726 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1727 head->qlen += list->qlen; 1728 } 1729 } 1730 1731 /** 1732 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1733 * @list: the new list to add 1734 * @head: the place to add it in the first list 1735 * 1736 * The list at @list is reinitialised 1737 */ 1738 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1739 struct sk_buff_head *head) 1740 { 1741 if (!skb_queue_empty(list)) { 1742 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1743 head->qlen += list->qlen; 1744 __skb_queue_head_init(list); 1745 } 1746 } 1747 1748 /** 1749 * skb_queue_splice_tail - join two skb lists, each list being a queue 1750 * @list: the new list to add 1751 * @head: the place to add it in the first list 1752 */ 1753 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1754 struct sk_buff_head *head) 1755 { 1756 if (!skb_queue_empty(list)) { 1757 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1758 head->qlen += list->qlen; 1759 } 1760 } 1761 1762 /** 1763 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1764 * @list: the new list to add 1765 * @head: the place to add it in the first list 1766 * 1767 * Each of the lists is a queue. 1768 * The list at @list is reinitialised 1769 */ 1770 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1771 struct sk_buff_head *head) 1772 { 1773 if (!skb_queue_empty(list)) { 1774 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1775 head->qlen += list->qlen; 1776 __skb_queue_head_init(list); 1777 } 1778 } 1779 1780 /** 1781 * __skb_queue_after - queue a buffer at the list head 1782 * @list: list to use 1783 * @prev: place after this buffer 1784 * @newsk: buffer to queue 1785 * 1786 * Queue a buffer int the middle of a list. This function takes no locks 1787 * and you must therefore hold required locks before calling it. 1788 * 1789 * A buffer cannot be placed on two lists at the same time. 1790 */ 1791 static inline void __skb_queue_after(struct sk_buff_head *list, 1792 struct sk_buff *prev, 1793 struct sk_buff *newsk) 1794 { 1795 __skb_insert(newsk, prev, prev->next, list); 1796 } 1797 1798 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1799 struct sk_buff_head *list); 1800 1801 static inline void __skb_queue_before(struct sk_buff_head *list, 1802 struct sk_buff *next, 1803 struct sk_buff *newsk) 1804 { 1805 __skb_insert(newsk, next->prev, next, list); 1806 } 1807 1808 /** 1809 * __skb_queue_head - queue a buffer at the list head 1810 * @list: list to use 1811 * @newsk: buffer to queue 1812 * 1813 * Queue a buffer at the start of a list. This function takes no locks 1814 * and you must therefore hold required locks before calling it. 1815 * 1816 * A buffer cannot be placed on two lists at the same time. 1817 */ 1818 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1819 static inline void __skb_queue_head(struct sk_buff_head *list, 1820 struct sk_buff *newsk) 1821 { 1822 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1823 } 1824 1825 /** 1826 * __skb_queue_tail - queue a buffer at the list tail 1827 * @list: list to use 1828 * @newsk: buffer to queue 1829 * 1830 * Queue a buffer at the end of a list. This function takes no locks 1831 * and you must therefore hold required locks before calling it. 1832 * 1833 * A buffer cannot be placed on two lists at the same time. 1834 */ 1835 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1836 static inline void __skb_queue_tail(struct sk_buff_head *list, 1837 struct sk_buff *newsk) 1838 { 1839 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1840 } 1841 1842 /* 1843 * remove sk_buff from list. _Must_ be called atomically, and with 1844 * the list known.. 1845 */ 1846 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1847 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1848 { 1849 struct sk_buff *next, *prev; 1850 1851 list->qlen--; 1852 next = skb->next; 1853 prev = skb->prev; 1854 skb->next = skb->prev = NULL; 1855 next->prev = prev; 1856 prev->next = next; 1857 } 1858 1859 /** 1860 * __skb_dequeue - remove from the head of the queue 1861 * @list: list to dequeue from 1862 * 1863 * Remove the head of the list. This function does not take any locks 1864 * so must be used with appropriate locks held only. The head item is 1865 * returned or %NULL if the list is empty. 1866 */ 1867 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1868 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1869 { 1870 struct sk_buff *skb = skb_peek(list); 1871 if (skb) 1872 __skb_unlink(skb, list); 1873 return skb; 1874 } 1875 1876 /** 1877 * __skb_dequeue_tail - remove from the tail of the queue 1878 * @list: list to dequeue from 1879 * 1880 * Remove the tail of the list. This function does not take any locks 1881 * so must be used with appropriate locks held only. The tail item is 1882 * returned or %NULL if the list is empty. 1883 */ 1884 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1885 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1886 { 1887 struct sk_buff *skb = skb_peek_tail(list); 1888 if (skb) 1889 __skb_unlink(skb, list); 1890 return skb; 1891 } 1892 1893 1894 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1895 { 1896 return skb->data_len; 1897 } 1898 1899 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1900 { 1901 return skb->len - skb->data_len; 1902 } 1903 1904 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 1905 { 1906 unsigned int i, len = 0; 1907 1908 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1909 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1910 return len; 1911 } 1912 1913 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1914 { 1915 return skb_headlen(skb) + __skb_pagelen(skb); 1916 } 1917 1918 /** 1919 * __skb_fill_page_desc - initialise a paged fragment in an skb 1920 * @skb: buffer containing fragment to be initialised 1921 * @i: paged fragment index to initialise 1922 * @page: the page to use for this fragment 1923 * @off: the offset to the data with @page 1924 * @size: the length of the data 1925 * 1926 * Initialises the @i'th fragment of @skb to point to &size bytes at 1927 * offset @off within @page. 1928 * 1929 * Does not take any additional reference on the fragment. 1930 */ 1931 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1932 struct page *page, int off, int size) 1933 { 1934 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1935 1936 /* 1937 * Propagate page pfmemalloc to the skb if we can. The problem is 1938 * that not all callers have unique ownership of the page but rely 1939 * on page_is_pfmemalloc doing the right thing(tm). 1940 */ 1941 frag->page.p = page; 1942 frag->page_offset = off; 1943 skb_frag_size_set(frag, size); 1944 1945 page = compound_head(page); 1946 if (page_is_pfmemalloc(page)) 1947 skb->pfmemalloc = true; 1948 } 1949 1950 /** 1951 * skb_fill_page_desc - initialise a paged fragment in an skb 1952 * @skb: buffer containing fragment to be initialised 1953 * @i: paged fragment index to initialise 1954 * @page: the page to use for this fragment 1955 * @off: the offset to the data with @page 1956 * @size: the length of the data 1957 * 1958 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1959 * @skb to point to @size bytes at offset @off within @page. In 1960 * addition updates @skb such that @i is the last fragment. 1961 * 1962 * Does not take any additional reference on the fragment. 1963 */ 1964 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1965 struct page *page, int off, int size) 1966 { 1967 __skb_fill_page_desc(skb, i, page, off, size); 1968 skb_shinfo(skb)->nr_frags = i + 1; 1969 } 1970 1971 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1972 int size, unsigned int truesize); 1973 1974 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1975 unsigned int truesize); 1976 1977 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1978 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1979 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1980 1981 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1982 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1983 { 1984 return skb->head + skb->tail; 1985 } 1986 1987 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1988 { 1989 skb->tail = skb->data - skb->head; 1990 } 1991 1992 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1993 { 1994 skb_reset_tail_pointer(skb); 1995 skb->tail += offset; 1996 } 1997 1998 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1999 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2000 { 2001 return skb->tail; 2002 } 2003 2004 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2005 { 2006 skb->tail = skb->data; 2007 } 2008 2009 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2010 { 2011 skb->tail = skb->data + offset; 2012 } 2013 2014 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2015 2016 /* 2017 * Add data to an sk_buff 2018 */ 2019 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2020 void *skb_put(struct sk_buff *skb, unsigned int len); 2021 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2022 { 2023 void *tmp = skb_tail_pointer(skb); 2024 SKB_LINEAR_ASSERT(skb); 2025 skb->tail += len; 2026 skb->len += len; 2027 return tmp; 2028 } 2029 2030 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2031 { 2032 void *tmp = __skb_put(skb, len); 2033 2034 memset(tmp, 0, len); 2035 return tmp; 2036 } 2037 2038 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2039 unsigned int len) 2040 { 2041 void *tmp = __skb_put(skb, len); 2042 2043 memcpy(tmp, data, len); 2044 return tmp; 2045 } 2046 2047 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2048 { 2049 *(u8 *)__skb_put(skb, 1) = val; 2050 } 2051 2052 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2053 { 2054 void *tmp = skb_put(skb, len); 2055 2056 memset(tmp, 0, len); 2057 2058 return tmp; 2059 } 2060 2061 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2062 unsigned int len) 2063 { 2064 void *tmp = skb_put(skb, len); 2065 2066 memcpy(tmp, data, len); 2067 2068 return tmp; 2069 } 2070 2071 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2072 { 2073 *(u8 *)skb_put(skb, 1) = val; 2074 } 2075 2076 void *skb_push(struct sk_buff *skb, unsigned int len); 2077 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2078 { 2079 skb->data -= len; 2080 skb->len += len; 2081 return skb->data; 2082 } 2083 2084 void *skb_pull(struct sk_buff *skb, unsigned int len); 2085 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2086 { 2087 skb->len -= len; 2088 BUG_ON(skb->len < skb->data_len); 2089 return skb->data += len; 2090 } 2091 2092 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2093 { 2094 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2095 } 2096 2097 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2098 2099 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2100 { 2101 if (len > skb_headlen(skb) && 2102 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2103 return NULL; 2104 skb->len -= len; 2105 return skb->data += len; 2106 } 2107 2108 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2109 { 2110 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2111 } 2112 2113 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2114 { 2115 if (likely(len <= skb_headlen(skb))) 2116 return 1; 2117 if (unlikely(len > skb->len)) 2118 return 0; 2119 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2120 } 2121 2122 void skb_condense(struct sk_buff *skb); 2123 2124 /** 2125 * skb_headroom - bytes at buffer head 2126 * @skb: buffer to check 2127 * 2128 * Return the number of bytes of free space at the head of an &sk_buff. 2129 */ 2130 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2131 { 2132 return skb->data - skb->head; 2133 } 2134 2135 /** 2136 * skb_tailroom - bytes at buffer end 2137 * @skb: buffer to check 2138 * 2139 * Return the number of bytes of free space at the tail of an sk_buff 2140 */ 2141 static inline int skb_tailroom(const struct sk_buff *skb) 2142 { 2143 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2144 } 2145 2146 /** 2147 * skb_availroom - bytes at buffer end 2148 * @skb: buffer to check 2149 * 2150 * Return the number of bytes of free space at the tail of an sk_buff 2151 * allocated by sk_stream_alloc() 2152 */ 2153 static inline int skb_availroom(const struct sk_buff *skb) 2154 { 2155 if (skb_is_nonlinear(skb)) 2156 return 0; 2157 2158 return skb->end - skb->tail - skb->reserved_tailroom; 2159 } 2160 2161 /** 2162 * skb_reserve - adjust headroom 2163 * @skb: buffer to alter 2164 * @len: bytes to move 2165 * 2166 * Increase the headroom of an empty &sk_buff by reducing the tail 2167 * room. This is only allowed for an empty buffer. 2168 */ 2169 static inline void skb_reserve(struct sk_buff *skb, int len) 2170 { 2171 skb->data += len; 2172 skb->tail += len; 2173 } 2174 2175 /** 2176 * skb_tailroom_reserve - adjust reserved_tailroom 2177 * @skb: buffer to alter 2178 * @mtu: maximum amount of headlen permitted 2179 * @needed_tailroom: minimum amount of reserved_tailroom 2180 * 2181 * Set reserved_tailroom so that headlen can be as large as possible but 2182 * not larger than mtu and tailroom cannot be smaller than 2183 * needed_tailroom. 2184 * The required headroom should already have been reserved before using 2185 * this function. 2186 */ 2187 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2188 unsigned int needed_tailroom) 2189 { 2190 SKB_LINEAR_ASSERT(skb); 2191 if (mtu < skb_tailroom(skb) - needed_tailroom) 2192 /* use at most mtu */ 2193 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2194 else 2195 /* use up to all available space */ 2196 skb->reserved_tailroom = needed_tailroom; 2197 } 2198 2199 #define ENCAP_TYPE_ETHER 0 2200 #define ENCAP_TYPE_IPPROTO 1 2201 2202 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2203 __be16 protocol) 2204 { 2205 skb->inner_protocol = protocol; 2206 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2207 } 2208 2209 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2210 __u8 ipproto) 2211 { 2212 skb->inner_ipproto = ipproto; 2213 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2214 } 2215 2216 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2217 { 2218 skb->inner_mac_header = skb->mac_header; 2219 skb->inner_network_header = skb->network_header; 2220 skb->inner_transport_header = skb->transport_header; 2221 } 2222 2223 static inline void skb_reset_mac_len(struct sk_buff *skb) 2224 { 2225 skb->mac_len = skb->network_header - skb->mac_header; 2226 } 2227 2228 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2229 *skb) 2230 { 2231 return skb->head + skb->inner_transport_header; 2232 } 2233 2234 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2235 { 2236 return skb_inner_transport_header(skb) - skb->data; 2237 } 2238 2239 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2240 { 2241 skb->inner_transport_header = skb->data - skb->head; 2242 } 2243 2244 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2245 const int offset) 2246 { 2247 skb_reset_inner_transport_header(skb); 2248 skb->inner_transport_header += offset; 2249 } 2250 2251 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2252 { 2253 return skb->head + skb->inner_network_header; 2254 } 2255 2256 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2257 { 2258 skb->inner_network_header = skb->data - skb->head; 2259 } 2260 2261 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2262 const int offset) 2263 { 2264 skb_reset_inner_network_header(skb); 2265 skb->inner_network_header += offset; 2266 } 2267 2268 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2269 { 2270 return skb->head + skb->inner_mac_header; 2271 } 2272 2273 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2274 { 2275 skb->inner_mac_header = skb->data - skb->head; 2276 } 2277 2278 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2279 const int offset) 2280 { 2281 skb_reset_inner_mac_header(skb); 2282 skb->inner_mac_header += offset; 2283 } 2284 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2285 { 2286 return skb->transport_header != (typeof(skb->transport_header))~0U; 2287 } 2288 2289 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2290 { 2291 return skb->head + skb->transport_header; 2292 } 2293 2294 static inline void skb_reset_transport_header(struct sk_buff *skb) 2295 { 2296 skb->transport_header = skb->data - skb->head; 2297 } 2298 2299 static inline void skb_set_transport_header(struct sk_buff *skb, 2300 const int offset) 2301 { 2302 skb_reset_transport_header(skb); 2303 skb->transport_header += offset; 2304 } 2305 2306 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2307 { 2308 return skb->head + skb->network_header; 2309 } 2310 2311 static inline void skb_reset_network_header(struct sk_buff *skb) 2312 { 2313 skb->network_header = skb->data - skb->head; 2314 } 2315 2316 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2317 { 2318 skb_reset_network_header(skb); 2319 skb->network_header += offset; 2320 } 2321 2322 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2323 { 2324 return skb->head + skb->mac_header; 2325 } 2326 2327 static inline int skb_mac_offset(const struct sk_buff *skb) 2328 { 2329 return skb_mac_header(skb) - skb->data; 2330 } 2331 2332 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2333 { 2334 return skb->network_header - skb->mac_header; 2335 } 2336 2337 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2338 { 2339 return skb->mac_header != (typeof(skb->mac_header))~0U; 2340 } 2341 2342 static inline void skb_reset_mac_header(struct sk_buff *skb) 2343 { 2344 skb->mac_header = skb->data - skb->head; 2345 } 2346 2347 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2348 { 2349 skb_reset_mac_header(skb); 2350 skb->mac_header += offset; 2351 } 2352 2353 static inline void skb_pop_mac_header(struct sk_buff *skb) 2354 { 2355 skb->mac_header = skb->network_header; 2356 } 2357 2358 static inline void skb_probe_transport_header(struct sk_buff *skb, 2359 const int offset_hint) 2360 { 2361 struct flow_keys_basic keys; 2362 2363 if (skb_transport_header_was_set(skb)) 2364 return; 2365 2366 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0)) 2367 skb_set_transport_header(skb, keys.control.thoff); 2368 else 2369 skb_set_transport_header(skb, offset_hint); 2370 } 2371 2372 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2373 { 2374 if (skb_mac_header_was_set(skb)) { 2375 const unsigned char *old_mac = skb_mac_header(skb); 2376 2377 skb_set_mac_header(skb, -skb->mac_len); 2378 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2379 } 2380 } 2381 2382 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2383 { 2384 return skb->csum_start - skb_headroom(skb); 2385 } 2386 2387 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2388 { 2389 return skb->head + skb->csum_start; 2390 } 2391 2392 static inline int skb_transport_offset(const struct sk_buff *skb) 2393 { 2394 return skb_transport_header(skb) - skb->data; 2395 } 2396 2397 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2398 { 2399 return skb->transport_header - skb->network_header; 2400 } 2401 2402 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2403 { 2404 return skb->inner_transport_header - skb->inner_network_header; 2405 } 2406 2407 static inline int skb_network_offset(const struct sk_buff *skb) 2408 { 2409 return skb_network_header(skb) - skb->data; 2410 } 2411 2412 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2413 { 2414 return skb_inner_network_header(skb) - skb->data; 2415 } 2416 2417 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2418 { 2419 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2420 } 2421 2422 /* 2423 * CPUs often take a performance hit when accessing unaligned memory 2424 * locations. The actual performance hit varies, it can be small if the 2425 * hardware handles it or large if we have to take an exception and fix it 2426 * in software. 2427 * 2428 * Since an ethernet header is 14 bytes network drivers often end up with 2429 * the IP header at an unaligned offset. The IP header can be aligned by 2430 * shifting the start of the packet by 2 bytes. Drivers should do this 2431 * with: 2432 * 2433 * skb_reserve(skb, NET_IP_ALIGN); 2434 * 2435 * The downside to this alignment of the IP header is that the DMA is now 2436 * unaligned. On some architectures the cost of an unaligned DMA is high 2437 * and this cost outweighs the gains made by aligning the IP header. 2438 * 2439 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2440 * to be overridden. 2441 */ 2442 #ifndef NET_IP_ALIGN 2443 #define NET_IP_ALIGN 2 2444 #endif 2445 2446 /* 2447 * The networking layer reserves some headroom in skb data (via 2448 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2449 * the header has to grow. In the default case, if the header has to grow 2450 * 32 bytes or less we avoid the reallocation. 2451 * 2452 * Unfortunately this headroom changes the DMA alignment of the resulting 2453 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2454 * on some architectures. An architecture can override this value, 2455 * perhaps setting it to a cacheline in size (since that will maintain 2456 * cacheline alignment of the DMA). It must be a power of 2. 2457 * 2458 * Various parts of the networking layer expect at least 32 bytes of 2459 * headroom, you should not reduce this. 2460 * 2461 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2462 * to reduce average number of cache lines per packet. 2463 * get_rps_cpus() for example only access one 64 bytes aligned block : 2464 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2465 */ 2466 #ifndef NET_SKB_PAD 2467 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2468 #endif 2469 2470 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2471 2472 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2473 { 2474 if (unlikely(skb_is_nonlinear(skb))) { 2475 WARN_ON(1); 2476 return; 2477 } 2478 skb->len = len; 2479 skb_set_tail_pointer(skb, len); 2480 } 2481 2482 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2483 { 2484 __skb_set_length(skb, len); 2485 } 2486 2487 void skb_trim(struct sk_buff *skb, unsigned int len); 2488 2489 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2490 { 2491 if (skb->data_len) 2492 return ___pskb_trim(skb, len); 2493 __skb_trim(skb, len); 2494 return 0; 2495 } 2496 2497 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2498 { 2499 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2500 } 2501 2502 /** 2503 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2504 * @skb: buffer to alter 2505 * @len: new length 2506 * 2507 * This is identical to pskb_trim except that the caller knows that 2508 * the skb is not cloned so we should never get an error due to out- 2509 * of-memory. 2510 */ 2511 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2512 { 2513 int err = pskb_trim(skb, len); 2514 BUG_ON(err); 2515 } 2516 2517 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2518 { 2519 unsigned int diff = len - skb->len; 2520 2521 if (skb_tailroom(skb) < diff) { 2522 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2523 GFP_ATOMIC); 2524 if (ret) 2525 return ret; 2526 } 2527 __skb_set_length(skb, len); 2528 return 0; 2529 } 2530 2531 /** 2532 * skb_orphan - orphan a buffer 2533 * @skb: buffer to orphan 2534 * 2535 * If a buffer currently has an owner then we call the owner's 2536 * destructor function and make the @skb unowned. The buffer continues 2537 * to exist but is no longer charged to its former owner. 2538 */ 2539 static inline void skb_orphan(struct sk_buff *skb) 2540 { 2541 if (skb->destructor) { 2542 skb->destructor(skb); 2543 skb->destructor = NULL; 2544 skb->sk = NULL; 2545 } else { 2546 BUG_ON(skb->sk); 2547 } 2548 } 2549 2550 /** 2551 * skb_orphan_frags - orphan the frags contained in a buffer 2552 * @skb: buffer to orphan frags from 2553 * @gfp_mask: allocation mask for replacement pages 2554 * 2555 * For each frag in the SKB which needs a destructor (i.e. has an 2556 * owner) create a copy of that frag and release the original 2557 * page by calling the destructor. 2558 */ 2559 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2560 { 2561 if (likely(!skb_zcopy(skb))) 2562 return 0; 2563 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2564 return 0; 2565 return skb_copy_ubufs(skb, gfp_mask); 2566 } 2567 2568 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2569 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2570 { 2571 if (likely(!skb_zcopy(skb))) 2572 return 0; 2573 return skb_copy_ubufs(skb, gfp_mask); 2574 } 2575 2576 /** 2577 * __skb_queue_purge - empty a list 2578 * @list: list to empty 2579 * 2580 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2581 * the list and one reference dropped. This function does not take the 2582 * list lock and the caller must hold the relevant locks to use it. 2583 */ 2584 void skb_queue_purge(struct sk_buff_head *list); 2585 static inline void __skb_queue_purge(struct sk_buff_head *list) 2586 { 2587 struct sk_buff *skb; 2588 while ((skb = __skb_dequeue(list)) != NULL) 2589 kfree_skb(skb); 2590 } 2591 2592 unsigned int skb_rbtree_purge(struct rb_root *root); 2593 2594 void *netdev_alloc_frag(unsigned int fragsz); 2595 2596 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2597 gfp_t gfp_mask); 2598 2599 /** 2600 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2601 * @dev: network device to receive on 2602 * @length: length to allocate 2603 * 2604 * Allocate a new &sk_buff and assign it a usage count of one. The 2605 * buffer has unspecified headroom built in. Users should allocate 2606 * the headroom they think they need without accounting for the 2607 * built in space. The built in space is used for optimisations. 2608 * 2609 * %NULL is returned if there is no free memory. Although this function 2610 * allocates memory it can be called from an interrupt. 2611 */ 2612 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2613 unsigned int length) 2614 { 2615 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2616 } 2617 2618 /* legacy helper around __netdev_alloc_skb() */ 2619 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2620 gfp_t gfp_mask) 2621 { 2622 return __netdev_alloc_skb(NULL, length, gfp_mask); 2623 } 2624 2625 /* legacy helper around netdev_alloc_skb() */ 2626 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2627 { 2628 return netdev_alloc_skb(NULL, length); 2629 } 2630 2631 2632 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2633 unsigned int length, gfp_t gfp) 2634 { 2635 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2636 2637 if (NET_IP_ALIGN && skb) 2638 skb_reserve(skb, NET_IP_ALIGN); 2639 return skb; 2640 } 2641 2642 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2643 unsigned int length) 2644 { 2645 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2646 } 2647 2648 static inline void skb_free_frag(void *addr) 2649 { 2650 page_frag_free(addr); 2651 } 2652 2653 void *napi_alloc_frag(unsigned int fragsz); 2654 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2655 unsigned int length, gfp_t gfp_mask); 2656 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2657 unsigned int length) 2658 { 2659 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2660 } 2661 void napi_consume_skb(struct sk_buff *skb, int budget); 2662 2663 void __kfree_skb_flush(void); 2664 void __kfree_skb_defer(struct sk_buff *skb); 2665 2666 /** 2667 * __dev_alloc_pages - allocate page for network Rx 2668 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2669 * @order: size of the allocation 2670 * 2671 * Allocate a new page. 2672 * 2673 * %NULL is returned if there is no free memory. 2674 */ 2675 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2676 unsigned int order) 2677 { 2678 /* This piece of code contains several assumptions. 2679 * 1. This is for device Rx, therefor a cold page is preferred. 2680 * 2. The expectation is the user wants a compound page. 2681 * 3. If requesting a order 0 page it will not be compound 2682 * due to the check to see if order has a value in prep_new_page 2683 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2684 * code in gfp_to_alloc_flags that should be enforcing this. 2685 */ 2686 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2687 2688 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2689 } 2690 2691 static inline struct page *dev_alloc_pages(unsigned int order) 2692 { 2693 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2694 } 2695 2696 /** 2697 * __dev_alloc_page - allocate a page for network Rx 2698 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2699 * 2700 * Allocate a new page. 2701 * 2702 * %NULL is returned if there is no free memory. 2703 */ 2704 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2705 { 2706 return __dev_alloc_pages(gfp_mask, 0); 2707 } 2708 2709 static inline struct page *dev_alloc_page(void) 2710 { 2711 return dev_alloc_pages(0); 2712 } 2713 2714 /** 2715 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2716 * @page: The page that was allocated from skb_alloc_page 2717 * @skb: The skb that may need pfmemalloc set 2718 */ 2719 static inline void skb_propagate_pfmemalloc(struct page *page, 2720 struct sk_buff *skb) 2721 { 2722 if (page_is_pfmemalloc(page)) 2723 skb->pfmemalloc = true; 2724 } 2725 2726 /** 2727 * skb_frag_page - retrieve the page referred to by a paged fragment 2728 * @frag: the paged fragment 2729 * 2730 * Returns the &struct page associated with @frag. 2731 */ 2732 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2733 { 2734 return frag->page.p; 2735 } 2736 2737 /** 2738 * __skb_frag_ref - take an addition reference on a paged fragment. 2739 * @frag: the paged fragment 2740 * 2741 * Takes an additional reference on the paged fragment @frag. 2742 */ 2743 static inline void __skb_frag_ref(skb_frag_t *frag) 2744 { 2745 get_page(skb_frag_page(frag)); 2746 } 2747 2748 /** 2749 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2750 * @skb: the buffer 2751 * @f: the fragment offset. 2752 * 2753 * Takes an additional reference on the @f'th paged fragment of @skb. 2754 */ 2755 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2756 { 2757 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2758 } 2759 2760 /** 2761 * __skb_frag_unref - release a reference on a paged fragment. 2762 * @frag: the paged fragment 2763 * 2764 * Releases a reference on the paged fragment @frag. 2765 */ 2766 static inline void __skb_frag_unref(skb_frag_t *frag) 2767 { 2768 put_page(skb_frag_page(frag)); 2769 } 2770 2771 /** 2772 * skb_frag_unref - release a reference on a paged fragment of an skb. 2773 * @skb: the buffer 2774 * @f: the fragment offset 2775 * 2776 * Releases a reference on the @f'th paged fragment of @skb. 2777 */ 2778 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2779 { 2780 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2781 } 2782 2783 /** 2784 * skb_frag_address - gets the address of the data contained in a paged fragment 2785 * @frag: the paged fragment buffer 2786 * 2787 * Returns the address of the data within @frag. The page must already 2788 * be mapped. 2789 */ 2790 static inline void *skb_frag_address(const skb_frag_t *frag) 2791 { 2792 return page_address(skb_frag_page(frag)) + frag->page_offset; 2793 } 2794 2795 /** 2796 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2797 * @frag: the paged fragment buffer 2798 * 2799 * Returns the address of the data within @frag. Checks that the page 2800 * is mapped and returns %NULL otherwise. 2801 */ 2802 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2803 { 2804 void *ptr = page_address(skb_frag_page(frag)); 2805 if (unlikely(!ptr)) 2806 return NULL; 2807 2808 return ptr + frag->page_offset; 2809 } 2810 2811 /** 2812 * __skb_frag_set_page - sets the page contained in a paged fragment 2813 * @frag: the paged fragment 2814 * @page: the page to set 2815 * 2816 * Sets the fragment @frag to contain @page. 2817 */ 2818 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2819 { 2820 frag->page.p = page; 2821 } 2822 2823 /** 2824 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2825 * @skb: the buffer 2826 * @f: the fragment offset 2827 * @page: the page to set 2828 * 2829 * Sets the @f'th fragment of @skb to contain @page. 2830 */ 2831 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2832 struct page *page) 2833 { 2834 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2835 } 2836 2837 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2838 2839 /** 2840 * skb_frag_dma_map - maps a paged fragment via the DMA API 2841 * @dev: the device to map the fragment to 2842 * @frag: the paged fragment to map 2843 * @offset: the offset within the fragment (starting at the 2844 * fragment's own offset) 2845 * @size: the number of bytes to map 2846 * @dir: the direction of the mapping (``PCI_DMA_*``) 2847 * 2848 * Maps the page associated with @frag to @device. 2849 */ 2850 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2851 const skb_frag_t *frag, 2852 size_t offset, size_t size, 2853 enum dma_data_direction dir) 2854 { 2855 return dma_map_page(dev, skb_frag_page(frag), 2856 frag->page_offset + offset, size, dir); 2857 } 2858 2859 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2860 gfp_t gfp_mask) 2861 { 2862 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2863 } 2864 2865 2866 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2867 gfp_t gfp_mask) 2868 { 2869 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2870 } 2871 2872 2873 /** 2874 * skb_clone_writable - is the header of a clone writable 2875 * @skb: buffer to check 2876 * @len: length up to which to write 2877 * 2878 * Returns true if modifying the header part of the cloned buffer 2879 * does not requires the data to be copied. 2880 */ 2881 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2882 { 2883 return !skb_header_cloned(skb) && 2884 skb_headroom(skb) + len <= skb->hdr_len; 2885 } 2886 2887 static inline int skb_try_make_writable(struct sk_buff *skb, 2888 unsigned int write_len) 2889 { 2890 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2891 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2892 } 2893 2894 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2895 int cloned) 2896 { 2897 int delta = 0; 2898 2899 if (headroom > skb_headroom(skb)) 2900 delta = headroom - skb_headroom(skb); 2901 2902 if (delta || cloned) 2903 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2904 GFP_ATOMIC); 2905 return 0; 2906 } 2907 2908 /** 2909 * skb_cow - copy header of skb when it is required 2910 * @skb: buffer to cow 2911 * @headroom: needed headroom 2912 * 2913 * If the skb passed lacks sufficient headroom or its data part 2914 * is shared, data is reallocated. If reallocation fails, an error 2915 * is returned and original skb is not changed. 2916 * 2917 * The result is skb with writable area skb->head...skb->tail 2918 * and at least @headroom of space at head. 2919 */ 2920 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2921 { 2922 return __skb_cow(skb, headroom, skb_cloned(skb)); 2923 } 2924 2925 /** 2926 * skb_cow_head - skb_cow but only making the head writable 2927 * @skb: buffer to cow 2928 * @headroom: needed headroom 2929 * 2930 * This function is identical to skb_cow except that we replace the 2931 * skb_cloned check by skb_header_cloned. It should be used when 2932 * you only need to push on some header and do not need to modify 2933 * the data. 2934 */ 2935 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2936 { 2937 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2938 } 2939 2940 /** 2941 * skb_padto - pad an skbuff up to a minimal size 2942 * @skb: buffer to pad 2943 * @len: minimal length 2944 * 2945 * Pads up a buffer to ensure the trailing bytes exist and are 2946 * blanked. If the buffer already contains sufficient data it 2947 * is untouched. Otherwise it is extended. Returns zero on 2948 * success. The skb is freed on error. 2949 */ 2950 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2951 { 2952 unsigned int size = skb->len; 2953 if (likely(size >= len)) 2954 return 0; 2955 return skb_pad(skb, len - size); 2956 } 2957 2958 /** 2959 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2960 * @skb: buffer to pad 2961 * @len: minimal length 2962 * @free_on_error: free buffer on error 2963 * 2964 * Pads up a buffer to ensure the trailing bytes exist and are 2965 * blanked. If the buffer already contains sufficient data it 2966 * is untouched. Otherwise it is extended. Returns zero on 2967 * success. The skb is freed on error if @free_on_error is true. 2968 */ 2969 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 2970 bool free_on_error) 2971 { 2972 unsigned int size = skb->len; 2973 2974 if (unlikely(size < len)) { 2975 len -= size; 2976 if (__skb_pad(skb, len, free_on_error)) 2977 return -ENOMEM; 2978 __skb_put(skb, len); 2979 } 2980 return 0; 2981 } 2982 2983 /** 2984 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2985 * @skb: buffer to pad 2986 * @len: minimal length 2987 * 2988 * Pads up a buffer to ensure the trailing bytes exist and are 2989 * blanked. If the buffer already contains sufficient data it 2990 * is untouched. Otherwise it is extended. Returns zero on 2991 * success. The skb is freed on error. 2992 */ 2993 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2994 { 2995 return __skb_put_padto(skb, len, true); 2996 } 2997 2998 static inline int skb_add_data(struct sk_buff *skb, 2999 struct iov_iter *from, int copy) 3000 { 3001 const int off = skb->len; 3002 3003 if (skb->ip_summed == CHECKSUM_NONE) { 3004 __wsum csum = 0; 3005 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3006 &csum, from)) { 3007 skb->csum = csum_block_add(skb->csum, csum, off); 3008 return 0; 3009 } 3010 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3011 return 0; 3012 3013 __skb_trim(skb, off); 3014 return -EFAULT; 3015 } 3016 3017 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3018 const struct page *page, int off) 3019 { 3020 if (skb_zcopy(skb)) 3021 return false; 3022 if (i) { 3023 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3024 3025 return page == skb_frag_page(frag) && 3026 off == frag->page_offset + skb_frag_size(frag); 3027 } 3028 return false; 3029 } 3030 3031 static inline int __skb_linearize(struct sk_buff *skb) 3032 { 3033 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3034 } 3035 3036 /** 3037 * skb_linearize - convert paged skb to linear one 3038 * @skb: buffer to linarize 3039 * 3040 * If there is no free memory -ENOMEM is returned, otherwise zero 3041 * is returned and the old skb data released. 3042 */ 3043 static inline int skb_linearize(struct sk_buff *skb) 3044 { 3045 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3046 } 3047 3048 /** 3049 * skb_has_shared_frag - can any frag be overwritten 3050 * @skb: buffer to test 3051 * 3052 * Return true if the skb has at least one frag that might be modified 3053 * by an external entity (as in vmsplice()/sendfile()) 3054 */ 3055 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3056 { 3057 return skb_is_nonlinear(skb) && 3058 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3059 } 3060 3061 /** 3062 * skb_linearize_cow - make sure skb is linear and writable 3063 * @skb: buffer to process 3064 * 3065 * If there is no free memory -ENOMEM is returned, otherwise zero 3066 * is returned and the old skb data released. 3067 */ 3068 static inline int skb_linearize_cow(struct sk_buff *skb) 3069 { 3070 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3071 __skb_linearize(skb) : 0; 3072 } 3073 3074 static __always_inline void 3075 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3076 unsigned int off) 3077 { 3078 if (skb->ip_summed == CHECKSUM_COMPLETE) 3079 skb->csum = csum_block_sub(skb->csum, 3080 csum_partial(start, len, 0), off); 3081 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3082 skb_checksum_start_offset(skb) < 0) 3083 skb->ip_summed = CHECKSUM_NONE; 3084 } 3085 3086 /** 3087 * skb_postpull_rcsum - update checksum for received skb after pull 3088 * @skb: buffer to update 3089 * @start: start of data before pull 3090 * @len: length of data pulled 3091 * 3092 * After doing a pull on a received packet, you need to call this to 3093 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3094 * CHECKSUM_NONE so that it can be recomputed from scratch. 3095 */ 3096 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3097 const void *start, unsigned int len) 3098 { 3099 __skb_postpull_rcsum(skb, start, len, 0); 3100 } 3101 3102 static __always_inline void 3103 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3104 unsigned int off) 3105 { 3106 if (skb->ip_summed == CHECKSUM_COMPLETE) 3107 skb->csum = csum_block_add(skb->csum, 3108 csum_partial(start, len, 0), off); 3109 } 3110 3111 /** 3112 * skb_postpush_rcsum - update checksum for received skb after push 3113 * @skb: buffer to update 3114 * @start: start of data after push 3115 * @len: length of data pushed 3116 * 3117 * After doing a push on a received packet, you need to call this to 3118 * update the CHECKSUM_COMPLETE checksum. 3119 */ 3120 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3121 const void *start, unsigned int len) 3122 { 3123 __skb_postpush_rcsum(skb, start, len, 0); 3124 } 3125 3126 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3127 3128 /** 3129 * skb_push_rcsum - push skb and update receive checksum 3130 * @skb: buffer to update 3131 * @len: length of data pulled 3132 * 3133 * This function performs an skb_push on the packet and updates 3134 * the CHECKSUM_COMPLETE checksum. It should be used on 3135 * receive path processing instead of skb_push unless you know 3136 * that the checksum difference is zero (e.g., a valid IP header) 3137 * or you are setting ip_summed to CHECKSUM_NONE. 3138 */ 3139 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3140 { 3141 skb_push(skb, len); 3142 skb_postpush_rcsum(skb, skb->data, len); 3143 return skb->data; 3144 } 3145 3146 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3147 /** 3148 * pskb_trim_rcsum - trim received skb and update checksum 3149 * @skb: buffer to trim 3150 * @len: new length 3151 * 3152 * This is exactly the same as pskb_trim except that it ensures the 3153 * checksum of received packets are still valid after the operation. 3154 */ 3155 3156 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3157 { 3158 if (likely(len >= skb->len)) 3159 return 0; 3160 return pskb_trim_rcsum_slow(skb, len); 3161 } 3162 3163 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3164 { 3165 if (skb->ip_summed == CHECKSUM_COMPLETE) 3166 skb->ip_summed = CHECKSUM_NONE; 3167 __skb_trim(skb, len); 3168 return 0; 3169 } 3170 3171 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3172 { 3173 if (skb->ip_summed == CHECKSUM_COMPLETE) 3174 skb->ip_summed = CHECKSUM_NONE; 3175 return __skb_grow(skb, len); 3176 } 3177 3178 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3179 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3180 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3181 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3182 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3183 3184 #define skb_queue_walk(queue, skb) \ 3185 for (skb = (queue)->next; \ 3186 skb != (struct sk_buff *)(queue); \ 3187 skb = skb->next) 3188 3189 #define skb_queue_walk_safe(queue, skb, tmp) \ 3190 for (skb = (queue)->next, tmp = skb->next; \ 3191 skb != (struct sk_buff *)(queue); \ 3192 skb = tmp, tmp = skb->next) 3193 3194 #define skb_queue_walk_from(queue, skb) \ 3195 for (; skb != (struct sk_buff *)(queue); \ 3196 skb = skb->next) 3197 3198 #define skb_rbtree_walk(skb, root) \ 3199 for (skb = skb_rb_first(root); skb != NULL; \ 3200 skb = skb_rb_next(skb)) 3201 3202 #define skb_rbtree_walk_from(skb) \ 3203 for (; skb != NULL; \ 3204 skb = skb_rb_next(skb)) 3205 3206 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3207 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3208 skb = tmp) 3209 3210 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3211 for (tmp = skb->next; \ 3212 skb != (struct sk_buff *)(queue); \ 3213 skb = tmp, tmp = skb->next) 3214 3215 #define skb_queue_reverse_walk(queue, skb) \ 3216 for (skb = (queue)->prev; \ 3217 skb != (struct sk_buff *)(queue); \ 3218 skb = skb->prev) 3219 3220 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3221 for (skb = (queue)->prev, tmp = skb->prev; \ 3222 skb != (struct sk_buff *)(queue); \ 3223 skb = tmp, tmp = skb->prev) 3224 3225 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3226 for (tmp = skb->prev; \ 3227 skb != (struct sk_buff *)(queue); \ 3228 skb = tmp, tmp = skb->prev) 3229 3230 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3231 { 3232 return skb_shinfo(skb)->frag_list != NULL; 3233 } 3234 3235 static inline void skb_frag_list_init(struct sk_buff *skb) 3236 { 3237 skb_shinfo(skb)->frag_list = NULL; 3238 } 3239 3240 #define skb_walk_frags(skb, iter) \ 3241 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3242 3243 3244 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3245 const struct sk_buff *skb); 3246 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3247 struct sk_buff_head *queue, 3248 unsigned int flags, 3249 void (*destructor)(struct sock *sk, 3250 struct sk_buff *skb), 3251 int *peeked, int *off, int *err, 3252 struct sk_buff **last); 3253 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3254 void (*destructor)(struct sock *sk, 3255 struct sk_buff *skb), 3256 int *peeked, int *off, int *err, 3257 struct sk_buff **last); 3258 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3259 void (*destructor)(struct sock *sk, 3260 struct sk_buff *skb), 3261 int *peeked, int *off, int *err); 3262 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3263 int *err); 3264 __poll_t datagram_poll(struct file *file, struct socket *sock, 3265 struct poll_table_struct *wait); 3266 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3267 struct iov_iter *to, int size); 3268 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3269 struct msghdr *msg, int size) 3270 { 3271 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3272 } 3273 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3274 struct msghdr *msg); 3275 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3276 struct iov_iter *from, int len); 3277 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3278 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3279 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3280 static inline void skb_free_datagram_locked(struct sock *sk, 3281 struct sk_buff *skb) 3282 { 3283 __skb_free_datagram_locked(sk, skb, 0); 3284 } 3285 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3286 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3287 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3288 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3289 int len, __wsum csum); 3290 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3291 struct pipe_inode_info *pipe, unsigned int len, 3292 unsigned int flags); 3293 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3294 int len); 3295 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3296 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3297 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3298 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3299 int len, int hlen); 3300 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3301 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3302 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3303 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3304 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3305 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3306 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3307 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3308 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3309 int skb_vlan_pop(struct sk_buff *skb); 3310 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3311 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3312 gfp_t gfp); 3313 3314 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3315 { 3316 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3317 } 3318 3319 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3320 { 3321 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3322 } 3323 3324 struct skb_checksum_ops { 3325 __wsum (*update)(const void *mem, int len, __wsum wsum); 3326 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3327 }; 3328 3329 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3330 3331 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3332 __wsum csum, const struct skb_checksum_ops *ops); 3333 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3334 __wsum csum); 3335 3336 static inline void * __must_check 3337 __skb_header_pointer(const struct sk_buff *skb, int offset, 3338 int len, void *data, int hlen, void *buffer) 3339 { 3340 if (hlen - offset >= len) 3341 return data + offset; 3342 3343 if (!skb || 3344 skb_copy_bits(skb, offset, buffer, len) < 0) 3345 return NULL; 3346 3347 return buffer; 3348 } 3349 3350 static inline void * __must_check 3351 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3352 { 3353 return __skb_header_pointer(skb, offset, len, skb->data, 3354 skb_headlen(skb), buffer); 3355 } 3356 3357 /** 3358 * skb_needs_linearize - check if we need to linearize a given skb 3359 * depending on the given device features. 3360 * @skb: socket buffer to check 3361 * @features: net device features 3362 * 3363 * Returns true if either: 3364 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3365 * 2. skb is fragmented and the device does not support SG. 3366 */ 3367 static inline bool skb_needs_linearize(struct sk_buff *skb, 3368 netdev_features_t features) 3369 { 3370 return skb_is_nonlinear(skb) && 3371 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3372 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3373 } 3374 3375 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3376 void *to, 3377 const unsigned int len) 3378 { 3379 memcpy(to, skb->data, len); 3380 } 3381 3382 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3383 const int offset, void *to, 3384 const unsigned int len) 3385 { 3386 memcpy(to, skb->data + offset, len); 3387 } 3388 3389 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3390 const void *from, 3391 const unsigned int len) 3392 { 3393 memcpy(skb->data, from, len); 3394 } 3395 3396 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3397 const int offset, 3398 const void *from, 3399 const unsigned int len) 3400 { 3401 memcpy(skb->data + offset, from, len); 3402 } 3403 3404 void skb_init(void); 3405 3406 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3407 { 3408 return skb->tstamp; 3409 } 3410 3411 /** 3412 * skb_get_timestamp - get timestamp from a skb 3413 * @skb: skb to get stamp from 3414 * @stamp: pointer to struct timeval to store stamp in 3415 * 3416 * Timestamps are stored in the skb as offsets to a base timestamp. 3417 * This function converts the offset back to a struct timeval and stores 3418 * it in stamp. 3419 */ 3420 static inline void skb_get_timestamp(const struct sk_buff *skb, 3421 struct timeval *stamp) 3422 { 3423 *stamp = ktime_to_timeval(skb->tstamp); 3424 } 3425 3426 static inline void skb_get_timestampns(const struct sk_buff *skb, 3427 struct timespec *stamp) 3428 { 3429 *stamp = ktime_to_timespec(skb->tstamp); 3430 } 3431 3432 static inline void __net_timestamp(struct sk_buff *skb) 3433 { 3434 skb->tstamp = ktime_get_real(); 3435 } 3436 3437 static inline ktime_t net_timedelta(ktime_t t) 3438 { 3439 return ktime_sub(ktime_get_real(), t); 3440 } 3441 3442 static inline ktime_t net_invalid_timestamp(void) 3443 { 3444 return 0; 3445 } 3446 3447 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3448 { 3449 return skb_shinfo(skb)->meta_len; 3450 } 3451 3452 static inline void *skb_metadata_end(const struct sk_buff *skb) 3453 { 3454 return skb_mac_header(skb); 3455 } 3456 3457 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3458 const struct sk_buff *skb_b, 3459 u8 meta_len) 3460 { 3461 const void *a = skb_metadata_end(skb_a); 3462 const void *b = skb_metadata_end(skb_b); 3463 /* Using more efficient varaiant than plain call to memcmp(). */ 3464 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3465 u64 diffs = 0; 3466 3467 switch (meta_len) { 3468 #define __it(x, op) (x -= sizeof(u##op)) 3469 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3470 case 32: diffs |= __it_diff(a, b, 64); 3471 case 24: diffs |= __it_diff(a, b, 64); 3472 case 16: diffs |= __it_diff(a, b, 64); 3473 case 8: diffs |= __it_diff(a, b, 64); 3474 break; 3475 case 28: diffs |= __it_diff(a, b, 64); 3476 case 20: diffs |= __it_diff(a, b, 64); 3477 case 12: diffs |= __it_diff(a, b, 64); 3478 case 4: diffs |= __it_diff(a, b, 32); 3479 break; 3480 } 3481 return diffs; 3482 #else 3483 return memcmp(a - meta_len, b - meta_len, meta_len); 3484 #endif 3485 } 3486 3487 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3488 const struct sk_buff *skb_b) 3489 { 3490 u8 len_a = skb_metadata_len(skb_a); 3491 u8 len_b = skb_metadata_len(skb_b); 3492 3493 if (!(len_a | len_b)) 3494 return false; 3495 3496 return len_a != len_b ? 3497 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3498 } 3499 3500 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3501 { 3502 skb_shinfo(skb)->meta_len = meta_len; 3503 } 3504 3505 static inline void skb_metadata_clear(struct sk_buff *skb) 3506 { 3507 skb_metadata_set(skb, 0); 3508 } 3509 3510 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3511 3512 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3513 3514 void skb_clone_tx_timestamp(struct sk_buff *skb); 3515 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3516 3517 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3518 3519 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3520 { 3521 } 3522 3523 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3524 { 3525 return false; 3526 } 3527 3528 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3529 3530 /** 3531 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3532 * 3533 * PHY drivers may accept clones of transmitted packets for 3534 * timestamping via their phy_driver.txtstamp method. These drivers 3535 * must call this function to return the skb back to the stack with a 3536 * timestamp. 3537 * 3538 * @skb: clone of the the original outgoing packet 3539 * @hwtstamps: hardware time stamps 3540 * 3541 */ 3542 void skb_complete_tx_timestamp(struct sk_buff *skb, 3543 struct skb_shared_hwtstamps *hwtstamps); 3544 3545 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3546 struct skb_shared_hwtstamps *hwtstamps, 3547 struct sock *sk, int tstype); 3548 3549 /** 3550 * skb_tstamp_tx - queue clone of skb with send time stamps 3551 * @orig_skb: the original outgoing packet 3552 * @hwtstamps: hardware time stamps, may be NULL if not available 3553 * 3554 * If the skb has a socket associated, then this function clones the 3555 * skb (thus sharing the actual data and optional structures), stores 3556 * the optional hardware time stamping information (if non NULL) or 3557 * generates a software time stamp (otherwise), then queues the clone 3558 * to the error queue of the socket. Errors are silently ignored. 3559 */ 3560 void skb_tstamp_tx(struct sk_buff *orig_skb, 3561 struct skb_shared_hwtstamps *hwtstamps); 3562 3563 /** 3564 * skb_tx_timestamp() - Driver hook for transmit timestamping 3565 * 3566 * Ethernet MAC Drivers should call this function in their hard_xmit() 3567 * function immediately before giving the sk_buff to the MAC hardware. 3568 * 3569 * Specifically, one should make absolutely sure that this function is 3570 * called before TX completion of this packet can trigger. Otherwise 3571 * the packet could potentially already be freed. 3572 * 3573 * @skb: A socket buffer. 3574 */ 3575 static inline void skb_tx_timestamp(struct sk_buff *skb) 3576 { 3577 skb_clone_tx_timestamp(skb); 3578 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3579 skb_tstamp_tx(skb, NULL); 3580 } 3581 3582 /** 3583 * skb_complete_wifi_ack - deliver skb with wifi status 3584 * 3585 * @skb: the original outgoing packet 3586 * @acked: ack status 3587 * 3588 */ 3589 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3590 3591 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3592 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3593 3594 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3595 { 3596 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3597 skb->csum_valid || 3598 (skb->ip_summed == CHECKSUM_PARTIAL && 3599 skb_checksum_start_offset(skb) >= 0)); 3600 } 3601 3602 /** 3603 * skb_checksum_complete - Calculate checksum of an entire packet 3604 * @skb: packet to process 3605 * 3606 * This function calculates the checksum over the entire packet plus 3607 * the value of skb->csum. The latter can be used to supply the 3608 * checksum of a pseudo header as used by TCP/UDP. It returns the 3609 * checksum. 3610 * 3611 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3612 * this function can be used to verify that checksum on received 3613 * packets. In that case the function should return zero if the 3614 * checksum is correct. In particular, this function will return zero 3615 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3616 * hardware has already verified the correctness of the checksum. 3617 */ 3618 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3619 { 3620 return skb_csum_unnecessary(skb) ? 3621 0 : __skb_checksum_complete(skb); 3622 } 3623 3624 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3625 { 3626 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3627 if (skb->csum_level == 0) 3628 skb->ip_summed = CHECKSUM_NONE; 3629 else 3630 skb->csum_level--; 3631 } 3632 } 3633 3634 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3635 { 3636 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3637 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3638 skb->csum_level++; 3639 } else if (skb->ip_summed == CHECKSUM_NONE) { 3640 skb->ip_summed = CHECKSUM_UNNECESSARY; 3641 skb->csum_level = 0; 3642 } 3643 } 3644 3645 /* Check if we need to perform checksum complete validation. 3646 * 3647 * Returns true if checksum complete is needed, false otherwise 3648 * (either checksum is unnecessary or zero checksum is allowed). 3649 */ 3650 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3651 bool zero_okay, 3652 __sum16 check) 3653 { 3654 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3655 skb->csum_valid = 1; 3656 __skb_decr_checksum_unnecessary(skb); 3657 return false; 3658 } 3659 3660 return true; 3661 } 3662 3663 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3664 * in checksum_init. 3665 */ 3666 #define CHECKSUM_BREAK 76 3667 3668 /* Unset checksum-complete 3669 * 3670 * Unset checksum complete can be done when packet is being modified 3671 * (uncompressed for instance) and checksum-complete value is 3672 * invalidated. 3673 */ 3674 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3675 { 3676 if (skb->ip_summed == CHECKSUM_COMPLETE) 3677 skb->ip_summed = CHECKSUM_NONE; 3678 } 3679 3680 /* Validate (init) checksum based on checksum complete. 3681 * 3682 * Return values: 3683 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3684 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3685 * checksum is stored in skb->csum for use in __skb_checksum_complete 3686 * non-zero: value of invalid checksum 3687 * 3688 */ 3689 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3690 bool complete, 3691 __wsum psum) 3692 { 3693 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3694 if (!csum_fold(csum_add(psum, skb->csum))) { 3695 skb->csum_valid = 1; 3696 return 0; 3697 } 3698 } 3699 3700 skb->csum = psum; 3701 3702 if (complete || skb->len <= CHECKSUM_BREAK) { 3703 __sum16 csum; 3704 3705 csum = __skb_checksum_complete(skb); 3706 skb->csum_valid = !csum; 3707 return csum; 3708 } 3709 3710 return 0; 3711 } 3712 3713 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3714 { 3715 return 0; 3716 } 3717 3718 /* Perform checksum validate (init). Note that this is a macro since we only 3719 * want to calculate the pseudo header which is an input function if necessary. 3720 * First we try to validate without any computation (checksum unnecessary) and 3721 * then calculate based on checksum complete calling the function to compute 3722 * pseudo header. 3723 * 3724 * Return values: 3725 * 0: checksum is validated or try to in skb_checksum_complete 3726 * non-zero: value of invalid checksum 3727 */ 3728 #define __skb_checksum_validate(skb, proto, complete, \ 3729 zero_okay, check, compute_pseudo) \ 3730 ({ \ 3731 __sum16 __ret = 0; \ 3732 skb->csum_valid = 0; \ 3733 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3734 __ret = __skb_checksum_validate_complete(skb, \ 3735 complete, compute_pseudo(skb, proto)); \ 3736 __ret; \ 3737 }) 3738 3739 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3740 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3741 3742 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3743 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3744 3745 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3746 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3747 3748 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3749 compute_pseudo) \ 3750 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3751 3752 #define skb_checksum_simple_validate(skb) \ 3753 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3754 3755 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3756 { 3757 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3758 } 3759 3760 static inline void __skb_checksum_convert(struct sk_buff *skb, 3761 __sum16 check, __wsum pseudo) 3762 { 3763 skb->csum = ~pseudo; 3764 skb->ip_summed = CHECKSUM_COMPLETE; 3765 } 3766 3767 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3768 do { \ 3769 if (__skb_checksum_convert_check(skb)) \ 3770 __skb_checksum_convert(skb, check, \ 3771 compute_pseudo(skb, proto)); \ 3772 } while (0) 3773 3774 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3775 u16 start, u16 offset) 3776 { 3777 skb->ip_summed = CHECKSUM_PARTIAL; 3778 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3779 skb->csum_offset = offset - start; 3780 } 3781 3782 /* Update skbuf and packet to reflect the remote checksum offload operation. 3783 * When called, ptr indicates the starting point for skb->csum when 3784 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3785 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3786 */ 3787 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3788 int start, int offset, bool nopartial) 3789 { 3790 __wsum delta; 3791 3792 if (!nopartial) { 3793 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3794 return; 3795 } 3796 3797 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3798 __skb_checksum_complete(skb); 3799 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3800 } 3801 3802 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3803 3804 /* Adjust skb->csum since we changed the packet */ 3805 skb->csum = csum_add(skb->csum, delta); 3806 } 3807 3808 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3809 { 3810 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3811 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3812 #else 3813 return NULL; 3814 #endif 3815 } 3816 3817 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3818 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3819 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3820 { 3821 if (nfct && atomic_dec_and_test(&nfct->use)) 3822 nf_conntrack_destroy(nfct); 3823 } 3824 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3825 { 3826 if (nfct) 3827 atomic_inc(&nfct->use); 3828 } 3829 #endif 3830 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3831 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3832 { 3833 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3834 kfree(nf_bridge); 3835 } 3836 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3837 { 3838 if (nf_bridge) 3839 refcount_inc(&nf_bridge->use); 3840 } 3841 #endif /* CONFIG_BRIDGE_NETFILTER */ 3842 static inline void nf_reset(struct sk_buff *skb) 3843 { 3844 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3845 nf_conntrack_put(skb_nfct(skb)); 3846 skb->_nfct = 0; 3847 #endif 3848 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3849 nf_bridge_put(skb->nf_bridge); 3850 skb->nf_bridge = NULL; 3851 #endif 3852 } 3853 3854 static inline void nf_reset_trace(struct sk_buff *skb) 3855 { 3856 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3857 skb->nf_trace = 0; 3858 #endif 3859 } 3860 3861 static inline void ipvs_reset(struct sk_buff *skb) 3862 { 3863 #if IS_ENABLED(CONFIG_IP_VS) 3864 skb->ipvs_property = 0; 3865 #endif 3866 } 3867 3868 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3869 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3870 bool copy) 3871 { 3872 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3873 dst->_nfct = src->_nfct; 3874 nf_conntrack_get(skb_nfct(src)); 3875 #endif 3876 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3877 dst->nf_bridge = src->nf_bridge; 3878 nf_bridge_get(src->nf_bridge); 3879 #endif 3880 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3881 if (copy) 3882 dst->nf_trace = src->nf_trace; 3883 #endif 3884 } 3885 3886 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3887 { 3888 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3889 nf_conntrack_put(skb_nfct(dst)); 3890 #endif 3891 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3892 nf_bridge_put(dst->nf_bridge); 3893 #endif 3894 __nf_copy(dst, src, true); 3895 } 3896 3897 #ifdef CONFIG_NETWORK_SECMARK 3898 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3899 { 3900 to->secmark = from->secmark; 3901 } 3902 3903 static inline void skb_init_secmark(struct sk_buff *skb) 3904 { 3905 skb->secmark = 0; 3906 } 3907 #else 3908 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3909 { } 3910 3911 static inline void skb_init_secmark(struct sk_buff *skb) 3912 { } 3913 #endif 3914 3915 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3916 { 3917 return !skb->destructor && 3918 #if IS_ENABLED(CONFIG_XFRM) 3919 !skb->sp && 3920 #endif 3921 !skb_nfct(skb) && 3922 !skb->_skb_refdst && 3923 !skb_has_frag_list(skb); 3924 } 3925 3926 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3927 { 3928 skb->queue_mapping = queue_mapping; 3929 } 3930 3931 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3932 { 3933 return skb->queue_mapping; 3934 } 3935 3936 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3937 { 3938 to->queue_mapping = from->queue_mapping; 3939 } 3940 3941 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3942 { 3943 skb->queue_mapping = rx_queue + 1; 3944 } 3945 3946 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3947 { 3948 return skb->queue_mapping - 1; 3949 } 3950 3951 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3952 { 3953 return skb->queue_mapping != 0; 3954 } 3955 3956 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 3957 { 3958 skb->dst_pending_confirm = val; 3959 } 3960 3961 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 3962 { 3963 return skb->dst_pending_confirm != 0; 3964 } 3965 3966 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3967 { 3968 #ifdef CONFIG_XFRM 3969 return skb->sp; 3970 #else 3971 return NULL; 3972 #endif 3973 } 3974 3975 /* Keeps track of mac header offset relative to skb->head. 3976 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3977 * For non-tunnel skb it points to skb_mac_header() and for 3978 * tunnel skb it points to outer mac header. 3979 * Keeps track of level of encapsulation of network headers. 3980 */ 3981 struct skb_gso_cb { 3982 union { 3983 int mac_offset; 3984 int data_offset; 3985 }; 3986 int encap_level; 3987 __wsum csum; 3988 __u16 csum_start; 3989 }; 3990 #define SKB_SGO_CB_OFFSET 32 3991 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3992 3993 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3994 { 3995 return (skb_mac_header(inner_skb) - inner_skb->head) - 3996 SKB_GSO_CB(inner_skb)->mac_offset; 3997 } 3998 3999 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4000 { 4001 int new_headroom, headroom; 4002 int ret; 4003 4004 headroom = skb_headroom(skb); 4005 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4006 if (ret) 4007 return ret; 4008 4009 new_headroom = skb_headroom(skb); 4010 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4011 return 0; 4012 } 4013 4014 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4015 { 4016 /* Do not update partial checksums if remote checksum is enabled. */ 4017 if (skb->remcsum_offload) 4018 return; 4019 4020 SKB_GSO_CB(skb)->csum = res; 4021 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4022 } 4023 4024 /* Compute the checksum for a gso segment. First compute the checksum value 4025 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4026 * then add in skb->csum (checksum from csum_start to end of packet). 4027 * skb->csum and csum_start are then updated to reflect the checksum of the 4028 * resultant packet starting from the transport header-- the resultant checksum 4029 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4030 * header. 4031 */ 4032 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4033 { 4034 unsigned char *csum_start = skb_transport_header(skb); 4035 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4036 __wsum partial = SKB_GSO_CB(skb)->csum; 4037 4038 SKB_GSO_CB(skb)->csum = res; 4039 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4040 4041 return csum_fold(csum_partial(csum_start, plen, partial)); 4042 } 4043 4044 static inline bool skb_is_gso(const struct sk_buff *skb) 4045 { 4046 return skb_shinfo(skb)->gso_size; 4047 } 4048 4049 /* Note: Should be called only if skb_is_gso(skb) is true */ 4050 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4051 { 4052 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4053 } 4054 4055 /* Note: Should be called only if skb_is_gso(skb) is true */ 4056 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4057 { 4058 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4059 } 4060 4061 static inline void skb_gso_reset(struct sk_buff *skb) 4062 { 4063 skb_shinfo(skb)->gso_size = 0; 4064 skb_shinfo(skb)->gso_segs = 0; 4065 skb_shinfo(skb)->gso_type = 0; 4066 } 4067 4068 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4069 u16 increment) 4070 { 4071 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4072 return; 4073 shinfo->gso_size += increment; 4074 } 4075 4076 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4077 u16 decrement) 4078 { 4079 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4080 return; 4081 shinfo->gso_size -= decrement; 4082 } 4083 4084 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4085 4086 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4087 { 4088 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4089 * wanted then gso_type will be set. */ 4090 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4091 4092 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4093 unlikely(shinfo->gso_type == 0)) { 4094 __skb_warn_lro_forwarding(skb); 4095 return true; 4096 } 4097 return false; 4098 } 4099 4100 static inline void skb_forward_csum(struct sk_buff *skb) 4101 { 4102 /* Unfortunately we don't support this one. Any brave souls? */ 4103 if (skb->ip_summed == CHECKSUM_COMPLETE) 4104 skb->ip_summed = CHECKSUM_NONE; 4105 } 4106 4107 /** 4108 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4109 * @skb: skb to check 4110 * 4111 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4112 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4113 * use this helper, to document places where we make this assertion. 4114 */ 4115 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4116 { 4117 #ifdef DEBUG 4118 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4119 #endif 4120 } 4121 4122 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4123 4124 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4125 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4126 unsigned int transport_len, 4127 __sum16(*skb_chkf)(struct sk_buff *skb)); 4128 4129 /** 4130 * skb_head_is_locked - Determine if the skb->head is locked down 4131 * @skb: skb to check 4132 * 4133 * The head on skbs build around a head frag can be removed if they are 4134 * not cloned. This function returns true if the skb head is locked down 4135 * due to either being allocated via kmalloc, or by being a clone with 4136 * multiple references to the head. 4137 */ 4138 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4139 { 4140 return !skb->head_frag || skb_cloned(skb); 4141 } 4142 4143 /* Local Checksum Offload. 4144 * Compute outer checksum based on the assumption that the 4145 * inner checksum will be offloaded later. 4146 * See Documentation/networking/checksum-offloads.txt for 4147 * explanation of how this works. 4148 * Fill in outer checksum adjustment (e.g. with sum of outer 4149 * pseudo-header) before calling. 4150 * Also ensure that inner checksum is in linear data area. 4151 */ 4152 static inline __wsum lco_csum(struct sk_buff *skb) 4153 { 4154 unsigned char *csum_start = skb_checksum_start(skb); 4155 unsigned char *l4_hdr = skb_transport_header(skb); 4156 __wsum partial; 4157 4158 /* Start with complement of inner checksum adjustment */ 4159 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4160 skb->csum_offset)); 4161 4162 /* Add in checksum of our headers (incl. outer checksum 4163 * adjustment filled in by caller) and return result. 4164 */ 4165 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4166 } 4167 4168 #endif /* __KERNEL__ */ 4169 #endif /* _LINUX_SKBUFF_H */ 4170